Science.gov

Sample records for adult human corneal

  1. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells.

    PubMed

    Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N; Xue, Zhigang; Deng, Sophie X; Fan, Guoping

    2013-04-01

    The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy. PMID:23257286

  2. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    PubMed Central

    Navaratnam, Jesintha; Utheim, Tor P.; Rajasekhar, Vinagolu K.; Shahdadfar, Aboulghassem

    2015-01-01

    Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented. PMID:26378588

  3. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  4. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  5. Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro

    PubMed Central

    Zhang, Ju; Zhang, Can-Wei; Du, Li-Qun; Wu, Xin-Yi

    2016-01-01

    AIM To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts, and an acellular porcine cornea matrix (APCM) in vitro. METHODS The scaffold was prepared from fresh porcine corneas which were treated with 0.5% sodium dodecyl sulfate (SDS) solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin (HE) staining and 4′, 6-diamidino-2-phenylindole (DAPI) staining. Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM, and then cell proliferative ability was evaluated by MTT assay. To construct a human corneal anterior lamellar replacement, corneal fibroblasts were injected into the APCM and cultured for 3d, followed by culturing corneal epithelial cells on the stroma construction surface for another 10d. The corneal replacement was analyzed by HE staining, and immunofluorescence staining. RESULTS Histological examination indicated that there were no cells in the APCM by HE staining, and DAPI staining did not detect any residual DNA. The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells. At 10d, a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed, and the injected corneal fibroblasts distributed within the scaffold. The phenotype of the construction was similar to normal human corneas, with high expression of cytokeratin 12 in the epithelial cell layer and high expression of vimentin in the stroma. CONCLUSION Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix. This laid the foundation for the further transplantation in vivo. PMID:26949602

  6. MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    PubMed Central

    Ng, Tsz-Kin; Huang, Li; Lei, Peng; Choy, Kwong-Wai; Liu, Yingpeng; Zhang, Mingzhi; Lam, Dennis Shun-Chiu; Yam, Gary Hin-Fai; Pang, Chi-Pui

    2011-01-01

    Background Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium. Methodology/Principal Findings Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary

  7. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  8. Scattering properties and transparency characterization of human corneal grafts

    NASA Astrophysics Data System (ADS)

    Casadessus, Olivier; Georges, Ga"lle; Siozade-Lamoine, Laure; Deumié, Carole; Conrath, John; Hoffart, Louis

    2011-06-01

    The cornea is the single human tissue being transparent. This unique property may be explained by the particular structure of the cornea, but the precise role of each of its constituents remains unsolved. On other matter, prior to corneal transplant, graft must be evaluated during a sorting procedure where a technician assesses of its transparency quality. Nevertheless, this criterion remains subjective and qualitative. This study proposes to combine 3D imagery using Full-Field Optical Coherence Tomography jointly with angular resolved scattering measurement to achieve a quantitative transparency characterization of the cornea. The OCT provides micrometric resolution structural information about the cornea, and we observe the evolution occurring when oedema develops within the tissue. Scattering properties are evaluated and compared parallely, as the transparency of the graft. A close link between the scattering intensity level of the cornea and its thickness is highlighted through this study. Furthermore, the three-dimensional imagery offers a view over the structural modifications leading to a change in transparency, and the combination with scattering properties measurement provides clues over the characteristic scale of scatterers to consider for a better understanding of corneal transparency evolution. Achieving an objective and quantified parameter for the transparency would be helpful for a more efficient corneal graft sorting, and may be able to detect the presence of localized wounds as the ones related to a previous refractive surgery. However, the study of graft nearly eligible for corneal transplant would be needed to confirm the results this study presents.

  9. Caveolin-1 Associated Adenovirus Entry into Human Corneal Cells

    PubMed Central

    Mukherjee, Santanu; Chintakuntlawar, Ashish V.; Lee, Jeong Yoon; Ramke, Mirja; Chodosh, James; Rajaiya, Jaya

    2013-01-01

    The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream

  10. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  11. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  12. Functional TRPV1 expression in human corneal fibroblasts.

    PubMed

    Yang, Yuanquan; Yang, Hua; Wang, Zheng; Mergler, Stefan; Wolosin, J Mario; Reinach, Peter S

    2013-02-01

    Corneal wound healing in mice subsequent to an alkali burn results in dysregulated inflammation and opacification. Transient receptor potential vanilloid subtype 1 (TRPV1) channel activation in all tissue layers by endogenous ligands contributes to this sight compromising outcome since in TRPV1 knockout mice wound healing results instead in tissue transparency restoration. However, it is not known if primary human stromal fibroblasts exhibit such expression even though functional TRPV1 expression is evident in an immortalized human corneal epithelial cell line. In primary human corneal fibroblasts (HCF), TRPV1 gene expression and localization were identified based on the results of quantitative RT-PCR and immunocytochemistry, respectively. Western blot analysis identified a 100 kD protein corresponding to TRPV1 protein expression in a positive control. Single-cell fluorescence imaging detected in fura2-AM loaded cells Ca(2+) transients that rose 1.8-fold above the baseline induced by a selective TRPV1 agonist, capsaicin (CAP), which were blocked by a TRPV1 antagonist, capsazepine (CPZ) or exposure to a Ca(2+) free medium. The whole-cell mode of the planar patch-clamp technique identified TRPV1-induced currents that rose 1.76-fold between -60 and +130 mV. CAP-induced time dependent changes in the phosphorylation status of mitogen activated protein kinase (MAPK) signaling mediators that led to a 2.5-fold increase in IL-6 release after 24 h. This rise did not occur either in TRPV1 siRNA gene silenced cells or during exposure to SB203580 (10 μM), a selective p38 MAPK inhibitor. Taken together, identification of functional TRPV1 expression in HCF suggests that in vivo its activation by injury contributes to corneal opacification and inflammation during wound healing. These undesirable effects may result in part from increases in IL-6 expression mediated by p-p38 MAPK signaling. PMID:23232207

  13. Ex Vivo Propagation of Human Corneal Stromal "Activated Keratocytes" for Tissue Engineering.

    PubMed

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M; Kadaba, Aishwarya; Tian, Dechao; Myint, Htoon Hla; Beuerman, Roger W; Zhou, Lei; Mehta, Jodhbir S

    2015-01-01

    Keratoconus is a corneal disorder characterized by a thinning of stromal tissue, and the affected patients have induced astigmatism and visual impairment. It is associated with a loss of corneal stromal keratocytes (CSKs). Hence, reconstructing stromal tissue with autologous CSK replacement can be a viable alternative to corneal transplantation, which is restricted by the global donor material shortage and graft rejection. Human CSKs are normally quiescent and express unique markers, like aldehyde dehydrogenases and keratocan. In serum culture, they proliferate, but lose their characteristic phenotype and become stromal fibroblasts. Here we report a novel culture cocktail to ex vivo propagate and maintain CSKs. Primary human CSKs were obtained from adult donors and cultured with soluble human amnion stromal extract (ASE), rho-associated coiled-coil-forming protein serine/threonine kinase inhibitor Y-27632, and insulin-like growth factor-1 (collectively named as ERI). Protein profiling using mass spectrometry followed by MetaCore™ pathway analysis predicted that ASE proteins might participate in transforming growth factor-β (TGF-β) signaling and fibroblast development, cell adhesion, extracellular matrix remodeling, and immune response. In culture with 0.5% fetal bovine serum and ERI, the population of "activated keratocytes" was expanded. They had much lowered expression of both keratocyte and fibroblast markers, suppressed TGF-β-mediated Smad2/3 activation, and lacked fibroblast-mediated collagen contractibility. These "activated keratoctyes" could be propagated for six to eight passages ex vivo, and they regained CSK-specific dendritic morphology and gene marker expression, including aldehyde dehydrogenases, lumican, and keratocan biosynthesis, expression, and secretion when returned to serum-depleted ERI condition. This novel cocktail maintained human CSKs in both adherent and suspension cultures with proper keratocyte features and without the

  14. Transparent, resilient human amniotic membrane laminates for corneal transplantation.

    PubMed

    Hariya, Takehiro; Tanaka, Yuji; Yokokura, Shunji; Nakazawa, Toru

    2016-09-01

    This study evaluated a new technique to toughen and optically clarify human amniotic membrane (AM) tissue, which is naturally thin and clouded, and determined the suitability of the altered tissue for corneal transplantation. The technique created a tissue laminate by repeatedly depositing wet layers of AM and dehydrating them, followed by chemical cross-linking to tighten integration at the layer interfaces and within the layers, thereby improving the physical properties of the laminates by increasing light transmittance and mechanical strength. Interestingly, this improvement only occurred in laminates with at least 4 layers. Cross-linking also improved the resistance of the laminates to collagenase degradation, such as occurs in corneal melting. This study also confirmed that the AM tissue was biocompatible by inserting AM monolayers into the corneal stroma of rabbits, and by performing lamellar keratoplasty in rabbits with cross-linked AM laminates. The laminates were sufficiently thick and resilient to need only one set of sutures, whereas in previously described multi-layer AM transplantation technique, each layer required separate sutures. The current findings are a promising advance in the engineering of novel biomaterials and the alteration of existing tissues for medical use. PMID:27267629

  15. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  16. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  17. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier.

    PubMed

    Proulx, Stéphanie; Audet, Caroline; Uwamaliya, Jeanne d'Arc; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J; Brunette, Isabelle; Germain, Lucie

    2009-07-01

    The difficulties in obtaining good quality tissue for the replacement of corneas of patients suffering from endothelial dysfunctions have prompted us to evaluate the feasibility of producing a tissue-engineered (TE) corneal endothelium using devitalized human stromal carriers. Thus, corneal substitutes were produced by seeding cultured feline corneal endothelial cells on top of previously frozen human corneal stromas. After two weeks of culture to allow attachment and spreading of the seeded cells, the TE corneal endothelium was stained with alizarin red for endothelial cell count and fixed for histology, immunofluorescence labeling, scanning and transmission electron microscopy. Histology and Hoechst staining showed that there were no remaining cells in the devitalized stroma. After seeding, histology and transmission electron microscopy showed that the TE corneal endothelium formed a monolayer of tightly packed cells that were well adhered to Descemet's membrane. Scanning electron microscopy corroborated that the cells covered the entire posterior corneal surface and had an endothelial morphology. Alizarin staining showed that mean cell counts were 2272 +/- 344 cells/mm(2), indicating that the cell density was appropriate for grafting. The TE feline corneal endothelium also expressed the function-related proteins Na(+)/HCO(3)(-), ZO-1, and Na(+)/K(+)-ATPase alpha1, and could easily be marked with a fluorescent tracker. This study demonstrates the feasibility of reconstructing a highly cellular and healthy corneal endothelium on devitalized human corneal stromas. PMID:19125643

  18. Decellularization of human stromal refractive lenticules for corneal tissue engineering.

    PubMed

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  19. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  20. In-vivo human corneal nerve imaging using Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Hwang, Ho Sik

    2015-03-01

    We have imaged human corneal nerve bundles by using real-time Fourier-domain OCT (FD-OCT). Corneal nerves contribute to the maintenance of healthy ocular surface owing to their trophic influences on the corneal epithelium. The FD-OCT system was based on a swept laser of a 50 kHz sweeping rate and 1.31 μm center wavelength. At the area including sclera, limbus, and cornea, we could successfully get the in-vivo tomograms of the corneal nerve bundles. The scan range was 5 x 5mm. In this study, the A-scan images in each B-scan were realigned to have a flat air-surface boundary in the final B-scan image. With this effort, we could align corneal nerve bundle in a same depth and get the 3D image showing the branched and threadlike corneal nerve bundles.

  1. "All-laser" endothelial corneal transplant in human patients

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Pini, Roberto

    2012-03-01

    Femtosecond laser sculpturing of corneal tissue is commonly used for the preparation of endothelial flaps. Diode laser welding of ocular tissues is a procedure that enables minimally invasive suturing of tissues. The combination of these laser based techniques results in a new approach to minimally invasive ophthalmic surgery, such as in endothelial corneal transplant (or endothelial keratoplasty - EK). In this work we present the "all laser" EK performed in human subjects. 24 pseudophakic patients with bullous keratopathy underwent EK: the femtosecond laser was used to prepare the 100 ìm thick and 8.5 mm diameter donor Descemet endothelial flap. After staining the stromal layer of the donor flap with a liquid ICG solution, the donor flap was inserted in the recipient eye by the use of the Busin injector. Then, the endothelial layer was laser-welded to the recipient eye (10 laser spots around the periphery of the flap), in order to reduce the risk of postoperative dislocation of the transplanted flap. A transplanted flap engraftment was observed in all the treated eyes. The staining procedure used to perform laser welding also enabled to evidence the stromal side of the donor flap, so as the flap was always placed in the right side position. The endothelial cells counts in both the laserwelded flaps and in a control group were in good agreement. The proposed technique is easy to perform and enables the reduction of postoperative endothelial flap dislocations.

  2. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing

    PubMed Central

    Veréb, Zoltán; Póliska, Szilárd; Albert, Réka; Olstad, Ole Kristoffer; Boratkó, Anita; Csortos, Csilla; Moe, Morten C.; Facskó, Andrea; Petrovski, Goran

    2016-01-01

    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases. PMID:27195722

  3. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing.

    PubMed

    Veréb, Zoltán; Póliska, Szilárd; Albert, Réka; Olstad, Ole Kristoffer; Boratkó, Anita; Csortos, Csilla; Moe, Morten C; Facskó, Andrea; Petrovski, Goran

    2016-01-01

    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases. PMID:27195722

  4. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  5. Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation.

    PubMed

    Parekh, Mohit; Ferrari, Stefano; Sheridan, Carl; Kaye, Stephen; Ahmad, Sajjad

    2016-02-01

    The cornea forms the front window of the eye, enabling the transmission of light to the retina through a crystalline lens. Many disorders of the cornea lead to partial or total blindness, and therefore corneal transplantation becomes mandatory. Recently, selective corneal layer (as opposed to full thickness) transplantation has become popular because this leads to earlier rehabilitation and visual outcomes. Corneal endothelial disorders are a common cause of corneal disease and transplantation. Corneal endothelial transplantation is successful but limited worldwide because of lower donor corneal supply. Alternatives to corneal tissue for endothelial transplantation therefore require immediate attention. The field of human corneal endothelial culture for transplantation is rapidly emerging as a possible viable option. This manuscript provides an update regarding these developments. Significance: The cornea is the front clear window of the eye. It needs to be kept transparent for normal vision. It is formed of various layers of which the posterior layer (the endothelium) is responsible for the transparency of the cornea because it allows the transport of ions and solutes to and from the other layers of the cornea. Corneal blindness that results from the corneal endothelial dysfunction can be treated using healthy donor tissues. There is a huge demand for human donor corneas but limited supply, and therefore there is a need to identify alternatives that would reduce this demand. Research is underway to understand the isolation techniques for corneal endothelial cells, culturing these cells in the laboratory, and finding possible options to transplant these cells in the patients. This review article is an update on the recent developments in this field. PMID:26702128

  6. Image analysis of human corneal endothelial cells based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Luo, Qingming; Zeng, Shaoqun; Zhang, Xinyu; Huang, Dexiu; Chen, Weiguo

    1999-09-01

    A fast method is developed to quantitatively characterize the shape of human corneal endothelial cells with fractal theory and applied to analyze microscopic photographs of human corneal endothelial cells. The results show that human corneal endothelial cells possess the third characterization parameter-- fractal dimension, besides another two characterization parameter (its size and shape). Compared with tradition method, this method has many advantages, such as automatism, speediness, parallel processing and can be used to analyze large numbers of endothelial cells, the obtained values are statistically significant, it offers a new approach for clinic diagnosis of endothelial cells.

  7. An unusual case of spontaneous Mycobacterium chelonae corneal ulcer in a healthy middle-aged adult

    PubMed Central

    Bhandari, Vipul; Sriganesh, R; Relekar, Kirti

    2016-01-01

    Background To report a rare presentation of culture-positive Mycobacterium chelonae corneal ulcer and its management. Findings We report a rare case of a patient with a history of chronic pain and blurriness of vision. Examination revealed a chronic nonhealing paracentral corneal ulcer inferiorly at the 5–7 o’clock meridian with anterior chamber reaction unresponsive to routine antibiotic and antifungal medications with Mantoux test positivity in a middle-aged nondiabetic patient with no prior history of trauma, ocular surgery, and contact lens usage. Ziehl–Neelsen staining of the nonhealing ulcer revealed acid-fast bacilli typical of M. chelonae, with subsequent culture positivity in Löwenstein–Jensen medium. Subsequent treatment with topical fortified amikacin and tobramycin resulted in rapid healing of the corneal ulcer. Conclusion M. chelonae presenting as a chronic nonhealing corneal ulcer spontaneously occurring in a healthy adult with no predisposing factor draws attention towards the need to have a good index of suspicion by performing a Ziehl–Neelsen stain and culture, and subsequent successful management with topical fortified amikacin and tobramycin. PMID:27274315

  8. Preoperative corneal astigmatism among adult patients with cataract in Northern Nigeria

    PubMed Central

    Isyaku, Mohammed; Ali, Syed A; Hassan, Sadiq

    2014-01-01

    The prevalence and nature of corneal astigmatism among patients with cataract has not been well-documented in the resident African population. This retrospective study was undertaken to investigate preexisting corneal astigmatism in adult patients with cataract. We analyzed keratometric readings acquired by manual Javal-Schiotz keratometry before surgery between January 1, 2011 and December 31, 2011. There were 3,169 patients (3286 eyes) aged between 16 and 110 years involved with a Male to female ratio of 1.4:1. Mean keratometry in diopters was K1 = 43.99 and K2 = 43.80. Mean corneal astigmatism was 1.16 diopter and a majority (45.92%) of eyes had astigmatism between 1.00 and 1.99 diopters. Two-thirds of the eyes (66.9%) in this study had preoperative corneal astigmatism equal to or above 1.00 diopter. Findings will help local cataract surgeons to estimate the potential demand for toric intraocular lenses. PMID:25494254

  9. Morphology and movement of corneal surface cells in humans.

    PubMed

    Mathers, W D; Lemp, M A

    1992-06-01

    We examined the morphology of the corneal surface epithelial cells in 13 eyes of 13 subjects using specular microscopy. We determined cell area, perimeter, and shape comparing the central cornea with the inferior and superior periphery. We found surface epithelial cells are significantly smaller in the central cornea. The cells measured 560 +/- 93 square microns in the central cornea, 850 +/- 135 square microns in the superior cornea and 777 +/- 176 square microns in the inferior cornea (p less than .005). Newly emerged surface cells are smaller and are thought to enlarge with time. We postulate that lid shearing forces are greater in the central cornea and contribute to epithelial cell exfoliation. We further postulate that preferential shearing of central corneal surface cells is an important factor driving the centripetal movement of corneal epithelial cells. PMID:1505196

  10. Quantification of confocal images of human corneal endothelium

    NASA Astrophysics Data System (ADS)

    Laird, Jeffery A.; Beuerman, Roger W.; Kaufman, Stephen C.

    1996-05-01

    Real-time, in vivo, confocal microscopic examination permits visualization of human corneal endothelium cells as bright bodies organized into a densely packed hexagonal arrangement. Quantification of endothelial cell number would be useful in assessing the condition of this cell layer in various disease states. In this study, we sought to use an image analysis method developed in this laboratory that utilizes digital filtering techniques and morphological operations to determine the boundaries of each cell. Images were corrected to establish a uniform luminance level, and then convolved by various matrices until distinct peaks in luminance value were identified. These peaks were used as seed points from which cell boundaries were recursively expanded until they collided with other cell boundaries. This method automatically counts the number of cells and determines the size and position of each cell. The resulting histograms of cell size are readily indicative of changes in cellular density, cell loss, and deviation from uniform arrangement. The numbers of cells counted by this method are consistently within 3% of the numbers counted manually. Results relating cell counts obtained by manual and computerized methods are as follows: 200/184; 276/262; 87/87; 234/232; 236/232; 299/297; 145/147; 119/122; 237/243; 119/119; 245/253; 189/193. Thus, confocal microscopy coupled with these image analysis and statistical procedures provides an accurate quantitative approach to monitoring the endothelium under normal, pathological, and experimental conditions, such as those following surgery and trauma or in the evaluation of the efficacy of topical therapeutic agents.

  11. Influence factors for successful corneal donation among Chinese adults: data from Nanjing between 2001 and 2012

    PubMed Central

    Chen, Li-Xun; Liu, Qing-Huai

    2014-01-01

    AIM To investigate the factors that may influence the successful corneal donation among adults in China. METHODS This retrospective study was conducted in 2012. The eligible participants were all the adults registered in Nanjing Red Cross Eye Bank to donate their corneas after death during the period of 2001 and 2012. Multivariate logistic regression models were applied to investigate the influence factors for successful donation, the outcome events. RESULTS Totally, 210 of 328 (64.0%) registered potential donors successfully donated their corneas after death. The mean (SD) age at registration was 64.7 (12.5) for all participants, with 65.5 (10.1) and 63.2 (15.8) for successful and unsuccessful donors, respectively. With multivariate logistic regression analysis, five factors, the willingness of donation, age, education level, residence area, and cause of death were identified to be associated with successful corneal donation. CONCLUSION The willingness of donation and some socio-demographic factors might substantially affect their successful donation after death for people who registered to donate corneas. PMID:25540751

  12. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  13. Light scattering from human corneal grafts: Bulk and surface contribution

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Georges, Gaëlle; Lamoine, Laure Siozade; Deumié, Carole; Conrath, John; Hoffart, Louis

    2010-09-01

    The cornea is the only transparent tissue in the body. The transparency is the main characteristic of the corneal tissue, and depends not only on the transmission coefficient but also on the losses by scattering and absorption. The scattering properties of the cornea tissues become one of the most important parameters in the case of the corneal graft. These scattering properties are studied in this paper in the reflected half area, similar to the diagnosis configuration. We quantify the influence of the cornea thickness and of the epithelial layer on scattering level. The technique of ellipsometry on scattered field is also used to analyze the polarization properties in order to determine the origin of scattering (surface and/or bulk).

  14. Bioengineering Organized, Multilamellar Human Corneal Stromal Tissue by Growth Factor Supplementation on Highly Aligned Synthetic Substrates

    PubMed Central

    Wu, Jian; Du, Yiqin; Mann, Mary M.; Yang, Enzhi; Funderburgh, James L.

    2013-01-01

    Recapitulating the microstructure of the native human corneal stromal tissue is believed to be a key feature in successfully engineering the corneal tissue. The stratified multilayered collagen fibril lamellae with orthogonal orientation determine the robust biomechanical properties of this tissue, and the uniform collagen fibril size and interfibrillar spacing are critical to its optical transparency. The objective of this investigation was to develop a highly organized collagen-fibril construct secreted by human corneal stromal stem cells (hCSSCs) to mimic the human corneal stromal tissue. In culture on a highly aligned fibrous substrate made from poly(ester urethane) urea, the fibroblast growth factor-2 (FGF-2, 10 ng/mL) and transforming growth factor-beta 3 (TGF-β3, 0.1 ng/mL) impacted the organization and abundance of the secreted collagen fibril matrix. hCSSCs differentiated into keratocytes with significant upregulation of the typical gene markers, including KERA, B3GnT7, and CHST6. FGF-2 treatment stimulated hCSSCs to secrete collagen fibrils strongly aligned in a single direction, whereas TGF-β3 induced collagenous layers with orthogonal fibril orientation. The combination of FGF-2 and TGF-β3 induced multilayered lamellae with orthogonally oriented collagen fibrils, in a pattern mimicking the human corneal stromal tissue. The constructs were 60–70 μm thick and had an increased content of cornea-specific extracellular matrix components, including keratan sulfate, lumican, and keratocan. The approach of combining substrate cues with growth factor augmentation offers a new means to engineer well-organized, collagen-based constructs with an appropriate nanoscale structure for corneal repair and regeneration. PMID:23557404

  15. Propagation of human corneal endothelial cells: a novel dual media approach.

    PubMed

    Peh, Gary S L; Chng, Zhenzhi; Ang, Heng-Pei; Cheng, Terence Y D; Adnan, Khadijah; Seah, Xin-Yi; George, Benjamin L; Toh, Kah-Peng; Tan, Donald T; Yam, Gary H F; Colman, Alan; Mehta, Jodhbir S

    2015-01-01

    Corneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials. For such endeavors, ex vivo propagation of human corneal endothelial cells (hCECs) is required, but current methodology lacks consistency, with expanded hCECs losing cellular morphology to a mesenchymal-like transformation. In this study, we describe a novel dual media culture approach for the in vitro expansion of primary hCECs. Initial characterization included analysis of growth dynamics of hCECs grown in either proliferative (M4) or maintenance (M5) medium. Subsequent comparisons were performed on isolated hCECs cultured in M4 alone against cells expanded using the dual media approach. Further characterizations were performed using immunocytochemistry, quantitative real-time PCR, and gene expression microarray. At the third passage, results showed that hCECs propagated using the dual media approach were homogeneous in appearance, retained their unique polygonal cellular morphology, and expressed higher levels of corneal endothelium-associated markers in comparison to hCECs cultured in M4 alone, which were heterogeneous and fibroblastic in appearance. Finally, for hCECs cultured using the dual media approach, global gene expression and pathway analysis between confluent hCECs before and after 7-day exposure to M5 exhibited differential gene expression associated predominately with cell proliferation and wound healing. These findings showed that the propagation of primary hCECs using the novel dual media approach presented in this study is a consistent method to obtain bona fide hCECs. This, in turn, will elicit greater confidence in facilitating downstream development of

  16. Plastic Compressed Collagen as a Novel Carrier for Expanded Human Corneal Endothelial Cells for Transplantation

    PubMed Central

    Levis, Hannah J.; Peh, Gary S. L.; Toh, Kah-Peng; Poh, Rebekah; Shortt, Alex J.; Drake, Rosemary A. L.; Mehta, Jodhbir S.; Daniels, Julie T.

    2012-01-01

    Current treatments for reversible blindness caused by corneal endothelial cell failure involve replacing the failed endothelium with donor tissue using a one donor-one recipient strategy. Due to the increasing pressure of a worldwide donor cornea shortage there has been considerable interest in developing alternative strategies to treat endothelial disorders using expanded cell replacement therapy. Protocols have been developed which allow successful expansion of endothelial cells in vitro but this approach requires a supporting material that would allow easy transfer of cells to the recipient. We describe the first use of plastic compressed collagen as a highly effective, novel carrier for human corneal endothelial cells. A human corneal endothelial cell line and primary human corneal endothelial cells retained their characteristic cobblestone morphology and expression of tight junction protein ZO-1 and pump protein Na+/K+ ATPase α1 after culture on collagen constructs for up to 14 days. Additionally, ultrastructural analysis suggested a well-integrated endothelial layer with tightly opposed cells and apical microvilli. Plastic compressed collagen is a superior biomaterial in terms of its speed and ease of production and its ability to be manipulated in a clinically relevant manner without breakage. This method provides expanded endothelial cells with a substrate that could be suitable for transplantation allowing one donor cornea to potentially treat multiple patients. PMID:23226443

  17. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  18. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    PubMed Central

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  19. Tear Lipocalin: Evidence for a Scavenging Function to Remove Lipids from the Human Corneal Surface

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Prasher, Pawan; Yusifov, Taleh N.; Glasgow, Ben J.

    2006-01-01

    Purpose Lipid contamination of the cornea may create an unwettable surface and result in desiccation of the corneal epithelium. Tear lipocalin (TL), also known as lipocalin-1, is the principal lipid-binding protein in tears. TL has been shown to scavenge lipids from hydrophobic surfaces. The hypothesis that TL can remove contaminating fatty acids and phospholipids from the human corneal surface was tested. Methods TL was purified from pooled human tear samples by size exclusion and ion exchange chromatographies. Tears depleted of TL were reconstituted from fractions eluted by size exclusion chromatography that did not contain TL. Fresh and formalin-fixed human corneas were obtained from exenteration specimens. Fluorescent analogs of either palmitic acid or phosphatidylcholine were applied to the corneal epithelial surface. Tears, TL, or tears depleted of TL were applied over the corneas, and spectrofluorometry and fluorescent stereomicroscopy were used to monitor the removal of fluorescent lipids. Tears used in the experiments were then fractionated by size exclusion chromatography to determine the component of tears associated with fluorescent lipids. Results Significant enhancement of fluorescence for 16AP and NBD C6-HPC was evident in solutions incubated with whole tears and purified TL but not with tears depleted of TL for fixed and unfixed corneas. After the experiment, size exclusion fractions of tears showed that the fluorescence component coeluted with TL. Conclusions TL scavenges lipids from the human corneal surface and delivers them into the aqueous phase of tears. TL may have an important role in removing lipids from the corneal surface to maintain the wettability and integrity of the ocular surface. PMID:16186338

  20. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  1. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging

    PubMed Central

    Park, Choul Yong; Lee, Jimmy K.; Zhang, Cheng; Chuck, Roy S.

    2015-01-01

    Purpose To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Methods Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Results Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. Conclusions By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures. PMID:26393473

  2. Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial cells.

    PubMed

    Moysidis, Stavros N; Alvarez-Delfin, Karen; Peschansky, Veronica J; Salero, Enrique; Weisman, Alejandra D; Bartakova, Alena; Raffa, Gabriella A; Merkhofer, Richard M; Kador, Karl E; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2015-04-01

    To improve the delivery and integration of cell therapy using magnetic cell guidance for replacement of corneal endothelium, here we assess magnetic nanoparticles' (MNPs') effects on human corneal endothelial cells (HCECs) in vitro. Biocompatible, 50 nm superparamagnetic nanoparticles endocytosed by cultured HCECs induced no short- or long-term change in viability or identity. Assessment of guidance of the magnetic HCECs in the presence of different magnet shapes and field strengths showed a 2.4-fold increase in delivered cell density compared to gravity alone. After cell delivery, HCECs formed a functional monolayer, with no difference in tight junction formation between MNP-loaded and control HCECs. These data suggest that nanoparticle-mediated magnetic cell delivery may increase the efficiency of cell delivery without compromising HCEC survival, identity or function. Future studies may assess the safety and efficacy of this therapeutic modality in vivo. From the clinical editor: The authors show in this article that magnetic force facilitates the delivery of human corneal endothelial cells loaded by superparamagnetic nanoparticles to cornea, without changing their morphology, identity or functional properties. This novel idea can potentially have vast impact in the treatment of corneal endothelial dystrophies by providing self-endothelial cells after ex-vivo expansion. PMID:25596075

  3. A novel interleukin 33/ST2 signaling regulates inflammatory response in human corneal epithelium.

    PubMed

    Lin, Jing; Zhang, Lili; Zhao, Guiqiu; Su, Zhitao; Deng, Ruzhi; Pflugfelder, Stephen C; Li, De-Quan

    2013-01-01

    Interleukin (IL) 33, a member of IL-1 cytokine family, is well known to promote Th2 type immune responses by signaling through its receptor ST2. However, it is not clear whether ST2 is expressed by mucosal epithelium, and how it responds to IL-33 to induce inflammatory mediators. This study was to identify the presence and function of ST2 and explore the role of IL-33/ST2 signaling in regulating the inflammatory cytokine production in corneal epithelial cells. Human corneal tissues and cultured primary human corneal epithelial cells (HCECs) were treated with IL-33 in different concentrations without or with different inhibitors to evaluate the expression, location and signaling pathways of ST2 in regulating production of inflammatory cytokine and chemokine. The mRNA expression was determined by reverse transcription and real time PCR, and protein production was measured by enzyme-linked immunosorbent assay (ELISA), immunohistochemical and immunofluorescent staining. ST2 mRNA and protein were detected in donor corneal epithelium and cultured HCECs, and ST2 signal was enhanced by exposure to IL-33. IL-33 significantly stimulated the production of inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokine IL-8 by HCECs at both mRNA and protein levels. The stimulated production of inflammatory mediators by IL-33 was blocked by ST2 antibody or soluble ST2 protein. Interestingly, the IκB-α inhibitor BAY11-7082 or NF-κB activation inhibitor quinazoline blocked NF-κB p65 protein phosphorylation and nuclear translocation, and also suppressed the production of these inflammatory cytokines and chemokine induced by IL-33. These findings demonstrate that ST2 is present in human corneal epithelial cells, and IL-33/ST2 signaling plays an important role in regulating IL-33 induced inflammatory responses in ocular surface. PMID:23585867

  4. A Novel Interleukin 33/ST2 Signaling Regulates Inflammatory Response in Human Corneal Epithelium

    PubMed Central

    Lin, Jing; Zhang, Lili; Zhao, Guiqiu; Su, Zhitao; Deng, Ruzhi; Pflugfelder, Stephen C.; Li, De-Quan

    2013-01-01

    Interleukin (IL) 33, a member of IL-1 cytokine family, is well known to promote Th2 type immune responses by signaling through its receptor ST2. However, it is not clear whether ST2 is expressed by mucosal epithelium, and how it responds to IL-33 to induce inflammatory mediators. This study was to identify the presence and function of ST2 and explore the role of IL-33/ST2 signaling in regulating the inflammatory cytokine production in corneal epithelial cells. Human corneal tissues and cultured primary human corneal epithelial cells (HCECs) were treated with IL-33 in different concentrations without or with different inhibitors to evaluate the expression, location and signaling pathways of ST2 in regulating production of inflammatory cytokine and chemokine. The mRNA expression was determined by reverse transcription and real time PCR, and protein production was measured by enzyme-linked immunosorbent assay (ELISA), immunohistochemical and immunofluorescent staining. ST2 mRNA and protein were detected in donor corneal epithelium and cultured HCECs, and ST2 signal was enhanced by exposure to IL-33. IL-33 significantly stimulated the production of inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokine IL-8 by HCECs at both mRNA and protein levels. The stimulated production of inflammatory mediators by IL-33 was blocked by ST2 antibody or soluble ST2 protein. Interestingly, the IκB-α inhibitor BAY11-7082 or NF-κB activation inhibitor quinazoline blocked NF-κB p65 protein phosphorylation and nuclear translocation, and also suppressed the production of these inflammatory cytokines and chemokine induced by IL-33. These findings demonstrate that ST2 is present in human corneal epithelial cells, and IL-33/ST2 signaling plays an important role in regulating IL-33 induced inflammatory responses in ocular surface. PMID:23585867

  5. Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements.

    PubMed

    Teichmann, J; Valtink, M; Gramm, S; Nitschke, M; Werner, C; Funk, R H W; Engelmann, K

    2013-02-01

    Corneal endothelial diseases lead to severe vision impairment, motivating the transplantation of donor corneae or corneal endothelial lamellae, which is, however, impeded by endothelial cell loss during processing. Therefore, one prioritized aim in corneal tissue engineering is the generation of transplantable human corneal endothelial cell (HCEC) layers. Thermo-responsive cell culture carriers are widely used for non-enzymatic harvest of cell sheets. The current study presents a novel thermo-responsive carrier based on simultaneous electron beam immobilization and cross-linking of poly(vinyl methyl ether) (PVME) on polymeric surfaces, which allows one to adjust layer thickness, stiffness, switching amplitude and functionalization with bioactive molecules to meet cell type specific requirements. The efficacy of this approach for HCEC, which require elaborate cell culture conditions and are strongly adherent to the substratum, is demonstrated. The developed method may pave the way to tissue engineering of corneal endothelium and significantly improve therapeutic options. PMID:23099299

  6. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas. PMID:27113863

  7. DNA delivery in adult mouse eyes: An update with corneal endothelium outcomes

    PubMed Central

    Nickerson, John M.; Getz, Shannon E.; Sellers, Jana T.; Chrenek, Micah A.; Goodman, Penny; Bernal, Christiana J.; Boatright, Jeffrey H.

    2014-01-01

    Ocular injection (intravitreal, subretinal, or into the anterior space) is an efficient approach to deliver many classes of drugs, cells, and other treatments to various cell types of the eye. In particular, subretinal injection is efficient since delivered agents accumulate as there is no dilution due to transport processes or diffusion and because the volume of the interphotoreceptor space (IPS) is minimal (10–20 microliters in the human eye, less than 1 microliter in the mouse eye). We previously reported methods using subretinal injection and electroporation to deliver DNA to photoreceptor and retinal pigment epithelium (RPE) cells in retinas of live mice(1–3). Here we detail further optimization of that approach and additionally report its use in delivering DNA expression plasmids to the corneal endothelium. PMID:24510822

  8. Co-ordinated ocular development from human iPS cells and recovery of corneal function.

    PubMed

    Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji

    2016-03-17

    The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness. PMID:26958835

  9. Corneal endothelium: developmental strategies for regeneration

    PubMed Central

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-01-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: ‘cornea AND embryology AND transcription factors', ‘human endothelial keratoplasty AND risk factors', ‘(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', ‘mesenchymal stem cells AND cell therapy', ‘mesenchymal stem cells AND cornea', and ‘stem cells AND

  10. Impact of Corneal Endothelial Dysfunctions on Intraocular Oxygen Levels in Human Eyes

    PubMed Central

    Huang, Andrew J. W.; Shui, Ying-Bo; Han, Yu-Ping; Bai, Fang; Siegfried, Carla J.; Beebe, David C.

    2015-01-01

    Purpose We studied the implications of corneal endothelial dysfunctions on oxidative stress in the anterior segment via in vivo measurements of oxygen partial pressure (pO2) in the anterior chamber (AC) of human eyes. Methods We recruited 51 patients undergoing cataract surgery and/or endothelial keratoplasty (EK). Endothelial cell density (ECD; n = 33) and central corneal thickness (CCT; n = 41) were measured on patients with relatively clear corneas. Before surgery, an oxygen sensor was introduced into the AC via a peripheral corneal paracentesis. In all patients, seven measurements of pO2 were obtained by positioning the flexible tip near the endothelium at the central cornea, at four cardinal subendothelial locations near the midperipheral cornea, and in the mid-AC and AC angle. In patients with pseudophakia or eyes undergoing cataract surgery, pO2 also was measured near the lens surface and in the posterior chamber. Results Consistent with our previous reports, a steep oxygen gradient was noted in the anterior segment of normal controls (n = 24). In patients with endothelial dysfunctions (n = 27), there was a significant increase of pO2 at all five subendothelial locations without a significant increase of pO2 in the AC angle. By regression analyses, subendothelial pO2 correlated inversely with ECD and positively with CCT in patients with endothelial dysfunctions. Conclusions This study demonstrates an even steeper intraocular oxygen gradient in eyes with corneal endothelial dysfunctions. It suggests that the reduced oxygen consumption in corneal endothelial cells may increase oxidative stress in the AC and the existence of an alternative aqueous inflow pathway that maintains a relatively low and constant pO2 at the AC angle. PMID:26447982

  11. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    PubMed

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  12. Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death

    PubMed Central

    Vantaku, Venkat Rao; Gupta, Geetika; Rapalli, Krishna Chaitanya; Karnati, Roy

    2015-01-01

    Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro. PMID:26670139

  13. Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death.

    PubMed

    Vantaku, Venkat Rao; Gupta, Geetika; Rapalli, Krishna Chaitanya; Karnati, Roy

    2015-01-01

    Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro. PMID:26670139

  14. Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure

    PubMed Central

    Lombardo, Marco; Merino, David; Loza-Alvarez, Pablo; Lombardo, Giuseppe

    2015-01-01

    Diseases that affect the cornea can lead to severe vision loss and have tremendous social impact. These diseases are associated to deviations from normal structural order and orientation of collagen fibril bundles. Unfortunately, resolving non-invasively the corneal collagen structure is not possible to date. In this work, polarization sensitive second harmonic generation (pSHG) microscopy is used to obtain information with molecular specificity on microstructure of human corneas. This information is used to develop a set of label-free imaging biomarkers that were generated by means of a novel methodology based on mathematical tensorial calculus. The method is proven to be highly sensitive and robust. The use of these biomarkers permits accurate characterization of the anisotropic, depth-dependent, structural organization of corneal collagen fibril bundles without any a priori information. The method can be valuable to improve understanding of microstructural pathophysiological changes of the human cornea close to in vivo conditions. PMID:26309745

  15. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions.

    PubMed

    Zhu, Ying-Ting; Chen, Hung-Chi; Chen, Szu-Yu; Tseng, Scheffer C G

    2012-08-01

    Contact inhibition ubiquitously exists in non-transformed cells that are in contact with neighboring cells. This phenomenon explains the poor regenerative capacity of in vivo human corneal endothelial cells during aging, injury and surgery. This study demonstrated that the conventional approach of expanding human corneal endothelial cells by disrupting contact inhibition with EDTA followed by bFGF activated canonical Wnt signaling and lost the normal phenotype to endothelial-mesenchymal transition, especially if TGFβ1 was added. By contrast, siRNA against p120 catenin (CTNND1) also uniquely promoted proliferation of the endothelial cells by activating trafficking of p120 catenin to the nucleus, thus relieving repression by nuclear Kaiso. This nuclear p120-catenin-Kaiso signaling is associated with activation of RhoA-ROCK signaling, destabilization of microtubules and inhibition of Hippo signaling, but not with activation of Wnt-β-catenin signaling. Consequently, proliferating human corneal endothelial cells maintained a hexagonal shape, with junctional expression of N-cadherin, ZO-1 and Na(+)/K(+)-ATPase. Further expansion of human corneal endothelial monolayers with a normal phenotype and a higher density was possible by prolonging treatment with p120 catenin siRNA followed by its withdrawal. This new strategy of perturbing contact inhibition by selective activation of p120-catenin-Kaiso signaling without disrupting adherent junction could be used to engineer surgical grafts containing normal human corneal endothelial cells to meet a global corneal shortage and for endothelial keratoplasties. PMID:22505615

  16. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  17. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma

    PubMed Central

    Labate, Cristina; Lombardo, Marco; De Santo, Maria P.; Dias, Janice; Ziebarth, Noel M.; Lombardo, Giuseppe

    2015-01-01

    Purpose. To investigate the depth-dependent mechanical anisotropy of the human corneal stroma at the tissue (stroma) and molecular (collagen) level by using atomic force microscopy (AFM). Methods. Eleven human donor corneas were dissected at different stromal depths by using a microkeratome. Mechanical measurements were performed in 15% dextran on the surface of the exposed stroma of each sample by using a custom-built AFM in force spectroscopy mode using both microspherical (38-μm diameter) and nanoconical (10-nm radius of curvature) indenters at 2-μm/s and 15-μm/s indentation rates. Young's modulus was determined by fitting force curve data using the Hertz and Hertz-Sneddon models for a spherical and a conical indenter, respectively. The depth-dependent anisotropy of stromal elasticity was correlated with images of the corneal stroma acquired by two-photon microscopy. Results. The force curves were obtained at stromal depths ranging from 59 to 218 μm. At the tissue level, Young's modulus (ES) showed a steep decrease at approximately 140-μm stromal depth (from 0.8 MPa to 0.3 MPa; P = 0.03) and then was stable in the posterior stroma. At the molecular level, Young's modulus (EC) was significantly greater than at the tissue level; EC decreased nonlinearly with increasing stromal depth from 3.9 to 2.6 MPa (P = 0.04). The variation of microstructure through the thickness correlated highly with a nonconstant profile of the mechanical properties in the stroma. Conclusions. The corneal stroma exhibits unique anisotropic elastic behavior at the tissue and molecular levels. This knowledge may benefit modeling of corneal behavior and help in the development of biomimetic materials. PMID:26098472

  18. Transplantation of tissue-engineered human corneal endothelium in cat models

    PubMed Central

    Ma, Xiya; Zhao, Jun; Wen, Qian; Hu, Xiuzhong; Yu, Haoze; Shi, Weiyun

    2013-01-01

    Purpose To evaluate the performance of reconstructed tissue-engineered human corneal endothelium (TE-HCE) by corneal transplantation in cat models. Methods TE-HCE reconstruction was performed by culturing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled monoclonal HCE cells on denuded amniotic membranes (dAMs) in 20% fetal bovine serum-containing Dulbecco’s Modified Eagle’s Medium/Ham’s Nutrient Mixture F12 (1:1) medium and 5% CO2 at 37 °C on a 24-well culture plate. The reconstructed TE-HCE was transplanted into cat corneas via lamellar keratoplasty with all of the endothelium and part of Descemet’s membrane stripped. Postsurgical corneas were monitored daily with their histological properties examined during a period of 104 days after transplantation. Results The reconstructed TE-HCE at a density of 3,413.33±111.23 cells/mm2 in average established intense cell-cell and cell-dAM junctions. After lamellar keratoplasty surgery, no obvious edema was found in TE-HCE-transplanted cat corneas, which were transparent throughout the monitoring period. In contrast, intense corneal edema developed in dAM-transplanted cat corneas, which were turbid. The corneal thickness gradually decreased to 751.33±11.37 μm on day 104 after TE-HCE transplantation, while that of dAM eye was over 1,000 μm in thickness during the monitoring period. A monolayer of endothelium consisting of TE-HCE-originated cells at a density of 2,573.33±0.59 cells/mm2 attached tightly to the surface of remnant Descemet’s membrane over 104 days; this was similar to the normal eye control in cell density. Conclusions The reconstructed TE-HCE was able to function as a corneal endothelium equivalent and restore corneal function in cat models. PMID:23441111

  19. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells.

    PubMed

    Liu, Xin; Tseng, Scheffer C G; Zhang, Ming-Chang; Chen, Szu-Yu; Tighe, Sean; Lu, Wen-Juan; Zhu, Ying-Ting

    2015-01-01

    Human corneal endothelial cells (HCECs) responsible for corneal transparency have limited proliferative capacity in vivo because of "contact-inhibition." This feature has hampered the ability to engineer HCECs for transplantation. Previously we have reported an in vitro model of HCECs in which contact inhibition was re-established at Day 21, even though cell junction and cell matrix interaction were not perturbed during isolation. Herein, we observe that such HCEC monolayers continue to expand and retain a normal phenotype for 2 more weeks if cultured in a leukemia inhibitory factor (LIF)-containing serum-free medium. Such expansion is accompanied initially by upregulation of Cyclin E2 colocalized with nuclear translocation of phosphorylated retinoblastoma tumor suppressor (p-Rb) at Day 21 followed by a delay in contact inhibition through activation of LIF-Janus kinase1 (JAK1)-signal transducer and activator of transcription 3 (STAT3) signaling at Day 35. The LIF-JAK1-STAT3 signaling is coupled with upregulation of E2F2 colocalized with nuclear p-Rb and with concomitant downregulation of p16(INK4a), of which upregulation is linked to senescence. Hence, activation of LIF-JAK1-STAT3 signaling to delay contact inhibition can be used as another strategy to facilitate engineering of HCEC grafts to solve the unmet global shortage of corneal grafts. PMID:25695744

  20. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  1. Comparative Analysis of Human Conjunctival and Corneal Epithelial Gene Expression with Oligonucleotide Microarrays

    PubMed Central

    Turner, Helen C.; Budak, Murat T.; Murat Akinci, M. A.; Wolosin, J. Mario

    2010-01-01

    Purpose To determine global mRNA expression levels in corneal and conjunctival epithelia and identify transcripts that exhibit preferential tissue expression. Methods cDNA samples derived from human conjunctival and corneal epithelia were hybridized in three independent experiments to a commercial oligonucleotide array representing more than 22,000 transcripts. The resultant signal intensities and microarray software transcript present/absent calls were used in conjunction with the local pooled error (LPE) statistical method to identify transcripts that are preferentially or exclusively expressed in one of the two tissues at significant levels (expression >1% of the β-actin level). EASE (Expression Analysis Systematic Explorer software) was used to identify biological systems comparatively overrepresented in either epithelium. Immuno-, and cytohistochemistry was performed to validate or expand on selected results of interest. Results The analysis identified 332 preferential and 93 exclusive significant corneal epithelial transcripts. The corresponding numbers of conjunctival epithelium transcripts were 592 and 211, respectively. The overrepresented biological processes in the cornea were related to cell adhesion and oxiredox equilibria and cytoprotection activities. In the conjunctiva, the biological processes that were most prominent were related to innate immunity and melanogenesis. Immunohistochemistry for antigen-presenting cells and melanocytes was consistent with these gene signatures. The transcript comparison identified a substantial number of genes that have either not been identified previously or are not known to be highly expressed in these two epithelia, including testican-1, ECM1, formin, CRTAC1, and NQO1 in the cornea and, in the conjunctiva, sPLA2-IIA, lipocalin 2, IGFBP3, multiple MCH class II proteins, and the Na-Pi cotransporter type IIb. Conclusions Comparative gene expression profiling leads to the identification of many biological processes

  2. Human metapneumovirus in adults.

    PubMed

    Haas, Lenneke E M; Thijsen, Steven F T; van Elden, Leontine; Heemstra, Karen A

    2013-01-01

    Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination. PMID:23299785

  3. Human Metapneumovirus in Adults

    PubMed Central

    Haas, Lenneke E. M.; Thijsen, Steven F. T.; van Elden, Leontine; Heemstra, Karen A.

    2013-01-01

    Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination. PMID:23299785

  4. Corneal Disorders

    MedlinePlus

    ... Injuries Dystrophies - conditions in which parts of the cornea lose clarity due to a buildup of cloudy material Treatments of corneal disorders include medicines, corneal transplantation, and corneal laser surgery. NIH: National Eye Institute

  5. [In vitro evaluation for corneal damages by anti-glaucoma combination eye drops using human corneal epithelial cell (HCE-T)].

    PubMed

    Nagai, Noriaki; Murao, Takatoshi; Oe, Kyouhei; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2011-01-01

    The combination of anti-glaucoma eye drops is frequently used in clinical treatment, and it is known that the combination can cause corneal damage. Recently, an anti-glaucoma combination eye drops is developed, and the treatment by the combination eye drops is expected to enhance quality of life. However, effects of the combination eye drops on corneal epithelial cell damage have not been clarified. In this study, we investigated the corneal epithelial cell damage of commercially available anti-glaucoma combination eye drops, such as Xalacom® (latanoprost/timolol maleate combination eye drops), Duotrav® (travoprost/timolol maleate combination eye drops) and Cosopt® (dorzolamide hydrochloride/timolol maleate combination eye drops) using the human corneal epithelial cell (HCE-T). The cytotoxicity in Xalacom® was higher than that in Xalatan® (eye drops containing latanoprost) and Timoptol® (eye drops containing timolol maleate), and the benzalkonium chloride (BAC) and timolol maleate were related to cytotoxicity in Xalacom®. The cytotoxicity in Duotrav® and Cosopt® was lower than that in Timoptol®. The Duotrav® is preserved with a non-BAC system (POLYQUAD, polidronium chloride). Therefore, it was suggested that the POLYQUAD related to the low cytotoxicity in Duotrav®. On the other hand, the D-mannitol reduced the cytotoxicity by BAC in this study. This result suggested that the cytotoxicity in Cosopt® was reduced by D-mannitol. The Duotrav® and Cosopt® may be less damaging to the ocular surface of glaucoma patients receiving long-term eye drop therapy in compared with the combination of anti-glaucoma eye drops. PMID:21628988

  6. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    PubMed

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future. PMID:24499373

  7. Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; White, James D; Kaplan, David L

    2015-10-01

    Corneal tissue displays the highest peripheral nerve density in the human body. Engineering of biomaterials to promote interactions between neurons and corneal tissue could provide tissue models for nerve/cornea development, platforms for drug screening, as well as innovative opportunities to regenerate cornea tissue. The focus of this study was to develop a coculture system for differentiated human corneal stromal stem cells (dhCSSCs) and dorsal root ganglion neurons (DRG) to mimic the human cornea tissue interactions. Axon extension, connectivity, and neuron cell viability were studied. DRG neurons developed longer axons when cocultured with dhCSSCs in comparison to neuron cultures alone. To assess the mechanism involved in the coculture response, nerve growth factors (NGF) secreted by dhCSSCs including NGF, brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 were characterized with greater focus on BDNF secretion. DhCSSCs also secreted collagen type I, an extracellular matrix molecule favorable for neuronal outgrowth. This coculture system provides a slowly degrading silk matrix to study neuronal responses in concert with hCSSCs related to innervation of corneal tissue with utility toward human corneal nerve regeneration and associated diseases. PMID:25809662

  8. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    PubMed

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L

    2016-02-01

    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. PMID:26686051

  9. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation - to do or not to do.

    PubMed

    van Essen, T H; Roelen, D L; Williams, K A; Jager, M J

    2015-05-01

    As many patients with severe corneal disease are not even considered as candidates for a human graft due to their high risk of rejection, it is essential to find ways to reduce the chance of rejection. One of the options is proper matching of the cornea donor and recipient for the Human Leukocyte Antigens (HLA), a subject of much debate. Currently, patients receiving their first corneal allograft are hardly ever matched for HLA and even patients undergoing a regraft usually do not receive an HLA-matched graft. While anterior and posterior lamellar grafts are not immune to rejection, they are usually performed in low risk, non-vascularized cases. These are the cases in which the immune privilege due to the avascular status and active immune inhibition is still intact. Once broken due to infection, sensitization or trauma, rejection will occur. There is enough data to show that when proper DNA-based typing techniques are being used, even low risk perforating corneal transplantations benefit from matching for HLA Class I, and high risk cases from HLA Class I and probably Class II matching. Combining HLA class I and class II matching, or using the HLAMatchmaker could further improve the effect of HLA matching. However, new techniques could be applied to reduce the chance of rejection. Options are the local or systemic use of biologics, or gene therapy, aiming at preventing or suppressing immune responses. The goal of all these approaches should be to prevent a first rejection, as secondary grafts are usually at higher risk of complications including rejections than first grafts. PMID:25601193

  10. Paracellular and passive transcellular permeability in immortalized human corneal epithelial cell culture model.

    PubMed

    Toropainen, Elisa; Ranta, Veli-Pekka; Vellonen, Kati-Sisko; Palmgrén, Joni; Talvitie, Anu; Laavola, Mirka; Suhonen, Pekka; Hämäläinen, Kaisa Mari; Auriola, Seppo; Urtti, Arto

    2003-09-01

    A cell culture model of human corneal epithelium (HCE-model) was recently introduced [Invest. Ophthalmol. Vis. Sci. 42 (2001) 2942] as a tool for ocular drug permeation studies. In this study, passive permeability and esterase activity of the HCE-model were characterised. Immortalised human corneal epithelial cells were grown on collagen coated filters under air-lift. The sensitivity of transcellular permeability to lipophilicity was tested in studies using nine beta-blockers. The size selectivity of the paracellular route was investigated using 16 polyethylene glycol oligomers (PEG). An effusion-like approach was used to estimate porosity and pore sizes of the paracellular space in HCE membrane. Permeability and degradation of fluorescein diacetate to fluorescein in HCE-cells was used to probe the esterase activity of the HCE-model. Drug concentrations were analyzed using HPLC (beta-blockers), LC-MS (PEGs), and fluorometry (fluorescein). Permeabilities were compared to those in the excised rabbit cornea. Penetration of beta-blockers increased with lipophilicity according to a sigmoidal relationship. This was almost similar to the profile in excised cornea. No apical to basolateral directionality was seen in the permeation of beta-blockers. Paracellular permeability of the HCE-model was generally slightly higher than that of the excised rabbit cornea. The HCE-model has larger paracellular pores, but lower pore density than the excised cornea, but the overall paracellular space was fairly similar in both models. The HCE-model shows significant esterase activity (i.e. fluorescein diacetate was converted to free fluorescein). These data on permeability of 27 compounds demonstrate that the barrier of the HCE-model closely resembles that of the excised rabbit cornea. Therefore, the HCE-model is a promising alternative corneal substitute for ocular drug delivery studies. PMID:13678798

  11. Morphological Characterization of Organized Extracellular Matrix Deposition by Ascorbic Acid-Stimulated Human Corneal Fibroblasts

    PubMed Central

    Guo, Xiaoqing; Hutcheon, Audrey E. K.; Melotti, Suzanna A.; Zieske, James D.; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W.

    2016-01-01

    Purpose To characterize the structure and morphology of extracellular matrix (ECM) synthesized by untransformed, cultured human corneal fibroblasts in long-term cultures. Methods Human corneal stromal keratocytes were expanded in transwell culture in the presence of fetal bovine serum and a stable derivative of Vitamin C. The cells were allowed to synthesize a fibrillar ECM for up to five weeks. Constructs were assessed via light (phase contrast and differential interference contrast) and transmission (standard and quick freeze/deep etch) microscopy. Results Electron micrographs revealed stratified constructs with multiple parallel layers of cells and an extracellular matrix comprising parallel arrays of small, polydisperse fibrils (27–51 nm) which often alternate in direction. Differential interference contrast images demonstrated oriented ECM fibril arrays parallel to the plane of the construct while quick-freeze deep etch micrographs showed the details of the matrix interaction with fibroblasts via arrays of membrane surface structures. Conclusions Human keratocytes, cultured in a stable Vitamin C derivative, are capable of assembling extracellular matrix which comprise parallel arrays of ECM fibrils. The resulting constructs, which are highly cellular, exhibit morphology similar to the developing mammalian stroma where organized matrix is derived. The appearance of arrays of structures on the cell membranes suggest a role in the local organization of synthesized ECM. This model could provide critical insight into the fundamental processes which govern the genesis of organized connective tissues such as the cornea and may provide a scaffolding suitable for tissue-engineering a biomimetic stroma. PMID:17724187

  12. Human adenovirus type 8 epidemic keratoconjunctivitis with large corneal epithelial full-layer detachment: an endemic outbreak with uncommon manifestations

    PubMed Central

    Lee, Yueh-Chang; Chen, Nancy; Huang, I-Tsong; Yang, Hui-Hua; Huang, Chin-Te; Chen, Li-Kuang; Sheu, Min-Muh

    2015-01-01

    Epidemic viral conjunctivitis is a highly contagious disease that is encountered year-round. The causative agents are mainly adenoviruses and enteroviruses. It occurs most commonly upon infection with subgroup D adenoviruses of types 8, 19, or 37. For common corneal involvement of human adenovirus type 8 epidemic keratoconjunctivitis, full-layer epithelial detachment is rarely seen. Herein, we report three cases of epidemic keratoconjunctivitis during an outbreak which manifested as large corneal epithelial full-layer detachment within a few days. The lesions healed without severe sequelae under proper treatment. The unique manifestation of this outbreak may indicate the evolution of human adenovirus type 8. PMID:26060391

  13. The permeability of rabbit and human corneal endothelium.

    PubMed Central

    Hodson, S; Wigham, C

    1983-01-01

    The fluxes of sodium, chloride and bicarbonate across endothelium plus stroma and then stroma alone were measured in the direction from lens-side to tear-side in rabbit and human corneas in vitro, in order to measure passive permeabilities. The results were used to calculate the permeability of the endothelium. Hodgkin's equation (1951) was then used to calculate the partial electrical conductivity of each ion crossing the endothelium. The summated electrical conductivities of sodium, chloride and bicarbonate were equal to 89 +/- 8% of the measured electrical conductivity, suggesting that the ions diffuse independently across the endothelium in the direction lens-side to tear-side. Stereological analysis of the intercellular spaces supports the idea that the ions permeate through this route and that the physical shape of the spaces determines almost entirely the permeability of the endothelial layer. Trans-endothelial sodium and chloride permeabilities are nearly equal, which may be explained by supposing the intercellular spaces include a cation exchanger of fixed negative charge capacity around 60 m-equiv l.-1 intercellular fluid. PMID:6631742

  14. Effects of phthalates on the human corneal endothelial cell line B4G12.

    PubMed

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K; Knudsen, Lisbeth E; Bonefeld-Jørgensen, Eva C

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP), diisodecyl phthalate (DIDP), di-n-octyl phthalate (DnOP), and di-isononyl phthalate (DINP). Gene expression and secretion of inflammatory cytokines were evaluated after exposure to DBP. Decreased cell proliferation was observed for the phthalates DBP, BBP, and DEHP, and cell toxicity was observed for DBP and BBP. Upon DBP exposure at nontoxic concentrations, a significant increased gene expression and cytokine cell secretion were observed for interleukin-1β (IL-1β) and IL-8, and also an increased IL-6 secretion was observed. In conclusion, the human corneal endothelial cell line B4G12 may be a potential model for inflammatory eye irritancy testing of phthalates. PMID:22723514

  15. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser

    PubMed Central

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc’h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3–57.3) of CECs with low mortality (0.5%, range (0.55–1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for

  16. Delivery of Molecules into Human Corneal Endothelial Cells by Carbon Nanoparticles Activated by Femtosecond Laser.

    PubMed

    Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Peoc'h, Michel; Acquart, Sophie; Gain, Philippe; Thuret, Gilles

    2015-01-01

    Corneal endothelial cells (CECs) form a monolayer at the innermost face of the cornea and are the engine of corneal transparency. Nevertheless, they are a vulnerable population incapable of regeneration in humans, and their diseases are responsible for one third of corneal grafts performed worldwide. Donor corneas are stored in eye banks for security and quality controls, then delivered to surgeons. This period could allow specific interventions to modify the characteristics of CECs in order to increase their proliferative capacity, increase their resistance to apoptosis, or release immunosuppressive molecules. Delivery of molecules specifically into CECs during storage would therefore open up new therapeutic perspectives. For clinical applications, physical methods have a more favorable individual and general benefit/risk ratio than most biological vectors, but are often less efficient. The delivery of molecules into cells by carbon nanoparticles activated by femtosecond laser pulses is a promising recent technique developed on non-adherent cells. The nanoparticles are partly consummated by the reaction releasing CO and H2 gas bubbles responsible for the shockwave at the origin of cell transient permeation. Our aim was to develop an experimental setting to deliver a small molecule (calcein) into the monolayer of adherent CECs. We confirmed that increased laser fluence and time exposure increased uptake efficiency while keeping cell mortality below 5%. We optimized the area covered by the laser beam by using a motorized stage allowing homogeneous scanning of the cell culture surface using a spiral path. Calcein uptake reached median efficiency of 54.5% (range 50.3-57.3) of CECs with low mortality (0.5%, range (0.55-1.0)). After sorting by flow cytometry, CECs having uptaken calcein remained viable and presented normal morphological characteristics. Delivery of molecules into CECs by carbon nanoparticles activated by femtosecond laser could prove useful for future

  17. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    PubMed

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-01-01

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes. PMID:26567598

  18. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents

    PubMed Central

    Kureshi, Alvena K; Dziasko, Marc; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    Human limbal epithelial cells (HLE) and corneal stromal stem cells (CSSC) reside in close proximity in vivo in the corneal limbal stem cell niche. However, HLE are typically cultured in vitro without supporting niche cells. Here, we re-create the cell-cell juxtaposition of the native environment in vitro, to provide a tool for investigation of epithelial-stromal cell interactions and to optimize HLE culture conditions for potential therapeutic application. RAFT (Real Architecture For 3D Tissue) tissue equivalents (TEs) were used as a 3-dimensional substrate for co-culturing HLE and CSSC. Our results demonstrate that a monolayer of HLE that maintained expression of p63α, ABCB5, CK8 and CK15 (HLE markers), formed on the surface of RAFT TEs within 13 days of culture. CSSC remained in close proximity to HLE and maintained expression of mesenchymal stem cell markers. This simple technique has a short preparation time of only 15 days with the onset of HLE layering and differentiation observed. Furthermore, co-cultivation of HLE with another niche cell type (CSSC) directly on RAFT TEs, eliminates the requirement for animal-derived feeder cells. RAFT TEs may be useful for future therapeutic delivery of multiple cell types to restore the limbal niche following ocular surface injury or disease. PMID:26531048

  19. Human β-NGF gene transferred to cat corneal endothelial cells

    PubMed Central

    Luo, Wen-Juan; Liu, Min; Zhao, Gui-Qiu; Wang, Chuan-Fu; Hu, Li-Ting; Liu, Xiang-Ping

    2016-01-01

    AIM To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS The endothelium of cat cornea was torn under the microscope and rapidly cultivated in Dulbecco's modified Eagle's medium (DMEM) to form single layer CECs and the passage 2 endothelial cells were used in this experiment. The recombinant human AAV-β-NGF was constructed. The recombinant human AAV-β-NGF was transferred into cat CECs directly. Three groups were as following: normal CEC control group, CEC-AAV control group and recombinant CEC-AAV-β-NGF group. Forty-eight hours after transfection, the total RNA was extracted from the CEC by Trizol. The expression of the β-NGF target gene detected by fluorescence quantitative polymerase chain reaction; proliferation activity of the transfected CEC detected at 48h by MTT assay; the percentage of G1 cells among CECs after transfect was detected by flow cytometry method (FCM); cell morphology was observed under inverted phase contrast microscope. RESULTS The torn endothelium culture technique rapidly cultivated single layer cat corneal endothelial cells. The self-designed primers for the target gene and reference gene were efficient and special confirmed through electrophoresis analysis and DNA sequencing. Forty-eight hours after transfect, the human β-NGF gene mRNA detected by fluorescence quantitative polymerase chain reaction showed that there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05); there was significant difference between two control groups and recombinant CEC-AAV-β-NGF group (P<0.05). MTT assay showed that transfect of recombinant AAV-β-NGF promoted the proliferation activity of cat CEC, while there was no significant difference between normal CEC control group and CEC-AAV control group (P>0.05). FCM result

  20. Recognition of Corynebacterium pseudodiphtheriticum by Toll-like receptors and up-regulation of antimicrobial peptides in human corneal epithelial cells

    PubMed Central

    Roy, Sanhita; Marla, Sushma; Praneetha, DC

    2015-01-01

    Bacterial keratitis is a major cause of corneal ulcers in developing and industrialized nations. In this study, we examined the host innate immune responses to Corynebacterium pseudodiphtheriticum, often overlooked as commensal, in human corneal epithelial cells. The expressions of innate immune mediators were determined by quantitative PCR from corneal ulcers of patients and immortalized human corneal epithelial cells (HCEC). We have found an elevated expression of Toll like receptors (TLRs) along with IL-6 and IL-1β from both ulcers and epithelial cells infected with C. pseudodiphtheriticum. Activation of NF-κB and MAPK signaling pathways were also observed in HCEC in response to C. pseudodiphtheriticum. In addition, we found a significant increase in the expression of antimicrobial peptides S100A8, S100A9 and human β-defensin 1 from both corneal ulcers and HCEC. PMID:26125127

  1. Geometrical Custom Modeling of Human Cornea In Vivo and Its Use for the Diagnosis of Corneal Ectasia

    PubMed Central

    Cavas-Martínez, Francisco; Fernández-Pacheco, Daniel G.; De la Cruz-Sánchez, Ernesto; Nieto Martínez, José; Fernández Cañavate, Francisco J.; Vega-Estrada, Alfredo; Plaza-Puche, Ana B.; Alió, Jorge L.

    2014-01-01

    Aim To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus. Method The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea. Results The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925), posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889), anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840) and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672). Conclusion Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases. PMID:25329896

  2. Expression and function of fibroblast growth factor-inducible 14 in human corneal myofibroblasts.

    PubMed

    Ebihara, Nobuyuki; Nakayama, Masafumi; Tokura, Tomoko; Ushio, Hiroko; Murakami, Akira

    2009-08-01

    The interaction of fibroblast growth factor-inducible 14 (Fn14) and, its ligand tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to be important in wound healing of tissues. However, to our knowledge, expression and function of Fn14 in corneal myofibroblasts, which have a crucial role in wound healing of corneal stroma, has not been investigated. In this study, we investigated the expression and function of Fn14 in corneal myofibroblasts. Expression of Fn14 protein was assessed by flow cytometry. Corneal myofibroblasts showed strong expression of Fn14 protein, while keratocytes did not. TGF-beta(1) promoted the differentiation of keratocytes into corneal myofibroblasts, and induced Fn14 expression. These data reveal that keratocytes phenotype determines the level of Fn14 expression. ELISA was used to detect chemokines and matrix metalloproteinases in the supernatant of corneal myofibroblasts cultured with or without stimulation by TWEAK and/or TGF-beta(1). TWEAK increased the production of IL-8, MCP-1, and RANTES by corneal myofibroblasts via Fn14. TGF-beta(1) augmented the TWEAK-induced production of these chemokines. TWEAK also increased the production of MMP-1 and -3 by corneal myofibroblasts via Fn14, while TGF-beta(1) inhibited this effect of TWEAK on MMP production. TWEAK-induced phosphorylation of NF-kappaB and MAP kinase in corneal myofibroblasts. Furthermore, TWEAK partially inhibited the differentiation of keratocytes into corneal myofibroblasts promoted by TGF-beta(1). These data suggest that the Fn14/TWEAK system may have several roles in wound healing by corneal myofibroblasts. In the future, modulation of the TWEAK/Fn14 system may become a novel approach for control corneal wound healing. PMID:19344712

  3. Mucin Characteristics of Human Corneal-Limbal Epithelial Cells that Exclude the Rose Bengal Anionic Dye

    PubMed Central

    Argüeso, Pablo; Tisdale, Ann; Spurr-Michaud, Sandra; Sumiyoshi, Mika; Gipson, Ilene K.

    2005-01-01

    Purpose Rose bengal is an organic anionic dye used to assess damage of the ocular surface epithelium in ocular surface disease. It has been proposed that mucins have a protective role, preventing rose bengal staining of normal ocular surface epithelial cells. The current study was undertaken to evaluate rose bengal staining in a human corneal-limbal epithelial (HCLE) cell line known to produce and glycosylate membrane-associated mucins. Methods HCLE cells were grown to confluence in serum-free medium and switched to DMEM/F12 with 10% serum to promote differentiation. Immunolocalization of the membrane-associated mucins MUC1 and MUC16 and the T-antigen carbohydrate epitope was performed with the monoclonal antibodies HMFG-2 and OC125 and jacalin lectin, respectively. To assess dye uptake, cultures were incubated for 5 minutes with 0.1% rose bengal and photographed. To determine whether exclusion of negatively charged rose bengal requires a negative charge at the cell surface, cells were incubated with fluoresceinated cationized ferritin. The effect of hyperosmotic stress on rose bengal staining in vitro was evaluated by increasing the ion concentration (Ca+2 and Mg+2) in the rose bengal uptake assay. Results The cytoplasm and nucleus of confluent HCLE cells cultured in media without serum, lacking the expression of MUC16 but not MUC1, as well as human corneal fibroblasts, which do not express mucins, stained with rose bengal. Culture of HCLE cells in medium containing serum resulted in the formation of islands of stratified cells that excluded rose bengal. Apical cells of the stratified islands produced MUC16 and the T-antigen carbohydrate epitope on their apical surfaces. Colocalization experiments demonstrated that fluoresceinated cationized ferritin did not bind to these stratified cells, indicating that rose bengal is excluded from cells that lack negative charges. Increasing the amounts of divalent cations in the media reduced the cellular area protected

  4. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence☆

    PubMed Central

    Dorà, Natalie J.; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2015-01-01

    The limbal epithelial stem cell (LESC) hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC) hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks. PMID:26554513

  5. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells

    PubMed Central

    Lee, Jong Soo; Lee, Seung Uk; Che, Cheng-Ye; Lee, Ji-Eun

    2015-01-01

    AIM To investigate the cytotoxic effect on human corneal epithelial cells (HCECs) and the ability to faciliate corneal epithelial wound healing of carboxymethylcellulose (CMC) and hyaluronic acid (HA). METHODS HCECs were exposed to 0.5% CMC (Refresh plus®, Allergan, Irvine, California, USA) and 0.1% and 0.3% HA (Kynex®, Alcon, Seoul, Korea, and Hyalein mini®, Santen, Osaka, Japan) for the period of 30min, and 4, 12, and 24h. Methyl thiazolyl tetrazolium (MTT)-based calorimetric assay was performed to assess the metabolic activity of cellular proliferation and lactate dehydrogenase (LDH) leakage assay to assess the cytotoxicity. Apoptotic response was evaluated with flow cytometric analysis and fluorescence staining with Annexin V and propiodium iodide. Cellular morphology was evaluated by inverted phase-contrast light microscopy and electron microscopy. The wound widths were measured 24h after confluent HCECs were scratch wounded. RESULTS The inhibitory effect of human corneal epithelial proliferation and cytotoxicity showed the time-dependent response but no significant effect. Apoptosis developed in flow cytometry and apoptotic cells were demonstrated in fluorescent micrograph. The damaged HCECs were detached from the bottom of the dish and showed the well-developed vacuole formations. Both CMC and HA stimulated reepithehlialization of HCECs scratched, which were more observed in CMC. CONCLUSION CMC and HA, used in artificial tear formulation, could be utilized without any significant toxic effect on HCECs. Both significantly stimulated HCEC reepithelialization of corneal wounds. PMID:25938030

  6. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  7. Spectroscopic measurements during the corneal collagen cross-linking procedure for in vitro human corneas

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Lincoln, Victor A. C.; Mello, Marcio M.; Faria e Sousa, Sidney J.

    2012-03-01

    The transmittance of UVA light through the human preserved cornea of over 400μm thickness during the corneal collagen cross-linking procedure has been measured spectroscopically. The 25 corneas, (average thickness of 570 μm), preserved in OptisolGS, were washed with saline, desepithelization was performed, and the cornea was laid on the lid of a Chiron Ophthalmics corneal storage chamber. A UV-VIS optical fiber was positioned at the crystalline position (10mm after the endothelium) and fixed in a 3mm hole of the chamber and then connected to a spectrophotometer to detect the amount of delivered UVA light on the endothelium. Current procedure protocol was performed, i.e., one drop of riboflavin 0.1%, 400 mOsm, was applied on the naked cornea, every 5 minutes (total of 12 drops). The UV irradiation (365+/-5 nm, 3mW/cm2, 1.51 mW, 5.405 J/cm2) was performed after 30 min of instillation for an additional 30 min. The average transmittance of the desepithelized cornea without Riboflavin at the crystalline position is 65.8%'; after the 1st drop of Riboflavin, transmittance is 51.4%; after 2nd drop, 46.1%; after 3rd drop, 41.9% ; after 4th drop, 38.7%; after 5th drop, 35.9%; after 6th drop 33.6% ; after 7th drop, 31.0%; after 8th drop; 28.8%; after 9th drop, 27.2%; after 10h drop, 25.4%; after 11th drop, 23.9%; and finally after 12th drop, 22.5%. The average transmittance in terms of energy during the 30 min irradiation procedure fluctuated from 0.930 to 0.675mW/cm2.

  8. Initial In Vitro Investigation of the Human Immune Response to Corneal Cells from Genetically Engineered Pigs

    PubMed Central

    Koike, Naoko; Long, Cassandra; Piluek, Jordan; Roh, Danny S.; SundarRaj, Nirmala; Funderburgh, James L.; Mizuguchi, Yoshiaki; Isse, Kumiko; Phelps, Carol J.; Ball, Suyapa F.; Ayares, David L.; Cooper, David K. C.

    2011-01-01

    Purpose. To compare the in vitro human humoral and cellular immune responses to wild-type (WT) pig corneal endothelial cells (pCECs) with those to pig aortic endothelial cells (pAECs). These responses were further compared with CECs from genetically engineered pigs (α1,3-galactosyltransferase gene-knockout [GTKO] pigs and pigs expressing a human complement-regulatory protein [CD46]) and human donors. Methods. The expression of Galα1,3Gal (Gal), swine leukocyte antigen (SLA) class I and class II on pCECs and pAECs, with or without activation by porcine IFN-γ, was tested by flow cytometry. Pooled human serum was used to measure IgM/IgG binding to and complement-dependent cytotoxicity (CDC) to cells from WT, GTKO, and GTKO/CD46 pigs. The human CD4+ T-cell response to cells from WT, GTKO, GTKO/CD46 pigs and human was tested by mixed lymphocyte reaction (MLR). Results. There was a lower level of expression of the Gal antigen and of SLA class I and II on the WT pCECs than on the WT pAECs, resulting in less antibody binding and reduced human CD4+ T-cell proliferation. However, lysis of the WT pCECs was equivalent to that of the pAECs, suggesting more susceptibility to injury. There were significantly weaker humoral and cellular responses to the pCECs from GTKO/CD46 pigs compared with the WT pCECs, although the cellular response to the GTKO/CD46 pCECs was greater than to the human CECs. Conclusions. These data provide the first report of in vitro investigations of CECs from genetically engineered pigs and suggest that pig corneas may provide an acceptable alternative to human corneas for clinical transplantation. PMID:21596821

  9. Arts & Humanities in Adult Education.

    ERIC Educational Resources Information Center

    Word's Worth: A Quarterly Newsletter of the Lifelong Learning Network, 1998

    1998-01-01

    This issue of a quarterly newsletter on lifelong learning focuses on the theme of the arts and humanities in adult literacy education. The following articles are included: (1) "In Defense of a Practical Education" (Earl Shorris); (2) "From the Program Director" (Elizabeth Bryant McCrary); (3) "Vermont Council on the Humanities: Book Discussion…

  10. The structural and optical properties of type III human collagen biosynthetic corneal substitutes.

    PubMed

    Hayes, Sally; Lewis, Phillip; Islam, M Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M

    2015-10-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2-9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  11. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    PubMed Central

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  12. Enhanced survival in vitro of human corneal endothelial cells using mouse embryonic stem cell conditioned medium

    PubMed Central

    Lu, Xiaoyan; Chen, Dong; Liu, Zhiping; Li, Chaoyang; Liu, Ying; Zhou, Jin; Wan, Pengxia; Mou, Yong-gao

    2010-01-01

    Purpose To determine whether mouse embryonic stem cell conditioned medium (ESC-CM) increases the proliferative capacity of human corneal endothelial cells (HCECs) in vitro. Methods Primary cultures of HCECs were established from explants of the endothelial cell layer, including the Descemet’s membrane. Cells were cultured in human corneal endothelium medium (CEM) containing 25% ESC-CM for the experimental group and CEM alone for the control group. Phase-contrast microscopy and reverse-transcription polymerase chain reaction (RT–PCR) were used to identify HCECs. The eruption time and HCEC morphology were observed under phase-contrast microscopy. We detected the protein expression of zona occludens protein-1 (ZO-1; a tight junction protein) and the Na+-K+-ATPase by western blot analysis and immunocytochemistry. The mRNA expression of the Na+-K+-ATPase, voltage-dependent anion channel 3 (VDAC3), solute carrier family 4, sodium bicarbonate cotransporter member 4 (SLC4A4), and chloride channel protein 3 (CLCN3) were detected by RT–PCR. To explore the proliferation capacity of HCECs, the colony forming efficiency (CFE) was determined by Giemsa staining and the cellular proliferation marker of Ki-67 protein (Ki-67) positive cells were detected by immunocytochemistry and flow cytometry. Progression of the cell cycle and apoptosis were analyzed by flow cytometry. Negative regulation of the cell cycle, as measured by cyclin-dependent kinase inhibitor p21 (p21) levels, was detected by western blot analysis and immunocytochemistry. Results In primary culture, HCECs in the 25%ESC-CM group erupted with polygonal appearance on day 2, while those in the CEM group erupted with slightly larger cells on day 3–4. HCECs in the 25%ESC-CM group could be subcultured until passage 6 without enlargement of cell volume, while those in the CEM group were enlarged and lost their polygonal appearance by passage 2. HCECs in both the 25%ESC-CM and CEM groups expressed ZO-1, Na

  13. Corneal blindness and xenotransplantation.

    PubMed

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future. PMID:25268248

  14. Functional significance of thermosensitive transient receptor potential melastatin channel 8 (TRPM8) expression in immortalized human corneal endothelial cells.

    PubMed

    Mergler, Stefan; Mertens, Charlotte; Valtink, Monika; Reinach, Peter S; Székely, Violeta Castelo; Slavi, Nefeli; Garreis, Fabian; Abdelmessih, Suzette; Türker, Ersal; Fels, Gabriele; Pleyer, Uwe

    2013-11-01

    Human corneal endothelial cells (HCEC) maintain appropriate tissue hydration and transparency by eliciting net ion transport coupled to fluid egress from the stroma into the anterior chamber. Such activity offsets tissue swelling caused by stromal imbibition of fluid. As corneal endothelial (HCE) transport function is modulated by temperature changes, we probed for thermosensitive transient receptor potential melastatin 8 (TRPM8) functional activity in immortalized human corneal endothelial cells (HCEC-12) and freshly isolated human corneal endothelial cells (HCEC) as a control. This channel is either activated upon lowering to 28 °C or by menthol, eucalyptol and icilin. RT-PCR and quantitative real-time PCR (qPCR) verified TRPM8 gene expression. Ca(2+) transients induced by either menthol (500 μmol/l), eucalyptol (3 mmol/l), or icilin (2-60 μmol/l) were identified using cell fluorescence imaging. The TRP channel blocker lanthanum III chloride (La(3+), 100 μmol/l) as well as the TRPM8 blockers BCTC (10 μmol/l) and capsazepine (CPZ, 10 μmol/l) suppressed icilin-induced Ca(2+) increases. In and outward currents induced by application of menthol (500 μmol/l) or icilin (50 μmol/l) were detected using the planar patch-clamp technique. A thermal transition from room temperature to ≈ 18 °C led to Ca(2+) increases that were inhibited by a TRPM8 blocker BCTC (10 μmol/l). Other thermosensitive TRP pathways whose heterogeneous Ca(2+) response patterns are suggestive of other Ca(2+) handling pathways were also detected upon strong cooling (≈10 °C). Taken together, functional TRPM8 expression in HCEC-12 and freshly dissociated HCEC suggests that HCE function can adapt to thermal variations through activation of this channel subtype. PMID:24135298

  15. Downregulation of miR-18a induces CTGF and promotes proliferation and migration of sodium hyaluronate treated human corneal epithelial cells.

    PubMed

    Guo, Yingzhuo; Lu, Xiaohe; Wang, Hua

    2016-10-10

    Properly controlled corneal epithelial wound healing is critical for health of cornea, which involves cell proliferation, migration, anchoring and differentiation. Sodium hyaluronate (SH) has been proven to exert beneficial pharmacological effect on corneal wound healing, though the underlying mechanism remained open to investigation. MicroRNAs (miRNAs) are small single-stranded RNAs that could bind to 3'UTR of mRNAs of target genes. The multi-target regulation of miRNAs may favor treatment of corneal wound given the complicated processes implicated in the healing process, which has inspired initiatives to develop miRNA therapy in corneal wound healing. In this light, we used miRNAs profiling to detect whether miRNAs are also implicated in the mechanism underlying the stimulatory effect of SH on corneal epithelial wound healing. We found miR-18a was most susceptible to SH treatment, the target prediction of which were enriched in a bunch of pathways implicated in corneal wound healing. Connective tissue growth factor (CTGF) was found to be overrepresented in most significant enriched pathways and was experimentally confirmed as a bona fide target of miR-18a, which modulated cell migration and proliferation of human corneal epithelial cells. PMID:27390086

  16. Cationorm shows good tolerability on human HCE-2 corneal epithelial cell cultures.

    PubMed

    Kinnunen, Kati; Kauppinen, Anu; Piippo, Niina; Koistinen, Arto; Toropainen, Elisa; Kaarniranta, Kai

    2014-03-01

    Preservatives have been for a long time known to cause detrimental effects on ocular surface. Cationorm, a preservative-free compound with electrostatic properties is a novel way to solve the problems encountered with traditional benzalkonium chloride (BAK)-containing eye drops. The aim of this study was to evaluate tolerability of the preservative-free cationic emulsion Cationorm in vitro on corneal epithelial cells. The human corneal epithelial cell (HCE-2) culture line was used to study cellular morphology, cytotoxicity and inflammatory responses after Cationorm diluted 1/10 exposure for 5, 15 and 30 min. Exposures to Systane diluted 1/10 with polyquaternium-1/polidronium chloride 0.001% as preservative, BAK 0.001% or C16 (0.0002%) and normal cell culture medium served as positive and negative references. Cell viability was determined by measuring the release of lactate dehydrogenase (LDH) and mitochondrial dehydrogenase activity was evaluated using 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The possible induction of apoptosis was analyzed by measuring the activity of caspase-3, and Cell Counting Kit-8 (CCK-8) was used to evaluate the number of viable cells after the exposure to test compounds. Furthermore, the tendency of the test compounds to produce inflammatory reaction was determined by analyzing the production of proinflammatory cytokines IL-6 and IL-8, and DNA binding of the p65 subunit of transcription factor NF-κB was measured from cell lysates. HCE-2 cells showed no morphological changes after the exposure to Cationorm, but in cells exposed to BAK, clear cytoplasm vacuolization and loose cell-cell contacts were observed in transmission (TEM) or scanning (SEM) electron microscopic analyses. Cell viability, as measured with the release of LDH, indicated a time dependent increase in LDH expression after exposure to all test compounds but especially with BAK. Moreover, Cationorm and BAK time-dependently decreased the

  17. Assessment of Eyebright (Euphrasia Officinalis L.) Extract Activity in Relation to Human Corneal Cells Using In Vitro Tests

    PubMed Central

    Paduch, Roman; Woźniak, Anna; Niedziela, Piotr; Rejdak, Robert

    2014-01-01

    Background: Euphrasia officinalis L. is an herb traditionally used in folk medicine, mainly in the treatment of eye disorders. Aims: The present study analyzed the activity of three extracts of E. officinalis L. (ethanol, ethyl acetate and heptane) on cultured human corneal epithelial cells (10.014 pRSV-T). Study Design: In vitro study. Methods: Toxicity, free radical scavenging activity and the immunomodulatory effects of the extracts were tested using the thiazolyl blue tetrazolium bromide (MTT) or Neutral Red, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ELISA tests, respectively. Moreover, nitric oxide levels and cytoskeleton architecture were analyzed after corneal cell incubation with the plant extracts. Results: We show that the biological effect depended on both the concentration and the extraction solvent used. Heptane extracts, distinct from those in ethanol and ethyl acetate, were toxic to 10.014 pRSV-T cells at low concentrations (25 μg/mL) and did not demonstrate free radical scavenging effects. All tested extracts decreased pro-inflammatory cytokine expression (IL-1β, IL-6 and TNF-α) and also anti-inflammatory IL-10 expression by human corneal cells when the extracts were added to the cell culture medium for 24 h. Conclusion: In conclusion, we show that the promising effects of the application of E. officinalis L. preparations as a supplementary therapy for eye disorders are associated with the ethanol and ethyl acetate extracts, not the heptane extract. PMID:25207164

  18. Oxidative Stress Markers Induced by Hyperosmolarity in Primary Human Corneal Epithelial Cells

    PubMed Central

    Deng, Ruzhi; Hua, Xia; Li, Jin; Chi, Wei; Zhang, Zongduan; Lu, Fan; Zhang, Lili; Pflugfelder, Stephen C.; Li, De-Quan

    2015-01-01

    Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage. PMID:26024535

  19. Preparation and optimisation of anionic liposomes for delivery of small peptides and cDNA to human corneal epithelial cells.

    PubMed

    Neves, Luís F; Duan, Jinghua; Voelker, Adrienne; Khanal, Anil; McNally, Lacey; Steinbach-Rankins, Jill; Ceresa, Brian P

    2016-06-01

    Drug delivery to corneal epithelial cells is challenging due to the intrinsic mechanisms that protect the eye. Here, we report a novel liposomal formulation to encapsulate and deliver a short sequence peptide into human corneal epithelial cells (hTCEpi). Using a mixture of Phosphatidylcholine/Caproylamine/Dioleoylphosphatidylethanolamine (PC/CAP/DOPE), we encapsulated a fluorescent peptide, resulting in anionic liposomes with an average size of 138.8 ± 34 nm and a charge of -18.2 ± 1.3 mV. After 2 h incubation with the peptide-encapsulated liposomes, 66% of corneal epithelial (hTCEpi) cells internalised the FITC-labelled peptide, demonstrating the ability of this formulation to effectively deliver peptide to hTCEpi cells. Additionally, lipoplexes (liposomes complexed with plasmid DNA) were also able to transfect hTCEpi cells, albeit at a modest level (8% of the cells). Here, we describe this novel anionic liposomal formulation intended to enhance the delivery of small cargo molecules in situ. PMID:27530524

  20. Caveolin-1 as a Novel Indicator of Wound-Healing Capacity in Aged Human Corneal Epithelium

    PubMed Central

    Rhim, Ji Heon; Kim, Jae Hoon; Yeo, Eui-Ju; Kim, Jae Chan; Park, Sang Chul

    2010-01-01

    Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1–dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK). We compared wound-healing times in young, middle-aged and elderly patients. We also examined caveolin-1 levels and other aging markers, such as p53 and p21, in the corneal epithelium. Elderly patients generally had higher caveolin-1 levels in the corneal epithelia than young patients. There were, however, variations among individuals with increased caveolin-1 in some young patients and decreased levels in some elderly patients. Wound-healing time after LASEK correlated well with the corneal caveolin-1 status. Therefore, we suggest that caveolin-1 status might be responsible for delayed wound healing in elderly patients after LASEK. Caveolin-1 status might be a regulator for wound-healing capacity and a novel target for in vivo adjustment. PMID:20644900

  1. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    PubMed Central

    Zhu, Cheng-Cheng; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Xu, Qiang; Peng, Xu-Dong; Wang, Xue; Qiu, Sheng

    2015-01-01

    AIM To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs), and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan. METHODS The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 µg/mL) for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL) and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were determined by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot. RESULTS Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05). Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphae stimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05). CONCLUSION These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment. PMID:26309863

  2. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  3. Cytotoxicity of pilocarpine to human corneal stromal cells and its underlying cytotoxic mechanisms

    PubMed Central

    Yuan, Xiao-Long; Wen, Qian; Zhang, Meng-Yu; Fan, Ting-Jun

    2016-01-01

    AIM To examine the cytotoxic effect of pilocarpine, an anti-glaucoma drug, on human corneal stromal (HCS) cells and its underlying cytotoxic mechanisms using an in vitro model of non-transfected HCS cells. METHODS After HCS cells were treated with pilocarpine at a concentration from 0.15625 g/L to 20.0 g/L, their morphology and viability were detected by light microscopy and MTT assay. The membrane permeability, DNA fragmentation and ultrastructure were examined by acridine orange (AO)/ethidium bromide (EB) double-staining. DNA electrophoresis and transmission electron microscopy (TEM), cell cycle, phosphatidylserine (PS) orientation and mitochondrial transmembrane potential (MTP) were assayed by flow cytometry (FCM). And the activation of caspases was checked by ELISA. RESULTS Morphology observations and viability assay showed that pilocarpine at concentrations above 0.625 g/L induced dose- and time-dependent morphological abnormality and viability decline of HCS cells. AO/EB double-staining, DNA electrophoresis and TEM noted that pilocarpine at concentrations above 0.625 g/L induced dose- and/or time-dependent membrane permeability elevation, DNA fragmentation, and apoptotic body formation of the cells. Moreover, FCM and ELISA assays revealed that 2.5 g/L pilocarpine also induced S phase arrest, PS externalization, MTP disruption, and caspase-8, -9 and -3 activation of the cells. CONCLUSION Pilocarpine at concentrations above 0.625 g/L (1/32 of its clinical therapeutic dosage) has a dose- and time-dependent cytotoxicity to HCS cells by inducing apoptosis in these cells, which is most probably regulated by a death receptor-mediated mitochondrion-dependent signaling pathway. PMID:27162720

  4. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide

    PubMed Central

    Liu, Yang; Li, Jing; Liu, Ye; Wang, Ping; Jia, Hui

    2016-01-01

    AIM To investigate the effects of triptolide on proinflammatory cytokine and chemokine expression induced by the fungal component zymosan in cultured human corneal fibroblasts (HCFs). METHODS HCFs were cultured in the absence or presence of zymosan or triptolide. The release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1) into culture supernatants was measured with enzyme-linked immunosorbent assays. The cellular abundance of the mRNAs for these proteins was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs) and the endogenous nuclear factor-κB (NF-κB) inhibitor IκB-α was examined by immunoblot analysis. The release of lactate dehydrogenase (LDH) activity from HCFs was measured with a colorimetric assay. RESULTS Triptolide inhibited the zymosan-induced release of IL-6, IL-8, and MCP-1 from HCFs in a concentration- and time-dependent manner. It also inhibited the zymosan-induced up-regulation of IL-6, IL-8, and MCP-1 mRNA abundance in these cells. Furthermore, triptolide attenuated zymosan-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 as well as the phosphorylation and degradation of IκB-α. Triptolide did not exhibit cytotoxicity for HCFs. CONCLUSION Triptolide inhibited proinflammatory cytokine and chemokine production by HCFs exposed to zymosan, with this action likely being mediated by suppression of MAPK and NF-κB signaling pathways. This compound might thus be expected to limit the infiltration of inflammatory cells into the cornea associated with fungal infection. PMID:26949603

  5. Cryopreservation of Extracted Corneal Lenticules after Small Incision Lenticule Extraction for Potential Use in Human Subjects

    PubMed Central

    Ganesh, Sri; Rao, Pallavi A.

    2014-01-01

    Purpose: To describe the technique of cryopreservation of corneal lenticules extracted after small incision refractive lenticule extraction (ReLEx SMILE) and initial results of femtosecond laser intrastromal lenticular implantation for hyperopia. Methods: Lenticules were collected from patients undergoing ReLEx SMILE for the correction of myopia and subjected to a tissue processing technique and cryopreservation. These lenticules were subsequently used to treat 8 hyperopic eyes and 1 aphakic eye. A femtosecond laser was used to create a pocket into each patient's cornea, followed by implantation of a cryopreserved lenticule. The patients were monitored through follow-up examinations for a mean 155.4 days (38–310 days). Results: The mean interval from storage of lenticules to removal from liquid nitrogen was 96 days (range, 19–178 days). Mean spherical equivalent of hyperopic eyes treated was +4.50 ± 1.1 diopter (D). Mean keratometry and pachymetry changed from preoperative 43.9 D and 531.6 μm to 47.4 D and 605.2 μm, respectively, postoperatively. Mean residual spherical equivalent for hyperopic eyes was +0.6 D and +4.1 D for the aphakic eye. None of the eyes showed evidence of rejection or loss of best-corrected visual acuity at the end of the follow-up period. Conclusions: The cryopreservation technique seems to be a safe method of long-term storage of refractive lenticules extracted after ReLEx SMILE for use in allogeneic human subjects. It may potentially be a safe and effective alternative to excimer laser ablation for hyperopia because of the low risks of regression, haze, flap-related complications, postoperative dry eye, and higher-order aberrations. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: CTRI/2014/01/004331. PMID:25343698

  6. Anti-inflammatory effects of hinokitiol on human corneal epithelial cells: an in vitro study

    PubMed Central

    Ye, J; Xu, Y-F; Lou, L-X; Jin, K; Miao, Q; Ye, X; Xi, Y

    2015-01-01

    Purpose This study assessed the anti-inflammatory effect and mechanism of action of hinokitiol in human corneal epithelial (HCE) cells. Methods HCE cells were incubated with different concentrations of hinokitiol or dimethylsulfoxide (DMSO), which served as a vehicle control. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) assay. After polyriboinosinic:polyribocytidylic acid (poly(I:C)) stimulus, cells with or without hinokitiol were evaluated for the mRNA and protein levels of interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-1β (IL-1β) using real-time PCR analysis and an enzyme-linked immunosorbent assay (ELISA), respectively. Nuclear and cytoplasmic levels of nuclear factor kappa B (NF-κB) p65 protein and an inhibitor of NF-κB α (IκBα) were evaluated using western blotting. Results There were no significant differences among the treatment concentrations of hinokitiol compared with cells incubated in medium only. Incubating with 100 μM hinokitiol significantly decreased the mRNA levels of IL-8 to 58.77±10.41% (P<0.01), IL-6 to 64.64±12.71% (P<0.01), and IL-1β to 54.19±8.10% (P<0.01) compared with cells stimulated with poly(I:C) alone. The protein levels of IL-8, IL-6, and IL-1β had similar trend. Further analysis revealed that hinokitiol maintained the levels of IκBα and significantly reduced NF-κB p65 subunit translocation to the nucleus which significantly inhibiting the activation of the NF-κB signal pathway. Conclusion Hinokitiol showed a significant protective effect against ocular surface inflammation through inhibiting the NF-κB pathway, which may indicate the possibility to relieve the ocular surface inflammation of dry eye syndrome (DES). PMID:25952949

  7. Protective Effects of L-Carnitine Against Oxidative Injury by Hyperosmolarity in Human Corneal Epithelial Cells

    PubMed Central

    Hua, Xia; Deng, Ruzhi; Li, Jin; Chi, Wei; Su, Zhitao; Lin, Jing; Pflugfelder, Stephen C.; Li, De-Quan

    2015-01-01

    Purpose L-carnitine suppresses inflammatory responses in human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. In this study, we determined if L-carnitine induces this protective effect through suppression of reactive oxygen species (ROS)-induced oxidative damage in HCECs. Methods Primary HCECs were established from donor limbal explants. A hyperosmolarity dry-eye model was used in which HCECs are cultured in 450 mOsM medium with or without L-carnitine for up to 48 hours. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and antioxidative enzymes were analyzed by 2′,7′-dichlorofluorescein diacetate (DCFDA) kit, semiquantitative PCR, immunofluorescence, and/or Western blotting. Results Reactive oxygen species production increased in HCECs upon substitution of the isotonic medium with the hypertonic medium. L-carnitine supplementation partially suppressed this response. Hyperosmolarity increased cytotoxic membrane lipid peroxidation levels; namely, malondialdehyde (MDA) and hydroxynonenal (HNE), as well as mitochondria DNA release along with an increase in 8-OHdG and aconitase-2. Interestingly, these oxidative markers were significantly decreased by coculture with L-carnitine. Hyperosmotic stress also increased the mRNA expression and/or protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but inhibited the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), glutathione peroxidase-1 (GPX1), and peroxiredoxin-4 (PRDX4). However, L-carnitine partially reversed this altered imbalance between oxygenases and antioxidant enzymes induced by hyperosmolarity. Conclusions Our findings demonstrate for the first time that L-carnitine protects HCECs from oxidative stress by lessening the declines in antioxidant enzymes and suppressing ROS production. Such suppression reduces membrane lipid oxidative damage markers and mitochondrial DNA damage. PMID:26284556

  8. Cytotoxic effect and possible mechanisms of Tetracaine on human corneal epithelial cells in vitro

    PubMed Central

    Pang, Xin; Fan, Ting-Jun

    2016-01-01

    AIM To demonstrate the cytotoxic effect and possible mechanisms of Tetracaine on human corneal epithelial (HCEP) cells in vitro. METHODS In vitro cultured HCEP cell were treated with Tetracaine hydrochloride at different doses for different times, and their morphology, viability, and plasma membrane permeability were detected by light microscopy, methyl thiazolyl tetrazolium (MTT) assay, and acridine orange (AO)/ethidium bromide (EB) staining, respectively. Their cell cycle progression, phosphatidylserine orientation in plasma membrane, and mitochondrial membrane potential (MTP) were assessed by flow cytometry. DNA fragmentation, ultrastructure, caspase activation, and the cytoplasmic apoptosis inducing factor (AIF) and cytochrome c (Cyt. c) along with the expression of B-cell lymphoma-2 (Bcl-2) family proteins were examined by gel electrophoresis, transmission electron microscope, enzyme linked immunosorbent assay (ELISA), and Western blot, respectively. RESULTS After exposed to Tetracaine at doses from 10.0 to 0.3125 g/L, the HCEP cells showed dose- and time-dependent morphological abnormality and typical cytopathic effect, viability decline, and plasma membrane permeability elevation. Tetracaine induced phosphatidylserine externalization, DNA fragmentation, G1 phase arrest, and ultrastructural abnormality and apoptotic body formation. Furthermore, Tetracaine at a dose of 0.3125 g/L also induced caspase-3, -9 and -8 activation, MTP disruption, up-regulation of the cytoplasmic amount of Cyt. c and AIF, the expressions of Bax and Bad, and down-regulation of the expressions of Bcl-2 and Bcl-xL. CONCLUSION Tetracaine above 0.3125 g/L (1/32 of its clinical applied dosage) has a dose- and time-dependent cytotoxicity to HCEP cells in vitro, with inducing cell apoptosis via a death receptor-mediated mitochondrion-dependent pathway. PMID:27162719

  9. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma

    PubMed Central

    Williams, Christopher S.; Zhang, Baolin; Smith, J. Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W.; Pino, Christopher; Russ, Patricia; Presley, Sai H.; Peng, DunFa; Rosenblatt, Daniel O.; Haselton, Frederick R.; Yang, Jin-Long; Washington, M. Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J.; El-Rifai, Wael; Beauchamp, R. Daniel; Chang, Min S.

    2011-01-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis. PMID:21911938

  10. Halofuginone down-regulates Smad3 expression and inhibits the TGFbeta-induced expression of fibrotic markers in human corneal fibroblasts

    PubMed Central

    Nelson, Elizabeth F.; Huang, Craig W.; Ewel, Jillian M.; Chang, Angela A.

    2012-01-01

    Purpose Due to its ability to disrupt transforming growth factor beta (TGF-β) signaling, halofuginone has been successfully used to treat various fibrotic disorders. Here we investigated the antifibrotic potential of halofuginone in human corneal fibroblasts. Methods Human corneal fibroblasts were isolated from human donor corneas for in vitro experiments. TGF-β was used to stimulate pro-fibrotic responses from corneal fibroblasts under halofuginone treatment. The expression of alpha smooth muscle actin (α-SMA) and fibronectin was analyzed by western blots. Phalloidin toxin was used to stain cultures for stress fiber assemblies. Quantitative reverse transcription PCR (qRT–PCR) and immunostaining were used to analyze the expression of type I collagen mRNA and protein, respectively. The expression of Smad2, Smad3, phospho-Smad2, and phospho-Smad3 was determined by western blots. Results Halofuginone was well tolerated by human corneal fibroblasts up to 10 ng/ml as demonstrated by a cell viability assay. At this concentration, TGF-β-induced expression of the fibrotic markers α-SMA, fibronectin, and type I collagen was significantly reduced. Interestingly, under our experimental conditions, halofuginone treatment led to reduced protein expression of Smad3, which was both dose- and time-dependent. Conclusions Our results suggest that halofuginone may exert its antifibrotic effects in the cornea via a novel molecular mechanism and may be used as an antifibrotic agent for corneal fibrosis treatment. PMID:22393274

  11. The Effect of Lamium album Extract on Cultivated Human Corneal Epithelial Cells (10.014 pRSV-T)

    PubMed Central

    Paduch, Roman; Woźniak, Anna

    2015-01-01

    Purpose: To evaluate the effect of Lamium album extract on human corneal epithelial cells (10.014 pRSV-T cell line) cultured in vitro. Methods: Normal human corneal epithelial cells were incubated with ethanol, ethyl acetate and heptane extracts from Lamium album. Their effect on cells was evaluated by neutral red (NR) uptake and MTT assays for cytotoxicity, ELISA for immunomodulation, Griess method for nitric oxide levels, DPPH assay for free radicals scavenging activity. A blank control consisted only of culture medium. Results: In NR and MTT assays, Lamium album extracts did not affect cell viability (80% at 125 μg/ml concentration). Ethanol was the least toxic extract (cell viability over 88%) and expressed the most potent reactive oxygen species (ROS) scavenging action. It was 19.88 ± 0.87% higher than controls representing a reduction corresponding to 7.136 μg/ml of trolox. Heptane extract revealed no ROS scavenging activity. All extracts decreased NO production by cells. The most active extract was ethanol (8 μg/ml) which reduced NO level to 0.242 μM (75% decrease compared to control). Extracts influenced pro-inflammatory (IL-1, IL-6, TNF-α) and anti-inflammatory (IL-10) cytokines levels reducing all of them in general. The strongest reduction in tested cytokines level was observed by the heptane extract. On the other hand, the ethanol extract induced mainly TNF-α level in a concentration dependent manner. Conclusion: Selected Lamium album extracts influence human corneal epithelial cells. Generally, while not toxic, they modulate pro-inflammatory and anti-inflammatory cytokines levels, and decrease NO release by cells; moreover, ethanol and ethyl acetate extracts reduce ROS levels. PMID:26730306

  12. Study of light scattering and transparency in human edematous corneas and application to corneal grafts

    NASA Astrophysics Data System (ADS)

    Marciano, Tal; Peyrot, Donald; Crotti, Caroline; Alahyane, Fatima; Kowalczuk, Laura; Plamann, Karsten

    2011-07-01

    The optical properties of the cornea have been a research subject of great interest for many years. Several early theories have been put forward to explain with more or less success the optical transparency of this tissue, but it was not until Maurice demonstrated in a very elegant way during the 50s that this optical transparency could be explained by the regular ultrastructure of the cornea. When becoming edematous, the cornea's ultrastructure is perturbed and the tissue becomes a strongly scattering medium. With the emergence of ophthalmologic surgery by ultrashort pulse lasers in recent years, a regain of interest in the subject of corneal transparency arose. However, relatively little and no recent data of transparency spectra measurements covering a large wavelength range is available in the literature. The purpose of this study is to provide quantitative values for light scattering and its relation to the degree of edema by measuring the spectrum of transmitted light through corneas presenting different degrees of edema. This paper focus on the comparison of laboratory measurements published earlier with a new simple method we propose We also for eye banks to quantitatively measure the degree of transparency of corneal grafts by measuring the modulation transfer function of a Siemens star viewed through a corneal graft. Indeed, there is no current method to determine the transparency of corneal graft but the subjectivity of the laboratory technician or the ophthalmic surgeon.

  13. Central Corneal Thickness Correlates with Oxygen Levels in the Human Anterior Chamber Angle

    PubMed Central

    Siegfried, Carla J.; Shui, Ying-Bo; Bai, Fang; Beebe, David C.

    2014-01-01

    Purpose To measure oxygen (pO2) in eyes of patients undergoing intraocular surgery and identify correlations with central corneal thickness (CCT). Design Prospective, cross-sectional study Methods Setting: Institutional Patient Population: 124 patients undergoing cataract and/or glaucoma surgery Observation Procedure: Prior to surgery, an oxygen sensor was introduced into the anterior chamber (AC) via peripheral corneal paracentesis. The tip of the flexible fiberoptic probe was positioned for three measurements in all patients: (1) near central corneal endothelium, (2) in mid-AC and (3) in AC angle. In patients undergoing cataract extraction, additional measurements were taken (4) at the anterior lens surface and (5) in the posterior chamber. Main Outcome Measures: pO2 measurements at five locations within the eye were compared to central corneal thickness measurements by multivariate regression analyses. Results There was a statistically significant inverse correlation between CCT and pO2 in the anterior chamber angle (p=0.048). pO2 was not significantly related to CCT at any other location, including beneath the central cornea. Regression analysis relating CCT to age, race and oxygen levels in all five locations in the anterior segment revealed an association of a thinner cornea with increasing age (p=0.007). Conclusions Physiologic correlations with central corneal thickness may provide clues to understanding why a thinner cornea increases the risk of open glaucoma. Associations between glaucoma risk, CCT and pO2 in the AC angle suggest that exposure of the outflow system to increased oxygen or oxygen metabolites may increase oxidative damage to the trabecular meshwork cells, resulting in elevation of intraocular pressure. PMID:25461296

  14. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  15. Corneal transplant

    MedlinePlus

    ... clear outer lens on the front of the eye. A corneal transplant is surgery to replace the cornea with tissue ... years. Rejection can sometimes be controlled with steroid eye drops. Other ... are: Bleeding Cataracts Infection of the eye Glaucoma ( ...

  16. Targeted Overexpression of TGF-α in the Corneal Epithelium of Adult Transgenic Mice Induces Changes in Anterior Segment Morphology and Activates Noncanonical Wnt Signaling

    PubMed Central

    Yuan, Yong; Yeh, Lung-Kun; Liu, Hongshan; Yamanaka, Osamu; Hardie, William D.; Kao, Winston W.-Y.; Liu, Chia-Yang

    2013-01-01

    Purpose. Transforming growth factor-alpha (TGF-α) transduces its signal through the epidermal growth factor receptor and is essential for corneal epithelial homeostasis. Previous studies have demonstrated that overexpression of TGF-α in the developing eye leads to anterior segment dysgenesis. However, the underlying mechanisms remain unclear. Here we examined the effects of TGF-α overexpression on adult ocular surface homeostasis. Methods. Binary Tet-On transgenic Krt12rtTA/tet-O-TGF-α mice were subjected to doxycycline (Dox) induction to overexpress TGF-α in the corneal epithelium. Intraocular pressure (IOP) was measured by noninvasive tonometry. The enucleated eyes of the experimental mice were subjected to histopathology, immunohistochemistry, and biochemistry examination. Results. Histologic and immunofluorescent examination showed that double-transgenic mice overexpressing TGF-α manifested peripheral anterior synechiae. Elevation of IOP, activation of glial cells, and loss of retinal ganglion cells were also observed. Quantitative real-time PCR revealed that the expressions of genes (RXRα, PITX2, and FOXC1) related to anterior segment dysgenesis were downregulated. Canonical Wnt signaling was suppressed, whereas noncanonical Wnt ligands (Wnt4 and Wnt5a) were upregulated. Increased myosin light chain phosphorylation suggested that noncanonical Wnt signaling is activated in affected eyes. Conclusions. Overexpression of TGF-α in the corneal epithelium induces changes in anterior segment morphology. Corneal endothelial abnormalities are associated with the activation of the noncanonical Wnt and RhoA/ROCK signaling axis, indicating a potential application of RhoA/ROCK inhibitors as a therapeutic strategy for certain types of secondary angle-closure glaucoma. PMID:23412089

  17. Differential protein expression in human corneal endothelial cells cultured from young and older donors

    PubMed Central

    Zhu, Cheng; Rawe, Ian

    2008-01-01

    Purpose To establish a baseline protein fingerprint of cultured human corneal endothelial cells (HCEC), to determine whether the protein profiles exhibit age-related differences, and to identify proteins differentially expressed in HCEC cultured from young and older donors. Methods Corneas were obtained from five young (<30 years old) and five older donors (>50 years old). HCEC were cultured, and protein was extracted from confluent passage 3 cells. Extracts from each age group were pooled to form two samples. Proteins were separated on two-dimensional (2-D) gels and stained with SyproRuby. Resultant images were compared to identify protein spots that were either similarly expressed or differentially expressed by at least twofold. Protein spots were then identified by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Results Protein spots were well resolved, and patterns were reproducible on 2-D gels using either pH 3–10 or pH 4–7 IPG strips. Two-dimensional gels prepared with pH 4–7 IPG strips were used for differential display analysis, which was reproduced on three separate pairs of gels. MALDI-TOF identified 58 proteins with similar expression; 30 proteins were expressed twofold higher in HCEC from young donors; five proteins were expressed twofold higher in cells from older donors; and 10 proteins were identified in gels from young donors that did not match in gels from older donors. Several proteins expressed at higher levels in younger donors support metabolic activity, protect against oxidative damage, or mediate protein folding or degradation. Conclusions This is the first proteomic comparison of proteins expressed in HCEC cultured from young and older donors. Although restricted to proteins with isoelectric points between pH 4.0 and pH 7.0, the data obtained represent an initial step in the investigation of molecular mechanisms that underlie physiologically important age-related differences in cultured HCEC

  18. Effect of contact lens material on cytotoxicity potential of multipurpose solutions using human corneal epithelial cells

    PubMed Central

    Tanti, N.C.; Crockett, B.; Mansour, L.; Jones, L.

    2011-01-01

    Purpose Multipurpose solutions (MPS) are used daily to clean and disinfect silicone hydrogel (SiHy) contact lenses. This in vitro study was undertaken to identify the potential for interaction between MPS, SiHy surface treatments, and lens materials, which may lead to changes in the response of human corneal epithelial cells (HCEC) to MPS-soaked lenses. Methods The MPS tested were renu fresh (formerly known as ReNu MultiPlus; ReNu), OptiFree Express (OFX), OptiFree RepleniSH, SoloCare Aqua, and Complete Moisture Plus. The SiHy materials evaluated were lotrafilcon A, lotrafilcon B, comfilcon A, galyfilcon A, and balafilcon A (BA). MPS-soaked lenses were placed on top of adherent HCEC. The effect of MPS dilutions (0.1 to 10% final concentration in medium) was also characterized. Cell viability, adhesion phenotype and caspase activation were studied after 24-h cell exposure. OFX released from lenses was determined using UV absorbance. Results A significant reduction in viability (between 30 to 50%) was observed with cells exposed to lenses soaked in ReNu and OFX. A significant downregulation of α3 and β1 integrins, with integrin expression ranging from 60% to 75% of control (cells with no lens), was also observed with OFX and ReNu-soaked lenses. With the exception of BA, all other lenses soaked in OFX resulted in significant caspase activation, whereby over 18% of cells stained positive for caspases. Minimal caspase activation was observed in cells exposed to ReNu and Solo soaked lenses. For both OFX and ReNu, exposing cells to at least a 5% dilution had a significant effect on viability and integrin expression. While Complete and Solo did not lead to reduction in viability, cells exposed to a 10% dilution showed reduced integrin expression down to less than 70% of control value. Comparing cell response to diluted MPS solutions and various MPS-soaked lenses showed that it is not possible to reliably use cell response to MPS dilution alone to assess MPS

  19. Advances in corneal cell therapy.

    PubMed

    Fuest, Matthias; Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Mehta, Jodhbir S

    2016-09-01

    Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy. PMID:27498943

  20. Trehalose-Based Eye Drops Preserve Viability and Functionality of Cultured Human Corneal Epithelial Cells during Desiccation

    PubMed Central

    Hill-Bator, Aneta; Misiuk-Hojło, Marta; Marycz, Krzysztof; Grzesiak, Jakub

    2014-01-01

    This paper presents the evaluation of cytoprotective ability of trehalose-based eye drops in comparison with commercially available preparations during the experimental desiccation of cultured human corneal epithelial cells. Cultured human corneal epithelial cells (hCEC) underwent incubation with 7 different, commercially available medicaments used commonly in dry eye syndrome treatment, followed by desiccation trial performed on air under the flow hood for 5, 15, 30, and 45 minutes. Cell viability was quantified by live/dead fluorescent assay, while the presence of apoptotic cells was estimated by immunofluorescent staining for active caspase 3 protein. The preservation of membrane functions was evaluated using neutral red staining, while the preservation of proper morphology and phenotype was determined by fluorescent staining for actin filaments, nuclei, and p63 protein. The trehalose-based eye drops showed the highest efficiency in prevention of cell death from desiccation; moreover, this preparation preserved the normal cellular morphology, functions of cell membrane, and proliferative activity more effectively than other tested medicaments. PMID:24995283

  1. Transcriptomic Analysis of PNN- and ESRP1-Regulated Alternative Pre-mRNA Splicing in Human Corneal Epithelial Cells

    PubMed Central

    Joo, Jeong-Hoon; Correia, Greg P.; Li, Jian-Liang; Lopez, Maria-Cecilia; Baker, Henry V.; Sugrue, Stephen P.

    2013-01-01

    Purpose. We investigated the impact of PININ (PNN) and epithelial splicing regulatory protein 1 (ESRP1) on alternative pre-mRNA splicing in the corneal epithelial context. Methods. Isoform-specific RT-PCR assays were performed on wild-type and Pnn knockout mouse cornea. Protein interactions were examined by deconvolution microscopy and co-immunoprecipitation. For genome-wide alternative splicing study, immortalized human corneal epithelial cells (HCET) harboring doxycycline-inducible shRNA against PNN or ESRP1 were created. Total RNA was isolated from four biological replicates of control and knockdown HCET cells, and subjected to hGlue3_0 transcriptome array analysis. Results. Pnn depletion in developing mouse corneal epithelium led to disrupted alternative splicing of multiple ESRP-regulated epithelial-type exons. In HCET cells, ESRP1 and PNN displayed close localization in and around nuclear speckles, and their physical association in protein complexes was identified. Whole transcriptome array analysis on ESRP1 or PNN knockdown HCET cells revealed clear alterations in transcript profiles and splicing patterns of specific subsets of genes. Separate RT-PCR validation assays confirmed successfully specific changes in exon usage of several representative splice variants, including PAX6(5a), FOXJ3, ARHGEF11, and SLC37A2. Gene ontologic analyses on ESRP1- or PNN-regulated alternative exons suggested their roles in epithelial phenotypes, such as cell morphology and movement. Conclusions. Our data suggested that ESRP1 and PNN modulate alternative splicing of a specific subset of target genes, but not general splicing events, in HCET cells to maintain or enhance epithelial characteristics. PMID:23299472

  2. Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light.

    PubMed

    Choi, Samjin; Lee, Seung-Chan; Lee, Hui-Jae; Cheong, Youjin; Jung, Gyeong-Bok; Jin, Kyung-Hyun; Park, Hun-Kuk

    2013-09-01

    High success rates in clinical trials on keratoconic corneas suggest the possibility of efficient treatment against myopic progression. This study quantitatively investigated the in vitro ultrastructural effects of a photooxidative collagen cross-linking treatment with photosensitizer riboflavin and UVA light in human corneo-scleral collagen fibrils. A total of 30.8 × 2 mm corneo-scleral strips from donor tissue were sagittally dissected using a scalpel. The five analytic parameters namely fibril density, fibril area, corneo-scleral thickness, fibril diameter, and fibril arrangement were investigated before and after riboflavin-UVA-catalyzed collagen cross-linking treatment. Collagen cross-linking effects were measured at the corneo-scleral stroma and were based on clinical corneal cross-linking procedures. The structural response levels were assessed by histology, digital mechanical caliper measurement, scanning electron microscopy, and atomic force microscopy. Riboflavin-UVA-catalyzed collagen cross-linking treatment led to an increase in the area, density, and diameters of both corneal (110, 112, and 103 %) and scleral (133, 133, and 127 %) stromal collagens. It also led to increases in corneal (107 %) and scleral (105 %) thickness. Collagen cross-linking treatment through riboflavin-sensitized photoreaction may cause structural property changes in the collagen fibril network of the cornea and sclera due to stromal edema and interfibrillar spacing narrowing. These changes were particularly prominent in the sclera. This technique can be used to treat progressive keratoconus in the cornea as well as progressive myopia in the sclera. Long-term collagen cross-linking treatment of keratoconic and myopic progression dramatically improves weakened corneo-scleral tissues. PMID:23179311

  3. Vortex or whorl formation of cultured human corneal epithelial cells induced by magnetic fields.

    PubMed

    Dua, H S; Singh, A; Gomes, J A; Laibson, P R; Donoso, L A; Tyagi, S

    1996-01-01

    The terms 'vortex keratopathy' and 'hurricane keratopathy' describe two similar conditions affecting the corneal surface. In the former, a vortex or whorl pattern is seen on the corneal surface and is due to the deposition of substances such as pigment, iron or drugs in the epithelial cells. In the latter, a similar pattern is presented by migrating epithelial cells but, unlike the former, the pattern is rendered more visible by fluorescein staining. Both represent the migratory pattern of normal epithelial cells which is otherwise not visible due to the slow rate of epithelial turnover and migration. The whorl pattern has a clockwise predisposition in the majority of cases and is hypothesised to be due to the influence of ocular electro-magnetic fields on the migrating epithelial cells. In this study we tested in vitro the effect of static magnetic fields on corneal epithelial cells. We were able to reproduce dramatic vortex or whorl patterns in response to magnetic fields, but without preferential migration towards the North or South Pole. PMID:8944095

  4. Immunological Properties of Corneal Epithelial-Like Cells Derived from Human Embryonic Stem Cells

    PubMed Central

    Wang, Zhenyu; Zhou, Qingjun; Duan, Haoyun; Wang, Yao; Dong, Muchen; Shi, Weiyun

    2016-01-01

    Transplantation of ex vivo expanded corneal limbal stem cells (LSCs) has been the main treatment for limbal stem cell deficiency, although the shortage of donor corneal tissues remains a major concern for its wide application. Due to the development of tissue engineering, embryonic stem cells (ESCs)-derived corneal epithelial-like cells (ESC-CECs) become a new direction for this issue. However, the immunogenicity of ESC-CECs is a critical matter to be solved. In the present study, we explored the immunological properties of ESC-CECs, which were differentiated from ESCs. The results showed that ESC-CECs had a similar character and function with LSCs both in vitro and in vivo. In ESC-CECs, a large number of genes related with immune response were down-regulated. The expressions of MHC-I, MHC-II, and co-stimulatory molecules were low, but the expression of HLA-G was high. The ESC-CECs were less responsible for T cell proliferation and NK cell lysis in vitro, and there was less immune cell infiltration after transplantation in vivo compared with LSCs. Moreover, the immunological properties were not affected by interferon-γ. All these results indicated a low immunogenicity of ESC-CECs, and they can be promising in clinical use. PMID:26977925

  5. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  6. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  7. Advances in corneal preservation.

    PubMed Central

    Lindstrom, R L

    1990-01-01

    The functional status of the endothelium and sustained corneal deturgescence after corneal preservation are of great clinical importance and have been primary goals in the development of corneal storage media. In our investigational studies we have specifically addressed the improvement of the quality of donor tissue after 4 degrees C storage, the extension of corneal preservation time, the enhancement of corneal wound healing, and the reduction of the normal progressive loss of endothelial cells postkeratoplasty. Specifically we have developed in vitro HCE cell and epithelial cell culture models that can accurately reflect the response of human corneal tissue in vivo. These models have been utilized to study the effects of growth factors and medium components in relation to their biocompatibility and efficacy in the development of improved corneal preservation solutions. Our laboratory investigated in vitro conditions that allowed human corneal endothelium to shift from a nonproliferative state, in which they remain viable and metabolically active, to a proliferative, mitotically active state. Isolation techniques developed in our laboratory have enabled the establishment of primary and subsequent subcultures of human corneal endothelium that retain the attributes of native endothelium. These in vitro conditions maintain HCE cells in a proliferative state, actively undergoing mitosis. A quantitative bioassay has been developed to determine the effects of various test medium in the stimulation or inhibition of DNA synthesis. In attempting to learn more about the events that occur during in vitro endothelial cell isolation, cell reattachment, extracellular matrix interaction and migrating during subculture, SEM was done on isolated HCE cells incubated in CSM. These studies suggest that the components of the extracellular matrix modulate the growth response of HCE cells, and play a role in regulating proliferation and migration. These observations are important in

  8. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells.

    PubMed

    Muhammad, Rizwan; Peh, Gary S L; Adnan, Khadijah; Law, Jaslyn B K; Mehta, Jodhbir S; Yim, Evelyn K F

    2015-06-01

    One of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers. Biochemical cues such as growth factors and small molecules have been investigated to enhance the expansion of HCECs with a limited increase in proliferation. In this study, patterned tissue culture polystyrene (TCPS) was shown to significantly enhance the expansion of HCECs. The proliferation of HCECs increased up to 2.9-fold, and the expression amount and localization of cell-cell tight junction protein Zona Occludens-1 (ZO-1) was significantly enhanced when grown on 1 μm TCPS pillars. 250 nm pillars induced an optimal hexagonal morphology of HCEC cells. Furthermore, we demonstrated that the topographical effect on tight-junction expression and cell morphology could be maintained throughout each passage, and was effectively 'remembered' by the cells. Higher amount of tight-junction protein expression was maintained at cell junctions when topographic cues were removed in the successive seeding. This topographic memory suggested topography-exposed/induced cells would maintain the enhanced functional markers, which would be useful in cell-therapy based approaches to enable the in situ endothelial cell monolayer formation upon delivery. The development of patterned TCPS culture platforms could significantly benefit those researching human corneal endothelial cell cultivation for cell therapy, and tissue engineering applications. PMID:25796353

  9. A Native-Like Corneal Construct Using Donor Corneal Stroma for Tissue Engineering

    PubMed Central

    Lin, Jing; Yoon, Kyung-Chul; Zhang, Lili; Su, Zhitao; Lu, Rong; Ma, Ping; De Paiva, Cintia S.; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal

  10. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    PubMed

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae. PMID:16243479

  11. Implantable collamer lens in a case of corneal scar with anisometropic amblyopia in an adult: an expanded indication.

    PubMed

    Prakash, Gaurav; Avadhani, Kavitha; Kalliath, Jay; Srivastava, Dhruv

    2015-01-01

    A 35-year-old man, a unilateral high myope with corneal scarring, presented for evaluation. He had a stromal scar that started temporally, traversed along the pupillary zone partially and extended across the horizontal diameter of the cornea. The Descemet's membrane appeared intact even though the scar was extending into deep stroma towards the nasal end, as seen in the optical coherence tomography image. The patient had an uncorrected distance visual acuity (UDVA) of 4/60 OD, which improved with a refraction of -9.0 DS/-1.50 DC at 15 to 6/18p and 6/6p OS. He underwent an uneventful toric implantable collamer lens (ICL) implantation of -15.0 D/-2.0 D at 102 after preoperative yttrium-aluminium-garnet (YAG) laser iridotomy in the right eye. The postoperative UDVA and corrected distance visual acuity for the right eye were 6/12 and 6/9p (with a refraction of +0.50 D/-0.50 D at 85), respectively. The corneal scar and topography were stable. This case reports an expanded indication for toric ICL in cases with corneal scar/opacity but good spectacle corrected visual acuity. PMID:25743868

  12. Regenerative Cell Therapy for Corneal Endothelium.

    PubMed

    Bartakova, Alena; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2014-09-01

    Endothelial cell dysfunction as in Fuchs dystrophy or pseudophakic bullous keratopathy, and the limited regenerative capacity of human corneal endothelial cells (HCECs), drive the need for corneal transplant. In response to limited donor corneal availability, significant effort has been directed towards cell therapy as an alternative to surgery. Stimulation of endogenous progenitors, or transplant of stem cell-derived HCECs or in vitro-expanded, donor-derived HCECs could replace traditional surgery with regenerative therapy. Ex vivo expansion of HCECs is technically challenging, and the basis for molecular identification of functional HCECs is not established. Delivery of cells to the inner layer of the human cornea is another challenge: different techniques, from simple injection to artificial corneal scaffolds, are being investigated. Despite remaining questions, corneal endothelial cell therapies, translated to the clinic, represent the future for the treatment of corneal endotheliopathies. PMID:25328857

  13. HSV-1 infection suppresses TGF-β1 and SMAD3 expression in human corneal epithelial cells

    PubMed Central

    Nie, Yuhong; Cui, Dongmei; Pan, Zhujuan; Deng, Jiangyun; Huang, Qiang

    2008-01-01

    Purpose The present study was undertaken to investigate whether transforming growth factor-β (TGF-β) isoforms (TGF-β1, TGF-β2, and TGF-β3) and SMADs (SMAD2 and SMAD3) are involved in herpes simplex virus type 1 (HSV-1) corneal infection. Methods Human corneal epithelial cells (HCE) were infected with HSV-1 at a multiplicity of infection of 5. Cell morphological changes were observed under phase-contrast microscopy. Levels of mRNA for TGF-β isoforms 1, 2, and 3 as well as for SMAD2 and SMAD3 were measured by reverse transcription polymerase chain reaction (RT–PCR) at 0 h, 4 h, 8 h, 12 h, and 24 h after infection. Protein expression of TGF-β1, TGF-β2, SMAD3, and phospho-SMAD3 were analyzed by indirect immunofluorescence at 0 h, 12 h, and 24 h post-infection (p.i.) in HCE cells. Protein expression of TGF-β1 was also evaluated by ELISA. Results Following HSV-1 infection, a cytopathic effect in HCE cells was observed at 8 h p.i. and became significant at 24 h p.i. Compared with normal cells, the mRNA levels of TGF-β1 in HSV-1 infected HCE cells decreased significantly at 8 h, 12 h, and 24 h p.i. (p<0.01), and the expression of SMAD3 was also dramatically decreased 12 h and 24 h p.i. (p<0.01). No noticeable changes were found as a result of infection with respect to levels of TGF-β2, TGF-β3, and SMAD2 in HCE cells. Protein expression of TGF-β1, SMAD3, and phospho-SMAD3 decreased in infected cells at 12 h and 24 h p.i. compared with normal cells, but TGF-β2 had no change. Conclusions TGF-β1 and SMAD3 may be involved in the pathology of corneal diseases associated with HSV-1 infection. PMID:18776948

  14. Defensin Production by Human Limbo-Corneal Fibroblasts Infected with Mycobacteria

    PubMed Central

    Castañeda-Sánchez, Jorge I.; García-Pérez, Blanca E.; Muñoz-Duarte, Ana R.; Baltierra-Uribe, Shantal L.; Mejia-López, Herlinda; López-López, Carlos; Lucio, Victor M. Bautista-De; Robles-Contreras, Atzín; Luna-Herrera, Julieta

    2013-01-01

    Epithelial cells of the cornea and the conjunctiva constitutively produce antimicrobial peptides; however, the production of defensins by other cell types located around the eye has not been investigated. We analyzed the production of beta-defensins (hBD) and cathelicidin LL-37 during the infection of primary limbo-corneal fibroblasts with M. tuberculosis (MTB), M. abscessus (MAB), and M. smegmatis (MSM). The intracellular survival of each mycobacterium, the production of cytokines and the changes on the distribution of the actin filaments during the infection were also analyzed. Fibroblasts produce basal levels of hBD1 and LL-37 and under PMA stimulation they produce hBD2, hBD3 and overexpress hBD1 and LL-37. MAB induced the highest levels of hBD1 and LL-37 and intermediate levels of IL-6; however, MAB was not eliminated. In addition, MAB induced the greatest change to the distribution of the actin filaments. MTB also produced changes in the structure of the cytoskeleton and induced low levels of hBD1 and IL-6, and intermediate levels of LL-37. The balance of these molecules induced by MTB appeared to contribute to the non-replicative state observed in the limbo-corneal cells. MSM induced the lowest levels of hBD1 and LL-37 but the highest levels of IL-6; MSM was eliminated. The results suggest that mycobacterial infections regulate the production of antimicrobial peptides and cytokines, which in conjunction can contribute to the control of the bacilli. PMID:25436879

  15. Molecular mechanism of ocular surface damage: Application to an in vitro dry eye model on human corneal epithelium

    PubMed Central

    De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore

    2011-01-01

    Purpose The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. Methods The HCE model was maintained in a controlled environmental setting (relative humidity <40% and 40 °C temperature) for 24 h and up to 72 h to induce dry eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. Results This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. Conclusions By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears. PMID:21245952

  16. Corneal Transplantation and Immune Privilege

    PubMed Central

    Niederkorn, Jerry Y.

    2013-01-01

    Corneal transplants have been successfully performed in human subjects for over 100 years and enjoy an immune privilege that is unrivaled in the field of transplantation. Immune privilege is defined as the reduced incidence and tempo in the immune rejection of corneal allografts compared to other categories of organ allografts performed under the same conditions. Skin allografts transplanted across various MHC or minor histocompatibility barriers undergo rejection in approximately 100% of the hosts. By contrast, orthotopic corneal allografts experience long-term survival in 50% to >90% of the hosts, depending on the histocompatibility barriers that confront the host. The capacity of corneal allografts to evade immune rejection is attributable to multiple anatomical, physiological, and immunoregulatory conditions that conspire to prevent the induction and expression of alloimmunity. PMID:23360158

  17. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered corneal burr. 886.4070 Section 886.4070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or...

  18. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A...

  19. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro.

    PubMed

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells

  20. Tualang Honey Improves Human Corneal Epithelial Progenitor Cell Migration and Cellular Resistance to Oxidative Stress In Vitro

    PubMed Central

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in

  1. Thrombomodulin Promotes Corneal Epithelial Wound Healing

    PubMed Central

    Huang, Yi-Hsun; I, Ching-Chang; Kuo, Cheng-Hsiang; Hsu, Yun-Yan; Lee, Fang-Tzu; Shi, Guey-Yueh; Tseng, Sung-Huei; Wu, Hua-Lin

    2015-01-01

    Purpose To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing. Methods TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays. Results TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing. Conclusions TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury. PMID:25816372

  2. Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways

    PubMed Central

    Hsueh, Yi-Jen; Chen, Hung-Chi; Wu, Sung-En; Wang, Tze-Kai; Chen, Jan-Kan; Ma, David Hui-Kang

    2015-01-01

    The first two authors contributed equally to this work.Silence of p120-catenin has shown promise in inducing proliferation in human corneal endothelial cells (HCECs), but there is concern regarding off-target effects in potential clinical applications. We aimed to develop ex vivo expansion of HCECs using natural compounds, and we hypothesized that lysophosphatidic acid (LPA) can unlock the mitotic block in contact-inhibited HCECs via enhancing nuclear translocation of yes-associated protein (YAP). Firstly, we verified that exogenous YAP could induce cell proliferation in contact-inhibited HCEC monolayers and postconfluent B4G12 cells. In B4G12 cells, enhanced cyclin D1 expression, reduced p27KIP1/p21CIP1 levels, and the G1/S transition were detected upon transfection with YAP. Secondly, we confirmed that LPA induced nuclear expression of YAP and promoted cell proliferation. Moreover, PI3K and ROCK, but not ERK or p38, were required for LPA-induced YAP nuclear translocation. Finally, cells treated with LPA or transfected with YAP remained hexagonal in shape, in addition to unchanged expression of ZO-1, Na/K-ATPase, and smooth muscle actin (SMA), suggestive of a preserved phenotype, without endothelial–mesenchymal transition. Collectively, our findings indicate an innovative strategy for ex vivo cultivation of HCECs for transplantation and cell therapy. PMID:26029725

  3. Angiogenin Reduces Immune Inflammation via Inhibition of TANK-Binding Kinase 1 Expression in Human Corneal Fibroblast Cells

    PubMed Central

    Min, Kyong-Mi; Kim, Kyu-Wan; Chang, Soo-Ik

    2014-01-01

    Angiogenin (ANG) is reportedly multifunctional, with roles in angiogenesis and autoimmune diseases. This protein is involved in the innate immune system and has been implicated in several inflammatory diseases. Although ANG may be involved in the anti-inflammatory response, there is no evidence that it has direct anti-inflammatory effects. In this study we sought to determine whether ANG has an anti-inflammatory effect in human corneal fibroblasts (HCFs) exposed to media containing tumor necrosis factor-alpha (TNF-α). We found that ANG reduced the mRNA expression of interleukin-1 beta (IL-1β), -6, -8 and TNF-α receptors (TNFR) 1 and 2. In contrast, ANG increased the mRNA expression of IL-4 and -10. Protein levels of TANK-binding kinase 1 (TBK1) were reduced by ANG in HCFs treated with TNF-α. Moreover, ANG diminished the expression of IL-6 and -8 and monocyte chemotactic protein- (MCP-) 1. The protein expression of nuclear factor-κB (NF-κB) was downregulated by ANG treatment. These findings suggest that ANG suppressed the TNF-α-induced inflammatory response in HCFs through inhibition of TBK1-mediated NF-κB nuclear translocation. These novel results are likely to play a significant role in the selection of immune-mediated inflammatory therapeutic targets and may shed light on the pathogenesis of immune-mediated inflammatory diseases. PMID:24860242

  4. The influence of biomimetic topographic features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance

    PubMed Central

    Tocce, E.J.; Liliensiek, S.J.; Broderick, A.H.; Jiang, Y; Murphy, K.C.; Murphy, C.J.; Lynn, D.M.; Nealey, P.F

    2012-01-01

    A major focus in the field of tissue engineering is the regulation of essential cell behaviors through biophysical and biochemical cues from the local extracellular environment. The impact of nanotopographic cues on human corneal epithelial cell (HCEC) contact guidance, proliferation, migration and adhesion have previously been demonstrated. In the current report, we have expanded our study of HCEC response to include both biophysical and controlled biochemical extracellular cues. By exploiting methods for the layer-by-layer coating of substrates with reactive poly(ethylene imine) and poly(2-vinyl-4,4-dimethylazlactone) (PEI/PVDMA)-based multilayer thin films, we have incorporated a single adhesion peptide motif, Arg-Gly-Asp (RGD), onto topographically patterned substrates. This strategy eliminates protein adsorption onto the surface, thus decoupling the effects of the HCEC response to topographic cues from adsorbed proteins and the soluble media proteins. The direction of cell alignment was dependent on the scale of the topographic cues, and, to less of an extent, the culture medium. In EpiLife® medium, cell alignment to unmodified-NOA81 topographic features, which allowed for protein adsorption, differed significantly from cell alignment on RGD-modified features. These results demonstrate that the surface chemical composition affects significantly how HCECs respond to topographic cues. In summary, we demonstrate the modulation of the HCEC response to environmental cues through critical substrate and soluble parameters. PMID:23069317

  5. Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells.

    PubMed

    Caraballo, Rémi; Saleeb, Michael; Bauer, Johannes; Liaci, A Manuel; Chandra, Naresh; Storm, Rickard J; Frängsmyr, Lars; Qian, Weixing; Stehle, Thilo; Arnberg, Niklas; Elofsson, Mikael

    2015-09-21

    Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects. PMID:26177934

  6. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  7. The Impact of Type 1 Diabetes Mellitus on Corneal Epithelial Nerve Morphology and the Corneal Epithelium

    PubMed Central

    Cai, Daniel; Zhu, Meifang; Petroll, W. Matthew; Koppaka, Vindhya; Robertson, Danielle M.

    2015-01-01

    Diabetic corneal neuropathy can result in chronic, sight-threatening corneal pathology. Although the exact etiology is unknown, it is believed that a reduction in corneal sensitivity and loss of neurotrophic support contributes to corneal disease. Information regarding the relationship between nerve loss and effects on the corneal epithelium is limited. We investigated changes in the corneal epithelium and nerve morphology using three-dimensional imaging in vivo and in situ in a streptozotocin-induced diabetic mouse model. Streptozotocin-treated mice showed increased levels of serum glucose and growth retardation consistent with a severe diabetic state. A reduction in the length of the subbasal nerve plexus was evident after 6 weeks of disease. Loss of the subbasal nerve plexus was associated with corneal epithelial thinning and a reduction in basal epithelial cell density. In contrast, loss of the terminal epithelial nerves was associated with animal age. Importantly, this is the first rodent model of type 1 diabetes that shows characteristics of corneal epithelial thinning and a reduction in basal epithelial cell density, both previously have been documented in humans with diabetic corneal neuropathy. These findings indicate that in type 1 diabetes, nerve fiber damage is evident in the subbasal nerve plexus before terminal epithelial nerve loss and that neurotrophic support from both the subbasal nerve plexus and terminal epithelial nerves is essential for the maintenance of corneal epithelial homeostasis. PMID:25102563

  8. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium.

    PubMed

    Cai, Daniel; Zhu, Meifang; Petroll, W Matthew; Koppaka, Vindhya; Robertson, Danielle M

    2014-10-01

    Diabetic corneal neuropathy can result in chronic, sight-threatening corneal pathology. Although the exact etiology is unknown, it is believed that a reduction in corneal sensitivity and loss of neurotrophic support contributes to corneal disease. Information regarding the relationship between nerve loss and effects on the corneal epithelium is limited. We investigated changes in the corneal epithelium and nerve morphology using three-dimensional imaging in vivo and in situ in a streptozotocin-induced diabetic mouse model. Streptozotocin-treated mice showed increased levels of serum glucose and growth retardation consistent with a severe diabetic state. A reduction in the length of the subbasal nerve plexus was evident after 6 weeks of disease. Loss of the subbasal nerve plexus was associated with corneal epithelial thinning and a reduction in basal epithelial cell density. In contrast, loss of the terminal epithelial nerves was associated with animal age. Importantly, this is the first rodent model of type 1 diabetes that shows characteristics of corneal epithelial thinning and a reduction in basal epithelial cell density, both previously have been documented in humans with diabetic corneal neuropathy. These findings indicate that in type 1 diabetes, nerve fiber damage is evident in the subbasal nerve plexus before terminal epithelial nerve loss and that neurotrophic support from both the subbasal nerve plexus and terminal epithelial nerves is essential for the maintenance of corneal epithelial homeostasis. PMID:25102563

  9. Early wound healing of laser in situ keratomileusis–like flaps after treatment with human corneal stromal stem cells

    PubMed Central

    Morgan, Siân R.; Dooley, Erin P.; Kamma-Lorger, Christina; Funderburgh, James L.; Funderburgh, Martha L.; Meek, Keith M.

    2016-01-01

    Purpose To use a well-established organ culture model to investigate the effects of corneal stromal stem cells on the optical and biomechanical properties of corneal wounds after laser in situ keratomileusis (LASIK)–like flap creation. Setting School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom. Design Experimental study. Methods The LASIK-like flaps were produced in sheep corneas. The flap beds were treated with corneal stromal stem cells and were then replaced and allowed to heal for different periods of up to 3 weeks in organ culture. The optical transmission of the cornea, the force required to detach the flap, and the presence of myofibroblasts near the flap bed were measured. Results Corneal stromal stem cell–treated flap beds were statistically significantly more transparent after 3 weeks in culture than the untreated controls. At 3 weeks, the mean force necessary to detach the flap was more than twice the force required for the respective control samples. Concurrently, there were 44% activated cells immediately below the flap margin of the controls compared with 29% in the same region of the corneal stromal stem cell–treated flaps. Conclusions In this system, the presence of corneal stromal stem cells at the wound margin significantly increased the adherence of LASIK-like flaps while maintaining corneal transparency. It is postulated that this is achieved by the deposition of extracellular connective tissue similar to that found in the normal cornea and by the paucity of activated keratocytes (myofibroblasts), which are known to scatter a significant amount of the incident light. Financial Disclosure No author has a financial or proprietary interest in any material or method mentioned. PMID:27026456

  10. Intrastromal Corneal Ring Implants for Corneal Thinning Disorders

    PubMed Central

    2009-01-01

    . Search results were limited to human and English-language published between January 2000 and April 17, 2008. The resulting citations were downloaded into Reference Manager, v.11 (ISI Researchsoft, Thomson Scientific, U.S.A), and duplicates were removed. The Web sites of several other health technology agencies were also reviewed including the Canadian Agency for Drugs and Technologies in Health (CADTH), ECRI, and the United Kingdom National Institute for Clinical Excellence (NICE). The bibliographies of relevant articles were scanned. Inclusion Criteria English language reports and human studies Any corneal thinning disorder Reports with corneal implants used alone or in conjunction with other interventions Original reports with defined study methodology Reports including standardized measurements on outcome events such as technical success, safety, effectiveness, durability, vision quality of life or patient satisfaction Case reports or case series for complications and adverse events Exclusion Criteria Non-systematic reviews, letters, comments and editorials Reports not involving outcome events such as safety, effectiveness, durability, vision quality or patient satisfaction following an intervention with corneal implants Reports not involving corneal thinning disorders and an intervention with corneal implants Summary of Findings In the MAS evidence review on intrastromal corneal ring implants, 66 reports were identified on the use of implants for management of corneal thinning disorders. Reports varied according to their primary clinical indication, type of corneal implant, and whether or not secondary procedures were used in conjunction with the implants. Implants were reported to manage post LASIK thinning and/or uncorrected refractive error and were also reported as an adjunctive intervention both during and after corneal transplant to manage recurrent thinning and/or uncorrected refractive error. Ten pre-post cohort longitudinal follow-up studies were identified

  11. HSV-1 infection of human corneal epithelial cells: Receptor-mediated entry and trends of re-infection

    PubMed Central

    Shah, Arpeet; Farooq, Asim V.; Tiwari, Vaibhav; Kim, Min-Jung

    2010-01-01

    Purpose The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. Methods A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors - nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Results Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. Conclusions HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression. PMID:21139972

  12. EGF and PGE2: effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro.

    PubMed

    Joyce, N C; Joyce, S J; Powell, S M; Meklir, B

    1995-07-01

    In vivo repair of the adult human corneal endothelium occurs mainly by movement of cells into the wound defect rather than by cell division. Two forms of cell movement contribute to endothelial wound repair: migration of individual cells into the defect and spreading of the confluent monolayer into the wound area. This laboratory has developed a tissue culture model using rabbit corneal endothelial cells pretreated with the mitotic inhibitor 5-fluorouracil to mimic the relatively amitotic state of human corneal endothelium in vivo. This model permits study of the effects of growth factors and other agents on individual cell migration and monolayer spreading in response to wounding. mRNA for epidermal growth factor (EGF) and its receptor has been detected in cultured corneal endothelial cells and EGF receptors have been detected on human corneal endothelial cells in situ, suggesting that this growth factor may act in an autocrine manner. Prostaglandin E2 (PGE2) is synthesized by cultured corneal endothelial cells and is present in relatively high quantity in aqueous humor in response to corneal wounding and to inflammation in the anterior chamber. Although corneal endothelial cells may be exposed to both EGF and PGE2, little is known about their effects on monolayer repair. The current study compared the effects of PGE2 alone, EGF alone, and both agents in combination on individual cell migration and monolayer spreading using the wound model system and also determined the effect of EGF on PGE2 secretion using a commercial immunoassay. A 15 min exposure of wounded cultures to exogenous PGE2 stimulated individual cell migration and suppressed monolayer spreading.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7587307

  13. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  14. Corneal Abrasions and Corneal Foreign Bodies.

    PubMed

    Ahmed, Faheem; House, Robert James; Feldman, Brad Hal

    2015-09-01

    Corneal abrasions and corneal foreign bodies are frequently encountered ophthalmological injuries that are commonly diagnosed and managed by primary care physicians. The clinical course of a corneal epithelial defect can range from a relatively benign self-healing abrasion to a potentially sight-threatening complication such as a corneal ulcer, recurrent erosion, or traumatic iritis. A detailed clinical history regarding risk factors and exposure, along with a thorough slit lamp examination with fluorescein dye are essential for proper diagnosis and treatment, as well as to rule out penetrating globe injuries. Referral to an ophthalmologist is recommended in difficult cases or if other injuries are suspected. PMID:26319343

  15. Excipients of preservative-free latanoprost induced inflammatory response and cytotoxicity in immortalized human HCE-2 corneal epithelial cells

    PubMed Central

    Smedowski, Adrian; Paterno, Jussi J.; Toropainen, Elisa; Sinha, Debasish; Wylegala, Edward; Kaarniranta, Kai

    2014-01-01

    Various preservative-free eye drop formulations for glaucoma treatment have been marketed intending to decrease ocular surface side effects and improve tolerability. However, preservative-free eye drops including different solubilizers to dissolve the antiglaucoma drugs may induce detrimental effects in the eye. In this study, we exposed human corneal epithelial cells (HCE-2) for 1, 6, 12, 24 and 48 hours to the first preservative-free (PF) tafluprost (Taflotan®), the recently-launched preservative-free (PF) latanoprost (Monoprost®), preservative benzalkonium chloride (BAK) and the excipient macrogolglycerol hydroxystearate 40 (MGHS40) using dilutions 0.1%, 0.3%, 1.0%, 3.0% and 10.0% of the original products. The cells also were exposed to undiluted PF tafluprost and PF latanoprost once a day for 9 days. Cellular morphology was examined by light microscopy and cell proliferation by Ki-67 fluorescent staining with cell viability being determined by erythrosine staining and the release of lactate dehydrogenase (LDH). Mitochondrial metabolic activity was evaluated with the colorimetric MTT assay. The secretion of interleukin 6 (IL-6) was measured with ELISA. HCE-2 cells displayed no significant morphological changes after PF tafluprost treatment, but PF latanoprost caused clear cell loss. Moreover, PF latanoprost, BAK and MGHS40 evoked cellular damage and inflammation with increasing concentrations and time. Furthermore, undiluted daily PF latanoprost application significantly increased LDH release and IL-6 secretion as compared to PF tafluprost. MGHS40 was observed to be associated with the toxicity of PF latanoprost. Excipients in ocular drops should receive more attention in the future, since they seem to trigger similar detrimental effects in cells as preservatives. PMID:25530926

  16. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  17. Corneal Foreign Body

    MedlinePlus

    ... Care Guidelines As with corneal abrasions and recurrent erosion of the cornea, self-care includes: Never rubbing ... can be found about corneal abrasions and recurrent erosion of the cornea in their respective diagnoses. When ...

  18. Enhancing effects of sericin on corneal wound healing in rat debrided corneal epithelium.

    PubMed

    Nagai, Noriaki; Murao, Takatoshi; Ito, Yoshimasa; Okamoto, Norio; Sasaki, Masahiro

    2009-05-01

    The protein sericin is the main constituent of silk. We demonstrate the effects of sericin on corneal wound healing in rat debrided corneal epithelium. We also determined the effects of sericin on cell adhesion and proliferation in a human cornea epithelial cell line (HCE-T). Epithelium was removed from the corneas of rats with a BD Micro-Sharp, and wounded corneas were dyed with a 1% fluorescein solution. The corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera. The corneal wound of rats instilled with saline was approximately 10% healing at 12 h, and approximately 65% healing at 24 h after corneal epithelial abrasion. The corneal wounds of rats instilled with saline showed almost complete healing by 36 h after corneal epithelial abrasion. On the other hand, the corneal healing rate of rats instilled with sericin solution was higher than that of rats instilled with saline, and the corneal healing rate constant increased with increasing sericin concentration. In addition, the adhesion and proliferation of HCE-T cells treated with 0.01-0.5% sericin solutions were enhanced, reaching a maximum at treatments with 0.2 and 0.1% sericin solutions, respectively. The present study demonstrates that the instillation of sericin solution has a potent effect in promoting wound healing and wound-size reduction in rats, probably caused by increasing cell movement and proliferation. PMID:19420767

  19. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells.

    PubMed

    Lucius, Alexander; Khajavi, Noushafarin; Reinach, Peter S; Köhrle, Josef; Dhandapani, Priyavathi; Huimann, Philipp; Ljubojevic, Nina; Grötzinger, Carsten; Mergler, Stefan

    2016-03-01

    3-Iodothyronamine (3T1AM) is an endogenous thyroid hormone metabolite that interacts with the human trace amine-associated receptor 1 (hTAAR1), a G-protein-coupled receptor, to induce numerous physiological responses including dose-dependent body temperature lowering in rodents. 3T1AM also directly activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) channels in human conjunctival epithelial cells (HCjEC) at constant temperature as well as reducing rises in IL-6 release induced by transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin (CAP). Here, we describe that 3T1AM-induced TRPM8 activation suppresses through crosstalk TRPV1 activation in immortalized human corneal epithelial cells (HCEC). RT-PCR and immunofluorescent staining identified TRPM8 gene and protein expression. Increases in Ca(2+) influx induced by the TRPM8 agonists either 3T1AM (0.1-10 μM), menthol (500 μM), icilin (15-60 μM) or temperature lowering (either <17°C or >17°C) were all blocked by 10-20 μM BCTC, a mixed TRPV1/TRPM8 antagonist. BCTC blocked 3T1AM-induced recombinant TRPM8 activation of Ca(2+) transients in an osteosarcoma heterologous expression system. The effects of BCTC in HCEC were attributable to selective TRPM8 inhibition since whole-cell patch-clamp currents underlying Ca(2+) rises induced by 20 μM CAP were BCTC insensitive. On the other hand, Ca(2+) transients induced by activating TRPV1 with either CAP or a hyperosmolar medium were suppressed during exposure to either 1 μM 3T1AM or 15 μM icilin. All of these modulatory effects on intracellular Ca(2+) regulation induced by the aforementioned agents were attributable to changes in underlying inward and outward current. Taken together, TRPM8 activation by 3T1AM markedly attenuates and even eliminates hyperosmolar and CAP induced TRPV1 activation through crosstalk. PMID:26689735

  20. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  1. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  2. Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

    PubMed Central

    Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten

    2013-01-01

    Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190

  3. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions.

    PubMed

    Tocce, Elizabeth J; Broderick, Adam H; Murphy, Kaitlin C; Liliensiek, Sara J; Murphy, Christopher J; Lynn, David M; Nealey, Paul F

    2012-01-01

    Our study demonstrates that substrates fabricated using a "reactive" layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating "reactive" deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] (PVDMA) and a primary amine-containing polymer [branched poly(ethylene imine)] (PEI). Advantages of our system include a 5- to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule D-glucamine, a chemical motif which is nonfouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  4. Functionalization of reactive polymer multilayers with RGD and an anti-fouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions

    PubMed Central

    Tocce, Elizabeth J.; Broderick, Adam H.; Murphy, Kaitlin C.; Liliensiek, Sara J.; Murphy, Christopher J.; Lynn, David M.; Nealey, Paul F.

    2011-01-01

    Our study demonstrates that substrates fabricated using a ‘reactive’ layer-by-layer approach promote well-defined cell-substrate interactions of human corneal epithelial cells. Specifically, crosslinked and amine-reactive polymer multilayers were produced by alternating ‘reactive’ deposition of an azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone)] and a primary amine-containing polymer [branched poly(ethylene imine)]. Advantages of our system include a 5 to 30-fold decrease in deposition time compared to traditional polyelectrolyte films and direct modification of the films with peptides. Our films react with mixtures of an adhesion-promoting peptide containing Arg-Gly-Asp (RGD) and the small molecule d-glucamine, a chemical motif which is non-fouling. Resulting surfaces prevent protein adsorption and promote cell attachment through specific peptide interactions. The specificity of cell attachment via immobilized RGD sequences was verified using both a scrambled RDG peptide control as well as soluble-RGD competitive assays. Films were functionalized with monotonically increasing surface densities of RGD which resulted in both increased cell attachment and the promotion of a tri-phasic proliferative response of a human corneal epithelial cell line (hTCEpi). The ability to treat PEI/PVDMA films with peptides for controlled cell-substrate interactions enables the use of these films in a wide range of biological applications. PMID:21972074

  5. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  6. Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study.

    PubMed

    Franch, Antonella; Birattari, Federica; Dal Mas, Gloria; Lužnik, Zala; Parekh, Mohit; Ferrari, Stefano; Ponzin, Diego

    2015-01-01

    Purpose. To compare stromal riboflavin concentration after three corneal cross-linking (CXL) imbibition procedures: standard (EpiOff), transepithelial corneal (EpiOn), and iontophoresis-assisted technique (Ionto) using 0.1% hypotonic riboflavin phosphate. Methods. Randomized open-label pilot clinical study. Twelve corneas/12 patients with advanced keratoconus were randomly divided into 4 groups for CXL (n = 3). The corneas underwent imbibition with standard riboflavin EpiOff and with enhanced riboflavin solution (RICROLIN+) EpiOff, EpiOn, and iontophoresis techniques. Thereafter, deep anterior lamellar keratectomy procedure was performed and the obtained debrided corneal tissues were frozen. The maximal intrastromal riboflavin concentration was measured by high-performance liquid chromatography/mass spectrometry (mcg/dg). Results. The mean stromal concentration of riboflavin was 2.02 ± 0.72 mcg/dg in EpiOff group, 4.33 ± 0.12 mcg/g in EpiOff-RICROLIN+ group, 0.63 ± 0.21 mcg/dg in EpiOn-RICROLIN+ group, and 1.15 ± 0.27 mcg/dg in iontophoresis RICROLIN+ group. A 7-fold decrease in intrastromal riboflavin concentration was observed comparing EpiOn-RICROLIN+ and EpiOff-RICROLIN+ groups. Conclusion. The present pilot study indicates that both transepithelial CXL techniques in combination with hypotonic enhanced riboflavin formulation (RICROLIN+) were still inferior to the standard CXL technique; however, larger clinical studies to further validate the results are needed and in progress. PMID:26858842

  7. Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study

    PubMed Central

    Franch, Antonella; Birattari, Federica; Dal Mas, Gloria; Lužnik, Zala; Parekh, Mohit; Ferrari, Stefano; Ponzin, Diego

    2015-01-01

    Purpose. To compare stromal riboflavin concentration after three corneal cross-linking (CXL) imbibition procedures: standard (EpiOff), transepithelial corneal (EpiOn), and iontophoresis-assisted technique (Ionto) using 0.1% hypotonic riboflavin phosphate. Methods. Randomized open-label pilot clinical study. Twelve corneas/12 patients with advanced keratoconus were randomly divided into 4 groups for CXL (n = 3). The corneas underwent imbibition with standard riboflavin EpiOff and with enhanced riboflavin solution (RICROLIN+) EpiOff, EpiOn, and iontophoresis techniques. Thereafter, deep anterior lamellar keratectomy procedure was performed and the obtained debrided corneal tissues were frozen. The maximal intrastromal riboflavin concentration was measured by high-performance liquid chromatography/mass spectrometry (mcg/dg). Results. The mean stromal concentration of riboflavin was 2.02 ± 0.72 mcg/dg in EpiOff group, 4.33 ± 0.12 mcg/g in EpiOff-RICROLIN+ group, 0.63 ± 0.21 mcg/dg in EpiOn-RICROLIN+ group, and 1.15 ± 0.27 mcg/dg in iontophoresis RICROLIN+ group. A 7-fold decrease in intrastromal riboflavin concentration was observed comparing EpiOn-RICROLIN+ and EpiOff-RICROLIN+ groups. Conclusion. The present pilot study indicates that both transepithelial CXL techniques in combination with hypotonic enhanced riboflavin formulation (RICROLIN+) were still inferior to the standard CXL technique; however, larger clinical studies to further validate the results are needed and in progress. PMID:26858842

  8. Immunological aspects of corneal transplant.

    PubMed

    Kumar, Vijay; Kumar, Asha

    2014-01-01

    Corneal transplant is the most common solid tissue transplant in humans. Advances in microsurgical techniques, eye banking and the use of corticosteroids have improved the success of corneal transplants. Over 65,000 corneal transplants are being performed worldwide annually. Most of these transplants are performed in developed countries. Cornea is considered an immune privileged site. Despite this, immune mediated graft rejection is the most single cause of cornea graft failure and is one of the major postoperative complications. Incidences from as low as 2% to as high as 50% have been reported depending upon the degree of vascularization. Rejection involves donor tissue recognition and various factors may influence this rejection. Major factors include the antigenic load of the donor tissue; other factors include death to enucleation time, methods and temperature of preserving the tissue. Host factors that may impact the graft include ocular surface diseases such as dry eye, chemical burns and autoimmune diseases such as mucous membrane pemphigoid. Following infection, surgery or trauma, cells of the innate immune system invade the cornea as a result of up-regulation of cytokines, cellular adhesion molecules and growth and angiogenic factors. These factors results in neoangiogenesis and lymphoangiogenesis, leading to immune activation and graft rejection. The various immunological mechanisms that may play a role in the corneal transplant are discussed. PMID:25296240

  9. A novel proteotoxic stress associated mechanism for macular corneal dystrophy.

    PubMed

    Kaarniranta, Kai; Szalai, Eszter; Smedowski, Adrian; Hegyi, Zoltán; Kivinen, Niko; Viiri, Johanna; Wowra, Bogumil; Dobrowolski, Dariusz; Módis, László; Berta, András; Wylegala, Edward; Felszeghy, Szabolcs

    2015-08-01

    Macular corneal dystrophy is a rare autosomal recessive eye disease affecting primarily the corneal stroma. Abnormal accumulation of proteoglycan aggregates has been observed intra- and extracellularly in the stromal layer. In addition to the stromal keratocytes and corneal lamellae, deposits are also present in the basal epithelial cells, endothelial cells and Descemet's membrane. Misfolding of proteins has a tendency to gather into aggregating deposits. We studied interaction of molecular chaperones and proteasomal clearance in macular dystrophy human samples and in human corneal HCE-2 epithelial cells. Seven cases of macular corneal dystrophy and four normal corneal buttons collected during corneal transplantation were examined for their expression patterns of heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62. In response to proteasome inhibition the same proteins were analyzed by western blotting. Slit-lamp examination, in vivo confocal cornea microscopy and transmission electron microscopy were used for morphological analyses. Heat shock protein 70, ubiquitin protein conjugates and SQSTM1/p62 were upregulated in both the basal corneal epithelial cells and the stromal keratocytes in macular corneal dystrophy samples that coincided with an increased expression of the same molecules under proteasome inhibition in the HCE-2 cells in vitro. We propose a novel regulatory mechanism that connects the molecular chaperone and proteasomal clearance system in the pathogenesis of macular corneal dystrophy. PMID:25597745

  10. Central corneal thickness, intraocular pressure, and degree of myopia in an adult myopic population aged 20 to 40 years in southeast Spain: determination and relationships

    PubMed Central

    Garcia-Medina, Manuel; Garcia-Medina, Jose Javier; Garrido-Fernandez, Pablo; Galvan-Espinosa, Jose; Martin-Molina, Jesus; Garcia-Maturana, Carlos; Perez-Pardo, Sergio; Pinazo-Duran, Maria Dolores

    2011-01-01

    Objective: To determine the values of, and study the relationships among, central corneal thickness (CCT), intraocular pressure (IOP), and degree of myopia (DM) in an adult myopic population aged 20 to 40 years in Almeria (southeast Spain). To our knowledge this is first study of this kind in this region. Methods: An observational, descriptive, cross-sectional study was done in which a sample of 310 myopic patients (620 eyes) aged 20 to 40 years was selected by gender- and age-stratified sampling, which was proportionally fixed to the size of the population strata for which a 20% prevalence of myopia, 5% epsilon, and a 95% confidence interval were hypothesized. We studied IOP, CCT, and DM and their relationships by calculating the mean, standard deviation, 95% confidence interval for the mean, median, Fisher’s asymmetry coefficient, range (maximum, minimum), and the Brown-Forsythe’s robust test for each variable (IOP, CCT, and DM). Results: In the adult myopic population of Almeria aged 20 to 40 years (mean of 29.8), the mean overall CCT was 550.12 μm. The corneas of men were thicker than those of women (P = 0.014). CCT was stable as no significant differences were seen in the 20- to 40-year-old subjects’ CCT values. The mean overall IOP was 13.60 mmHg. Men had a higher IOP than women (P = 0.002). Subjects over 30 years (13.83) had a higher IOP than those under 30 (13.38) (P = 0.04). The mean overall DM was −4.18 diopters. Men had less myopia than women (P < 0.001). Myopia was stable in the 20- to 40-year-old study population (P = 0.089). A linear relationship was found between CCT and IOP (R2 = 0.152, P ≤ 0.001). CCT influenced the IOP value by 15.2%. However no linear relationship between DM and IOP, or between CCT and DM, was found. Conclusions: CCT was found to be similar to that reported in other studies in different populations. IOP tends to increase after the age of 30 and is not accounted for by alterations in CCT values. PMID:21468330

  11. In search of markers for the stem cells of the corneal epithelium.

    PubMed

    Pajoohesh-Ganji, Ahdeah; Stepp, Mary Ann

    2005-04-01

    The anterior one-fifth of the human eye is called the cornea. It consists of several specialized cell types that work together to give the cornea its unique optical properties. As a result of its smooth surface and clarity, light entering the cornea focuses on the neural retina allowing images to come into focus in the optical centres of the brain. When the cornea is not smooth or clear, vision is impaired. The surface of the cornea consists of a stratified squamous epithelium that must be continuously renewed. The cells that make up this outer covering come from an adult stem cell population located at the corneal periphery at a site called the corneal limbus. While engaging in the search for surface markers for corneal epithelial stem cells, vision scientists have obtained a better understanding of the healthy ocular surface. In this review, we summarize the current state of knowledge of the ocular surface and its adult stem cells, and analyse data as they now exist regarding putative corneal epithelial stem cell markers. PMID:15762848

  12. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  13. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  14. Corneal cells for regeneration.

    PubMed

    Kinoshita, S; Nakamura, T

    2005-01-01

    In cases of corneal epithelial stem cell deficiency where ocular surface reconstruction is required, corneal epithelial replacement using a tissue engineering technique shows great potential. Autologous cultivated corneal epithelial stem cell sheets are the safest and most reliable forms of sheet we can use for such treatment; however, they are not useful for treating bilaterally affected ocular surface disorders. In order to treat such cases, we must choose either an allogeneic cultivated corneal epithelial sheet or an autologous cultivated oral mucosal epithelial sheet. If we use the former, the threat of immunological reaction must be dealt with. Therefore, it is imperative that we have a basic understanding of the immunological aspects of ocular surface reconstruction using allogeneic tissues. When using an autologous cultivated oral mucosal epithelial sheet, a basic understanding of ocular surface epithelial biology is required as the sheet is not exactly the same as corneal epithelium. PMID:16080287

  15. Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust.

    PubMed

    Xiang, Ping; Liu, Rong-Yan; Sun, Hong-Jie; Han, Yong-He; He, Rui-Wen; Cui, Xin-Yi; Ma, Lena Q

    2016-01-01

    Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1β, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (p<0.05). Extracts of office dust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes. PMID:27131017

  16. XENOTRANSPLANTATION – THE FUTURE OF CORNEAL TRANSPLANTATION?

    PubMed Central

    Hara, Hidetaka; Cooper, David K.C.

    2010-01-01

    Although corneal transplantation is readily available in the USA and certain other regions of the developed world, the need for human donor corneas worldwide far exceeds supply. There is currently renewed interest in the possibility of using corneas from other species, especially pigs, for transplantation into humans (xenotransplantation). The biomechanical properties of human and pig corneas are similar. Studies in animal models of corneal xenotransplantation have documented both humoral and cellular immune responses that play roles in xenograft rejection. The results obtained from the Tx of corneas from wild-type (i.e., genetically-unmodified) pigs into nonhuman primates have been surprisingly good and encouraging. Recent progress in the genetic manipulation of pigs has led to the prospect that the remaining immunological barriers will be overcome. There is every reason for optimism that corneal xenoTx will become a clinical reality within the next few years. PMID:21099407

  17. Rethinking Adult Literacy Programs: A Humanities-Based Curriculum.

    ERIC Educational Resources Information Center

    Anania, Joanne

    The Roosevelt University Humanities Enrichment Program tries to acknowledge the adult part of adult literacy. Its instructional materials are of interest and value to the adult student and, therefore, provide incentives for reading and discussion instead of serving merely as skill-building exercises. The materials are drawn from literature,…

  18. Cultured corneal epithelia for ocular surface disease.

    PubMed Central

    Schwab, I R

    1999-01-01

    PURPOSE: To evaluate the potential efficacy for autologous and allogeneic expanded corneal epithelial cell transplants derived from harvested limbal corneal epithelial stem cells cultured in vitro for the management of ocular surface disease. METHODS: Human Subjects. Of the 19 human subjects included, 18 (20 procedures) underwent in vitro cultured corneal epithelial cell transplants using various carriers for the epithelial cells to determine the most efficacious approach. Sixteen patients (18 procedures on 17 eyes) received autologous transplants, and 2 patients (1 procedure each) received allogeneic sibling grafts. The presumed corneal epithelial stem cells from 1 patient did not grow in vitro. The carriers for the expanded corneal epithelial cells included corneal stroma, type 1 collagen (Vitrogen), soft contact lenses, collagen shields, and amniotic membrane for the autologous grafts and only amniotic membrane for the allogeneic sibling grafts. Histologic confirmation was reviewed on selected donor grafts. Amniotic membrane as carrier. Further studies were made to determine whether amniotic membrane might be the best carrier for the expanding corneal epithelial cells. Seventeen different combinations of tryspinization, sonication, scraping, and washing were studied to find the simplest, most effective method for removing the amniotic epithelium while still preserving the histologic appearance of the basement membrane of the amnion. Presumed corneal epithelial stem cells were harvested and expanded in vitro and applied to the amniotic membrane to create a composite graft. Thus, the composite graft consisted of the amniotic membrane from which the original epithelium had been removed without significant histologic damage to the basement membrane, and the expanded corneal epithelial stem cells, which had been applied to and had successfully adhered to the denuded amniotic membrane. Animal model. Twelve rabbits had the ocular surface of 1 eye damaged in a standard

  19. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  20. Donor corneal tissue evaluation.

    PubMed

    Saini, J S; Reddy, M K; Sharma, S; Wagh, S

    1996-03-01

    Proper evaluation of donor cornea is critical to the success of corneal transplantation. Attention must be paid to the cause of death and ocular condition as several general and ocular diseases constitute contraindications for donor corneal usage. Death to enucleation time should be noted. Gross examination and slit lamp biomicroscopy are mandatory for the evaluation of the donor eye while specular microscopy adds another useful dimension to information regarding donor cornea. This article provides a comprehensive review of all the aspects of donor corneal evaluation as practised today worldwide. PMID:8828299

  1. Adult Education and Human Resource Development: A Symbiotic Relationship?

    ERIC Educational Resources Information Center

    Grubb, Robert E.; Hemby, K. Virginia; Conerly-Stewart, Donna L.

    1998-01-01

    Top-ranked competencies for graduate education in human resources development (HRD) identified by 55 (of 195) HRD practitioners were adult learning, presentation, facilitation, needs assessment, and human relations. Seven of the top 10 were allied with adult education graduate program content. (SK)

  2. Encephalitis-Associated Human Metapneumovirus Pneumonia in Adult, Australia

    PubMed Central

    Mateevici, Cristina; Lin, Belinda; Chandra, Ronil V.; Chong, Victor H.T.

    2015-01-01

    Human metapneumovirus pneumonia, most commonly found in children, was diagnosed in an adult with encephalitis. This case suggests that testing for human metapneumovirus RNA in nasopharyngeal aspirate and cerebrospinal fluid samples should be considered in adults with encephalitis who have a preceding respiratory infection, PMID:26488420

  3. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  4. Corneal In Vivo Confocal Microscopy: Clinical Applications.

    PubMed

    You, Jae Young; Botelho, Paul J

    2016-01-01

    In vivo confocal microscopy (IVCM) has become a widely accepted imaging technique to study the human living cornea. It provides a unique opportunity to visualize the corneal tissue at the cellular level without damage and longitudinally observe its pathologic and normative changes. With rapidly evolving technology, there has been an abundance of interest in maximizing its potential to better understand the human cornea in health and disease. This is evidenced by a growing literature analyzing acquired and inherited corneal and also systemic diseases using corneal IVCM. This article provides a narrative review of IVCM and its applications. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login]. PMID:27247970

  5. Corneal cross-linking.

    PubMed

    Randleman, J Bradley; Khandelwal, Sumitra S; Hafezi, Farhad

    2015-01-01

    Since its inception in the late 1990s, corneal cross-linking has grown from an interesting concept to a primary treatment for corneal ectatic disease worldwide. Using a combination of ultraviolet-A light and a chromophore (vitamin B2, riboflavin), the cornea can be stiffened, usually with a single application, and progressive thinning diseases such as keratoconus arrested. Despite being in clinical use for many years, some of the underlying processes, such as the role of oxygen and the optimal treatment times, are still being worked out. More than a treatment technique, corneal cross-links represent a physiological principle of connective tissue, which may explain the enormous versatility of the method. We highlight the history of corneal cross-linking, the scientific underpinnings of current techniques, evolving clinical treatment parameters, and the use of cross-linking in combination with refractive surgery and for the treatment of infectious keratitis. PMID:25980780

  6. Importance of Corneal Thickness

    MedlinePlus

    ... News About Us Donate In This Section The Importance of Corneal Thickness email Send this article to ... is important because it can mask an accurate reading of eye pressure, causing doctors to treat you ...

  7. Refractive corneal surgery - discharge

    MedlinePlus

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects ...

  8. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts

    PubMed Central

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-01-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5–10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  9. NADPH oxidase 2 plays a role in experimental corneal neovascularization.

    PubMed

    Chan, Elsa C; van Wijngaarden, Peter; Chan, Elsie; Ngo, Darleen; Wang, Jiang-Hui; Peshavariya, Hitesh M; Dusting, Gregory J; Liu, Guei-Sheung

    2016-05-01

    Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans. PMID:26814205

  10. Corneal Stroma Microfibrils

    PubMed Central

    Hanlon, Samuel D.; Behzad, Ali R.; Sakai, Lynn Y.; Burns, Alan R.

    2015-01-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10nm diameter). Immunogold evidence clearly

  11. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  12. Cosmetics Europe multi-laboratory pre-validation of the SkinEthic™ reconstituted human corneal epithelium test method for the prediction of eye irritation.

    PubMed

    Alépée, N; Bessou-Touya, S; Cotovio, J; de Smedt, A; de Wever, B; Faller, C; Jones, P; Le Varlet, B; Marrec-Fairley, M; Pfannenbecker, U; Tailhardat, M; van Goethem, F; McNamee, P

    2013-08-01

    Cosmetics Europe, The Personal Care Association, known as Colipa before 2012, conducted a program of technology transfer and assessment of Within/Between Laboratory (WLV/BLV) reproducibility of the SkinEthic™ Reconstituted Human Corneal Epithelium (HCE) as one of two human reconstructed tissue eye irritation test methods. The SkinEthic™ HCE test method involves two exposure time treatment procedures - one for short time exposure (10 min - SE) and the other for long time exposure (60 min - LE) of tissues to test substance. This paper describes pre-validation studies of the SkinEthic™ HCE test method (SE and LE protocols) as well as the Eye Peptide Reactivity Assay (EPRA). In the SE WLV study, 30 substances were evaluated. A consistent outcome with respect to viability measurement across all runs was observed with all substances showing an SD of less than 18%. In the LE WLV study, 44 out of 45 substances were consistently classified. These data demonstrated a high level of reproducibility within laboratory for both the SE and LE treatment procedures. For the LE BLV, 19 out of 20 substances were consistently classified between the three laboratories, again demonstrating a high level of reproducibility between laboratories. The results for EPRA WLV and BLV studies demonstrated that all substances analysed were categorised similarly and that the method is reproducible. The SkinEthic™ HCE test method entered into the experimental phase of a formal ECVAM validation program in 2010. PMID:23524228

  13. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone.

    PubMed

    Wirostko, Barbara; Rafii, MaryJane; Sullivan, David A; Morelli, Julia; Ding, Juan

    2015-07-01

    Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing. PMID:26045234

  14. Phytoestrogen Metabolism by Adult Human Gut Microbiota.

    PubMed

    Gaya, Pilar; Medina, Margarita; Sánchez-Jiménez, Abel; Landete, José Mᵃ

    2016-01-01

    Phytoestrogens are plant-derived polyphenols with a structure similar to human estrogens. The three main groups of phytoestrogens, isoflavones, ellagitannins, and lignans, are transformed into equol, urolithins, and enterolignans, respectively, by bacteria. These metabolites have more estrogenic/antiestrogenic and antioxidant activities than their precursors, and they are more bioavailable. The aim of this study was to analyze the metabolism of isoflavones, lignans and ellagitannins by gut microbiota, and to study the possible correlation in the metabolism of these three groups of phytoestrogens. In vitro fermentation experiments were performed with feces samples from 14 healthy adult volunteers, and metabolite formation was measured by HPLC-PAD and HPLC-ESI/MS. Only the microbiota of one subject produced equol, while most of them showed production of O-desmethylangolensin (O-DMA). Significant inter-subject differences were observed in the metabolism of dihydrodaidzein and dihydrogenistein, while the glucoside isoflavones and their aglycones showed less variability, except for glycitin. Most subjects produced urolithins M-5 and E. Urolithin D was not detected, while uroltithin B was found in half of the individuals analyzed, and urolithins A and C were detected in two and four subjects, respectively. Enterolactone was found in all subjects, while enterodiol only appeared in five. Isoflavone metabolism could be correlated with the metabolism of lignans and ellagitannins. However, the metabolism of ellagitannins and lignans could not be correlated. This the first study where the metabolism of the three groups together of phytoestrogen, isoflavones, lignans, and ellagitannins by gut microbiota is analyzed. PMID:27517891

  15. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... electroretinography (stimulation by light). (b) Classification. Class II....

  16. Developing Resourceful Humans. Adult Education within the Economic Context.

    ERIC Educational Resources Information Center

    Burton, Lynn Elen, Ed.

    This book, which explores the shifting paradigm from human resource development to developing resourceful humans, establishes the historical position of adult education within the economic context, discusses human capital propositions, and examines the learning dimensions of economic and educational change. The following chapters are included:…

  17. Why Teach the Humanities to Adult Basic Education Students?

    ERIC Educational Resources Information Center

    Mocker, Donald W., Ed.; Jones, William C., Ed.

    The publication contains an article on curriculum selection in adult basic education (ABE), three presentations on the humanities and ABE, and a concluding commentary. An introductory article, "Criteria for Selecting Curriculum in Adult Basic Education" by Donald Mocker, emphasizes the need for broader criteria for selection of ABE curriculum.…

  18. Adult Literacy Education and Human Rights: A View from Afghanistan

    ERIC Educational Resources Information Center

    Andersen, Susan M.; Kooij, Christina S.

    2007-01-01

    In this article, we argue that adult literacy as part of international development is an issue of both human rights and women's rights. We explore this by presenting a case study of the effects of one innovative adult literacy program in Afghanistan that places men and women, as well as various ethnicities, together in the same classroom as…

  19. Humanizing Adult Education Research: Five Stories from the 1930's.

    ERIC Educational Resources Information Center

    Hilton, Ronald

    Taken from the author's doctoral dissertation, this award-winning monograph describes a method for humanizing educational research in adult education and provides five stories of adult education efforts in the 1930's as examples of such research. The method described suggests valuing qualitative data as much as quantitative in the field of…

  20. Technology and the Adult Degree Program: The Human Element

    ERIC Educational Resources Information Center

    Rodriquez, Frank G.; Nash, Susan Smith

    2004-01-01

    While technology has for many years been a critical component in programs for adults and calls to mind sophisticated gadgetry with expensive price tags, it is often the nexus where technology and humans intersect that proves most critical to the success and quality of adult degree programs.

  1. Incorporation of Exogenous RGD Peptide and Inter-Species Blending as Strategies for Enhancing Human Corneal Limbal Epithelial Cell Growth on Bombyx mori Silk Fibroin Membranes

    PubMed Central

    Bray, Laura J.; Suzuki, Shuko; Harkin, Damien G.; Chirila, Traian V.

    2013-01-01

    While fibroin isolated from the cocoons of domesticated silkworm Bombyx mori supports growth of human corneal limbal epithelial (HLE) cells, the mechanism of cell attachment remains unclear. In the present study we sought to enhance the attachment of HLE cells to membranes of Bombyx mori silk fibroin (BMSF) through surface functionalization with an arginine-glycine-aspartic acid (RGD)-containing peptide. Moreover, we have examined the response of HLE cells to BMSF when blended with the fibroin produced by a wild silkworm, Antheraea pernyi, which is known to contain RGD sequences within its primary structure. A procedure to isolate A. pernyi silk fibroin (APSF) from the cocoons was established, and blends of the two fibroins were prepared at five different BMSF/APSF ratios. In another experiment, BMSF surface was modified by binding chemically the GRGDSPC peptide using a water-soluble carbodiimide. Primary HLE were grown in the absence of serum on membranes made of BMSF, APSF, and their blends, as well as on RGD-modified BMSF. There was no statistically significant enhancing effect on the cell attachment due to the RGD presence. This suggests that the adhesion through RGD ligands may have a complex mechanism, and the investigated strategies are of limited value unless the factors contributing to this mechanism become better known. PMID:24955953

  2. Cytotoxicity of carteolol to human corneal epithelial cells by inducing apoptosis via triggering the Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway.

    PubMed

    Shan, Ming; Fan, Ting-Jun

    2016-09-01

    Carteolol is a frequently used nonselective β-adrenoceptor antagonist for glaucoma and ocular hypertension treatment, and its repeated/prolonged usage might be cytotoxic to the cornea, especially the outmost human corneal epithelium (HCEP). The aim of the present study was to characterize the cytotoxicity of carteolol to HCEP and its underlying cellular and molecular mechanisms using an in vitro model of HCEP cells. After HCEP cells were treated with carteolol at concentrations varying from 2% to 0.015625%, the cytotoxicity, apoptosis-inducing effect and pro-apoptotic pathway was investigated, respectively. Our results showed that carteolol at concentrations above 0.03125% induced time- and dose-dependent growth retardation, cytopathic morphological changes and viability decline of HCEP cells. Moreover, carteolol induced G1 phase arrest, plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCEP cells. Furthermore, carteolol also induced activation of caspase-9 and -3, disruption of mitochondrial transmembrane potential, up-regulation the cytoplasmic amount of cytochrome c and apoptosis-inducing factor, and up-regulation of pro-apoptotic Bax and Bad, down-regulation of anti-apoptotic Bcl-2 and Bcl-xL. In conclusion, carteolol above 1/64 of its clinical therapeutic dosage has a time- and dose-dependent cytotoxicity to HCEP cells, which is achieved by inducing apoptosis via triggering Bcl-2 family protein-mediated mitochondrial pro-apoptotic pathway. PMID:27216471

  3. Clinical aspects of corneal trachoma.

    PubMed Central

    Hosni, F A

    1978-01-01

    Classification of trachoma by site rather than density of opacities is better related to visual prognosis and helps in selection for graft surgery. The cases are divided into 3 groups: peripheral corneal opacities, central corneal opacities, and diffuse corneal opacities (ground-glass cornea). A central lesion has the poorest prognosis, especially in children. PMID:638107

  4. Application of SV40 T-transformed human corneal epithelial cells to evaluate potential irritant chemicals for in vitro alternative eye toxicity.

    PubMed

    Kim, Cho-Won; Park, Geon-Tae; Bae, Ok-Nam; Noh, Minsoo; Choi, Kyung-Chul

    2016-01-01

    Assessment of eye irritation potential is important to human safety, and it is necessary for various cosmetics and chemicals that may contact the human eye. Until recently, the Draize test was considered the standard method for estimating eye irritation, despite its disadvantages such as the need to sacrifice many rabbits for subjective scoring. Thus, we investigated the cytotoxicity and inflammatory response to standard eye irritants using SV40 T-transformed human corneal epithelial (SHCE) cells as a step toward development of an animal-free alternative eye irritation test. MTT and NRU assays of cell viability were performed to investigate the optimal experimental conditions for SHCE cell viability when cells were exposed to sodium dodecyl sulfate (SDS) as a standard eye irritant at 6.25×10(-3) to 1×10(-1)%. Additionally, cell viability of SHCE cells was examined in response to six potential eye irritants, benzalkonium chloride, dimethyl sulfoxide, isopropanol, SDS, Triton X-100 and Tween 20 at 5×10(-3) to 1×10(-1)%. Finally, we estimated the secretion level of cytokines in response to stimulation by eye irritants in SHCE cells. SHCE cells showed a good response to potential eye irritants when the cells were exposed to potential irritants for 10min at room temperature (RT), and cytokine production increased in a concentration-dependent manner, indicating that cytotoxicity and cytokine secretion from SHCE cells may be well correlated with the concentrations of irritants. Taken together, these results suggest that SHCE cells could be an excellent alternative in vitro model to replace in vivo animal models for eye irritation tests. PMID:27233534

  5. A comparative study of bifidobacteria in human babies and adults

    PubMed Central

    KHONSARI, Shadi; SUGANTHY, Mayuran; BURCZYNSKA, Beata; DANG, Vu; CHOUDHURY, Manika; PACHENARI, Azra

    2015-01-01

    The composition and diversity of the gut microbiota are known to be different between babies and adults. The aim of this project was to compare the level of bifidobacteria between babies and adults and to investigate the influence of lifestyle factors on the level of this bacterium in the gut. During this study, the levels of bifidobacteria in 10 human babies below 2 years of age were compared with that of 10 human adults above 40 years. The level of bifidobacteria proved to be significantly higher in babies in comparison with adults. This investigation concluded that a combination of several factors, such as age, diet, and BMI, has an important effect on the level of bifidobacteria in adults, while in babies, a combination of diet and age may influence the level of intestinal bifidobacteria. PMID:27200263

  6. A comparative study of bifidobacteria in human babies and adults.

    PubMed

    Khonsari, Shadi; Suganthy, Mayuran; Burczynska, Beata; Dang, Vu; Choudhury, Manika; Pachenari, Azra

    2016-01-01

    The composition and diversity of the gut microbiota are known to be different between babies and adults. The aim of this project was to compare the level of bifidobacteria between babies and adults and to investigate the influence of lifestyle factors on the level of this bacterium in the gut. During this study, the levels of bifidobacteria in 10 human babies below 2 years of age were compared with that of 10 human adults above 40 years. The level of bifidobacteria proved to be significantly higher in babies in comparison with adults. This investigation concluded that a combination of several factors, such as age, diet, and BMI, has an important effect on the level of bifidobacteria in adults, while in babies, a combination of diet and age may influence the level of intestinal bifidobacteria. PMID:27200263

  7. Growing Three-Dimensional Corneal Tissue in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.

    2003-01-01

    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.

  8. Immune Privilege of Corneal Allografts

    PubMed Central

    Niederkorn, Jerry Y.; Larkin, D. Frank P.

    2013-01-01

    Corneal transplantation has been performed successfully for over 100 years. Normally, HLA typing and systemic immunosuppressive drugs are not utilized, yet 90% of corneal allografts survive. In rodents, corneal allografts representing maximal histoincompatibility enjoy >50% survival even without immunosuppressive drugs. By contrast, other categories of transplants are invariably rejected in such donor/host combinations. The acceptance of corneal allografts compared to other categories of allografts is called immune privilege. The cornea expresses factors that contribute to immune privilege by preventing the induction and expression of immune responses to histocompatibility antigens on the corneal allograft. Among these are soluble and cell membrane molecules that block immune effector elements and also apoptosis of T lymphocytes. However, some conditions rob the corneal allograft of its immune privilege and promote rejection, which remains the leading cause of corneal allograft failure. Recent studies have examined new strategies for restoring immune privilege to such high-risk hosts. PMID:20482389

  9. Humanities and the Adult Learner in an Information Society.

    ERIC Educational Resources Information Center

    Myers, Dale; Kamholtz, Jonathan

    Humanities courses have often been given little attention in continuing education for adults, possibly because they have been viewed as not "practical" or not "job-oriented" enough in our career-oriented, technologically advanced society. However, the humanities should be an integral part of our culture and of the lives of educated persons--a…

  10. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    PubMed Central

    Batawi, Hatim; Kothari, Nikisha; Camp, Andrew; Bernhard, Luis; Karp, Carol L.; Galor, Anat

    2016-01-01

    Purpose We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method This is an observational case report study. Results A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion Corneal hydrops can occur in the setting of corneal infections. PMID:26889160

  11. Diabetic corneal neuropathy.

    PubMed Central

    Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J

    1983-01-01

    Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964

  12. Co-regulation of Dectin-1 and TLR2 in inflammatory response of human corneal epithelial cells induced by Aspergillus fumigates

    PubMed Central

    Zhao, Gui-Qiu; Qiu, Xue-Yan; Lin, Jing; Li, Qing; Hu, Li-Ting; Wang, Qian; Li, Hui

    2016-01-01

    AIM To investigate the co-regulation of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 2 (TLR2), and relative chemotactic factors in the Telomease-immortalized human corneal epithelial (THCE) cells after exposure to Aspergillus fumigatus (Af) hyphae. METHODS The normal THCE cells were investigated as control. After cultured in vitro with Af hyphae, with or without laminarin and anti-TLR2 antibody for 4, 8, 16 and 24h, THCE cells were harvested. The expression of Dectin-1, TLR2, CXCL1 and CXCL8 mRNA were measured by real-time quantitative polymerase chain reaction at the stimulation of 4, 8 and 16h separately. The protein expression of Dectin-1 and TLR2 were analyzed at 8, 16, and 24h by Western blot. RESULTS The mRNA expression of CXCL1 and CXCL8 increased in THCE cells after stimulated by Af hyphae. The stimulatory effects on these inflammatory chemokines were shown in a dose-dependent manner and reached the peak at 8h. Af hyphae significantly stimulated the production of Dectin-1 and TLR2 in THCE cells at both mRNA and protein levels. The protein of Dectin-1 and TLR2 gradually increased till 16h. While pretreated with laminarin (a Dectin-1 inhibitor), the expression of TLR2, CXCL1 and CXCL8 all decreased dramatically at the peak point. Interestingly, when pretreated with TLR2 neutralizing antibody, the expression of Dectin-1, CXCL1 and CXCL8 also decreased dramatically at the peak point. CONCLUSION These findings suggest that Dectin-1 and TLR2 co-regulated with each other after treated with inactive Af hyphae in the THCE cells, and they contribute together to the inflammatory responses by induction of chemokines CXCL1 and CXCL8. PMID:26949633

  13. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    PubMed Central

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  14. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  15. Corneal topography measurements for biometric applications

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  16. Nerve Growth Factor Regulates Neurolymphatic Remodeling during Corneal Inflammation and Resolution

    PubMed Central

    Fink, Darci M.; Connor, Alicia L.; Kelley, Philip M.; Steele, Maria M.; Hollingsworth, Michael A.; Tempero, Richard M.

    2014-01-01

    The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery. PMID:25383879

  17. Congenital Corneal Anesthesia and Neurotrophic Keratitis: Diagnosis and Management.

    PubMed

    Mantelli, Flavio; Nardella, Chiara; Tiberi, Eloisa; Sacchetti, Marta; Bruscolini, Alice; Lambiase, Alessandro

    2015-01-01

    Neurotrophic keratitis (NK) is a rare degenerative disease of the cornea caused by an impairment of corneal sensory innervation, characterized by decreased or absent corneal sensitivity resulting in epithelial keratopathy, ulceration, and perforation. The aetiopathogenesis of corneal sensory innervation impairment in children recognizes the same range of causes as adults, although they are much less frequent in the pediatric population. Some extremely rare congenital diseases could be considered in the aetiopathogenesis of NK in children. Congenital corneal anesthesia is an extremely rare condition that carries considerable diagnostic and therapeutic problems. Typically the onset is up to 3 years of age and the cornea may be affected in isolation or the sensory deficit may exist as a component of a congenital syndrome, or it may be associated with systemic somatic anomalies. Accurate diagnosis and recognition of risk factors is important for lessening long-term sequelae of this condition. Treatment should include frequent topical lubrication and bandage corneal or scleral contact lenses. Surgery may be needed in refractory cases. The purpose of this review is to summarize and update data available on congenital causes and treatment of corneal hypo/anesthesia and, in turn, on congenital NK. PMID:26451380

  18. Congenital Corneal Anesthesia and Neurotrophic Keratitis: Diagnosis and Management

    PubMed Central

    Mantelli, Flavio; Nardella, Chiara; Tiberi, Eloisa; Sacchetti, Marta; Bruscolini, Alice; Lambiase, Alessandro

    2015-01-01

    Neurotrophic keratitis (NK) is a rare degenerative disease of the cornea caused by an impairment of corneal sensory innervation, characterized by decreased or absent corneal sensitivity resulting in epithelial keratopathy, ulceration, and perforation. The aetiopathogenesis of corneal sensory innervation impairment in children recognizes the same range of causes as adults, although they are much less frequent in the pediatric population. Some extremely rare congenital diseases could be considered in the aetiopathogenesis of NK in children. Congenital corneal anesthesia is an extremely rare condition that carries considerable diagnostic and therapeutic problems. Typically the onset is up to 3 years of age and the cornea may be affected in isolation or the sensory deficit may exist as a component of a congenital syndrome, or it may be associated with systemic somatic anomalies. Accurate diagnosis and recognition of risk factors is important for lessening long-term sequelae of this condition. Treatment should include frequent topical lubrication and bandage corneal or scleral contact lenses. Surgery may be needed in refractory cases. The purpose of this review is to summarize and update data available on congenital causes and treatment of corneal hypo/anesthesia and, in turn, on congenital NK. PMID:26451380

  19. Nanomedicine Approaches for Corneal Diseases

    PubMed Central

    Chaurasia, Shyam S.; Lim, Rayne R.; Lakshminarayanan, Rajamani; Mohan, Rajiv R.

    2015-01-01

    Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management. PMID:25941990

  20. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    PubMed

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD. PMID:26988110

  1. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  2. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  3. The weight of nations: an estimation of adult human biomass

    PubMed Central

    2012-01-01

    Background The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity. Methods For each country we used data on body mass index (BMI) and height distribution to estimate average adult body mass. We calculated total biomass as the product of population size and average body mass. We estimated the percentage of the population that is overweight (BMI > 25) and obese (BMI > 30) and the biomass due to overweight and obesity. Results In 2005, global adult human biomass was approximately 287 million tonnes, of which 15 million tonnes were due to overweight (BMI > 25), a mass equivalent to that of 242 million people of average body mass (5% of global human biomass). Biomass due to obesity was 3.5 million tonnes, the mass equivalent of 56 million people of average body mass (1.2% of human biomass). North America has 6% of the world population but 34% of biomass due to obesity. Asia has 61% of the world population but 13% of biomass due to obesity. One tonne of human biomass corresponds to approximately 12 adults in North America and 17 adults in Asia. If all countries had the BMI distribution of the USA, the increase in human biomass of 58 million tonnes would be equivalent in mass to an extra 935 million people of average body mass, and have energy requirements equivalent to that of 473 million adults. Conclusions Increasing population fatness could have the same implications for world food energy demands as an extra half a billion people living on the earth. PMID:22709383

  4. Expression of tmp21 in normal adult human tissues

    PubMed Central

    Xie, Jian; Yang, Yuan; Li, Jianbo; Hou, Jing; Xia, Kun; Song, Weihong; Liu, Shengchun

    2014-01-01

    TMP21, known as p23 protein, is one important member of the p24 protein families. The degradation of TMP21 is mediated by the ubiquitin-proteasome pathway, as with the other presenilin-associated γ-secretase complex members. NFAT plays a very important role in regulation of human TMP21 gene expression. Compared with the function of TMP21, the studies about the distribution of this protein in human tissues are limited. We collected 19 normal adult human tissues from a healthy adult man died in a traffic accident and did examination of all the tissues collected for ICH, western blot and RT-PCR. It was shown that the expression of TMP21 is at high levels in heart, liver, lung, kidney and adrenal gland; moderate levels in brain, pancreas, prostate gland, testicle, small intestine, colon, stomach, gall bladder, thyroid gland and trachea; low levels in skeletal muscle, skin and lymphonodus. TMP21 is widely existed in normal adult human tissues. The current study provided for the first time a comprehensive expression of TMP21 in normal adult human tissues. It will benefit on helping in the design and interpretation of future studies focused on expounding the function of TMP21. PMID:25356171

  5. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes.

    PubMed

    Mallet, Justin D; Dorr, Marie M; Drigeard Desgarnier, Marie-Catherine; Bastien, Nathalie; Gendron, Sébastien P; Rochette, Patrick J

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  6. Fuchs’ corneal dystrophy

    PubMed Central

    Eghrari, Allen O; Gottsch, John D

    2010-01-01

    Fuchs’ corneal dystrophy (FCD) is a progressive, hereditary disease of the cornea first described a century ago by the Austrian ophthalmologist Ernst Fuchs. Patients often present in the fifth to sixth decade of life with blurry morning vision that increases in duration as the disease progresses. Primarily a condition of the posterior cornea, characteristic features include the formation of focal excrescences of Descemet membrane termed ‘guttae’, loss of endothelial cell density and end-stage disease manifested by corneal edema and the formation of epithelial bullae. Recent advances in our understanding of the genetic and pathophysiological mechanisms of the disease, as well as the application of new imaging modalities and less invasive surgical procedures, present new opportunities for improved outcomes among patients with FCD. PMID:20625449

  7. Corneal thickness in glaucoma.

    PubMed

    De Cevallos, E; Dohlman, C H; Reinhart, W J

    1976-02-01

    The central corneal stromal thickness of patients with open angle glaucoma, secondary glaucoma (the majority aphakic), or a history of unilateral acute angle closure glaucoma were measured and compared with the stromal thickness of a group of normal patients. In open angle glaucoma, there was a small but significant increase in the average stromal thickness. This thickness increase was, in all likelihood, due to an abnormal function of the endothelium in this disease since the level of the intraocular pressure did not seem to be a factor. There was no correlation between stromal thickness and duration of the glaucoma or type of anti-glaucomatous medication. Most cases of secondary glaucome, controlled medically or not, had markedly increased corneal thickness, again, most likely, due to endothelial damage rather than to level of intraocular pressure. After an angle closure attack, permanent damage to the cornea was found to be rare. PMID:1247273

  8. Late Pleistocene adult mortality patterns and modern human establishment

    PubMed Central

    Trinkaus, Erik

    2011-01-01

    The establishment of modern humans in the Late Pleistocene, subsequent to their emergence in eastern Africa, is likely to have involved substantial population increases, during their initial dispersal across southern Asia and their subsequent expansions throughout Africa and into more northern Eurasia. An assessment of younger (20–40 y) versus older (>40 y) adult mortality distributions for late archaic humans (principally Neandertals) and two samples of early modern humans (Middle Paleolithic and earlier Upper Paleolithic) provides little difference across the samples. All three Late Pleistocene samples have a dearth of older individuals compared with Holocene ethnographic/historical samples. They also lack older adults compared with Holocene paleodemographic profiles that have been critiqued for having too few older individuals for subsistence, social, and demographic viability. Although biased, probably through a combination of preservation, age assessment, and especially Pleistocene mobility requirements, these adult mortality distributions suggest low life expectancy and demographic instability across these Late Pleistocene human groups. They indicate only subtle and paleontologically invisible changes in human paleodemographics with the establishment of modern humans; they provide no support for a life history advantage among early modern humans. PMID:21220336

  9. Novel surface markers directed against adult human gallbladder

    PubMed Central

    Galivo, Feorillo H.; Dorrell, Craig S.; Grompe, Maria; Zhong, Yong-Ping; Streeter, Philip; Grompe, Markus

    2015-01-01

    Novel cell surface-reactive monoclonal antibodies generated against extrahepatic biliary cells were developed for the isolation and characterization of different cell subsets from normal adult human gallbladder. Eleven antigenically distinct gallbladder subpopulations were isolated by fluorescence-activated cell sorting. They were classified into epithelial, mesenchymal, and pancreatobiliary (PDX1+SOX9+) subsets based on gene expression profiling. These antigenically distinct human gallbladder cell subsets could potentially also reflect different functional properties in regards to bile physiology, cell renewal and plasticity. Three of the novel monoclonal antibodies differentially labeled archival sections of primary carcinoma of human gallbladder relative to normal tissue. The novel monoclonal antibodies described herein enable the identification and characterization of antigenically diverse cell subsets within adult human gallbladder and are putative tumor biomarkers. PMID:26079872

  10. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    PubMed

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  11. [Future Innovative Medicine for Corneal Diseases].

    PubMed

    Nishida, Kohji

    2016-03-01

    basic study, the current authors have also worked to develop regenerative therapies for the corneal epithelium and the corneal endothelium. The current authors developed the world's first autologous oral mucosal cell sheets to treat corneal epithelial stem cell deficiency. Having conducted a first-in-human clinical study and a multi-center clinical study, the current authors have initiated a physician-led clinical trial of this therapy. In order to identify ways to better restore visual acuity, the current authors are using iPS cells to develop a regenerative therapy with autologous corneal epithelium. Furthermore, the current authors are working to develop a regenerative therapy for corneal endothelium using allogeneic corneal endothelial cells derived from iPS cells. Making medicine of the future a current reality is not easy. Innovations that benefit patients are developed over decades. The current authors hope to pass this baton of scientific innovation on to future generations. PMID:27164759

  12. Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in trigeminal subnucleus caudalis

    PubMed Central

    Aicher, Sue A.; Hermes, Sam M.; Hegarty, Deborah M.

    2012-01-01

    Dorsal horn neurons send ascending projections to both thalamic nuclei and parabrachial nuclei; these pathways are thought to be critical pathways for central processing of nociceptive information. Afferents from the corneal surface of the eye mediate nociception from this tissue which is susceptible to clinically important pain syndromes. This study examined corneal afferents to the trigeminal dorsal horn and compared inputs to thalamic- and parabrachial-projecting neurons. We used anterograde tracing with cholera toxin B subunit to identify corneal afferent projections to trigeminal dorsal horn, and the retrograde tracer FluoroGold to identify projection neurons. Studies were conducted in adult male Sprague-Dawley rats. Our analysis was conducted at two distinct levels of the trigeminal subnucleus caudalis (Vc) which receive corneal afferent projections. We found that corneal afferents project more densely to the rostral pole of Vc than the caudal pole. We also quantified the number of thalamic- and parabrachial-projecting neurons in the regions of Vc that receive corneal afferents. Corneal afferent inputs to both groups of projection neurons were also more abundant in the rostral pole of Vc. Finally, by comparing the frequency of corneal afferent appositions to thalamic- versus parabrachial-projecting neurons, we found that corneal afferents preferentially target parabrachial-projecting neurons in trigeminal dorsal horn. These results suggest that nociceptive pain from the cornea may be primarily mediated by a non-thalamic ascending pathway. PMID:23201828

  13. Linking adult hippocampal neurogenesis with human physiology and disease.

    PubMed

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890418

  14. Dendritic cells in humans--from fetus to adult.

    PubMed

    McGovern, Naomi; Chan, Jerry K Y; Ginhoux, Florent

    2015-02-01

    The human immune system evolves continuously during development from the embryo into the adult, reflecting the ever-changing environment and demands of our body. This ability of our immune system to sense external cues and adapt as we develop is just as important in the early tolerogenic environment of the fetus, as it is in the constantly pathogen-challenged adult. Dendritic cells (DCs), the professional antigen-sensing and antigen-presenting components of the immune system, play a crucial role in this process where they act as sentinels, both initiating and regulating immune responses. Here, we provide an overview of the human immune system in the developing fetus and the adult, with a focus on DC ontogeny and function during these discrete but intimately linked life stages. PMID:25323843

  15. Thrombospondin-1 induces differential response in human corneal and conjunctival epithelial cells lines under in vitro inflammatory and apoptotic conditions.

    PubMed

    Soriano-Romaní, Laura; García-Posadas, Laura; López-García, Antonio; Paraoan, Luminita; Diebold, Yolanda

    2015-05-01

    Recently, thrombospondin-1 (TSP-1) has been reported to be critical for maintaining a healthy ocular surface. The purpose of the study was to characterize the expression of TSP-1 and of its receptors CD36 and CD47 in corneal and conjunctival epithelial cells and determine the effect of exogenous TSP-1 treatment on these cells, following the induction of inflammation- and apoptosis-related changes. The expression of TSP-1, CD36 and CD47 by corneal and conjunctival cell lines was firstly characterized by ELISA, immunofluorescence analysis, Western blotting and reverse transcription polymerase chain reaction (RT-PCR). Benzalkonium chloride (BAC) exposure for 5 or 15 min was used as pro-inflammatory and pro-apoptotic stimulus for corneal or conjunctival epithelial cells, respectively. To analyze inflammation and apoptosis-related changes, IL-6 and TGF-β2 secretion determined by ELISA was used as inflammatory markers, while activated caspase-3/7 levels and cell viability, determined by CellEvent™ Caspase-3/7 Green Detection Reagent and XTT cytotoxicity assay, respectively, were used as apoptotic markers. Changes in CD36 and CD47 mRNA expression were quantified by real time RT-PCR. Corneal epithelial cells secreted and expressed higher protein levels of TSP-1 than conjunctival epithelial cells, although TSP-1 mRNA expression levels were similar and had lower CD36 and CD47, both at protein and mRNA levels. Both cell lines responded to exogenous TSP-1 treatment increasing CD36 at protein and mRNA levels. Blocking experiments revealed a predominance of TSP-1/CD47 rather than TSP-1/CD36 interactions to up-regulate CD36 levels in conjunctival epithelial cells, but not in corneal epithelial cells. BAC exposure increased IL-6 secretion and caspase-3/7 levels and decreased cell viability in both, corneal and conjunctival epithelial cells. Moreover, BAC exposure increased latent TGF-β2 levels in conjunctival epithelial cells. Interestingly, CD36 mRNA expression was down

  16. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  17. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  18. Human Service Planning as a Collective Adult Learning Experience.

    ERIC Educational Resources Information Center

    Wright, Joan

    Based on a study by the Department of Community Service Education, Cornell University, to evaluate human service planning (HSP) nationwide, this paper discusses the premises that HSP may be defined as community learning and that the community (according to the Robert Boyd and Jerold Apps model for adult education) is both a beneficiary of and…

  19. [The existence vomeronasal organ in adult humans].

    PubMed

    Rapiejko, Piotr; Zielnik-Jurkiewicz, Beata; Wojdas, Andrzej; Ratajczak, Jan; Jurkiewicz, Dariusz

    2007-01-01

    The influence of chemical substances (feromones) on human emotional and physical condition has fascinated psychologists, sexuologists and laryngologists since centurie. Literature conveys inconsistent information on vomeronasal organ (VNO) occurrence in humans. This organ is often called Jacobson's, and 2 symmetrical openings leading into it, located on both sides of septum, are called Ruyasch's ducts. The aim of the study was to analyze vomeronasal organ occurrence in humans in relation to age and sex. The study was conducted in a group of 634 patients, aged 18-80 years. All patients underwent routine ENT examination including rhinoscopy, nasal cavity examination with usage of 2.5x magnification lens (surgical glasses) and surgical microscope with 10x magnification. All persons had nasal cavities examined endoscopically. Every time presence of vomeronasal organ openings, along with localization, size and symmetry of these was noted. Subjects, who presented Jacobson's organ, were asked to fill a questionnaire concerning influence of smells on erotic sensations. Vomeronasal organ was fund in 312 persons, that is 49.21%. In 83.65% of cases vomeronasal organ opening size was smaller than 0.2 mm, what restricted its visibility to usage of magnifying lens, microscope, or endoscope. In 16.34% of cases only vomeronasal organ ducts openings were well visible in routine rhinoscopy without magnification. Vomeronasal organ was found more often in men than women. VNO was significantly more rare in patients with nasal septal deviation. In these cases, vomeronasal organ was usually found unilaterally, in all the cases on the concave side of deviated nasal septum. PMID:18260256

  20. Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients.

    PubMed

    Zheng, Qinxiang; Ren, Yueping; Reinach, Peter S; Xiao, Bing; Lu, Huihui; Zhu, Yirui; Qu, Jia; Chen, Wei

    2015-05-01

    In studies on dry eye (DE) disease, an association has been identified between tear film hyperosmolarity and inflammation severity elicited through receptor-induced increases in proinflammatory cytokine and chemokine release. These immune reactions might be mediated by inflammasomes, macromolecular complexes mounted around the NLRP3 protein and can be activated by reactive oxygen species (ROS) over-generation. Hence in this study we determine whether: a) ROS activated NLRP3 inflammasomes mediate hyperosmotic stress-induced inflammation in human corneal epithelial cells (HCECs); b) the ROS-NLRP3-IL-1β axis activation is associated with environment-induced DE. Immortalized HCECs were exposed to 500 mOsm medium in the presence and absence of a ROS inhibitor, N-acetyl-l-cysteine (NAC). HCECs transfected with NLRP3 siRNA or a negative control (NC) siRNA. Intracellular ROS was measured by fluorometric analysis using the probe 2',7'-dichlorofluorescin diacetate (DCFH-DA). Real-time PCR evaluated NLRP3, ASC, pro-caspase-1 and pro-IL-1β mRNA levels. Western blot analysis assessed NLRP3 protein expression whereas caspase-1 activity was determined with a fluorometric assay. Bioactive IL-1β release was assessed by ELISA. ROS production, NLRP3 inflammasome and pro-IL-1β gene expression as well as IL-1β secretion were also evaluated in the conjunctival epithelial cells and tear fluid samples of environment-induced DE patients and normal subjects. NAC suppressed hyperosmolarity-induced rises in ROS levels, NLRP3 inflammasome formation and activation, caspase-1 activity and IL-1β release. On the other hand, NLRP3 siRNA knockdown inhibited hyperosmotic stress-induced NLRP3 activation, which led to ASC, pro-caspase-1 and pro-IL-1β mRNA down-regulation followed by suppression of associated caspase-1 activity and IL-1β secretion. In addition, in ocular surface samples of environment-induced DE patients, ROS generation, NLRP3, ASC, pro-caspase-1 and pro-IL-1β gene expression

  1. Telocytes of the human adult trigeminal ganglion.

    PubMed

    Rusu, Mugurel Constantin; Cretoiu, Dragos; Vrapciu, Alexandra Diana; Hostiuc, Sorin; Dermengiu, Dan; Manoiu, Vasile Sorin; Cretoiu, Sanda Maria; Mirancea, Nicolae

    2016-06-01

    Telocytes (TCs) are typically defined as cells with telopodes by their ultrastructural features. Their presence was reported in various organs, however little is known about their presence in human trigeminal ganglion. To address this issue, samples of trigeminal ganglia were tested by immunocytochemistry for CD34 and examined by transmission electron microscopy (TEM). We found that TCs are CD34 positive and form networks within the ganglion in close vicinity to microvessels and nerve fibers around the neuronal-glial units (NGUs). TEM examination confirmed the existence of spindle-shaped and bipolar TCs with one or two telopodes measuring between 15 to 53 μm. We propose that TCs are cells with stemness capacity which might contribute in regeneration and repair processes by: modulation of the stem cell activity or by acting as progenitors of other cells present in the normal tissue. In addition, further studies are needed to establish if they might influence the neuronal circuits. PMID:27147447

  2. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults. PMID:2307392

  3. Human Adult Cortical Reorganization and Consequent Visual Distortion

    PubMed Central

    Dilks, Daniel D.; Serences, John T.; Rosenau, Benjamin J.; Yantis, Steven; McCloskey, Michael

    2009-01-01

    Neural and behavioral evidence for cortical reorganization in the adult somatosensory system after loss of sensory input (e.g., amputation) has been well documented. In contrast, evidence for reorganization in the adult visual system is far less clear: neural evidence is the subject of controversy, behavioral evidence is sparse, and studies combining neural and behavioral evidence have not previously been reported. Here, we report converging behavioral and neuroimaging evidence from a stroke patient (B.L.) in support of cortical reorganization in the adult human visual system. B.L.’s stroke spared the primary visual cortex (V1), but destroyed fibers that normally provide input to V1 from the upper left visual field (LVF). As a consequence, B.L. is blind in the upper LVF, and exhibits distorted perception in the lower LVF: stimuli appear vertically elongated, toward and into the blind upper LVF. For example, a square presented in the lower LVF is perceived as a rectangle extending upward. We hypothesized that the perceptual distortion was a consequence of cortical reorganization in V1. Extensive behavioral testing supported our hypothesis, and functional magnetic resonance imaging (fMRI) confirmed V1 reorganization. Together, the behavioral and fMRI data show that loss of input to V1 after a stroke leads to cortical reorganization in the adult human visual system, and provide the first evidence that reorganization of the adult visual system affects visual perception. These findings contribute to our understanding of the human adult brain’s capacity to change and has implications for topics ranging from learning to recovery from brain damage. PMID:17804619

  4. Corneal toxicity induced by vesicating agents and effective treatment options.

    PubMed

    Goswami, Dinesh G; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial cells and rabbit corneal organ culture models with the SM analog nitrogen mustard, which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  5. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  6. Corneal amyloidosis associated with keratoconus.

    PubMed

    Stern, G A; Knapp, A; Hood, C I

    1988-01-01

    Nodular, gray-white, central corneal opacities which extended from the subepithelial zone through the anterior four fifths of the stroma developed in a 50-year-old man with a longstanding history of hard contact lens wear for keratoconus. Results of histopathologic analysis of the corneal button obtained at the time of penetrating keratoplasty disclosed that the opacities were composed of amyloid. Corneal amyloidosis is rarely found in association with keratoconus. Although there were some similarities in the pattern of amyloid deposition to that seen in primary familial amyloidosis of the cornea, the authors believe that their patient is more likely to have had a secondary amyloidosis. Corneal amyloidosis should be considered in keratoconus patients with development of unusual forms of central corneal opacification. PMID:3278260

  7. Adult human sarcomas. II. Medical oncology.

    PubMed

    Sinkovics, Joseph G

    2007-02-01

    Human sarcoma cells can be killed by radio- and chemotherapy, but tumor cells acquiring resistance frequently kill the patient. A keen understanding of the intracellular course of oncogenic cascades leads to the discovery of small molecular inhibitors of the involved phosphorylated kinases. Targeted therapy complements chemotherapy. Oncogene silencing is feasible by small interfering RNA. The restoration of some of the mutated or deleted tumor-suppressor genes (p53, Rb, PTEN, hSNF, INK/ARF and WT) by demethylation or reacetylation of their histones has been accomplished. Genetically engineered or naturally oncolytic viruses selectively lyse tumors and leave healthy tissues intact. Adeno- or retroviral vectors deliver genes of immunological costimulators, tumor antigens, chemo- or cytokines and/or tumor-suppressor proteins into tumor (sarcoma) cells. Suicide gene delivery results in apoptosis induction. Genes of enzymes that target prodrugs as their substrates render tumor cells highly susceptible to chemotherapy, with the prodrug to be targeted intracellularly. It will be combinations of sophisticated surgical removal of the nonencapsulated and locally invasive primary sarcomas, advanced forms of radiotherapy to the involved sites and immunotherapy with sarcoma vaccines that will cure primary sarcomas. Adoptive immunotherapy with immune lymphocytes will be operational in metastatic disease only when populations of regulatory T cells are controlled. Targeted therapy with small molecular inhibitors of oncogene cascades, the driving forces of sarcoma cells, alteration of the tumor stroma from a supportive to a tumor-hostile environment, reactivation or replacement of wild-type tumor-suppressor genes, and radio-chemotherapy (with much reduced toxicity) will eventually accomplish the cure of metastatic sarcomas. PMID:17288529

  8. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells.

    PubMed

    Blazejewska, Ewa Anna; Schlötzer-Schrehardt, Ursula; Zenkel, Matthias; Bachmann, Björn; Chankiewitz, Erik; Jacobi, Christina; Kruse, Friedrich E

    2009-03-01

    The aim of this study was to investigate the transdifferentiation potential of murine vibrissa hair follicle (HF) stem cells into corneal epithelial-like cells through modulation by corneal- or limbus-specific microenvironmental factors. Adult epithelial stem cells were isolated from the HF bulge region by mechanical dissection or fluorescence-activated cell sorting using antibodies to alpha6 integrin, enriched by clonal expansion, and subcultivated on various extracellular matrices (type IV collagen, laminin-1, laminin-5, fibronectin) and in different conditioned media derived from central and peripheral corneal fibroblasts, limbal stromal fibroblasts, and 3T3 fibroblasts. Cellular phenotype and differentiation were evaluated by light and electron microscopy, real-time reverse transcription-polymerase chain reaction, immunocytochemistry, and Western blotting, using antibodies against putative stem cell markers (K15, alpha6 integrin) and differentiation markers characteristic for corneal epithelium (K12, Pax6) or epidermis (K10). Using laminin-5, a major component of the corneo-limbal basement membrane zone, and conditioned medium from limbal stromal fibroblasts, clonally enriched HF stem and progenitor cells adhered rapidly and formed regularly arranged stratified cell sheets. Conditioned medium derived from limbal fibroblasts markedly upregulated expression of cornea-specific K12 and Pax6 on the mRNA and protein level, whereas expression of the epidermal keratinocyte marker K10 was strongly downregulated. These findings suggest that adult HF epithelial stem cells are capable of differentiating into corneal epithelial-like cells in vitro when exposed to a limbus-specific microenvironment. Therefore, the HF may be an easily accessible alternative therapeutic source of autologous adult stem cells for replacement of the corneal epithelium and restoration of visual function in patients with ocular surface disorders. PMID:19074417

  9. Corneal seal device

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1977-01-01

    A corneal seal device is provided which, when placed in an incision in the eye, permits the insertion of a surgical tool or instrument through the device into the eye. The device includes a seal chamber which opens into a tube which is adapted to be sutured to the eye and serves as an entry passage for a tool. A sealable aperture in the chamber permits passage of the tool through the chamber into the tube and hence into the eye. The chamber includes inlet ports adapted to be connected to a regulated source of irrigation fluid which provides a safe intraocular pressure.

  10. Perivascular mesenchymal progenitors in human fetal and adult liver.

    PubMed

    Gerlach, Jörg C; Over, Patrick; Turner, Morris E; Thompson, Robert L; Foka, Hubert G; Chen, William C W; Péault, Bruno; Gridelli, Bruno; Schmelzer, Eva

    2012-12-10

    The presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined. Here, we describe the identification, purification, and characterization of pericytes in human adult and fetal liver. Flow cytometry sorting revealed that human adult and fetal liver contains 0.56%±0.81% and 0.45%±0.39% of CD146(+)CD45(-)CD56(-)CD34(-) pericytes, respectively. Of these, 41% (adult) and 30% (fetal) were alkaline phosphatase-positive (ALP(+)). In situ, pericytes were localized around periportal blood vessels and were positive for NG2 and vimentin. Purified pericytes could be cultured extensively and had low population doubling times. Immunofluorescence of cultures demonstrated that cells were positive for pericyte and mesenchymal cell markers CD146, NG2, CD90, CD140b, and vimentin, and negative for endothelial, hematopoietic, stellate, muscle, or liver epithelial cell markers von Willebrand factor, CD31, CD34, CD45, CD144, CD326, CK19, albumin, α-fetoprotein, CYP3A7, glial fibrillary acid protein, MYF5, and Pax7 by gene expression; myogenin and alpha-smooth muscle actin expression were variable. Fluorescence-activated cell sorting analysis of cultures confirmed surface expression of CD146, CD73, CD90, CD10, CD13, CD44, CD105, and ALP and absence of human leukocyte antigen-DR. In vitro differentiation assays demonstrated that cells possessed robust osteogenic and myogenic, but low adipogenic and low chondrogenic differentiation potentials. In functional in vitro assays, cells had typical mesenchymal strong migratory and invasive activity. In conclusion, human adult and fetal livers harbor pericytes that are similar to those found in other organs and are distinct from hepatic stellate cells. PMID:22931482

  11. [The corneal wound healing and the extracellular matrix].

    PubMed

    Varkoly, Gréta; Bencze, János; Hortobágyi, Tibor; Módis, László

    2016-06-19

    The cornea is the first refractive element of the eye. The transparency of the cornea results from the regularly arranged collagen fibrils, forming lamellar structure and the leucin rich proteoglycans, which make interactions between the fibrils. The adult cornea consists mainly of fibril-forming collagens. The cornea has less amount of fibril associated and non-fibrillar collagens. The main proteoglycans of the cornea are keratan-sulfate proteoglycans and it also contains dermatan-sulfate proteoglycans. Disorders of the proteoglycan synthesis lead to the disruption of the unique pattern and result in thicker collagen fibrils. The abnormal structure of the extracellular matrix can generate corneal disorders and the loss of corneal transparency. Furthermore, proteoglycans and collagens have an important role in wound healing. In injury the keratocytes produce higher amounts of collagens and proteoglycans mediated by growth factors. Depending on the ratio of the cells and growth factors the extracellular matrix returns to normal or corneal scar tissue develops. PMID:27287839

  12. Ultrastructural characteristics of human adult and infant cerebral cortical neurons.

    PubMed Central

    Ong, W Y; Garey, L J

    1991-01-01

    Biopsy specimens of human cerebral cortex from three adults and two infants were studied by correlating their light microscopic features in semithin sections with their ultrastructural characteristics. There was good tissue preservation, due to a minimum delay between obtaining the specimens and fixation. Pyramidal cells had a prominent apical dendrite, fine heterochromatin clumps in the nucleus and generally small numbers of cytoplasmic organelles, except for numerous free ribosomes in some of the large pyramids of Layers III to VI. Non-pyramidal cells lacked an apical dendrite and were further classified, on size and ultrastructure, into small, medium and large types. Large numbers of asymmetrical and symmetrical synapses were present in the neuropil but very few axosomatic synapses were found in the human cerebral cortex compared with subhuman primates and other mammals. Some symmetrical synapses were characterised by the presence of wide pre- and postsynaptic densities. The same general features of the adult cortex were also encountered in the infant, with certain exceptions. Many of the infant neurons had less densely packed heterochromatin, but greater numbers of free ribosomes, compared with the adult, and lipofuscin was absent. There was a total absence of myelinated fibres from the infant cortex; more large diameter dendrites were present than in the adult and axosomatic synapses were commoner. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:2050578

  13. PAPep, a small peptide derived from human pancreatitis-associated protein, attenuates corneal inflammation in vivo and in vitro through the IKKα/β/IκBα/NF-κB signaling pathway.

    PubMed

    Zhu, Shaopin; Xu, Xun; Liu, Kun; Gu, Qing; Yang, Xiaolu

    2015-12-01

    Keratitis is a worldwide sight-threatening disease. Current drugs generate various adverse effects. Large molecules hardly penetrate ocular tissues. Small peptides derived from endogenous protein display certain advantages. Previously we indentified a novel peptide (PAPep) from human pancreatitis-associated protein (PAP), a protein with protective effect against inflammatory diseases. To further examine the effect of PAPep on inflammatory disease and expand its scope of potential clinical application, especially in keratitis, we tested the effect of PAPep on various aspects of lipopolysaccharide (LPS)--induced corneal inflammation in vivo and in vitro. Dexamethasone (DXM) was used as a drug control. Our results suggested that PAPep suppressed the clinical manifestation, histological disorder and inflammatory cells infiltration and reduced the release of interleukin (IL)-6, IL-8 and monocyte chemotactic protein (MCP)-1 in the cornea. Moreover, PAPep inhibited LPS-induced mRNA and protein expression of the three cytokines in the corneal fibroblasts, prevented translocation of NF-κB and interrupted the phosphorylation of IKKα/β/IκBα/NF-κB. Our study demonstrates that PAPep could effectively attenuate LPS-induced keratitis, more likely by virtue of inhibiting the activation of the IKKα/β/IκBα/NF-κB pathway. PAPep may be considered to be a promising and safe drug for therapeutic application for ocular inflammation. PMID:26388492

  14. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  15. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis

    PubMed Central

    Sartaj, Rachel; Chee, Ru‐ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine

    2016-01-01

    Abstract The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells 2016;34:493–503 PMID:26661907

  16. Characteristics of the low density corneal endothelial monolayer.

    PubMed

    Singh, Jorawer S; Haroldson, Thomas A; Patel, Sangita P

    2013-10-01

    Corneal endothelial cells form a leaky barrier on the posterior surface of the cornea, allowing influx of nutrient-carrying aqueous humor through the paracellular space and efflux of excess fluid. Corneal edema arises when the density of these non-proliferative endothelial cells declines from endothelial disease or intraocular surgery. The cellular changes occurring at low densities are ill-defined. We therefore investigated the paracellular pathway of corneal endothelial cell monolayers of varying density to determine alterations occurring in paracellular permeability and monolayer morphology. Primary cultures of bovine corneal endothelial cells (BCECs) were passaged onto permeable supports under varying culture conditions to obtain confluent monolayers of <1000, 1000-1999 and >2000 cells/mm(2). Culture growth was monitored by transendothelial electrical resistance measurements. Diffusional permeability to sodium fluorescein, FITC-dextran MW 4000 or FITC-dextran MW 20,000 was measured. Confluent cultures were also analyzed by immunofluorescence localization of the tight junction protein ZO-1 and by transmission electron microscopy. For comparison, we evaluated ZO-1 for low and high density human corneal endothelium. Our results showed that all BCEC cultures grew to the same final transendothelial electrical resistance regardless of final density. In the diffusional permeability assay, permeability increased significantly only for the smallest tracer molecule (sodium fluorescein) in the lowest density monolayers (<1000 cells/mm(2)). ZO-1 immunofluorescence distinctly localized to intercellular junctions in high density BCEC cultures but had more diffuse localization at lower densities. Transmission electron microscopy imaging revealed cells with thinner cross-sectional profiles and longer overlapping intercellular processes at low density relative to high density cultures. Low density human corneal endothelium lacked the diffuse ZO-1 distribution seen in BCECs

  17. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis.

    PubMed

    Sartaj, Rachel; Chee, Ru-ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine; Rosenblatt, Mark I

    2016-02-01

    The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell-based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound-healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re-epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. PMID:26661907

  18. Corneal blindness: a global perspective.

    PubMed Central

    Whitcher, J. P.; Srinivasan, M.; Upadhyay, M. P.

    2001-01-01

    Diseases affecting the cornea are a major cause of blindness worldwide, second only to cataract in overall importance. The epidemiology of corneal blindness is complicated and encompasses a wide variety of infectious and inflammatory eye diseses that cause corneal scarring, which ultimately leads to functional blindness. In addition, the prevalence of corneal disease varies from country to country and even from one population to another. While cataract is responsible for nearly 20 million of the 45 million blind people in the world, the next major cause is trachoma which blinds 4.9 million individuals, mainly as a result of corneal scarring and vascularization. Ocular trauma and corneal ulceration are significant causes of corneal blindness that are often underreported but may be responsible for 1.5-2.0 million new cases of monocular blindness every year. Causes of childhood blindness (about 1.5 million worldwide with 5 million visually disabled) include xerophthalmia (350,000 cases annually), ophthalmia neonatorum, and less frequently seen ocular diseases such as herpes simplex virus infections and vernal keratoconjunctivitis. Even though the control of onchocerciasis and leprosy are public health success stories, these diseases are still significant causes of blindness--affecting a quarter of a million individuals each. Traditional eye medicines have also been implicated as a major risk factor in the current epidemic of corneal ulceration in developing countries. Because of the difficulty of treating corneal blindness once it has occurred, public health prevention programmes are the most cost-effective means of decreasing the global burden of corneal blindness. PMID:11285665

  19. Management of advanced corneal ectasias.

    PubMed

    Maharana, Prafulla K; Dubey, Aditi; Jhanji, Vishal; Sharma, Namrata; Das, Sujata; Vajpayee, Rasik B

    2016-01-01

    Corneal ectasias include a group of disorders characterised by progressive thinning, bulging and distortion of the cornea. Keratoconus is the most common disease in this group. Other manifestations include pellucid marginal degeneration, Terrien's marginal degeneration, keratoglobus and ectasias following surgery. Advanced ectasias usually present with loss of vision due to high irregular astigmatism. Management of these disorders is difficult due to the peripheral location of ectasia and associated severe corneal thinning. Newer contact lenses such as scleral lenses are helpful in a selected group of patients. A majority of these cases requires surgical intervention. This review provides an update on the current treatment modalities available for management of advanced corneal ectasias. PMID:26294106

  20. Contact-mediated control of radial migration of corneal epithelial cells

    PubMed Central

    Walczysko, Petr; Rajnicek, Ann M.

    2016-01-01

    Purpose Patients with a heterozygous mutation in the gene encoding the transcription factor, PAX6, have a degenerative corneal opacity associated with failure of normal radial epithelial cell migration across the corneal surface and a reported wound healing defect. This study investigated the guidance mechanisms that drive the directed migration of corneal epithelial cells. Methods In vivo corneal epithelial wounding was performed in adult wild-type and Pax6+/− mice, and the healing migration rates were compared. To investigate the control of the cell migration direction, primary corneal epithelial cells from wild-type and Pax6+/− mice were plated on grooved quartz substrates, and alignment relative to the grooves was assayed. A reconstructed corneal culture system was developed in which dissociated wild-type and genetically mutant corneal epithelial cells could be cultured on a de-epithelialized corneal stroma or basement membrane and their migration assayed with time-lapse microscopy. Results The Pax6+/− cells efficiently re-epithelialized corneal wounds in vivo but had mild slowing of healing migration compared to the wild-type. Cells aligned parallel to quartz grooves in vitro, but the Pax6+/− cells were less robustly oriented than the wild-type. In the reconstructed corneal culture system, corneal epithelial cells continued to migrate radially, showing that the cells are guided by contact-mediated cues from the basement membrane. Recombining wild-type and Pax6 mutant corneal epithelial cells with wild-type and Pax6 mutant corneal stroma showed that normal Pax6 dosage was required autonomously in the epithelial cells for directed migration. Integrin-mediated attachment to the substrate, and intracellular PI3Kγ activity, were required for migration. Pharmacological inhibition of cAMP signaling randomized migration tracks in reconstructed corneas. Conclusions Striking patterns of centripetal migration of corneal epithelial cells observed in vivo are

  1. Micrometer scale resolution images of human corneal graft using full-field optical coherence tomography (FF-OCT)-link to polarimetric study of scattered field

    NASA Astrophysics Data System (ADS)

    Georges, Ga"lle; Siozade-Lamoine, Laure; Casadessus, Olivier; Deumié, Carole; Hoffart, Louis; Conrath, John

    2011-10-01

    The suitability of a corneal graft for transplant surgery is based on different criteria. It may be rejected in particular due to a loss of transparency, directly linked to its scattering properties. Then, these become an important parameter. The aim of this paper is to quantify the influence of the cornea thickness and of the epithelial layer on scattering properties. The origin of scattering is discussed based on polarimetric analysis of scattered field (surface and/or bulk) and on full-field optical coherence tomography imaging (structural information).

  2. Corneal topography from spectral optical coherence tomography (sOCT)

    PubMed Central

    Ortiz, Sergio; Siedlecki, Damian; Pérez-Merino, Pablo; Chia, Noelia; de Castro, Alberto; Szkulmowski, Maciej; Wojtkowski, Maciej; Marcos, Susana

    2011-01-01

    We present a method to obtain accurate corneal topography from a spectral optical coherence tomography (sOCT) system. The method includes calibration of the device, compensation of the fan (or field) distortion introduced by the scanning architecture, and image processing analysis for volumetric data extraction, segmentation and fitting. We present examples of three-dimensional (3-D) surface topography measurements on spherical and aspheric lenses, as well as on 10 human corneas in vivo. Results of sOCT surface topography (with and without fan-distortion correction) were compared with non-contact profilometry (taken as reference) on a spherical lens, and with non-contact profilometry and state-of-the art commercial corneal topography instruments on aspheric lenses and on subjects. Corneal elevation maps from all instruments were fitted by quadric surfaces (as well as by tenth-order Zernike polynomials) using custom routines. We found that the discrepancy in the estimated radius of curvature from nominal values in artificial corneas decreased from 4.6% (without fan distortion correction) to 1.6% (after fan distortion correction), and the difference in the asphericity decreased from 130% to 5%. In human corneas, the estimated corneal radius of curvature was not statistically significantly different across instruments. However, a Bland-Altman analysis showed consistent differences in the estimated asphericity and corneal shape between sOCT topographies without fan distortion correction and the rest of the measurements. PMID:22162814

  3. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

    PubMed

    Criscimanna, Angela; Zito, Giovanni; Taddeo, Annalisa; Richiusa, Pierina; Pitrone, Maria; Morreale, Daniele; Lodato, Gaetano; Pizzolanti, Giuseppe; Citarrella, Roberto; Galluzzo, Aldo; Giordano, Carla

    2012-01-01

    Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli

  4. The nutrition intervention improved adult human capital and economic productivity.

    PubMed

    Martorell, Reynaldo; Melgar, Paul; Maluccio, John A; Stein, Aryeh D; Rivera, Juan A

    2010-02-01

    This article reviews key findings about the long-term impact of a nutrition intervention carried out by the Institute of Nutrition of Central America and Panama from 1969 to 1977. Results from follow-up studies in 1988-89 and 2002-04 show substantial impact on adult human capital and economic productivity. The 1988-89 study showed that adult body size and work capacity increased for those provided improved nutrition through age 3 y, whereas the 2002-04 follow-up showed that schooling was increased for women and reading comprehension and intelligence increased in both men and women. Participants were 26-42 y of age at the time of the 2002-04 follow-up, facilitating the assessment of economic productivity. Wages of men increased by 46% in those provided with improved nutrition through age 2 y. Findings for cardiovascular disease risk factors were heterogeneous; however, they suggest that improved nutrition in early life is unlikely to increase cardiovascular disease risk later in life and may indeed lower risk. In conclusion, the substantial improvement in adult human capital and economic productivity resulting from the nutrition intervention provides a powerful argument for promoting improvements in nutrition in pregnant women and young children. PMID:20032473

  5. How long have adult humans been consuming milk?

    PubMed

    Gerbault, Pascale; Roffet-Salque, Mélanie; Evershed, Richard P; Thomas, Mark G

    2013-12-01

    Lactase is the enzyme that breaks down the milk sugar lactose, and in most mammals, including most humans, lactase activity is down-regulated after the weaning period is completed. However, in about 35% of adults worldwide, lactase continues to be expressed throughout adulthood, a feature termed lactase persistence (LP). Genetic evidence indicates that LP is a recent human adaptation, and its current geographic distribution correlates with the relative historical importance of dairying in different human populations. Investigating archaeological evidence for fresh milk consumption has proved crucial in building an account of the joint evolution of LP and dairying. A powerful technique for investigating food processing, including milk processing, in ancient populations is lipid residue analysis on archaeological pottery. We review here the archaeological and genetic evidence available that have contributed to a better understanding of the gene-culture co-evolution of LP and dairying. PMID:24339181

  6. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  7. Contact lens related corneal ulcer.

    PubMed

    Loh, Ky; Agarwal, P

    2010-01-01

    A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are: overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. The presenting symptoms of contact lens related corneal ulcers include eye discomfort, foreign body sensation and lacrimation. More serious symptoms are redness (especially circum-corneal injection), severe pain, photophobia, eye discharge and blurring of vision. The diagnosis is established by a thorough slit lamp microscopic examination with fluorescein staining and corneal scraping for Gram stain and culture of the infective organism. Delay in diagnosing and treatment can cause permanent blindness, therefore an early referral to ophthalmologist and commencing of antimicrobial therapy can prevent visual loss. PMID:25606178

  8. Abnormal corneal epithelial maintenance in mice heterozygous for the micropinna microphthalmia mutation Mp.

    PubMed

    Douvaras, Panagiotis; Dorà, Natalie J; Mort, Richard L; Lodge, Emily J; Hill, Robert E; West, John D

    2016-08-01

    We investigated the corneal morphology of adult Mp/+ mice, which are heterozygous for the micropinna microphthalmia mutation, and identified several abnormalities, which implied that corneal epithelial maintenance was abnormal. The Mp/+ corneal epithelium was thin, loosely packed and contained goblet cells in older mice. Evidence also suggested that the barrier function was compromised. However, there was no major effect on corneal epithelial cell turnover and mosaic patterns of radial stripes indicated that radial cell movement was normal. Limbal blood vessels formed an abnormally wide limbal vasculature ring, K19-positive cells were distributed more widely than normal and K12 was weakly expressed in the peripheral cornea. This raises the possibilities that the limbal-corneal boundary was poorly defined or the limbus was wider than normal. BrdU label-retaining cell numbers and quantitative clonal analysis suggested that limbal epithelial stem cell numbers were not depleted and might be higher than normal. However, as corneal epithelial homeostasis was abnormal, it is possible that Mp/+ stem cell function was impaired. It has been shown recently that the Mp mutation involves a chromosome 18 inversion that disrupts the Fbn2 and Isoc1 genes and produces an abnormal, truncated fibrillin-2(MP) protein. This abnormal protein accumulates in the endoplasmic reticulum (ER) of cells that normally express Fbn2 and causes ER stress. It was also shown that Fbn2 is expressed in the corneal stroma but not the corneal epithelium, suggesting that the presence of truncated fibrillin-2(MP) protein in the corneal stroma disrupts corneal epithelial homeostasis in Mp/+ mice. PMID:27235794

  9. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    SciTech Connect

    Mourant, J.R.; Bigio, I.J.; Johnson, T.; Shimada, T.; Gritz, D.C.; Storey-Held, K.

    1994-02-01

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  10. Corneal Tissue Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena

    2015-01-01

    To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives. PMID:25434371

  11. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  12. Ontogeny of morningness-eveningness across the adult human lifespan.

    PubMed

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness (r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores (r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness. PMID:26715354

  13. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    PubMed

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes. PMID:23955437

  14. THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James; Hubschman, Jean-Pierre; Deng, Sophie; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging. PMID:26322247

  15. Reversible Nerve Damage and Corneal Pathology in Murine Herpes Simplex Stromal Keratitis

    PubMed Central

    Yun, Hongmin; Rowe, Alexander M.; Lathrop, Kira L.; Harvey, Stephen A. K.

    2014-01-01

    ABSTRACT Herpes simplex virus type 1 (HSV-1) shedding from sensory neurons can trigger recurrent bouts of herpes stromal keratitis (HSK), an inflammatory response that leads to progressive corneal scarring and blindness. A mouse model of HSK is often used to delineate immunopathogenic mechanisms and bears many of the characteristics of human disease, but it tends to be more chronic and severe than human HSK. Loss of blink reflex (BR) in human HSK is common and due to a dramatic retraction of corneal sensory nerve termini in the epithelium and the nerve plexus at the epithelial/stromal interface. However, the relationship between loss of BR due to nerve damage and corneal pathology associated with HSK remains largely unexplored. Here, we show a similar retraction of corneal nerves in mice with HSK. Indeed, we show that much of the HSK-associated corneal inflammation in mice is actually attributable to damage to the corneal nerves and accompanying loss of BR and can be prevented or ameliorated by tarsorrhaphy (suturing eyelids closed), a clinical procedure commonly used to prevent corneal exposure and desiccation. In addition, we show that HSK-associated nerve retraction, loss of BR, and severe pathology all are reversible and regulated by CD4+ T cells. Thus, defining immunopathogenic mechanisms of HSK in the mouse model will necessitate distinguishing mechanisms associated with the immunopathologic response to the virus from those associated with loss of corneal sensation. Based on our findings, investigation of a possible contribution of nerve damage and BR loss to human HSK also appears warranted. IMPORTANCE HSK in humans is a potentially blinding disease characterized by recurrent inflammation and progressive scarring triggered by viral release from corneal nerves. Corneal nerve damage is a known component of HSK, but the causes and consequences of HSK-associated nerve damage remain obscure. We show that desiccation of the corneal surface due to nerve damage and

  16. Traumatic corneal endothelial rings from homemade explosives.

    PubMed

    Ng, Soo Khai; Rudkin, Adam K; Galanopoulos, Anna

    2013-08-01

    Traumatic corneal endothelial rings are remarkably rare ocular findings that may result from blast injury. We present a unique case of bilateral traumatic corneal endothelial rings secondary to blast injury from homemade explosives. PMID:23474743

  17. Cohort Programming and Learning: Improving Educational Experiences for Adult Learners. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    Saltiel, Iris M.; Russo, Charline S.

    This book, which is intended for adult educators and human resource developers, presents guidelines for using the principles of cohort programming and learning to improve adult learners' educational experiences. The following are among the topics covered in the book's eight chapters: (1) cohort programming and learning (cohort programs defined;…

  18. Assessing Adult Learning: A Guide for Practitioners. Revised Edition. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    Moran, Joseph J.

    This book, which is intended for adult educators and human resource developers, presents guidelines for assessing adult learning. The following are among the topics covered in the book's eight chapters: (1) basic principles of informal assessment (relationship between learning and assessment activities; sequencing learning and assessment…

  19. Unique multipotent cells in adult human mesenchymal cell populations

    PubMed Central

    Kuroda, Yasumasa; Kitada, Masaaki; Wakao, Shohei; Nishikawa, Kouki; Tanimura, Yukihiro; Makinoshima, Hideki; Goda, Makoto; Akashi, Hideo; Inutsuka, Ayumu; Niwa, Akira; Shigemoto, Taeko; Nabeshima, Yoko; Nakahata, Tatsutoshi; Nabeshima, Yo-ichi; Fujiyoshi, Yoshinori; Dezawa, Mari

    2010-01-01

    We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research. PMID:20421459

  20. Multipotent progenitor cells isolated from adult human pancreatic tissue.

    PubMed

    Todorov, I; Nair, I; Ferreri, K; Rawson, J; Kuroda, A; Pascual, M; Omori, K; Valiente, L; Orr, C; Al-Abdullah, I; Riggs, A; Kandeel, F; Mullen, Y

    2005-10-01

    The supply of islet cells is a limiting factor for the widespread application of islet transplantation of type-1 diabetes. Islets constitute 1% to 2% of pancreatic tissue, leaving approximately 98% as discard after islet isolation and purification. In this report we present our data on the isolation of multipotent progenitor cells from discarded adult human pancreatic tissue. The collected cells from discarded nonislet fractions, after enzymatic digestion and gradient purification of islets, were dissociated for suspension culture in a serum-free medium. The cell clusters grown to a size of 100 to 150 mum contained cells staining for stage-specific embryonic antigens, but not insulin or C-peptide. To direct cell differentiation toward islets, clusters were recultured in a pancreatic differentiation medium. Insulin and C-peptide-positive cells by immunocytochemistry appeared within a week, reaching over 10% of the cell population. Glucagon and somatostatin-positive cells were also detected. The cell clusters were found to secrete insulin in response to glucose stimulation. Cells from the same clusters also had the capacity for differentiation into neural cells, as documented by staining for neural and glial cell markers when cultured as monolayers in media containing neurotrophic factors. These data suggest that multipotent pancreatic progenitor cells exist within the human pancreatic tissue that is typically discarded during islet isolation procedures. These adult progenitor cells can be successfully differentiated into insulin-producing cells, and thus they have the potential for treatment of type-1 diabetes mellitus. PMID:16298614

  1. Corneal temperature in schizophrenia patients.

    PubMed

    Shiloh, Roni; Munitz, Hanan; Portuguese, Shirley; Gross-Isseroff, Ruth; Sigler, Mayanit; Bodinger, Liron; Katz, Nachum; Stryjer, Rafael; Hermesh, Haggai; Weizman, Abraham

    2005-12-01

    Most data imply that dopaminergic transmission is essential for proper hypothalamic-mediated core temperature regulation. Altered central dopaminergic transmission is suggested to be involved in the pathophysiology of schizophrenia. Thus, hypothetically, schizophrenia patients might be at increased risk of developing thermoregulatory dysregulation manifested by alterations in core temperature, as well as in peripheral tissue, the temperature of which has been shown to correlate with core temperature (e.g. cornea). Previous small pilot studies of ours showed that schizophrenia patients may exhibit corneal temperature abnormalities. Hence, we assessed corneal temperature in a controlled sample of drug-free ( n =11) and medicated ( n =28) schizophrenia patients compared to healthy comparison subjects ( n =9), using a FLIR thermal imaging camera. Drug-free schizophrenia patients exhibited significantly higher corneal temperature compared to healthy subjects, typical antipsychotic drug (APD)-treated patients ( n =16) and atypical APD-treated patients ( n =12) (37.08+/-1.46 degrees C vs. 33.37+/-2.51 degrees C, 31.08+/-1.43 degrees C and 31.67+/-0.44 degrees C respectively, p <0.0001; p <0.001 vs. each group separately). The healthy comparison subjects and the atypical APD-treated patients exhibited comparable corneal temperatures and these two groups exhibited higher corneal temperatures compared to the typical APD-treated patients ( p <0.01 and p =0.051 respectively). In conclusion, this study indicates that drug-free schizophrenia patients exhibit substantially higher corneal temperature compared to healthy comparison subjects or medicated patients, and that APDs may decrease corneal temperature either to normal (atypical APD) or to subnormal (typical APD) values. The relevance of these phenomena to the pathophysiology of schizophrenia, the biological mechanism underlying drug-induced corneal temperature alterations, the possible role of temperature-lowering drugs

  2. Enhancement of Corneal Visibility in Optical Coherence Tomography Images Using Corneal Adaptive Compensation

    PubMed Central

    Girard, Michaël J. A.; Ang, Marcus; Chung, Cheuk Wang; Farook, Mohamed; Strouthidis, Nick; Mehta, Jod S.; Mari, Jean Martial

    2015-01-01

    Purpose: To improve the contrast of optical coherence tomography (OCT) images of the cornea (post processing). Methods: We have recently developed standard compensation (SC) algorithms to remove light attenuation artifacts. A more recent approach, namely adaptive compensation (AC), further limited noise overamplification within deep tissue regions. AC was shown to work efficiently when all A-scan signals were fully attenuated at high depth. But in many imaging applications (e.g., OCT imaging of the cornea), such an assumption is not satisfied, which can result in strong noise overamplification. A corneal adaptive compensation (CAC) algorithm was therefore developed to overcome such limitation. CAC benefited from local A-scan processing (rather than global as in AC) and its performance was compared with that of SC and AC using Fourier-domain OCT images of four human corneas. Results: CAC provided considerably superior image contrast improvement than SC or AC did, with excellent visibility of the corneal stroma, low noise overamplification, homogeneous signal amplification, and high contrast. Specifically, CAC provided mean interlayer contrasts (a measure of high stromal visibility and low noise) greater than 0.97, while SC and AC provided lower values ranging from 0.38 to 1.00. Conclusion: CAC provided considerable improvement compared with SC and AC by eliminating noise overamplification, while maintaining all benefits of compensation, thus making the corneal endothelium and corneal thickness easily identifiable. Translational Relevance: CAC may find wide applicability in clinical practice and could contribute to improved morphometric and biomechanical understanding of the cornea. PMID:26046005

  3. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  4. Corneal neovascularization and biological therapy

    PubMed Central

    Voiculescu, OB; Voinea, LM; Alexandrescu, C

    2015-01-01

    Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions. Corneal neovascularization (NV) is a condition that can develop in response to inflammation, hypoxia, trauma, or limbal stem cell deficiency and it is a significant cause of blindness. New therapeutic options for diseases of the cornea and ocular surface are now being explored in experimental animals and clinical trials. Antibody based biologics are being tested for their ability to reduce blood and lymphatic vessel ingrowth into the cornea, and to reduce inflammation. Numerous studies have shown that biologics with specificity for VEGF A such as bevacizumab and ranibizumab (a recombinant antibody and an antibody fragment, respectively) or anti-tumor necrosis factor-α microantibody, are effective in the treatment of corneal neovascularization. PMID:26664467

  5. Evaluating the effectiveness of treatment of corneal ulcers via computer-based automatic image analysis

    NASA Astrophysics Data System (ADS)

    Otoum, Nesreen A.; Edirisinghe, Eran A.; Dua, Harminder; Faraj, Lana

    2012-06-01

    Corneal Ulcers are a common eye disease that requires prompt treatment. Recently a number of treatment approaches have been introduced that have been proven to be very effective. Unfortunately, the monitoring process of the treatment procedure remains manual and hence time consuming and prone to human errors. In this research we propose an automatic image analysis based approach to measure the size of an ulcer and its subsequent further investigation to determine the effectiveness of any treatment process followed. In Ophthalmology an ulcer area is detected for further inspection via luminous excitation of a dye. Usually in the imaging systems utilised for this purpose (i.e. a slit lamp with an appropriate dye) the ulcer area is excited to be luminous green in colour as compared to rest of the cornea which appears blue/brown. In the proposed approach we analyse the image in the HVS colour space. Initially a pre-processing stage that carries out a local histogram equalisation is used to bring back detail in any over or under exposed areas. Secondly we deal with the removal of potential reflections from the affected areas by making use of image registration of two candidate corneal images based on the detected corneal areas. Thirdly the exact corneal boundary is detected by initially registering an ellipse to the candidate corneal boundary detected via edge detection and subsequently allowing the user to modify the boundary to overlap with the boundary of the ulcer being observed. Although this step makes the approach semi automatic, it removes the impact of breakages of the corneal boundary due to occlusion, noise, image quality degradations. The ratio between the ulcer area confined within the corneal area to the corneal area is used as a measure of comparison. We demonstrate the use of the proposed tool in the analysis of the effectiveness of a treatment procedure adopted for corneal ulcers in patients by comparing the variation of corneal size over time.

  6. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis.

    PubMed

    Ouyang, Hong; Xue, Yuanchao; Lin, Ying; Zhang, Xiaohui; Xi, Lei; Patel, Sherrina; Cai, Huimin; Luo, Jing; Zhang, Meixia; Zhang, Ming; Yang, Yang; Li, Gen; Li, Hairi; Jiang, Wei; Yeh, Emily; Lin, Jonathan; Pei, Michelle; Zhu, Jin; Cao, Guiqun; Zhang, Liangfang; Yu, Benjamin; Chen, Shaochen; Fu, Xiang-Dong; Liu, Yizhi; Zhang, Kang

    2014-07-17

    The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases. PMID:25030175

  7. Corneal Allograft Rejection: Immunopathogenesis to Therapeutics

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is among the most successful solid organ transplants. However, despite low rejection rates of grafts in the ‘low-risk’ setting, rejection can be as high as 70% when grafted into ‘high-risk’ recipient beds. Under normal homeostatic conditions, the avascular cornea provides a unique environment that facilitates immune and angiogenic privilege. An imbalance in pro-inflammatory, angiogenic and lymphangiogenic mediators leads to a breakdown in corneal immune privilege with a consequent host response against the donor graft. Recent developments in lamellar and endothelial keratoplasties have reduced the rates of graft rejection even more, while providing improved visual outcomes. The corneal layer against which an immune response is initiated, largely determines reversibility of the acute episode. While epithelial and stromal graft rejection may be treated with topical corticosteroids with higher success, acute endothelial rejection mandates a more aggressive approach to therapy due to the lack of regenerative capacity of this layer. However, current immunosuppressive regimens come with the caveat of ocular and systemic side effects, making prolonged aggressive treatment undesirable. With the advent of biologics, efficacious therapies with a superior side effect profile are on the horizon. In our review we discuss the mediators of ocular immune privilege, the roles of cellular and molecular immune players in graft rejection, with a focus on human leukocyte antigen and antigen presenting cells. Furthermore, we discuss the clinical risk factors for graft rejection and compare rates of rejection in lamellar and endothelial keratoplasties to traditional penetrating keratoplasty. Lastly, we present the current and upcoming measures of therapeutic strategies to manage and treat graft rejection, including an overview of biologics and small molecule therapy. PMID:24634796

  8. The Biomechanics of the Pediatric and Adult Human Thoracic Spine

    PubMed Central

    Lopez-Valdes, Francisco J.; Lau, Sabrina; Riley, Patrick; Lamp, John; Kent, Richard

    2011-01-01

    A growing body of literature points out the relevance of the thoracic spine dynamics in understanding the thorax-restraint interaction as well as in determining the kinematics of the head and cervical spine. This study characterizes the dynamic response in bending of eight human spinal specimens (4 pediatric: ages 7 and 15 years, 4 adult: ages 48 and 52 years) from two sections along the thoracic spine (T2–T4 and T7–T9). Each specimen consisted of three vertebral bodies connected by the corresponding intervertebral discs. All ligaments were preserved in the preparation with the exception of the inter-transverse ligament. Specimens were exposed to a series of five dynamic bending ramp-and-hold tests with varying amplitudes at a nominal rate of 2 rad/s. After this battery of tests, failure experiments were conducted. The 7-year-old specimen showed the lowest tolerance to a moment (T2–T4: 12.1 Nm; T7–T9: 11.6 Nm) with no significant reduction of the relative rotation between the vertebrae. The 15-year-old failure tolerance was comparable to that of the adult specimens. Failure of the adult specimens occurred within a wide range at the T2–T4 thoracic section (23.3 Nm- 53.0 Nm) while it was circumscribed to the interval 48.3 Nm-52.5 Nm for the T7–T9 section. The series of dynamic ramp-and-hold were used to assess two different scaling methods (mass scaling and SAE scaling). Neither method was able to capture the stiffness, peak moment and relaxation characteristics exhibited by the pediatric specimens. PMID:22105396

  9. Gender specificity of sucrose induced analgesia in human adults.

    PubMed

    Bhattacharjee, Manasi; Bhatia, Renu; Mathur, Rashmi

    2007-01-01

    Sweet, palatable substances such as sucrose are reported to calm infants undergoing routine investigative procedures. The analgesic effect persists in pre pubertal children and adults with a hint of gender dependent variation in the analgesic response. The present study was therefore designed to explore gender specificity of sucrose induced analgesia in adult volunteers utilizing the nociceptive flexion reflex, an objective tool for pain assessment. Nociceptive flexion reflex was recorded, both before and after (up to 15 min) ingestion of 100 ml of 25% sucrose solution in 6 male and 6 female volunteers. In the male volunteers the maximum amplitude of the response was 20.8 +/- 7.7 microV before sucrose ingestion and 22.6 +/- 9.1 microV, 6.6 +/- 0.7 microV, 6.2 +/- 1.1 microV, 7.5 +/- 0.9 microV at 0, 5, 10 and 15 minutes post sucrose ingestion respectively. In female volunteers, the maximum amplitude of the response was 33.7 +/- 17.7 microV before sucrose ingestion and 43.6 +/- 17.2 microV, 7.1 +/- 1.2 microV, 25.9 +/- 16.1 microV, 50.6 +/- 16.3 microV at the same time intervals post sucrose ingestion. The maximum amplitude values were significantly lower in the males at 10 and 15 minutes after sucrose ingestion (P < 0.05). This is the first objective report of gender specificity in sucrose induced analgesia in adult humans. The gender dependent variation in sucrose induced analgesia is prolonged in male (15 min) and short lived in female (5 min) volunteers. This knowledge may have important implications in pain management. PMID:18476396

  10. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction

    PubMed Central

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  11. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction.

    PubMed

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-Ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  12. A novel method in preparation of acellularporcine corneal stroma tissue for lamellar keratoplasty

    PubMed Central

    Shao, Yi; Tang, Jing; Zhou, Yueping; Qu, Yangluowa; He, Hui; Liu, Qiuping; Tan, Gang; Li, Wei; Liu, Zuguo

    2015-01-01

    Our objective was to develop a novel lamellar cornealbiomaterial for corneal reconstruction.Theporcine acellular corneal stroma discs (ACSDs) were prepared from de-epithelized fresh porcine corneas (DFPCs) by incubation with 100% fresh human serum and additional electrophoresis at 4°C. Such manipulation removed theanterior corneal stromal cells without residual of DNA content and α-Galantigen. Human serum decellularizing activity on porcineanterior corneal stroma cells is through apoptosis, and associated with the presence of α-Gal epitopes in anterior stroma. ACSDs displayed similar optical, biomechanical properties and ultrastructure to DFPCs, and showed good histocompatibility in rabbit corneal stromal pockets and anterior chamber. Rabbit corneallamellar keratoplasty (LKP) using ACSDs showed no rejection and high transparency of cornea at 2 months after surgery. In vivo confocal laser scanning microscopy and immunostaining analysis showed complete re-epithelization and stromal cell in growth of ACSDs without inflammatory cell infiltration, new blood vessel ingrowth and excessive wound healing. In conclusion, this novel decellularization method may be valuable for preparation of xenogenic corneal tissue for clinical application, ACSDs resulted from this method may be served as a matrix equivalent for LKP in corneal xenotransplantation. PMID:26885261

  13. Progress in corneal wound healing.

    PubMed

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  14. [The cicatrization of corneal wounds].

    PubMed

    Spineanu, L

    1995-01-01

    The tissular mending of the corneal surface is the result of a complex series of various physiopathological responses. This structural regeneration involves a primary reconstruction and a secondary one. The primary reconstruction of the barrier function provides the restoring of the normal equilibrium of osmotic, thermal and metabolic exchanges. The primary cicatricial response's goal is the fast coating of the corneal plague and mainly involves an inflammatory response. The major stages of this initial sequence are: the migration of the polynuclear neutrophils into the plaque, the establishment of a fibrinous cork, the collapsing and then the migration of the epithelial cork, and the contraction of the keratocyte mesh. PMID:7577908

  15. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment

    PubMed Central

    Dias, Janice; Diakonis, Vasilios F.; Kankariya, Vardhaman P.; Yoo, Sonia H.; Ziebarth, Noël M.

    2013-01-01

    The purpose of this project was to assess anterior and posterior corneal stromal elasticity after corneal collagen cross linking (CXL) treatment in human cadaver eyes using Atomic Force Microscopy (AFM) through indentation. Twenty four human cadaver eyes (12 pairs) were included in this study and divided into 2 groups (6 pairs per group). In both groups, the left eye (OS) served as a control (no riboflavin or CXL treatment was performed) and the right eye (OD) underwent CXL treatment (30 minutes of riboflavin pretreatment followed by 30 minutes of exposure to 3mW/cm2 of ultraviolet light). In group 1, the anterior stroma was exposed by manual delamination of approximately 50μm of the corneal stroma including Bowman’s membrane. In group 2, the posterior stroma was exposed by delamination of the anterior 50% of the corneal stroma including Bowman’s membrane. Delamination was performed after crosslinking treatment in the case of the treated eyes. In all eyes, the stromal elasticity was quantified using AFM through indentation. Young’s modulus of elasticity for the anterior cornea (group 1) was 245.9±209.1kPa (range: 82.3 - 530.8 kPa) for the untreated control eyes, and 467.8±373.2kPa (range: 157.4 – 1126 kPa) for the CXL treated eyes. Young’s modulus for the posterior cornea (group 2) was 100.2±61.9kPa (range: 28.1 - 162.6 kPa) for the untreated control eyes and 66.0±31.8kPa (range: 31.3 - 101.7 kPa) for the CXL treated eyes. Young’s modulus of the anterior stroma significantly increased after CXL treatment (p=0.024), whereas the posterior stroma did not demonstrate a significant difference in Young’s modulus after CXL treatment (p=0.170). The anterior stroma was stiffer than the posterior stroma for both the control and CXL treatment groups (p=0.077 and p=0.023, respectively). Our findings demonstrate that stiffness of the anterior corneal stroma after CXL treatment seems to increase significantly, while the posterior stroma does not seem to be

  16. History of corneal transplantation in Australia.

    PubMed

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure. PMID:25112897

  17. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    PubMed Central

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  18. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    PubMed

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  19. Evaluation of the PAR corneal topography system

    NASA Astrophysics Data System (ADS)

    Jindal, Prateek; Cheung, Susan; Pirouzian, Amir; Keates, Richard H.; Ren, Qiushi

    1995-05-01

    The purpose of this study was to evaluate the raster photogrammetry based Corneal Topography System by determining: inter-operator variability, reproducibility of images, effects of defocused and decentered images, and the precision of data at different optical zones. 4 human cadaver eyes were used to study the inter-operator variability. To study the reproducibility of images, 3 human cadaver eyes and a test surface doped with flourescine (provided by PAR Vision Systems Corporation) were focused and their images taken four successive times. Defocused and decentered images were taken of 4 human cadaver eyes and four times of the test surface mentioned above. The precision of defocused/decentered cadaver eyes was evaluated at the following optical zones: 3 mm, 4 mm, 5 mm, and 6 mm. All human cadaver eyes used in the above experiments had their epithelial layer removed before imaging. Average inter-operator variability was 0.06 D. In reproducibility attempts, there was an average deviation of 0.28 D for the human cadaver eyes and 0.04 D for the test surface. The defocused and decentered test surface gave an average deviation of 0.09 D. Defocused and decentered cadaver eyes resulted in an average deviation of 0.52 D, 0.37 D, 0.24 D, and 0.22 D at optical zones of 3 mm, 4 mm, 5 mm, and 6 mm, respectively. The imaging method employed by PAR Vision Systems Corporation virtually eliminates inter-operator variability. The PAR Corneal Topography System's clinical usefulness, however, could be improved by improving the reproducibility of images, decreasing the sensitivity to spatial alignment, and increasing accuracy over smaller optical zones.

  20. [Current treatments for corneal neovascularization].

    PubMed

    Benayoun, Y; Petellat, F; Leclerc, O; Dost, L; Dallaudière, B; Reddy, C; Robert, P-Y; Salomon, J-L

    2015-12-01

    The extension of blood vessels into the normally avascular stroma defines corneal neovascularization. Though this phenomenon, pathophysiological and clinical features are well characterized, therapeutic modalities have been hindered by a lack of safe, efficacious and non-controversial treatments. In this literature review, we focus on available therapeutic options in light of recent evidence provided by animal and clinical studies. First, this review will focus on pharmacological treatments that target angiogenesis. The low cost and market availability of bevacizumab make it the first anti-angiogenic therapy choice, and it has demonstrable efficacy in reducing corneal neovascularization when administered topically or subconjunctivally. However, novel anti-angiogenic molecules targeting the intracellular pathways of angiogenesis (siRNA, antisense oligonucleotides) provide a promising alternative. Laser therapy (direct photocoagulation or photo-dynamic therapy) and fine needle diathermy also find a place in the treatment of stabilized corneal neovascularization alone or in association with anti-angiogenic therapy. Additionally, ocular surface reconstruction using amniotic membrane graft or limbal stem cell transplantation is essential when corneal neovascularization is secondary to primary or acquired limbal deficiency. PMID:26522890

  1. Benzalkonium Chloride Suppresses Rabbit Corneal Endothelium Intercellular Gap Junction Communication

    PubMed Central

    Zhang, Zhenhao; Huang, Yue; Xie, Hui; Pan, Juxin; Liu, Fanfei; Li, Xuezhi; Chen, Wensheng; Hu, Jiaoyue; Liu, Zuguo

    2014-01-01

    Purpose Gap junction intercellular communication (GJIC) plays a critical role in the maintenance of corneal endothelium homeostasis. We determined if benzalkonium chloride (BAK) alters GJIC activity in the rabbit corneal endothelium since it is commonly used as a drug preservative in ocular eyedrop preparations even though it can have cytotoxic effects. Methods Thirty-six adult New Zealand albino rabbits were randomly divided into three groups. BAK at 0.01%, 0.05%, and 0.1% was applied twice daily to one eye of each of the rabbits in one of the three groups for seven days. The contralateral untreated eyes were used as controls. Corneal endothelial morphological features were observed by in vivo confocal microscopy (IVCM). Immunofluorescent staining resolved changes in gap junction integrity and localization. Western blot analysis and RT-PCR evaluated changes in levels of connexin43 (Cx43) and tight junction zonula occludens-1 (ZO-1) gene and protein expression, respectively. Cx43 and ZO-1 physical interaction was detected by immunoprecipitation (IP). Primary rabbit corneal endothelial cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing BAK for 24 hours. The scrape-loading dye transfer technique (SLDT) was used to assess GJIC activity. Results Topical administration of BAK (0.05%, 0.1%) dose dependently disrupted corneal endothelial cell morphology, altered Cx43 and ZO-1 distribution and reduced Cx43 expression. BAK also markedly induced increases in Cx43 phosphorylation status concomitant with decreases in the Cx43-ZO-1 protein-protein interaction. These changes were associated with marked declines in GJIC activity. Conclusions The dose dependent declines in rabbit corneal endothelial GJIC activity induced by BAK are associated with less Cx43-ZO-1 interaction possibly arising from increases in Cx43 phosphorylation and declines in its protein expression. These novel changes provide additional evidence that BAK containing eyedrop preparations

  2. Human herpesvirus 7 is a constitutive inhabitant of adult human saliva.

    PubMed Central

    Wyatt, L S; Frenkel, N

    1992-01-01

    We report the frequent isolation of human herpesvirus 7 from the saliva of healthy adults. Virus isolates recovered from different individuals exhibited minimal restriction enzyme polymorphism, which was mostly confined to heterogeneous (het) sequences in the genome. DNAs of isolates recovered from the same individual over a period of several months showed the same characteristic het fragments, indicating the stability of the het sequences upon virus replication and shedding in vivo. In contrast to the results of previous reports, human herpesvirus 6, the causative agent of roseola infantum, could not be isolated from the saliva specimens, raising questions regarding oral transmission of human herpesvirus 6 and human herpesvirus 7 to young children. Images PMID:1348548

  3. Corneal polarimetry after LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Bueno, Juan M.; Berrio, Esther; Artal, Pablo

    2006-01-01

    Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.

  4. Corneal welding with the hydrogen fluoride laser

    NASA Astrophysics Data System (ADS)

    Williams, John M.; Burstein, Neal L.; Nowicki, Michael J.; Jeffers, William Q.

    1994-06-01

    Our current study has looked at the use of a CW hydrogen fluoride laser to weld human cadaver corneas. The laser used was a Helios CL-II laser operating from 2.3 to 2.6 micrometers . A 6-mm full thickness linear incision was made in the center of the cornea. Two 10-0 nylon sutures were placed to hold the corneal stromal edges apposed during welding. Each specimen was mounted on a motorized micrometer stage. The beam was passed over the incision at a rate of between 0.5-2.0 mm per minute. After welding, the specimens were tested for wound strength by increasing intraocular pressure until the wound leaked. Two eyes had corneal welds performed and pressures of up to twice baseline intraocular pressure could be sustained after the stay sutures were removed. Light and electron microscopy demonstrated full thickness welds to be present. Electron micrographic sections demonstrated apparent interdigitation of collagen fibers between adjacent lamellae. Tissue welding may become an alternate means of wound closure in eye surgery.

  5. Exchange delays and impulsive choice in adult humans.

    PubMed

    Hyten, C; Madden, G J; Field, D P

    1994-09-01

    Choice responding by adult humans in a discrete-trial task was examined as a function of conditions that manipulated either the delay to point delivery or the delay between points and their exchange for money. In point-delay conditions, subjects chose between an "impulsive" alternative that provided a small amount of points immediately and a "self-control" alternative that provided a larger amount of points delayed by 15, 30, or 60 s. Points were exchanged for money immediately following the session. Subjects preferred the self-control alternative. In exchange-delay conditions, subjects chose between a small amount of points exchangeable for money immediately following the session and a larger amount of points exchangeable for money after 1 day, 3 weeks, or 6 weeks. A self-control preference observed for all subjects in the 1-day exchange-delay condition reversed to exclusive impulsive preference for 4 of the 6 subjects when choice conditions involved exchange delays of 3 or 6 weeks. These results show that human choice is sensitive to the manipulation of exchange delays and that impulsive preference can be obtained with exchange delays on the order of weeks. PMID:7964366

  6. Simultaneous characterization of progenitor cell compartments in adult human liver.

    PubMed

    Porretti, Laura; Cattaneo, Alessandra; Colombo, Federico; Lopa, Raffaella; Rossi, Giorgio; Mazzaferro, Vincenzo; Battiston, Carlo; Svegliati-Baroni, Gianluca; Bertolini, Francesco; Rebulla, Paolo; Prati, Daniele

    2010-01-01

    The human liver is a complex tissue consisting of epithelial, endothelial, hematopoietic, and mesenchymal elements that probably derive from multiple lineage-committed progenitors, but no comprehensive study aimed at identifying and characterizing intrahepatic precursors has yet been published. Cell suspensions for this study were obtained by enzymatic digestion of liver specimens taken from 20 patients with chronic liver disease and 13 multiorgan donors. Stem and progenitor cells were first isolated, amplified, and characterized ex vivo according to previously validated methods, and then optimized flow cytometry was used to assess their relative frequencies and characterize their immunophenotypes in the clinical specimens. Stem and progenitor cells committed to hematopoietic, endothelial, epithelial, and mesenchymal lineages were clearly identifiable in livers from both healthy and diseased subjects. Within the mononuclear liver cell compartment, epithelial progenitors [epithelial cell adhesion molecule (EpCAM)(+)/CD49f(+)/CD29(+)/CD45(-)] accounted for 2.7-3.5% whereas hematopoietic (CD34(+)/CD45(+)), endothelial [vascular endothelial growth factor-2 (KDR)(+)/CD146(+)/CD45(-)], and mesenchymal [CD73(+)/CD105(+)/CD90 (Thy-1)(+)/CD45 (-)] stem cells and progenitors accounted for smaller fractions (0.02-0.6%). The patients' livers had higher percentages of hematopoietic and endothelial precursors than those of the donors. In conclusion, we identified and characterized precursors committed to four different lineages in adult human liver. We also optimized a flow cytometry approach that will be useful in exploring the contribution of these cells to the pathogenesis of liver disease. PMID:19960544

  7. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  8. A biokinetic model for systemic technetium in adult humans

    DOE PAGESBeta

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  9. Ossified Ligamentum Longitudinale Anterius in Adult Human Dry Vertebrae

    PubMed Central

    Venumadhav, Nelluri; KS, Siddaraju

    2014-01-01

    Background: The ligamentum longitudinale anterius is a broad and strong band of fibrous tissue that runs along the anterior surfaces of the bodies of the vertebrae. Aim: The study was undertaken to evaluate the incidence of ossified ligamentum longitudinale anterius in adult dry human vertebra. Materials and Methods: This study was carried out on 95 sets of dry human vertebral columns irrespective of age and sex at Mayo Institute of Medical Sciences- Barabanki,-UP, Melaka Manipal Medical College-Manipal University and Department of Anatomy, KMCT Medical College, Manassery- Calicut, India. All the sets of vertebral columns were macroscopically inspected for the ossified ligamentum longitudinale anterius. Results: It was observed that out of 95 sets of vertebral columns, 27 (28.42%) vertebral columns showed ossification. Out of 27 vertebral columns, 17 (17.89%) vertebral columns showed segmental type of ossification, 2 (2.11%) vertebral columns showed continuous type of ossification and 8 (8.42%) vertebral columns showed mixed type of ossification at different vertebral level. Conclusion: Such type of ossification will affect the biomechanics of the spine and may result in stiff neck, low back pain, dysphagia, odynophagia, compression of the brachial plexus, aphonia, immobility or mucosal thickening of larynx. Hence, knowledge of such abnormalities should be kept in mind to minimise serious complications in any surgical intervention or investigative procedures in the region. PMID:25302180

  10. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  11. Antagonizing c-Cbl Enhances EGFR-Dependent Corneal Epithelial Homeostasis

    PubMed Central

    Rush, Jamie S.; Boeving, Michael A.; Berry, William L.; Ceresa, Brian P.

    2014-01-01

    Purpose. In many cell types, the E3 ubiquitin ligase, c-Cbl, induces ligand-dependent ubiquitylation of the epidermal growth factor receptor (EGFR) and targets the receptor for lysosomal degradation. The goal of this study was to determine whether c-Cbl is a negative regulator of EGFR in the corneal epithelium and if it can be inhibited to promote corneal epithelial homeostasis. Methods. Expression and activity of c-Cbl were blocked in immortalized human corneal epithelial cells (hTCEpi) using RNAi and pharmacological agents ([4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-d-3,4-pyrimidine] or PP1). Following c-Cbl inhibition, cells were assessed for ligand-dependent receptor ubiquitylation, receptor phosphorylation, and in vitro wound healing. Subsequent experiments used PP1 in hTCEpi cells and monitored in vivo murine corneal epithelial wound healing. Results. Knockdown and inhibition of c-Cbl decreased ligand-dependent ubiquitylation of the EGFR and prolonged receptor activity as measured by tyrosine phosphorylation. Further, these treatments also increased the extent of ligand-dependent corneal epithelial wound healing in vitro and in vivo. Conclusion. Manipulating the duration of EGFR activity can enhance the rate of restoration of the corneal epithelial layer. Based on our findings, c-Cbl is a new therapeutic target to enhance EGFR-mediated corneal epithelial homeostasis that bypasses the limitations of previous approaches. PMID:24985478

  12. [Disorders of the extracellular matrix in epithelial-stromal and stromal corneal dystrophies].

    PubMed

    Varkoly, Gréta; Bencze, János; Módis, László; Hortobágyi, Tibor

    2016-08-01

    The human cornea is rich in extracellular matrix. The stroma constitutes the main thickness of the cornea, which consists of collagens and proteoglycans mainly. The epithelial-stromal and stromal dystrophies of the cornea are either autosomal dominant or recessive inherited disorders, which are unrelated to inflammation or trauma. The diseases can manifest in each layer of the cornea, but in most cases the corneal stroma is affected. Generally, they develop in childhood or young adulthood but the diagnosis is only possible when clinical signs (epithelial erosions, decreased visual acuity, photophobia) develop. The different protein aggregates (hyaline, amyloid, crystalline) deposited in the corneal layers result in mild or advanced corneal opacity and loss of the corneal transparency due to disorganisation of the extracellular matrix. In some of the corneal dystrophies the keratane sulphate proteoglycan looses its function which results in a loss of the regular interfibrillar spacing. Due to the severe corneal opacity patients may need corneal transplantation. Orv. Hetil., 2016, 157(33), 1299-1303. PMID:27523312

  13. Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth

    PubMed Central

    Seo, Seungwoon; Singh, Hardeep P.; Lacal, Pedro M.; Sasman, Amy; Fatima, Anees; Liu, Ting; Schultz, Kathryn M.; Losordo, Douglas W.; Lehmann, Ordan J.; Kume, Tsutomu

    2012-01-01

    Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld–Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1−/−) or neural crest (NC)-specific (NC-Foxc1−/−) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1+/− and NC-Foxc1+/−) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1+/− and NC-Foxc1+/− mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling. PMID:22171010

  14. Activation of toll like receptor-3 induces corneal epithelial barrier dysfunction.

    PubMed

    Wei, Jie; Jiang, Hua; Gao, Hongrui; Wang, Guangjie

    2015-06-01

    The epithelial barrier is critical in the maintenance of the homeostasis of the cornea. A number of eye disorders are associated with the corneal epithelial barrier dysfunction. Viral infection is one common eye disease type. This study aims to elucidate the mechanism by which the activation of toll like receptor 3 (TLR3) in the disruption of the corneal epithelial barrier. In this study, HCE cells (a human corneal epithelial cell line) were cultured into epithelial layers using as an in vitro model of the corneal epithelial barrier. PolyI:C was used as a ligand of TLR3. The transepithelial electric resistance (TER) and permeability of the HCE epithelial layer were assessed using as the parameters to evaluate the corneal epithelial barrier integrity. The results showed that exposure to PolyI:C markedly decreased the TER and increased the permeability of the HCE epithelial layers; the levels of cell junction protein, E-cadherin, were repressed by PolyI:C via increasing histone deacetylase-1 (HDAC1), the latter binding to the promoter of E-cadherin and repressed the transcription of E-cadherin. The addition of butyrate (an inhibitor of HDAC1) to the culture blocked the corneal epithelial barrier dysfunction caused by PolyI:C. In conclusion, activation of TLR3 can disrupt the corneal epithelial barrier, which can be blocked by the inhibitor of HDAC1. PMID:25912142

  15. Professional Fulfillment and Satisfaction of US and Canadian Adult Education and Human Resource Development Faculty

    ERIC Educational Resources Information Center

    Peterson, Shari L.; Wiesenberg, Faye

    2004-01-01

    This comparative study explored the professional fulfillment and job satisfaction of US and Canadian college and university faculty in the fields of Adult Education and Human Resource Development. In Autumn 2001, we disseminated electronically "The Adult Education and Human Resource Development Faculty Survey" to a selected sample of Canadian and…

  16. Turning the tide of corneal blindness.

    PubMed

    Oliva, Matthew S; Schottman, Tim; Gulati, Manoj

    2012-01-01

    Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world's largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind. PMID:22944753

  17. Imaging, Reconstruction, And Display Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Klyce, Stephen D.; Wilson, Steven E.

    1989-12-01

    The cornea is the major refractive element in the eye; even minor surface distortions can produce a significant reduction in visual acuity. Standard clinical methods used to evaluate corneal shape include keratometry, which assumes the cornea is ellipsoidal in shape, and photokeratoscopy, which images a series of concentric light rings on the corneal surface. These methods fail to document many of the corneal distortions that can degrade visual acuity. Algorithms have been developed to reconstruct the three dimensional shape of the cornea from keratoscope images, and to present these data in the clinically useful display of color-coded contour maps of corneal surface power. This approach has been implemented on a new generation video keratoscope system (Computed Anatomy, Inc.) with rapid automatic digitization of the image rings by a rule-based approach. The system has found clinical use in the early diagnosis of corneal shape anomalies such as keratoconus and contact lens-induced corneal warpage, in the evaluation of cataract and corneal transplant procedures, and in the assessment of corneal refractive surgical procedures. Currently, ray tracing techniques are being used to correlate corneal surface topography with potential visual acuity in an effort to more fully understand the tolerances of corneal shape consistent with good vision and to help determine the site of dysfunction in the visually impaired.

  18. Magnetic Nanoparticles as a Potential Vehicle for Corneal Endothelium Repair.

    PubMed

    Cornell, Lauren E; Wehmeyer, Jenny L; Johnson, Anthony J; Desilva, Mauris N; Zamora, David O

    2016-05-01

    The corneal endothelium is paramount to the health and function of the cornea as damage to this cell layer can lead to corneal edema, opacification, and ultimately vision loss. Transplantation of the corneal endothelium is associated with numerous limitations, including graft rejection, thus an alternative therapeutic treatment is needed to restore endothelial layer integrity. We hypothesize that a nanotechnology-based approach using superparamagnetic iron oxide nanoparticles (SPIONPs) can ultimately be used to guide corneal endothelial cells (CECs) to injured areas via an external magnetic force without changing their morphology or viability. In this feasibility study we examined the effects of SPIONPs on the morphology and viability of bovine CECs in the presence of a magnetic force. The CECs were exposed to increasing SPIONP concentrations and the viability and cytoskeletal structure assessed over 3 days via metabolic analysis and rhodamine phalloidin staining. Significant differences (p < .05) in the metabolic activity of the CECs (100 × 10(6) SPIONP/cell) occurred in the presence of magnetic force versus those with no magnetic force. No differences were observed in the cytoskeleton of CECs in the presence or absence of magnetic force for all SPIONP concentrations. These SPIONPs will next be evaluated with human CECs for future applications. PMID:27168578

  19. Cytopathological Features of a Severe Type of Corneal Intraepithelial Neoplasia

    PubMed Central

    Fukuoka, Hideki; Kawasaki, Satoshi; Yokoi, Norihiko; Yamasaki, Kenta; Kinoshita, Shigeru

    2016-01-01

    Purpose To report the cytopathological features of corneal intraepithelial neoplasia (CIN) through the investigation of cytokeratin expression pattern, keratinization, cell proliferation, apoptosis, and epithelial mesenchymal transition. Patient and Methods Corneal tissue excised from a CIN patient was examined in this study. Cryosections of the excised CIN epithelial tissue were examined by immunostaining analysis using antibodies against cytokeratins, keratinization-related proteins, Ki-67, human telomerase reverse transcriptase (hTERT), and epithelial mesenchymal transition (EMT)-related proteins. Subcellular localization of F-actin was also analyzed using phalloidin. For the detection of apoptotic cells, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. Real-time polymerase chain reaction was performed to quantify the expression level of hTERT in the CIN epithelium. Results The CIN epithelium exhibited a significantly altered cytokeratin expression pattern compared to normal corneas with an upregulated expression of keratinization-related proteins. The CIN epithelium also demonstrated an increased number of Ki-67-positive cells with an upregulated expression of hTERT, while exhibiting an increased number of apoptotic cells. EMT did not occur in the CIN epithelium. Conclusion CIN epithelium seems to be slightly dedifferentiated from the corneal epithelial lineage. The status of cell proliferation and apoptosis in the CIN epithelium was significantly altered from that of normal corneal epithelium, but its malignancy level does not appear to be as high as that of metastasis-competent malignant cancers. PMID:27462252

  20. The Adult Learner. The Definitive Classic in Adult Education and Human Resource Development. Fifth Edition.

    ERIC Educational Resources Information Center

    Knowles, Malcolm S.; Holton, Elwood F., III; Swanson, Richard A.

    This book examines the core principles of adult learning and the roots of andragogy, advances in adult learning, and practice in adult learning. The following are among the topics discussed in the book's 17 chapters: importance of learning theory; theories of learning (concept of part and whole models of development, theories based on elemental…

  1. Corneal tissue water content mapping with THz imaging: preliminary clinical results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren

    2016-03-01

    Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.

  2. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    PubMed

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  3. Adipose-Derived Mesenchymal Stem Cell Administration Does Not Improve Corneal Graft Survival Outcome

    PubMed Central

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P.

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  4. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation

    PubMed Central

    Liu, Jingbo; Lawrence, Brian D.; Liu, Aihong; Schwab, Ivan R.; Oliveira, Lauro A.; Rosenblatt, Mark I.

    2012-01-01

    Purpose. To evaluate a silk fibroin (SF) biomaterial as a substrate for corneal epithelial cell proliferation, differentiation, and stratification in vitro compared with denuded human amniotic membrane (AM). Methods. Primary human and rabbit corneal epithelial cells and immortalized human corneal limbal epithelial cells were cultured on the SF and denuded AM, respectively. The biological cell behavior, including the morphology, proliferation, differentiation, and stratification, on the two substrates was compared and analyzed. Results. Corneal epithelial cells can adhere and proliferate on the SF and denuded AM with a cobblestone appearance, abundant microvilli on the surface, and wide connection with the adjacent cells. MTT assay showed that cell proliferation on denuded AM was statistically higher than that on SF at 24 and 72 hours after plating (P = 0.001 and 0.0005, respectively). Expression of ΔNp63a and keratin 3/12 was detected in primary cell cultures on the two substrates with no statistical difference. When cultured at the air-liquid interface for 7 days, cells on SF could form a comparable stratified graft with a 2- to 3-cell layering, which compared similarly to AM cultures. Conclusions. SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes. PMID:22661480

  5. Optimization of silk films as substrate for functional corneal epithelium growth.

    PubMed

    Jia, Liang; Ghezzi, Chiara E; Kaplan, David L

    2016-02-01

    The corneal epithelium is the first cellular barrier to protect the cornea. Thus, functional tissue engineering of the corneal epithelium is a strategy for clinical transplantation. In this study, the optimization of silk films (SFs) as substrates for functional human corneal epithelium growth was investigated with primary human corneal epithelial cells on SFs, poly-D-lysine (PDL) coated SFs, arginine-glycine-aspartic acid (RGD) modified SFs and PDL blended SFs. PDL coated SFs significantly promoted cell adhesion at early phases in comparison to the other study groups, while PDL blended SF significantly promoted cell migration in a "wound healing" model. All film modifications promoted cell proliferation and viability, and a multi-layered epithelium was achieved in 4 weeks of culture. The epithelia formed were tightly apposed and maintained an intact barrier function against rose bengal dye penetration. The results suggested that a differentiated human corneal epithelium can be established with primary corneal epithelial cells on SFs in vitro, by optimizing SF composition with PDL. PMID:25891207

  6. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells

    PubMed Central

    Zhong, Jing; Deng, Yuqing; Tian, Bishan; Wang, Bowen; Sun, Yifang; Huang, Haixiang; Chen, Ling; Ling, Shiqi; Yuan, Jin

    2016-01-01

    Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA) in promoting corneal wound healing. Methods. Human corneal epithelial cells (HCECs) were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-α and MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined. Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1β and MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group. Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses. PMID:27190638

  7. Adult somatic stem cells in the human parasite, Schistosoma mansoni

    PubMed Central

    Collins, James J.; Wang, Bo; Lambrus, Bramwell G.; Tharp, Marla; Iyer, Harini; Newmark, Phillip A.

    2013-01-01

    Summary Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites. PMID:23426263

  8. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  9. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  10. Surgical technique: coupling of intrastromal corneal ring segments for ectatic corneal disorders in eye bank corneas

    PubMed Central

    Moshirfar, Majid; Hsu, Maylon; Khalifa, Yousuf M

    2011-01-01

    The management of corneal ectasia is evolving, with intrastromal corneal ring segments playing an important role in delaying or eliminating the need for penetrating keratoplasty. This paper describes a modification in the implantation technique of intrastromal corneal ring segments that allows for coupling of the two segments with suture, affording more structural support. PMID:22034567

  11. Primary corneal melanocytoma in a Collie.

    PubMed

    Bauer, Bianca; Leis, Marina L; Sayi, Soraya

    2015-09-01

    A 6-year-old female, spayed Collie was referred to the Western College of Veterinary Medicine for a 12-month history of a progressive right corneal mass. A superficial keratectomy was performed and histopathology revealed a corneal melanocytoma with complete excision. There has been no recurrence of the neoplasm to date (12 months). This is the first known report of an isolated corneal melanocytoma in a canine. PMID:25296627

  12. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  13. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma.

    PubMed

    Yu, Wing Yan; Sheridan, Carl; Grierson, Ian; Mason, Sharon; Kearns, Victoria; Lo, Amy Cheuk Yin; Wong, David

    2011-01-01

    Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE) and the anterior nonfiltering portion of the trabecular meshwork (TM), which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma. PMID:22187525

  14. Central Corneal Thickness in Children

    PubMed Central

    2011-01-01

    Objective To report the central corneal thickness (CCT) in healthy white, African-American, and Hispanic children from birth to 17 years of age. Design Prospective observational multicenter study. Central corneal thickness was measured with a hand-held contact pachymeter. Results Two thousand seventy-nine children were included in the study, with ages ranging from day of birth to 17 years. Included were 807 white, 494 Hispanic, and 474 African-American individuals, in addition to Asian, unknown and mixed race individuals. African-American children had thinner corneas on average than that of both white (p< .001) and Hispanic children (p< .001) by approximately 20 micrometers. Thicker median CCT was observed with each successive year of age from age 1 to 11 years, with year-to-year differences steadily decreasing and reaching a plateau after age 11 at 573 micrometers in white and Hispanic children and 551 micrometers in African-American children. For every 100 micrometers of thicker CCT measured, the intraocular pressure was 1.5 mmHg higher on average (p< 0.001). For every diopter of increased myopic refractive error (p< 0.001) CCT was 1 micrometer thinner on average. Conclusions Median CCT increases with age from 1 to 11 years with the greatest increase present in the youngest age groups. African-American children on average have thinner central corneas than white and Hispanic children, while white and Hispanic children demonstrate similar central corneal thickness. PMID:21911662

  15. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  16. A comparison of erythrocyte glutathione S-transferase activity from human foetuses and adults.

    PubMed Central

    Strange, R C; Johnston, J D; Coghill, D R; Hume, R

    1980-01-01

    Glutathione S-transferase activity was measured in partially purified haemolysates of erythrocytes from human foetuses and adults. Enzyme activity was present in erythrocytes obtained between 12 and 40 weeks of gestation. The catalytic properties of the enzyme from foetal cells were similar to those of the enzyme from adult erythrocytes, indicating that probably only one form of the erythrocytes enzyme exists throughout foetal and adult life. PMID:7396875

  17. Human paraoxonase polymorphism: Hungarian population studies in children and adults.

    PubMed

    Szabó, I; Róna, K; Czinner, A; Gachályi, B

    1991-06-01

    The paraoxonase phenotype distribution pattern was studied in a Hungarian population of 102 children and 100 adults. All the subjects were of Caucasian origin and are not related. The adult population showed the trimodality in phenotype distribution similar to other European population data. The gene frequencies obtained were statistically not significantly different either. There was no correlation between the activity of serum paraoxonase and activity of cholinesterase, sex, age and body weight. The phenotype distribution was trimodal in the children's population too. There was a significant difference in gene frequency, however, compared to data from adult population. PMID:1651288

  18. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  19. Reaching beyond the United States: Adventures in International Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Henschke, John A.

    2005-01-01

    In this article, the author shares his experience of how travel and adult education merged, for him, into a major emphasis in international adult education (AE) and human resource development (HRD). International ventures have been some of the most exciting and learning-filled aspects of the author's career in AE and HRD. His involvement in…

  20. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  1. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  2. [Corneal tatoo--art or science?].

    PubMed

    Craiu, Andreea-Madalina

    2009-01-01

    The permanent colouring of disfigured corneal scars is known for almost 200 years. Because of improvement in surgical reconstructive techniques, corneal tattoing is used today only with a restricted group on carefully chosen patients, and merely for esthetique reasons. PMID:19697848

  3. In Vitro and In Vivo Models to Study Corneal Endothelial-mesenchymal Transition.

    PubMed

    Ho, Wei-Ting; Su, Chien-Chia; Chang, Jung-Shen; Chang, Shu-Wen; Hu, Fung-Rong; Jou, Tzuu-Shuh; Wang, I-Jong

    2016-01-01

    Corneal endothelial cells (CECs) play a crucial role in maintaining corneal clarity through active pumping. A reduced CEC count may lead to corneal edema and diminished visual acuity. However, human CECs are prone to compromised proliferative potential. Furthermore, stimulation of cell growth is often complicated by gradual endothelial-mesenchymal transition (EnMT). Therefore, understanding the mechanism of EnMT is necessary for facilitating the regeneration of CECs with competent function. In this study, we prepared a primary culture of bovine CECs by peeling the CECs with Descemet's membrane from the corneal button and demonstrated that bovine CECs exhibited the EnMT process, including phenotypic change, nuclear translocation of β-catenin, and EMT regulators snail and slug, in the in vitro culture. Furthermore, we used a rat corneal endothelium cryoinjury model to demonstrate the EnMT process in vivo. Collectively, the in vitro primary culture of bovine CECs and in vivo rat corneal endothelium cryoinjury models offers useful platforms for investigating the mechanism of EnMT. PMID:27583795

  4. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    NASA Astrophysics Data System (ADS)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  5. Involvement of NADPH oxidases in alkali burn-induced corneal injury

    PubMed Central

    GU, XUE-JUN; LIU, XIAN; CHEN, YING-YING; ZHAO, YAO; XU, MAN; HAN, XIAO-JIAN; LIU, QIU-PING; YI, JING-LIN; LI, JING-MING

    2016-01-01

    Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double-immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn-induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury. PMID:27221536

  6. Corneal autofluorescence in presence of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Docchio, Franco; Azzolini, Claudio; Van Best, Jaap A.

    1998-06-01

    Recently corneal autofluorescence has been proposed as an ocular diagnostic tool for diabetic retinopathy. The method is based on the sensible increase of the natural fluorescence of corneal tissue within specific wavelength in presence of early stage of diabetic retinopathy. The main advantages of this method are that the corneal autofluorescence has been demonstrated to be not age-related and that the cornea is readily accessible to be investigated. In this study 47 insulin-dependent diabetes mellitus and 51 non-insulin- dependent diabetes mellitus patients aged 20 - 90 years have been considered. Patients were selected from the Eye Clinic of S. Raffaele Hospital. The modified Airlie House classification was used to grade the diabetic retinopathy. Corneal autofluorescence has been measured by using both a specifically designed instrument and the Fluorotron Master. Corneal autofluorescence mean value for each diabetic retinopathy measured by using both the instruments correlated with the retinopathy grade.

  7. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  8. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  9. Integrin Alpha-9 Mediates Lymphatic Valve Formation in Corneal Lymphangiogenesis

    PubMed Central

    Altiok, Eda; Ecoiffier, Tatiana; Sessa, Roberto; Yuen, Don; Grimaldo, Sammy; Tran, Colin; Li, David; Rosner, Michael; Lee, Narae; Uede, Toshimitsu; Chen, Lu

    2015-01-01

    Purpose We recently reported that corneal lymphatic vessels develop integrin alpha-9 (Itga-9)-positive valves during inflammatory lymphangiogenesis. The purpose of this study was to further investigate the role of Itga-9 in corneal lymphatic valve formation in vivo and lymphatic endothelial cell (LEC) functions in vitro. Methods Standard murine suture placement model was used to study the effect of Itga-9 blockade on lymphatic valve formation in vivo using Itga-9 neutralizing antibody. Whole-mount corneas were harvested for immunofluorescent microscopic analysis. Additionally, human LEC culture system was used to examine the effect of Itga-9 gene knockdown on cell functions using small interfering RNAs (siRNAs). Results Itga-9 blockade in vivo significantly reduced the number of lymphatic valves formed in the inflamed cornea. Moreover, Itga-9 gene knockdown in human LECs suppresses cell functions of proliferation, adhesion, migration, and tube formation. Conclusions Itga-9 is critically involved in corneal lymphatic valve formation. Further investigation of the Itga-9 pathway may provide novel strategies to treat lymphatic-related diseases occurring both inside and outside the eye. PMID:26431485

  10. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  11. Differential diagnosis of Schnyder corneal dystrophy.

    PubMed

    Weiss, Jayne S; Khemichian, Arbi J

    2011-01-01

    Schnyder corneal dystrophy (SCD) is a rare corneal dystrophy characterized by abnormally increased deposition of cholesterol and phospholipids in the cornea leading to progressive vision loss. SCD is inherited as an autosomal dominant trait with high penetrance and has been mapped to the UBIAD1 gene on chromosome 1p36.3. Although 2/3 of SCD patients also have systemic hypercholesterolemia, the incidence of hypercholesterolemia is also increased in unaffected members of SCD pedigrees. Consequently, SCD is thought to result from a local metabolic defect in the cornea. The corneal findings in SCD are very predictable depending on the age of the individual, with initial central corneal haze and/or crystals, subsequent appearance of arcus lipoides in the third decade and formation of midperipheral haze in the late fourth decade. Because only 50% of affected patients have corneal crystals, the International Committee for Classification of Corneal Dystrophies recently changed the original name of this dystrophy from Schnyder crystalline corneal dystrophy to Schnyder corneal dystrophy. Diagnosis of affected individuals without crystalline deposits is often delayed and these individuals are frequently misdiagnosed. The differential diagnosis of the SCD patient includes other diseases with crystalline deposits such as cystinosis, tyrosinemia, Bietti crystalline dystrophy, hyperuricemia/gout, multiple myeloma, monoclonal gammopathy, infectious crystalline keratopathy, and Dieffenbachia keratitis. Depositions from drugs such as gold in chrysiasis, chlorpromazine, chloroquine, and clofazamine can also result in corneal deposits and are different from SCD. Diseases of systemic lipid metabolism that cause corneal opacification, such as lecithin-cholesterol acyltransferase deficiency, fish eye disease and Tangier disease, should also be considered although these are autosomal recessive disorders. PMID:21540632

  12. Response of corneal epithelial cells to Staphylococcus aureus

    PubMed Central

    2010-01-01

    Staphylococcus aureus is a leading cause of invasive infection. It also infects wet mucosal tissues including the cornea and conjunctiva. Conflicting evidence exists on the expression of Toll-like receptors by human corneal epithelial cells. It was therefore of interest to determine how epithelial cells from this immune privileged tissue respond to S. aureus. Further, it was of interest to determine whether cytolytic toxins, with the potential to cause ion flux or potentially permit effector molecule movement across the target cell membrane, alter the response. Microarrays were used to globally assess the response of human corneal epithelial cells to S. aureus. A large increase in abundance of transcripts encoding the antimicrobial dendritic cell chemokine, CCL20, was observed. CCL20 release into the medium was detected, and this response was found to be largely TLR2 and NOD2 independent. Corneal epithelial cells also respond to S. aureus by increasing the intracellular abundance of mRNA for inflammatory mediators, transcription factors, and genes related to MAP kinase pathways, in ways similar to other cell types. The corneal epithelial cell response was surprisingly unaffected by toxin exposure. Toxin exposure did, however, induce a stress response. Although model toxigenic and non-toxigenic strains of S. aureus were employed in the present study, the results obtained were strikingly similar to those reported for stimulation of vaginal epithelial cells by clinical toxic shock toxin expressing isolates, demonstrating that the initial epithelial cellular responses to S. aureus are largely independent of strain as well as epithelial cell tissue source. PMID:21178447

  13. Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix

    PubMed Central

    Hashimoto, Yoshihide; Funamoto, Seiichi; Sasaki, Shuji; Negishi, Jun; Honda, Takako; Hattori, Shinya; Nam, Kwangwoo; Kimura, Tsuyoshi; Mochizuki, Manabu; Kobayashi, Hisatoshi; Kishida, Akio

    2015-01-01

    The purpose of this study is to demonstrate the feasibility of DALK using a decellularized corneal matrix obtained by HHP methodology. Porcine corneas were hydrostatically pressurized at 980 MPa at 10°C for 10 minutes to destroy the cells, followed by washing with EGM-2 medium to remove the cell debris. The HHP-treated corneas were stained with H-E to assess the efficacy of decellularization. The decellularized corneal matrix of 300 μm thickness and 6.0 mm diameter was transplanted onto a 6.0 mm diameter keratectomy wound. The time course of regeneration on the decellularized corneal matrix was evaluated by haze grading score, fluorescein staining, and immunohistochemistry. H-E staining revealed that no cell nuclei were observed in the decellularized corneal matrix. The decellularized corneal matrices were opaque immediately after transplantation, but became completely transparent after 4 months. Fluorescein staining revealed that initial migration of epithelial cells over the grafts was slow, taking 3 months to completely cover the implant. Histological sections revealed that the implanted decellularized corneal matrix was completely integrated with the receptive rabbit cornea, and keratocytes infiltrated into the decellularized corneal matrix 6 months after transplantation. No inflammatory cells such as macrophages, or neovascularization, were observed during the implantation period. The decellularized corneal matrix improved corneal transparency, and remodelled the graft after being transplanted, demonstrating that the matrix obtained by HHP was a useful graft for corneal tissue regeneration. PMID:26161854

  14. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  15. First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs’ Endothelial Corneal Dystrophy

    PubMed Central

    Mazzotta, Cosimo; Traversi, Claudio; Raiskup, Frederik; Rizzo, Caterina Lo; Renieri, Alessandra

    2014-01-01

    Purpose To report the observation of a triple corneal dystrophy association consisting of keratoconus (KC), epithelial basement membrane corneal dystrophy (EBMCD) and Fuchs’ endothelial corneal dystrophy (FECD). Methods A 55-year-old male patient was referred to our cornea service for blurred vision and recurrent foreign body sensation. He reported bilateral recurrent corneal erosions with diurnal visual fluctuations. He underwent corneal biomicroscopy, Scheimpflug tomography, in vivo HRT confocal laser scanning microscopy and genetic testing for TGFBI and ZEB1 mutations using direct DNA sequencing. Results Biomicroscopic examination revealed the presence of subepithelial central and paracentral corneal opacities. The endothelium showed a bilateral flecked appearance, and the posterior corneal curvature suggested a possible concomitant ectatic disorder. Corneal tomography confirmed the presence of a stage II KC in both eyes. In vivo confocal laser scanning microscopy revealed a concomitant bilateral EBMCD with hyperreflective deposits in basal epithelial cells, subbasal Bowman's layer microfolds and ridges with truncated subbasal nerves as pseudodendritic elements. Stromal analysis revealed honeycomb edematous areas, and the endothelium showed a strawberry surface configuration typical of FECD. The genetic analysis resulted negative for TGFBI mutations and positive for a heterozygous mutation in exon 7 of the gene ZEB1. Conclusion This is the first case reported in the literature in which KC, EBMCD and FECD are present in the same patient and associated with ZEB1 gene mutation. The triple association was previously established by means of morphological analysis of the cornea using corneal Scheimpflug tomography and in vivo HRT II confocal laser scanning microscopy. PMID:25408666

  16. Self-organized centripetal movement of corneal epithelium in the absence of external cues

    NASA Astrophysics Data System (ADS)

    Lobo, Erwin P.; Delic, Naomi C.; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M.; di Girolamo, Nick; Myerscough, Mary R.; Lyons, J. Guy

    2016-08-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells.

  17. Self-organized centripetal movement of corneal epithelium in the absence of external cues.

    PubMed

    Lobo, Erwin P; Delic, Naomi C; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M; Di Girolamo, Nick; Myerscough, Mary R; Lyons, J Guy

    2016-01-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells. PMID:27499113

  18. Self-organized centripetal movement of corneal epithelium in the absence of external cues

    PubMed Central

    Lobo, Erwin P.; Delic, Naomi C.; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M.; Di Girolamo, Nick; Myerscough, Mary R.; Lyons, J. Guy

    2016-01-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells. PMID:27499113

  19. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration.

    PubMed

    Greene, Carol Ann; Green, Colin R; Dickinson, Michelle E; Johnson, Virginia; Sherwin, Trevor

    2016-09-10

    The stroma, the middle layer of the cornea, is a connective tissue making up most of the corneal thickness. The stromal extracellular matrix (ECM) consists of highly organised lamellae which are made up of tightly packed fibrils primarily composed of collagens type I and V. This layer is interspersed with keratocytes, mesenchymal cells of neural crest origin. We have previously shown that adult corneal keratocytes exhibit phenotypic plasticity and can be induced into a neuronal phenotype. In the current study we evaluated the potential of keratocytes to produce collagen type II via phenotypic reprogramming with exogenous chondrogenic factors. The cornea presents a challenge to tissue engineers owing to its high level of organisation and the phenotypic instability of keratocytes. Traditional approaches based on a scar model do not support the engineering of functional stromal tissue. Type II collagen is not found in the adult cornea but is reported to be expressed during corneal development, raising the possibility of using such an approach to regenerate the corneal ECM. Keratocytes in culture and within intact normal and diseased tissue were induced to produce collagen type II upon treatment with transforming growth factor Beta3 (TGFβ3) and dexamethasone. In vivo treatment of rat corneas also resulted in collagen type II deposition and a threefold increase in corneal hardness and elasticity. Furthermore, the treatment of corneas and subsequent deposition of collagen type II did not cause opacity, fibrosis or scarring. The induction of keratocytes with specific exogenous factors and resulting deposition of type II collagen in the stroma can potentially be controlled by withdrawal of the factors. This might be a promising new approach for in vivo corneal regeneration strategies aimed at increasing corneal integrity in diseases associated with weakened ectatic corneal tissue such as keratoconus. PMID:27539660

  20. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells

    PubMed Central

    Yang, Xueyi; Moldovan, Nicanor I.; Zhao, Qingmei; Mi, Shengli; Zhou, Zhenhui; Chen, Dan; Gao, Zhimin; Tong, Dewen

    2008-01-01

    Purpose It is crucial for the treatment of severe ocular surface diseases such as Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP) to find strategies that avoid the risks of allograft rejection and immunosuppression. Here, we report a new strategy for reconstructing the damaged corneal surface in a goat model of total limbal stem cell deficiency (LSCD) by autologous transplantation of epidermal adult stem cells (EpiASC). Methods EpiASC derived from adult goat ear skin by explant culture were purified by selecting single cell-derived clones. These EpiASC were cultivated on denuded human amniotic membrane (HAM) and transplanted onto goat eyes with total LSCD. The characteristics of both EpiASC and reconstructed corneal epithelium were identified by histology and immunohistochemistry. The clinical characteristic of reconstructed corneal surface was observed by digital camera. Results Ten LSCD goats (10 eyes) were treated with EpiASC transplantation, leading to the restoration of corneal transparency and improvement of postoperative visual acuity to varying degrees in 80.00% (8/10) of the experimental eyes. The corneal epithelium of control groups either with HAM transplantation only or without any transplantation showed irregular surfaces, diffuse vascularization, and pannus on the entire cornea. The reconstructed corneal epithelium (RCE) expressed CK3, CK12, and PAX-6 and had the function of secreting glycocalyx-like material (AB-PAS positive). During the follow-up period, all corneal surfaces remained transparent and there were no serious complications. We also observed that the REC expressed CK1/10 weakly at six months after operation but not at 12 months after operation, suggesting that the REC was derived from grafted EpiASC. Conclusions Our results showed that EpiASC repaired the damaged cornea of goats with total LSCD and demonstrated that EpiASC can be induced to differentiate into corneal epithelial cell types in vivo, which at least in

  1. ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis

    PubMed Central

    Mehta, Gaurav; Orlicky, David J.; Thompson, David C.; Jester, James V.; Vasiliou, Vasilis

    2016-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the

  2. [Influence of corneal transparency on the quality of topographies].

    PubMed

    Franko Zeitz, P; Kohlhaas, M

    2012-12-01

    Corneal topographs that measure the anterior and posterior corneal surface with optical methods need a clear cornea for precise measurements. Opacities cause artifacts in the corneal thickness (with measurements usually being too thin) and corneal curvatures. This is important to know as certain pathologies may repeatedly cause similar artifacts. This is highly relevant after a corneal cross-linking, Lasek or PRK, as these procedures cause typical artifacts that can easily be misinterpreted. PMID:23258670

  3. Terahertz sensing in corneal tissues

    PubMed Central

    Bennett, David B.; Taylor, Zachary D.; Tewari, Pria; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Sassoon, Daniel J.; Johnson, R. Duncan; Hubschman, Jean-Pierre; Brown, Elliott R.

    2011-01-01

    This work introduces the potential application of terahertz (THz) sensing to the field of ophthalmology, where it is uniquely suited due to its nonionizing photon energy and high sensitivity to water content. Reflective THz imaging and spectrometry data are reported on ex-vivo porcine corneas prepared with uniform water concentrations using polyethylene glycol (PEG) solutions. At 79% water concentration by mass, the measured reflectivity of the cornea was 20.4%, 14.7%, 11.7%, 9.6%, and 7.4% at 0.2, 0.4, 0.6, 0.8, and 1 THz, respectively. Comparison of nine corneas hydrated from 79.1% to 91.5% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration, with a monotonically decreasing slope as the frequency increases. The THz-corneal tissue interaction is simulated with a Bruggeman model with excellent agreement. THz applications to corneal dystrophy, graft rejection, and refractive surgery are examined from the context of these measurements. PMID:21639581

  4. Corporate Human Resources Adult Training and Employment Program Description.

    ERIC Educational Resources Information Center

    Aetna Life and Casualty, Hartford, CT.

    In response to increasing difficulty in finding qualified candidates for entry-level positions, the Aetna company has developed an Adult Training and Employment program. This program (1) trains, hires, and retains nontraditional candidates from the area's public and private agencies; (2) focuses on issues that affect this population's ability to…

  5. The Human Function Compunction: Teleological Explanation in Adults

    ERIC Educational Resources Information Center

    Kelemen, Deborah; Rosset, Evelyn

    2009-01-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for…

  6. "Adult Education Is about Human Being in All Its Aspects"

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2011-01-01

    Derek Legge, who celebrated his 95th birthday at the end of last month, is one of the most dedicated and influential of the largely unsung heroes of the adult education movement in Britain. As modesty is one of the many qualities with which his friends and colleagues credit him, he is certain to shrink from the description, but there is little…

  7. Adult Literacy Programs in Uganda. Africa Region Human Development Series.

    ERIC Educational Resources Information Center

    Okech, Anthony; Carr-Hill, Roy A.; Katahoire, Anne R.; Kakooza, Teresa; Ndidde, Alice N.; Oxenham, John

    This report evaluates the outcomes and cost effectiveness of adult literacy programs in Ugandan villages and compares government programs with those provided by nongovernmental organizations (NGOs). Part 1 describes evaluation objectives, government and NGO literacy programs and the rural socioeconomic context, and evaluation design. About 100…

  8. Human Capital Development: Reforms for Adult and Community Education

    ERIC Educational Resources Information Center

    Choy, Sarojni; Haukka, Sandra

    2007-01-01

    The adult and community education (ACE) sector is consistently responsive to changing community needs and government priorities. It is this particular function that has drawn ACE into the lifelong learning debate as one model for sustaining communities. The responsiveness of ACE means that the sector and its programs continue to make valuable…

  9. Corneal Nerves in Health and Disease

    PubMed Central

    Shaheen, Brittany; Bakir, May; Jain, Sandeep

    2013-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuro-regenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuro-regenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  10. Corneal nerves in health and disease.

    PubMed

    Shaheen, Brittany Simmons; Bakir, May; Jain, Sandeep

    2014-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuroregenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuroregenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  11. Corneal laceration caused by river crab

    PubMed Central

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  12. Molecular Bases of Corneal Endothelial Dystrophies

    PubMed Central

    Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula

    2011-01-01

    The phrase “corneal endothelial dystrophies” embraces a group of bilateral corneal conditions that are characterized by a non-inflammatory and progressive degradation of corneal endothelium. Corneal endothelial cells exhibit a high pump site density and, along with barrier function, are responsible for maintaining the cornea in its natural state of relative dehydration. Gradual loss of endothelial cells leads to an insufficient water outflow, resulting in corneal edema and loss of vision. Since the pathologic mechanisms remain largely unknown, the only current treatment option is surgical transplantation when vision is severely impaired. In the past decade, important steps have been taken to understand how endothelial degeneration progresses on the molecular level. Studies of affected multigenerational families and sporadic cases identified genes and chromosomal loci, and revealed either Mendelian or complex disorder inheritance patterns. Mutations have been detected in genes that carry important structural, metabolic, cytoprotective, and regulatory functions in corneal endothelium. In addition to genetic predisposition, environmental factors like oxidative stress were found to be involved in the pathogenesis of endotheliopathies. This review summarizes and crosslinks the recent progress on deciphering the molecular bases of corneal endothelial dystrophies. PMID:21855542

  13. Corneal laceration caused by river crab.

    PubMed

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  14. Application of retinoic acid improves form and function of tissue engineered corneal construct

    PubMed Central

    Abidin, Fadhilah Z; Gouveia, Ricardo M; Connon, Che J

    2015-01-01

    ABSTRACT Retinoic acid has recently been shown to control the phenotype and extracellular matrix composition of corneal stromal cells cultured in vitro as monolayers. This study set out to investigate the effects of retinoic acid on human corneal keratocytes within a 3D environment. Human corneal keratocytes were encapsulated in collagen gels, which were subsequently compressed under load, and cultured in serum-free media supplemented with 10 µM retinoic acid or DMSO vehicle for 30 days. Cell proliferation was quantified on selected days, while the expression of several important keratocytes markers was evaluated at day 30 using RT-PCR and immunoblotting. The weight and size of the collagen constructs were measured before and after hydration and contraction analyses. Retinoic acid enhanced keratocyte proliferation until day 30, whereas cells in control culture conditions showed reduced numbers after day 21. Both gene and protein expressions of keratocyte-characteristic proteoglycans (keratocan, lumican and decorin), corneal crystallins and collagen type I and V were significantly increased following retinoic acid supplementation. Retinoic acid also significantly reduced the expression of matrix metalloproteases 1, 3 and 9 while not increasing α-smooth muscle actin and fibronectin expression. Furthermore, these effects were also correlated with the ability of retinoic acid to significantly inhibit the contractility of keratocytes while allowing the build-up of corneal stromal extracellular matrix within the 3D constructs. Thus, retinoic acid supplementation represents a promising strategy to improve the phenotype of 3D-cultured keratocytes, and their usefulness as a model of corneal stroma for corneal biology and regenerative medicine applications. PMID:26496651

  15. Corneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation?

    PubMed Central

    Wilson, Samantha L.; Sidney, Laura E.; Dunphy, Siobhán E.; Dua, Harminder S.; Hopkinson, Andrew

    2016-01-01

    Abstract Background: There is a clinical need for biomimetic corneas that are as effective, preferably superior, to cadaveric donor tissue. Decellularized tissues are advantageous compared to synthetic or semi-synthetic engineered tissues in that the native matrix ultrastructure and intrinsic biological cues including growth factors, cytokines and glycosaminoglycans may be retained. However, there is currently no reliable, standardized human corneal decellularization protocol. Methods: Corneal eye-bank tissue unsuitable for transplantation was utilized to systematically compare commonly used decellularization protocols. Hypertonic sodium chloride; an ionic reagent, sodium dodecyl sulphate; a non-ionic detergent, tert-octylphenol polyoxyethylene (Triton-X); enzymatic disaggregation using Dispase; mechanical agitation; and the use of nucleases were investigated. Decellularization efficacy, specifically for human corneal tissue, was extensively evaluated. Removal of detectable cellular material was evidenced by histological, immunofluorescence and biochemical assays. Preservation of macroscopic tissue transparency and light transmittance was evaluated. Retention of corneal architecture, collagen and glycosaminoglycans was assessed via histological, immunofluorescence and quantitative analysis. Biocompatibility of the resulting scaffolds was assessed using cell proliferation assays. Results: None of the decellularization protocols investigated successfully removed 100% of cellular components. The techniques with the least residual cellular material were most structurally compromised. Biochemical analysis of glycosaminoglycans demonstrated the stripping effects of the decellularization procedures. Conclusion: The ability to utilize, reprocess and regenerate tissues deemed “unsuitable” for transplantation allows us to salvage valuable tissue. Reprocessing the tissue has the potential to have a considerable impact on addressing the problems associated with cadaveric

  16. Application of retinoic acid improves form and function of tissue engineered corneal construct.

    PubMed

    Abidin, Fadhilah Z; Gouveia, Ricardo M; Connon, Che J

    2015-01-01

    Retinoic acid has recently been shown to control the phenotype and extracellular matrix composition of corneal stromal cells cultured in vitro as monolayers. This study set out to investigate the effects of retinoic acid on human corneal keratocytes within a 3D environment. Human corneal keratocytes were encapsulated in collagen gels, which were subsequently compressed under load, and cultured in serum-free media supplemented with 10 µM retinoic acid or DMSO vehicle for 30 days. Cell proliferation was quantified on selected days, while the expression of several important keratocytes markers was evaluated at day 30 using RT-PCR and immunoblotting. The weight and size of the collagen constructs were measured before and after hydration and contraction analyses. Retinoic acid enhanced keratocyte proliferation until day 30, whereas cells in control culture conditions showed reduced numbers after day 21. Both gene and protein expressions of keratocyte-characteristic proteoglycans (keratocan, lumican and decorin), corneal crystallins and collagen type I and V were significantly increased following retinoic acid supplementation. Retinoic acid also significantly reduced the expression of matrix metalloproteases 1, 3 and 9 while not increasing α-smooth muscle actin and fibronectin expression. Furthermore, these effects were also correlated with the ability of retinoic acid to significantly inhibit the contractility of keratocytes while allowing the build-up of corneal stromal extracellular matrix within the 3D constructs. Thus, retinoic acid supplementation represents a promising strategy to improve the phenotype of 3D-cultured keratocytes, and their usefulness as a model of corneal stroma for corneal biology and regenerative medicine applications. PMID:26496651

  17. Differences between real and predicted corneal shapes after aspherical corneal ablation.

    PubMed

    Anera, Rosario G; Villa, César; Jiménez, José R; Gutiérrez, Ramón; del Barco, Luis Jiménez

    2005-07-20

    We study the differences between real and expected corneal shapes, using an aspherical ablation algorithm with a known equation and avoiding the limitation imposed by most studies of refractive surgery in which the ablation equations are not known. We have calculated the theoretical corneal shape predicted by this algorithm, comparing this shape with the real corneal topography. The results indicate that the deviations that appear in the corneal shape are significant for visual performance and for the correction of eye aberrations. If we include in this analysis the effect of reflection losses and nonnormal incidence on the cornea, we can reduce corneal differences, but they will remain significant. These results confirm that it is essential to minimize corneal differences to achieve effective correction in refractive surgery. PMID:16047903

  18. Searching for the vomeronasal organ of adult humans: preliminary findings on location, structure, and size.

    PubMed

    Smith, T D; Siegel, M I; Burrows, A M; Mooney, M P; Burdi, A R; Fabrizio, P A; Clemente, F R

    1998-06-15

    The adult human vomeronasal organ (VNO) has been the focus of numerous recent investigations, yet its developmental continuity from the human fetal VNO is poorly understood. The present study compared new data on the adult human "VNO" with previous findings on the fetal human VNO. Nasal septa were removed from twelve adult human cadavers and each specimen was histologically sectioned. Coronal sections were stained with hematoxylin-eosin and periodic acid-Schiff-hematoxylin. The sections were examined by light microscopy for the presence of VNOs and the anterior paraseptal cartilages (PC). VNOs were quantified using a computer reconstruction technique to obtain VNO length, volume, and vomeronasal epithelium (VNE) volume. Histologically, VNOs and PCs were identified in eleven specimens. VNOs had ciliated, pseudostratified columnar epithelium with goblet cells. Variations (e.g., multiple communications to the nasal cavity) were observed in several specimens. Quantification was possible for 16 right or left VNOs. Right or left VNOs ranged from 3.5 to 11.8 mm in length, from 1.8 to 33.8 x 10(-4)cc in volume, and from 2.7 to 18.1 x 10(-4)cc in VNE volume. Results indicated that the adult human VNO was similar in VNE morphology, lumen shape, and spatial relationships when compared to human fetal VNOs. By comparison with previous fetal VNO measures, mean VNO length, volume, and VNE volume were larger in adult humans. These results support previous suggestions that postnatal VNO growth occurs. Findings on location and spatial relationships of the adult VNO were similar to those seen in human fetuses, but critical questions remain regarding the ontogeny of the vomeronasal nerves and VNE. PMID:9712196

  19. Teaching Adults with Learning Disabilities. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    Jordan, Dale R.

    This book is designed to show teachers how to reach out to adults and adolescents with learning disabilities and employ specific strategies for helping them to compensate for the disabilities and acquire literacy skills. The ways in which specific differences in brain structure inhibit the mastery of reading, spelling, handwriting, phonics, and…

  20. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  1. Theoretical and numerical analysis of the corneal air puff test

    NASA Astrophysics Data System (ADS)

    Simonini, Irene; Angelillo, Maurizio; Pandolfi, Anna

    2016-08-01

    Ocular analyzers are used in the current clinical practice to estimate, by means of a rapid air jet, the intraocular pressure and other eye's parameters. In this study, we model the biomechanical response of the human cornea to the dynamic test with two approaches. In the first approach, the corneal system undergoing the air puff test is regarded as a harmonic oscillator. In the second approach, we use patient-specific geometries and the finite element method to simulate the dynamic test on surgically treated corneas. In spite of the different levels of approximation, the qualitative response of the two models is very similar, and the most meaningful results of both models are not significantly affected by the inclusion of viscosity of the corneal material in the dynamic analysis. Finite element calculations reproduce the observed snap-through of the corneal shell, including two applanate configurations, and compare well with in vivo images provided by ocular analyzers, suggesting that the mechanical response of the cornea to the air puff test is actually driven only by the elasticity of the stromal tissue. These observations agree with the dynamic characteristics of the test, since the frequency of the air puff impulse is several orders of magnitude larger than the reciprocal of any reasonable relaxation time for the material, downplaying the role of viscosity during the fast snap-through phase.

  2. Arts and Humanities in Adult and Continuing Education. Trends and Issues Alerts.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Trends and issues related to arts and humanities in adult and continuing education can be categorized in three ways: ways of knowing, informal sites of learning, and cultural pluralism. The arts and humanities are vehicles for critical reflection, and they present paths to the individual construction of knowledge that are intuitive, relational,…

  3. Distribution of Posterior Corneal Astigmatism According to Axis Orientation of Anterior Corneal Astigmatism

    PubMed Central

    Miyake, Toshiyuki; Shimizu, Kimiya; Kamiya, Kazutaka

    2015-01-01

    Purpose To investigate the distribution of posterior corneal astigmatism in eyes with with-the-rule (WTR) and against-the-rule (ATR) anterior corneal astigmatism. Methods We retrospectively examined six hundred eight eyes of 608 healthy subjects (275 men and 333 women; mean age ± standard deviation, 55.3 ± 20.2 years). The magnitude and axis orientation of anterior and posterior corneal astigmatism were determined with a rotating Scheimpflug system (Pentacam HR, Oculus) when we divided the subjects into WTR and ATR anterior corneal astigmatism groups. Results The mean magnitudes of anterior and posterior corneal astigmatism were 1.14 ± 0.76 diopters (D), and 0.37 ± 0.19 D, respectively. We found a significant correlation between the magnitudes of anterior and posterior corneal astigmatism (Pearson correlation coefficient r = 0.4739, P<0.001). In the WTR anterior astigmatism group, we found ATR astigmatism of the posterior corneal surface in 402 eyes (96.6%). In the ATR anterior astigmatism group, we found ATR posterior corneal astigmatism in 82 eyes (73.9%). Especially in eyes with ATR anterior corneal astigmatism of 1 D or more and 1.5 D or more, ATR posterior corneal astigmatism was found in 28 eyes (59.6%) and 9 eyes (42.9%), respectively. Conclusions WTR anterior astigmatism and ATR posterior astigmatism were found in approximately 68% and 91% of eyes, respectively. The magnitude and the axis orientation of posterior corneal astigmatism were not constant, especially in eyes having high ATR anterior corneal astigmatism, as is often the case in patients who have undergone toric IOL implantation. PMID:25625283

  4. Natural corneal cell-based microenvironment as prerequisite for balanced 3D corneal epithelial morphogenesis: a promising animal experiment-abandoning tool in ophthalmology.

    PubMed

    Schulz, Simon; Beck, David; Laird, Dougal; Steinberg, Thorsten; Tomakidi, Pascal; Reinhard, Thomas; Eberwein, Philipp

    2014-04-01

    To achieve durable recognition as a promising animal experiment-abandoning tool in ophthalmology, in vitro engineered tissue equivalents of the human cornea should exhibit proper morphogenesis. Regarding this issue, we were seeking for the natural cell microenvironment fulfilling the minimum requirements to allow human corneal keratinocytes to develop a balanced epithelial morphology with regular spatial appearance of tissue homeostatic biomarkers. Hence, we established cocultures of 3D cell-based collagen scaffolds comprising immortalized corneal keratinocytes combined with a gradual cornea-derived in vivo-like cell microenvironment, together with immortalized stromal fibroblasts alone (nonholistic) or fibroblasts and immortalized endothelial cells (holistic). With matched non-holistic microenvironments revealing mostly flattened cells and putative apical cell ablation foci at day 6, and 9 in HE stains, holistic counterparts yielded proper epithelial stratification with cell flattening restricted to apical layers. Concordantly, RT(2)-PCR showed a tremendous increase in gene expression for progressive and terminal biomarkers of corneal keratinocyte differentiation, cytokeratin (CK) 12, and filaggrin (FIL), in response to nonholistic environments, while involucrin (INV) was moderately but significantly upregulated. Although visible, this increase was moderate in corneal keratinocytes with a holistic environment. On the protein level, indirect immunofluorescence revealed that only epithelia of holistic environments showed diminishment in CK19, counteracted by CK12 rising over time. This time-dependent progression in differentiation coincided with declined proliferation and tissue-regular focus of differentiation biomarkers inv and fil to suprabasal and apical cell layers. Our novel findings suggest the interplay of native tissue forming cell entities, important for balanced corneal epithelial morphogenesis. In addition, they provide evidence for a holistic cell

  5. Alloimmunity and Tolerance in Corneal Transplantation.

    PubMed

    Amouzegar, Afsaneh; Chauhan, Sunil K; Dana, Reza

    2016-05-15

    Corneal transplantation is one of the most prevalent and successful forms of solid tissue transplantation. Despite favorable outcomes, immune-mediated graft rejection remains the major cause of corneal allograft failure. Although low-risk graft recipients with uninflamed graft beds enjoy a success rate ∼90%, the rejection rates in inflamed graft beds or high-risk recipients often exceed 50%, despite maximal immune suppression. In this review, we discuss the critical facets of corneal alloimmunity, including immune and angiogenic privilege, mechanisms of allosensitization, cellular and molecular mediators of graft rejection, and allotolerance induction. PMID:27183635

  6. Technology needs for corneal transplant surgery

    NASA Astrophysics Data System (ADS)

    Vaddavalli, Pravin K.; Yoo, Sonia H.

    2011-03-01

    Corneal transplant surgery has undergone numerous modifications over the years with improvements in technique, instrumentation and eye banking. The main goals of corneal transplantation are achieving excellent optical clarity with long-term graft survival. Penetrating, anterior and posterior lamellar surgery along with femtosecond laser technology have partially met these goals, but outcomes are often unpredictable and surgeon dependent. Technology to predictably separate stroma from Descemet's membrane, techniques to minimize endothelial cell loss, improvements in imaging technology and emerging techniques like laser welding that might replace suturing, eventually making corneal transplantation a refractively predictable procedure are on the wish list of the cornea surgeon.

  7. The human function compunction: teleological explanation in adults.

    PubMed

    Kelemen, Deborah; Rosset, Evelyn

    2009-04-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for why different phenomena occur. Judgments occurred in one of three conditions: fast speeded, moderately speeded, or unspeeded. Participants in speeded conditions judged significantly more scientifically unwarranted teleological explanations as correct (e.g., "the sun radiates heat because warmth nurtures life"), but were not more error-prone on control items (e.g., unwarranted physical explanations such as "hills form because floodwater freezes"). Study 2 extended these findings by examining the relationship between different aspects of adults' "promiscuous teleology" and other variables such as scientific knowledge, religious beliefs, and inhibitory control. Implications of these findings for scientific literacy are discussed. PMID:19200537

  8. Postnatal and adult neurogenesis in the development of human disease.

    PubMed

    Danzer, Steve C

    2008-10-01

    The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases. PMID:18997123

  9. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

    PubMed Central

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-01-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia. PMID:21750772

  10. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature

    PubMed Central

    Asaoka, Ryo; Nakakura, Shunsuke; Tabuchi, Hitoshi; Murata, Hiroshi; Nakao, Yoshitaka; Ihara, Noriko; Rimayanti, Ulfah; Aihara, Makoto; Kiuchi, Yoshiaki

    2015-01-01

    The purpose of the study was to investigate the correlation between Corneal Visualization Scheimpflug Technology (Corvis ST tonometry: CST) parameters and various other ocular parameters, including intraocular pressure (IOP) with Goldmann applanation tonometry. IOP with Goldmann applanation tonometry (IOP-G), central corneal thickness (CCT), axial length (AL), corneal curvature, and CST parameters were measured in 94 eyes of 94 normal subjects. The relationship between ten CST parameters against age, gender, IOP-G, AL, CST-determined CCT and average corneal curvature was investigated using linear modeling. In addition, the relationship between IOP-G versus CST-determined CCT, AL, and other CST parameters was also investigated using linear modeling. Linear modeling showed that the CST measurement ‘A time-1’ is dependent on IOP-G, age, AL, and average corneal curvature; ‘A length-1’ depends on age and average corneal curvature; ‘A velocity-1’ depends on IOP-G and AL; ‘A time-2’ depends on IOP-G, age, and AL; ‘A length-2’ depends on CCT; ‘A velocity-2’ depends on IOP-G, age, AL, CCT, and average corneal curvature; ‘peak distance’ depends on gender; ‘maximum deformation amplitude’ depends on IOP-G, age, and AL. In the optimal model for IOP-G, A time-1, A velocity-1, and highest concavity curvature, but not CCT, were selected as the most important explanatory variables. In conclusion, many CST parameters were not significantly related to CCT, but IOP usually was a significant predictor, suggesting that an adjustment should be made to improve their usefulness for clinical investigations. It was also suggested CST parameters were more influential for IOP-G than CCT and average corneal curvature. PMID:26485129

  11. The Adult Learning Disabled Employee: The Organization's Hidden Human Resource.

    ERIC Educational Resources Information Center

    Macomber, Janet A.

    This paper describes an experiment with background material designed to promote problem (learning disabled) employees as human resources rather than rejects. The material is presented in the form of the transcript of a fictional advisory committee meeting attended by the human resources manager, assistant corporate counsel, training director, line…

  12. The expression of c-kit protein in human adult and fetal tissues.

    PubMed

    Horie, K; Fujita, J; Takakura, K; Kanzaki, H; Suginami, H; Iwai, M; Nakayama, H; Mori, T

    1993-11-01

    The c-kit proto-oncogene encodes a tyrosine kinase receptor and is allelic with the dominant white-spotting (W) locus of the mouse. In this study we investigated the expression of human c-kit protein in various adult and fetal human tissues immunohistochemically using anti-human c-kit monoclonal antibody. To discriminate c-kit+ cells from mast cells expressing c-kit, mast cells were identified by staining with Toluidine blue. In oogonia, spermatogonia and skin melanocytes of the fetus and in oocytes of adult ovary, c-kit expression was detected. In adult uterus, c-kit+ cells were widely distributed in the basal layer of the endometrium, myometrium and cervix, the number and distribution being almost identical to those of mast cells. In fetal uterus, c-kit+ non-mast cells clustered beneath the epithelium and a few mast cells were observed in the myometrium and subserosal layer. In both adult and fetus, c-kit+ non-mast cells were detected within smooth muscle layers of the intestine, colon and oesophagus, while mast cells were observed in the mucosal and submucosal layers of these organs. In contrast to mice, no expression of c-kit protein was detected in the human placenta and decidua. Thus, the distribution of c-kit+ cells in various tissues is similar but not identical between adult and fetus and between human and mouse. PMID:7507133

  13. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  14. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  15. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    PubMed

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  16. Surgical compensation of presbyopia with corneal inlays.

    PubMed

    Konstantopoulos, Aris; Mehta, Jodhbir S

    2015-05-01

    Presbyopia, the physiological change in near vision that develops with ageing, gradually affects individuals older than 40 years and is a growing cause of visual disability due to ageing demographics of the global population. The routine use of computers and 'smartphones', combined with the affluence of the 'baby boomers' generation has set high standards for near vision correction. Corneal inlays are a relatively new treatment modality that is effective at compensating for presbyopia. The dimensions of these devices vary from 2 to 3.8 mm in diameter and 5 to 32 μm in thickness. They are implanted in the anterior corneal stroma of the non-dominant eye, most commonly, in a femtosecond laser created corneal pocket. They improve near vision by increasing the depth of focus, creating a hyper-prolate region of increased central cornea power or providing a refractive add power. This article reviews the literature on the efficacy and safety of corneal inlays. PMID:25652889

  17. Genetics Home Reference: congenital stromal corneal dystrophy

    MedlinePlus

    ... of decorin. This abnormal protein interferes with the organization of collagen fibrils in the cornea. As poorly arranged collagen fibrils accumulate, the cornea becomes cloudy. These corneal changes lead to reduced visual acuity and related eye ...

  18. Clear Corneal Incision in Cataract Surgery

    PubMed Central

    Al Mahmood, Ammar M.; Al-Swailem, Samar A.; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  19. Clear corneal incision in cataract surgery.

    PubMed

    Al Mahmood, Ammar M; Al-Swailem, Samar A; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  20. Fuchs endothelial corneal dystrophy: current perspectives

    PubMed Central

    Vedana, Gustavo; Villarreal, Guadalupe; Jun, Albert S

    2016-01-01

    Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy and frequently results in vision loss. Hallmarks of the disease include loss of corneal endothelial cells and formation of excrescences of Descemet’s membrane. Later stages involve all layers of the cornea. Impairment of endothelial barrier and pump function and cell death from oxidative and unfolded protein stress contribute to disease progression. The genetic basis of FECD includes numerous genes and chromosomal loci, although alterations in the transcription factor 4 gene are associated with the majority of cases. Definitive treatment of FECD is corneal transplantation. In this paper, we highlight advances that have been made in understanding FECD’s clinical features, pathophysiology, and genetics. We also discuss recent advances in endothelial keratoplasty and potential future treatments. PMID:26937169

  1. The genetics of Fuchs′ corneal dystrophy

    PubMed Central

    Iliff, Benjamin W; Riazuddin, S Amer; Gottsch, John D

    2013-01-01

    Fuchs′ corneal dystrophy (FCD) is a common late-onset genetic disorder of the corneal endothelium. It causes loss of endothelial cell density and excrescences in the Descemet membrane, eventually progressing to corneal edema, necessitating corneal transplantation. The genetic basis of FCD is complex and heterogeneous, demonstrating variable expressivity and incomplete penetrance. To date, three causal genes, ZEB1, SLC4A11 and LOXHD1, have been identified, representing a small proportion of the total genetic load of FCD. An additional four loci have been localized, including a region on chromosome 18 that is potentially responsible for a large proportion of all FCD cases. The elucidation of the causal genes underlying these loci will begin to clarify the pathogenesis of FCD and pave the way for the emergence of nonsurgical treatments. PMID:23585771

  2. [Dietary phytoestrogen and its potential benefits in adult human health].

    PubMed

    Garrido, Argelia; de la Maza, María Pía; Valladares, Luis

    2003-11-01

    Human diet contains a series of bioactive vegetal compounds that can improve human health. Among these, there has been a special interest for phytoestrogens. This article reviews the evidence about the potential benefits of phytoestrogens for human health. Forty eight manuscripts were selected for their study design and relevance to human health. The cell growth inhibitory effects of phytoestrogens and their implication in breast cancer are reviewed. Also the effects of these compounds on serum lipid levels and the effectiveness of a phytoestrogen derivate, ipriflavone, on the prevention of osteoporosis are analyzed. Although these compounds have a great potential for improving health, there is still not enough evidence to recommend the routine use of phytoestrogens. PMID:14743696

  3. Corneal Biomechanics Determination in Healthy Myopic Subjects

    PubMed Central

    Qiu, Kunliang; Lu, Xuehui; Zhang, Riping; Wang, Geng

    2016-01-01

    Purpose. To determine the corneal biomechanical properties by using the Ocular Response Analyzer™ and to investigate potential factors associated with the corneal biomechanics in healthy myopic subjects. Methods. 135 eyes from 135 healthy myopic subjects were included in this cross-sectional observational study. Cornea hysteresis (CH), corneal resistance factor (CRF), cornea-compensated intraocular pressure (IOPcc), and Goldmann-correlated intraocular pressure (IOPg) were determined with the Reichert Ocular Response Analyzer (ORA). Univariate and multivariate regression analyses were performed to investigate factors associated with corneal biomechanics. Results. The mean CH and CRF were 9.82 ± 1.34 mmHg and 9.64 ± 1.57 mmHg, respectively. In univariate regression analysis, CH was significantly correlated with axial length, refraction, central corneal thickness (CCT), and IOPg (r = −0.27, 0.23, 0.45, and 0.21, resp.; all with p ≤ 0.015), but not with corneal curvature or age; CRF was significantly correlated with CCT and IOPg (r = 0.52 and 0.70, resp.; all with p < 0.001), but not with axial length/refraction, corneal curvature, or age. In multivariate regression analysis, axial length, IOPcc, and CCT were found to be independently associated with CH, while CCT and IOPg were associated with CRF. Conclusions. Both CH and CRF were positively correlated with CCT. Lower CH but not CRF was associated with increasing degree of myopia. Evaluation of corneal biomechanical properties should take CCT and myopic status into consideration. PMID:27525109

  4. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    -Based Analysis Methods A literature search was conducted on photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A for the management of corneal thinning disorders using a search strategy with appropriate keywords and subject headings for CXL for literature published up until April 17, 2011. The literature search for this Health Technology Assessment (HTA) review was performed using the Cochrane Library, the Emergency Care Research Institute (ECRI) and the Centre for Reviews and Dissemination. The websites of several other health technology agencies were also reviewed, including the Canadian Agency for Drugs and Technologies in Health (CADTH) and the United Kingdom’s National Institute for Clinical Excellence (NICE). The databases searched included OVID MEDLINE, MEDLINE IN-Process and other Non-Indexed Citations such as EMBASE. As the evidence review included an intervention for a rare condition, case series and case reports, particularly for complications and adverse events, were reviewed. A total of 316 citations were identified and all abstracts were reviewed by a single reviewer for eligibility. For those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Inclusion Criteria English-language reports and human studies patients with any corneal thinning disorder reports with CXL procedures used alone or in conjunction with other interventions original reports with defined study methodology reports including standardized measurements on outcome events such as technical success, safety effectiveness, durability, vision quality of life or patient satisfaction systematic reviews, meta-analyses, randomized controlled trials, observational studies, retrospective analyses, case series, or case reports for complications and adverse events Exclusion Criteria nonsystematic reviews, letters, comments and editorials

  5. A century of trends in adult human height.

    PubMed

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. PMID:27458798

  6. A century of trends in adult human height

    PubMed Central

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. DOI: http://dx.doi.org/10.7554/eLife.13410.001 PMID:27458798

  7. Resident aerobic microbiota of the adult human nasal cavity.

    PubMed

    Rasmussen, T T; Kirkeby, L P; Poulsen, K; Reinholdt, J; Kilian, M

    2000-10-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal microbiota was dominated by species of the genera Corynebacterium, Aureobacterium, Rhodococcus, and Staphylococcus, including S. epidermis, S. capitis, S. hominis, S. haemolyticus, S. lugdunensis and S. warneri. These studies show that the microbiota of the nasal cavity of adults is strikingly different from that of the pharynx, and that the nasal cavity is a primary habitat for several species of diphtheroids recognized as opportunistic pathogens. Under special circumstances, single species, including IgA1 protease-producing bacteria, may become predominant in a restricted area of the nasal mucosa. PMID:11200821

  8. Diamond burr superficial keratectomy with mitomycin C for corneal scarring and high corneal astigmatism after pterygium excision

    PubMed Central

    Ozgurhan, Engin Bilge; Kara, Necip; Yildirim, Aydin; Alkin, Zeynep; Bozkurt, Ercument; Demirok, Ahmet

    2013-01-01

    Background The purpose of this paper is to report the successful treatment of corneal scarring and high corneal astigmatism secondary to previous pterygium surgery with diamond burr superficial keratectomy using mitomycin C. Methods Four patients with corneal scarring and high corneal astigmatism related to previous pterygium surgery underwent diamond burr superficial keratectomy with application of mitomycin C. Anterior segment photography and corneal topographic analysis were obtained preoperatively and postoperatively in all patients. Results Six months after surgery, corneal astigmatism and corneal aberrations were reduced in all patients. A clear cornea was achieved in all cases. No complications were noted during the follow-up period. Conclusion Diamond burr superficial keratectomy with application of mitomycin C is a potentially effective and simple procedure for treating patients with corneal scarring and high corneal astigmatism secondary to previous pterygium surgery. PMID:23737657

  9. Update on Pathologic Diagnosis of Corneal Infections and Inflammations

    PubMed Central

    Vemuganti, Geeta K.; Murthy, Somasheila I.; Das, Sujata

    2011-01-01

    One of the most frequent types of corneal specimen that we received in our pathology laboratory is an excised corneal tissue following keratoplasty. Several of these cases are due to corneal infections or the sequelae, like corneal scar. Advances in the histological and molecular diagnosis of corneal infections and inflammations have resulted in rapid and accurate diagnosis of the infectious agent and in the overall understanding of the mechanisms in inflammatory diseases of the cornea. This review provides an update of histopathological findings in various corneal infections and inflammations. PMID:22224015

  10. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin. PMID:25765751

  11. ABCB5 is a limbal stem cell gene required for corneal development and repair

    PubMed Central

    Ksander, Bruce R.; Kolovou, Paraskevi E.; Wilson, Brian J.; Saab, Karim R.; Guo, Qin; Ma, Jie; McGuire, Sean P.; Gregory, Meredith S.; Vincent, William J. B.; Perez, Victor L.; Cruz-Guilloty, Fernando; Kao, Winston W. Y.; Call, Mindy K.; Tucker, Budd A.; Zhan, Qian; Murphy, George F.; Lathrop, Kira L.; Alt, Clemens; Mortensen, Luke J.; Lin, Charles P.; Zieske, James D.; Frank, Markus H.; Frank, Natasha Y.

    2014-01-01

    Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs)1–3, and LSC deficiency is a major cause of blindness worldwide4. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts5, a gene allowing for prospective LSC enrichment has not been identified so far5. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5)6,7 marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs2 in mice and p63α-positive LSCs8 in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency. PMID:25030174

  12. The landscape of genomic imprinting across diverse adult human tissues.

    PubMed

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli

    2015-07-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  13. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  14. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis

    PubMed Central

    Soler, Vincent José; Tran-Viet, Khanh-Nhat; Galiacy, Stéphane D; Limviphuvadh, Vachiranee; Klemm, Thomas Patrick; St Germain, Elizabeth; Fournié, Pierre R; Guillaud, Céline; Maurer-Stroh, Sebastian; Hawthorne, Felicia; Suarez, Cyrielle; Kantelip, Bernadette; Afshari, Natalie A; Creveaux, Isabelle; Luo, Xiaoyan; Meng, Weihua; Calvas, Patrick; Cassagne, Myriam; Arné, Jean-Louis; Rozen, Steven G; Malecaze, François; Young, Terri L

    2014-01-01

    Background Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. Methods and results A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband’s mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. Conclusions We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases. PMID:23349227

  15. Inhibitory effects of regorafenib, a multiple tyrosine kinase inhibitor, on corneal neovascularization

    PubMed Central

    Onder, Halil Ibrahim; Erdurmus, Mesut; Bucak, Yasin Yücel; Simavli, Hüseyin; Oktay, Murat; Kukner, Ahmet Sahap

    2014-01-01

    AIM To evaluate the inhibitory effects of regorafenib (BAY 73-4506), a multikinase inhibitor, on corneal neovascularization (NV). METHODS Thirty adult male Sprague-Dawley rats weighing 250-300 g, were used. Corneal NV was induced by NaOH in the left eyes of each rat. Following the establishment of alkali burn, the animals were randomized into five groups according to topical treatment. Group 1 (n = 6) received 0.9% NaCl, Group 2 (n = 6) received dimethyl sulfoxide, Group 3 (n = 6) received regorafenib 1 mg/mL, Group 4 (n =6) received bevacizumab 5 mg/mL and Group 5 (n = 6) received 0.1% dexamethasone phosphate. On the 7d, the corneal surface covered with neovascular vessels was measured on photographs as the percentage of the cornea's total area using computer-imaging analysis. The corneas obtained from rats were semiquantitatively evaluated for caspase-3 and vascular endothelial growth factor by immunostaining. RESULTS A statistically significant difference in the percent area of corneal NV was found among the groups (P <0.001). Although the Group 5 had the smallest percent area of corneal NV, there was no difference among Groups 3, 4 and 5 (P >0.005). There was a statistically significant difference among the groups in apoptotic cell density (P = 0.002). The staining intensity of vascular endothelial growth factor in the epithelial and endothelial layers of cornea was significantly different among the groups (P <0.05). The staining intensity of epithelial and endothelial vascular endothelial growth factor was significantly weaker in Groups 3, 4 and 5 than in Groups 1 and 2. CONCLUSION Topical administration of regorafenib 1 mg/mL is partly effective for preventing alkali-induced corneal NV in rats. PMID:24790861

  16. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    PubMed

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-01-01

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness. PMID:26899286

  17. AAV Gene Therapy for MPS1-associated Corneal Blindness

    PubMed Central

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R. Jude; Hirsch, Matthew L.

    2016-01-01

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness. PMID:26899286

  18. Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition

    PubMed Central

    Elkins, Claire M.; Qi, Qin M.; Fuller, Gerald G.

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo. PMID:25144576

  19. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation

    NASA Astrophysics Data System (ADS)

    Li, Fengfu; Carlsson, David; Lohmann, Chris; Suuronen, Erik; Vascotto, Sandy; Kobuch, Karin; Sheardown, Heather; Munger, Rejean; Nakamura, Masatsugu; Griffith, May

    2003-12-01

    Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required. regenerative medicine | tissue engineering | cornea | implantation | innervation

  20. The Effects of Silicone Hydrogel Lens Wear on the Corneal Epithelium and Risk for Microbial Keratitis

    PubMed Central

    Robertson, Danielle M.

    2012-01-01

    Previous studies using animal models and human clinical trials have demonstrated that the use of low oxygen transmissible contact lens materials produce corneal epithelial surface damage resulting in increased Pseudomonas aeruginosa (PA) adhesion and raft-mediated internalization into surface corneal epithelial cells. These findings led to the testable clinical predictions that: (1) microbial keratitis (MK) risk is expected to be greatest during the first 6 months of wear; (2) there is no difference between 6 and 30 night extended wear; and (3) that wear of hyper-oxygen transmissible lenses would reduce the reported incidence of infection. Subsequent epidemiological studies have confirmed the first two predictions; however, increased oxygen transmissibility with silicone hydrogel (SiHy) lens wear has not altered the overall incidence of MK. In this review, more recent clinical and basic studies that investigate epithelial alterations and bacterial adhesion to corneal epithelial cells following wear of SiHy lenses with and without concomitant exposure to chemically preserved multipurpose solutions (MPS) will be examined. The collective results of these studies demonstrate that even in the absence of lens-related hypoxia, MPS induce ocular surface changes during SiHy lens wear which are associated with a pathophysiological increase in PA adherence and internalization in the corneal epithelium, and therefore, predict an increased risk for PA-MK. In addition, new data supporting an interactive role for inflammation in facilitating PA adherence and internalization in the corneal epithelium will also be discussed. PMID:23266590

  1. Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes.

    PubMed

    Pihlaja, Rea; Koistinaho, Jari; Kauppinen, Riitta; Sandholm, Jouko; Tanila, Heikki; Koistinaho, Milla

    2011-11-01

    Astrocytes and microglia are able to degrade potentially neurotoxic β-amyloid (Aβ) deposits typical for Alzheimer's disease (AD) pathology. Contrary to microglia, astrocytes degrade human Aβ from tissue sections in vitro without any additional stimulation, but it has remained unclear whether transplanted astrocytes are able to clear deposited human Aβ in vivo. We transplanted adult mouse astrocytes into the hippocampi of transgenic mice mimicking AD and observed their fate, effects on microglial responses, and Aβ clearance. After 2-months follow-up time, we discovered a significant reduction in Aβ burden compared with AD mice infused with PBS only. The remaining Aβ deposits were fragmented and most of the Aβ immunoreactivity was seen within the transplanted astrocytes. Concomitant to Aβ reduction, both CD68 and CD45 immunoreactivities were significantly upregulated but phagocytic microglia were often surrounding and engulfing Aβ burdened, TUNEL-positive astrocytes rather than co-localizing with Aβ alone. Astrocytes are known to degrade Aβ also by secreting proteases involved in Aβ catabolism. To study the contribution of neprilysin (NEP), angiotensin-converting enzyme-1 (ACE-1), and endothelin-converting enzyme-2 (ECE-2) in human Aβ clearance, we utilized an ex vivo assay to demonstrate that adult astrocytes respond to human Aβ by upregulating NEP expression. Further, incubation of adult astrocytes with known inhibitors of NEP, ACE-1, or ECE-2 significantly inhibited the removal of human Aβ from the tissue suggesting an important role for these proteases in Aβ clearance by adult astrocytes ex vivo. PMID:21826742

  2. Prospective heterotopic ossification progenitors in adult human skeletal muscle.

    PubMed

    Downey, Jennifer; Lauzier, Dominique; Kloen, Peter; Klarskov, Klaus; Richter, Martin; Hamdy, Reggie; Faucheux, Nathalie; Scimè, Anthony; Balg, Frédéric; Grenier, Guillaume

    2015-02-01

    Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle. PMID:25445454

  3. Orbital cellulitis and corneal ulcer due to Cedecea: First reported case and review of the literature.

    PubMed

    Clark, Jeremy D; Fernandez de Castro, Juan P; Compton, Chris; Lee, Harold; Nunery, William

    2016-06-01

    Cedecea is a gram-negative bacterium from the family Enterobacteriaceae, rarely associated with human infection. We report the first case of an orbital cellulitis and corneal ulcer due to Cedecea in a patient who sustained a motor vehicle accident and was then found to have a retained wooden orbital foreign body. PMID:27070554

  4. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  5. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  6. Bacteriology of severe periodontitis in young adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Smibert, R M; Hash, D E; Burmeister, J A; Ranney, R R

    1982-01-01

    A total of 78 bacteriological samples were taken from the supragingival tooth surface after superficial cleaning with toothpicks or from the periodontal sulci of 42 affected sites in 21 adolescents or young adults with severe generalized periodontitis. Of 190 bacterial species, subspecies, or serotypes detected among 2,723 isolates, 11 species exceeded 1% of the subgingival flora and were most closely associated with the diseased sulci. Eleven others were also sufficiently frequent to be suspect agents of tissue destruction. Many of these species are known pathogens of other body sites. In addition, 10 species of Treponema were isolated. One of these and the "large treponeme" were also more closely associated with severe periodontitis than they were with healthy sites or gingivitis. There were highly significant differences between the composition of the flora of the affected sulci and the flora of (i) the adjacent supragingival tooth surface, (ii) the gingival crevice of periodontally healthy people, and (iii) sites with a gingival index score of 0 or 2 in experimental gingivitis studies. The floras of different individuals were also significantly different. There was no statistically detectable effect of sampling per se upon the composition of the flora of subsequent samples from the same sites. The composition of the supragingival flora of the patients with severe generalized periodontitis that had serum antibody to Actinobacillus actinomycetemcomitans was significantly different from the supragingival flora of patients without this serum antibody. However, there was no statistically significant difference in the composition of their subgingival floras. PMID:7152665

  7. Expression of S100B during the innate immune of corneal epithelium against fungi invasion

    PubMed Central

    Zhang, Jie; Zhao, Gui-Qiu; Qu, Jing; Che, Cheng-Ye; Lin, Jing; Jiang, Nan; Zhao, Han; Wang, Xue-Jun

    2016-01-01

    AIM To explore the expression of S100B in corneal epithelial cells under Aspergillus stimulation both in vivo and in vitro. METHODS Immortalized human corneal epithelial cells (HCECs) were exposed to inactive Aspergillus fumigatus (A. fumigatus) conidia at 0, 4, 8, 12, 16, and 24h respectively. The corneas of Wistar rats were exposed to active A. fumigatus at 0, 12, 24, 48h and the normal rat corneas were used for normal control. The mRNA level of S100B was evaluated by real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). S100B protein expression in cornea epithelium was detected by immunohistochemical/immunocytochemical staining (IHC/ICC). RESULTS Histopathology revealed a significant inflammatory cell infiltration in fungal keratitis human and rat cornea. Corneal epithelial cells didn't express or rarely express S100B at baseline. A. fumigatus significantly induced S100B mRNA expression in cultured corneal epithelial cells in a time depended manner in vitro, the mRNA began to rise significantly at 8h in vitro (P<0.05) and continue to rise as time prolonged (P<0.01). In vivo, S100B mRNA level was low in the normal corneas. However, it was increased in keratitis corneas from 12h after infection (P<0.05) and reached to a peak at 24h (P<0.001). Immunochemistry revealed an obvious staining in fungal keratitis corneas as well as immortalized HCECs compared to the normal ones respectively, indicating an increased expression of S100B protein. CONCLUSION S100B exists in corneal epithelial cells and is over-expressed under A. fumigatus stimulation. S100B may play an important role in the innate immune response of the corneal epithelium during A. fumigatus infection. PMID:26949634

  8. Predictability of Sirius dual-scanning corneal tomography in the measurement of corneal power after photorefractive surgery.

    PubMed

    Fouda, Sameh M; Al-Nashar, Haitham Y; Ibrahim, Basem M; Bor'i, Ashraf

    2016-02-01

    Determining an accurate central corneal power (K) measurement is crucial for calculating the intraocular lens power in patients who are undergoing cataract extraction. The ideal method for measuring K is to use a device that works independently of the refractive surgery information. The Scheimpflug camera system offers a promising means of measuring the true corneal power after keratorefractive surgery. In this study, we investigated the accuracy of this system in measuring central corneal power after photorefractive corneal surgery by comparing it to the theoretically derived central corneal power by history method. A total of 120 eyes of 65 (35 females and 30 males) patients were included in this study. The mean change of refraction at the spectacle plane was 3.75 D, whereas the mean change of refraction at the corneal plane was 3.37 D. Using the Sirius dual-scanning corneal tomography, the mean change in corneal power was 3.96 D. No significant differences were detected between the mean post-operative corneal power measured by the Sirius tomographer and the mean change in refraction at the corneal plane calculated clinically (P = 0.076) and the correlation was found to be high (0.913). This study suggests that Sirius dual-scanning corneal tomography offers high predictability when measuring the central 5 mm corneal power in patients who have had myopic corneal photorefractive surgery. PMID:25982158

  9. Effect of Surgical Technique on Corneal Implant Performance

    PubMed Central

    Ljunggren, Monika Kozak; Elizondo, Rodolfo A.; Edin, Joel; Olsen, David; Merrett, Kimberley; Lee, Chyan-Jang; Salerud, Göran; Polarek, James; Fagerholm, Per; Griffith, May

    2014-01-01

    Purpose Our aim was to determine the effect of a surgical technique on biomaterial implant performance, specifically graft retention. Methods Twelve mini pigs were implanted with cell-free, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) cross-linked recombinant human collagen type III (RHCIII) hydrogels as substitutes for donor corneal allografts using overlying sutures with or without human amniotic membrane (HAM) versus interrupted sutures with HAM. The effects of the retention method were compared as well as the effects of collagen concentration (13.7% to 15% RHCIII). Results All implanted corneas showed initial haze that cleared with time, resulting in corneas with optical clarity matching those of untreated controls. Biochemical analysis showed that by 12 months post operation, the initial RHCIII implants had been completely remodeled, as type I collagen, was the major collagenous protein detected, whereas no RHCIII could be detected. Histological analysis showed all implanted corneas exhibited regeneration of epithelial and stromal layers as well as nerves, along with touch sensitivity and tear production. Most neovascularization was seen in corneas stabilized by interrupted sutures. Conclusions This showed that the surgical technique used does have a significant effect on the overall performance of corneal implants, overlying sutures caused less vascularization than interrupted sutures. Translational Relevance Understanding the significance of the suturing technique can aid the selection of the most appropriate procedure when implanting artificial corneal substitutes. The same degree of regeneration, despite a higher collagen content indicates that future material development can progress toward stronger, more resistant implants. PMID:24749003

  10. Genetics Home Reference: lattice corneal dystrophy type I

    MedlinePlus

    ... lattice pattern. Affected individuals often have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one another. Corneal erosions are very painful and can cause sensitivity to ...

  11. Genetics Home Reference: lattice corneal dystrophy type II

    MedlinePlus

    ... In addition, affected individuals can have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one another. Corneal erosions are very painful and can cause sensitivity to ...

  12. Profile of the Adult Education and Human Resource Development Professoriate: Characteristics and Professional Fulfillment.

    ERIC Educational Resources Information Center

    Peterson, Shari L.; Provo, Joanne

    1998-01-01

    A survey of 113 members of the Commission of Professors of Adult Education and 50 of the Academy of Human Resource Development found few differences except in age, rank, and salary. The two faculties are compatible and could be integrated. Overall job satisfaction is high. Professors tended to come from other fields and to remain. (SK)

  13. Equality and Human Capital: Conflicting Concepts within State-Funded Adult Education in Ireland

    ERIC Educational Resources Information Center

    Hurley, Kevin

    2015-01-01

    This article offers a critique of the concept of equality as it informs the White Paper on Adult Education: Learning for Life (2000). It also outlines the extent to which human capital theory can be seen to have effectively colonised lifelong learning from the outset of its adoption by the European Union with highly constraining implications for…

  14. An Instrument Development Model for Online Surveys in Human Resource Development and Adult Education

    ERIC Educational Resources Information Center

    Strachota, Elaine M.; Conceicao, Simone C. O.; Schmidt, Steven W.

    2006-01-01

    This article describes the use of a schematic model for developing and distributing online surveys. Two empirical studies that developed and implemented online surveys to collect data to measure satisfaction in various aspects of human resource development and adult education exemplify the use of the model to conduct online survey research. The…

  15. An Assessemnt of Graduate Adult Education and Human Resource Development Programs: A U.S. Perspective

    ERIC Educational Resources Information Center

    Akdere, Mesut; Conceicao, Simone C. O.

    2009-01-01

    Due to recent changes in the workplace, the workforce and higher education have driven academic programs of adult education (AE) and human resource development (HRD) in the U.S. to become more integrated as part of the mission of institutions of higher education. In this exploratory study, existing graduate programs in AE and HRD in the U.S. were…

  16. Adult attachment style is associated with cerebral μ-opioid receptor availability in humans.

    PubMed

    Nummenmaa, Lauri; Manninen, Sandra; Tuominen, Lauri; Hirvonen, Jussi; Kalliokoski, Kari K; Nuutila, Pirjo; Jääskeläinen, Iiro P; Hari, Riitta; Dunbar, Robin I M; Sams, Mikko

    2015-09-01

    Human attachment behavior mediates establishment and maintenance of social relationships. Adult attachment characteristically varies on anxiety and avoidance dimensions, reflecting the tendencies to worry about the partner breaking the social bond (anxiety) and feeling uncomfortable about depending on others (avoidance). In primates and other mammals, the endogenous μ-opioid system is linked to long-term social bonding, but evidence of its role in human adult attachment remains more limited. We used in vivo positron emission tomography to reveal how variability in μ-opioid receptor (MOR) availability is associated with adult attachment in humans. We scanned 49 healthy subjects using a MOR-specific ligand [(11) C]carfentanil and measured their attachment avoidance and anxiety with the Experiences in Close Relationships-Revised scale. The avoidance dimension of attachment correlated negatively with MOR availability in the thalamus and anterior cingulate cortex, as well as the frontal cortex, amygdala, and insula. No associations were observed between MOR availability and the anxiety dimension of attachment. Our results suggest that the endogenous opioid system may underlie interindividual differences in avoidant attachment style in human adults, and that differences in MOR availability are associated with the individuals' social relationships and psychosocial well-being. PMID:26046928

  17. Severe Infections with Human Adenovirus 7d in 2 Adults in Family, Illinois, USA, 2014

    PubMed Central

    Ison, Michael G.

    2016-01-01

    Human adenovirus 7d, a genomic variant with no reported circulation in the United States, was isolated from 2 adults with severe respiratory infections in Illinois. Molecular typing identified a close relationship with strains of the same genome type isolated from cases of respiratory disease in several provinces of China since 2009. PMID:26982199

  18. Evaluation of Serum Creatinine Changes With Integrase Inhibitor Use in Human Immunodeficiency Virus-1 Infected Adults

    PubMed Central

    Lindeman, Tara A.; Duggan, Joan M.; Sahloff, Eric G.

    2016-01-01

    This retrospective chart review evaluated changes in serum creatinine and creatinine clearance (CrCl) after initiation of an integrase inhibitor (INSTI)-based regimen as initial treatment in human immunodeficiency virus-infected adults. Serum creatinine and CrCl changes were similar to those seen in clinical trials for INSTIs. No renal-related serious adverse events or discontinuations occurred. PMID:27092314

  19. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  20. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  1. Emotions and Human Concern: Adult Education and the Philosophical Thought of Martha Nussbaum

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2014-01-01

    This article argues that philosopher Martha Nussbaum's reflections on the role of the emotions in human flourishing can contribute in important ways to our understanding of the emotions in adult education contexts. The article summarises Nussbaum's exploration of the contributions of classical philosophers like Socrates, Aristotle, and…

  2. PREDICTIONS OF OZONE ABSORPTION IN HUMAN LUNGS FROM NEWBORN TO ADULT

    EPA Science Inventory

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. he lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important subpopulation. o fil...

  3. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2014-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  4. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  5. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  6. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2013-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  7. Human-derived neural progenitors functionally replace astrocytes in adult mice

    PubMed Central

    Chen, Hong; Qian, Kun; Chen, Wei; Hu, Baoyang; Blackbourn, Lisle W.; Du, Zhongwei; Ma, Lixiang; Liu, Huisheng; Knobel, Karla M.; Ayala, Melvin; Zhang, Su-Chun

    2015-01-01

    Astrocytes are integral components of the homeostatic neural network as well as active participants in pathogenesis of and recovery from nearly all neurological conditions. Evolutionarily, compared with lower vertebrates and nonhuman primates, humans have an increased astrocyte-to-neuron ratio; however, a lack of effective models has hindered the study of the complex roles of human astrocytes in intact adult animals. Here, we demonstrated that after transplantation into the cervical spinal cords of adult mice with severe combined immunodeficiency (SCID), human pluripotent stem cell–derived (PSC-derived) neural progenitors migrate a long distance and differentiate to astrocytes that nearly replace their mouse counterparts over a 9-month period. The human PSC-derived astrocytes formed networks through their processes, encircled endogenous neurons, and extended end feet that wrapped around blood vessels without altering locomotion behaviors, suggesting structural, and potentially functional, integration into the adult mouse spinal cord. Furthermore, in SCID mice transplanted with neural progenitors derived from induced PSCs from patients with ALS, astrocytes were generated and distributed to a similar degree as that seen in mice transplanted with healthy progenitors; however, these mice exhibited motor deficit, highlighting functional integration of the human-derived astrocytes. Together, these results indicate that this chimeric animal model has potential for further investigating the roles of human astrocytes in disease pathogenesis and repair. PMID:25642771

  8. Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome in Older Adults.

    PubMed

    Scott, Jake; Goetz, Matthew Bidwell

    2016-08-01

    Improved survival with combination antiretroviral therapy has led to a dramatic increase in the number of human immunodeficiency virus (HIV)-infected individuals 50 years of age or older such that by 2020 more than 50% of HIV-infected persons in the United States will be above this age. Recent studies confirm that antiretroviral therapy should be offered to all HIV-infected patients regardless of age, symptoms, CD4+ cell count, or HIV viral load. However, when compared with HIV-uninfected populations, even with suppression of measurable HIV replication, older individuals are at greater risk for cardiovascular disease, malignancies, liver disease, and other comorbidities. PMID:27394024

  9. Adult human adipose tissue contains several types of multipotent cells.

    PubMed

    Tallone, Tiziano; Realini, Claudio; Böhmler, Andreas; Kornfeld, Christopher; Vassalli, Giuseppe; Moccetti, Tiziano; Bardelli, Silvana; Soldati, Gianni

    2011-04-01

    Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria. PMID:21327755

  10. Mesenchymal–epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus

    PubMed Central

    Yamada, Keiko; Young, Robert D.; Lewis, Philip N.; Shinomiya, Katsuhiko; Meek, Keith M.; Kinoshita, Shigeru; Caterson, Bruce

    2015-01-01

    Purpose To investigate whether mesenchymal–epithelial cell interactions, similar to those described in the limbal stem cell niche in transplant-expired human eye bank corneas, exist in freshly enucleated rabbit eyes and to identify matrix molecules in the anterior limbal stroma that might have the potential to help maintain the stem cell niche. Methods Fresh limbal corneal tissue from adult Japanese white rabbits was obtained and examined in semithin resin sections with light microscopy, in ultrathin sections with transmission electron microscopy, and in three-dimensional (3D) reconstructions from data sets of up to 1,000 serial images from serial block face scanning electron microscopy. Immunofluorescence microscopy with five monoclonal antibodies was used to detect specific sulfation motifs on chondroitin sulfate glycosaminoglycans, previously identified in association with progenitor cells and their matrix in cartilage tissue. Results In the rabbit limbal cornea, while no palisades of Vogt were present, the basal epithelial cells stained differentially with Toluidine blue, and extended lobed protrusions proximally into the stoma, which were associated with interruptions of the basal lamina. Elongate processes of the mesenchymal cells in the superficial vascularized stroma formed direct contact with the basal lamina and basal epithelial cells. From a panel of antibodies that recognize native, sulfated chondroitin sulfate structures, one (6-C-3) gave a positive signal restricted to the region of the mesenchymal–epithelial cell associations. Conclusions This study showed interactions between basal epithelial cells and subjacent mesenchymal cells in the rabbit corneal limbus, similar to those that have been observed in the human stem cell niche. A native sulfation epitope in chondroitin sulfate glycosaminoglycans exhibits a distribution specific to the connective tissue matrix of this putative stem/progenitor cell niche. PMID:26788025

  11. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  12. Canonical genetic signatures of the adult human brain.

    PubMed

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  13. Retained IOL fragment and corneal decompensation after pseudophakic IOL exchange.

    PubMed

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2004-06-01

    A 72-year-old man had exchange of a foldable silicone multifocal intraocular lens (IOL) by transection, removal, and monofocal IOL replacement. One month after the exchange, irreversible corneal edema developed and penetrating keratoplasty was performed. At the time of the corneal transplant, a small silicone fragment was discovered in and removed from the anterior chamber. Histologic evaluation of the patient's cornea demonstrated an absence of corneal endothelium, suggesting the fragment was the etiology of the corneal decompensation. PMID:15177618

  14. Influence of corneal hydration on optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  15. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    ERIC Educational Resources Information Center

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  16. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  17. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated...

  18. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  19. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  20. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated...

  1. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  2. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  3. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  4. Acute Corneal Hydrops 3 Years after Intra-corneal Ring Segments and Corneal Collagen Cross-linking

    PubMed Central

    Antonios, Rafic; Dirani, Ali; Fadlallah, Ali; Chelala, Elias; Hamadeh, Adib; Jarade, Elias

    2016-01-01

    This case report describes a 15-year-old male with allergic conjunctivitis and keratoconus, who underwent uneventful intra-corneal ring segment (ICRS) implantation and corneal collagen cross-linking (CXL) in the right eye. During the follow-up periods, the patient was noted to have several episodes of allergic conjunctivitis that were treated accordingly. At the 2 years postoperatively, he presented with another episode of allergic conjunctivitis and progression of keratoconus was suspected on topography. However, the patient was lost to follow-up, until he presented with acute hydrops at 3 years postoperatively. There are no reported cases of acute corneal hydrops in cross-linked corneas. We suspect the young age, allergic conjunctivitis and eye rubbing may be a risk factors associated with possible progression of keratoconus after CXL. Prolonged follow-up and aggressive control of the allergy might be necessary in similar cases. PMID:26957859

  5. Corneal Collagen Cross-Linking Outcomes: Review

    PubMed Central

    Jankov II, Mirko R; Jovanovic, Vesna; Delevic, Sladjana; Coskunseven, Efekan

    2011-01-01

    Keratoconus is a condition characterized by biomechanical instability of the cornea, presenting in a progressive, asymmetric and bilateral way. Corneal collagen cross-linking with riboflavin and UVA (CXL) is a new technique of corneal tissue strengthening that combines the use of riboflavin as a photo sensitizer and UVA irradiation. The studies showed that CXL was effective in halting the progression of keratoconus over a period of up to four years. The published studies also revealed a reduction of max K readings by more than 2 D, while the postoperative SEQ was reduced by an average of more than 1 D, and refractive cylinder decreased by about 1 D. No eyes lost any line of BCDVA. Moreover, there was no significant decrease in endothelial cell density. It was also found that CXL treatment was effective with reducing corneal and total wavefront aberrations. Corneal cross-linking has also led to an arrest and/or even a partial reversal of keratectasia in the treatment of iatrogenic ectasia after excimer laser ablation. A primary intervention such as CXL should be considered to potentially increase the biomechanical stability of the corneal tissue and postpone the need of lamellar or penetrating keratoplasty. PMID:21448301

  6. Corneal and conjunctival sensitivity in rosacea patients

    PubMed Central

    Örnek, Nurgül; Karabulut, Ayşe Anıl; Örnek, Kemal; Onaran, Zafer; Usta, Gülşah

    2015-01-01

    Purpose To assess corneal and conjunctival sensitivity in rosacea patients. Methods A total of 55 patients with rosacea and 37 control subjects participated in the study. Corneal and conjunctival sensitivity was determined by Cochet-Bonnet esthesiometer. Subjective symptoms of ocular dryness were evaluated using Ocular Surface Disease Index (OSDI). Schirmer’s I test (ST), tear breakup time (tBUT) and ocular surface staining with fluorescein were carried out to measure objective signs. Results The mean corneal and conjunctival sensitivity did not differ significantly between rosacea patients and controls (all p > 0.05). Schirmer’s I test and tBUT were significantly reduced (p = 0.004 for OD and p < 0.001 for OS) and grade of ocular surface staining was significantly high (p = 0.018 for OD and p = 0.038 for OS) in rosacea patients. Corneal and conjunctival sensitivity did not show significant correlation with ST, tBUT, ocular surface staining (Oxford Schema), duration of rosacea and OSDI score. Conclusions Corneal and conjunctival sensitivity did not change significantly in rosacea. PMID:26949355

  7. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  8. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  9. Corneal Stroma Regeneration with Acellular Corneal Stroma Sheets and Keratocytes in a Rabbit Model

    PubMed Central

    Ma, Xiao Yun; Zhang, Yun; Zhu, Dan; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wen Jie

    2015-01-01

    Acellular corneal stroma matrix has been used for corneal stroma engineering. However, because of its compact tissue structure, regrowth of keratocytes into the scaffold is difficult. Previously, we developed a sandwich model for cartilage engineering using acellular cartilage sheets. In the present study, we tested this model for corneal stroma regeneration using acellular porcine corneal stroma (APCS) sheets and keratocytes. Porcine corneas were decellularized by NaCl treatment, and the APCS was cut into 20-μm-thick sheets. A rabbit corneal stroma defect model was created by lamellar keratoplasty and repaired by transplantation of five pieces of APCS sheets with keratocytes. Six months after transplantation, transparent corneas were present in the experimental group, which were confirmed by anterior segment optical coherence tomography examination and transmittance examination. The biomechanical properties in the experimental group were similar to those of normal cornea. Histological analyses showed an even distribution of keratocytes and well-oriented matrix in the stroma layer in the experimental group. Together, these results demonstrated that the sandwich model using acellular corneal stroma sheets and keratocytes could be potentially useful for corneal stroma regeneration. PMID:26167895

  10. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  11. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  12. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  13. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  14. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases

    PubMed Central

    Vilas, Gonzalo L.; Loganathan, Sampath K.; Liu, Jun; Riau, Andri K.; Young, James D.; Mehta, Jodhbir S.; Vithana, Eranga N.; Casey, Joseph R.

    2013-01-01

    Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-endothelial water reabsorption. Slc4a11−/− mice manifest corneal oedema and distorted endothelial cells, consistent with loss of a water-flux. Observed water-flux through SLC4A11 extends the repertoire of known water movement pathways and call for a re-examination of explanations for water movement in human tissues. PMID:23813972

  15. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria.

    PubMed

    Shapiro, Lillian L M; Murdock, Courtney C; Jacobs, Gregory R; Thomas, Rachel J; Thomas, Matthew B

    2016-07-13

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260-330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  16. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  17. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C.

    1989-01-01

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. The lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important sub-population. To fill this gap the authors have used several sources of data on age dependent LRT volumes, age dependent airway dimensions, a model of an adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adult. An ozone (O{sub 3}) dosimetry model was then used to estimate the regional and local uptake of O{sub 3} in the (theoretical) LRTs of children and adults. For sedentary breathing, the LRT distribution of absorbed O{sub 3}, the percent uptake (76 to 85%), and the centriacinar O{sub 3} tissue dose are not very sensitive to age. For maximal work during exercise, predicted uptakes range from 83 to 91%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, total O{sub 3} absorption per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O{sub 3} is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage due to O{sub 3}.

  18. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms. PMID:26250064

  19. Decrease in Corneal Damage due to Benzalkonium Chloride by the Addition of Mannitol into Timolol Maleate Eye Drops.

    PubMed

    Nagai, Noriaki; Yoshioka, Chiaki; Tanino, Tadatoshi; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    We investigated the protective effects of mannitol on corneal damage caused by benzalkonium chloride (BAC), which is used as a preservative in commercially available timolol maleate eye drops, using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constant (kH), as well as cell viability, were higher following treatment with 0.005% BAC solution containing 0.5% mannitol than in the case BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without mannitol. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.5% mannitol was significantly higher than that for eyes instilled with timolol maleate eye drops without mannitol, and the addition of mannitol did not affect the corneal penetration or IOP reducing effect of the timolol maleate eye drops. A preservative system comprising BAC and mannitol may provide effective therapy for glaucoma patients requiring long-term treatment with anti-glaucoma agents. PMID:26136174

  20. Decrease in corneal damage due to benzalkonium chloride by the addition of sericin into timolol maleate eye drops.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2013-01-01

    We investigated the protective effects of sericin on corneal damage due to benzalkonium chloride (BAC) used as a preservative in commercially available timolol maleate eye drops using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into the rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constants (kH) as well as cell viability were higher following treatment with 0.005% BAC solution containing 0.1% sericin than in the case of treatment with BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without sericin. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.1% sericin was significantly higher than that of eyes instilled with timolol maleate eye drops without sericin, and the addition of sericin did not affect the corneal penetration or IOP reducing effect of commercially available timolol maleate eye drops. A preservative system comprising BAC and sericin may provide effective therapy for glaucoma patients requiring long-term anti-glaucoma agents. PMID:23470443

  1. ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis

    PubMed Central

    Lim, Rayne R.; Tan, Alison; Liu, Yu-Chi; Barathi, Veluchamy A.; Mohan, Rajiv R.; Mehta, Jodhbir S.; Chaurasia, Shyam S.

    2016-01-01

    Corneal fibrosis is often seen in patients with ocular trauma and infection that compromises corneal transparency resulting in vision loss. Treatment strategies including NSAIDs, steroids, MMC and corneal transplants have shown tremendous success but with several side effects and cellular toxicity. Histone deacetylase inhibitors (HDACi) have been shown to inhibit corneal fibrosis via TGFβ signaling pathway. In this study, we investigated safety, efficacy and mechanism of action of a HDACi, ITF2357 in TGFβ-stimulated in vitro primary human cornea stromal fibroblasts (pHCSFs) and in vivo in a photorefractive keratectomy-treated rabbit model of