Science.gov

Sample records for adult human dermal

  1. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue.

    PubMed

    Hsiao, Sarah Tzu-Feng; Asgari, Azar; Lokmic, Zerina; Sinclair, Rodney; Dusting, Gregory James; Lim, Shiang Yong; Dilley, Rodney James

    2012-08-10

    Human adult mesenchymal stem cells (MSCs) support the engineering of functional tissue constructs by secreting angiogenic and cytoprotective factors, which act in a paracrine fashion to influence cell survival and vascularization. MSCs have been isolated from many different tissue sources, but little is known about how paracrine factor secretion varies between different MSC populations. We evaluated paracrine factor expression patterns in MSCs isolated from adipose tissue (ASCs), bone marrow (BMSCs), and dermal tissues [dermal sheath cells (DSCs) and dermal papilla cells (DPCs)]. Specifically, mRNA expression analysis identified insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor-D (VEGF-D), and interleukin-8 (IL-8) to be expressed at higher levels in ASCs compared with other MSC populations whereas VEGF-A, angiogenin, basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) were expressed at comparable levels among the MSC populations examined. Analysis of conditioned media (CM) protein confirmed the comparable level of angiogenin and VEGF-A secretion in all MSC populations and showed that DSCs and DPCs produced significantly higher concentrations of leptin. Functional assays examining in vitro angiogenic paracrine activity showed that incubation of endothelial cells in ASC(CM) resulted in increased tubulogenic efficiency compared with that observed in DPC(CM). Using neutralizing antibodies we concluded that VEGF-A and VEGF-D were 2 of the major growth factors secreted by ASCs that supported endothelial tubulogenesis. The variation in paracrine factors of different MSC populations contributes to different levels of angiogenic activity and ASCs maybe preferred over other MSC populations for augmenting therapeutic approaches dependent upon angiogenesis.

  2. Controllable Production of Transplantable Adult Human High-Passage Dermal Papilla Spheroids Using 3D Matrigel Culture

    PubMed Central

    Miao, Yong; Sun, Ya Bin; Liu, Bing Cheng; Jiang, Jin Dou

    2014-01-01

    We have succeeded in culturing human dermal papilla (DP) cell spheroids and developed a three-dimensional (3D) Matrigel (basement membrane matrix) culture technique that can enhance and restore DP cells unique characteristics in vitro. When 1×104 DP cells were cultured on the 96-well plates precoated with Matrigel for 5 days, both passage 2 and passage 8 DP cells formed spheroidal microtissues with a diameter of 150–250 μm in an aggregative and proliferative manner. We transferred and recultured these DP spheroids onto commercial plates. Cells within DP spheres could disaggregate and migrate out, which was similar to primary DP. Moreover, we examined the expression of several genes and proteins associated with hair follicle inductivity of DP cells, such as NCAM, Versican, and α-smooth muscle actin, and confirmed that their expression level was elevated in the spheres compared with the dissociated DP cells. To examine the hair-inducing ability of DP spheres, hair germinal matrix cells (HGMCs) and DP spheres were mixed and cultured on Matrigel. Unlike the dissociated DP cells and HGMCs cocultured in two dimensions, HGMCs can differentiate into hair-like fibers under the induction of the DP spheres made from the high-passage cells (passage 8) in vitro. We are the first to show that passage 3 human HGMCs differentiate into hair-like fibers in the presence of human DP spheroids. These results suggest that the 3D Matrigel culture technique is an ideal culture model for forming DP spheroids and that sphere formation partially models the intact DP, resulting in hair induction, even by high-passage DP cells. PMID:24528213

  3. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    EPA Science Inventory

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flowthrough diffusi...

  4. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts.

    PubMed

    Jung, Ji-Yong; Shim, Joong Hyun; Choi, Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2015-08-13

    Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs) with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM) collected from hDSPC cultures (hDSPC-CM) exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  5. Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells.

    PubMed

    Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi

    2016-01-01

    Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

  6. IN VITRO DERMAL ABSORPTION OF PYRETHROID PESTICIDES IN RAT AND HUMAN SKIN

    EPA Science Inventory

    Pyrethriods are a class of neurotoxic pesticides and their use may lead to dermal exposure. This study examined the in vitro dermal absorption of pyrethroids in rat and human skin. Dorsal skin removed from adult male LD rats (hair clipped 24 h previously) was dermatomed and mou...

  7. Computer-assisted three-dimensional reconstruction of human dermal dendrocytes.

    PubMed

    Sueki, H; Telegan, B; Murphy, G F

    1995-11-01

    We attempted to characterize the three-dimensional structure of dermal dendrocytes and to clarify the spatial relationships between dermal dendrocytes and mast cells, macrophages, and nerves. Normal human adult skin (breast, n = 2) was routinely processed for electron microscopy. Every other section (about 50 per data set) was collected at 80-nm intervals traversing about 8 microns of tissue. Grids showing the same cells were photographed by electron microscopy at a magnification of 4000x. Based on the 10-20 photographs per data set, cell outlines were digitized into the reconstruction program at appropriate layers and aligned. Thin, elongated cytoplasmic "dendrites" of dermal dendrocytes in two-dimensional micrographs proved to be thin, membrane-bound flaps in three-dimensional reconstruction. For dermal dendrocytes concentrated about superficial vessels (perivascular dendrocytes), the flaps enshrouded the vessel wall, and for dermal dendrocytes directly beneath the epidermis (subepidermal dendrocytes), these flaps were aligned parallel to the dermal-epidermal junction. The three-dimensional feature of dermal dendrocytes (perivascular and subepidermal) is quite similar to that of perivascular adventitial veil cells, suggesting ultrastructurally identified perivascular dendrocytes and veil cells must be identical cells. In conventional ultrathin sections, 20-40% of perivascular dendrocytes and occasional subepidermal dendrocytes were closely associated with mast cells. When viewed by computer-assisted three-dimensional reconstruction, membrane flaps of dermal dendrocytes consistently shrouded mast cell membranes for 50-90% of their perimeter; mast cells resembled a ball in a baseball glove (dermal dendrocytes). Occasional dermal dendrocytes surrounded non-myelinated nerves in the superficial dermis. Membrane flaps also enabled dermal dendrocytes to present extensive areas to the plasma membranes of adjacent monocyte/macrophages. These findings indicate that dermal

  8. Site-specific rectocele repair with dermal graft augmentation: comparison of porcine dermal xenograft (Pelvicol) and human dermal allograft.

    PubMed

    Biehl, Roger C; Moore, Robert D; Miklos, John R; Kohli, Neeraj; Anand, Indu S; Mattox, T Fleming

    2008-01-01

    This study is a retrospective chart review comparing 195 women who underwent rectocele repair with either a porcine dermal xenograft or human allogenic cadaveric dermal graft augmentation over a two year period. A site-specific defect repair was completed prior to augmentation with the graft. Examinations were performed preoperatively and postoperatively using the pelvic organ prolapse quantification system. Questionnaires were used to assess constipation and dyspareunia. De novo dyspareunia and cure rates for constipation and dyspareunia were not statistically different between the two groups. Site-specific fascial rectocele repairs with xenograft or allograft augmentation were found to have similar complication rates as well as objective and subjective cure rates.

  9. Isolation, characterization, and differentiation of human multipotent dermal stem cells.

    PubMed

    Li, Ling; Fukunaga-Kalabis, Mizuho; Herlyn, Meenhard

    2013-01-01

    Skin, as the body's largest organ, has been extensively used to study adult stem cells. Most previous skin-related studies have focused on stem cells isolated from hair follicles and from keratinocytes. Here we present a protocol to isolate multipotent neural crest stem-like dermis-derived stem cells (termed dermal stem cells or DSCs) from human neonatal foreskins. DSCs grow like neural spheres in human embryonic stem cell medium and gain the ability to self-renew and differentiate into several cell lineages including melanocytes, neuronal cells, Schwann cells, smooth muscle cells, adipocytes, and chondrocytes. These cells express neural crest stem cell markers (NGFRp75 and nestin) as well as an embryonic stem cell marker (OCT4).

  10. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  11. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  12. LPS-Stimulated Human Skin-Derived Stem Cells Enhance Neo-Vascularization during Dermal Regeneration.

    PubMed

    Kisch, Tobias; Weber, Caroline; Rapoport, Daniel H; Kruse, Charli; Schumann, Sandra; Stang, Felix H; Siemers, Frank; Matthießen, Anna E

    2015-01-01

    High numbers of adult stem cells are still required to improve the formation of new vessels in scaffolds to accelerate dermal regeneration. Recent data indicate a benefit for vascularization capacity by stimulating stem cells with lipopolysaccharide (LPS). In this study, stem cells derived from human skin (SDSC) were activated with LPS and seeded in a commercially available dermal substitute to examine vascularization in vivo. Besides, in vitro assays were performed to evaluate angiogenic factor release and tube formation ability. Results showed that LPS-activated SDSC significantly enhanced vascularization of the scaffolds, compared to unstimulated stem cells in vivo. Further, in vitro assays confirmed higher secretion rates of proangiogenic as well as proinflammatoric factors in the presence of LPS-activated SDSC. Our results suggest that combining activated stem cells and a dermal substitute is a promising option to enhance vascularization in scaffold-mediated dermal regeneration.

  13. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

    PubMed

    Biernaskie, Jeffrey; Paris, Maryline; Morozova, Olena; Fagan, B Matthew; Marra, Marco; Pevny, Larysa; Miller, Freda D

    2009-12-01

    Despite the remarkable regenerative capacity of mammalian skin, an adult dermal stem cell has not yet been identified. Here, we investigated whether skin-derived precursors (SKPs) might fulfill such a role. We show that SKPs derive from Sox2(+) hair follicle dermal cells and that these two cell populations are similar with regard to their transcriptome and functional properties. Both clonal SKPs and endogenous Sox2(+) cells induce hair morphogenesis, differentiate into dermal cell types, and home to a hair follicle niche upon transplantation. Moreover, hair follicle-derived SKPs self-renew, maintain their multipotency, and serially reconstitute hair follicles. Finally, grafting experiments show that follicle-associated dermal cells move out of their niche to contribute cells for dermal maintenance and wound-healing. Thus, SKPs derive from Sox2(+) follicle-associated dermal precursors and display functional properties predicted of a dermal stem cell, contributing to dermal maintenance, wound-healing, and hair follicle morphogenesis.

  14. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure.

    PubMed

    Abou-Elwafa Abdallah, Mohamed; Pawar, Gopal; Harrad, Stuart

    2016-01-15

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm(2), finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P>0.05). Estimated permeability constants (Kp, cm/h) showed a significant negative correlation with log Kow for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs=36 ng/kg bw day) than adults (median ΣPFRs=4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure.

  15. Dermal absorption of mucopolysaccharide polysulfate (heparinoid) in human and minipig.

    PubMed

    Kumokawa, Tadao; Hirata, Kazumasa; Sato, Keiichi; Kano, Satoshi

    2011-01-01

    Dermal absorption of mucopolysaccharide polysulfate (MPS, the active ingredient of Hirudoid") in human and minipig was investigated by using 14C-labeled MPS. Three types of human and minipig skin samples were used: intact, dried and tape-stripped. At 24 h after application of 14C-MPS to intact human skin on a Franz cell in vitro, the radioactivity was detected in 0.98, 1.34, and 0.08% of the applied dose in stratum corneum, epidermal-dermal skin, and receptor fluid, respectively. In dried human skin, the amount of radioactivity detected was similar to that in intact human skin. By contrast, in tape-stripped human skin, higher radioactivity was detected in epidermal-dermal skin and receptor fluid (2.85 and 0.33% of the applied dose, respectively) than in intact or dried skin. Minipig skin showed 1.5 to 4.5 times greater dermal absorption of 14C-MPS, as compared with human skin. In an in vivo study with minipig, radioactivity was detected at the dosing skin site after dermal administration of 14C-MPS. The stability of 14C-MPS in human skin after dermal application was evaluated by agarose gel electrophoresis and ion-exchange chromatography. It was suggested that 14C-MPS absorbed into human skin would be stable because the chromatogram behaviors of the radioactivity on the two types of method were not shifted. Microautoradiography of human and minipig skins after 14C-MPS dosing showed that radioactivity was widely distributed in the epidermis in the area near hair follicles. The present results clearly demonstrate that MPS is stable and that a small fraction of it is percutaneously absorbed by human and minipig skin.

  16. DISPOSITION OF BROMODICHLOROMETHANE IN HUMANS FOLLOWING ORAL AND DERMAL EXPOSURE

    EPA Science Inventory

    DISPOSITION OF BROMODICHLOROMETHANE IN HUMANS FOLLOWING ORAL AND DERMAL EXPOSURE. TL Leavens1, MW Case1, RA Pegram1, BC Blount2, DM DeMarini1, MC Madden1, and JL Valentine3. 1NHEERL, USEPA, RTP, NC, USA; 2CDC, Atlanta, GA, USA; 3RTI, RTP, NC, USA.
    The disinfection byproduct ...

  17. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain.

    PubMed

    Deng, Dan; Liu, Wei; Xu, Feng; Yang, Yang; Zhou, Guangdong; Zhang, Wen Jie; Cui, Lei; Cao, Yilin

    2009-12-01

    Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.

  18. Development of a chemically defined in vitro culture system to effectively stimulate the proliferation of adult human dermal fibroblasts.

    PubMed

    Kim, Min Seong; Yun, Jung Im; Gong, Seung Pyo; Ahn, Ji Yeon; Lim, Jeong Mook; Song, Young Han; Park, Kyu Hyun; Lee, Seung Tae

    2015-07-01

    Despite the fact that dermal fibroblasts are a practical model for research related to cell physiology and cell therapy, an in vitro culture system excluding serum, which complicates standardization and specificity and induces variability and unwanted effects, does not exist. We tried to establish a CDCS that supports effective proliferation of aHDFs. KDMEM supplemented with 5% (v/v) KSR, 12 ng/ml bFGF, 5 ng/ml EGF and 1 μg/ml hydrocortisone supported sufficient proliferation of aHDFs for 1 week. However, aHDF proliferation was decreased greatly after subculture. This problem could be overcome by culturing aHDFs in CDCM in culture plates coated with 10 μg/ml FN. Long-term culture of aHDFs was achieved using CDCM and FN-coated culture plates for 7 weeks. The optimized CDCS increased the proliferation of aHDFs significantly, without any increase in the senescence rate or alteration in morphology of aHDFs, despite long-term culture. In conclusion, we established a CDCS that improved proliferation of aHDFs while inhibiting cellular senescence. The CDCS will contribute to advances in various future research related to clinical skin regeneration.

  19. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  20. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity.

    PubMed

    Shim, Joong Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2013-04-15

    Adult stem cells from the dermis would be an attractive cell source for therapeutic purposes as well as studying the process of skin aging. Several studies have reported that human dermal stem/progenitor cells (hDSPCs) with multipotent properties exist within the dermis of adult human skin. However, these cells have not been well characterized, because methods for their isolation or enrichment have not yet been optimized. In the present study, we enriched high side scatter (SSC(high))-hDSPCs from normal human dermal fibroblasts using a structural characteristic, intracellular granularity, as a sorting parameter. The SSC(high)-hDSPCs had high in vitro proliferation properties and expressed high levels of SOX2 and S100B, similar to previously identified mouse SOX2+ hair follicle dermal stem cells. The SSC(high)-hDSPCs could differentiate into not only mesodermal cell types, for example, adipocytes, chondrocytes, and osteoblasts, but also neuroectodermal cell types, such as neural cells. In addition, the SSC(high)-hDSPCs exhibited no significant differences in the expression of nestin, vimentin, SNAI2, TWIST1, versican, and CORIN compared with non-hDSPCs. These cells are therefore different from the previously identified multipotent fibroblasts and skin-derived progenitors. In this study, we suggest that hDSPCs can be enriched by using characteristic of their high intracellular granularity, and these SSC(high)-hDSPCs exhibit high in vitro proliferation and differentiation potentials.

  1. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. PMID:24283346

  2. Human acellular dermal wound matrix: evidence and experience.

    PubMed

    Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C

    2015-12-01

    A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM.

  3. Human dermal stem cells differentiate into functional epidermal melanocytes.

    PubMed

    Li, Ling; Fukunaga-Kalabis, Mizuho; Yu, Hong; Xu, Xiaowei; Kong, Jun; Lee, John T; Herlyn, Meenhard

    2010-03-15

    Melanocytes sustain a lifelong proliferative potential, but a stem cell reservoir in glabrous skin has not yet been found. Here, we show that multipotent dermal stem cells isolated from human foreskins lacking hair follicles are able to home to the epidermis to differentiate into melanocytes. These dermal stem cells, grown as three-dimensional spheres, displayed a capacity for self-renewal and expressed NGFRp75, nestin and OCT4, but not melanocyte markers. In addition, cells derived from single-cell clones were able to differentiate into multiple lineages including melanocytes. In a three-dimensional skin equivalent model, sphere-forming cells differentiated into HMB45-positive melanocytes, which migrated from the dermis to the epidermis and aligned singly among the basal layer keratinocytes in a similar fashion to pigmented melanocytes isolated from the epidermis. The dermal stem cells were negative for E-cadherin and N-cadherin, whereas they acquired E-cadherin expression and lost NGFRp75 expression upon contact with epidermal keratinocytes. These results demonstrate that stem cells in the dermis of human skin with neural-crest-like characteristics can become mature epidermal melanocytes. This finding could significantly change our understanding of the etiological factors in melanocyte transformation and pigmentation disorders; specifically, that early epigenetic or genetic alterations leading to transformation may take place in the dermis rather than in the epidermis.

  4. Dermal penetration of [14C]captan in young and adult rats.

    PubMed

    Fisher, H L; Hall, L L; Sumler, M R; Shah, P V

    1992-07-01

    Age dependence in dermal absorption has been a major concern in risk assessment. Captan, a chloroalkyl thio heterocyclic fungicide, was selected for study of age dependence as representative of this class of pesticides. Dermal penetration of [14C]captan applied at 0.286 mumol/cm2 was determined in young (33-d-old) and adult (82-d-old) female Fischer 344 rats in vivo and by two in vitro methods. Dermal penetration in vivo at 72 h was about 9% of the recovered dose in both young and adult rats. The percentage penetration was found to increase as dosage (0.1, 0.5, 2.7 mumol/cm2) decreased. Two in vitro methods gave variable dermal penetration values compared with in vivo results. A static system yielded twofold higher dermal penetration values compared with in vivo results for both young and adult rats. A flow system yielded higher dermal penetration values in young rats and lower penetration values in adults compared with in vivo results. Concentration in body, kidney, and liver was less in young than in adult rats given the same absorbed dosage. A physiological pharmacokinetic model was developed having a dual compartment for the treated skin and appeared to describe dermal absorption and disposition well. From this model, tissue/blood ratios of captan-derived radioactivity for organs were found to range from 0.35 to 3.4, indicating no large uptake or binding preferences by any organ. This preliminary pharmacokinetic model summarizes the experimental findings and could provide impetus for more complex and realistic models.

  5. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography.

    PubMed

    Boone, Marc A L M; Draye, Jean Pierre; Verween, Gunther; Aiti, Annalisa; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Veronique

    2015-05-01

    High-definition optical coherence tomography (HD-OCT) permits real-time 3D imaging of the impact of selected agents on human skin allografts. The real-time 3D HD-OCT assessment of (i) the impact on morphological and cellular characteristics of the processing of human acellular dermal matrices (HADMs) and (ii) repopulation of HADMs in vitro by human fibroblasts and remodelling of the extracellular matrix by these cells. Four different skin decellularization methods, Dispase II/Triton X-100, Dispase II/SDS (sodium dodecyl sulphate), NaCl/Triton X-100 and NaCl/SDS, were analysed by HD-OCT. HD-OCT features of epidermal removal, dermo-epidermal junction (DEJ) integrity, cellularity and dermal architecture were correlated with reflectance confocal microscopy (RCM), histopathology and immunohistochemistry. Human adult dermal fibroblasts were in vitro seeded on the NaCl/Triton X-100 processed HADMs, cultured up to 19 days and evaluated by HD-OCT in comparison with MTT proliferation test and histology. Epidermis was effectively removed by all treatments. DEJ was best preserved after NaCl/Triton X-100 treatment. Dispase II/SDS treatment seemed to remove all cellular debris in comparison with NaCl/Triton X-100 but disturbed the DEJ severely. The dermal micro-architectural structure and vascular spaces of (sub)papillary dermis were best preserved with the NaCl/Triton X-100. The impact on the 3D structure and vascular holes was detrimental with Dispase II/SDS. Elastic fibre fragmentation was only observed after Dispase II incubation. HD-OCT showed that NaCl/Triton X-100 processed matrices permitted in vitro repopulation by human dermal fibroblasts (confirmed by MTT test and histology) and underwent remodelling upon increasing incubation time. Care must be taken in choosing the appropriate processing steps to maintain selected properties of the extracellular matrix in HADMs. Processing HADMs with NaCl/Triton X-100 permits in vitro the proliferation and remodelling activity of

  6. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin

    PubMed Central

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  7. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin.

    PubMed

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-01-01

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts. PMID:27428951

  8. Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells.

    PubMed

    Shim, Joong Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2013-12-01

    Cell therapy using adult stem cells has emerged as a potentially new approach for the treatment of various diseases. Therefore, it is an essential procedure to maintain the stemness of adult stem cells for clinical treatment. We previously reported that human dermal stem/progenitor cells (hDSPCs) can be enriched using collagen type IV. However, hDSPCs gradually lose their stem cell properties as in vitro passages continue. In the present study, we developed optimized in vitro culture condition to improve the stemness of these hDSPCs. To evaluate whether the stemness of hDSPCs is well sustained in various culture conditions, we measured the expression levels of SOX2, NANOG, and S100B, which are well-known representative dermal progenitor markers. We observed that hDSPCs grown in three-dimensional (3D) culture condition had higher expression levels of those markers compared with hDSPCs grown in two-dimensional (2D) culture condition. Under the 3D culture condition, we further demonstrated that a high glucose (4.5 g/L) concentration enhanced the expression levels of the dermal progenitor markers, whereas O(2) concentration did not affect. We also found that skin-derived precursor (SKP) culture medium was the most effective, among various culture media, in increasing the dermal progenitor marker expression. We finally demonstrated that this optimized culture condition enhanced the expression level of human telomerase reverse transcriptase (hTERT), the proliferation, and the multipotency of hDSPCs, an important characteristic of stem cells. Taken together, these results suggested that this novel in vitro culture condition improves the stemness of hDSPCs.

  9. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  10. Effects of glucocorticoid on human dermal papilla cells in vitro.

    PubMed

    Choi, Soon-Jin; Cho, A-Ri; Jo, Seong-Jin; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Oh Sang

    2013-05-01

    Glucocorticoid (GC) is synthesized mostly in the adrenal gland and is secreted in response to stressful conditions. The stress-induced increase in systemic GC may mediate diverse types of cellular damage. However, the specific effects of GC on the dermal papilla cells (DPCs) of hair follicles remain unknown, although stress-related hair loss has increased significantly in recent years. The objective of this study was to determine the effect of a synthetic GC, dexamethasone (Dex), on human DPCs in vitro. We evaluated the effects of Dex on cell proliferation, survival, and the expression of growth factors in DPCs. Dex treatment (1μM) significantly reduced the number of viable cells and the expression of the Ki-67 protein, VEGF and HGF were downregulated following treatment of DPCs with Dex. Taken together, we concluded that Dex inhibits human hair growth by inhibiting both the proliferation of, and growth factors expression by, DPCs.

  11. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    SciTech Connect

    Hughes, Michael F.; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  12. Significant correlations of dermal total carotenoids and dermal lycopene with their respective plasma levels in healthy adults

    PubMed Central

    Scarmo, Stephanie; Cartmel, Brenda; Lin, Haiqun; Leffell, David J.; Welch, Erin; Bhosale, Prakash; Bernstein, Paul S.; Mayne, Susan T.

    2010-01-01

    Carotenoids in skin have been known to play a role in photoprotection against UV radiation. We performed dermal biopsies of healthy humans (N=27) and collected blood samples for pair-wise correlation analyses of total and individual carotenoid content by high performance liquid chromatography (HPLC). The hydrocarbon carotenoids (lycopene and beta-carotene) made up the majority of carotenoids in both skin and plasma, and skin was somewhat enriched in these carotenoids relative to plasma. Beta-cryptoxanthin, a monohydroxycarotenoid, was found in similar proportions in skin as in plasma. In contrast, the dihydroxycarotenoids, lutein and zeaxanthin, were relatively lacking in human skin in absolute and relative levels as compared to plasma. Total carotenoids were significantly correlated in skin and plasma (r = 0.53, p<0.01). Our findings suggest that human skin is relatively enriched in lycopene and beta-carotene, compared to lutein and zeaxanthin, possibly reflecting a specific function of hydrocarbon carotenoids in human skin photoprotection. PMID:20637178

  13. Human dermal stem/progenitor cell-derived conditioned medium ameliorates ultraviolet a-induced damage of normal human dermal fibroblasts.

    PubMed

    Shim, Joong Hyun; Park, Ju-Yearl; Lee, Mi-Gi; Kang, Hak Hee; Lee, Tae Ryong; Shin, Dong Wook

    2013-01-01

    Adult skin stem cells are considered an attractive cell resource for therapeutic potential in aged skin. We previously reported that multipotent human dermal stem/progenitor cells (hDSPCs) can be enriched from (normal human dermal fibroblasts (NHDFs) using collagen type IV. However, the beneficial effects of hDSPCs on aged skin remain to be elucidated. In the present study, we analyzed the growth factors secreted from hDSPCs in conditioned medium (CM) derived from hDSPCs (hDSPC-CM) and found that hDSPCs secreted higher levels of bFGF, IGFBP-1, IGFBP-2, HGF, VEGF and IGF-1 compared with non-hDSPCs. We then investigated whether hDSPC-CM has an effect on ultraviolet A (UVA)-irradiated NHDFs. Real-time RT-PCR analysis revealed that the treatment of UVA-irradiated NHDFs with hDSPC-CM significantly antagonized the UVA-induced up-regulation of the MMP1 and the UVA-induced down-regulation of the collagen types I, IV and V and TIMP1 mRNA expressions. Furthermore, a scratch wound healing assay showed that hDSPC-CM enhanced the migratory properties of UVA-irradiated NHDFs. hDSPC-CM also significantly reduced the number of the early and late apoptotic cell population in UVA-irradiated NHDFs. Taken together, these data suggest that hDSPC-CM can exert some beneficial effects on aged skin and may be used as a therapeutic agent to improve skin regeneration and wound healing.

  14. Orthopedic applications of acellular human dermal allograft for shoulder and elbow surgery.

    PubMed

    Acevedo, Daniel C; Shore, Brett; Mirzayan, Raffy

    2015-07-01

    Shoulder and elbow tendon injuries are some of the most challenging problems to treat surgically. Tendon repairs in the upper extremity can be complicated by poor tendon quality and, often times, poor healing. Extracellular matrices, such as human dermal allografts, have been used to augment tendon repairs in shoulder and elbow surgery. The indications and surgical techniques regarding the use of human dermal allograft continue to evolve. This article reviews the basic science, rationale for use, and surgical applications of human dermal allograft in shoulder and elbow tendon injuries.

  15. Human dermal exposure to galaxolide from personal care products.

    PubMed

    Correia, P; Cruz, A; Santos, L; Alves, A

    2013-06-01

    Musks are synthetic fragrances applied on personal care and household products as fixatives, by retarding the release of other fragrances with higher volatility. Galaxolide is the most used polycyclic musk since the 90th decade, and it has been detected in several environmental and biological matrices, particularly in human tissues and fluids. For exposure assessment purposes, large-monitoring data need to be obtained and rapid but reliable analytical techniques are requested. The main objective of this study is to develop and validate a new and fast analytical methodology to quantify galaxolide in personal care products and to apply this method to real matrices like skin care products (creams and lotions), shower products (soap bar), hair care products (shampoo and hair conditioner) and oral care products (toothpaste), to evaluate the human dermal exposure risk. A dispersive solid-phase extraction is proposed, using QuEChERS methodology, followed by HPLC with fluorescence detection. Some extraction parameters were studied, like the ratio of sample/solvent amounts, the homogenization time, the salt addition effect and the used sorbents. The validation parameters of the developed method were the following: a linearity range of 0.005-1.002 mg kg⁻¹ sample, a limit of detection of 0.001 mg kg⁻¹ sample, repeatability between 0.7% and 11.3% (variation coefficient of six standard injections), an intermediate precision of 2.5% (variation coefficient of six independent analysis of the same sample), mean recoveries ranging from 65% (soap bar) to 95% (body cream) and 3% of global uncertainty in most of the working range. The time of analysis, including the extraction steps, is 60 min, allowing a throughput of 4 samples h⁻¹ . Galaxolide was detected in all of the seven analysed products in concentrations ranging from 0.04 ± 0.01 mg kg⁻¹ sample (toothpaste) to 280.78 ± 8.19 mg kg⁻¹ sample (perfumed body cream), which may correspond to a significant estimated

  16. Development of a human physiologically based pharmacokinetic (PBPK) model for dermal permeability for lindane.

    PubMed

    Sawyer, Megan E; Evans, Marina V; Wilson, Charles A; Beesley, Lauren J; Leon, Lider S; Eklund, Chris R; Croom, Edward L; Pegram, Rex A

    2016-03-14

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficients using human kinetic data obtained from in vitro and in vivo experimentation as well as a default compound-specific calculation based on physicochemical characteristics used in the absence of kinetic data. A dermal model was developed to describe lindane diffusion into the skin, where the skin compartment consisted of homogeneous dermal tissue. This study utilized Fick's law of diffusion along with chemical binding to protein and lipids to determine appropriate dermal absorption parameters which were then incorporated into a physiologically based pharmacokinetic (PBPK) model to describe in vivo kinetics. The estimation of permeability coefficients using chemical binding in combination with in vivo data demonstrates the advantages of combining physiochemical properties with a PBPK model to predict dermal absorption.

  17. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation.

  18. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes

    PubMed Central

    Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  19. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    PubMed

    Varma, Sandeep R; Sivaprakasam, Thiyagarajan O; Mishra, Abheepsa; Kumar, L M Sharath; Prakash, N S; Prabhu, Sunil; Ramakrishnan, Shyam

    2016-01-01

    Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545

  20. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Wolvetang, Ernst J

    2012-08-10

    Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.

  1. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins.

    PubMed

    Jinno, Hiroyuki; Morozova, Olena; Jones, Karen L; Biernaskie, Jeffrey A; Paris, Maryline; Hosokawa, Ryoichi; Rudnicki, Michael A; Chai, Yang; Rossi, Fabio; Marra, Marco A; Miller, Freda D

    2010-11-01

    Skin-derived precursors (SKPs) are multipotent dermal stem cells that reside within a hair follicle niche and that share properties with embryonic neural crest precursors. Here, we have asked whether SKPs and their endogenous dermal precursors originate from the neural crest or whether, like the dermis itself, they originate from multiple developmental origins. To do this, we used two different mouse Cre lines that allow us to perform lineage tracing: Wnt1-cre, which targets cells deriving from the neural crest, and Myf5-cre, which targets cells of a somite origin. By crossing these Cre lines to reporter mice, we show that the endogenous follicle-associated dermal precursors in the face derive from the neural crest, and those in the dorsal trunk derive from the somites, as do the SKPs they generate. Despite these different developmental origins, SKPs from these two locations are functionally similar, even with regard to their ability to differentiate into Schwann cells, a cell type only thought to be generated from the neural crest. Analysis of global gene expression using microarrays confirmed that facial and dorsal SKPs exhibit a very high degree of similarity, and that they are also very similar to SKPs derived from ventral dermis, which has a lateral plate origin. However, these developmentally distinct SKPs also retain differential expression of a small number of genes that reflect their developmental origins. Thus, an adult neural crest-like dermal precursor can be generated from a non-neural crest origin, a finding with broad implications for the many neuroendocrine cells in the body.

  2. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts.

    PubMed

    Fan, Rong-Hui; Zhu, Xiu-Mei; Sun, Yao-Wen; Peng, Hui-Zi; Wu, Hang-Li; Gao, Wen-Jie

    2016-07-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. PMID:27155158

  3. The fate of dermally applied [14C]d-limonene in rats and humans.

    PubMed

    Api, Anne Marie; Ritacco, Gretchen; Hawkins, David R

    2013-01-01

    The fate of dermally applied [(14)C]d-limonene was evaluated in humans and Long-Evans rats. In rats, 5 mg/kg body weight of [(14)C]d-limonene applied dermally to the shaved back under occlusion, resulted in the absorption of approximately 12% of the dose. The absorbed d-limonene was completely metabolized and excreted rapidly, primarily from the urine (80%) with a small fraction (20%) excreted in the feces. There was no long-term retention of the test material in body tissues. In humans, following dermal application of 12 mg of [(14)C]d-limonene in ethanol (1 mL) to the back under nonocclusive conditions (for 1 h after application to allow the material to dry, thereafter under occlusion), only 0.16% of the dose was absorbed and the radioactivity was recovered from the urine. Radioactivity in human feces was below the limit of detection. These results indicate that under conditions of simulated use of fragrances and cosmetics, d-limonene has a low potential for dermal absorption and tissue accumulation, and the d-limonene that is absorbed is rapidly excreted in the urine. Based upon these findings and the knowledge that d-limonene possesses a low-systemic toxicity profile, it is reasonable to conclude that dermal exposure to d-limonene from fragrance and cosmetic applications is highly unlikely to result in any clinically significant human toxicity.

  4. New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure.

    PubMed

    Bányiová, Katarína; Nečasová, Anežka; Kohoutek, Jiří; Justan, Ivan; Čupr, Pavel

    2016-02-01

    Due to their widespread usage, people are exposed to pesticides on a daily basis. Although these compounds may have adverse effects on their health, there is a gap in the data and the methodology needed to reliably quantify the risks of non-occupational human dermal exposure to pesticides. We used Franz cells and human skin in order to measure the dermal absorption kinetics (steady-state flux, lag time and permeability coefficient) of Carbendazim and Simazine. These parameters were then used to refine the dermal exposure model and a probabilistic simulation was used to quantify risks resulting from exposure to pesticide-polluted waters. The experimentally derived permeability coefficient was 0.0034 cm h(-1) for Carbendazim and 0.0047 cm h(-1) for Simazine. Two scenarios (varying exposure duration and concentration, i.e. environmentally relevant and maximum solubility) were used to quantify the human health risks (hazard quotients) for Carbendazim and Simazine. While no risks were determined in the case of either scenario, the permeability coefficient, which is concentration independent and donor, formulation, compound and membrane specific, may be used in other scenarios and exposure models to quantify more precisely the dermally absorbed dose during exposure to polluted water. To the best of our knowledge, the dermal absorption kinetics parameters defined here are being published for the first time. The usage of experimental permeability parameters in combination with probabilistic risk assessment thus provides a new tool for quantifying the risks of human dermal exposure to pesticides. PMID:26688251

  5. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering.

    PubMed

    Rnjak-Kovacina, Jelena; Wise, Steven G; Li, Zhe; Maitz, Peter K M; Young, Cara J; Wang, Yiwei; Weiss, Anthony S

    2012-10-01

    We present an electrospun synthetic human elastin:collagen composite scaffold aimed at dermal tissue engineering. The panel of electrospun human tropoelastin and ovine type I collagen blends comprised 80% tropoelastin+20% collagen, 60% tropoelastin+40% collagen and 50% tropoelastin+50% collagen. Electrospinning efficiency decreased with increasing collagen content under the conditions used. Physical and mechanical characterization encompassed fiber morphology, porosity, pore size and modulus, which were prioritized to identify the optimal candidate for dermal tissue regeneration. Scaffolds containing 80% tropoelastin and 20% collagen (80T20C) were selected on this basis for further cell interaction and animal implantation studies. 80T20C enhanced proliferation and migration rates of dermal fibroblasts in vitro and were well tolerated in a mouse subcutaneous implantation study where they persisted over 6 weeks. The 80T20C scaffolds supported fibroblast infiltration, de novo collagen deposition and new capillary formation.

  6. The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration.

    PubMed

    Danner, Sandra; Kremer, Mathias; Petschnik, Anna Emilia; Nagel, Sabine; Zhang, Ziyang; Hopfner, Ursula; Reckhenrich, Ann K; Weber, Caroline; Schenck, Thilo L; Becker, Tim; Kruse, Charli; Machens, Hans-Günther; Egaña, José T

    2012-06-01

    Vascularization is a key process in tissue engineering and regeneration and represents one of the most important issues in the field of regenerative medicine. Thus, several strategies to improve vascularization are currently under clinical evaluation. In this study, stem cells derived from human sweat glands were isolated, characterized, seeded in collagen scaffolds, and engrafted in a mouse full skin defect model for dermal regeneration. Results showed that these cells exhibit high proliferation rates and express stem cell and differentiation markers. Moreover, cells responded to angiogenic environments by increasing their migration (P<0.001) and proliferation (P<0.05) capacity and forming capillary-like structures. After seeding in the scaffolds, cells distributed homogeneously, interacting directly with the scaffold, and released bioactive molecules involved in angiogenesis, immune response, and tissue remodeling. In vivo, scaffolds containing cells were used to induce dermal regeneration. Here we have found that the presence of the cells significantly improved vascularization (P<0.001). As autologous sweat gland-derived stem cells are easy to obtain, exhibit a good proliferation capacity, and improve vascularization during dermal regeneration, we suggest that the combined use of sweat gland-derived stem cells and scaffolds for dermal regeneration might improve dermal regeneration in future clinical settings.

  7. Kinetics of 3-(4-methylbenzylidene)camphor in rats and humans after dermal application

    SciTech Connect

    Schauer, Ute M.D.; Voelkel, Wolfgang; Heusener, Alexander; Colnot, Thomas; Broschard, Thomas H.; Landenberg, Friedrich von; Dekant, Wolfgang . E-mail: dekant@toxi.uni-wuerzburg.de

    2006-10-15

    The toxicokinetics of 4-MBC after dermal administration were investigated in human subjects and in rats. Humans (3 male and 3 female subjects) were exposed to 4-MBC by topical application of a commercial sunscreen formulation containing 4% 4-MBC (w/w), covering 90% of the body surface and resulting in a mean dermal 4-MBC dose of 22 mg/kg bw. In rats, dermal 4-MBC doses of 400 and 2000 mg/kg bw were applied in a formulation using an occlusive patch for 24 h. Concentrations of 4-MBC and its metabolites were monitored over 96 h in plasma (rats and humans) and urine (humans). In human subjects, plasma levels of 4-MBC peaked at 200 pmol/ml in males and 100 pmol/ml in females 6 h after application and then decreased to reach the limit of detection after 24 h (females), respectively, 36 h (males). After dermal application of 4-MBC, peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 50-80 pmol/ml at 12 h and of 3-(4-carboxybenzylidene)camphor were 100-200 pmol/ml at 24 h. In male and female rats, peak plasma levels of 4-MBC were 200 (dose of 400 mg/kg bw) and 1 200 pmol/ml (dose of 2000 mg/kg bw). These levels remained constant for up to 24-48 h after dermal application. Peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 18,000 pmol/ml (males) and of 3-(4-carboxybenzylidene)camphor were 55,000 pmol/ml (females) between 48 and 72 h after application of the high dose of 4-MBC. In human subjects, only a small percentage of the dermally applied dose of 4-MBC was recovered in the form of metabolites in urine, partly as glucuronides. The obtained results suggest a more intensive biotransformation of 4-MBC in rats as compared to humans after dermal application and a poor absorption of 4-MBC through human skin.

  8. Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts.

    PubMed

    Awang, M A; Firdaus, M A B; Busra, M B; Chowdhury, S R; Fadilah, N R; Wan Hamirul, W K; Reusmaazran, M Y; Aminuddin, M Y; Ruszymah, B H I

    2014-01-01

    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.

  9. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  10. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact.

  11. Evaluation of the Dermal Bioavailability of Aqueous Xylene in F344 Rats and Human Volunteers

    SciTech Connect

    Thrall, Karla D. ); Woodstock, Angie D. )

    2003-07-11

    Xylene is a clear, colorless liquid used as a solvent in the printing, rubber, and leather industries and is commonly found in paint thinners, paints, varnishes, and adhesives. Although humans are most likely to be exposed to xylene via inhalation, xylene is also found in well and surface water. Therefore, an assessment of the dermal contribution to total xylene uptake is useful for understanding human exposures. To evaluate the significance of these exposures, the dermal absorption of o-xylene was assessed in F344 male rats and human volunteers using a combination of real-time exhaled breath analysis and physiologically based pharmacokinetic (PBPK) modeling. Animals were exposed to o-xylene dermally. Immediately following the initiation of exposure, individual animals were placed in a glass off-gassing chamber and exhaled breath was monitored. Human volunteers participating in the study placed both legs into a stainless steel hydrotherapy tub containing an initial concentration of approximately 500 g/L o-xylene. Exhaled breath was continually analyzed from each volunteer before, during, and post-exposure to track absorption and subsequent elimination of the compound in real time. In both animal and human studies, a PBPK model was used to estimate the dermal permeability coefficient (Kp) to describe each set of exhaled breath data. Rat skin was found to be approximately 12 times more permeable to aqueous o-xylene than human skin. The estimated human and rat aqueous o-xylene Kp values were 0.005+/- 0.001 cm/hr and 0.058+/- 0.009 cm/hr, respectively.

  12. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    PubMed

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing.

  13. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth.

    PubMed

    Higgins, Claire A; Chen, James C; Cerise, Jane E; Jahoda, Colin A B; Christiano, Angela M

    2013-12-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin.

  14. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    PubMed

    Syed, Junetha; Chandran, Anandhakumar; Pandian, Ganesh N; Taniguchi, Junichi; Sato, Shinsuke; Hashiya, Kaori; Kashiwazaki, Gengo; Bando, Toshikazu; Sugiyama, Hiroshi

    2015-07-01

    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs).

  15. DermACELL: Human Acellular Dermal Matrix Allograft A Case Report.

    PubMed

    Cole, Windy E

    2016-03-01

    Diabetes often causes ulcers on the feet of diabetic patients. A 56-year-old, insulin-dependent, diabetic woman presented to the wound care center with a Wagner grade 3 ulcer of the right heel. She reported a 3-week history of ulceration with moderate drainage and odor and had a history of ulceration and osteomyelitis in the contralateral limb. Rigorous wound care, including hospitalization; surgical incision and drainage; intravenous antibiotic drug therapy; vacuum-assisted therapy; and a new room temperature, sterile, human acellular dermal matrix graft were used to heal the wound, save her limb, and restore her activities of daily living. This case presentation involves alternative treatment of a diabetic foot ulcer with this new acellular dermal matrix, DermACELL. PMID:27031550

  16. Effect of Bromine Substitution on Human Dermal Absorption of Polybrominated Diphenyl Ethers.

    PubMed

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-09-15

    Human dermal absorption of eight mono- to deca-brominated diphenyl ethers (PBDEs) was investigated for the first time using EPISKIN human skin equivalent tissue. Using a standard in vitro protocol, EPISKIN tissues mounted in specially designed diffusion cells were exposed to the target PBDEs for 24 h. Estimated steady-state flux (Jss) and permeation coefficients (Papp) across the skin increased with decreasing bromine substitution from BDE-153 (Papp = 4.0 × 10(-4) cm/h) to BDE-1 (Papp = 1.1 × 10(-2) cm/h). This was accompanied by an increase in the time required to traverse the skin tissue into the receptor fluid (lag time) from 0.25 h for BDE-1 to 1.26 h for BDE-153. Papp values for the studied PBDEs were correlated significantly (P < 0.05) with physicochemical parameters like water solubility and log KOW. While less brominated congeners achieved faster dermal penetration, higher PBDEs displayed greater accumulation within the skin tissue. The PBDEs thus accumulated represent a contaminant depot from which they may be slowly released to the systemic circulation over a prolonged period. Maximal percutaneous penetration was observed for BDE-1 (∼ 30% of the applied 500 ng/cm(2) dose). Interestingly, BDE-183 and BDE-209 showed very low dermal absorption, exemplified by a failure to reach the steady state within the 24 h exposure period that was studied.

  17. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  18. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  19. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  20. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    SciTech Connect

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  1. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors

    PubMed Central

    Buttler, Kerstin; Ströbel, Philipp; Becker, Jürgen; Aung, Thiha; Felmerer, Gunther; Wilting, Jörg

    2016-01-01

    Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lymphatic collectors is an attractive target for pharmacological therapy of lymphedema. However, lymphatics have mostly been studied in animals, while the cellular and molecular characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our immunohistological studies identify additional markers for LECs (vimentin, CCBE1). We show and confirm differences between initial and collecting lymphatics concerning the markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light cytoplasm. We observed vasa vasorum in the media of the largest collectors, as well as interstitial Cajal-like cells, which are highly ramified cells with long processes, caveolae, and lacking a basal lamina. They are in close contact with SMCs, which possess multiple caveolae at the contact sites. Immunohistologically we identified such cells with antibodies against vimentin and PDGFRα, but not CD34 and cKIT. With Next Generation Sequencing we searched for highly expressed genes in the media of lymphatic collectors, and found therapeutic targets, suitable for acceleration of lymphatic contractility, such as neuropeptide Y receptors 1, and 5; tachykinin receptors 1, and 2; purinergic receptors P2RX1, and 6, P2RY12, 13, and 14; 5-hydroxytryptamine receptors HTR2B, and 3C; and adrenoceptors α2A,B,C. Our studies represent the first comprehensive characterization of human epifascial lymphatic collectors, as a prerequisite for diagnosis and therapy. PMID:27764183

  2. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human.

    PubMed

    You, Ga-Eun; Jung, Bong-Jun; Kim, Hye-Rim; Kim, Han-Geun; Kim, Tae-Rahk; Chung, Dae-Kyun

    2013-10-28

    Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-α inducing MMP-1 in NHDFs. PMID:23851272

  3. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  4. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    PubMed Central

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. Materials and Methods: In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. PMID:27069722

  5. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    NASA Astrophysics Data System (ADS)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  6. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    PubMed

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.

  7. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Kim, Min-Ji; Woo, Seon Wook; Kim, Myung-Suk; Park, Ji-Eun; Hwang, Jae-Kwan

    2014-12-01

    Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.

  8. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    PubMed

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  9. Biomonitoring and whole body cotton dosimetry to estimate potential human dermal exposure to semivolatile chemicals.

    PubMed

    Krieger, R I; Bernard, C E; Dinoff, T M; Fell, L; Osimitz, T G; Ross, J H; Ongsinthusak, T

    2000-01-01

    Current methods of estimating absorbed dosage (AD) of chemicals were evaluated to determine residue transfer from a carpet treated with chlorpyrifos (CP) to humans who performed a structured exercise routine. To determine the dislodgeability of residue, a California Department of Food and Agriculture (CDFA) roller was applied to a flat cotton cloth upon a treated carpet. Levels ranged from 0.06 to 0.99 microg CP/cm2. Cotton whole body dosimeters (WBD) were also used to assess residue transfer. The dosimeters retained 1.5 to 38 mg CP/person. Urine biomonitoring (3 days) for 3,5,6-trichloro-2-pyridinol (TCP) of persons who wore only swimsuits revealed a mean AD of 176 microg CP equivalents/person. The results show that the AD depends on the extent of contact transfer and dermal absorption of the residue. Default exposure assessments based upon environmental levels of chemicals and hypothetical transport pathways predict excessive exposure. The cotton WBD retains chemical residues and may be effectively used to predict dermal dose under experimental conditions.

  10. Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery.

    PubMed

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Baaijens, Frank P T; Oomens, Cees W J

    2015-10-01

    Delivering a drug into and through the skin is of interest as the skin can act as an alternative drug administration route for oral delivery. The development of new delivery methods, such as microneedles, makes it possible to not only deliver small molecules into the skin, which are able to pass the outer layer of the skin in therapeutic amounts, but also macromolecules. To provide insight into the administration of these molecules into the skin, the aim of this study was to assess the transport of macromolecules within and between its various layers. The diffusion coefficients in the epidermis and several locations in the papillary and reticular dermis were determined for fluorescein dextran of 40 and 500 kDa using a combination of fluorescent recovery after photobleaching experiments and finite element analysis. The diffusion coefficient was significantly higher for 40 kDa than 500 kDa dextran, with median values of 23 and 9 µm(2)/s in the dermis, respectively. The values only marginally varied within and between papillary and reticular dermis. For the 40 kDa dextran, the diffusion coefficient in the epidermis was twice as low as in the dermis layers. The adopted method may be used for other macromolecules, which are of interest for dermal and transdermal drug delivery. The knowledge about diffusion in the skin is useful to optimize (trans)dermal drug delivery systems to target specific layers or cells in the human skin.

  11. Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton's jelly in dermal regeneration.

    PubMed

    Edwards, Sandra S; Zavala, Gabriela; Prieto, Catalina P; Elliott, Matías; Martínez, Samuel; Egaña, Jose T; Bono, María R; Palma, Verónica

    2014-10-01

    Disorders in skin wound healing are a major health problem that requires the development of innovative treatments. The use of biomaterials as an alternative of skin replacement has become relevant, but its use is still limited due to poor vascularization inside the scaffolds, resulting in insufficient oxygen and growth factors at the wound site. In this study, we have developed a cell-based wound therapy consisting of the application of collagen-based dermal scaffolds containing mesenchymal stem cells from Wharton's jelly (WJ-MSC) in an immunocompetent mouse model of angiogenesis. From our comparative study on the secretion profile between WJ-MSC and adipose tissue-derived MSC, we found a stronger expression of several well-characterized growth factors, such as VEGF-A, angiopoietin-1 and aFGF, which are directly linked to angiogenesis, in the culture supernatant of WJ-MSC, both on monolayer and 3D culture conditions. WJ-MSC proved to be angiogenic both in vitro and in vivo, through tubule formation and CAM assays, respectively. Moreover, WJ-MSC consistently improved the healing response in vivo in a mouse model of human-like dermal repair, by triggering angiogenesis and further providing a suitable matrix for wound repair, without altering the inflammatory response in the animals. Since these cells can be easily isolated, cultured with high expansion rates and cryopreserved, they represent an attractive stem cell source for their use in allogeneic cell transplant and tissue engineering.

  12. Biomonitoring and whole body cotton dosimetry to estimate potential human dermal exposure to semivolatile chemicals.

    PubMed

    Krieger, R I; Bernard, C E; Dinoff, T M; Fell, L; Osimitz, T G; Ross, J H; Ongsinthusak, T

    2000-01-01

    Current methods of estimating absorbed dosage (AD) of chemicals were evaluated to determine residue transfer from a carpet treated with chlorpyrifos (CP) to humans who performed a structured exercise routine. To determine the dislodgeability of residue, a California Department of Food and Agriculture (CDFA) roller was applied to a flat cotton cloth upon a treated carpet. Levels ranged from 0.06 to 0.99 microg CP/cm2. Cotton whole body dosimeters (WBD) were also used to assess residue transfer. The dosimeters retained 1.5 to 38 mg CP/person. Urine biomonitoring (3 days) for 3,5,6-trichloro-2-pyridinol (TCP) of persons who wore only swimsuits revealed a mean AD of 176 microg CP equivalents/person. The results show that the AD depends on the extent of contact transfer and dermal absorption of the residue. Default exposure assessments based upon environmental levels of chemicals and hypothetical transport pathways predict excessive exposure. The cotton WBD retains chemical residues and may be effectively used to predict dermal dose under experimental conditions. PMID:10703847

  13. Maintenance of Multipotency in Human Dermal Fibroblasts Treated with Xenopus laevis Egg Extract Requires Exogenous Fibroblast Growth Factor-2

    PubMed Central

    Kole, Denis; Ambady, Sakthikumar; Page, Raymond L.

    2014-01-01

    Abstract Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis egg extract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-β, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2. PMID:24405062

  14. Anatomy and ultrastructure of dermal glands in an adult water mite, Teutonia cometes (Koch, 1837) (Acariformes: Hydrachnidia: Teutoniidae).

    PubMed

    Shatrov, Andrew B

    2013-03-01

    Organization of dermal glands in adult water mites Teutonia cometes (Koch, 1837) was studied using light-optical, SEM and TEM methods for the first time. These glands are large and occur in a total number of ten pairs at the dorsal, ventral and lateral sides of the body. The slit-like external openings of the glands (glandularia) are provided with a cone-shaped sclerite, and are combined with a single small trichoid seta (hair sensillum), which is always situated slightly apart from the anterior aspect of the gland opening. Each gland is formed by an epithelium encompassing a very large lumen (central cavity) normally filled with secretion that stains in varying intensity on toluidine blue stained sections. The epithelium is composed of irregularly shaped secretory cells with an electron-dense cytoplasm and infolded basal portions. The cells possess a large irregularly shaped nucleus and are filled with tightly packed slightly dilated cisterns and vesicles of rough endoplasmic reticulum (RER) with electron lucent contents. Dense vesicles are also present in the apical cell zone. Some cells undergo dissolution, occupy an upper position within the epithelium and have a lighter cytoplasm with disorganized RER. Muscle fibers are regularly present in the deep folds of the basal cell portions and may serve to squeeze the gland and eject the secretion into the external milieu. The structure of these dermal glands is compared with the previously described idiosomal glands of the same species and a tentative correlation with the glandularia system of water mites is given. Possible functions of the dermal glands of T. cometes are discussed.

  15. CYCLOSPORIN A AFFECTS THE PROLIFERATION PROCESS IN NORMAL HUMAN DERMAL FIBROBLASTS.

    PubMed

    Janikowska, Grazyna; Janikowsk, Tomasz; Pyka, Alina; Wilczok, Adam; Mazurek, Urszula

    2016-01-01

    Cyclosporin A is an immunosuppressant drug that is used not only in solid transplant rejection, but also in moderate and severe forms of psoriasis, pyoderma, lupus or arthritis. Serious side effects of the drug such as skin cancer or gingival hyperplasia probably start with the latent proliferation process. Little is known about the influence of cyclosporin A on molecular signaling in epidermal tissue. Thus, the aim of this study was to estimate the influence of cyclosporin A on the process of proliferation in normal human dermal fibroblasts. Fibroblasts were cultured in a liquid growth medium in standard conditions. Cyclosporin A was added to the culture after the confluence state. Survival and proliferation tests on human dermal fibroblast cells were performed. Total RNA was extracted from fibroblasts, based on which cDNA and cRNA were synthesized. The obtained cRNA was hybridized with the expression microarray HGU-133A_2.0. Statistical analysis of 2734 mRNAs was performed by the use of GeneSpring 13.0 software and only results with p < 0.05 were accepted. Analysis of variance with Tukey post hoc test with Benjamini-Hochberg correction for all three (8, 24, 48 h) culture stages (with and without cyclosporin A) was performed to lower the number of statistically significant results from 679 to 66, and less. Between statistically and biologically significant mRNAs down-regulated were EGRJ, BUBIB, MKI67, CDK1, TTK, E2F8, TPX2, however, the INSIG1, FOSL1, HMOX1 were up-regulated. The experiment data revealed that cyclosporin A up-regulated FOSL1 in the first 24 h, afterwards down-regulating its expression. The HMOX1 gene was up-regulated in the first stage of the experiment (CsA 8 h), however, after the next 16 h of culture time its expression was down-regulated (CsA 24 h), to finally increased in the later time period. The results indicate that cyclosporin A had a significant effect on proliferation in normal human dermal fibroblasts through the changes in the

  16. Dermal Uptake from Airborne Organics as an Important Route of Human Exposure to E-Waste Combustion Fumes.

    PubMed

    Wu, Chen-Chou; Bao, Lian-Jun; Tao, Shu; Zeng, Eddy Y

    2016-07-01

    Skin absorption of gaseous organic contaminants is an important and relevant mechanism in human exposure to such contaminants, but has not been adequately examined. This article demonstrates that dermal uptake from airborne contaminants could be recognized as a significant exposure route for local residents subjecting to combustion fume from e-waste recycling activities. It is particularly true for organic pollutants which have high dermal penetration rates and large skin-air partition coefficients, such as low molecular weight plasticizers and flame retardants. PMID:26937778

  17. The Effect of Ovine Secreted Soluble Factors on Human Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: In androgenetic alopecia, follicular miniaturization and dynamic changes to the hair cycle produce patterned baldness. The most effective treatment for baldness is hair transplantation surgery. The major limitation to hair transplantation is the availability of donor hair from the relatively unaffected occipital scalp. Hair induction with in vitro expansion of donor follicle populations has the potential to overcome this. The major obstacle to this is that in vitro expansion of human dermal papilla cell (DPC) colonies is associated with irreversible loss of aggregative behavior and hair follicle-inductive potential. In contrast, cultured ovine DPCs maintain these properties after extensive proliferation. Aims: To determine whether aggregating ovine DPC secrete factors that enhance the aggregative behavior or inductive potential of human DPC. Subjects and Methods: Fluorescently-labelled ovine DPC were mixed in culture with human DPC at passage number seven-nine, which had lost their aggregative behavior. The effects of different culture substrates and medium compositions on aggregative behavior were determined. Ovine and human papilla cells were co-cultured, separated by a permeable membrane to determine whether the ovine cells secrete soluble factors that affect human papilla cells. Results: In direct co-culture experiments, well-formed aggregates were produced by 90:10 human:ovine and 50:50 human:ovine DPC mixtures. In contrast, unmixed human DPC remained in a monolayer state after 18 days. Both human and ovine DPC had a higher tendency to aggregate in medium containing 20% (v/v) lamb serum (LS) compared to 10% (v/v) fetal calf serum (FCS). In co-culture experiments separated with permeable membrane, the human DPC aggregates were bigger and more rapidly formed with the addition of ovine secreted soluble factors. Conclusions: Soluble factors secreted by ovine DPC and present in LS increase the aggregative behavior of human DPC. These molecules might

  18. The Effect of Ovine Secreted Soluble Factors on Human Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: In androgenetic alopecia, follicular miniaturization and dynamic changes to the hair cycle produce patterned baldness. The most effective treatment for baldness is hair transplantation surgery. The major limitation to hair transplantation is the availability of donor hair from the relatively unaffected occipital scalp. Hair induction with in vitro expansion of donor follicle populations has the potential to overcome this. The major obstacle to this is that in vitro expansion of human dermal papilla cell (DPC) colonies is associated with irreversible loss of aggregative behavior and hair follicle-inductive potential. In contrast, cultured ovine DPCs maintain these properties after extensive proliferation. Aims: To determine whether aggregating ovine DPC secrete factors that enhance the aggregative behavior or inductive potential of human DPC. Subjects and Methods: Fluorescently-labelled ovine DPC were mixed in culture with human DPC at passage number seven-nine, which had lost their aggregative behavior. The effects of different culture substrates and medium compositions on aggregative behavior were determined. Ovine and human papilla cells were co-cultured, separated by a permeable membrane to determine whether the ovine cells secrete soluble factors that affect human papilla cells. Results: In direct co-culture experiments, well-formed aggregates were produced by 90:10 human:ovine and 50:50 human:ovine DPC mixtures. In contrast, unmixed human DPC remained in a monolayer state after 18 days. Both human and ovine DPC had a higher tendency to aggregate in medium containing 20% (v/v) lamb serum (LS) compared to 10% (v/v) fetal calf serum (FCS). In co-culture experiments separated with permeable membrane, the human DPC aggregates were bigger and more rapidly formed with the addition of ovine secreted soluble factors. Conclusions: Soluble factors secreted by ovine DPC and present in LS increase the aggregative behavior of human DPC. These molecules might

  19. Aqueous synthesis of gold nanoparticles and their cytotoxicity in human dermal fibroblasts-fetal.

    PubMed

    Qu, Yinghua; Lü, Xiaoying

    2009-04-01

    The unique physicochemical properties of nanoparticles make them promising substrates for application in the medical area. As there are no safety regulations yet, concerns about future health problems are rising. This study was conducted to prepare approximately 20 nm gold nanoparticles (GNPs) by a chemical reduction method and evaluate their cytotoxicity by MTT assay using human dermal fibroblasts-fetal (HDF-f). 10-50 nm GNPs could be obtained in redistilled water by varying the amount of sodium citrate. MTT results showed that approximately 20 nm GNPs did not cause cell death at a maximum concentration of 300 microM but affected the morphology of HDF-f when their concentration increased. PMID:19258699

  20. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals. PMID:25785560

  1. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals.

  2. Relationship between dermal birefringence and the skin surface roughness of photoaged human skin

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo; Nakagawa, Noriaki; Yamanari, Masahiro; Miyazawa, Arata; Yasuno, Yoshiaki; Matsumoto, Masayuki

    2009-07-01

    The dermal degeneration accompanying photoaging is considered to promote skin roughness features such as wrinkles. Our previous study demonstrated that polarization-sensitive spectral domain optical coherence tomography (PS-SD-OCT) enabled noninvasive three-dimensional evaluation of the dermal degeneration of photoaged skin as a change in dermal birefringence, mainly due to collagenous structures. Our purpose is to examine the relationship between dermal birefringence and elasticity and the skin morphology in the eye corner area using PS-SD-OCT. Nineteen healthy male subjects in their seventees were recruited as subjects. A transverse dermal birefringence map, automatically produced by the algorithm, did not show localized changes in the dermal birefringence in the part of the main horizontal wrinkle. The averaged upper dermal birefringence, however, showed depth-dependent correlation with the parameters of skin roughness significantly, suggesting that solar elastosis is a major factor for the progress of wrinkles. Age-dependent parameters of skin elasticity measured with Cutometer did not correlate with the parameters. These results suggest that the analysis of dermal birefringence using PS-SD-OCT enables the evaluation of photoaging-dependent upper dermal degeneration related to the change of skin roughness.

  3. DERMAL, ORAL AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY-BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory


    Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...

  4. DERMAL, ORAL, AND INHALATION PHARMACOKINETICS OF METHYL TERTIARY BUTYL ETHER (MTBE) IN HUMAN VOLUNTEERS

    EPA Science Inventory

    Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...

  5. Restoration of the intrinsic properties of human dermal papilla in vitro.

    PubMed

    Ohyama, Manabu; Kobayashi, Tetsuro; Sasaki, Takashi; Shimizu, Atsushi; Amagai, Masayuki

    2012-09-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.

  6. Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells.

    PubMed

    Bassino, Eleonora; Gasparri, Franco; Giannini, Valentina; Munaron, Luca

    2015-05-01

    Human follicle dermal papilla cells (FDPC) are a specialized population of mesenchymal cells located in the skin. They regulate hair follicle (HF) development and growth, and represent a reservoir of multipotent stem cells. Growing evidence supports the hypothesis that HF cycling is associated with vascular remodeling. Follicular keratinocytes release vascular endothelial growth factor (VEGF) that sustains perifollicular angiogenesis leading to an increase of follicle and hair size. Furthermore, several human diseases characterized by hair loss, including Androgenetic Alopecia, exhibit alterations of skin vasculature. However, the molecular mechanisms underlying HF vascularization remain largely unknown. In vitro coculture approaches can be successfully employed to greatly improve our knowledge and shed more light on this issue. Here we used Transwell-based co-cultures to show that FDPC promote survival, proliferation and tubulogenesis of human microvascular endothelial cells (HMVEC) more efficiently than fibroblasts. Accordingly, FDPC enhance the endothelial release of VEGF and IGF-1, two well-known proangiogenic growth factors. Collectively, our data suggest a key role of papilla cells in vascular remodeling of the hair follicle.

  7. Androgen receptor accelerates premature senescence of human dermal papilla cells in association with DNA damage.

    PubMed

    Yang, Yi-Chien; Fu, Hung-Chun; Wu, Ching-Yuan; Wei, Kuo-Ting; Huang, Ko-En; Kang, Hong-Yo

    2013-01-01

    The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16(INK4a), and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16(INK4a) upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16(INK4a) axis is a potential therapeutic target in the treatment of androgenetic alopecia.

  8. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    PubMed Central

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Materials and Methods: Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. Results: FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10–40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Conclusion: The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. SUMMARY Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stress

  9. Biomonitoring as a tool in the human health risk characterization of dermal exposure.

    PubMed

    Boogaard, P J

    2008-04-01

    Dermal exposure is an important factor in risk characterization. In occupational settings it becomes relatively more important because of the continuous reduction in inhalation exposure. In the public health arena, dermal exposure may also form a significant contribution to the total exposure. Dermal exposure, however, is difficult to assess directly because it is determined by a host of factors, which are difficult to quantify. As a consequence, dermal exposure is often estimated by application of models for external exposure. In combination with modeled or measured data for percutaneous penetration, these provide an estimate for the internal exposure that is directly related to the systemic effects. The advantages and drawbacks of EASE (Estimation and Assessment of Substance Exposure) and RISKOFDERM (Risk Assessment of Occupational Dermal Exposure), two models for external exposure that are mentioned in the Technical Guidance Document for the European Union risk assessments performed under the Existing Substances Regulation (EEC/793/93), are discussed. Although new chemicals regulation (REACh, 1907/2006/EC) is now in place in the European Union, the principles applied under the previous legislation do not change and the same models will continue to be used. The results obtained with these models for styrene, 2-butoxyethanol, and 1-methoxy-2-propanol in specific exposure scenarios are compared with an alternative method that uses biomonitoring data to assess dermal exposure. Actual external exposure measurements combined with measured or modeled percutaneous penetration data give acceptable results in risk assessment of dermal exposure, but modeled data of external dermal exposure should only be used if no other data are available. However, if available, biomonitoring should be considered the method of choice to assess (dermal) exposure. PMID:18684800

  10. Biomonitoring as a tool in the human health risk characterization of dermal exposure.

    PubMed

    Boogaard, P J

    2008-04-01

    Dermal exposure is an important factor in risk characterization. In occupational settings it becomes relatively more important because of the continuous reduction in inhalation exposure. In the public health arena, dermal exposure may also form a significant contribution to the total exposure. Dermal exposure, however, is difficult to assess directly because it is determined by a host of factors, which are difficult to quantify. As a consequence, dermal exposure is often estimated by application of models for external exposure. In combination with modeled or measured data for percutaneous penetration, these provide an estimate for the internal exposure that is directly related to the systemic effects. The advantages and drawbacks of EASE (Estimation and Assessment of Substance Exposure) and RISKOFDERM (Risk Assessment of Occupational Dermal Exposure), two models for external exposure that are mentioned in the Technical Guidance Document for the European Union risk assessments performed under the Existing Substances Regulation (EEC/793/93), are discussed. Although new chemicals regulation (REACh, 1907/2006/EC) is now in place in the European Union, the principles applied under the previous legislation do not change and the same models will continue to be used. The results obtained with these models for styrene, 2-butoxyethanol, and 1-methoxy-2-propanol in specific exposure scenarios are compared with an alternative method that uses biomonitoring data to assess dermal exposure. Actual external exposure measurements combined with measured or modeled percutaneous penetration data give acceptable results in risk assessment of dermal exposure, but modeled data of external dermal exposure should only be used if no other data are available. However, if available, biomonitoring should be considered the method of choice to assess (dermal) exposure.

  11. Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts.

    PubMed

    Park, Hyun Jin; Rouabhia, Mahmoud; Lavertu, Denis; Zhang, Ze

    2015-07-01

    This study profiled multiple human dermal fibroblast wound-healing genes in response to electrical stimulation (ES) by using an RT(2) profiler PCR-Array system. Primary human skin fibroblasts were seeded on heparin (HE)-bioactivated polypyrrole (PPy)/poly(l-lactic acid) (PLLA) conductive membranes, cultured, and subsequently exposed to ES of 50 or 200 mV/mm for 6 h. Following ES, the cells were used to extract RNA for gene profiling, and culture supernatants were used to measure the level of the different wound healing mediators. A total of 57 genes were affected (activated/repressed) by ES; among these, 49 were upregulated and 8 were downregulated. ES intensities at 50 and 200 mV/mm activated/repressed different genes. The ES-modulated genes are involved in cell adhesion, remodeling and spreading, cytoskeletal activity, extracellular matrix metabolism, production of inflammatory cytokines/chemokines and growth factors, as well as signal transduction. The expression of several genes was supported by protein production. Protein analyses showed that ES increased CCL7, KGF, and TIMP2, but reduced MMP2. This study demonstrated that ES modulates the expression of a variety of genes involved in the wound healing process, confirming that ES is a useful tool in regenerative medicine. PMID:25873313

  12. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts

    PubMed Central

    Huang, Cheng-Hua; Li, Hsin-Ju; Wu, Nan-Lin; Hsiao, Chien-Yu; Lin, Chun-Nan; Chang, Hsun-Hsien; Hung, Chi-Feng

    2016-01-01

    Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging. PMID:27583973

  13. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    PubMed

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  14. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts.

    PubMed

    Huang, Cheng-Hua; Li, Hsin-Ju; Wu, Nan-Lin; Hsiao, Chien-Yu; Lin, Chun-Nan; Chang, Hsun-Hsien; Hung, Chi-Feng

    2016-01-01

    Ultraviolet (UV) radiation, particularly ultraviolet A (UVA), is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK) pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2) generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL), erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging. PMID:27583973

  15. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    PubMed

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  16. Identification and localization of insulin-like growth factor-binding protein (IGFBP) messenger RNAs in human hair follicle dermal papilla.

    PubMed

    Batch, J A; Mercuri, F A; Werther, G A

    1996-03-01

    The role of the insulin-like growth factors (IGFs) in hair follicle biology has recently been recognized, although their actions, sites of production, and modulation by the insulin-like growth factor-binding proteins (IGFBPs) have not to date been defined. IGF-I is essential for normal hair growth and development, and may be important in regulation of the hair growth cycle. In many culture systems, IGF-I actions are modulated by the IGFBPs. Thus, if IGFBPs are produced in the human hair follicle, they may play a role in targeting IGF-I to its receptor or may modulate IGF-I action by interaction with matrix proteins. We have used in situ hybridization to localize messenger RNA for the six IGFBPs in anagen hair follicles. Anti-sense and sense RNA probes for the IGFBPs (IGFBP-1 to -6) were produced, and 5-micrometer sections of adult facial skin were probed. Messenger RNA for IGFBP-3, -4, and -5 were identified, with predominantly IGFBP-3 and -5 mRNA found in the dermal papilla, and to a lesser extent IGFBP-4 mRNA. IGFBP-4 mRNA was also found at the dermal papilla/epithelial matrix border. Messenger RNAs for both IGFBP-4 and -5 were also demonstrated in the dermal sheath surrounding the hair follicle. Messenger RNAs for IGFBP-1, -2, and -6 were not identified. These studies demonstrate specific localization of IGFBP mRNAs in hair follicles, suggesting that they each play specific roles in the local modulation of IGF action during the hair growth cycle.

  17. Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane Potential Collapse in the Human Dermal Fibroblast Primary Cells

    PubMed Central

    Daraie, Bahram; Pourahmad, Jalal; Hamidi-Pour, Neda; Hosseini, Mir-Jamal; Shaki, Fatemeh; Soleimani, Masoud

    2012-01-01

    Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kidney, brain and skin. The aim of this study was to assess the impact of depleted uranium exposure at the cellular level in the human dermal fibroblast primary cells. The human dermal fibroblast primary cells incubated with different concentration (250-750 μM) of depleted uranium. Cytotoxicity and mitochondrial function in this cell lines were determined with the LDH leakage assay and the MTT test respectively. MDA levels were measured for determination of Lipid peroxidation in DU treated cells. Besides glutathione depletion and apoptosis phenotype detection were also assessed to complete the mechanistic screening. Results showed that the cell viability ameliorates in concentration and time dependent manners following in 24, 48 and 72 h incubation with DU. Moreover the significant increase in lipid peroxidation and significant decrease in cellular GSH recorded in DU treated human dermal fibroblast primary cells suggesting the preoxidant effect of uranyl ions. Cytoprotective effects of N-acetylcysteine (NAC) and dramatic decrease of cell viability in buthionin sulfoxamid (BSO) pretreated cells indicated the possibility of a critical role for glutathione system in DU detoxification. Death pattern, in fibroblast cells following DU treatment was varied from apoptosis to necrosis while the time and concentration increased. Since ROS formation is the initiation step for cell apoptosis, the present studies suggest Uranyl-induced toxicity in the human dermal fibroblast primary cells originated from oxidative stress and lead to occurrence of programmed cell death. PMID:24250472

  18. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells.

    PubMed

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients.

  19. Induction of hepatocyte growth factor production in human dermal fibroblasts by caffeic acid derivatives.

    PubMed

    Kurisu, Manami; Nakasone, Rie; Miyamae, Yusaku; Matsuura, Daisuke; Kanatani, Hirotoshi; Yano, Shingo; Shigemori, Hideyuki

    2013-01-01

    Hepatocyte growth factor (HGF) has mitogenic, motogenic, and morphogenic activities in epithelial cells. Induction of HGF production may be involved in organ regeneration, wound healing and embryogenesis. In this study, we examined the effects of caffeic acid derivatives including 4,5-di-O-caffeoylquinic acid (1) and acteoside (2) on HGF production in Neonatal Normal Human Dermal Fibroblasts (NHDF). Both 4,5-di-O-caffeoylquinic acid (1) and acteoside (2) significantly induced HGF production dose-dependent manner. To know the important substructure for HGF production activity, we next investigated the effect of the partial structure of these caffeic acid derivatives. From the results, caffeic acid (3) showed strong activity on the promotion of HGF production, while hydroxytyrosol (4) and quinic acid (5) didn't show any activity. Our findings suggest that the caffeoyl moiety of caffeic acid derivatives is essential for accelerated production of HGF. The compound which has the caffeoyl moiety may be useful for the treatment of some intractable organ disease.

  20. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    PubMed

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  1. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration

    SciTech Connect

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R.S.; Nickoloff, B.J.; Voorhees, J.J. )

    1990-06-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium (KGM)) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment.

  2. Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice

    PubMed Central

    Guerreiro, Susana G.; Brochhausen, Christoph; Negrão, Rita; Barbosa, Mário A.; Unger, Ronald E.; Kirkpatrick, C. James; Soares, Raquel; Granja, Pedro L.

    2012-01-01

    The vascularization of new tissue within a reasonable time is a crucial prerequisite for the success of different cell- and material-based strategies. Considering that angiogenesis is a multi-step process involving humoral and cellular regulatory components, only in vivo assays provide the adequate information about vessel formation and the recruitment of endothelial cells. The present study aimed to investigate if neonatal human dermal fibroblasts could influence in vivo neovascularization. Results obtained showed that fibroblasts were able to recruit endothelial cells to vascularize the implanted matrix, which was further colonized by murine functional blood vessels after one week. The vessels exhibited higher levels of hemoglobin, compared with the control matrix, implanted without fibroblasts, in which no vessel formation could be observed. No significant differences were detected in systemic inflammation. The presence of vessels originated from the host vasculature suggested that host vascular response was involved, which constitutes a fundamental aspect in the process of neovascularization. Fibroblasts implanted within matrigel increased the presence of endothelial cells with positive staining for CD31 and for CD34 and the production of collagen influencing the angiogenic process and promoting the formation of microvessels. New strategies in tissue engineering could be delineated with improved angiogenesis using neonatal fibroblasts. PMID:23507785

  3. Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects.

    PubMed

    Hawkins, David R; Elsom, Lionel F; Kirkpatrick, David; Ford, Richard A; Api, Anne Marie

    2002-05-28

    Musk ambrette, musk ketone and musk xylene have a long history of use as fragrance ingredients, although musk ambrette is no longer used in fragrances. As part of the review of the safety of these uses, it is important to consider the systemic exposure that results from these uses. Since the primary route of exposure to fragrances is on the skin, dermal doses of carbon-14 labelled musk ambrette, musk ketone and musk xylene were applied to the backs (100 cm2) of healthy human volunteers (two to three subjects) at a nominal dose level of 10-20 microg/cm2 and excess material removed at 6 h. Means of 2.0% musk ambrette, 0.5% musk ketone and 0.3% musk xylene were absorbed based on the amounts excreted in urine and faeces during 5 days. Most of the material was excreted in the urine with less than 10% of the amount excreted being found in faeces. No radioactivity was detected in any plasma sample, consistent with low absorption, and no radioactivity was detected (<0.02% dose) in skin strips taken at 120 h. Analysis of urine samples indicated that all three compounds were excreted mainly as single glucuronide conjugates. The aglycones were chromatographically different, but of similar polarity, to the major rat metabolites excreted in bile also as glucuronides.

  4. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study.

    PubMed

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco's Modified Eagle's Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  5. Cooling rate dependent biophysical and viability response shift with attachment state in human dermal fibroblast cells.

    PubMed

    Choi, Jeunghwan; Bischof, John C

    2011-12-01

    While studies on the freezing of cells in suspension have been carried out extensively, corresponding studies with cells in the attached state and in tissue or tissue-equivalents are less developed. As attachment is a hallmark of the tissue state it is important to understand its impact on biophysics and viability to better apply freezing towards tissue preservation. The current study reports on observed biophysical response changes observed during freezing human dermal fibroblasts in suspension, attached cell, and fibrin tissue-equivalent models. Specifically, intracellular ice formation is shown to increase and dehydration is inferred to increase from suspension to attached systems. Biophysical model parameters fit to these experimental observations reflect the higher kinetics in the attached state. Post-thaw viability values from fast cooling rates were higher for suspension systems, and correlated well with the amount of IIF observed. On the other hand, viability values from slow cooling rates were higher for attached systems, although the degree of dehydration was predicted to be comparable to suspension cells. This disconnect between biophysics and viability predictions at slow rates clearly requires further investigation as it runs counter to our current understanding of dehydration injury in cells. This may suggest a possible protective effect of the attachment state on cell systems.

  6. Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblasts

    SciTech Connect

    Bhaiya, Payal; Roychowdhury, Sanjoy; Vyas, Piyush M.; Doll, Mark A.; Hein, David W.; Svensson, Craig K. . E-mail: craig-svensson@uiowa.edu

    2006-09-01

    Cutaneous drug reactions (CDRs) associated with sulfonamides are believed to be mediated through the formation of reactive metabolites that result in cellular toxicity and protein haptenation. We evaluated the bioactivation and toxicity of sulfamethoxazole (SMX) and dapsone (DDS) in normal human dermal fibroblasts (NHDF). Incubation of cells with DDS or its metabolite (D-NOH) resulted in protein haptenation readily detected by confocal microscopy and ELISA. While the metabolite of SMX (S-NOH) haptenated intracellular proteins, adducts were not evident in incubations with SMX. Cells expressed abundant N-acetyltransferase-1 (NAT1) mRNA and activity, but little NAT2 mRNA or activity. Neither NAT1 nor NAT2 protein was detected. Incubation of NHDF with S-NOH or D-NOH increased reactive oxygen species formation and reduced glutathione content. NHDF were less susceptible to the cytotoxic effect of S-NOH and D-NOH than are keratinocytes. Our studies provide the novel observation that NHDF are able to acetylate both arylamine compounds and bioactivate the sulfone DDS, giving rise to haptenated proteins. The reactive metabolites of SMX and DDS also provoke oxidative stress in these cells in a time- and concentration-dependent fashion. Further work is needed to determine the role of the observed toxicity in mediating CDRs observed with these agents.

  7. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells.

    PubMed

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  8. Effects of extremely low-frequency magnetotherapy on proliferation of human dermal fibroblasts.

    PubMed

    Pasi, Francesca; Sanna, Samuele; Paolini, Alessandro; Alquati, Marco; Lascialfari, Alessandro; Corti, Maurizio Enrico; Liberto, Riccardo Di; Cialdai, Francesca; Monici, Monica; Nano, Rosanna

    2016-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) applied in magnetotherapy have frequency lower than 100 Hz and magnetic field intensity ranging from 0.1 to 20 mT. For many years, the use of magnetotherapy in clinics has been increasing because of its beneficial effects in many processes, e.g., skin diseases, inflammation and bone disorders. However, the understanding of the microscopic mechanisms governing such processes is still lacking and the results of the studies on the effects of ELF-EMFs are controversial because effects derive from different conditions and from intrinsic responsiveness of different cell types.In the present study, we studied the biological effects of 1.5 h exposure of human dermal fibroblasts to EMFs with frequencies of 5 and 50 Hz and intensity between 0.25 and 1.6 mT. Our data showed that the magnetic treatment did not produce changes in cell viability, but gave evidence of a sizeable decrease in proliferation at 24 h after treatment. In addition, immunofluorescence experiments displayed an increase in tubulin expression that could foreshadow changes in cell motility or morphology. The decrease in proliferation with unchanged viability and increase in tubulin expression could be consistent with the triggering of a transdifferentiation process after the exposure to ELF-EMFs. PMID:27254779

  9. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  10. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells

    PubMed Central

    Syarina, Pauzi Nur Aimi; Karthivashan, Govindarajan; Abas, Faridah; Arulselvan, Palanisamy; Fakurazi, Sharida

    2015-01-01

    Blue-green alga (Spirulina platensis) is a well renowned nutri-supplement due to its high nutritional and medicinal properties. The aim of this study was to examine the wound healing efficiency of Spirulina platensis at various solvent extracts using in vitro scratch assay on human dermal fibroblast cells (HDF). Various gradient solvent extracts (50 μg/ml of methanolic, ethanolic and aqueous extracts) from Spirulina platensis were treated on HDF cells to acquire its wound healing properties through scratch assay and in this investigation we have used allantoin, as a positive control to compare efficacy among the phytoextracts. Interestingly, aqueous extract were found to stimulate proliferation and migration of HDF cells at given concentrations and enhanced closure rate of wound area within 24 hours after treatment. Methanolic and ethanolic extracts have shown proliferative effect, however these extracts did not aid in the migration and closure of wound area when compared to aqueous extract. Based on phytochemical profile of the plant extracts analyzed by LC-MS/MS, it was shown that compounds supposedly involved in accelerating wound healing are cinnamic acid, narigenin, kaempferol, temsirolimus, phosphatidylserine isomeric derivatives and sulphoquinovosyl diacylglycerol. Our findings concluded that blue-green algae may pose potential biomedical application to treat various chronic wounds especially in diabetes mellitus patients. PMID:27004048

  11. Centella asiatica extracts modulate hydrogen peroxide-induced senescence in human dermal fibroblasts.

    PubMed

    Kim, Young Joo; Cha, Hwa Jun; Nam, Ki Ho; Yoon, Yeongmin; Lee, Hyunjin; An, Sungkwan

    2011-12-01

    Centella asiatica (C. asiatica) is a pharmacological plant in South Asia. It has been demonstrated that C. asiatica extracts containing various pentacyclic triterpenes exert healing effects, especially wound healing and collagen synthesis in skin. However, there are few studies on the effect of C. asiatica extracts on stress-induced premature senescence (SIPS). To determine whether H(2) O(2) -induced senescence is affected by C. asiatica extracts, we performed senescence analysis on cultured human dermal fibroblasts (HDFs). We also analysed whole gene expression level using microarrays and showed that 39 mRNAs are differentially expressed in H(2) O(2) -induced HDFs with and without treatment with C. asiatica extracts. These genes regulate apoptosis, gene silencing, cell growth, transcription, senescence, DNA replication and the spindle checkpoint. Differential expression of FOXM1, E2F2, MCM2, GDF15 and BHLHB2 was confirmed using semi-quantitative PCR. In addition, C. asiatica extracts rescued the H(2) O(2) -induced repression of replication in HDFs. Therefore, the findings presented here suggest that C. asiatica extracts might regulate SIPS by preventing repression of DNA replication and mitosis-related gene expression. PMID:22092576

  12. Automated Delineation of Dermal-Epidermal Junction In Reflectance Confocal Microscopy Image Stacks Of Human Skin

    PubMed Central

    Park, Brian

    2014-01-01

    Reflectance confocal microscopy (RCM) images skin non-invasively, with optical sectioning and nuclear-level resolution comparable to that of pathology. Based on assessment of the dermal-epidermal junction (DEJ) and morphologic features in its vicinity, skin cancer can be diagnosed in vivo with high sensitivity and specificity. However, the current visual, qualitative approach for reading images leads to subjective variability in diagnosis. We hypothesize that machine learning-based algorithms may enable a more quantitative, objective approach. Testing and validation was performed with two algorithms that can automatically delineate the DEJ in RCM stacks of normal human skin. The test set was composed of 15 fair and 15 dark skin stacks (30 subjects) with expert labellings. In dark skin, in which the contrast is high due to melanin, the algorithm produced an average error of 7.9±6.4μm. In fair skin, the algorithm delineated the DEJ as a transition zone, with average error of 8.3±5.8μm for the epidermis-to-transition zone boundary and 7.6±5.6μm for the transition zone-to-dermis. Our results suggest that automated algorithms may quantitatively guide the delineation of the DEJ, to assist in objective reading of RCM images. Further development of such algorithms may guide assessment of abnormal morphological features at the DEJ. PMID:25184959

  13. Blockade of glutamate release by botulinum neurotoxin type A in humans: A dermal microdialysis study

    PubMed Central

    da Silva, Larissa Bittencourt; Karshenas, Ali; Bach, Flemming W; Rasmussen, Sten; Arendt-Nielsen, Lars; Gazerani, Parisa

    2014-01-01

    BACKGROUND: The analgesic action of botulinum neurotoxin type A (BoNTA) has been linked to the blockade of peripheral release of neuropeptides and neurotransmitters in animal models; however, there is no direct evidence of this in humans. OBJECTIVES: To investigate the effect of BoNTA on glutamate release in humans, using an experimental model of pain and sensitization provoked by capsaicin plus mild heat. METHODS: Twelve healthy volunteers (six men, six women) were pretreated with BoNTA (10 U) on the volar forearm and with a saline control on the contralateral side. Dermal microdialysis was applied one week later to collect interstitial samples before and after the application of a capsaicin patch (8%) plus mild heat (40°C/60 min) to provoke glutamate release, pain and vasodilation. Samples were collected every hour for 3 h using linear microdialysis probes (10 mm, 100 kD). Dialysate was analyzed for glutamate concentration. Pain intensity and skin vasomotor reactions (temperature and blood flow changes) were also recorded. RESULTS: BoNTA significantly reduced glutamate release compared with saline (P<0.05). The provoked pain intensity was lower in the BoNTA-pretreated arm (P<0.01). The reduction in pain scores was not correlated with glutamate level. Cutaneous blood flow (P<0.05), but not cutaneous temperature (P≥0.05), was significantly reduced by BoNTA. There was a correlation between glutamate level and skin blood flow (r=0.58/P<0.05) but not skin temperature (P≥0.05). No differences according to sex were observed in any response. CONCLUSIONS: The present study provided the first direct evidence supporting the inhibitory effect of BoNTA on glutamate release in human skin, which is potentially responsible for some of the analgesic action of BoNTA. PMID:24851237

  14. Arts & Humanities in Adult Education.

    ERIC Educational Resources Information Center

    Word's Worth: A Quarterly Newsletter of the Lifelong Learning Network, 1998

    1998-01-01

    This issue of a quarterly newsletter on lifelong learning focuses on the theme of the arts and humanities in adult literacy education. The following articles are included: (1) "In Defense of a Practical Education" (Earl Shorris); (2) "From the Program Director" (Elizabeth Bryant McCrary); (3) "Vermont Council on the Humanities: Book Discussion…

  15. Herbal Extracts Induce Dermal Papilla Cell Proliferation of Human Hair Follicles

    PubMed Central

    Rastegar, Hosein; Aghaei, Mahmoud; Barikbin, Behrooz; Ehsani, Amirohushang

    2015-01-01

    Background The number of people suffering from balding or hair thinning is increasing, despite the advances in various medical therapies. Therefore, it is highly important to develop new therapies to inhibit balding and increase hair proliferation. Objective We investigated the effects of herbal extracts commonly used for improving balding in traditional medicine to identify potential agents for hair proliferation. Methods The expression levels of 5α-reductase isoforms (type I and II) were analyzed using quantitative real-time reverse transcription polymerase chain reaction in the human follicular dermal papilla cells (DPCs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylteterazolium bromide and bromodeoxyuridine tests were used to evaluate the cell proliferation effect of herbal extracts in DPCs. The expression levels of extracellular signal-regulated kinase (ERK), Akt, cyclin D1, cyclin-dependent kinase 4 (Cdk4), B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax) were measured using western blot analysis. Results The 5α-reductase isoform mRNAs and proteins were detected in the cultured DPCs, and the expression level of 5α-R2 in DPCs in the presence of the herbal extracts was gradually decreased. Herbal extracts were found to significantly increase the proliferation of human DPCs at concentrations ranging from 1.5% to 4.5%. These results show that the herbal extracts tested affected the protein expressions of ERK, Akt, cyclin D1, Cdk4, Bcl-2, and Bax in DPCs. Conclusion These results suggest that herbal extracts exert positive effects on hair proliferation via ERK, Akt, cyclin D1, and Cdk4 signaling in DPCs; they also suggest that herbal extracts could be a great alternative therapy for increasing hair proliferation. PMID:26719634

  16. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo.

    PubMed

    Quan, Taihao; Wang, Frank; Shao, Yuan; Rittié, Laure; Xia, Wei; Orringer, Jeffrey S; Voorhees, John J; Fisher, Gary J

    2013-03-01

    The dermal extracellular matrix (ECM) provides strength and resiliency to skin. The ECM consists mostly of type I collagen fibrils, which are produced by fibroblasts. Binding of fibroblasts to collagen fibrils generates mechanical forces, which regulate cellular morphology and function. With aging, collagen fragmentation reduces fibroblast-ECM binding and mechanical forces, resulting in fibroblast shrinkage and reduced function, including collagen production. Here, we report that these age-related alterations are largely reversed by enhancing the structural support of the ECM. Injection of dermal filler, cross-linked hyaluronic acid, into the skin of individuals over 70 years of age stimulates fibroblasts to produce type I collagen. This stimulation is associated with localized increase in mechanical forces, indicated by fibroblast elongation/spreading, and mediated by upregulation of type II TGF-β receptor and connective tissue growth factor. Interestingly, enhanced mechanical support of the ECM also stimulates fibroblast proliferation, expands vasculature, and increases epidermal thickness. Consistent with our observations in human skin, injection of filler into dermal equivalent cultures causes elongation of fibroblasts, coupled with type I collagen synthesis, which is dependent on the TGF-β signaling pathway. Thus, fibroblasts in aged human skin retain their capacity for functional activation, which is restored by enhancing structural support of the ECM.

  17. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Sun, Jane; Fortuna, Patrick R J; Wolvetang, Ernst J

    2014-07-01

    In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.

  18. Levels of bisphenol-A in different paper products in Guangzhou, China, and assessment of human exposure via dermal contact.

    PubMed

    Fan, Ruifang; Zeng, Biyan; Liu, Xiaosu; Chen, Chao; Zhuang, Qinwei; Wang, Yongjun; Hu, Mingli; Lv, Yanshan; Li, Junnan; Zhou, Yuanxiu; Lin, Zhi Yuan William

    2015-03-01

    Bisphenol A (BPA) is a chemical widely used both in plastics production as a food and beverage container and in thermal papers as a color developer. Dietary consumption is the main route of human exposure to BPA, but dermal absorption through handling different papers might be underestimated or ignored. In this study, BPA in different paper products, including different types of papers, receipts and Chinese currencies, were investigated. BPA was detected in receipts (n = 87) and Chinese currencies (n = 46) with concentrations of 0.17-2.675 × 10(4) μg per g paper and 0.09-288.55 μg per g paper, respectively. Except for parchment papers (n = 3), copy papers (n = 3) and food contact papers (n = 3), BPA was measured in all of the other paper products, with levels of 0.01-6.67 μg per g paper. BPA transferred from thermal papers to common papers increased with the increasing contact pressure. Compared with that in water, the migration speed of BPA was doubled in the synthetic sweat. Washing hands could reduce BPA dermal exposure, and washing hands with lotion was the most efficient way. However, about 19-47% of BPA was still found on hands after different washing methods. Dermal absorption via handling of receipts and papers was estimated to be 36.45 ng per day for the general population and 1.54 × 10(-3) to 248.73 μg per day for a cashier. These values are below the maximum doses recommended by the U.S. Environmental Protection Agency and the European Food Safety Authority. However, due to its uncertain adverse effects on human beings, long-term BPA exposure through dermal absorption should be paid more attention, particularly for some occupational populations.

  19. Langerhans cells increase in the dermal lesions of adult T cell leukaemia in Japan

    PubMed Central

    Shamoto, M

    1983-01-01

    In cases of adult T cell leukaemia neoplastic T cell infiltration in the skin was accompanied by an increase in Langerhans cells. This is in keeping with the view that Langerhans cells may induce antigen-specific and allogenic T cell activation. Images PMID:6600750

  20. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells

    PubMed Central

    Jafarnejad, M.; Cromer, W. E.; Kaunas, R. R.; Zhang, S. L.; Zawieja, D. C.

    2015-01-01

    The shear stress applied to lymphatic endothelial cells (LEC) by lymph flow changes dramatically under normal conditions as well as in response to disease conditions and immune reactions. In general, LEC are known to regulate the contraction frequency and strength of lymphatic pumping in response to shear stress. Intracellular calcium concentration ([Ca2+]i) is an important factor that regulates lymphatic contraction characteristics. In this study, we measured changes in the [Ca2+]i under different shear stress levels and determined the source of this calcium signal. Briefly, human dermal LEC were cultured in custom-made microchannels for 3 days before loading with 2 µM fura-2 AM, a ratiometric calcium dye to measure [Ca2+]i. Step changes in shear stress resulted in a rapid increase in [Ca2+]i followed by a gradual return to the basal level and sometimes below the initial baseline (45.2 ± 2.2 nM). The [Ca2+]i reached a peak at 126.2 ± 5.6 nM for 10 dyn/cm2 stimulus, whereas the peak was only 71.8 ± 5.4 nM for 1 dyn/cm2 stimulus, indicating that the calcium signal depends on the magnitude of shear stress. Removal of the extracellular calcium from the buffer or pharmocological blockade of calcium release-activated calcium (CRAC) channels significantly reduced the peak [Ca2+]i, demonstrating a role of extracellular calcium entry. Inhibition of endoplasmic reticulum (ER) calcium pumps showed the importance of intracellular calcium stores in the initiation of this signal. In conclusion, we demonstrated that the shear-mediated calcium signal is dependent on the magnitude of the shear and involves ER store calcium release and extracellular calcium entry. PMID:25617358

  1. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  2. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  3. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  4. Dermal peels.

    PubMed

    Coleman, W P

    2001-07-01

    Dermal chemical peeling is a very satisfying procedure for patients and physicians alike. Although not providing the ablation of deep wrinkles and scars that dermabrasion and laser procedures may accomplish, trichloroacetic acid peels usually result in few complications and rapid recovery. Patients can usually expect photographic improvement in their skin. The results are usually long lasting, and most patients do not need to repeat dermal peels for at least 2 years. Of all resurfacing procedures, dermal peeling provides the best benefit-to-risk ratio. PMID:11599397

  5. Human Skin Cells That Express Stage-Specific Embryonic Antigen 3 Associate with Dermal Tissue Regeneration

    PubMed Central

    Vega Crespo, Agustin; Awe, Jason P.; Reijo Pera, Renee

    2012-01-01

    Abstract Stage-specific embryonic antigen 3 (SSEA3) is a glycosphingolipid that has previously been used to identify cells with stem cell-like, multipotent, and pluripotent characteristics. A rare subpopulation of SSEA3-expressing cells exists in the dermis of adult human skin. These SSEA3-expressing cells undergo a significant increase in cell number in response to injury, suggesting a possible role in regeneration. These SSEA3-expressing regeneration-associated (SERA) cells were derived through primary cell culture, purified by fluorescence-activated cell sorting (FACS), and characterized. Longer in vitro culture of the primary skin cells led to lower SSEA3 expression stability after FACS-based purification, suggesting that the current culture conditions may need to be optimized to permit the large-scale expansion of SERA cells. The SERA cells demonstrated a global transcriptional state that was most similar to bone marrow- and fat-derived mesenchymal stem cells (MSCs), and the highest expressing SSEA3-expressing cells co-expressed CD105 (clone 35). However, while a rare population of MSCs was observed in primary human skin cell cultures that could differentiate into adipocytes, osteoblasts, or chondrocytes, SERA cells did not possess this differentiation capacity, suggesting that there are at least two different rare subpopulations in adult human skin primary cultures. The identification, efficient purification, and large-scale expansion of these rare subpopulations (SERA cells and MSCs) from heterogeneous adult human skin primary cell cultures may have applications for future patient-specific cellular therapies. PMID:23514702

  6. Influence of artificial sebum on the dermal absorption of chemicals in excised human skin: A proof-of-concept study.

    PubMed

    Schneider, Désirée; Dennerlein, Kathrin; Göen, Thomas; Schaller, Karl Heinz; Drexler, Hans; Korinth, Gintautas

    2016-06-01

    In an initial diffusion cell study, the influence of artificial sebum on dermal penetration and intradermal reservoir of ethanol and toluene was investigated in comparison with the effects of a skin cream (o/w- and w/o-emulsion) and untreated (control) skin. Human skin was exposed to neat ethanol and toluene for 4h, respectively. During the experiments, the penetration of the compounds was assessed in the receptor fluid. The amounts of the test compounds in the skin were determined at the end of exposure. In the control experiments, 42% of the total resorbed ethanol amounts were found in the intradermal reservoir after 4h, whereas 82% of the toluene amounts were found in the skin compartments. The treatment with artificial sebum showed no significant differences in dermal absorption of both test compounds compared to control skin. In contrast, the treatment with skin cream increased the percutaneous penetration (p<0.001) and the intradermal reservoir of ethanol ~2-fold but not of toluene. In all exposure scenarios, a relevant intradermal reservoir was formed. The results indicate that sebum does not influence the percutaneous penetration and the intradermal reservoir of epidermally applied chemicals, whereas the application of skin creams may increase the dermal penetration of the compounds. PMID:26911728

  7. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  8. Contaminated soils (II): in vitro dermal absorption of nickel (Ni-63) and mercury (Hg-203) in human skin.

    PubMed

    Moody, Richard P; Joncas, Julie; Richardson, Mark; Petrovic, Sanya; Chu, Ih

    2009-01-01

    Dermal absorption of heavy metal soil contaminants was tested in vitro with chloride salts of radioactive nickel (Ni-63) and mercury (Hg-203). Aqueous soil suspensions, spiked with either Ni-63 or Hg-203, were applied to fresh viable human breast skin tissue in Bronaugh diffusion cells perfused with Hanks HEPES buffered (pH 7.4) receptor containing 4% bovine serum albumin (BSA). Receptor fractions were collected every 6 h for 24 h when skin was soap washed. Tests were conducted concurrently in triplicate with and without soil for each skin specimen. Mean percent dermal absorption including the skin depot for Ni-63 was 1 and 22.8% with and without soil, respectively, while for Hg-203, values of 46.6 and 78.3% were obtained. Excluding the skin depot and considering only absorption in receptor, there was 0.5 and 1.8% absorption of Ni-63 with and without soil, respectively, and 1.5 and 1.4% for Hg-203. The potential bioavailability of the skin depot is discussed in relation to dermal exposure to these metals in contaminated soil.

  9. Evaluation of calcium magnesium acetate and road salt for contact hypersensitivity potential and dermal irritancy in humans.

    PubMed

    Cushman, J R; Duff, V A; Buteau, G H; Aust, L B; Caldwell, N; Lazer, W

    1991-04-01

    Calcium magnesium acetate (CMA) and road salt are both de-icing agents to which workers may be dermally exposed. A commercial formulation of CMA (Chevron Ice-B-Gon Deicer) and road salt were tested in a human repeat insult patch test to evaluate the contact hypersensitivity potential of these materials and to evaluate irritation following single or multiple applications. 72 of the initial 82 panelists completed the study. CMA and road salt (each at 10% and 30% w/w in distilled water; 0.3 ml) were administered under occlusive patches on the forearm for 14 h 3 x per week for 3 weeks. The panelists were challenged 2 weeks later; 2 panelists who had mild reactions were subsequently rechallenged 6 weeks later. Neither CMA nor road salt produced contact hypersensitivity in any panelists. Following the first application, moderate acute irritation was observed only at 1 skin site exposed to 30% road salt. Repeated exposure to CMA or road salt produced mild to moderate irritation. The highest incidence of moderate irritation was observed with 30% road salt. Thus, neither material is expected to cause significant dermal effects in exposed workers. CMA is expected to cause dermal irritation equivalent to or less than that caused by road salt.

  10. Dose response effects of dermally applied diethanolamine on neurogenesis in fetal mouse hippocampus and potential exposure of humans.

    PubMed

    Craciunescu, Corneliu N; Niculescu, Mihai D; Guo, Zhong; Johnson, Amy R; Fischer, Leslie; Zeisel, Steven H

    2009-01-01

    Diethanolamine (DEA) is a common ingredient of personal care products. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline and alters brain development. We previously reported that 80 mg/kg/day of DEA during pregnancy in mice reduced neurogenesis and increased apoptosis in the fetal hippocampus. This study was designed to establish the dose-response relationships for this effect of DEA. Timed-pregnant C57BL/6 mouse dams were dosed dermally from gestation day 7-17 with DEA at 0 (controls), 5, 40, 60, and 80 mg/kg body/day. Fetuses (embryonic day 17 [E17]) from dams treated dermally with 80 mg/kg body/day DEA had decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone (hippocampus, 54.1 +/- 5.5%; cortex, 58.9 +/- 6.8%; compared to controls; p < 0.01). Also, this dose of DEA to dams increased rates of apoptosis in E17 fetal hippocampus (to 177.2 +/- 21.5% of control; measured using activated caspase-3; p < 0.01). This dose of DEA resulted in accumulation of DEA and its metabolites in liver and in plasma. At doses of DEA less than 80 mg/kg body/day to dams, there were no differences between treated and control groups. In a small group of human subjects, dermal treatment for 1 month with a commercially available skin lotion containing 1.8 mg DEA per gram resulted in detectable plasma concentrations of DEA and dimethyldiethanolamine, but these were far below those concentrations associated with perturbed brain development in the mouse.

  11. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    SciTech Connect

    De Abrew, K. Nadira; Thomas-Virnig, Christina L.; Rasmussen, Cathy A.; Bolterstein, Elyse A.; Schlosser, Sandy J.; Allen-Hoffmann, B. Lynn

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  12. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate.

    PubMed

    Davison, P M; Karasek, M A

    1981-02-01

    Macrovascular endothelial cells isolated from the human umbilical vein and microvessel endothelium from the newborn foreskin dermis differ in their requirements for optimal growth in vitro. In the presence of 5 X 10(-4) M dibutyryl cyclic AMP (Bt2cAMP), human dermal microvessel endothelial cell proliferation rate increased to give a cell number of 203% of controls values by day 10 in culture. The cells retained their characteristic endothelial cell morphology, reached confluence, and could be serially passaged. Cells grown in the absence of Bt2cAMP did not proliferate readily and grew in a disorganized pattern. The effect of Bt2cAMP on microvascular endothelial cell proliferation rate and morphology could be duplicated by cholera toxin (CT) used together with isobutyl methylxanthine (IMX). These agents were found to elevate intracellular levels of cyclic AMP in microvascular endothelium over 40-fold. Human umbilical vein cells in culture failed to respond to either Bt2cAMP or CT together with IMX. The growth-promoting effect of dibutyryl cyclic AMP (Bt2cAMP) on human foreskin dermal microvascular endothelium in vitro is in marked contrast to the lack of response of human umbilical vein cells. These results provide further evidence of differences in the mechanisms that regulate macro and microvessel endothelial cell proliferation in vitro.

  13. A Prospective Study Assessing Complication Rates and Patient-Reported Outcomes in Breast Reconstructions Using a Novel, Deep Dermal Human Acellular Dermal Matrix

    PubMed Central

    Vu, Michael M.; De Oliveira, Gildasio S.; Mayer, Kristen E.; Blough, Jordan T.

    2015-01-01

    Abstract Background: The value proposition of an acellular dermal matrix (ADM) taken from the deep dermis is that the allograft may be more porous, allowing for enhanced integration and revascularization. In turn, this characteristic may attenuate complications related to foreign body reactions, seromas, and infection. However, this is juxtaposed against the potential loss of allograft structural integrity, with subsequent risk of malposition and extrusion. Despite the active use of novel, deep dermal ADMs, the clinical outcomes of this new technology has not been well studied. Methods: This is a prospective study to evaluate surgical and patient-reported outcomes using a deep dermal ADM, FlexHD Pliable. Surgical outcomes and BREAST-Q patient-reported outcomes were evaluated postoperatively at 2- and 6-month time points. Results: Seventy-two breasts (41 patients) underwent reconstruction. Complication rate was 12.5%, including 2 hematomas and 7 flap necroses. One case of flap necrosis led to reconstructive failure. Notably, there were no cases of infection, seroma, or implant extrusion or malposition. Average BREAST-Q scores were satisfaction with outcome (70.13 ± 23.87), satisfaction with breasts (58.53 ± 20.00), psychosocial well being (67.97 ± 20.93), sexual well being (54.11 ± 27.72), and physical well being (70.45 ± 15.44). Two-month postoperative BREAST-Q scores decreased compared with baseline and returned to baseline by 6 months. Postoperative radiation therapy had a negative effect on satisfaction with breasts (P = 0.004) and sexual well being (P = 0.006). Conclusions: Deep dermal ADM is a novel modification of traditional allograft technology. Use of the deep dermal ADM yielded acceptably low complication rates and satisfactory patient-reported outcomes. PMID:26894010

  14. Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration

    PubMed Central

    Jeremias, Talita da Silva; Machado, Rafaela Grecco; Visoni, Silvia Beatriz Coutinho; Pereima, Maurício José; Leonardi, Dilmar Francisco; Trentin, Andrea Gonçalves

    2014-01-01

    New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mesenchymal stromal cells (SD-MSCs) display similar characteristics to the multipotent MSCs. We also evaluate their growth in a three-dimensional (3D) culture system with dermal substitutes (Integra and Pelnac). When cultured in monolayers, SD-MSCs expressed mesenchymal markers, such as CD105, Fibronectin, and α-SMA; and neural markers, such as Nestin and βIII-Tubulin; at transcriptional and/or protein level. Integra and Pelnac equally supported the adhesion, spread and growth of human SD-MSCs in 3D culture, maintaining the MSC characteristics and the expression of multilineage markers. Therefore, dermal substitutes support the growth of mesenchymal stromal cells from human skin, promising an effective tool for tissue engineering and regenerative technology. PMID:24586857

  15. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    SciTech Connect

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F. . E-mail: yves.poumay@fundp.ac.be

    2007-08-03

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity.

  16. The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels.

    PubMed

    Kamolz, L P; Luegmair, M; Wick, N; Eisenbock, B; Burjak, S; Koller, R; Meissl, G; Frey, M

    2005-02-01

    The aim of this study was to develop a new keratinocyte culture system on a dermal equivalent suitable for skin wound closure. Our dermal matrix is based on a fibrin glue gel containing live human fibroblast (from human foreskin). Keratinocytes obtained from primary culture according to the Rheinwald and Green method, were seeded on to the gel. In all cases, the keratinocytes plated on the dermal equivalent grew to confluence and stratified epithelium was obtained. After 10 days an irregular multilayer could be observed. The cells showed active interaction with the fibrin support, presenting as cell formations projecting into the matrix. After 15 days a regular epithelial sheet consisting of three to four layers of cells was formed. A limiting membrane demarcating the keratinocytes from the fibrin matrix was discernible. Squamous differentiation similar to Strata reticulare and corneum found in vivo could be observed. Nuclei of basal cells were regularly spaced from each other and the chromatin was of homogeneous appearance without prominent nucleoli. The last time point (20 days) showed signs of disintegration of the epithelial sheet. A basement membrane-like structure could not be seen any more. Detachment of the basal cells was associated with subepithelial vacuoles. Basal cells contained irregular nuclei. Therefore, we conclude that 15 days of culture were optimal for the generation of a keratinocyte layers with signs of differentiation; this new culture system could be an important step forward in covering severely burned patients due to a number of advantages, as for example a large expansion factor, the shortening of the optimal culture time to 15 days, the usage of commercially available fibrin glue gels and the versatile manipulation of composite cultures.

  17. Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits

    NASA Astrophysics Data System (ADS)

    kazem Koohi, Mohammad; Hejazy, Marzie; Asadi, Farzad; Asadian, Peyman

    2011-07-01

    The purpose of this study is to evaluate the dermal toxicity (Irritation/Corrosion) of three sizes of nanosilver particles (10, 20 and 30 nm) during 3 min, 1 and 4 hours according to the OECD/OCDE guideline Histopathological effects in secondary organs from liver, kidney, heart, spleen and brain 14 day post dermal administration are also reported. 10 and 20 nm Ag nanoparticles treated group showed well defined dermal erythema and oedema. Histopathological findings of 10 and 20 nm (4 hours exposure) on 14-day post dermal administration showed hyperkeratosis, acanthosis, hair-filled follicles and papillomatosis in an irregular epidermis, fibrosis, hyperemia, erythema, intracellular oedema and hyalinisation of collagen in dermis of skin. Liver revealed midzonal and periacinar necrosis, portal mononuclear infiltration, liver fatty change, liver congestion and hyperemic central vein. Splenic red pulp congestion and white pulp hyperreactivity, splenic trabeculae and sinusoidal congestion and hyaline change were found in spleen. Fatty degeneration in some cardiovascular cells and subendocardial hemorrhage without inflammation was perceived. Picnotic appearance of pyramidal neurons in the brain cortex, gliosis and mild perineuronal oedema ischemic cell change and hyperemic meninges was observed in brain. Our research concluded that dermal exposure to lesser sizes of silver nanoparticles is more disastrous than greater ones.

  18. Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use.

    PubMed

    Huang, Qizhi; Dawson, Rebecca A; Pegg, David E; Kearney, John N; Macneil, Sheila

    2004-01-01

    We previously reported methods for sterilizing human skin for clinical use. In a comparison of gamma-irradiation, glycerol, and ethylene oxide, sterilization with ethylene oxide after treatment with glycerol provided the most satisfactory dermis in terms of structure and its ability to produce reconstructed skin with many of the characteristics of normal skin. However, the use of ethylene oxide is becoming less common in the United Kingdom due to concerns about its possible genotoxicity. The aim of this study was to evaluate peracetic acid as an alternative sterilizing agent. Skin sterilized with peracetic acid was compared with skin sterilized using glycerol alone or glycerol with ethylene oxide. The effect of subsequently storing peracetic acid sterilized skin in glycerol or propylene glycol was also examined. Acellular dermal matrices were produced after removal of the epidermis and cells in the dermis, processed for histological and ultrastructural analysis, and the biological function was evaluated by reconstitution with keratinocytes and fibroblasts. Results showed that sterilized acellular matrices retained the integrity of dermal structure and major components of the basement membrane. There were no overall significant differences in the ability of these matrices to form reconstructed skin, but peracetic acid alone gave a lower histologic score than when combined with glycerol or propylene glycol. We conclude that peracetic acid sterilization followed by preservation in glycerol or propylene glycol offers a convenient alternative protocol for processing of human skin. It is suggested that this sterile acellular dermis may be suitable for clinical use.

  19. Dermal exposure to methamphetamine hydrochloride contaminated residential surfaces: surface pH values, volatility, and in vitro human skin.

    PubMed

    Salocks, Charles B; Hui, Xiaoying; Lamel, Sonia; Qiao, Peter; Sanborn, James R; Maibach, Howard I

    2012-12-01

    This study evaluated pH effects on [(14)C] d-methamphetamine hydrochloride ([(14)C]-meth HCl) percutaneous penetration in vitro and volatility and stability in aqueous solution, on solid surface, or human skin using the finite dose technique and flow through diffusion cells. Results show that when the pH level exceeds 4 or 5, the nonvolatile [(14)C]-meth HCl salt becomes unstable, likely converting to its volatile freebase form. Additionally, contaminated smooth, dense surfaces retain and transfer more [(14)C]-meth HCl than those with rough, loose surfaces, especially under acidic conditions. Skin surface pH is a critical factor affecting the rate and magnitude of dermal absorption. [(14)C]-Meth HCl penetrates into and through the human cadaver skin quickly following exposure. [(14)C]-Meth HCl retained in the skin layer is released into the receptor fluid even if the contact material has been removed. Future exploration of decontaminant and removal procedure efficacies and their effect on dermal penetration of [(14)C]-meth HCl is recommended.

  20. All-trans retinoic acid reduces membrane fluidity of human dermal fibroblasts. Assessment by fluorescence redistribution after photobleaching.

    PubMed Central

    Varani, J.; Burmeister, W.; Bleavins, M. R.; Johnson, K.

    1996-01-01

    All-trans retinoic acid (RA) preserves human dermal fibroblast viability and stimulates proliferation in vitro. These effects are mediated, at least in part, by reducing the extracellular Ca2+ requirement. The same concentrations of RA that reduce the extracellular Ca2+ requirement also interrupt movement of Ca 2+ across the fibroblast plasma membrane. Based on these observations, we have examined the effects of RA on membrane properties that could influence Ca2+ movement. Fibroblasts were labeled with 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3 diazole)-amino-caproyl phosphatidyl-choline (a fluorescent phospholipid analogue) and examined for fluorescence redistribution after photobleaching (FRAP) with a pulse of intense light as a measure of membrane fluidity. Using this approach, we observed that membrane fluidity was higher when the cells were incubated in medium containing a low (sub-optimal) level of extracellular Ca2+ (0.15 mmol/L) than in a medium containing an optimal concentration (1.4 mmol/L). Treatment of the cells with 3 micromol/L RA reduced membrane fluidity of the cells under both high- and low-Ca2+ conditions. These findings demonstrate that RA has a direct effect on the plasma membrane of human dermal fibroblasts. This provides a possible mechanism for the previously identified inhibition of Ca2+ movement across the membrane of the same cells and for the previously identified protective effects against lysis under low-Ca2+ conditions. PMID:8644871

  1. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    SciTech Connect

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-08-15

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF{sub 165} stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF{sub 165}-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF{sub 165}. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: Black-Right-Pointing-Pointer We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. Black-Right-Pointing-Pointer VEGF{sub 165} stimulated proliferation of human DP cells in a dose-dependent manner. Black-Right-Pointing-Pointer This stimulation was through VEGFR-2-mediated activation of ERK.

  2. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model.

    PubMed

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin; Sørensen, Jens Ahm; Knudsen, Lisbeth E; Sørensen, Lars S; Webster, Thomas F; Nielsen, Jesper B

    2016-11-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants was recovered in either type of the receptor fluids used (physiological and worst-case). However, significant fractions were recovered in the skin depot, particularly in the upper skin layers. The primary effect of the worst-case receptor fluid was deeper penetration into the skin. The recovered mass was used to calculate lower- and upper-bound permeability coefficients kp. Despite large structural variation between the studied compounds, a clear, significant decreasing trend of kp was observed with increasing log Kow. The results indicate that the dermis may provide a significant barrier for these highly lipophilic compounds. However, based on our results, dermal uptake should be considered in exposure assessments, though it may proceed in a time-lagged manner compared to less hydrophobic compounds. PMID:27513551

  3. Assessment of dermal absorption of DEET-containing insect repellent and oxybenzone-containing sunscreen using human urinary metabolites.

    PubMed

    Yiin, Lih-Ming; Tian, Jia-Ni; Hung, Chien-Che

    2015-05-01

    Mutual enhancement of dermal absorption of N,N-diethyl-m-toluamide (DEET) and oxybenzone (OBZ) has been reported recently with DEET and OBZ being active ingredients of insect repellent and sunscreen, respectively. To assess the reported enhancing effect directly, we used human urinary metabolites as biomarkers; besides, we also sought to determine the best way for concurrent use of these two products without extra absorption of either. Four dermal application methods were used: DEET only (S1), OBZ only (S2), DEET on top of OBZ (S3), and OBZ on top of DEET (S4). Among the study methods, there was a significant difference (p = 0.013), which was attributed to the difference between S1 and S4, suggesting that applying OBZ over DEET on the skin lead to significantly higher absorption of DEET. Using both products in reverse order, (S3) did not result in extra DEET absorption significantly. As for OBZ permeation, no significant difference was observed among the methods. In summary, the enhancement of DEET absorption is confirmed for OBZ being applied over DEET on the skin; should concurrent use of both be necessary, applying sunscreen (OBZ) first and then insect repellent (DEET) with a 15-min interval is recommended.

  4. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model.

    PubMed

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin; Sørensen, Jens Ahm; Knudsen, Lisbeth E; Sørensen, Lars S; Webster, Thomas F; Nielsen, Jesper B

    2016-11-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants was recovered in either type of the receptor fluids used (physiological and worst-case). However, significant fractions were recovered in the skin depot, particularly in the upper skin layers. The primary effect of the worst-case receptor fluid was deeper penetration into the skin. The recovered mass was used to calculate lower- and upper-bound permeability coefficients kp. Despite large structural variation between the studied compounds, a clear, significant decreasing trend of kp was observed with increasing log Kow. The results indicate that the dermis may provide a significant barrier for these highly lipophilic compounds. However, based on our results, dermal uptake should be considered in exposure assessments, though it may proceed in a time-lagged manner compared to less hydrophobic compounds.

  5. Large-Scaled Metabolic Profiling of Human Dermal Fibroblasts Derived from Pseudoxanthoma Elasticum Patients and Healthy Controls

    PubMed Central

    Kuzaj, Patricia; Kuhn, Joachim; Michalek, Ryan D.; Karoly, Edward D.; Faust, Isabel; Dabisch-Ruthe, Mareike; Knabbe, Cornelius; Hendig, Doris

    2014-01-01

    Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization. PMID:25265166

  6. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    PubMed Central

    Yoshino, Atsushi; Polouliakh, Natalia; Meguro, Akira; Takeuchi, Masaki; Kawagoe, Tatsukata; Mizuki, Nobuhisa

    2016-01-01

    Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients. PMID:27621603

  7. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures.

    PubMed

    Yoshino, Atsushi; Polouliakh, Natalia; Meguro, Akira; Takeuchi, Masaki; Kawagoe, Tatsukata; Mizuki, Nobuhisa

    2016-01-01

    Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients. PMID:27621603

  8. Chum salmon egg extracts induce upregulation of collagen type I and exert antioxidative effects on human dermal fibroblast cultures

    PubMed Central

    Yoshino, Atsushi; Polouliakh, Natalia; Meguro, Akira; Takeuchi, Masaki; Kawagoe, Tatsukata; Mizuki, Nobuhisa

    2016-01-01

    Components of fish roe possess antioxidant and antiaging activities, making them potentially very beneficial natural resources. Here, we investigated chum salmon eggs (CSEs) as a source of active ingredients, including vitamins, unsaturated fatty acids, and proteins. We incubated human dermal fibroblast cultures for 48 hours with high and low concentrations of CSE extracts and analyzed changes in gene expression. Cells treated with CSE extract showed concentration-dependent upregulation of collagen type I genes and of multiple antioxidative genes, including OXR1, TXNRD1, and PRDX family genes. We further conducted in silico phylogenetic footprinting analysis of promoter regions. These results suggested that transcription factors such as acute myeloid leukemia-1a and cyclic adenosine monophosphate response element-binding protein may be involved in the observed upregulation of antioxidative genes. Our results support the idea that CSEs are strong candidate sources of antioxidant materials and cosmeceutically effective ingredients.

  9. Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture

    PubMed Central

    Bohari, Siti PM; Grover, Liam M; Hukins, David WL

    2015-01-01

    This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements. PMID:26668710

  10. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    SciTech Connect

    Han, Yanfu; Chai, Jiake; Sun, Tianjun; Li, Dongjie; Tao, Ran

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  11. Human disodium octaborate tetrahydrate exposure following carpet flea treatment is not associated with significant dermal absorption.

    PubMed

    Krieger, R I; Dinoff, T M; Peterson, J

    1996-01-01

    Disodium octaborate tetrahydrate is used for indoor flea control on carpets and furniture. Disodium octaborate tetrahydrate was applied to a 100% nylon carpet as a solution using a powered rug brush at a rate of approximately 200 micrograms/cm2 carpet. Two randomly chosen groups of volunteers (18 females, 4 males) wore either bathing suits which provided 75% or more skin exposure or whole-body, cotton dosimeters consisting of socks, union suits, and gloves. The volunteers performed a 20-minute set of Jazzercise routines. The availability of boron was demonstrated by covering portions of the carpet with a cotton dosimeter and rolling it with a weighted roller. Additionally, disodium octaborate tetrahydrate was transferred to the whole-body dosimeter. Volunteers also collected 24-hour urine specimens prior to and following the exercise period. The specimens were analyzed for total boron by inductively coupled plasma emission spectroscopy. No evidence of contact transfer and dermal absorption was obtained. The mean daily boron levels (mg/g creatinine) were 1.17, 1.33, and 1.31 for the group with exposed skin and 1.26, 1.12, and 1.26 for those who wore dosimeters which prevented contact. Daily urine boron levels were not significantly different when compared using a two sample t-test assuming equal variances (P > 0.05). Direct dermal contact with disodium octaborate tetrahydrate-treated carpet at a nominal rate of 200 micrograms/cm2 did not produce any adverse effects or change urinary boron clearance. PMID:8889949

  12. Mechanism of androgen action in cultured dermal papilla cells derived from human hair follicles with varying responses to androgens in vivo.

    PubMed

    Randall, V A; Thornton, M J; Hamada, K; Messenger, A G

    1992-06-01

    Androgens are major regulators of human hair growth, but their effects vary: many follicles are stimulated by androgens, e.g., beard; some remain unaffected, e.g., eyelashes; whereas scalp follicles undergo regression and balding in genetically disposed individuals. Because the dermal papilla controls many aspects of the hair follicle, androgens may act via the dermal papilla, affecting the other follicular components indirectly. In this hypothesis androgens would alter dermal papilla cell production of regulatory substances, e.g., growth factors and/or extracellular matrix components. To test this theory the mechanism of androgen action has been compared in primary lines of dermal papilla cells cultured from androgen-dependent follicles and relatively androgen-independent non-balding scalp. Androgen receptor levels were assayed by saturation analysis (9-10 points; 0.05-10 nmol/l) using the synthetic androgen [3H]-mibolerone and specificity was confirmed by competition studies. Androgen metabolism was investigated both intracellularly and in the media after a 2-h incubation with 5 nM [3H]-testosterone. Carrier and [14C] steroids were added to the extracts before separation by thin-layer chromatography; steroid identity was confirmed by recrystallization. Dermal papilla cells from androgen-dependent follicles contained higher levels of specific, high-affinity, low-capacity androgen receptors than non-balding scalp cells. Testosterone metabolism also varied with beard, public and scalp cells containing testosterone and androstenedione intracellularly, but only beard cells producing 5 alpha-dihydrotestosterone, in line with the scanty beard growth found in 5 alpha-reductase deficiency. Elsewhere we have shown that cultured dermal papilla cells produce extracellular matrix components and mitogenic factors. These results all concur with our original hypothesis and suggest that further studies of such cells may elucidate the paradoxical effects of androgens on human hair

  13. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  14. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape.

    PubMed

    Wang, Wenbo; Li, Jie; Wang, Keyun; Zhang, Zhiyong; Zhang, Wenjie; Zhou, Guangdong; Cao, Yilin; Ye, Mingliang; Zou, Hanfa; Liu, Wei

    2016-03-01

    Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling. PMID:26632599

  15. Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cell.

    PubMed

    Huan-huan, Chen; Li-Li, You; Shang-Bin, Li

    2004-08-10

    Artesunate (ART), a semi-synthetic derivative of artemisinin extracted from the Chinese herb Artemisia annua, is a safe and effective antimalarial drug. ART has now been analyzed for its anti-angiogenic activity in vivo and in vitro. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model. ART started to significantly inhibit CAM angiogenesis at a low concentration of 10 nm/100 microl/egg, and completely inhibited the angiogenesis at 80 nm/100 microl/egg. The inhibitory effect of in vitro angiogenesis was tested on the models of proliferation and differentiation of human microvascular dermal endothelial cell line, an important representive of endothelial cells, as well as immunocytochemistry assay for two major VEGF receptors (Flt-1 and KDR/flk-1) expressions. The results showed that ART could remarkably inhibit proliferation and differentiation of endothelial cells in a dose-dependent form in a range of 12.5-100 microM. ART also could reduce Flt-1 and KDR/flk-1 expressions in a range of 0.1-0.5 microM. Furthermore, we examined the apoptosis of human microvascular dermal endothelial cell line induced by ART. The apoptosis was detected by morphological assay of ethidium bromide (EB)/acridine orange (AO) dual staining as well as DNA fragmentation assay of TUNEL labeling and quantified by flowcytometric PI assay. Our results suggest that the antiangiogenic effect induced by ART might occur by the induction of cellular apoptosis. These findings and the known low toxicity indicated ART might be a promising candidate for angiogenesis inhibitors. PMID:15219940

  16. Use of human and porcine dermal-derived bioprostheses in complex abdominal wall reconstructions: a literature review and case report.

    PubMed

    Baillie, Daniel R; Stawicki, S Peter; Eustance, Nicole; Warsaw, David; Desai, Darius

    2007-05-01

    The goal of abdominal wall reconstruction is to restore and maintain abdominal domain. A PubMed(R) review of the literature (including "old" MEDLINE through February 2007) suggests that bioprosthetic materials are increasingly used to facilitate complex abdominal wall reconstruction. Reported results (eight case reports/series involving 137 patients) are encouraging. The most commonly reported complications are wound seroma (18 patients, 13%), skin dehiscence with graft exposure without herniation (six, 4.4%), superficial and deep wound infections (five, 3.6%), hernia recurrence (four, 2.9%), graft failure with dehiscence (two), hematoma (two), enterocutaneous fistula (one), and flap necrosis (one). Two recent cases are reported herein. In one, a 46-year-old woman required open abdominal management after gastric remnant perforation following a Roux-en-Y gastric bypass procedure. Porcine dermal collagen combined with cutaneous flaps was used for definitive abdominal wall reconstruction. The patient's condition improved postoperatively and she was well 5 months after discharge from the hospital. In the second, a 54-year-old woman underwent repair of an abdominal wall defect following resection of a large leiomyosarcoma. Human acellular dermis combined with myocutaneous flaps was used to reconstruct the abdominal wall defect. The patient's recovery was uncomplicated and 20 weeks following surgery she was doing well with no evidence of recurrence or hernia. The results reported to date and the outcomes presented here suggest that bioprosthetic materials are safe and effective for repair of large abdominal wall defects. Prospective, randomized, controlled studies are needed to compare the safety and efficacy of other reconstructive techniques as well as human and porcine dermal-derived bioprostheses.

  17. A COMPARATIVE INVESTIGATION OF THE INFLUENCE OF DERMAL APPENDAGES (HAIR FOLLICLES) ON THE PERCUTANEOUS ABSORPTION OF ORGANOPHOSPHORUS (OP) INSECTICIDES USING QSAR AND PBPK/PD MODELS FOR HUMAN RISK ASSESSMENT

    EPA Science Inventory

    The successful use of the Exposure Related Dose Estimating Model (ERDEM) for assessment of dermal exposure of humans to OP pesticides requires the input of representative and comparable input parameters. In the specific case of dermal exposure, regional anatomical variation in...

  18. Effect of GLY-HIS-LYS and its copper complex on TGF-β secretion in normal human dermal fibroblasts.

    PubMed

    Gruchlik, Arkadiusz; Chodurek, Ewa; Dzierzewicz, Zofia

    2014-01-01

    Transforming growth factor β (TGF-β) is a cytokine involved in a wide variety of biological process- es such as cell growth, differentiation and proliferation, apoptosis and regulation of the immune response. It has an important role in wound healing process, fibrosis and scar tissue formation. Similarly to TGF-β1, insulin growth factor (IGF) family is expressed locally in response to tissue injury. Treatment of dermal fibroblasts with IGF-1 caused a substantial induction of TGF-β1 mRNA. Not a great deal of research so far has focused on IGF-2. Much attention has been focused on the tripeptides such as Gly-His-Lys (GHK) and their copper complexes, which have a high activity and good skin tolerance. Recent data suggest that their physiological role has been related to the process of wound healing, tissue repair and skin inflammation. In the present study, the influence of 1 nM solutions of GHK, GHK-Cu and CuCl2, on IGF-2-dependent TGF-β1 secretion in normal human dermal fibroblasts cells was investigated. Fibroblasts were cultured in 24-well plates. Total TGF-β1 pro- tein was evaluated using the ELISA kit. The Bradford reagent was used to determine the total quantity of cel- lular protein. Treatment of fibroblasts with 100 ng/mL IGF-2 resulted in a significant increase in TGF-β1 secretion. GHK and its copper complex and free copper ions decreased IGF-2-dependent TGF-β1 secretion. Our observations provide some new information on the potential use of that peptide contained in cosmetics to treat and prevent the formation of hypertrophic scars. PMID:25745767

  19. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies.

    PubMed

    Gulson, Brian; McCall, Maxine J; Bowman, Diana M; Pinheiro, Teresa

    2015-11-01

    Metal oxide nanoparticles in sunscreens provide broad-spectrum ultraviolet protection to skin. All studies to assess dermal penetration of nanoparticles have unanimously concluded that the overwhelming majority of nanoparticles remain on the outer surface of the skin. However, possibly due to many different experimental protocols in use, conclusions over the potential penetration to viable skin are mixed. Here, we review several factors that may influence experimental results for dermal penetration including the species studied (human, or animal model), size and coating of the metal oxide nanoparticles, composition of the sunscreen formulation, site of sunscreen application, dose and number of applications, duration of the study, types of biological samples analysed, methods for analysing samples, exposure to UV and skin flexing. Based on this information, we suggest an appropriate research agenda involving international collaboration that maximises the potential for dermal absorption of nanoparticles, and their detection, under normal conditions of sunscreen use by humans. If results from this research agenda indicate no absorption is observed, then concerns over adverse health effects from the dermal absorption of nanoparticles in sunscreens may be allayed.

  20. Clinical performance of a dermal filler containing natural glycolic Acid and a polylactic Acid polymer: results of a clinical trial in human immunodeficiency virus subjects with facial lipoatrophy.

    PubMed

    Tagle, Jorge M; Macchetto, Pedro Cervantes; Durán Páramo, Rosa Margarita

    2010-02-01

    Lipoatrophy is a condition that affects certain individuals, most commonly those who are infected with the human immunodeficiency virus.(1-3) Injectable fillers are used for the treatment of these dermal contour deformities to smooth dermal depressions formed by the loss of volume. These dermal fillers (also known as soft tissue augmentation devices) can correct contour deformities caused by lipoatrophy in patients who are human immunodeficiency virus positive or negative. The product used in this study is a patented, second-generation, injectable, dermal collagen stimulator that combines glycolic acid and polylactic acid. The glycolic acid used is not a polymer, but rather an acid derived from sugar cane. Its chemical structure corresponds to that of an alpha-hydroxy acid. Glycolic acid is a well-characterized agent that is present in a number of cosmetic products. Polylactic acid is a synthetic, biocompatible, biodegradable, inert, synthetic polymer from the poly a-hydroxy-acid family that is believed to stimulate fibroblasts to produce more collagen, thus increasing facial volume. Together, polylactic acid and glycolic acid act in concert to 1) stimulate collagen production and 2) hydrate the outer layers of the skin. A multicenter, clinical investigation authorized by the Mexican Secretariat of Health was conducted between September 20, 2002, and September 19, 2004. This clinical study was conducted in male patients between 32 and 60 years of age with lipoatrophy as a result of highly active antiretroviral therapy for human immunodeficiency virus infection. The study objective was to measure the improvement of contour deformities after the injection of a dermal collagen stimulator containing glycolic acid and polylactic acid. In addition to safety, this dermal filler was assessed when used to correct volume deformities caused by lipoatrophy in subjects who are human immunodeficiency virus positive. Thirty male subjects participated and were treated as follows

  1. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  2. Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds

    PubMed Central

    Kim, Ha Won; Chan, Qilin; Afton, Scott E.; Caruso, Joseph A.; Lai, Barry; Weintraub, Neal L.; Qin, Zhenyu

    2013-01-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound

  3. Tensile stimuli increase nerve growth factor in human dermal fibroblasts independent of tension-induced TGFβ production.

    PubMed

    Kim, Mina; Shin, Dong Wook; Shin, Hyunjun; Noh, Minsoo; Shin, Jennifer H

    2013-01-01

    Human dermal fibroblasts (HDFs) regulate wound-healing processes in human skin, including the regeneration of skin sensory fibres, in response to various mechanical stimuli. Because nerve growth factor (NGF) has an essential role in sensory regeneration, we evaluated the possible association of NGF with mechanical stimulus-dependent cellular responses in HDFs. A cyclic tensile stimulus increased both NGF and transforming growth factor (TGF) β2 production, yet with different gene transcription and signal desensitization profiles. Neutralizing TGFβ with antibodies did not affect the tension-induced NGF upregulation, with significant inhibition of endogenous TGFβ2 transcription. The treatment with LY294002, SP600125 or U0126 hindered the tension-induced TGFβ2 upregulation, although the increase in NGF was regulated only by SP600125 or U0126, indicating the involvement of three signalling kinase pathways in the upregulation of TGFβ2. However, the upregulation of NGF was shown to be independent of PI3K, demonstrating the independent regulation of tension-induced NGF and TGFβ production in HDFs.

  4. In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells.

    PubMed

    Seker, Sükran; Elçin, A Eser; Yumak, Tuğrul; Sınağ, Ali; Elçin, Y Murat

    2014-12-01

    The use of metal oxide nanoparticles (NPs) in industrial applications has been expanding, as a consequence, risk of human exposure increases. In this study, the potential toxic effects of zinc oxide (ZnO) NPs on human periodontal ligament fibroblast cells (hPDLFs) and on mouse dermal fibroblast cells (mDFs) were evaluated in vitro. We synthesized ZnO NPs (particle size; 7-8 nm) by the hydrothermal method. Characterization assays were performed with atomic force microscopy, Braun-Emmet-Teller analysis, and dynamic light scattering. The hPDLFs and mDFs were incubated with the NPs with concentrations of 0.1, 1, 10, 50 and 100 μg/mL for 6, 24 and 48h. Under the control and NP-exposed conditions, we have made different types of measurements for cell viability and morphology, membrane leakage and intracellular reactive oxygen species generation. Also, we monitored cell responses to ZnO NPs using an impedance measurement system in real-time. While the morphological changes were visualized using scanning electron microscopy, the subcellular localization of NPs was investigated by transmission electron microscopy. Results indicated that ZnO NPs have significant toxic effects on both of the primary fibroblastic cells at concentrations of ∼50-100 μg/mL. The cytotoxicity of ZnO NPs on fibroblasts depended on concentration and duration of exposure.

  5. Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts.

    PubMed

    Igata, Toshikatsu; Jinnin, Masatoshi; Makino, Takamitsu; Moriya, Chikako; Muchemwa, Faith C; Ishihara, Tsuyoshi; Ihn, Hironobu

    2010-02-26

    Tissue remodeling is known to play important roles in wound healing. Although Rac1 is reported to be one of the key signaling molecules in cutaneous wound healing process, the exact mechanisms of Rac1-mediated tissue remodeling is still unknown. This study investigated the role of Rac1 in the regulation of extracellular matrix in cultured human dermal fibroblasts obtained by skin biopsy from three healthy donors. Protein levels of type I collagen in cultured human fibroblasts were increased by the treatment with Rac1 inhibitor NSC23766 in a dose-dependent manner. However, the mRNA levels of alpha2(I) collagen was not altered by the inhibitor. On the other hand, by the addition of inhibitor, half-lives of type I collagen protein were increased and MMP1 levels were reduced. These data suggest that blockade of Rac1 signaling results in accumulation of type I collagen due to decreased collagenase activity. This study also suggests that controlling Rac1 signaling is a new therapeutic approach to chronic/untreatable ulcer.

  6. ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells

    PubMed Central

    Kumar, Binod; Ansari, Mairaj Ahmed; Dutta, Dipanjan; Iqbal, Jawed; Gjyshi, Olsi; Bottero, Virginie; Chandran, Bala

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its natural in vivo target cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na+/H+ exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. IMPORTANCE Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target

  7. Development of a Human Physiologically Based Pharmacokinetics (PBPK) Model For Dermal Permeability for Lindane

    EPA Science Inventory

    Lindane is a neurotoxicant used for the treatment of lice and scabies present on human skin. Due to its pharmaceutical application, an extensive pharmacokinetic database exists in humans. Mathematical diffusion models allow for calculation of lindane skin permeability coefficient...

  8. Second harmonic generation imaging of dermal collagen component in human keloid tissue

    NASA Astrophysics Data System (ADS)

    Yu, H. B.; Chen, S.; Zhu, X. Q.; Yang, H. Q.; Chen, J. X.

    2011-01-01

    In this paper, we report second harmonic generation (SHG) imaging of human keloid tissue. High resolution SHG images of collagen component were obtained in the superficial, medial and deep dermis of human keloid tissue, respectively. Our results show that this method has a capability to observe the structure of collagen component in human keloid tissue, which will help to better understand the formation process of human keloid scar at the molecular level.

  9. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  10. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  11. A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil.

    PubMed

    Beriro, Darren J; Cave, Mark R; Wragg, Joanna; Thomas, Russell; Wills, Gareth; Evans, Frank

    2016-03-15

    Polycyclic Aromatic Hydrocarbons are classed as Persistent Organic Pollutants, a large group of compounds that share similar characteristics. They are lipophilic, resistant to degradation in the environment and harmful to human and environmental health. Soil has been identified as the primary reservoir for Polycyclic Aromatic Hydrocarbons in the United Kingdom. This study reviews the literature associated with, or is relevant to, the measurement and modelling of dermal absorption of Polycyclic Aromatic Hydrocarbons from soils. The literature illustrates the use of in vivo, in vitro and in silico methods from a wide variety of scientific disciplines including occupational and environmental exposure, medical, pharmaceutical and cosmetic research and associated mathematical modelling. The review identifies a number of practical shortcomings which must be addressed if dermal bioavailability tests are to be applied to laboratory analysis of contaminated soils for human health risk assessment.

  12. Effect of Protein Kinase C delta (PKC-δ) Inhibition on the Transcriptome of Normal and Systemic Sclerosis Human Dermal Fibroblasts In Vitro

    PubMed Central

    Wermuth, Peter J.; Addya, Sankar; Jimenez, Sergio A.

    2011-01-01

    Previous studies demonstrated that protein kinase C- δ (PKC-δ) inhibition with the selective inhibitor, rottlerin, resulted in potent downregulation of type I collagen expression and production in normal human dermal fibroblasts and abrogated the exaggerated type I collagen production and expression in fibroblasts cultured from affected skin from patients with the fibrosing disorder systemic sclerosis (SSc). To elucidate the mechanisms involved in the ability of PKC-δ to regulate collagen production in fibroblasts, we examined the effects of PKC-δ inhibition on the transcriptome of normal and SSc human dermal fibroblasts. Normal and SSc human dermal fibroblasts were incubated with rottlerin (5 µM), and their gene expression was analyzed by microarrays. Pathway analysis and gene ontology analysis of differentially expressed genes in each comparison were performed. Identification of significantly overrepresented transcriptional regulatory elements (TREs) was performed using the Promoter Analysis and Interaction Network Toolset (PAINT) program. PKC-δ activity was also inhibited using RNA interference (siRNA) and by treating fibroblasts with a specific PKC-δ inhibitory cell permeable peptide. Differential gene expression of 20 genes was confirmed using real time PCR. PKC-δ inhibition caused a profound change in the transcriptome of normal and SSc human dermal fibroblasts in vitro. Pathway and gene ontology analysis identified multiple cellular and organismal pathways affected by PKC-δ inhibition. Furthermore, both pathway and PAINT analyses indicated that the transcription factor NFκB played an important role in the transcriptome changes induced by PKC-δ inhibition. Multiple genes involved in the degradation of the extracellular matrix components were significantly reduced in SSc fibroblasts and their expression was increased by PKC-δ inhibition. These results indicate that isoform-specific inhibition of PKC-δ profibrotic effects may represent a novel

  13. Human volunteer study on the inhalational and dermal absorption of N-methyl-2-pyrrolidone (NMP) from the vapour phase.

    PubMed

    Bader, Michael; Wrbitzky, Renate; Blaszkewicz, Meinolf; Schäper, Michael; van Thriel, Christoph

    2008-01-01

    N-Methyl-2-pyrrolidone (NMP) is a versatile organic solvent frequently used for surface cleaning such as paint stripping or graffiti removal. Liquid NMP is rapidly absorbed through the skin but dermal vapour phase absorption might also play an important role for the uptake of the solvent. This particular aspect was investigated in an experimental study with 16 volunteers exposed to 80 mg/m(3) NMP for 8 h under either whole-body, i.e. inhalational plus dermal, or dermal-only conditions. Additionally, the influence of moderate physical workload on the uptake of NMP was studied. The urinary concentrations of NMP and its metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) were followed for 48 h and analysed by gas chromatography-mass spectrometry (GC-MS). Percutaneous uptake delayed the elimination peak times and the apparent biological half-lives of NMP and 5-HNMP. Under resting conditions, dermal-only exposure resulted in the elimination of 71 +/- 8 mg NMP equivalents as compared to 169 +/- 15 mg for whole-body exposure. Moderate workload yielded 79 +/- 8 mg NMP (dermal-only) and 238 +/- 18 mg (whole-body). Thus, dermal absorption from the vapour phase may contribute significantly to the total uptake of NMP, e.g. from workplace atmospheres. As the concentration of airborne NMP does not reflect the body dose, biomonitoring should be carried out for surveillance purposes.

  14. Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage.

    PubMed

    Fernández-García, Elisabet; Carvajal-Lérida, Irene; Pérez-Gálvez, Antonio

    Photoprotection by dietary carotenoids has been linked to their antioxidant properties, in particular quenching of singlet molecular oxygen and scavenging of peroxyl radicals. Here, we compared the DNA-protection and antioxidant effects of selected carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) to the xanthophyll lutein. Preincubation of human dermal fibroblasts (hdf) with capsanthin and capsorubin significantly counteracted UVB induced cytotoxicity at doses between 0 and 300 mJ cm(-2). Pretreatment of hdf with capsanthin, capsorubin or lutein (1 μM) significantly decreased the formation of DNA strand breaks following irradiation with UVB light. All carotenoids studied decreased caspase-3 cleavage (a marker for UVB-induced apoptosis), however, caspase dependent PARP-1 cleavage was not affected suggesting that the remaining caspase activity is sufficient to promote UVB-induced apoptosis. It is conceivable that carotenoids selectively interfere with cellular responses activated by UVB-mediated damage. Our findings indicate that capsanthin and capsorubin exhibit similar properties to lutein and could be used as a dietary supplement to improve natural photoprotection. PMID:27537377

  15. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts.

    PubMed

    Jaszewska, Edyta; Soin, Magdalena; Filipek, Agnieszka; Naruszewicz, Marek

    2013-09-01

    UVA radiation stimulates the production of reactive oxygen species (ROS), which react with lipids, proteins and other intracellular molecules leading to oxidative stress, cellular damage and ultimately cell death. There is, therefore, a growing need for substances exhibiting antioxidant activity, which may support repair mechanisms of the skin. This study evaluates the protective effect of the aqueous Oenothera paradoxa Hudziok defatted seeds extract, rich in polyphenolic compounds, against UVA (25 and 50J/cm(2))-induced changes in normal human dermal fibroblasts (NHDFs). The tested extract (0.1-10μg/ml) has decreased, in a concentration-dependent fashion, the UVA-induced release of lactate dehydrogenase (LDH) into the culture medium, the ROS production (with the use of 2',7'-dichlorodihydrofluorescein diacetate) and lipid peroxidation (utilizing redox reactions with ferrous ions) as compared to the control cells (incubated without the extract). Moreover, the extract increased the number of viable (calcein positive) cells decreasing the number of cells in late apoptosis (annexin V-FITC and propidium iodide positive). Thus our results show that O. paradoxa defatted seeds extract may be beneficial for the prevention of UVA skin damage.

  16. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    PubMed

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  17. A comparative study on the possible cytotoxic effects of different nanostructured lipid carrier (NLC) compositions in human dermal fibroblasts.

    PubMed

    Brugè, Francesca; Damiani, Elisabetta; Marcheggiani, Fabio; Offerta, Alessia; Puglia, Carmelo; Tiano, Luca

    2015-11-30

    Nanostructured lipid carriers (NLC) are widely used for topical delivery of active ingredients into the skin for both local and systemic treatment. But concerns have been raised regarding their potential nanotoxicity. To understand the role of NLC composition in terms of cytotoxicity and pro-oxidant effects, we investigated cell viability and intracellular levels of ROS (reactive oxygen species) production in human dermal fibroblasts (HDF) incubated with five NLC formulations differing in their solid lipid composition. HDF and NLC were also exposed to UVA irradiation in order to evaluate the behavior of NLC under realistic environmental conditions which might promote their instability. Using the Guava via-count assay, all nanoparticles, except for those formulated with Compritol 888 ATO, showed a significant decrease in live cells and a parallel increase in apoptotic or dead cells compared to the control, either before and/or after UVA irradiation (18 J/cm(2)). NLC formulated with Geleol™ Mono Diglycerides resulted the most cytotoxic. A similar trend was also observed when intracellular ROS levels were measured in HDF incubated with NLC: there was increased ROS content compared to the control, further exacerbated following UVA. NLC formulated with Dynasan 118 were particularly susceptible to UVA exposure. The results indicate which could be the most suitable candidates for formulating NLC that are biocompatible and non-cytotoxic even when exposed to UVA and hence help direct future choices during the formulation strategies of these delivery systems. Of those tested, Compritol 888 ATO appears to be the best choice. PMID:26392245

  18. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration.

    PubMed

    Chandrasekaran, Arun Richard; Venugopal, J; Sundarrajan, S; Ramakrishna, S

    2011-02-01

    Engineering dermal substitutes with electrospun nanofibres have lately been of prime importance for skin tissue regeneration. Simple electrospinning technology served to produce nanofibrous scaffolds morphologically and structurally similar to the extracellular matrix of native tissues. The nanofibrous scaffolds of poly(L-lactic acid)-co-poly(ε-caprolactone) (PLACL) and PLACL/gelatin complexes were fabricated by the electrospinning process. These nanofibres were characterized for fibre morphology, membrane porosity, wettability and chemical properties by FTIR analysis to culture human foreskin fibroblasts for skin tissue engineering. The nanofibre diameter was obtained between 282 and 761 nm for PLACL and PLACL/gelatin scaffolds; expressions of amino and carboxyl groups and porosity up to 87% were obtained for these fibres, while they also exhibited improved hydrophilic properties after plasma treatment. The results showed that fibroblasts proliferation, morphology, CMFDA dye expression and secretion of collagen were significantly increased in plasma-treated PLACL/gelatin scaffolds compared to PLACL nanofibrous scaffolds. The obtained results prove that the plasma-treated PLACL/gelatin nanofibrous scaffold is a potential biocomposite material for skin tissue regeneration. PMID:21205999

  19. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    PubMed

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells.

  20. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes.

    PubMed

    Lee, Ghang Tai; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Hong, Jin Tae; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-03-01

    Ultraviolet (UV) radiation induces severe alterations in the molecular and cellular components of normal human dermal fibroblast (NHDF) cells by disrupting many intracellular transduction cascades. Although UV responses have been well documented at the genome and proteome levels, UV protective effects have not been elucidated at these levels. The aim of the present study was to demonstrate that arctiin, a phytochemical isolated from the plant Arctium lappa, induced a protective effect against UVB radiation by changing microRNA (miRNA) expression profiles. Using flow cytometry, and water-soluble tetrazolium salt (WST-1)-based cell viability, wound healing, and DNA repair assays we showed that pretreatment with arctiin prior to UVB irradiation reduced UVB-induced apoptosis, cell migration defects, and DNA damage in NHDF cells. It was also found that arctiin‑induced UVB protection is associated with altered miRNA expression profiles. Bioinformatic analysis revealed that the deregulated miRNAs were functionally involved in mitogen-activated protein kinase (MAPK) signaling and cancer signaling pathways. The results suggest that arctiin acts as a UVB protective agent by altering specific miRNA expression in NHDF cells. PMID:24398562

  1. Sterilization-Induced Changes in Surface Topography of Biodegradable POSS-PCLU and the Cellular Response of Human Dermal Fibroblasts.

    PubMed

    Yildirimer, Lara; Seifalian, Alexander M

    2015-06-01

    The field of tissue engineering is rapidly evolving, generating numerous biodegradable materials suited as regeneration platforms. Material sterility is of fundamental importance for clinical translation; however, a few studies have systematically researched the effects of different sterilization methods on biodegradable materials. Here, we exposed a novel bioabsorbable nanocomposite based on a poly(ɛ-caprolactone urea) urethane backbone integrating polyhedral oligomeric silsesquioxane nanoparticles (POSS-PCLU) to autoclave, microwave, antibiotics, and 70% ethanol sterilization and systematically correlated differences in material characteristics to the attachment, viability, proliferative capacity, and shape of human dermal fibroblasts (HDFa). Nanotopographical profiling of autoclaved or microwaved surfaces revealed relatively deep nano-grooves, increasing total surface area, roughness, and hydrophobicity, which resulted in significantly fewer adherent cells. Antibiotics or 70% ethanol-treated surfaces displayed shallower nano-grooves, a more hydrophilic character, and significantly greater cellular adhesion (p<0.05). In fact, relative cell proliferation on ethanol-treated films surpassed that of cells grown on every other surface by a factor of 9 over 7 days. Filamentous actin staining demonstrated spindle-like morphologies characteristic of HDFa when grown on ethanol-treated films as opposed to cells grown on other films that were significantly more spread out (p<0.05). We argue that treatment with 70% ethanol serves not only as a laboratory-based sterilizing agent but also as a postproduction processing tool to enhance cytocompatibility of tissue engineering scaffolds. PMID:25398409

  2. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Kim, Kyunghoon; Lim, Chang-Jin

    2015-06-01

    Ginsenosides, also known as ginseng saponins, are responsible for most pharmacological effect of ginseng. Ginsenoside Rb1 (Rb1) exerts a variety of pharmacological properties, including anti-inflammatory, antistress, anti-aging and anti-neurodegenerative activities. The aim of the present work was to assess the skin anti-photoaging properties of Rb1 in human dermal keratinocyte HaCaT cells. The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) as well as cell viability for HaCaT cells under UV-B irradiation. Rb1 was able to suppress the ROS levels which were elevated under UV-B irradiation, and unable to influence cellular survival in UV-B-irradiated HaCaT cells. Rb1 diminished the enhancement of MMP-2 gelatinolytic activity in conditioned medium, which corresponded with the decreased MMP-2 protein levels in both conditioned medium and cellular lysate prepared from UV-B-irradiated HaCaT cultures. Rb1 could restore the total glutathione (GSH) and superoxide dismutase (SOD) activity diminished in UV-B-irradiated HaCaT cells. Ginsenoside Rb1 possesses skin anti-photoaging properties through scavenging ROS and decreasing MMP-2 levels possibly by enhancing antioxidant activity in keratinocytes under UV-B irradiation. PMID:26189299

  3. A Pilot Study of the Photoprotective Effects of Strawberry-Based Cosmetic Formulations on Human Dermal Fibroblasts

    PubMed Central

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Yuliett; Afrin, Sadia; Alvarez-Suarez, José Miguel; Gonzàlez-Paramàs, Ana Maria; Santos-Buelga, Celestino; Bompadre, Stefano; Quiles, José Luis; Mezzetti, Bruno; Giampieri, Francesca

    2015-01-01

    Strawberry polyphenols have been extensively studied over the last two decades for their beneficial properties. Recently, their possible use in ameliorating skin conditions has also been proposed; however, their role in preventing UVA-induced damage in cosmetic formulation has not yet been investigated. Skin is constantly exposed to several environmental stressors, such as UVA radiation, that induce oxidative stress, inflammation and cell death via the production of reactive oxygen species (ROS). In the present study, we assessed the potential photoprotective capacity of different strawberry-based formulations, enriched with nanoparticles of Coenzyme Q10 and with sun protection factor 10 (SPF10), in human dermal fibroblasts (HuDe) exposed to UVA radiation. We confirmed that strawberries are a very rich source of polyphenols, anthocyanins and vitamins, and possess high total antioxidant capacity. We also showed that strawberry extracts (25 μg/mL–1 mg/mL) exert a noticeable photoprotection in HuDe, increasing cell viability in a dose-dependent way, and that these effects are potentiated by the presence of CoQ10red (100 μg/mL). We have demonstrated for the first time that the topical use of strawberry extract may provide good photoprotection, even if more in-depth studies are strongly encouraged in order to evaluate the cellular and molecular effects of strawberry protection. PMID:26247940

  4. Sterilization-Induced Changes in Surface Topography of Biodegradable POSS-PCLU and the Cellular Response of Human Dermal Fibroblasts.

    PubMed

    Yildirimer, Lara; Seifalian, Alexander M

    2015-06-01

    The field of tissue engineering is rapidly evolving, generating numerous biodegradable materials suited as regeneration platforms. Material sterility is of fundamental importance for clinical translation; however, a few studies have systematically researched the effects of different sterilization methods on biodegradable materials. Here, we exposed a novel bioabsorbable nanocomposite based on a poly(ɛ-caprolactone urea) urethane backbone integrating polyhedral oligomeric silsesquioxane nanoparticles (POSS-PCLU) to autoclave, microwave, antibiotics, and 70% ethanol sterilization and systematically correlated differences in material characteristics to the attachment, viability, proliferative capacity, and shape of human dermal fibroblasts (HDFa). Nanotopographical profiling of autoclaved or microwaved surfaces revealed relatively deep nano-grooves, increasing total surface area, roughness, and hydrophobicity, which resulted in significantly fewer adherent cells. Antibiotics or 70% ethanol-treated surfaces displayed shallower nano-grooves, a more hydrophilic character, and significantly greater cellular adhesion (p<0.05). In fact, relative cell proliferation on ethanol-treated films surpassed that of cells grown on every other surface by a factor of 9 over 7 days. Filamentous actin staining demonstrated spindle-like morphologies characteristic of HDFa when grown on ethanol-treated films as opposed to cells grown on other films that were significantly more spread out (p<0.05). We argue that treatment with 70% ethanol serves not only as a laboratory-based sterilizing agent but also as a postproduction processing tool to enhance cytocompatibility of tissue engineering scaffolds.

  5. Cooperation of endothelial and smooth muscle cells derived from human induced pluripotent stem cells enhances neovascularization in dermal wounds.

    PubMed

    Kim, Koung Li; Song, Sun-Hwa; Choi, Kyu-Sil; Suh, Wonhee

    2013-11-01

    Human induced pluripotent stem cells (hiPSCs) are generated through the reprogramming of somatic cells into an embryonic stem cell-like state, such that vascular cells differentiated from hiPSCs might be a suitable autologous cell source for vascular regeneration. The goal of this study was to assess whether cotransplantation of endothelial cells (ECs) and smooth muscle cells (SMCs) differentiated from hiPSCs could promote neovascularization and tissue repair in a murine dermal wound model. hiPSCs were differentiated into ECs and SMCs; the differentiated cells displayed cell-specific surface markers. Compared to primary somatic cells, ECs and SMCs, which were differentiated from hiPSCs, strongly cooperated to enhance in vitro tubular network formation. In vivo gel assays in athymic nude mice showed that the coimplantation of differentiated ECs and SMCs significantly increased vascularization, unlike that observed in the case of implantation of differentiated ECs alone. In a murine full-thickness wound model, when compared with the transplantation of primary somatic cells or phosphate-buffered saline, cotransplantation of differentiated ECs and SMCs markedly enhanced neovascularization in injured tissues and accelerated wound healing. These results demonstrate that cotransplantation of hiPSC-derived ECs and SMCs may be feasible as a new autologous cell therapy for neovascularization and tissue repair.

  6. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts.

    PubMed

    Afnan, Quadri; Adil, Mushtaq Dar; Nissar-Ul, Ashraf; Rafiq, Ahmad Rather; Amir, Hussian Faridi; Kaiser, Peerzada; Gupta, Vijay Kumar; Vishwakarma, Ram; Tasduq, Sheikh Abdullah

    2012-05-15

    Glycyrrhizic acid (GA), a triterpenoid saponin glycoside from the roots and rhizomes of licorice is used in traditional and modern medicine for the treatment of numerous medical conditions including skin diseases and beauty care product. In the present study, we investigated the effect of GA against ultraviolet B (UVB) irradiation-induced photoaging in human dermal fibroblasts (HDFs) and its possible mechanism of action. HDFs were subjected to photoaging by sub-toxic dose of UVB (10 mj/cm(2)) irradiation. Cell viability, matrix metalloproteinase 1 (MMP1), pro-collagen 1, cellular and nuclear morphology, cell cycle, intracellular reactive oxygen species (ROS), caspase 3 and hyaluronidase inhibition assays were performed. Western blotting was used to evaluate the expression of NF-kappa B (NF-κB) and cytochrome-C proteins. GA treatment significantly inhibited photoaging. It achieved this by reducing ROS, NF-κB, cytochrome c, caspase 3 levels and inhibiting hyaluronidase enzyme. The main mechanism seems to be, most likely by blocking MMP1 activation by modulating NF-κB signaling. These findings may be useful for development of natural and safe photoprotective agents against UVB irradiation. PMID:22516896

  7. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  8. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  9. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging

  10. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application.

    PubMed

    Roosens, Laurence; Covaci, Adrian; Neels, Hugo

    2007-11-01

    Synthetic musks, such as 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB), musk ketone (MK) and musk xylene (MX), are used as an alternative for natural musk. Due to their widespread use, these synthetic compounds turned up in different environmental compartments, such as wastewater, human and animal tissues. Yet, little is known about their distribution and occurrence in personal care and household products, information needed in order to evaluate the different human exposure routes. This paper gives an overview of the synthetic musk levels in six different product categories: body lotions, perfumes, deodorants, hair care products, shower products and sanitation products. Especially body lotions, perfumes and deodorants contained high levels of synthetic musks. Maximum concentrations of HHCB, AHTN, MX and MK were 22 mg g(-1), 8 mg g(-1), 26 microg g(-1) and 0.5 microg g(-1), respectively. By combining these results with the average usage of consumer products, low-, medium- and high-exposure profiles through dermal application could be estimated. HHCB was the highest contributor to the total amount of synthetic musks in every exposure profile (18-23 700 microg d(-1)). Exposure to MK and MX did not increase substantially (10-20-fold) between low- and high-exposure profiles, indicating that these compounds cover a less broad range. In comparison, exposure to HHCB and AHTN increased up to 10 000 fold between low- and high-exposure.

  11. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    PubMed

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  12. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

    PubMed Central

    Baek, Beomyeol; Lee, Su Hee; Lim, Hye-Won

    2016-01-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  13. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts.

    PubMed

    Baek, Beomyeol; Lee, Su Hee; Kim, Kyunghoon; Lim, Hye-Won; Lim, Chang-Jin

    2016-05-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  14. Homogeneous Inflammatory Gene Profiles Induced in Human Dermal Fibroblasts in Response to the Three Main Species of Borrelia burgdorferi sensu lato

    PubMed Central

    Meddeb, Mariam; Carpentier, Wassila; Cagnard, Nicolas; Nadaud, Sophie; Grillon, Antoine; Barthel, Cathy; De Martino, Sylvie Josiane; Jaulhac, Benoît; Boulanger, Nathalie

    2016-01-01

    In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether “species-related” inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved. PMID:27706261

  15. Dermal uptake of Tetrabromobisphenol A TBBPA by female Wistar Han rat and human skin

    EPA Science Inventory

    TBBPA, a brominated analog of Bisphenol A, is the highest production volume brominated flame retardant in production and human exposure is ubiquitous. Although the major route of exposure to TBBPA is oral uptake, skin penetration is possible. In the studies presented here, the de...

  16. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    EPA Science Inventory

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  17. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    PubMed

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  18. Autologous dermal graft combined with a modified degloving procedure for penile augmentation in young adults: a preliminary study.

    PubMed

    Zhang, G-X; Weng, M; Wang, M-D; Bai, W-J

    2016-09-01

    In order to evaluate the effect of penile enhancement, we retrospectively reviewed the data of the patients operated with autologous dermal graft implantation combined with a modified penile degloving procedure. The patients with the complaints of small penis, asking for penile augmentation, and normal erectile function were psychologically screened and enrolled. Data of follow-up visit including patient demographics, medical history, surgical procedure, patient-reported outcomes were analysed. In all, 30 eligible persons were operated. After degloving of the penis, the suspensory ligament was incised and the tunica albuginea was fixed to the proximal tunica dartos at the penile base. Then, the dermis graft was implanted on the dorsal surface of the tunica albuginea. The file of follow-up visit was available in 17 (57%) patients. The mean age was 23.7 years (19-35 years) and the mean follow-up was 13 months (range, 4-24 months). During the follow-up period, the average gain in the penis length was 2.7 cm in flaccid and 0.8 cm in erection, respectively. And the average gain in the penis circumference was 1.5 cm in flaccid and 1.2 cm in erection, respectively. Also, psychosexual sexual self-esteem and confidence of the patients were significantly improved (p < 0.001). Overall, 13 (76%) patients reported satisfaction with the penile appearance. We believe that the surgery is both safe and effective in the enhancement of the penis, however, further clinical studies with a larger patient population are necessary. PMID:27115979

  19. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity.

    PubMed

    Menezes, S; Coulomb, B; Lebreton, C; Dubertret, L

    1998-10-01

    The sun is the most important and universal source of non-ionizing radiation shed on human populations. Life evolved on Earth bathed by this radiation. Solar UV damages cells, leading to deleterious conditions such as photoaging and carcinogenesis in human skin. During the process of evolution, the cells selected dark- and light-dependent repair mechanisms as a defence against these hazardous effects. This study describes the induction by non-coherent infrared radiation (700-2000 nm), in the absence of rising temperature, of a strong cellular defense against solar UV cytotoxicity as well as induction of cell mitosis. Blocking mitoses with arabinoside-cytosine or protein synthesis with cycloheximide did not abolish the protection, leading to the conclusion that this protection is independent of cell division and of protein neosynthesis. The protection provided by infrared radiation against solar UV radiation is shown to be a long-lasting (at least 24 h) and cumulatif phenomenon. Infrared radiation does not protect the lipids in cellular membranes against UVA induced peroxidation. The protection is not mediated by heat shock proteins. Living organisms on the Earth's surface are bathed by infrared radiation every day, before being submitted to solar UV. Thus, we propose that this as yet undescribed natural process of cell protection against solar UV, acquired and preserved through evolutional selection, plays an important role in life maintenance. Understanding and controlling this mechanism could provide important keys to the prevention of solar UV damage of human skin.

  20. The dermal-epidermal junction of human skin contains a novel laminin variant

    PubMed Central

    1992-01-01

    We report the identification of a novel laminin variant that appears to be unique to a subset of epithelial basement membranes. The variant contains two chains electrophoretically and immunologically identical to the B1 and B2 chains. Epitopes contained in the laminin A chain are absent from the molecule, and a 190-kD chain substitutes for the A chain. V8 protease analysis and Western blotting studies indicate that the variant 190-kD chain shows structural and immunological similarity to the 200-kD chain of kalinin. Rotary shadowing analysis indicates that the 190-kD chain contributes a large globular structure to the variant long arm, but lacks the short arm contributed to laminin by the A chain. The variant is produced by cultured skin explants, human keratinocytes and a squamous cell carcinoma line, and is present in human amniotic fluid. Polyclonal antibodies raised to kalinin, a recently characterized novel component of anchoring filaments, and mAb BM165 which recognizes a subunit of kalinin (Rousselle et al., 1991) cross react with the variant under nonreducing conditions. Immunohistological surveys of human tissues using the crossreacting antikalinin antiserum indicate that the distribution of this laminin variant is at least restricted to anchoring filament containing basement membranes. We propose the name K-laminin for this variant. PMID:1383241

  1. Azelaic acid reduced senescence-like phenotype in photo-irradiated human dermal fibroblasts: possible implication of PPARγ.

    PubMed

    Briganti, Stefania; Flori, Enrica; Mastrofrancesco, Arianna; Kovacs, Daniela; Camera, Emanuela; Ludovici, Matteo; Cardinali, Giorgia; Picardo, Mauro

    2013-01-01

    Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated β-galactosidase (SA-β-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-β-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism. PMID:23278893

  2. Abietic acid inhibits UVB-induced MMP-1 expression in human dermal fibroblast cells through PPARα/γ dual activation.

    PubMed

    Jeon, Youngsic; Jung, Yujung; Youm, Jong-Kyung; Kang, Ki Sung; Kim, Yong Kee; Kim, Su-Nam

    2015-02-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and consist of three isotypes: PPARα, PPARβ/δ and PPARγ. PPARs are expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, these receptors are highly studied in dermato-endocrine research, and their ligands are targets for the treatment of various skin disorders, such as photoageing and chronological ageing of skin. Intensive studies have revealed that PPARα/γ functions in photoageing and age-related inflammation by regulating matrix metalloproteinases (MMPs) via nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). However, the detailed mechanism of PPARα/γ's role in photoageing has not yet been elucidated. In this study, we confirmed that abietic acid (AA) is a PPARα/γ dual ligand and significantly decreased UVB-induced MMP-1 expression by downregulating UVB-induced MAPK signalling and downstream transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in Hs68 human dermal fibroblast cells. Treatment of cells with AA and GW6471 or bisphenol A diglycidyl ether (BADGE), PPARα or PPARγ antagonists, respectively, reversed the effect on UVB-induced MMP-1 expression and inflammatory signalling pathway activation. Taken together, our data suggest that AA acts as a PPARα/γ dual activator to inhibit UVB-induced MMP-1 expression and age-related inflammation by suppressing NF-κB and the MAPK/AP-1 pathway and can be a useful agent for improving skin photoageing. PMID:25496486

  3. Physiologically Based Pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures

    SciTech Connect

    Corley, Rick A. ); Gordon, Syd M.; Wallace, Lance A.

    2000-01-14

    The kinetics of chloroform in the exhaled breath of human volunteers exposed skin-only via bath water (concentrations < 100 ppb) were analyzed using a physiologically based pharmacokinetic (PBPK) model. Significant increases in exhaled chloroform (and thus bioavailability) were observed as exposure temperatures were increased from 30 to 40?C. The blood flows to the skin and effective skin permeability coefficients (Kp) were both varied to reflect the temperature-dependent changes in physiology and exhalation kinetics. At 40?C, no differences were observed between males and females. Therefore, Kp?s were determined ({approx}0.06 cm/hr) at a skin blood flow rate of 18% of the cardiac output. At 30 and 35?C, males exhaled more chloroform than females resulting in lower effective Kp?s calculated for females. At these lower temperatures, the blood flow to the skin was also reduced. Total amounts of chloroform absorbed averaged 41.9 and 43.6 mg for males and 11.5 and 39.9 mg for females exposed at 35 and 40?C, respectively. At 30?C, only 2/5 males and 1/5 females had detectable concentrations of chloroform in their exhaled breath. For perspective, the total intake of chloroform would have ranged from 79 - 194 mg if the volunteers had consumed 2 L of water orally at the concentrations used in this study. Thus, the relative contribution of dermal uptake of chloroform to the total body burdens associated with bathing for 30 min and drinking 2 L of water (ignoring contributions from inhalation exposures) was predicted to range from 1-28% depending on the temperature of the bath.

  4. Cationic Glycopolymers for the Delivery of pDNA to Human Dermal Fibroblasts and Rat Mesenchymal Stem Cells

    PubMed Central

    Kizjakina, Karina; Bryson, Joshua M.; Grandinetti, Giovanna; Reineke, Theresa M.

    2014-01-01

    Progenitor and pluripotent cell types offer promise as regenerative therapies but transfecting these sensitive cells has proven difficult. Herein, a series of linear trehalose-oligoethyleneamine “click” copolymers were synthesized and examined for their ability to deliver plasmid DNA (pDNA) to two progenitor cell types, human dermal fibroblasts (HDFn) and rat mesenchymal stem cells (RMSC). Seven polymer vehicle analogs were synthesized in which three parameters were systematically varied: the number of secondary amines (4–6) within the polymer repeat unit (Tr433, Tr530, and Tr632), the end group functionalities [PEG (Tr4128PEG-a, Tr4118PEG-b), triphenyl (Tr4107-c), or azido (Tr499-d)], and the molecular weight (degree of polymerization of about 30 or about 100) and the biological efficacy of these vehicles was compared to three controls: Lipofectamine 2000, JetPEI, and Glycofect. The trehalose polymers were all able to bind and compact pDNA polyplexs, and promote pDNA uptake and gene expression [luciferase and enhanced green fluorescent protein (EGFP)] with these primary cell types and the results varied significantly depending on the polymer structure. Interestingly, in both cell types, Tr433 and Tr530 yielded the highest luciferase gene expression. However, when comparing the number of cells transfected with a reporter plasmid encoding enhanced green fluorescent protein, Tr433 and Tr4107-c yielded the highest number of HDFn cells positive for EGFP. Interestingly, with RMSC, all of the higher molecular weight analogs (Tr4128PEG-a, Tr4118PEG-b, Tr4107-c, Tr499-d) yielded high percentages of cells positive for EGFP (30–40%). PMID:22138032

  5. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers.

    PubMed

    Yamada, Masahiro; Kato, Eiji; Yamamoto, Akiko; Sakurai, Kaoru

    2016-02-02

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  6. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway

    PubMed Central

    Patwardhan, Juilee; Bhatt, Purvi

    2016-01-01

    productionEA fraction could reduce oxidative stress through the Nrf2-ARE PathwayEA fraction was found to be nongenotoxic and prevented apoptotic changes. HIGHLIGHTS Flavonoids from Abelmoschus esculentus protected from ultraviolet-B-induced damageThey were capable of reducing oxidative stress through Nrf2-ARE PathwayThey are nongenotoxic and do not possess mutagenic potentialFlavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen. Abbreviations used: ABTS: 2,2’-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2’,7’-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, r

  7. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    PubMed

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  8. The effects of vehicles on the human dermal irritation potentials of allyl esters.

    PubMed

    Politano, Valerie T; Isola, Daniel A; Lalko, Jon; Api, Anne Marie

    2006-01-01

    Allyl esters, frequently used in the fragrance industry, often contain a certain percentage of free allyl alcohol. Allyl alcohol is known to have a potential for delayed skin irritation. Also present in the finished product are different solvent systems, or vehicles, which are used to deliver the fragrances based upon their intended application. This study was conducted to determine whether different vehicles affect the skin irritation potential of five different allyl esters. The allyl esters tested were allyl amyl glycolate, allyl caproate, allyl (cyclohexyloxy)acetate, allyl cyclohexylpropionate, and allyl phenoxyacetate in the vehicles diethyl phthalate, 3:1 diethyl phthalate:ethanol, and 1:3 diethyl phthalate:ethanol at concentrations of 0.1%, 0.5%, 1.0%, and 2.0% (w/w). A modified cumulative irritation test was conducted in 129 human subjects. Test materials (0.3 ml) were applied under occlusion to skin sites on the back for 1 day (24 h) using Hill Top chambers. Irritation was assessed at 1, 2, 4, and 5 days following application of test materials. Cumulative irritation scores varied considerably among test materials. There were no delayed irritation observations. The highest irritation scores were observed at the 2.0% concentration for all test materials. The irritation scores for allyl amyl glycolate, allyl (cyclohexyloxy)acetate, and allyl phenoxyacetate were highest in 1:3 diethyl phthalate:ethanol, thus the resulting calculated no-observed-effect levels, 0.12%, 0.03%, and 0%, respectively, were much lower for this vehicle compared to the diethyl phthalate vehicle, 0.33%, 0.26%, 0.25%, respectively. These data showed a trend for lower concentration thresholds to induce irritation when higher levels of ethanol were used in the vehicle.

  9. Towards Development of a Dermal Pain Model: In Vitro Activation of Rat and Human Transient Receptor Potential Ankyrin Repeat 1 and Safe Dermal Injection of o-Chlorobenzylidene Malononitrile to Rat.

    PubMed

    Annas, Anita; Berg, Anna-Lena; Nyman, Eva; Meijer, Thomas; Lundgren, Viveka; Franzén, Bo; Ståhle, Lars

    2015-12-01

    During clinical development of analgesics, it is important to have access to pharmacologically specific human pain models. o-Chlorobenzylidene malononitrile (CS) is a selective and potent agonist of the transient receptor potential ankyrin repeat 1 (TRPA1), which is a transducer molecule in nociceptors sensing reactive chemical species. While CS has been subject to extensive toxicological investigations in animals and human beings, its effects on intradermal or subcutaneous injection have not previously been reported. We have investigated the potential of CS to be used as an agonist on TRPA1 in human experimental pain studies. A calcium influx assay was used to confirm the capacity of CS to activate TRPA1 with >100,000 times the selectivity over the transient receptor potential vanilloid receptor 1. CS dose-dependently (EC50 0.9 μM) released calcitonin gene-related peptide in rat dorsal root ganglion cultures, supporting involvement in pain signalling. In a local tolerance study, injection of a single intradermal dose of 20 mM CS to rats resulted in superficial, circular crusts at the injection sites after approximately 4 days. The histopathology evaluation revealed a mild, acute inflammatory reaction in the epidermis and dermis at the intradermal CS injection site 1 day after administration. After 14 days, the epidermal epithelium was fully restored. The symptoms were not considered to be adverse, and it is suggested that doses up to 20 μL of 20 mM CS can be safely administered to human beings. In conclusion, our data support development of a CS human dermal pain model. PMID:26046936

  10. Human Acellular Dermal Matrix Paired With Silver-zinc Coupled Electroceutical Dressing Results in Rapid Healing of Complicated Diabetic Wounds of Mixed Etiology: A Novel Case Series.

    PubMed

    Cole, Windy

    2016-07-01

    Patients with diabetes are well known for having difficult-to-close wounds. When additional factors are added, such as gouty tophi or tumors, the difficulty is compounded and conventional care often fails to heal the wound. In this case series, an innovative wound modality that combined a human acellular dermal matrix with a silver-zinc coupled electroceutical wound dressing was used in 3 particularly difficult and complex cases. In all 3 cases, this alternative treatment provided full healing within 6 weeks in wounds that conventional care had been unable to close in up to 2 years. PMID:27428719

  11. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    NASA Astrophysics Data System (ADS)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  12. Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Park, Hye Min; Han, Hae Jung; Ji, Hyi Jeong; Kim, Beom Joon

    2015-10-01

    Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss.

  13. Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Park, Hye Min; Han, Hae Jung; Ji, Hyi Jeong; Kim, Beom Joon

    2015-10-01

    Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss. PMID:26311045

  14. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy.

    PubMed

    Belletti, Silvana; Uggeri, Jacopo; Mergoni, Giovanni; Vescovi, Paolo; Merigo, Elisabetta; Fornaini, Carlo; Nammour, Samir; Manfredi, Maddalena; Gatti, Rita

    2015-01-01

    Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate "in vitro" the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm(2) on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45-15 J/cm(2)), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm(2), CW irradiation determined a little decrease (5%) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10% increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.

  15. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    PubMed Central

    Bisson, Francis; Rochefort, Éloise; Lavoie, Amélie; Larouche, Danielle; Zaniolo, Karine; Simard-Bisson, Carolyne; Damour, Odile; Auger, François A.; Guérin, Sylvain L.; Germain, Lucie

    2013-01-01

    A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3) can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes. PMID:23443166

  16. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis.

    PubMed

    Zhang, Guo-You; Wu, Liang-Cai; Dai, Tao; Chen, Shi-Yi; Wang, An-Yuan; Lin, Kang; Lin, Da-Mu; Yang, Jing-Quan; Cheng, Biao; Zhang, Li; Gao, Wei-Yang; Li, Zhi-Jie

    2014-09-01

    The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis. PMID:24981855

  17. NADPH oxidase-2 is a key regulator of human dermal fibroblasts: a potential therapeutic strategy for the treatment of skin fibrosis.

    PubMed

    Zhang, Guo-You; Wu, Liang-Cai; Dai, Tao; Chen, Shi-Yi; Wang, An-Yuan; Lin, Kang; Lin, Da-Mu; Yang, Jing-Quan; Cheng, Biao; Zhang, Li; Gao, Wei-Yang; Li, Zhi-Jie

    2014-09-01

    The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor-beta1 (TGF-β1) exerts pro-oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF-β1-induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real-time Q-PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock-down analysis. Hydrogen peroxide production and 2',7'-dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non-phagocytic NADPH oxidase mRNA. TGF-β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF-β1 phosphorylated MAPKs and increased activator protein-1 (AP-1) in a redox-sensitive manner, and NOX2 suppression inhibited baseline and TGF-β1-mediated stimulation of Smad2 phosphorylation. Moreover, TGF-β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI-1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis.

  18. Socket Preservation Therapy with Acellular Dermal Matrix and Mineralized Bone Allograft After Tooth Extraction in Humans: A Clinical and Histomorphometric Study.

    PubMed

    Fernandes, Patricia Garani; Muglia, Valdir Antonio; Reino, Danilo Maeda; Maia, Luciana Prado; de Moraes Grisi, Marcio Fernando; de Souza, Sergio Luís; Taba, Mario; Palioto, Daniela Bazan; de Almeida, Adriana G; Novaes, Arthur Belém

    2016-01-01

    The aim of this study was to analyze through clinical and histomorphometric parameters the use of acellular dermal matrix (ADM) with or without mineralized bone allograft (AB) on bone formation in human alveoli after a 6- to 8-month healing period. A total of 19 patients in need of extraction of the maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus AB) or to the control group (ADM only). Clinical and histomorphometric measurements and histologic analysis were recorded 6 to 8 months after ridge preservation procedures. Clinical parameters and amount of mineralized and nonmineralized tissue were measured and analyzed. In the clinical measurements, the test group showed reduced bone loss in the buccopalatal dimension after 6 to 8 months (intragroup analysis P < .01). Histologic findings showed higher percentages of mineralized tissue and lower percentages of nonmineralized tissue in the test group when compared with the control group (P < .05). In this randomized controlled clinical and histomorphometric study in humans, acellular dermal matrix in association with mineralized bone allograft reduced alveolar bone loss in the anterior maxillae both in height and width after a follow-up period of 6 to 8 months. PMID:26901306

  19. Adipose-derived stem cells promote human dermal fibroblast function and increase senescence-associated β‑galactosidase mRNA expression through paracrine effects.

    PubMed

    Shen, Xiao; Du, Yunpeng; Shen, Weimin; Xue, Bin; Zhao, Yu

    2014-12-01

    Adipose‑derived stem cells (ADSCs) are known to secrete various cytokines, which affect fibroblast function through paracrine effects. In the present study, the paracrine effects of ADSCs on the function and senescence of young and aged human dermal fibroblasts (HDFs) were investigated in vitro. ADSCs and HDFs were isolated from healthy donors and flow cytometry was used for immunophenotype identification. ADSCs were co‑cultured with young or aged human dermal fibroblasts in Transwell plates, and control groups were established accordingly. Cellular proliferation was measured by an MTT assay. Type I collagen, matrix metalloproteinase‑1 (MMP‑1) and senescence-associated β‑galactosidase (SA‑β‑GAL) mRNA expression were measured by quantitative polymerase chain reaction. It was identified that ADSCs promoted proliferation of co‑cultured HDFs and induced increased expression of type I collagen and decreased expression of MMP‑1. The co‑cultured HDFs exhibited increased expression of SA‑β‑GAL. These results demonstrated that ADSCs improve fibroblast function through paracrine effects. The increased expression of SA‑β‑GAL indicated an accelerated aging process. It is proposed that ADSCs may improve fibroblast function, but not reverse the age status in vitro.

  20. Prevention of UVA-Induced Oxidative Damage in Human Dermal Fibroblasts by New UV Filters, Assessed Using a Novel In Vitro Experimental System

    PubMed Central

    Emanuelli, Monica; Damiani, Elisabetta

    2014-01-01

    Background UVA rays present in sunlight are able to reach the dermal skin layer generating reactive oxygen species (ROS) responsible for oxidative damage, alterations in gene expression, DNA damage, leading to cell inflammation, photo-ageing/-carcinogenesis. Sunscreens contain UV filters as active ingredients that absorb/reflect/dissipate UV radiation: their efficiency depends on their spectral profile and photostability which should then be reflected in biological protection of underlying skin. Methods A set of new UV filters was synthesized, and the most photostable one was compared to BMDBM, a widely used UVA filter. Cultured human dermal fibroblasts were exposed to UVA radiation which was filtered by a base cream containing or not UV filters placed above cell culture wells. The endpoints measured were: cell viability (MTT assay), ROS generation (DCFH-DA assay), mitochondrial function (JC-1 assay), DNA integrity (Comet assay) and gene expression (MMP-1, COL1A1) by RT-qPCR. Results The new UV filter resulted more efficient than BMDBM in preserving cell viability, mitochondrial functionality and oxidative DNA damage, despite similar inhibition levels of intracellular ROS. Moreover, expression of genes involved in dermal photoageing were positively affected by the filtering action of the tested molecules. Conclusions The experimental model proposed was able to validate the efficacy of the new UV filter, taking into account important cellular events related to UV-induced intracellular oxidative stress, often underestimated in the assessments of these compounds. General Significance The model may be used to compare the actual biological protection of commercial sunscreens and suncare products aside from their SPF and UVA-PF values. PMID:24409282

  1. Microvessel networks [corrected] pre-formed in artificial clinical grade dermal substitutes in vitro using cells from haematopoietic tissues.

    PubMed

    Athanassopoulos, Athanassios; Tsaknakis, Grigorios; Newey, Sarah E; Harris, Adrian L; Kean, Jennifer; Tyler, Michael P; Watt, Suzanne M

    2012-08-01

    Forming a microcirculation is critical for vascularisation of artificial skin substitutes. One strategy to improve speed of grafting is to pre-form microvascular networks in the substitute before applying to a wound. For clinical application, this requires sufficient functional endothelial cell numbers. In vitro endothelial colony forming cells (ECFCs) derived cells were expanded from cord and adult blood donations and co-cultured with human dermal fibroblasts or bone marrow mesenchymal stem/stromal cells to form microvascular networks in the presence or absence of dermal substitutes which are in clinical use. The number of endothelial cells generated ranged from 1.03×10(9) to 2.18×10(11) from 10 adult blood donations and 1×10(12) to 1.76×10(13) from 6 cord blood units after 50 days in culture. Two adult donations failed to generate ECFCs. Both cord and adult blood cells formed 2D microvascular networks in vitro, although there was a significant difference in the functional capacity of adult and cord blood ECFCs. While co-culture of the latter within dermal substitutes Matriderm or Integra demonstrated the formation of 3D microvascular networks penetrating 100μm, enhanced expansion, while maintaining functional capacity, of adult blood cells is required for fully pre-vascularising the clinical grade acellular dermal substitutes used here prior to applying these to burns.

  2. Angiogenic properties of adult human thymus fat.

    PubMed

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  3. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type.

    PubMed

    Rahmani, Waleed; Abbasi, Sepideh; Hagner, Andrew; Raharjo, Eko; Kumar, Ranjan; Hotta, Akitsu; Magness, Scott; Metzger, Daniel; Biernaskie, Jeff

    2014-12-01

    The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.

  4. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball.

  5. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    PubMed

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball. PMID:27258711

  6. PCR and RT-PCR analysis of infection and transcriptional activity of walleye dermal sarcoma virus (WDSV) in organs of adult walleyes (Stizostedion vitreum).

    PubMed

    Poulet, F M; Bowser, P R; Casey, J W

    1996-01-01

    The pathogenesis of walleye dermal sarcoma virus (WDSV) infection was investigated in adult walleyes (Stizostedion vitreum). Three tumor-bearing and three tumor-free walleyes were collected in the spring from Oneida Lake, New York, and analyzed for viral infection and transcriptional activity. Specifically, the target organs for viral infection and supporting viral transcriptional activity were determined by assessing for the presence of WDSV DNA and RNA in the brain, liver, kidney, skin, and spleen. For each organ, WDSV DNA and RNA were detected using the polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) respectively. Quantitative estimates of the number of viral DNA and RNA copies were obtained in each case by comparing the signal intensity of the sample to that of external controls. WDSV RNA/DNA ratios, based on those quantitative estimates, were computed for each organ. An RNA/DNA ratio of 3 was arbitrarily chosen as the threshold above which there was viral transcriptional activity. Viral DNA was found in all the organs examined from the three tumor-free walleyes. In those three tumor-free walleyes, low levels of WDSV RNA were detected in only one kidney and two spleen samples. In the three tumor-bearing walleyes, viral DNA was found in one brain, one kidney, two liver, and two skin samples. In contrast to the few organs from tumor-free walleyes in which WDSV RNA was detected, in tumor-bearing walleyes WDSV RNA was present in the one brain examined and in 2/3 kidney, 2/3 liver, 3/3 skin, and 3/3 spleen samples. A WDSV RNA/DNA ratio above 3 was obtained in all three tumor-bearing walleyes but in only one tumor-free fish. These data indicated that 1) both tumor-bearing and tumor-free walleyes were infected by WDSV, 2) many cell types were targeted by WDSV and supported viral transcription, and 3) tumor-bearing walleyes harbored a transcriptionally active WDSV, whereas tumor-free walleyes contained mostly silent WDSV DNA.

  7. The in vivo dermal absorption and metabolism of [4-14C] coumarin by rats and by human volunteers under simulated conditions of use in fragrances.

    PubMed

    Ford, R A; Hawkins, D R; Mayo, B C; Api, A M

    2001-02-01

    The disposition and metabolic fate of [4-14C]coumarin in a 70% aqueous ethanol solution was studied in male Lister Hooded rats after occluded dermal application and in three male volunteers after an exposure designed to simulate that which may be encountered when using an alcohol-based perfumed product. In both cases, the 6-h exposure was 0.02 mg/cm(2) (rats 0.023 mg/kg and humans 0.77 mg/kg). In both, coumarin was quickly absorbed, distributed and excreted in urine and feces, although fecal excretion of coumarin in humans was only 1% of the applied dose as opposed to 21% in rats. Total absorption was 72% of the applied dose with rats and 60% with humans. Peak plasma radioactivity in both was at 1 h. The mean plasma half-life of coumarin and metabolites was approximately 1.7 h for humans and 5 h for rats. In humans, coumarin was primarily metabolized to and excreted in urine as 7-hydroxycoumarin glucuronide and 7-hydroxycoumarin sulfate. Small amounts of unconjugated 7-hydroxycoumarin and o-hydroxyphenylacetic acid (o-HPAA) were also excreted. In rats, about twenty metabolites were present, but only o-HPAA was identified. These studies show the rat is a very poor model for humans and toxicity in the rat cannot be extrapolated to humans.

  8. Skin metabolism of aminophenols: Human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo

    SciTech Connect

    Goebel, C. Hewitt, N.J.; Kunze, G.; Wenker, M.; Hein, D.W.; Beck, H.; Skare, J.

    2009-02-15

    4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the major metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K{sub m} and V{sub max}. In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing.

  9. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium.

    PubMed

    Basilico, Nicoletta; Magnetto, Chiara; D'Alessandro, Sarah; Panariti, Alice; Rivolta, Ilaria; Genova, Tullio; Khadjavi, Amina; Gulino, Giulia Rossana; Argenziano, Monica; Soster, Marco; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-11-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. PMID:26276311

  10. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium.

    PubMed

    Basilico, Nicoletta; Magnetto, Chiara; D'Alessandro, Sarah; Panariti, Alice; Rivolta, Ilaria; Genova, Tullio; Khadjavi, Amina; Gulino, Giulia Rossana; Argenziano, Monica; Soster, Marco; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-11-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes.

  11. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway

    PubMed Central

    Patwardhan, Juilee; Bhatt, Purvi

    2016-01-01

    productionEA fraction could reduce oxidative stress through the Nrf2-ARE PathwayEA fraction was found to be nongenotoxic and prevented apoptotic changes. HIGHLIGHTS Flavonoids from Abelmoschus esculentus protected from ultraviolet-B-induced damageThey were capable of reducing oxidative stress through Nrf2-ARE PathwayThey are nongenotoxic and do not possess mutagenic potentialFlavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen. Abbreviations used: ABTS: 2,2’-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2’,7’-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, r

  12. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil. PMID:24307611

  13. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil.

  14. Mycophenolate antagonizes IFN-γ-induced catagen-like changes via β-catenin activation in human dermal papilla cells and hair follicles.

    PubMed

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A; Johnson, Andrew; Song, Peter I; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.

  15. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    PubMed

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-01

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  16. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    NASA Astrophysics Data System (ADS)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  17. Walleye dermal sarcoma virus: expression of a full-length clone or the rv-cyclin (orf a) gene is cytopathic to the host and human tumor cells.

    PubMed

    Xu, Kun; Zhang, Ting Ting; Wang, Ling; Zhang, Cun Fang; Zhang, Long; Ma, Li Xia; Xin, Ying; Ren, Chong Hua; Zhang, Zhi Qiang; Yan, Qiang; Martineau, Daniel; Zhang, Zhi Ying

    2013-02-01

    Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.

  18. Mycophenolate Antagonizes IFN-γ-Induced Catagen-Like Changes via β-Catenin Activation in Human Dermal Papilla Cells and Hair Follicles

    PubMed Central

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A.; Johnson, Andrew; Song, Peter I.; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs. PMID:25247578

  19. Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds.

    PubMed

    Stoff, Alexander; Rivera, Angel A; Mathis, J Michael; Moore, Steven T; Banerjee, N S; Everts, Maaike; Espinosa-de-los-Monteros, Antonio; Novak, Zdenek; Vasconez, Luis O; Broker, Thomas R; Richter, Dirk F; Feldman, Dale; Siegal, Gene P; Stoff-Khalili, Mariam A; Curiel, David T

    2007-05-01

    Fibromodulin, a member of the small leucine-rich proteoglycan family, has been recently suggested as a biologically significant mediator of fetal scarless repair. To assess the role of fibromodulin in the tissue remodeling, we constructed an adenoviral vector expressing human fibromodulin cDNA. We evaluated the effect of adenovirus-mediated overexpression of fibromodulin in vitro on transforming growth factors and metalloproteinases in fibroblasts and in vivo on full-thickness incisional wounds in a rabbit model. In vitro, we found that Ad-Fibromodulin induced a decrease of expression of TGF-beta(1) and TGF-beta(2) precursor proteins, but an increase in expression of TGF-beta(3) precursor protein and TGF-beta type II receptor. In addition, fibromodulin overexpression resulted in decreased MMP-1 and MMP-3 protein secretion but increased MMP-2, TIMP-1, and TIMP-2 secretion, whereas MMP-9 and MMP-13 were not influenced by fibromodulin overexpression. In vivo evaluation by histopathology and tensile strength demonstrated that Ad-Fibromodulin administration could ameliorate wound healing in incisional wounds. In conclusion, although the mechanism of scar formation in adult wounds remains incompletely understood, we found that fibromodulin overexpression improves wound healing in vivo, suggesting that fibromodulin may be a key mediator in reduced scarring.

  20. Effects of the Novel Compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on Migration and Proliferation of Human Keratinocytes and Primary Dermal Fibroblasts

    PubMed Central

    Ho, Manh Tin; Kang, Hyun Sik; Huh, Jung Sik; Kim, Young Mee; Lim, Yoongho; Cho, Moonjae

    2014-01-01

    Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction. PMID:25056546

  1. Effects of the novel compound DK223 ([1E,2E-1,2-Bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) on migration and proliferation of human keratinocytes and primary dermal fibroblasts.

    PubMed

    Ho, Manh Tin; Kang, Hyun Sik; Huh, Jung Sik; Kim, Young Mee; Lim, Yoongho; Cho, Moonjae

    2014-01-01

    Wound healing plays an important role in protecting the human body from external infection. Cell migration and proliferation of keratinocytes and dermal fibroblasts are essential for proper wound healing. Recently, several studies have demonstrated that secondary compounds produced in plants could affect skin cells migration and proliferation. In this study, we identified a novel compound DK223 ([1E,2E-1,2-bis(6-methoxy-2H-chromen-3-yl)methylene]hydrazine) that concomitantly induced human keratinocyte migration and dermal fibroblast proliferation. We evaluated the regulation of epithelial and mesenchymal protein markers, such as E-cadherin and Vimentin, in human keratinocytes, as well as extracellular matrix (ECM) secretion and metalloproteinase families in dermal fibroblasts. DK223 upregulated keratinocyte migration and significantly increased the epithelial marker E-cadherin in a time-dependent manner. We also found that reactive oxygen species (ROS) increased significantly in keratinocytes after 2 h of DK223 exposure, returning to normal levels after 24 h, which indicated that DK223 had an early shock effect on ROS production. DK223 also stimulated fibroblast proliferation, and induced significant secretion of ECM proteins, such as collagen I, III, and fibronectin. In dermal fibroblasts, DK223 treatment induced TGF-β1, which is involved in a signaling pathway that mediates proliferation. In conclusion, DK223 simultaneously induced both keratinocyte migration via ROS production and fibroblast proliferation via TGF-β1 induction. PMID:25056546

  2. Thiamin requirement of the adult human.

    PubMed

    Sauberlich, H E; Herman, Y F; Stevens, C O; Herman, R H

    1979-11-01

    Young adult male subjects maintained on a metabolic ward were fed diets providing controlled intakes of thiamin and either 2800 or 3600 kcal. The higher level of calories was attained by an increased intake of carbohydrates. Constant weights were maintained by the subjects by adjusting daily activity and exercise schedules. Thiamin requirements were evaluated in terms of erythrocyte transketolase activity and urinary excretion of the vitamin. The results of the study revealed that a relationship exists between thiamin requirement and caloric intake and expenditure. Thus, when the calories being utilized were derived primarily from carbohydrate sources, the minimum adult male requirement for thiamin appeared to be 0.30 mg of thiamin per 1000 kcal. Urinary excretion of thiamin and erythrocyte transketolase activity appear to be reasonably reliable reflections of thiamin intakes and thiamin nutritional status. The use of these measurements in nutrition surveys appears justified. The microbiological assay (Lactobacillus viridescens) for measuring thiamin levels in urine samples appears to be a somewhat more sensitive but valid procedure as an alternate for the thiochrome method. Judged from the results of this study, the recommended intake for the adult human of 0.40 mg of thiamin per 1000 kcal by FAO/WHO and the recommended allowance of 0.5 mg per 1000 kcal by the Food and Nutrition Board of the NAS-NRC appear reasonable and amply allow for biological variations and other factors that may influence the requirement for this vitamin.

  3. In vitro and in vivo comparison of dermal irritancy of jet fuel exposure using EpiDerm (EPI-200) cultured human skin and hairless rats.

    PubMed

    Chatterjee, Abhijit; Babu, R Jayachandra; Klausner, M; Singh, Mandip

    2006-12-01

    The purpose of this study was to evaluate an in vitro EpiDerm human skin model (EPI-200) to study the irritation potential of jet fuels (JP-8 and JP-8+100). Parallel in vivo studies on hairless rats on the dermal irritancy of jet fuels were also conducted. Cytokines are an important part of an irritation and inflammatory cascade, which are expressed in upon dermal exposures of irritant chemicals even when there are no obvious visible marks of irritation on the skin. We have chosen two primary cytokines (IL-1alpha and TNF-1alpha) as markers of irritation response of jet fuels. Initially, the EPI-200 was treated with different quantities of JP-8 and JP-8+100 to determine quantities which did not cause significant cytotoxicity, as monitored using the MTT assay and paraffin embedded histological cross-sections. Volumes of 2.5-50 microl/tissue (approximately 4.0-78 microl/cm2) of JP-8 and JP-8+100 showed a dose dependent loss of tissue viability and morphological alterations of the tissue. At a quantity of 1.25 microl/tissue (approximately 2.0 microl/cm2), no significant change in tissue viability or morphology was observed for exposure time extending to 48 h. Nonetheless, this dose induced significant increase in IL-1alpha and TNF-alpha release versus non-treated controls after 24 and 48 h. In addition, IL-1alpha release for JP-8+100 was significantly higher than that observed for JP-8, but TNF-alpha release after 48 h exposure to these two jet fuels was the same. These findings parallel in vivo studies on hairless rats, which indicated higher irritation levels due to JP-8+100 versus JP-8. In vivo, transepidermal water loss (TEWL) and IL-1alpha expression levels followed the order JP-8+100 > JP-8 > control. Further, in vivo TNF-alpha levels for JP-8 and JP-8+100 were also elevated but not significantly different from one another. In aggregate, these findings indicate that EPI-200 tissue model can be utilized as an alternative to the use of animals in evaluating dermal

  4. Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: application of the EpiDerm human reconstructed epidermis model.

    PubMed

    Hu, Ting; Bailey, Ruth E; Morrall, Stephen W; Aardema, Marilyn J; Stanley, Lesley A; Skare, Julie A

    2009-07-24

    To address the provision of the 7th Amendment to the EU Cosmetics Directive banning the use of in vivo genotoxicity assays for testing cosmetic ingredients in 2009, the 3D EpiDerm reconstructed human skin micronucleus assay has been developed. To further characterise the EpiDerm tissue for potential use in genotoxicity testing, we have evaluated the dermal penetration and metabolism of two hair dye ingredients, p-aminophenol (PAP) and p-phenylenediamine (PPD) in this reconstructed epidermis model. When EpiDerm tissue was topically exposed to PAP or PPD for 30 min (typical for a hair dye exposure), the majority (80->90%) of PAP or PPD was excluded from skin tissue and removed by rinsing. After a 23.5h recovery period, the PAP fraction that did penetrate was completely N-acetylated to acetaminophen (APAP). Similarly, 30 min topical application of PPD resulted in the formation of the N-mono- and N,N'-diacetylated metabolites of PPD. These results are consistent with published data on the dermal metabolism of these compounds from other in vitro systems as well as from in vivo studies. When tissue was exposed topically (PAP) or via the culture media (PPD) for 24h, there was good batch-to-batch and donor-to-donor reproducibility in the penetration and metabolism of PAP and PPD. Overall, the results demonstrate that these two aromatic amines are biotransformed in 3D EpiDerm tissue via N-acetylation. Characterising the metabolic capability of EpiDerm tissue is important for the evaluation of this model for use in genotoxicity testing. PMID:19446244

  5. Implication of microRNA regulation in para-phenylenediamine-induced cell death and senescence in normal human hair dermal papilla cells.

    PubMed

    Lee, Ok-Kyu; Cha, Hwa Jun; Lee, Myung Joo; Lim, Kyung Mi; Jung, Jae Wook; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2015-07-01

    Para-phenylenediamine (PPD) is a major component of hair coloring and black henna products. Although it has been largely demonstrated that PPD induces allergic reactions and increases the risk of tumors in the kidney, liver, thyroid gland and urinary bladder, the effect on dermal papilla cells remains to be elucidated. Therefore, the current study evaluated the effects of PPD on growth, cell death and senescence using cell-based assays and microRNA (miRNA) microarray in normal human hair dermal papilla cells (nHHDPCs). Cell viability and cell cycle analyses demonstrated that PPD exhibited a significant cytotoxic effect on nHHDPCs through inducing cell death and G2 phase cell cycle arrest in a dose-dependent manner. It was additionally observed that treatment of nHHDPCs with PPD induced cellular senescence by promoting cellular oxidative stress. In addition, the results of the current study indicated that these PPD-mediated effects were involved in the alteration of miRNA expression profiles. Treatment of nHHDPCs with PPD altered the expression levels of 74 miRNAs by ≥ 2-fold (16 upregulated and 58 downregulated miRNAs). Further bioinformatics analysis determined that these identified miRNA target genes were likely to be involved in cell growth, cell cycle arrest, cell death, senescence and the induction of oxidative stress. In conclusion, the observations of the current study suggested that PPD was able to induce several cytotoxic effects through alteration of miRNA expression levels in nHHDPCs.

  6. Implication of microRNA regulation in para-phenylenediamine-induced cell death and senescence in normal human hair dermal papilla cells.

    PubMed

    Lee, Ok-Kyu; Cha, Hwa Jun; Lee, Myung Joo; Lim, Kyung Mi; Jung, Jae Wook; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2015-07-01

    Para-phenylenediamine (PPD) is a major component of hair coloring and black henna products. Although it has been largely demonstrated that PPD induces allergic reactions and increases the risk of tumors in the kidney, liver, thyroid gland and urinary bladder, the effect on dermal papilla cells remains to be elucidated. Therefore, the current study evaluated the effects of PPD on growth, cell death and senescence using cell-based assays and microRNA (miRNA) microarray in normal human hair dermal papilla cells (nHHDPCs). Cell viability and cell cycle analyses demonstrated that PPD exhibited a significant cytotoxic effect on nHHDPCs through inducing cell death and G2 phase cell cycle arrest in a dose-dependent manner. It was additionally observed that treatment of nHHDPCs with PPD induced cellular senescence by promoting cellular oxidative stress. In addition, the results of the current study indicated that these PPD-mediated effects were involved in the alteration of miRNA expression profiles. Treatment of nHHDPCs with PPD altered the expression levels of 74 miRNAs by ≥ 2-fold (16 upregulated and 58 downregulated miRNAs). Further bioinformatics analysis determined that these identified miRNA target genes were likely to be involved in cell growth, cell cycle arrest, cell death, senescence and the induction of oxidative stress. In conclusion, the observations of the current study suggested that PPD was able to induce several cytotoxic effects through alteration of miRNA expression levels in nHHDPCs. PMID:25776079

  7. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure of normal human dermal fibroblasts results in AhR-dependent and -independent changes in gene expression

    SciTech Connect

    Akintobi, A.M.; Villano, C.M.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2007-04-01

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in a variety of lesions in mammals including severe skin lesions. The majority of TCDD's biological effects are mediated through activation of the aryl hydrocarbon receptor (AhR). We have chosen to examine the effect of TCDD and the AhR pathway on dermal fibroblasts because this cell type plays an integral role in skin homeostasis through the production of cytokines and other factors that regulate epidermal proliferation and differentiation. Our data show that normal human dermal fibroblasts (NHDFs) are responsive to TCDD, as demonstrated by induction of cytochrome p450 1B1 (CYP1B1) expression. Further, our data demonstrate that TCDD treatment of NHDFs results in significant (75-90%) decrease in expression of Id-1 and Id-3, proteins that are involved in regulation of cell proliferation and differentiation. The Id (Inhibitor of DNA binding) proteins are transcriptional inhibitors that function by forming inactive heterodimers with other HLH proteins. TCDD-repression of Id-1 and -3 is independent of de novo protein synthesis; co-treatment with cycloheximide has no effect on TCDD inhibition of Id-1 and Id-3. Co-treatment with the AhR antagonist {alpha}-naphthoflavone also does not block inhibition of Id-1 and Id-3 by TCDD, suggesting that TCDD inhibition of Id-1 and Id-3 is, at least in part, mediated independently of the AhR pathway. Our data also show that TCDD inhibits expression of the cell cycle regulatory gene p16{sup ink4a}, which is often linked to Id expression. TCDD-induced reduction of p16{sup ink4a} expression is also independent of protein synthesis and the AhR pathway.

  8. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  9. Natural flexible dermal armor.

    PubMed

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-01

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. PMID:23161399

  10. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation.

    PubMed

    Yuan, Bo; Webster, Thomas J; Roy, Amit K

    2016-01-01

    It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells) are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs) are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated) of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium) on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL) possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock. PMID:27103800

  11. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells.

    PubMed

    Barta, Tomas; Peskova, Lucie; Collin, Joseph; Montaner, David; Neganova, Irina; Armstrong, Lyle; Lako, Majlinda

    2016-01-01

    MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs.

  12. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

    PubMed Central

    Yuan, Bo; Webster, Thomas J; Roy, Amit K

    2016-01-01

    It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells) are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs) are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated) of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium) on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL) possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock. PMID:27103800

  13. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

    PubMed Central

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2016-01-01

    Background Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. Objective We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. Methods We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. Results EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Conclusion Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs. PMID:27274631

  14. Human Dermis Harbors Distinct Mesenchymal Stromal Cell Subsets

    PubMed Central

    Vaculik, Christine; Schuster, Christopher; Bauer, Wolfgang; Iram, Nousheen; Pfisterer, Karin; Kramer, Gero; Reinisch, Andreas; Strunk, Dirk; Elbe-Bürger, Adelheid

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) are found in a variety of adult tissues including human dermis. These MSCs are morphologically similar to bone marrow–derived MSCs, but are of unclear phenotype. To shed light on the characteristics of human dermal MSCs, this study was designed to identify and isolate dermal MSCs by a specific marker expression profile, and subsequently rate their mesenchymal differentiation potential. Immunohistochemical staining showed that MSC markers CD73/CD90/CD105, as well as CD271 and SSEA-4, are expressed on dermal cells in situ. Flow cytometric analysis revealed a phenotype similar to bone marrow–derived MSCs. Human dermal cells isolated by plastic adherence had a lower differentiation capacity as compared with bone marrow–derived MSCs. To distinguish dermal MSCs from differentiated fibroblasts, we immunoselected CD271+ and SSEA-4+ cells from adherent dermal cells and investigated their mesenchymal differentiation capacity. This revealed that cells with increased adipogenic, osteogenic, and chondrogenic potential were enriched in the dermal CD271+ population. The differentiation potential of dermal SSEA-4+ cells, in contrast, appeared to be limited to adipogenesis. These results indicate that specific cell populations with variable mesenchymal differentiation potential can be isolated from human dermis. Moreover, we identified three different subsets of dermal mesenchymal progenitor cells. PMID:22048731

  15. Human dermis harbors distinct mesenchymal stromal cell subsets.

    PubMed

    Vaculik, Christine; Schuster, Christopher; Bauer, Wolfgang; Iram, Nousheen; Pfisterer, Karin; Kramer, Gero; Reinisch, Andreas; Strunk, Dirk; Elbe-Bürger, Adelheid

    2012-03-01

    Multipotent mesenchymal stromal cells (MSCs) are found in a variety of adult tissues including human dermis. These MSCs are morphologically similar to bone marrow-derived MSCs, but are of unclear phenotype. To shed light on the characteristics of human dermal MSCs, this study was designed to identify and isolate dermal MSCs by a specific marker expression profile, and subsequently rate their mesenchymal differentiation potential. Immunohistochemical staining showed that MSC markers CD73/CD90/CD105, as well as CD271 and SSEA-4, are expressed on dermal cells in situ. Flow cytometric analysis revealed a phenotype similar to bone marrow-derived MSCs. Human dermal cells isolated by plastic adherence had a lower differentiation capacity as compared with bone marrow-derived MSCs. To distinguish dermal MSCs from differentiated fibroblasts, we immunoselected CD271(+) and SSEA-4(+) cells from adherent dermal cells and investigated their mesenchymal differentiation capacity. This revealed that cells with increased adipogenic, osteogenic, and chondrogenic potential were enriched in the dermal CD271(+) population. The differentiation potential of dermal SSEA-4(+) cells, in contrast, appeared to be limited to adipogenesis. These results indicate that specific cell populations with variable mesenchymal differentiation potential can be isolated from human dermis. Moreover, we identified three different subsets of dermal mesenchymal progenitor cells.

  16. Rethinking Adult Literacy Programs: A Humanities-Based Curriculum.

    ERIC Educational Resources Information Center

    Anania, Joanne

    The Roosevelt University Humanities Enrichment Program tries to acknowledge the adult part of adult literacy. Its instructional materials are of interest and value to the adult student and, therefore, provide incentives for reading and discussion instead of serving merely as skill-building exercises. The materials are drawn from literature,…

  17. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    PubMed

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser. PMID:27318602

  18. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products.

  19. Adenovirus-mediated expression of myogenic differentiation factor 1 (MyoD) in equine and human dermal fibroblasts enables their conversion to caffeine-sensitive myotubes.

    PubMed

    Fernandez-Fuente, Marta; Martin-Duque, Pilar; Vassaux, Georges; Brown, Susan C; Muntoni, Francesco; Terracciano, Cesare M; Piercy, Richard J

    2014-03-01

    Several human and animal myopathies, such as malignant hyperthermia (MH), central core disease and equine recurrent exertional rhabdomyolysis (RER) are confirmed or thought to be associated with dysfunction of skeletal muscle calcium regulation. For some patients in whom the genetic cause is unknown, or when mutational analysis reveals genetic variants with unclear pathogenicity, defects are further studied through use of muscle histopathology and in vitro contraction tests, the latter in particular, when assessing responses to ryanodine receptor agonists, such as caffeine. However, since muscle biopsy is not always suitable, researchers have used cultured cells to model these diseases, by examining calcium regulation in myotubes derived from skin, following forced expression of muscle-specific transcription factors. Here we describe a novel adenoviral vector that we used to express equine MyoD in dermal fibroblasts. In permissive conditions, transduced equine and human fibroblasts differentiated into multinucleated myotubes. We demonstrate that these cells have a functional excitation-calcium release mechanism and, similarly to primary muscle-derived myotubes, respond in a dose-dependent manner to increasing concentrations of caffeine. MyoD-induced conversion of equine skin-derived fibroblasts offers an attractive method for evaluating calcium homeostasis defects in vitro without the need for invasive muscle biopsy.

  20. Human dermal matrix scaffold augmentation for large and massive rotator cuff repairs: preliminary clinical and MRI results at 1-year follow-up.

    PubMed

    Rotini, Roberto; Marinelli, Alessandro; Guerra, Enrico; Bettelli, Graziano; Castagna, Alessandro; Fini, Milena; Bondioli, Elena; Busacca, Maurizio

    2011-07-01

    The high incidence of recurrent tendon tears after repair of massive cuff lesions is prompting the research of materials aimed at mechanically or biologically reinforcing the tendon. Among the materials studied upto now, the extracellular matrix (ECM) scaffolds of human origin have proved to be the safest and most efficient, but the current laws about grafts and transplants preclude their use in Europe. In order to overcome this condition in 2006, we started a project regarding the production of an ECM scaffold of human origin which could be implanted in Europe too. In 2009, the clinical study began with the implantation of dermal matrix scaffolds in 7 middle-aged patients affected with large/massive cuff lesions and tendon degeneration. Out of 5 cases, followed for at least 1 year in which the scaffold was employed as an augmentation device, there were 3 patients with complete healing, 1 partial re-tear, and 1 total recurrence. The absence of adverse inflammatory or septic complications allows to continue this line of research with a prospective controlled study in order to define the real advantages and correct indications offered by scaffold application. PMID:21691735

  1. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study.

    PubMed

    Navaeipour, Farzaneh; Afsharan, Hadi; Tajalli, Habib; Mollabashi, Mahmood; Ranjbari, Farideh; Montaseri, Azadeh; Rashidi, Mohammad-Reza

    2016-08-01

    In this experimental study, cancer and normal cells behavior during an in vitro photodynamic therapy (PDT) under exposure of continuous wave (CW) and fractionated mode of laser with different irradiation power and time intervals was compared and investigated. At the first, human fibroblast cancer cell line (SW 872) and human dermal normal (HFFF2) cell line were incubated with different concentrations of zinc phthalocyanine (ZnPc), as a PDT drug. The cells, then, were irradiated with a 675nm diode laser and the cell viability was evaluated using MTT assay. Under optimized conditions, the viability of the cancer cells was eventually reduced to 3.23% and 13.17%, and that of normal cells was decreased to 20.83% and 36.23% using CW and fractionated diode lasers, respectively. In general, the ratio of ZnPc LD50 values for the normal cells to the cancer cells with CW laser was much higher than that of the fractionated laser. Subsequently, cancer cells in comparison with normal ones were found to be more sensitive toward the photodynamic damage induced by ZnPc. In addition, treatment with CW laser was found to be more effective against the cancer cells with a lower toxicity to the normal cells compared with the fractionated diode laser.

  2. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  3. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  4. Characterization of a non-fibrillar-related collagen in the mollusc Haliotis tuberculata and its biological activity on human dermal fibroblasts.

    PubMed

    Fleury, Christophe; Serpentini, Antoine; Kypriotou, Magdalini; Renard, Emmanuelle; Galéra, Philippe; Lebel, Jean-Marc

    2011-10-01

    In invertebrates, members of the collagen family have been found in various phyla. Surprisingly, in mollusc, little is known about such molecules. In this study, we characterize the full-length abalone type IV collagen and we analysed its biological effects on human fibroblast in order to gain insights about this molecule in molluscs and particularly clues about its roles. We screened a cDNA library of Haliotis tuberculata hemocytes. The expression pattern of the transcript is determined using real-time polymerase chain reaction and in situ hybridization. The close identity between α1(IV) C-terminal domain and the vertebrate homologue led us to produce, purify and test in vitro a recombinant protein corresponding to this region using human dermal fibroblasts cell culture. The biological effects were evaluated on proliferation and on differentiation. We found that the 5,334-bp open reading frame transcript encodes a protein of 1,777 amino acids, including an interrupted 1,502-residue collagenous domain and a 232-residue C-terminal non-collagenous domain. The expression pattern of this transcript is mainly found in the mantle and hemocytes. The recombinant protein corresponding α1(IV) C-terminal domain increased fibroblast proliferation by 69% and doubled collagen synthesis produced in primary cultures. This work provides the first complete primary structure of a mollusc non-fibrillar collagen chain and the biological effects of its C-terminal domain on human cells. In this study, we prove that the NC1 domain from a molluscan collagen can improve human fibroblast proliferation as well as differentiation.

  5. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell.

    PubMed

    Xiong, Ya; Liu, Yi; Song, Zhiqiang; Hao, Fei; Yang, Xichuan

    2014-01-01

    It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.

  6. Could adult hippocampal neurogenesis be relevant for human behavior?

    PubMed Central

    Snyder, Jason S.; Cameron, Heather A.

    2011-01-01

    Although the function of adult neurogenesis is still unclear, tools for directly studying the behavioral role of new hippocampal neurons now exist in rodents. Since similar studies are impossible to do in humans, it is important to assess whether the role of new neurons in rodents is likely to be similar to that in humans. One feature of adult neurogenesis that varies tremendously across species is the number of neurons that are generated, so a key question is whether there are enough neurons generated in humans to impact function. In this review we examine neuroanatomy and circuit function in the hippocampus to ask how many granule neurons are needed to impact hippocampal function and then discuss what is known about numbers of new neurons produced in adult rats and humans. We conclude that relatively small numbers of neurons could affect hippocampal circuits and that the magnitude of adult neurogenesis in adult rats and humans is probably larger than generally believed. PMID:21736900

  7. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure. PMID:25707437

  8. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    PubMed

    Lu, Jing; Guo, Jia-Hui; Tu, Xue-Liang; Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  9. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    PubMed Central

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-01-01

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248

  10. Chronic exposure to Rhodobacter sphaeroides extract Lycogen™ prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts.

    PubMed

    Yang, Tsai-Hsiu; Lai, Ying-Hsiu; Lin, Tsuey-Pin; Liu, Wen-Sheng; Kuan, Li-Chun; Liu, Chia-Chyuan

    2014-01-01

    UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 µM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications. PMID:24463291

  11. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts.

    PubMed

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-01-01

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248

  12. Studies on wound healing: effects of calcium D-pantothenate on the migration, proliferation and protein synthesis of human dermal fibroblasts in culture.

    PubMed

    Weimann, B I; Hermann, D

    1999-03-01

    The effect of calcium D-pantothenate on the migration, proliferation and protein synthesis of human dermal fibroblasts from three different donors was investigated. The migration of cells into a wounded area was dose-dependently stimulated by Ca D-pantothenate. The number of cells that migrated across the edge of the wound increased from 32 +/- 7 cells/mm without Ca D-pantothenate to 76 +/- 2 cells/mm with 100 mg/ml Ca D-pantothenate. Moreover, the mean migration distance per cell increased from 0.23 +/- 0.05 mm to 0.33 +/- 0.02 mm. The mean migration speed was calculated to be 10.5 mm/hour without and 15 mm/hour with Ca D-pantothenate. Cell proliferation was also dose-dependently stimulated. The final cell densities were 1.2 to 1.6-fold higher in cultures containing 100 mg/ml Ca D-pantothenate. The protein synthesis was modulated, since two unidentified proteins were more strongly expressed in pantothenate supplemented cultures. In conclusion, Ca D-pantothenate accelerates the wound healing process by increasing the number of migrating cells, their distance and hence their speed. In addition, cell division is increased and the protein synthesis changed. These results suggest that higher quantities of pantothenate are locally required to enhance wound healing. PMID:10218148

  13. Gardenia jasminoides Extract Attenuates the UVB-Induced Expressions of Cytokines in Keratinocytes and Indirectly Inhibits Matrix Metalloproteinase-1 Expression in Human Dermal Fibroblasts

    PubMed Central

    Seok, Jin Kyung; Suh, Hwa-Jin

    2014-01-01

    Ultraviolet radiation (UV) is a major cause of photoaging, which also involves inflammatory cytokines and matrix metalloproteinases (MMP). The present study was undertaken to examine the UVB-protecting effects of yellow-colored plant extracts in cell-based assays. HaCaT keratinocytes were exposed to UVB in the absence or presence of plant extracts, and resulting changes in cell viability and inflammatory cytokine expression were measured. Of the plant extracts tested, Gardenia jasminoides extract showed the lowest cytotoxicity and dose-dependently enhanced the viabilities of UVB-exposed cells. Gardenia jasminoides extract also attenuated the mRNA expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in HaCaT cells stimulated by UVB. Conditioned medium from UVB-exposed HaCaT cells was observed to stimulate MMP-1 protein expression in human dermal fibroblasts, and this effect was much smaller for the conditioned medium of HaCaT cells exposed to UVB in the presence of Gardenia jasminoides extract. Gardenia jasminoides extract also exhibited antioxidative and antiapoptotic effects in HaCaT cells exposed to UVB. These results indicated that UVB-induced injury and inflammatory responses of skin cells can be attenuated by yellow-colored plant extracts, such as Gardenia jasminoides extract. PMID:24711853

  14. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.

    PubMed

    Santhanam, Ramesh Kumar; Ahmad, Syahida; Abas, Faridah; Safinar Ismail, Intan; Rukayadi, Yaya; Tayyab Akhtar, Muhammad; Shaari, Khozirah

    2016-01-01

    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells. PMID:27231889

  15. Complication prevalence following use of tutoplast-derived human acellular dermal matrix in prosthetic breast reconstruction: a retrospective review of 203 patients.

    PubMed

    Rundell, V L M; Beck, R T; Wang, C E; Gutowski, K A; Sisco, M; Fenner, G; Howard, M A

    2014-10-01

    Use of human acellular dermal matrix (ADM) during prosthetic breast reconstruction has increased. Several ADM products are available produced by differing manufacturing techniques. It is not known if outcomes vary with different products. This study reports the complication prevalence following use of a tutoplast-derived ADM (T-ADM) in prosthetic breast reconstruction. We performed a retrospective chart review of 203 patients (mean follow-up times 12.2 months) who underwent mastectomy and immediate prosthetic breast reconstruction utilizing T-ADM, recording demographic data, surgical indications and complication (infection, seroma, hematoma, wound healing exceeding three weeks and reconstruction failure). During a four-year period, 348 breast reconstructions were performed Complications occurred in 16.4% of reconstructed breasts. Infection occurred in 6.6% of breast reconstructions (3.7% - major infection, requiring intravenous antibiotics and 2.9% minor infection, requiring oral antibiotics only). Seromas occurred in 3.4% and reconstruction failure occurred in 0.6% of breast reconstructions. Analysis suggested that complication prevalence was significantly higher in patients with a BMI >30 (p = 0.03). The complication profile following T-ADM use is this series is comparable to that reported for with other ADM products. T-ADM appears to be a safe and acceptable option for use in ADM-assisted breast reconstruction. PMID:24917371

  16. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  17. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.

  18. Expression of pro-inflammatory markers by human dermal fibroblasts in a three-dimensional culture model is mediated by an autocrine interleukin-1 loop.

    PubMed Central

    Kessler-Becker, Daniela; Krieg, Thomas; Eckes, Beate

    2004-01-01

    In vivo, fibroblasts reside in connective tissues, with which they communicate in a reciprocal way. Such cell--extracellular matrix interactions can be studied in vitro by seeding fibroblasts in collagen lattices. Depending upon the mechanical properties of the system, fibroblasts are activated to assume defined phenotypes. In the present study, we examined a transcriptional profile of primary human dermal fibroblasts cultured in a relaxed collagen environment and found relative induction (>2-fold) of 393 out of approx. 7100 transcripts when compared with the same system under mechanical tension. Despite down-regulated proliferation and matrix synthesis, cells did not become generally quiescent, since they induced transcription of numerous other genes including matrix metalloproteinases (MMPs) and growth factors/cytokines. Of particular interest was the induction of gene transcripts encoding pro-inflammatory mediators, e.g. cyclo-oxygenase-2 (COX-2), and interleukins (ILs)-1 and -6. These are apparently regulated in a hierarchical fashion, since the addition of IL-1 receptor antagonist prevented induction of COX-2, IL-1 and IL-6, but not that of MMP-1 or keratinocyte growth factor (KGF). Our results suggest strongly that skin fibroblasts are versatile cells, which adapt to their extracellular environment by displaying specific phenotypes. One such phenotype, induced by a mechanically relaxed collagen environment, is the 'pro-inflammatory' fibroblast. We propose that fibroblasts that are embedded in a matrix environment can actively participate in the regulation of inflammatory processes. PMID:14686880

  19. Protection of free radical-induced cytotoxicity by 2-O-α-D-glucopyranosyl-L-ascorbic acid in human dermal fibroblasts.

    PubMed

    Hanada, Yukako; Iomori, Atsuko; Ishii, Rie; Gohda, Eiichi; Tai, Akihiro

    2014-01-01

    The stable ascorbic acid (AA) derivative, 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), exhibits vitamin C activity after enzymatic hydrolysis to AA. The biological activity of AA-2G per se has not been studied in detail, although AA-2G has been noted as a stable source for AA supply. The protective effect of AA-2G against the oxidative cell death of human dermal fibroblasts induced by incubating with 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) for 24 h was investigated in this study. AA-2G showed a significant protective effect against the oxidative stress in a concentration-dependent manner. AA-2G did not exert a protective effect during the initial 12 h of incubation, but had a significant protective effect in the later part of the incubation period. Experiments using a α-glucosidase inhibitor and comparative experiments using a stereoisomer of AA-2G confirmed that AA-2G had a protective effect against AAPH-induced cytotoxicity without being converted to AA. Our results provide an insight into the efficacy of AA-2G as a biologically interesting antioxidant and suggest the practical use of AA-2G even before being converted into AA as a beneficial antioxidant.

  20. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells.

    PubMed

    Ge, Shaohua; Zhao, Ning; Wang, Lu; Liu, Hong; Yang, Pishan

    2013-01-01

    A new nanostructured hydroxyapatite-coated porcine acellular dermal matrix (HAp-PADM) was fabricated by a biomimetic mineralization method. Human periodontal ligament stem cells were seeded on HAp-PADM and the effects of this scaffold on cell shape, cytoskeleton organization, cell viability, and osteogenic differentiation were examined. Periodontal ligament stem cells cultured on HAp-PADM exhibited different cell shape when compared with those on pure PADM. Moreover, HAp-PADM promoted cell viability and alkaline phosphatase activity significantly. Based on quantitative real-time polymerase chain reaction, the expression of bone-related markers runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) upregulated in the HAp-PADM scaffold. The enhancement of osteogenic differentiation of periodontal ligament stem cells on the HAp-PADM scaffold was proposed based on the research results. The results of this study highlight the micro-nano, two-level, three-dimensional HAp-PADM composite as a promising scaffold for periodontal tissue engineering.

  1. Isomenthone protects human dermal fibroblasts from TNF-α-induced death possibly by preventing activation of JNK and p38 MAPK.

    PubMed

    Jung, Eunsun; Byun, Sangyo; Kim, Seungbeom; Kim, Moohan; Park, Deokhoon; Lee, Jongsung

    2012-10-01

    Cell death evoked by tumor necrosis factor-α (TNF-α) is regulated by the TNF-α receptor-associated death domain containing protein, which interacts with and activates apoptotic proteases triggering cell death. c-Jun N-terminal kinase (JNK) and p38 MAPK, induce the apoptotic program and are indispensible early elements in stress-induced apoptosis that control the release of cytochrome c. Isomenthone is a constituent of the essential oil of Mentha arvensis L. and is used as a fragrance and flavor in the cosmetic, drug, and food industries. In this study, we investigated the protective effects of isomenthone against TNF-α-induced cell death and its mechanism in human dermal fibroblasts. To understand the cytoprotective role of isomenthone, MTT and terminal deoxynucleotidyl transferase dUTP nick end labeling assays for cell viability and enzyme-linked immunosorbent assay analysis for the mechanistic study were performed. We found that isomenthone inhibited the TNF-α-mediated reduction in cell viability and inhibited the increase in apoptosis under a serum-free condition. Isomenthone also blocked the JNK and p38 MAPK pathways and downstream apoptotic events. These results indicate that isomenthone has the potential to protect fibroblasts against TNF-α-induced cell death under a serum-deprived condition by blocking activation of the JNK and p38 MAPK pathways and downstream apoptotic events.

  2. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts.

    PubMed

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-06-16

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  3. Altered miRNA expression profiles are involved in the protective effects of troxerutin against ultraviolet B radiation in normal human dermal fibroblasts.

    PubMed

    Cha, Hwa Jun; Lee, Kwang Sik; Lee, Ghang Tai; Lee, Kun Kook; Hong, Jin Tae; Lee, Sung Nae; Jang, Hyun Hee; Lee, Jae Ho; Park, In-Chul; Kim, Yu Ri; Ahn, Kyu Joong; Kwon, Seung Bin; An, In-Sook; An, Sungkwan; Bae, Seunghee

    2014-04-01

    The aim of this study was to investigate the mechanisms by which troxerutin protects cells against ultraviolet B (UVB) radiation. First, we demonstrate that pre-treatment with troxerutin protects normal human dermal fibroblasts (nHDFs) against UVB-induced cytotoxicity. As shown by migration assay and DNA repair analysis, troxerutin increased cell migration and DNA repair activity in the nHDFs. Subsequently, we analyzed microRNA (miRNA) expression profiles in the nHDFs. miRNAs are 19- to 24-nucleotide (nt) non-coding RNA molecules that regulate the translation of target genes through RNA interference. In UVB-exposed cells, miRNAs act on crucial functions, such as apoptosis and cellular senescence. miRNA expression is significantly altered during the protective process induced by phytochemicals. Therefore, understanding changes that occur in miRNA expression profiles may help to elucidate the protective mechanisms of troxerutin. We identified 11 miRNAs that were significantly (>2-fold) upregulated and 12 that were significantly downregulated (>2-fold) following treatment of the nHDFs with troxerutin. In addition, we investigated the biological functions of these miRNAs through the prediction of miRNA targets and Gene Ontology analysis of the putative targets. Overall, our findings indicate that pre-treatment with troxerutin increases the viability of UVB-exposed nHDFs through the alteration of the miRNA expression profiles.

  4. Analysis of changes in microRNA expression profiles in response to the troxerutin-mediated antioxidant effect in human dermal papilla cells.

    PubMed

    Lim, Kyung Mi; An, Sungkwan; Lee, Ok-Kyu; Lee, Myung Joo; Lee, Jeong Pyo; Lee, Kwang Sik; Lee, Ghang Tai; Lee, Kun Kook; Bae, Seunghee

    2015-08-01

    Dermal papilla (DP) cells function as important regulators of the hair growth cycle. The loss of these cells is a primary cause of diseases characterized by hair loss, including alopecia, and evidence has revealed significantly increased levels of reactive oxygen species (ROS) in hair tissue and DP cells in the balding population. In the present study, troxerutin, a flavonoid derivative of rutin, was demonstrated to have a protective effect against H2O2-mediated cellular damage in human DP (HDP) cells. Biochemical assays revealed that pretreatment with troxerutin exerted a protective effect against H2O2-induced loss of cell viability and H2O2-induced cell death. Further experiments confirmed that troxerutin inhibited the H2O2-induced production of ROS and upregulation of senescence-associated β-galactosidase activity. Using microRNA (miRNA) microarrays, the present study identified 24 miRNAs, which were differentially expressed in the troxerutin-pretreated, H2O2-treated HDP cells. Subsequent prediction using bioinformatics analysis revealed that the altered miRNAs were functionally involved in several cell signaling pathways, including the mitogen-activated protein kinase and WNT pathways. Overall, these results indicated that ROS-mediated cellular damage was inhibited by troxerutin and suggested that the use of troxerutin may be an effective approach in the treatment of alopecia.

  5. Analysis of changes in microRNA expression profiles in response to the troxerutin-mediated antioxidant effect in human dermal papilla cells

    PubMed Central

    LIM, KYUNG MI; AN, SUNGKWAN; LEE, OK-KYU; LEE, MYUNG JOO; LEE, JEONG PYO; LEE, KWANG SIK; LEE, GHANG TAI; LEE, KUN KOOK; BAE, SEUNGHEE

    2015-01-01

    Dermal papilla (DP) cells function as important regulators of the hair growth cycle. The loss of these cells is a primary cause of diseases characterized by hair loss, including alopecia, and evidence has revealed significantly increased levels of reactive oxygen species (ROS) in hair tissue and DP cells in the balding population. In the present study, troxerutin, a flavonoid derivative of rutin, was demonstrated to have a protective effect against H2O2-mediated cellular damage in human DP (HDP) cells. Biochemical assays revealed that pretreatment with troxerutin exerted a protective effect against H2O2-induced loss of cell viability and H2O2 induced cell death. Further experiments confirmed that troxerutin inhibited the H2O2-induced production of ROS and upregulation of senescence-associated β-galactosidase activity. Using microRNA (miRNA) microarrays, the present study identified 24 miRNAs, which were differentially expressed in the troxerutin pretreated, H2O2-treated HDP cells. Subsequent prediction using bioinformatics analysis revealed that the altered miRNAs were functionally involved in several cell signaling pathways, including the mitogen-activated protein kinase and WNT pathways. Overall, these results indicated that ROS-mediated cellular damage was inhibited by troxerutin and suggested that the use of troxerutin may be an effective approach in the treatment of alopecia. PMID:25955790

  6. Effect of Gly-Gly-His, Gly-His-Lys and their copper complexes on TNF-alpha-dependent IL-6 secretion in normal human dermal fibroblasts.

    PubMed

    Gruchlik, Arkadiusz; Jurzak, Magdalena; Chodurek, Ewa; Dzierzewicz, Zofia

    2012-01-01

    Cosmeceuticals represent a marriage between cosmetics and pharmaceuticals. There are numerous cosmeceutically active products which can be broadly classified into the following categories: antioxidants, oligopeptides, growth factors and pigment lightning agents. Much attention has been focused on the tripeptides such as Gly-His-Lys (GHK) and Gly-Gly-His (GGH) and their copper complexes, which have a high activity and good skin tolerance. Recent data suggested their physiological role in process of wound healing, tissue repair and skin inflammation. The mechanism of anti-inflammatory properties of these peptides is not clear. The aim of the study was evaluation of influence of two peptides GGH. GHK and their copper complexes and saccharomyces/copper ferment (Oligolides Copper) on secretion of pro-inflammatory IL-6 in normal human dermal fibroblasts NHDF cell line. IL-6 was evaluated using the ELISA kit. GGH, GHK, CuCl2 and their copper complexes decreased TNF-alpha-dependent IL-6 secretion in fibroblasts. IL-6 is crucial for normal wound healing, skin inflammation and UVB-induced erythema. Because of the anti-inflammatory properties, the copper-peptides could be used on the skin surface instead of corticosteroids or non-steroidal anti-inflammatory drugs, which have more side effects. Our observations provide some new information about the role of these tripeptides in skin inflammation. PMID:23285694

  7. Thymosin β4 Promotes Dermal Healing.

    PubMed

    Kleinman, H K; Sosne, G

    2016-01-01

    No agent has been identified that significantly accelerates the repair of chronic dermal wounds in humans. Thymosin beta 4 (Tβ4) is a small, abundant, naturally occurring regenerative protein that is found in body fluids and inside cells. It was found to have angiogenic and antiinflammatory activity and to be high in platelets that aggregate at the wound site. Thus we used Tβ4 initially in dermal healing. It has since been shown to have many activities important in tissue protection, repair, and regeneration. Tβ4 increases the rate of dermal healing in various preclinical animal models, including diabetic and aged animals, and is active for burns as well. Tβ4 also accelerated the rate of repair in phase 2 trials with patients having pressure ulcers, stasis ulcers, and epidermolysis bullosa wounds. It is safe and well tolerated and will likely have additional uses in the skin and in injured organs for tissue repair and regeneration. PMID:27450738

  8. Phytoestrogen Metabolism by Adult Human Gut Microbiota.

    PubMed

    Gaya, Pilar; Medina, Margarita; Sánchez-Jiménez, Abel; Landete, José Mᵃ

    2016-08-09

    Phytoestrogens are plant-derived polyphenols with a structure similar to human estrogens. The three main groups of phytoestrogens, isoflavones, ellagitannins, and lignans, are transformed into equol, urolithins, and enterolignans, respectively, by bacteria. These metabolites have more estrogenic/antiestrogenic and antioxidant activities than their precursors, and they are more bioavailable. The aim of this study was to analyze the metabolism of isoflavones, lignans and ellagitannins by gut microbiota, and to study the possible correlation in the metabolism of these three groups of phytoestrogens. In vitro fermentation experiments were performed with feces samples from 14 healthy adult volunteers, and metabolite formation was measured by HPLC-PAD and HPLC-ESI/MS. Only the microbiota of one subject produced equol, while most of them showed production of O-desmethylangolensin (O-DMA). Significant inter-subject differences were observed in the metabolism of dihydrodaidzein and dihydrogenistein, while the glucoside isoflavones and their aglycones showed less variability, except for glycitin. Most subjects produced urolithins M-5 and E. Urolithin D was not detected, while uroltithin B was found in half of the individuals analyzed, and urolithins A and C were detected in two and four subjects, respectively. Enterolactone was found in all subjects, while enterodiol only appeared in five. Isoflavone metabolism could be correlated with the metabolism of lignans and ellagitannins. However, the metabolism of ellagitannins and lignans could not be correlated. This the first study where the metabolism of the three groups together of phytoestrogen, isoflavones, lignans, and ellagitannins by gut microbiota is analyzed.

  9. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  10. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity.

    PubMed

    Benameur, Laila; Auffan, Mélanie; Cassien, Mathieu; Liu, Wei; Culcasi, Marcel; Rahmouni, Hidayat; Stocker, Pierre; Tassistro, Virginie; Bottero, Jean-Yves; Rose, Jérôme; Botta, Alain; Pietri, Sylvia

    2015-01-01

    The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release. PMID:25325158

  11. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity.

    PubMed

    Benameur, Laila; Auffan, Mélanie; Cassien, Mathieu; Liu, Wei; Culcasi, Marcel; Rahmouni, Hidayat; Stocker, Pierre; Tassistro, Virginie; Bottero, Jean-Yves; Rose, Jérôme; Botta, Alain; Pietri, Sylvia

    2015-01-01

    The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.

  12. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    PubMed

    Aggarwal, M; Fisher, P; Hüser, A; Kluxen, F M; Parr-Dobrzanski, R; Soufi, M; Strupp, C; Wiemann, C; Billington, R

    2015-06-01

    Dermal absorption is a key parameter in non-dietary human safety assessments for agrochemicals. Conservative default values and other criteria in the EFSA guidance have substantially increased generation of product-specific in vitro data and in some cases, in vivo data. Therefore, data from 190 GLP- and OECD guideline-compliant human in vitro dermal absorption studies were published, suggesting EFSA defaults and criteria should be revised (Aggarwal et al., 2014). This follow-up article presents data from an additional 171 studies and also the combined dataset. Collectively, the data provide consistent and compelling evidence for revision of EFSA's guidance. This assessment covers 152 agrochemicals, 19 formulation types and representative ranges of spray concentrations. The analysis used EFSA's worst-case dermal absorption definition (i.e., an entire skin residue, except for surface layers of stratum corneum, is absorbed). It confirmed previously proposed default values of 6% for liquid and 2% for solid concentrates, irrespective of active substance loading, and 30% for all spray dilutions, irrespective of formulation type. For concentrates, absorption from solvent-based formulations provided reliable read-across for other formulation types, as did water-based products for solid concentrates. The combined dataset confirmed that absorption does not increase linearly beyond a 5-fold increase in dilution. Finally, despite using EFSA's worst-case definition for absorption, a rationale for routinely excluding the entire stratum corneum residue, and ideally the entire epidermal residue in in vitro studies, is presented.

  13. A newly adapted pulsed-field gel electrophoresis technique allows to detect distinct types of DNA damage at low frequencies in human dermal fibroblasts upon exposure to non-toxic H2O2 concentrations.

    PubMed

    Brenneisen, P; Wenk, J; Wlaschek, M; Blaudschun, R; Scharffetter-Kochanek, K

    1999-11-01

    Reactive oxygen species (ROS) comprise several oxygen containing compounds, among them hydrogen peroxide (H2O2), which are generated by internal and external sources and play pleiotropic roles in physiological and pathological states. Skin cells as well as cells from other tissues have developed antioxidant defense mechanisms to protect themselves from high concentrations of ROS. Although biological and pathological roles of ROS have previously been elucidated, so far only limited knowledge exists regarding ROS-mediated generation of DNA breaks and base lesions occurring at low frequency in intact skin cells. This study was therefore designed to probe a newly adapted pulsed-field gel electrophoresis technique for the adequate measurement of high molecular weight DNA fragments as well as to investigate the protective role of the antioxidant enzyme catalase against H2O2-mediated damage in human dermal fibroblasts. We stably transfected and overexpressed the full-length catalase cDNA in the human dermal fibroblast cell line 1306 in culture and found that these cells are significantly more protected from cytotoxicity, overall DNA strand breaks, and 8-oxodeoxyguanine base lesions resulting from H2O2-triggered oxidative stress compared to vector-transfected 1306 cells or secondary dermal fibroblasts. This work has outlined the importance of catalase in the protection from H2O2-mediated cytotoxicity and DNA damage which--if unbalanced--even when occurring at low frequency are known to lead to genomic instability, a hallmark in carcinogenesis and premature aging.

  14. Phytoestrogen Metabolism by Adult Human Gut Microbiota.

    PubMed

    Gaya, Pilar; Medina, Margarita; Sánchez-Jiménez, Abel; Landete, José Mᵃ

    2016-01-01

    Phytoestrogens are plant-derived polyphenols with a structure similar to human estrogens. The three main groups of phytoestrogens, isoflavones, ellagitannins, and lignans, are transformed into equol, urolithins, and enterolignans, respectively, by bacteria. These metabolites have more estrogenic/antiestrogenic and antioxidant activities than their precursors, and they are more bioavailable. The aim of this study was to analyze the metabolism of isoflavones, lignans and ellagitannins by gut microbiota, and to study the possible correlation in the metabolism of these three groups of phytoestrogens. In vitro fermentation experiments were performed with feces samples from 14 healthy adult volunteers, and metabolite formation was measured by HPLC-PAD and HPLC-ESI/MS. Only the microbiota of one subject produced equol, while most of them showed production of O-desmethylangolensin (O-DMA). Significant inter-subject differences were observed in the metabolism of dihydrodaidzein and dihydrogenistein, while the glucoside isoflavones and their aglycones showed less variability, except for glycitin. Most subjects produced urolithins M-5 and E. Urolithin D was not detected, while uroltithin B was found in half of the individuals analyzed, and urolithins A and C were detected in two and four subjects, respectively. Enterolactone was found in all subjects, while enterodiol only appeared in five. Isoflavone metabolism could be correlated with the metabolism of lignans and ellagitannins. However, the metabolism of ellagitannins and lignans could not be correlated. This the first study where the metabolism of the three groups together of phytoestrogen, isoflavones, lignans, and ellagitannins by gut microbiota is analyzed. PMID:27517891

  15. In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells.

    PubMed

    Rodrigues, Robim M; Branson, Steven; De Boe, Veerle; Sachinidis, Agapios; Rogiers, Vera; De Kock, Joery; Vanhaecke, Tamara

    2016-03-01

    Steatosis, also known as fatty liver disease (FLD), is a disorder in which the lipid metabolism of the liver is disturbed, leading to the abnormal retention of lipids in hepatocytes. FLD can be induced by several drugs, and although it is mostly asymptomatic, it can lead to steatohepatitis, which is associated with liver inflammation and damage. Drug-induced liver injury is currently the major cause of postmarketing withdrawal of pharmaceuticals and discontinuation of the development of new chemical entities. Therefore, the potential induction of steatosis must be evaluated during preclinical drug development. However, robust human-relevant in vitro models are lacking. In the present study, we explore the applicability of hepatic cells (hSKP-HPCs) derived from postnatal skin precursors, a stem cell population residing in human dermis, to investigate the steatosis-inducing effects of sodium valproate (Na-VPA). Exposure of hSKP-HPC to sub-cytotoxic concentrations of this reference steatogenic compound showed an increased intracellular accumulation of lipid droplets, and the modulation of key factors involved in lipid metabolism. Using a toxicogenomics approach, we further compared Na-VPA-treated hSKP-HPC and Na-VPA-treated primary human hepatocytes to liver samples from patients suffering from mild and advanced steatosis. Our data show that in hSKP-HPC exposed to Na-VPA and liver samples of patients suffering from mild steatosis, but not in primary human hepatocytes, "liver steatosis" was efficiently identified as a toxicological response. These findings illustrate the potential of hSKP-HPC as a human-relevant in vitro model to identify hepatosteatotic effects of chemical compounds.

  16. Gustofacial and olfactofacial responses in human adults.

    PubMed

    Weiland, Romy; Ellgring, Heiner; Macht, Michael

    2010-11-01

    Adults' facial reactions in response to tastes and odors were investigated in order to determine whether differential facial displays observed in newborns remain stable in adults who exhibit a greater voluntary facial control. Twenty-eight healthy nonsmokers (14 females) tasted solutions of PROP (bitter), NaCl (salty), citric acid (sour), sucrose (sweet), and glutamate (umami) differing in concentration (low, medium, and high) and smelled different odors (banana, cinnamon, clove, coffee, fish, and garlic). Their facial reactions were video recorded and analyzed using the Facial Action Coding System. Adults' facial reactions discriminated between stimuli with opponent valences. Unpleasant tastes and odors elicited negative displays (brow lower, upper lip raise, and lip corner depress). The pleasant sweet taste elicited positive displays (lip suck), whereas the pleasant odors did not. Unlike newborns, adults smiled with higher concentrations of some unpleasant tastes that can be regarded as serving communicative functions. Moreover, adults expressed negative displays with higher sweetness. Except for the "social" smile in response to unpleasant tastes, adults' facial reactions elicited by tastes and odors mostly correspond to those found in newborns. In conclusion, adults' facial reactions to tastes and odors appear to remain stable in their basic displays; however, some additional reactions might reflect socialization influences.

  17. Adult Literacy Education and Human Rights: A View from Afghanistan

    ERIC Educational Resources Information Center

    Andersen, Susan M.; Kooij, Christina S.

    2007-01-01

    In this article, we argue that adult literacy as part of international development is an issue of both human rights and women's rights. We explore this by presenting a case study of the effects of one innovative adult literacy program in Afghanistan that places men and women, as well as various ethnicities, together in the same classroom as…

  18. An aqueous extract of the leaves of Chromolaena odorata (formerly Eupatorium odoratum) (Eupolin) inhibits hydrated collagen lattice contraction by normal human dermal fibroblasts.

    PubMed

    Phan, T T; Hughes, M A; Cherry, G W; Le, T T; Pham, H M

    1996-01-01

    Chromolaena odorata (formerly Eupatorium odoratum) is used as a traditional medicine in Vietnam (Nghiem, 1992), where its Vietnamese common name is "co hoi." While it has been widely considered a weed by agriculturalists (Holm et al., 1991), the aqueous extract and the decoction from the leaves of this plant have been used throughout Vietnam for the treatment of soft tissue wounds, burn wounds, and skin infections. A number of clinical studies done by Vietnamese as well as foreign medical workers has demonstrated the efficacy of this extract on the wound-healing process. In this article, the effect of the Eupolin extract on hydrated collagen lattice contraction by human dermal fibroblasts, an in vitro model of wound contraction, is described. The significant inhibition of collagen gel contraction by Eupolin extract at 50 to 200 micrograms/ml is demonstrated in various concentrations of collagen. When the extract at 50 to 150 micrograms/ml was washed out of the lattices and replaced by fresh medium without Eupolin, the contraction of collagen by cells was resumed. The visualization of cells in the lattices by incubation in a tetrazolium salt for 2 h showed live cells at 50 to 150 micrograms/ml of extract. In contrast, all cells were killed in the higher extract doses of 300 or 400 micrograms/ml. These preliminary results showing the inhibitory effect of Eupolin extract on collagen contraction suggest that a clinical evaluation of its effect on wound contraction and scar quality should be made. This work illustrates that traditional remedies that are used by folk practitioners to improve healing can be examined in a scientific manner using in vitro wound-healing models. It could be that the synergistic properties of components of the natural extract contribute to the positive effects demonstrated on various wound-healing mechanisms.

  19. Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography.

    PubMed

    Greaves, Nicholas S; Iqbal, Syed A; Hodgkinson, Tom; Morris, Julie; Benatar, Brian; Alonso-Rasgado, Teresa; Baguneid, Mohamed; Bayat, Ardeshir

    2015-01-01

    Skin substitutes are heterogeneous biomaterials designed to accelerate wound healing through provision of replacement extracellular matrix. Despite growing evidence for their use in chronic wounds, the role of skin substitutes in acute wound management and their influence on fibrogenesis remains unclear. Skin substitute characteristics including biocompatibility, porosity, and elasticity strongly influence cellular behavior during wound healing. Thus, we hypothesize that structural and biomechanical variation between biomaterials may induce differential scar formation after cutaneous injury. The following human prospective cohort study was designed to investigate this premise. Four 5-mm full thickness punch biopsies were harvested from 50 volunteers. In all cases, site 1 healed by secondary intention, site 2 was treated with collagen-GAG scaffold (CG), and decellularised dermis (DCD) was applied to site 3 while tissue extracted from site 4 was replaced (autograft). Healing tissue was assessed weekly with optical coherence tomography (OCT), before being excised on days 7, 14, 21, or 28 depending on study group allocation for later histological and immunohistochemical evaluation. Extracted RNA was used in microarray analysis and polymerase chain reaction of highlighted genes. Autograft treatment resulted in minimal fibrosis confirmed immunohistochemically and with OCT through significantly lower collagen I levels (p = 0.047 and 0.03) and reduced mean grayscale values (p = 0.038 and 0.015), respectively. DCD developed intermediate scar formation with partial rete ridge reformation and reduced fasiculonodular fibrosis. It was uniquely associated with late up-regulation of matrix metalloproteinases 1 and 3, oncostatin M, and interleukin-10 (p = 0.007, 0.04, 0.019, 0.019). Regenerated dermis was significantly thicker in DCD and autografts 28 days post-injury compared with control and CG samples (p = 0.003 and < 0.0001). In conclusion, variable fibrotic outcomes were

  20. Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts.

    PubMed

    Brenneisen, P; Briviba, K; Wlaschek, M; Wenk, J; Scharffetter-Kochanek, K

    1997-01-01

    Reactive oxygen species (ROS) have been shown to be important messenger molecules in the induction of several genes. In human dermal fibroblasts the herbicide paraquat (PQ2+) was used to induce intracellular oxidative stress that was modulated by the inhibition of copper, zinc superoxide dismutase (Cu,ZnSOD), glutathione peroxidase (GSHPx), catalase, and blocking of the Fenton reaction. Interstitial collagenase (MMP-1) mRNA increased time dependently for up to 72 h following paraquat treatment. A correlation with the translation of MMP-1 could, however, only be detected up to 24 h, indicating an uncoupling of transcription and translation. Interleukin-1 alpha and beta mRNA showed two peaks at 6 h and 72 h. The inhibition of catalase by aminotriazol (ATZ), inhibition of GSHPx by buthionine sulfoximine (BSO), and blocking the Fenton reaction by the iron chelator desferrioxamine (DFO) in concert led to an increase in steady-state MMP-1 mRNA levels, possibly dependent on intracellular H2O2 increase. This combined treatment potentiated MMP-1 mRNA induction up to 6.5-fold compared to paraquat treated controls. Furthermore, exogenously added H2O2 caused an increase in MMP-1 mRNA levels. In contrast, inhibition of Cu,ZnSOD by diethyldithiocarbamate (DDC), leading to diminished H2O2 production from O2.-, decreased MMP-1 mRNA induction. Collectively, our data provide evidence that H2O2 is an important intermediate in the downstream signalling pathway finally leading to the induction of increased steady state MMP-1 mRNA levels. The synthesis of MMPs may contribute to connective tissue damage in vivo related to photoaging, inflammatory diseases, and tumor invasion. PMID:8981044

  1. Effect of polyphenols on reactive oxygen species production and cell growth of human dermal fibroblasts after irradiation with ultraviolet-A light.

    PubMed

    Shirai, Akihiro; Onitsuka, Masayoshi; Maseda, Hideaki; Omasa, Takeshi

    2015-01-01

    Ultraviolet-A (UV-A) can damage microbes by generating reactive oxygen species (ROS), singlet oxygen, superoxides, hydrogen peroxide and hydroxyl radicals. These species readily react with lipids, proteins, DNA and other constituents of cells, leading to oxidative deterioration and the eventual death of the microbe. However, the oxidative ability of these reactive species also harms the viability of mammalian cells such as fibroblasts and keratinocytes, as they cause both acute and chronic damage, photo-aging, and photo-carcinogenesis. This study describes a UV-A treatment that does not affect the viability or growth of human neonate dermal fibroblasts, as determined by examining the post-irradiation cell density after the addition of polyphenols as antioxidants. The results demonstrate the possible wide applicability of UV-A sterilization. The potency of polyphenols for attenuating UV-A-induced ROS generation in cells was tested using (+)-catechin hydrate, (-)- epigallocatechin gallate hydrate, morin hydrate, quercetin hydrate and resveratrol. The lowest concentration of polyphenols required to reduce ROS by 50% in cells upon exposure to a dose of 15 J cm(-2) was determined and defined as its IC50. Pre-treatment with morin hydrate at its IC50 allowed cells irradiated with 5.0 J cm(-2) UV-A to recover to the level of the specific growth rate of cells incubated without UV-A irradiation. However, the growth rate of cells exposed to 15 J cm(-2) UV-A irradiation was scarcely influenced by co-incubation with morin hydrate; this dose of UV-A also suppressed cell growth completely in the absence of morin hydrate, although co-incubation resulted in no decrease in cell viability. This study demonstrates the potential of polyphenols for protecting both the viability of cells and their ability to proliferate from damage caused by UV-A-irradiation.

  2. Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography.

    PubMed

    Greaves, Nicholas S; Iqbal, Syed A; Hodgkinson, Tom; Morris, Julie; Benatar, Brian; Alonso-Rasgado, Teresa; Baguneid, Mohamed; Bayat, Ardeshir

    2015-01-01

    Skin substitutes are heterogeneous biomaterials designed to accelerate wound healing through provision of replacement extracellular matrix. Despite growing evidence for their use in chronic wounds, the role of skin substitutes in acute wound management and their influence on fibrogenesis remains unclear. Skin substitute characteristics including biocompatibility, porosity, and elasticity strongly influence cellular behavior during wound healing. Thus, we hypothesize that structural and biomechanical variation between biomaterials may induce differential scar formation after cutaneous injury. The following human prospective cohort study was designed to investigate this premise. Four 5-mm full thickness punch biopsies were harvested from 50 volunteers. In all cases, site 1 healed by secondary intention, site 2 was treated with collagen-GAG scaffold (CG), and decellularised dermis (DCD) was applied to site 3 while tissue extracted from site 4 was replaced (autograft). Healing tissue was assessed weekly with optical coherence tomography (OCT), before being excised on days 7, 14, 21, or 28 depending on study group allocation for later histological and immunohistochemical evaluation. Extracted RNA was used in microarray analysis and polymerase chain reaction of highlighted genes. Autograft treatment resulted in minimal fibrosis confirmed immunohistochemically and with OCT through significantly lower collagen I levels (p = 0.047 and 0.03) and reduced mean grayscale values (p = 0.038 and 0.015), respectively. DCD developed intermediate scar formation with partial rete ridge reformation and reduced fasiculonodular fibrosis. It was uniquely associated with late up-regulation of matrix metalloproteinases 1 and 3, oncostatin M, and interleukin-10 (p = 0.007, 0.04, 0.019, 0.019). Regenerated dermis was significantly thicker in DCD and autografts 28 days post-injury compared with control and CG samples (p = 0.003 and < 0.0001). In conclusion, variable fibrotic outcomes were

  3. Anti-photoaging potential of Botulinum Toxin Type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins.

    PubMed

    Permatasari, Felicia; Hu, Yan-yan; Zhang, Jia-an; Zhou, Bing-rong; Luo, Dan

    2014-04-01

    This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question. PMID:24727404

  4. 7-Hydroxycoumarin prevents UVB-induced activation of NF-κB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells.

    PubMed

    Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan

    2016-08-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. PMID:27240190

  5. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism

    PubMed Central

    Luanpitpong, Sudjit; Chanvorachote, Pithi; Leonard, Stephen S.; Pongrakhananon, Varisa; Wang, Liying

    2016-01-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy. PMID:21573972

  6. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism.

    PubMed

    Luanpitpong, Sudjit; Nimmannit, Ubonthip; Chanvorachote, Pithi; Leonard, Stephen S; Pongrakhananon, Varisa; Wang, Liying; Rojanasakul, Yon

    2011-08-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.

  7. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin.

    PubMed

    Kim, Eun Ju; Kim, Yeon Kyung; Kim, Min-Kyoung; Kim, Sungsoo; Kim, Jin Yong; Lee, Dong Hun; Chung, Jin Ho

    2016-05-10

    Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis.

  8. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin

    PubMed Central

    Kim, Eun Ju; Kim, Yeon Kyung; Kim, Min-Kyoung; Kim, Sungsoo; Kim, Jin Yong; Lee, Dong Hun; Chung, Jin Ho

    2016-01-01

    Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis. PMID:27161953

  9. Photobiostimulation on wound healing treatment by ClAlPc-nanoemulsion from a multiple-wavelength portable light source on a 3D-human stem cell dermal equivalent.

    PubMed

    Primo, F L; de Paula, L B; de Siqueira-Moura, M P; Tedesco, A C

    2012-01-01

    This research evaluated the effect of multiple-wave lasertherapy on the healing process of surgical wounds based on in vitro models denominated stem-dermal equivalents. These human skin models were obtained from a co-culture of dermal cells and bone marrow mesenchymal stem cells. The experimental tests were carried out using a LED portable to multiple waves (operating at 660 nm and 810 nm) at different doses to induce photobiostimulation (10 to 70 mJ.cm-2). Moreover, a photosensitizer drug was employed as a new advanced designed nanomaterial, being a nanoemulsion with biopolymers to obtain an efficient drug delivery system to release lipophilic compounds. The studies were performed considering the light combination application monitoring the kinetic contraction of the dermal equivalent model and the quantification of important macromolecules (as metaloproteases derivatives), related directly with wound healing process. Results showed that an appropriate photomodulation using the combination of both wavelengths (in the red and infrared range) is possible, such that it can contribute to wound healing therapy and/or other pathological skin disease treatment.

  10. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. PMID:27333955

  11. Dermal penetration and systemic distribution of sup 14 C-labeled vitamin E human skin grafted athymic nude mice

    SciTech Connect

    Klain, G.J.

    1989-03-13

    In vivo percutaneous penetration and tissue distribution of 14C-labeled vitamin E applied to human skin grafted onto athymic nude mice were determined. At 1 hr, mouse skin contained the highest level of radioactivity, followed by the muscle, blood, liver, lung, adipose tissue, spleen, kidney, brain, heart, and eyes. A linear increase with time in tissue radioactivity was observed throughout the 24 hr experimental period. At 4 and 24 hrs skin grafts were highly radioactive. At 4 hrs the epidermis and the upper portion of the dermis contained more radioactivity than the remaining portion of the dermis. In contrast, at 24 hrs the highest level of radioactivity was detected in the lower dermis. No radioactivity was detected in expired air while 0.2% of the dose was found in the urine. The data show that vitamin E does penetrate skin and that the dermis acts as a barrier or reservoir for this highly lipophilic compound.

  12. Percutaneous absorption of an insect repellent p-menthane-3,8-DIOL: a model for human dermal absorption.

    PubMed

    Reifenrath, William G; Olson, James J; Vedula, Usha; Osimitz, Thomas G

    2009-01-01

    p-Menthane-3,8-diol(38DIOL) was recently introduced as a natural topical insect repellent in the commercial product "OFF! Botanicals" lotion. The objective of this study was to provide an estimate of the potential for 38DIOL systemic absorption in humans. Carbon-14-labeled 38DIOL formulated in the lotion and in an ethanol solution was applied to excised pig skin in an in vitro flow-through test system predictive of skin absorption in humans. Twenty-four hours after application, radiolabel recovered from the dermis and receptor fluid was summed to determine percent absorption. At a dose of approximately 80 microg/cm(2) of 38DIOL in the lotion, a value of 3.5 +/- 0.8% of applied dose was obtained with pig skin. The corresponding value for 38DIOL in ethanol (90 microg/cm(2)) was not significantly different (3.0 +/- 1.2%). Most of the applied dose of 38DIOL was found to evaporate from pig skin (77 +/- 8% for the lotion and 87 +/- 1% for ethanol solution), thus limiting percutaneous absorption values. For reference purposes, the pig skin absorptions of piperonyl butoxide (PBO) at 100 microg/cm(2) in isopropanol, N,N-diethyl-m-toluamide (DEET) at 500 microg/cm(2) in ethanol, and neat isododecane at 650 microg/cm(2) (in order of increasing volatility) were 15 +/- 6%, 23 +/- 3%, and 0.09 +/- 0.05% of applied dose respectively. Isododecane was lost almost exclusively from the skin surface by evaporation. For additional reference, absorptions of PBO, DEET, and 38DIOL were found to be higher with excised rat skin.

  13. A comparative study of bifidobacteria in human babies and adults

    PubMed Central

    KHONSARI, Shadi; SUGANTHY, Mayuran; BURCZYNSKA, Beata; DANG, Vu; CHOUDHURY, Manika; PACHENARI, Azra

    2015-01-01

    The composition and diversity of the gut microbiota are known to be different between babies and adults. The aim of this project was to compare the level of bifidobacteria between babies and adults and to investigate the influence of lifestyle factors on the level of this bacterium in the gut. During this study, the levels of bifidobacteria in 10 human babies below 2 years of age were compared with that of 10 human adults above 40 years. The level of bifidobacteria proved to be significantly higher in babies in comparison with adults. This investigation concluded that a combination of several factors, such as age, diet, and BMI, has an important effect on the level of bifidobacteria in adults, while in babies, a combination of diet and age may influence the level of intestinal bifidobacteria. PMID:27200263

  14. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts.

    PubMed

    Lou, Pei-Jen; Chiu, Ming-Yi; Chou, Chi-Chun; Liao, Bor-Wu; Young, Tai-Horng

    2010-03-01

    It is well known that biomaterials play an important role in the regulation of adhesion and growth of a variety of cultured cell types. However, whether biomaterials are associated with the senescence of cultured cells is not known. The present work shows that the decrease of the hydrophobic property of poly (ethylene-co-vinyl alcohol) (EVAL) from 44 mole% to 27 mole% ethylene could induce characteristic senescence-associated phenotypic changes such as larger cell shape, re-organized actin cytoskeleton, lower proliferation capacity, higher levels of senescence-associated beta-galactosidase (SA beta-gal) activity, and upregulation of the cell-cycle inhibitor p53 and its transcriptional target p21 in the cultured human diploid fibroblasts (HDFs). Furthermore, it was found that the cultured cells recovered their ability to grow when the substrate was reused every passage. It seemed that the extracellular matrix (ECM) proteins adsorbed onto the EVAL surface might have a protective role in the cellular aging process. Therefore, whether a biomaterial strongly influences cellular aging process must be considered in the selection of a biomaterial for the biomedical application.

  15. Species Typing in Dermal Leishmaniasis

    PubMed Central

    Dujardin, Jean-Claude

    2015-01-01

    SUMMARY Leishmania is an infectious protozoan parasite related to African and American trypanosomes. All Leishmania species that are pathogenic to humans can cause dermal disease. When one is confronted with cutaneous leishmaniasis, identification of the causative species is relevant in both clinical and epidemiological studies, case management, and control. This review gives an overview of the currently existing and most used assays for species discrimination, with a critical appraisal of the limitations of each technique. The consensus taxonomy for the genus is outlined, including debatable species designations. Finally, a numerical literature analysis is presented that describes which methods are most used in various countries and regions in the world, and for which purposes. PMID:25672782

  16. Flexible Dermal Armor in Nature

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Chen, Irene H.; Mckittrick, Joanna; Meyers, Marc A.

    2012-04-01

    Many animals possess dermal armor, which acts primarily as protection against predators. We illustrate this through examples from both our research and the literature: alligator, fish (alligator gar, arapaima, and Senegal bichir), armadillo, leatherback turtle, and a lizard, the Gila monster. The dermal armor in these animals is flexible and has a hierarchical structure with collagen fibers joining mineralized units (scales, tiles, or plates). This combination significantly increases the strength and flexibility in comparison with a simple monolithic mineral composite or rigid dermal armor. This dermal armor is being studied for future bioinspired armor applications providing increased mobility.

  17. Malignant dermal cylindroma in a patient with multiple dermal cylindromas, trichoepitheliomas, and bilateral dermal analogue tumors of the parotid gland.

    PubMed

    Rockerbie, N; Solomon, A R; Woo, T Y; Beals, T F; Ellis, C N

    1989-08-01

    A malignant dermal cylindroma of the scalp arose from one of multiple long-standing dermal cylindromas in a 76-year-old man with coexisting trichoepitheliomas and bilateral dermal analogue tumors of the parotid gland. The histologic transition from a benign dermal cylindroma to an anaplastic keratinocytic neoplasm was readily apparent. The malignant dermal cylindroma is a rare neoplasm. To our knowledge, the constellation of benign and malignant dermal cylindromas, multiple trichoepitheliomas, and salivary gland neoplasms has not been previously reported.

  18. Neural stem cells in the adult human brain

    PubMed Central

    Gonzalez-Perez, Oscar

    2012-01-01

    For decades, it was believed that the adult brain was a quiescent organ unable to produce new neurons. At the beginning of the1960's, this dogma was challenged by a small group of neuroscientists. To date, it is well-known that new neurons are generated in the adult brain throughout life. Adult neurogenesis is primary confined to the subventricular zone (SVZ) of the forebrain and the subgranular zone of the dentate gyrus within the hippocampus. In both the human and the rodent brain, the primary progenitor of adult SVZ is a subpopulation of astrocytes that have stem-cell-like features. The human SVZ possesses a peculiar cell composition and displays important organizational differences when compared to the SVZ of other mammals. Some evidence suggests that the human SVZ may be not only an endogenous source of neural precursor cells for brain repair, but also a source of brain tumors. In this review, we described the cytoarchitecture and cellular composition of the SVZ in the adult human brain. We also discussed some clinical implications of SVZ, such as: stem-cell-based therapies against neurodegenerative diseases and its potential as a source of malignant cells. Understanding the biology of human SVZ and its neural progenitors is one of the crucial steps to develop novel therapies against neurological diseases in humans. PMID:23181200

  19. Humanities and the Adult Learner in an Information Society.

    ERIC Educational Resources Information Center

    Myers, Dale; Kamholtz, Jonathan

    Humanities courses have often been given little attention in continuing education for adults, possibly because they have been viewed as not "practical" or not "job-oriented" enough in our career-oriented, technologically advanced society. However, the humanities should be an integral part of our culture and of the lives of educated persons--a…

  20. Teaching Human Rights: Grades 7 through Adult.

    ERIC Educational Resources Information Center

    Shiman, David A.

    This curriculum resource on human rights is rooted in the United Nations Universal Declaration of Human Rights and seeks to help students understand the issues involved. Using the rights categories suggested by the Universal Declaration, this book offers new ways of teaching about familiar themes. The book contains activities to encourage students…

  1. Editorial Commentary: Reflections From a Mature Arthroscopic Shoulder Surgeon on the History and Current Benefits of Augmentation for the Revision of a Massive Rotator Cuff Tear Using Acellular Human Dermal Matrix Allograft.

    PubMed

    Snyder, Stephen J

    2016-09-01

    Acellular human dermal matrix allografts are now being used to augment and sometimes replace severely damaged rotator cuff tissue. I have been interested in this important aspect of orthopaedics for 15 years and am pleased to have the opportunity to share my personal reflections of some of the highlights in science and the literature that helped get to the point now where we can expect greater than 80% healing even in these difficult cases of revision after massive failed cuff repair. The field of tissue engineering will certainly be a critical part of our rotator cuff surgical future.

  2. Editorial Commentary: Reflections From a Mature Arthroscopic Shoulder Surgeon on the History and Current Benefits of Augmentation for the Revision of a Massive Rotator Cuff Tear Using Acellular Human Dermal Matrix Allograft.

    PubMed

    Snyder, Stephen J

    2016-09-01

    Acellular human dermal matrix allografts are now being used to augment and sometimes replace severely damaged rotator cuff tissue. I have been interested in this important aspect of orthopaedics for 15 years and am pleased to have the opportunity to share my personal reflections of some of the highlights in science and the literature that helped get to the point now where we can expect greater than 80% healing even in these difficult cases of revision after massive failed cuff repair. The field of tissue engineering will certainly be a critical part of our rotator cuff surgical future. PMID:27594327

  3. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

    PubMed Central

    Lee, Hyunji; Hong, Youngeun; Kwon, So Hee; Park, Jongsun; Park, Jisoo

    2016-01-01

    Background Aging of skin is associated with environmental factors such as ultraviolet rays, air pollution, gravity, and genetic factors, all of which can lead to wrinkling of skin. Previous reports suggest that the wound repair is impaired by the aging process and strategies to manipulate the age-related wound healing are necessary in order to stimulate repair. Objective Several traditional plant extracts are well-known for their properties of skin protection and care. Piper cambodianum P. Fourn. (PPF), a member of Piperacecae, is a plant found in Vietnam that might have therapeutic properties. Therefore, the effects of PPF stem and leaf extract on aging process were investigated in vitro and in vivo. Methods PPF extract dissolved in methanol was investigated using Western blotting, real-time quantitative reverse transcription-polymerase chain reaction, flow cytometry, and cell wound-healing assays. We assessed the anti-aging effect of PPF in mouse using the wound-healing assay. The results were analyzed by Student’s unpaired t-test; *P<0.05 and **P<0.01 were considered to indicate significant and highly significant values, respectively, compared with corresponding controls. Results PPF treatment demonstrated in vitro and in vivo anti-aging activity. Western blot analysis of PPF-treated normal human dermal fibroblast cells showed a dose-dependent increase in the expression of extracellular matrix genes such as collagen and elastin, but decreased expression of the aging gene matrix metalloproteinase-3. Quantitative polymerase chain reaction showed that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice. Conclusion This study

  4. Scented traces--Dermal exposure of synthetic musk fragrances in personal care products and environmental input assessment.

    PubMed

    Homem, Vera; Silva, Eduardo; Alves, Arminda; Santos, Lúcia

    2015-11-01

    Synthetic musks are organic compounds used as fragrance and fixative additives in several personal care products. Until now, little is known about their occurrence and distribution in these household commodities. However, this information is essential to perform a human dermal exposure assessment. Therefore, this study gives an overview on the levels of 12 synthetic musks in 140 personal care products from 7 different categories (body and hair wash, toilet soaps, shaving products, dentifrice products, deodorants/antiperspirants, moisturizers and perfumes). They were analysed by QuEChERS extraction followed by gas chromatography-mass spectrometry. Detection limits were found between 0.01ngg(-1) (galaxolide) and 5.00ngg(-1) (musk xylene). Higher average concentrations of total synthetic musks were detected in perfumes (5245.05μgg(-1)) and shampoos (487.67μgg(-1)) for adults. Galaxolide, exaltolide and cashmeran were the most detected compounds. Combining these results with the daily usage amounts, an average daily dermal exposure of 75.69μgkgbw(-1)day(-1) for adults and 15.54μgkgbw(-1)day(-1) for babies/children was achieved. The main contributors for adult and babies/children dermal exposure were perfumes and lotions, respectively. About 40% of the adult daily dermal exposure is related to exaltolide, 30% galaxolide, and 15% tonalide, while for babies/children 96% occurs due to exaltolide. An estimate of the amount of musks discharged "down-the-drain" into the wastewater treatment systems through the use of toiletries was also performed. An average emission per capita of 6.7mgday(-1) was determined and galaxolide and exaltolide were the predominant musks in the effluents.

  5. Scented traces--Dermal exposure of synthetic musk fragrances in personal care products and environmental input assessment.

    PubMed

    Homem, Vera; Silva, Eduardo; Alves, Arminda; Santos, Lúcia

    2015-11-01

    Synthetic musks are organic compounds used as fragrance and fixative additives in several personal care products. Until now, little is known about their occurrence and distribution in these household commodities. However, this information is essential to perform a human dermal exposure assessment. Therefore, this study gives an overview on the levels of 12 synthetic musks in 140 personal care products from 7 different categories (body and hair wash, toilet soaps, shaving products, dentifrice products, deodorants/antiperspirants, moisturizers and perfumes). They were analysed by QuEChERS extraction followed by gas chromatography-mass spectrometry. Detection limits were found between 0.01ngg(-1) (galaxolide) and 5.00ngg(-1) (musk xylene). Higher average concentrations of total synthetic musks were detected in perfumes (5245.05μgg(-1)) and shampoos (487.67μgg(-1)) for adults. Galaxolide, exaltolide and cashmeran were the most detected compounds. Combining these results with the daily usage amounts, an average daily dermal exposure of 75.69μgkgbw(-1)day(-1) for adults and 15.54μgkgbw(-1)day(-1) for babies/children was achieved. The main contributors for adult and babies/children dermal exposure were perfumes and lotions, respectively. About 40% of the adult daily dermal exposure is related to exaltolide, 30% galaxolide, and 15% tonalide, while for babies/children 96% occurs due to exaltolide. An estimate of the amount of musks discharged "down-the-drain" into the wastewater treatment systems through the use of toiletries was also performed. An average emission per capita of 6.7mgday(-1) was determined and galaxolide and exaltolide were the predominant musks in the effluents. PMID:26150197

  6. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  7. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  8. New neurons in the adult striatum: from rodents to humans

    PubMed Central

    Inta, Dragos; Cameron, Heather A.; Gass, Peter

    2015-01-01

    Most neurons are generated during development and are not replaced during adulthood, even if they are lost to injury or disease. It is firmly established, however, that new neurons are generated in the dentate gyrus of the hippocampus of virtually all adult mammals, including humans [1]. Many questions still remain, however, regarding adult neurogenesis in other brain regions and particularly in humans, where standard birthdating methods are not generally feasible. Exciting recent evidence indicates that calretinin-expressing interneurons are added to the adult human striatum at a substantial rate [2]. The role of new neurons is unknown, but studies in rodents will be able to further elucidate their identity and origin and then begin to understand their regulation and function. PMID:26298770

  9. Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Wang, Yun; Levitz, David; Choudhury, Niloy; Swanzey, Emily; Lagowski, James; Kulesz-Martin, Molly; Jacques, Steven L.

    2011-04-01

    Psoriasis is a common inflammatory skin disease resulting from genetic and environmental alterations of cutaneous immune responses. While numerous therapeutic targets involved in the immunopathogenesis of psoriasis have been identified, the in vivo dynamics of inflammation in psoriasis remain unclear. We undertook in vivo time course focus-tracked optical coherence tomography (OCT) imaging to noninvasively document cutaneous alterations in mouse skin treated topically with Imiquimod (IMQ), an established model of a psoriasis-like disease. Quantitative appraisal of dermal architectural changes was achieved through a two parameter fit of OCT axial scans in the dermis of the form A(x, y, z) = ρ(x, y)exp [ - μ(x, y)z]. Ensemble averaging over 2000 axial scans per mouse in each treatment arm revealed no significant changes in the average dermal attenuation rate, <μ>, however the average local dermal reflectivity <ρ>, decreased significantly following 1, 3, and 6 days of IMQ treatment (p < 0.001) in comparison to vehicle-treated control mice. In contrast, epidermal and dermal thickness changes were only significant when comparing controls and 6-day IMQ treated mice. This suggests that dermal alterations, attributed to collagen fiber bundle enlargement, occur prior to epidermal thickness changes due to hyperplasia and dermal thickness changes due to edema. Dermal reflectivity positively correlated with epidermal hyperplasia (repi2 = 0.78) and dermal edema (rderm2 = 0.86). Our results suggest that dermal reflectivity as measured by OCT can be utilized to quantify a psoriasis-like disease in mice, and thus has the potential to aid in the quantitative assessment of psoriasis in humans.

  10. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    SciTech Connect

    Tashiro, Kanae; Shishido, Mayumi; Fujimoto, Keiko; Hirota, Yuko; Yo, Kazuyuki; Gomi, Takamasa; Tanaka, Yoshitaka

    2014-01-03

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.

  11. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    PubMed

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD.

  12. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    PubMed

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD. PMID:26988110

  13. Late Pleistocene adult mortality patterns and modern human establishment

    PubMed Central

    Trinkaus, Erik

    2011-01-01

    The establishment of modern humans in the Late Pleistocene, subsequent to their emergence in eastern Africa, is likely to have involved substantial population increases, during their initial dispersal across southern Asia and their subsequent expansions throughout Africa and into more northern Eurasia. An assessment of younger (20–40 y) versus older (>40 y) adult mortality distributions for late archaic humans (principally Neandertals) and two samples of early modern humans (Middle Paleolithic and earlier Upper Paleolithic) provides little difference across the samples. All three Late Pleistocene samples have a dearth of older individuals compared with Holocene ethnographic/historical samples. They also lack older adults compared with Holocene paleodemographic profiles that have been critiqued for having too few older individuals for subsistence, social, and demographic viability. Although biased, probably through a combination of preservation, age assessment, and especially Pleistocene mobility requirements, these adult mortality distributions suggest low life expectancy and demographic instability across these Late Pleistocene human groups. They indicate only subtle and paleontologically invisible changes in human paleodemographics with the establishment of modern humans; they provide no support for a life history advantage among early modern humans. PMID:21220336

  14. Dermal versus total uptake of benzene from mineral spirits solvent during parts washing.

    PubMed

    Bogen, Kenneth T; Sheehan, Patrick J

    2014-07-01

    Quantitative approaches to assessing exposure to, and associated risk from, benzene in mineral spirits solvent (MSS), used widely in parts washing and degreasing operations, have focused primarily on the respiratory pathway. The dermal contribution to total benzene uptake from such operations remains uncertain because measuring in vivo experimental dermal uptake of this volatile human carcinogen is difficult. Unprotected dermal uptake involves simultaneous sustained immersion events and transient splash/wipe events, each yielding residues subject to evaporation as well as dermal uptake. A two-process dermal exposure framework to assess dermal uptake to normal and damaged skin was applied to estimate potential daily dermal benzene dose (Dskin ) to workers who used historical or current formulations of recycled MSS in manual parts washers. Measures of evaporation and absorption of MSS dermally applied to human subjects were modeled to estimate in vivo dermal uptake of benzene in MSS. Uncertainty and interindividual variability in Dskin was characterized by Monte Carlo simulation, conditioned on uncertainty and/or variability estimated for each model input. Dermal exposures are estimated to average 33% of total (inhalation + dermal) benzene parts washing dose, with approximately equal predicted portions of dermal dose due to splash/wipe and to continuous contact with MSS. The estimated median (95th percentile) dermal and total daily benzene doses from parts washing are: 0.0069 (0.024) and 0.025 (0.18) mg/day using current, and 0.027 (0.085) and 0.098 (0.69) mg/day using historical, MSS solvents, respectively.

  15. In vivo dermal absorption of pyrethroid pesticides in the rat.

    EPA Science Inventory

    The potential for exposure to pyrethroid pesticides has risen recently because of their increased use. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin and permethrin in the rat. Hair on the dorsal side of anesthetized adult m...

  16. Novel surface markers directed against adult human gallbladder.

    PubMed

    Galivo, Feorillo H; Dorrell, Craig; Grompe, Maria T; Zhong, YongPing; Streeter, Philip R; Grompe, Markus

    2015-07-01

    Novel cell surface-reactive monoclonal antibodies generated against extrahepatic biliary cells were developed for the isolation and characterization of different cell subsets from normal adult human gallbladder. Eleven antigenically distinct gallbladder subpopulations were isolated by fluorescence-activated cell sorting. They were classified into epithelial, mesenchymal, and pancreatobiliary (PDX1(+)SOX9(+)) subsets based on gene expression profiling. These antigenically distinct human gallbladder cell subsets could potentially also reflect different functional properties in regards to bile physiology, cell renewal and plasticity. Three of the novel monoclonal antibodies differentially labeled archival sections of primary carcinoma of human gallbladder relative to normal tissue. The novel monoclonal antibodies described herein enable the identification and characterization of antigenically diverse cell subsets within adult human gallbladder and are putative tumor biomarkers.

  17. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    PubMed Central

    Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  18. [The existence vomeronasal organ in adult humans].

    PubMed

    Rapiejko, Piotr; Zielnik-Jurkiewicz, Beata; Wojdas, Andrzej; Ratajczak, Jan; Jurkiewicz, Dariusz

    2007-01-01

    The influence of chemical substances (feromones) on human emotional and physical condition has fascinated psychologists, sexuologists and laryngologists since centurie. Literature conveys inconsistent information on vomeronasal organ (VNO) occurrence in humans. This organ is often called Jacobson's, and 2 symmetrical openings leading into it, located on both sides of septum, are called Ruyasch's ducts. The aim of the study was to analyze vomeronasal organ occurrence in humans in relation to age and sex. The study was conducted in a group of 634 patients, aged 18-80 years. All patients underwent routine ENT examination including rhinoscopy, nasal cavity examination with usage of 2.5x magnification lens (surgical glasses) and surgical microscope with 10x magnification. All persons had nasal cavities examined endoscopically. Every time presence of vomeronasal organ openings, along with localization, size and symmetry of these was noted. Subjects, who presented Jacobson's organ, were asked to fill a questionnaire concerning influence of smells on erotic sensations. Vomeronasal organ was fund in 312 persons, that is 49.21%. In 83.65% of cases vomeronasal organ opening size was smaller than 0.2 mm, what restricted its visibility to usage of magnifying lens, microscope, or endoscope. In 16.34% of cases only vomeronasal organ ducts openings were well visible in routine rhinoscopy without magnification. Vomeronasal organ was found more often in men than women. VNO was significantly more rare in patients with nasal septal deviation. In these cases, vomeronasal organ was usually found unilaterally, in all the cases on the concave side of deviated nasal septum. PMID:18260256

  19. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  20. Generation and characterization of multipotent stem cells from established dermal cultures.

    PubMed

    Hill, Rebecca P; Gledhill, Karl; Gardner, Aaron; Higgins, Claire A; Crawford, Heather; Lawrence, Clifford; Hutchison, Christopher J; Owens, William A; Kara, Bo; James, S Elizabeth; Jahoda, Colin A B

    2012-01-01

    Human multipotent skin derived precursor cells (SKPs) are traditionally sourced from dissociated dermal tissues; therefore, donor availability may become limiting. Here we demonstrate that both normal and diseased adult human dermal fibroblasts (DF) pre-cultured in conventional monolayers are capable of forming SKPs (termed m-SKPs). Moreover, we show that these m-SKPs can be passaged and that cryopreservation of original fibroblast monolayer cultures does not reduce m-SKP yield; however, extensive monolayer passaging does. Like SKPs generated from dissociated dermis, these m-SKPs expressed nestin, fibronectin and versican at the protein level. At the transcriptional level, m-SKPs derived from normal adult human DF, expressed neural crest stem cell markers such as p75NTR, embryonic stem cell markers such as Nanog and the mesenchymal stem cell marker Dermo-1. Furthermore, appropriate stimuli induced m-SKPs to differentiate down either mesenchymal or neural lineages resulting in lipid accumulation, calcification and S100β or β-III tubulin expression (with multiple processes). m-SKP yield was greater from neonatal foreskin cultures compared to those from adult DF cultures; however, the former showed a greater decrease in m-SKP forming capacity after extensive monolayer passaging. m-SKP yield was greater from adult DF cultures expressing more alpha-smooth muscle actin (αSMA). In turn, elevated αSMA expression correlated with cells originating from specimens isolated from biopsies containing more terminal hair follicles; however, αSMA expression was lost upon m-SKP formation. Others have shown that dissociated human hair follicle dermal papilla (DP) are a highly enriched source of SKPs. However, conversely and unexpectedly, monolayer cultured human hair follicle DP cells failed to form m-SKPs whereas those from the murine vibrissae follicles did. Collectively, these findings reveal the potential for using expanded DF cultures to produce SKPs, the heterogeneity of

  1. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults.

  2. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults. PMID:2307392

  3. Predictors of food preferences in adult humans.

    PubMed

    Logue, A W; Smith, M E

    1986-06-01

    Predictors of preferences for a wide variety of foods were examined in 303 male and female human subjects ranging from 14-68 years of age. The subjects completed questionnaires which requested information on the subject's sex, age, thinness, sensation seeking and ethnic background, as well as on the subjects' food preferences. Largely consistent with previous studies, female subjects reported higher preferences for low-calorie foods, candy and wine, and lower preferences for meat, beer, spicy foods and milk. Younger subjects reported higher preferences for sweet foods and lower preferences for foods such as chili pepper that are considered acquired tastes. Thinner subjects tended to rate both sweet foods and meat lower than did other subjects. Preferences for spicy foods or foods likely to cause illness were positively correlated with sensation seeking while preferences for sweet or bland foods or foods unlikely to cause illness were negatively correlated with sensation seeking. Subjects for whom the primary cuisine on which they were raised was Oriental cuisine preferred alcoholic beverages and non-Oriental foods less than did other subjects. A factor analysis of the food preferences yielded ten factors including those for meat and potatoes, alcohol, spices and junk food. Data on predictors of food preferences can assist research on the determinants of food preferences, however much of the variance in food preferences remains to be explained.

  4. Human Adult Cortical Reorganization and Consequent Visual Distortion

    PubMed Central

    Dilks, Daniel D.; Serences, John T.; Rosenau, Benjamin J.; Yantis, Steven; McCloskey, Michael

    2009-01-01

    Neural and behavioral evidence for cortical reorganization in the adult somatosensory system after loss of sensory input (e.g., amputation) has been well documented. In contrast, evidence for reorganization in the adult visual system is far less clear: neural evidence is the subject of controversy, behavioral evidence is sparse, and studies combining neural and behavioral evidence have not previously been reported. Here, we report converging behavioral and neuroimaging evidence from a stroke patient (B.L.) in support of cortical reorganization in the adult human visual system. B.L.’s stroke spared the primary visual cortex (V1), but destroyed fibers that normally provide input to V1 from the upper left visual field (LVF). As a consequence, B.L. is blind in the upper LVF, and exhibits distorted perception in the lower LVF: stimuli appear vertically elongated, toward and into the blind upper LVF. For example, a square presented in the lower LVF is perceived as a rectangle extending upward. We hypothesized that the perceptual distortion was a consequence of cortical reorganization in V1. Extensive behavioral testing supported our hypothesis, and functional magnetic resonance imaging (fMRI) confirmed V1 reorganization. Together, the behavioral and fMRI data show that loss of input to V1 after a stroke leads to cortical reorganization in the adult human visual system, and provide the first evidence that reorganization of the adult visual system affects visual perception. These findings contribute to our understanding of the human adult brain’s capacity to change and has implications for topics ranging from learning to recovery from brain damage. PMID:17804619

  5. Isolation and cultivation of dermal stem cells that differentiate into functional epidermal melanocytes.

    PubMed

    Li, Ling; Fukunaga-Kalabis, Mizuho; Herlyn, Meenhard

    2012-01-01

    Human melanocytes have been extensively studied, but a melanocyte stem cell reservoir in glabrous skin has not yet been found. Human dermis contains cells that are nonpigmented but can differentiate to several different cell types. We have recently shown that multipotent dermal stem cells isolated from human neonatal foreskins are able to differentiate to multiple cell lineages, including pigmented melanocytes. The dermal stem cells grow as three-dimensional spheres in human embryonic stem cell medium and express some neural crest stem cell and embryonic stem cell markers. Melanocytes derived from dermal stem cells express melanocytic markers and act the same way as mature epidermal melanocytes. Dermal spheres, embedded in the reconstructed dermis consisting of collagen with fibroblasts, can migrate to the basement membrane, where they become pigmented in the same way as epidermal melanocytes suggesting that dermal stem cells can give rise to epidermal melanocytes.

  6. In vivo dermal absorption of pyrethroid pesticides in the rat.

    PubMed

    Hughes, Michael F; Edwards, Brenda C

    2016-01-01

    Exposure to pyrethroid pesticides is a potential cause for concern. The objective of this study was to examine the in vivo dermal absorption of bifenthrin, deltamethrin, and permethrin in the rat. Dorsal hair on adult male Long-Evans rats was removed. The next day, the skin was dosed with 1750 nmol (312.5 nmol/cm(2)) of radiolabeled (5 µCi) bifenthrin, deltamethrin, or permethrin in acetone. A nonoccluding plastic cover was glued over the dosing site. The animals were placed in metabolism cages to collect excreta. At 24 h postdosing, the skin was washed with soap and water, and rats in one group were euthanized and their tissues were collected. The skin was removed and tape stripped. The remaining animals were returned to the metabolism cages after the wash for 4 d. These rats were then euthanized and handled as already described. Excreta, wash, tape strips, tissues, and carcass were analyzed for pyrethroid-derived radioactivity. The wash and tape strips removed >50% of the dose and skin retained 9-24%. Cumulative radioactivity in excreta was 0.5-7% at 24 h and 3-26% at 120 h. Radioactivity in tissues was <0.3% of the dose, while carcass retained 2 to 5%. Assuming absorption equals cumulative recovery in skin (washed and tape stripped), excreta, tissues, and carcass, absorption was permethrin ~ bifenthrin > deltamethrin at 24 h and permethrin > deltamethrin > bifenthrin at 120 h. Using the parallelogram approach with published in vitro data, human dermal absorption of these pyrethroids was estimated to be <10% of the dose. PMID:26817658

  7. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium.

    PubMed

    Hendudari, Farzane; Piryaei, Abbas; Hassani, Seyedeh-Nafiseh; Darbandi, Hasan; Bayat, Mohammad

    2016-05-01

    Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium. PMID:26984346

  8. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium.

    PubMed

    Hendudari, Farzane; Piryaei, Abbas; Hassani, Seyedeh-Nafiseh; Darbandi, Hasan; Bayat, Mohammad

    2016-05-01

    Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium.

  9. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-12-01

    The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin.

  10. Ultrastructural characteristics of human adult and infant cerebral cortical neurons.

    PubMed Central

    Ong, W Y; Garey, L J

    1991-01-01

    Biopsy specimens of human cerebral cortex from three adults and two infants were studied by correlating their light microscopic features in semithin sections with their ultrastructural characteristics. There was good tissue preservation, due to a minimum delay between obtaining the specimens and fixation. Pyramidal cells had a prominent apical dendrite, fine heterochromatin clumps in the nucleus and generally small numbers of cytoplasmic organelles, except for numerous free ribosomes in some of the large pyramids of Layers III to VI. Non-pyramidal cells lacked an apical dendrite and were further classified, on size and ultrastructure, into small, medium and large types. Large numbers of asymmetrical and symmetrical synapses were present in the neuropil but very few axosomatic synapses were found in the human cerebral cortex compared with subhuman primates and other mammals. Some symmetrical synapses were characterised by the presence of wide pre- and postsynaptic densities. The same general features of the adult cortex were also encountered in the infant, with certain exceptions. Many of the infant neurons had less densely packed heterochromatin, but greater numbers of free ribosomes, compared with the adult, and lipofuscin was absent. There was a total absence of myelinated fibres from the infant cortex; more large diameter dendrites were present than in the adult and axosomatic synapses were commoner. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:2050578

  11. [Generation of new nerve cells in the adult human brain].

    PubMed

    Poulsen, Frantz Rom; Meyer, Morten; Rasmussen, Jens Zimmer

    2003-03-31

    Generation of new nerve cells (neurogenesis) is normally considered to be limited to the fetal and early postnatal period. Thus, damaged nerve cells are not expected to be replaced by generation of new cells. The brain is, however, more plastic than previously assumed. This also includes neurogenesis in the adult human brain. In particular two brain regions show continuous division of neural stem and progenitor cells generating neurons and glial cells, namely the subgranular zone of the dentate gyrus and the subventricular zones of the lateral ventricles. From the latter region newly generated neuroblasts (immature nerve cells) migrate toward the olfactory bulb where they differentiate into neurons. In the dentate gyrus the newly generated neurons become functionally integrated in the granule cell layer, where they are believed to be of importance to learning and memory. It is at present not known whether neurogenesis in the adult human brain can be manipulated for specific repair after brain damage.

  12. [The pathogenesis of psoriasis. Autoradiographic in vitro studies on cell proliferation in psoriasis vulgaris and other normal and hyperproliferative states of epidermal and dermal human cells].

    PubMed

    Pullman, H

    1978-07-01

    In the epidermal cells of patients suffering from psoriasis we found a significant prolongation of DNA-synthesis time (ts) in uninvolved skin, very early lesions, and fully developed plaques. In uninvolved psoriatic skin ts in addition increased significantly within 6 hours after stripping of the horny layer. In normal epidermis and in other states of epidermal inflammation and hyperproliferation (akanthosis by petrolatum, toxic dermatitis, chronic allergic ekzema, neurodermitis, allergic patch test reaction) a comparable prolongation of ts was not ascertainable. This prolongation is most distinct in the early lesions and proceeds the development of hyperproliferation and akanthosis. A dermal infiltrate with increased proliferative activity seems to be a stimulus, in the sense of a Koebner-phenomenon. The abnormal psoriatic epidermis, with disturbed DNA-synthesis, reacts to this infiltrate as well as to other irritants not with a limited hyperproliferation but with the development of psoriatic plaque. PMID:149749

  13. Epidermal growth factor receptor in adult human dorsal root ganglia.

    PubMed

    Huerta, J J; Diaz-Trelles, R; Naves, F J; Llamosas, M M; Del Valle, M E; Vega, J A

    1996-09-01

    Transforming growth factor-alpha (TGFalpha) enhances neuronal survival and neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons. It binds a membrane protein, denominated epidermal growth factor receptor (EGFr). EGFr has been localized in developing and adult human DRG. However, it remains to be elucidated whether all DRG neurons express EGFr or whether differences exist among neuronal subtypes. This study was undertaken to investigate these topics in adult human DRG using immunoblotting, and combined immunohistochemistry and image analysis techniques. A mouse monoclonal antibody (clone F4) mapping within the intracytoplasmic domain of EGFr was used. Immunoblotting revealed two main proteins with estimated molecular masses of approximately/equal to 65 kDa and 170 kDa, and thus consistent with the full-length EGFr. Additional protein bands were also encountered. Light immunohistochemistry revealed specific immunoreactivity (IR) for EGFr-like proteins in most (86%) primary sensory neurons, the intensity of immunostaining being stronger in the small- and intermediate-sized ones. Furthermore, EGFr-like IR was also observed in the satellite glial cells of the ganglia as well as in the intraganglionic and dorsal root Schwann cells. Taken together, our findings demonstrate that EGFr, and other related proteins containing the epitope labeled with the antibody F4, are responsible for the EGFr IR reported in DRG. Furthermore, we demonstrated heterogeneity in the expression of EGFr-like IR in adult human primary sensory neurons, which suggests different responsiveness to their ligands.

  14. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  15. Carbofuran occupational dermal toxicity, exposure and risk assessment†

    PubMed Central

    Gammon, Derek W; Liu, Zhiwei; Becker, John M

    2012-01-01

    BACKGROUND Carbofuran is a carbamate insecticide that inhibits AChE. Although toxic by ingestion in mammals, it has low dermal toxicity, with relatively few confirmed worker illnesses. This risk assessment describes its time of onset, time to peak effect and time to recovery in rats using brain AChE inhibition in acute and 21 day dermal studies; in vitro rat/human relative dermal absorption for granular (5G) and liquid (4F) formulations; occupational exposure estimates using the Pesticide Handlers' Exposure Database and Agricultural Handlers' Exposure Database (PHED/AHED). RESULTS The point of departure for acute risk calculation (BMDL10) was 6.7 mg kg−1 day−1 for brain AChE inhibition after 6 h exposure. In a 21 day study, the BMDL10 was 6.8 mg kg−1 day−1, indicating reversibility. At 75 mg kg−1 day−1, time of onset was ≤30 min and time to peak effect was 6–12 h. Rat skin had ca tenfold greater dermal absorption of carbofuran (Furadan® 5G or 4F) than human skin. Exposure estimates for 5G in rice and 4F in ten crops had adequate margins of exposure (>100). CONCLUSION Rat dermal carbofuran toxicity was assessed in terms of dose and time-related inhibition of AChE. Comparative dermal absorption in rats was greater than in humans. Worker exposure estimates indicated acceptable risk for granular and liquid formulations of carbofuran. Copyright © 2011 Society of Chemical Industry PMID:21834090

  16. [Multipotency of adult stem cells derived from human amnion].

    PubMed

    Shi, Mingxia; Li, Weijia; Li, Bingzong; Li, Jing; Zhao, Chunhua

    2009-05-01

    Adult stem cells are drawing more and more attention due to the potential application in degenerative medicine without posing any moral problem. There is growing evidence showing that the human amnion contains various types of adult stem cell. Since amniotic tissue is readily available, it has the potential to be an important source of regenerative medicine material. In this study we tried to find multipotent adult stem cells in human amnion. We isolated stem cells from amniotic mesenchymal cells by limiting dilution assay. Similar to bone marrow derived mesenchymal stem cells, these cells displayed a fibroblast like appearance. They were positive for CD105, CD29, CD44, negative for haematopoietic (GlyA, CD31, CD34, CD45) and epithelial cell (pan-CK) markers. These stem cells had the potential to differentiate not only into osteogenic, adipogenic and endothelial lineages, but also hepatocyte-like cells and neural cells at the single-cell level depending on the culture conditions. They had the capacity for self-renewal and multilineage differentiation even after being expanded for more than 30 population doublings in vitro. So they may be an ideal stem cell source for inherited or degenerative diseases treatment.

  17. Subchronic dermal application of N,N-diethyl m-toluamide (DEET) and permethrin to adult rats, alone or in combination, causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and the hippocampus, and Purkinje neuron loss in the cerebellum.

    PubMed

    Abdel-Rahman, A; Shetty, A K; Abou-Donia, M B

    2001-11-01

    N,N-Diethyl m-toluamide (DEET) and permethrin have been implicated as potential neurotoxic agents that may have played an important role in the development of illnesses in some veterans of the Persian Gulf War. To determine the effect of subchronic dermal application of these chemicals on the adult brain, we evaluated histopathological alterations in the brain of adult male rats following a daily dermal dose of DEET (40 mg/kg in 70% ethanol) or permethrin (0.13 mg/kg in 70% ethanol) or a combination of the two for 60 days. Control rats received a daily dermal dose of 70% ethanol for 60 days. Animals were perfused and brains were processed for morphological and histopathological analyses following the above regimen. Quantification of the density of healthy (or surviving) neurons in the motor cerebral cortex, the dentate gyrus, the CA1 and CA3 subfields of the hippocampus, and the cerebellum revealed significant reductions in all three treated groups compared with the control group. Further, animals receiving either DEET or permethrin exhibited a significant number of degenerating (eosinophilic) neurons in the above brain regions. However, degenerating neurons were infrequent in animals receiving both DEET and permethrin, suggesting that neuronal cell death occurs earlier in animals receiving combined DEET and permethrin than in animals receiving either DEET or permethrin alone. The extent of neuron loss in different brain regions was similar among the three treatment groups except the dentate gyrus, where neurodegeneration was significantly greater with exposure to DEET alone. The neuron loss in the motor cerebral cortex and the CA1 subfield of all treated groups was also corroborated by a significant decrease in microtubule associated protein 2-immunoreactive elements (15-52% reduction), with maximal reductions occurring in rats receiving DEET alone; further, the surviving neurons in animals receiving both DEET and permethrin exhibited wavy and beaded dendrites

  18. How long have adult humans been consuming milk?

    PubMed

    Gerbault, Pascale; Roffet-Salque, Mélanie; Evershed, Richard P; Thomas, Mark G

    2013-12-01

    Lactase is the enzyme that breaks down the milk sugar lactose, and in most mammals, including most humans, lactase activity is down-regulated after the weaning period is completed. However, in about 35% of adults worldwide, lactase continues to be expressed throughout adulthood, a feature termed lactase persistence (LP). Genetic evidence indicates that LP is a recent human adaptation, and its current geographic distribution correlates with the relative historical importance of dairying in different human populations. Investigating archaeological evidence for fresh milk consumption has proved crucial in building an account of the joint evolution of LP and dairying. A powerful technique for investigating food processing, including milk processing, in ancient populations is lipid residue analysis on archaeological pottery. We review here the archaeological and genetic evidence available that have contributed to a better understanding of the gene-culture co-evolution of LP and dairying. PMID:24339181

  19. How long have adult humans been consuming milk?

    PubMed

    Gerbault, Pascale; Roffet-Salque, Mélanie; Evershed, Richard P; Thomas, Mark G

    2013-12-01

    Lactase is the enzyme that breaks down the milk sugar lactose, and in most mammals, including most humans, lactase activity is down-regulated after the weaning period is completed. However, in about 35% of adults worldwide, lactase continues to be expressed throughout adulthood, a feature termed lactase persistence (LP). Genetic evidence indicates that LP is a recent human adaptation, and its current geographic distribution correlates with the relative historical importance of dairying in different human populations. Investigating archaeological evidence for fresh milk consumption has proved crucial in building an account of the joint evolution of LP and dairying. A powerful technique for investigating food processing, including milk processing, in ancient populations is lipid residue analysis on archaeological pottery. We review here the archaeological and genetic evidence available that have contributed to a better understanding of the gene-culture co-evolution of LP and dairying.

  20. Genistein protects dermal fibrosis in bleomycin-induced experimental scleroderma

    PubMed Central

    Koca, Süleyman Serdar; Dağlı, Adile Ferda; Yolbaş, Servet; Gözel, Nevzat; Işık, Ahmet

    2015-01-01

    Objective Genistein, a phytoestrogen, has anti-oxidant, anti-inflammatory, and anti-angiogenic properties. The aim of the present study is to evaluate the protective effect of genistein in bleomycin (BLM)-induced dermal fibrosis. Material and Methods This study involved four groups of Balb/c mice (n=10 per group). Mice in three groups were administered BLM [100 μg/day in 100 μL phosphate-buffered saline (PBS)] subcutaneously for 4 weeks; the remaining (control) group received only 100 μL/day of PBS subcutaneously. PBS or BLM was injected into the shaved upper back. Two of the BLM-treated groups also received genistein (1 or 3 mg/kg/day, subcutaneously, to the dorsal front of neck). At the end of the fourth week, all mice were sacrificed and blood and tissue samples were obtained. Results The BLM applications increased the dermal thicknesses, tissue hydroxyproline contents, α-smooth muscle actin-positive cell counts, and led to histopathologically prominent dermal fibrosis. The genistein treatments decreased the tissue hydroxyproline contents and dermal thicknesses, in the BLM-injected mice. Conclusion Genistein has antifibrotic potential in BLM-induced dermal fibrosis model. However, its therapeutic potentials on human scleroderma require evaluation in future studies.

  1. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts.

    PubMed

    Bueno, Fernanda Giacomini; Panizzon, Gean Pier; Mello, Eneri Vieira Souza de Leite; Lechtenberg, Matthias; Petereit, Frank; de Mello, João Carlos Palazzo; Hensel, Andreas

    2014-12-01

    Extracts from Poincianella pluviosa stem bark are used in traditional medicine of South America for its wound healing properties. For validation of this traditional use and for rationalizing a potential pharmaceutical development towards standardized preparations bioassay-guided fractionation of EtOH-water (1:1v/v) extract (crude extract, CE) of P. pluviosa bark was performed. HaCaT keratinocytes cell line and human primary dermal fibroblasts (pNHDF) were used as in vitro systems. Significant stimulation of mitochondrial activity was found for CE on both cell types, which caused a strong increase of cell proliferation of keratinocytes. Fractionation of CE over Sephadex LH20 revealed two inactive fractions (FA and FB) and an active fraction FC, which was further fractionated by MPLC into 4 subfractions. Subfraction FC1 increased mitochondrial activity and proliferation of keratinocytes and dermal fibroblasts in a dose dependent manner (10 to 100 μg/mL) and did not show necrotic cytotoxicity on keratinocytes (LDH release assay). FC1 was investigated by ESI-MS/MS and solid-state (13)C NMR which confirmed the presence of various polyphenols and hydrolyzable tannins. MS studies suggest the presence of pyrogallol (1), gallic acid (2), gallic acid methyl ester (3), ellagic acid (4), corilagin (5), 1,4,6-tri-O-galloyl-glucose (6), tellimagrandin I (7), 1,2,3,6-tetra-O-galloyl-glucose (8), mallotinic acid (9), tellimagrandin II (10), 1,2,3,4,6-penta-O-galloyl-glucose (11), geraniin (12), and mallotusinic acid (13).

  2. Neurons in the White Matter of the Adult Human Neocortex

    PubMed Central

    Suárez-Solá, M. Luisa; González-Delgado, Francisco J.; Pueyo-Morlans, Mercedes; Medina-Bolívar, O. Carolina; Hernández-Acosta, N. Carolina; González-Gómez, Miriam; Meyer, Gundela

    2009-01-01

    The white matter (WM) of the adult human neocortex contains the so-called “interstitial neurons”. They are most numerous in the superficial WM underlying the cortical gyri, and decrease in density toward the deep WM. They are morphologically heterogeneous. A subgroup of interstitial neurons display pyramidal-cell like morphologies, characterized by a polarized dendritic tree with a dominant apical dendrite, and covered with a variable number of dendritic spines. In addition, a large contingent of interstitial neurons can be classified as interneurons based on their neurochemical profile as well as on morphological criteria. WM- interneurons have multipolar or bipolar shapes and express GABA and a variety of other neuronal markers, such as calbindin and calretinin, the extracellular matrix protein reelin, or neuropeptide Y, somatostatin, and nitric oxide synthase. The heterogeneity of interstitial neurons may be relevant for the pathogenesis of Alzheimer disease and schizophrenia. Interstitial neurons are most prominent in human brain, and only rudimentary in the brain of non-primate mammals. These evolutionary differences have precluded adequate experimental work on this cell population, which is usually considered as a relict of the subplate, a transient compartment proper of development and without a known function in the adult brain. The primate-specific prominence of the subplate in late fetal stages points to an important role in the establishment of interstitial neurons. Neurons in the adult WM may be actively involved in coordinating inter-areal connectivity and regulation of blood flow. Further studies in primates will be needed to elucidate the developmental history, adult components and activities of this large neuronal system. PMID:19543540

  3. CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO CHLOROFORM

    EPA Science Inventory

    Studies were conducted to determine the uptake by humans of chloroform as a result of controlled short-term dermal and inhalation exposures. The approach used continuous real-time breath analysis to determine exhaled-breath profiles and evaluate chloroform kinetics in the huma...

  4. Summary of the EPA (Environmental Protection Agency) workshop on carcinogenesis bioassay via the dermal route. Final technical report

    SciTech Connect

    Not Available

    1987-04-29

    Traditionally, the oral route has been the most common route of administration in bioassays which tested the potential carcinogenicity of chemicals. Regulatory agencies, however, prefer to have test chemicals applied by the same route as expected human exposure, whenever possible. Since human exposure to industrial chemicals is frequently via the dermal route, this has become a route of choice for animal testing of certain chemicals. However, protocol design for dermal bioassays presents many unique problems which must be addressed before guidelines for bioassays by the dermal route can be formulated. Furthermore, it may be feasible to develop a limited dermal protocol to screen certain classes of chemicals such as acrylates/methacrylates. Recognizing the need for this workshop, it was designed in two distinct parts; to address the problems inherent in the development of a generic protocol for dermal bioassays and, a specific limited dermal bioassay protocol for acrylates/methacrylates.

  5. Dermal uptake of petroleum substances.

    PubMed

    Jakasa, Ivone; Kezic, Sanja; Boogaard, Peter J

    2015-06-01

    Petroleum products are complex substances comprising varying amounts of linear and branched alkanes, alkenes, cycloalkanes, and aromatics which may penetrate the skin at different rates. For proper interpretation of toxic hazard data, understanding their percutaneous absorption is of paramount importance. The extent and significance of dermal absorption of eight petroleum substances, representing different classes of hydrocarbons, was evaluated. Literature data on the steady-state flux and permeability coefficient of these substances were evaluated and compared to those predicted by mathematical models. Reported results spanned over 5-6 orders of magnitude and were largely dependent on experimental conditions in particular on the type of the vehicle used. In general, aromatic hydrocarbons showed higher dermal absorption than more lipophilic aliphatics with similar molecular weight. The results showed high variation and were largely influenced by experimental conditions emphasizing the need of performing the experiments under "in use" scenario. The predictive models overestimated experimental absorption. The overall conclusion is that, based on the observed percutaneous penetration data, dermal exposure to petroleum hydrocarbons, even of aromatics with highest dermal absorption is limited and highly unlikely to be associated with health risks under real use scenarios.

  6. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  7. Dermal irritation of petrolatum in rabbits but not in mice, rats or minipigs.

    PubMed

    Chandra, S A; Peterson, R A; Melich, D; Merrill, C M; Bailey, D; Mellon-Kusibab, K; Adler, R

    2014-08-01

    Petrolatum is widely used in cosmetics, topical pharmaceuticals and also as a vehicle in dermal toxicity studies. New Zealand white rabbits treated with white petrolatum (vehicle control) in a 2-week dermal irritation study exhibited moderate to severe erythema starting on Day 7 that subsided towards the end of the study. Histological examination of abraded and non-abraded petrolatum-treated skin obtained at termination (Day 15) revealed mild acanthosis, hyperkeratosis, dermal edema with mixed inflammatory cells in the dermis. Macroscopic and microscopic features noted in rabbits were consistent with dermal irritation to petrolatum. Wistar-Han rats, CD1 mice, C57/Bl/6J mice and Göttingen minipigs treated topically with white petrolatum did not exhibit clinical or histologic evidence of dermal irritation. Therapeutic agents developed for topical application are generally tested in rabbits during some point in development. Interpretation of skin irritation data from a single species can impact risk assessment for humans and on product labeling.

  8. Multipotent progenitor cells isolated from adult human pancreatic tissue.

    PubMed

    Todorov, I; Nair, I; Ferreri, K; Rawson, J; Kuroda, A; Pascual, M; Omori, K; Valiente, L; Orr, C; Al-Abdullah, I; Riggs, A; Kandeel, F; Mullen, Y

    2005-10-01

    The supply of islet cells is a limiting factor for the widespread application of islet transplantation of type-1 diabetes. Islets constitute 1% to 2% of pancreatic tissue, leaving approximately 98% as discard after islet isolation and purification. In this report we present our data on the isolation of multipotent progenitor cells from discarded adult human pancreatic tissue. The collected cells from discarded nonislet fractions, after enzymatic digestion and gradient purification of islets, were dissociated for suspension culture in a serum-free medium. The cell clusters grown to a size of 100 to 150 mum contained cells staining for stage-specific embryonic antigens, but not insulin or C-peptide. To direct cell differentiation toward islets, clusters were recultured in a pancreatic differentiation medium. Insulin and C-peptide-positive cells by immunocytochemistry appeared within a week, reaching over 10% of the cell population. Glucagon and somatostatin-positive cells were also detected. The cell clusters were found to secrete insulin in response to glucose stimulation. Cells from the same clusters also had the capacity for differentiation into neural cells, as documented by staining for neural and glial cell markers when cultured as monolayers in media containing neurotrophic factors. These data suggest that multipotent pancreatic progenitor cells exist within the human pancreatic tissue that is typically discarded during islet isolation procedures. These adult progenitor cells can be successfully differentiated into insulin-producing cells, and thus they have the potential for treatment of type-1 diabetes mellitus. PMID:16298614

  9. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  10. Gustatory reaction time to various sweeteners in human adults.

    PubMed

    Yamamoto, T; Kato, T; Matsuo, R; Kawamura, Y; Yoshida, M

    1985-09-01

    Reaction times to recognize the sweet taste of 12 sweeteners at various concentrations were measured in 48 human adults. The reaction time (T) decreased with increasing concentration (C) of each sweetener applied to the anterior dorsal tongue. The relationships between T and C, and T and logC were well described by a rectangular hyperbola formula for each of the 12 sweeteners. Reaction times to discriminate sweet taste quality between pairs of sweeteners were measured, then a similarity index was calculated. Factor analysis based on correlation coefficients between pairs of sweeteners which were obtained by the similarity indices has indicated classification of the sweeteners. Sucrose, fructose, glucose, maltose, sorbitol and aspartame tend to group together. Na-cyclamate and Na-saccharin form another group. DL-alanine, stevioside and neohesperidin dihydrochalcone are rather independent and do not belong to any group.

  11. Comparison of dermal and inhalation routes of entry for organic chemicals

    NASA Technical Reports Server (NTRS)

    Jepson, Gary W.; Mcdougal, James N.; Clewell, Harvey J., III

    1992-01-01

    The quantitative comparison of the chemical concentration inside the body as the result of a dermal exposure versus an inhalation exposure is useful for assessing human health risks and deciding on an appropriate protective posture. In order to describe the relationship between dermal and inhalation routes of exposure, a variety of organic chemicals were evaluated. The types of chemicals chosen for the study were halogenated hydrocarbons, aromatic compounds, non-polar hydrocarbons and inhalation anesthetics. Both dermal and inhalation exposures were conducted in rats and the chemicals were in the form of vapors. Prior to the dermal exposure, rat fur was closely clipped and during the exposure rats were provided fresh breathing air through latex masks. Blood samples were taken during 4-hour exposures and analyzed for the chemical of interest. A physiologically based pharmacokinetic model was used to predict permeability constants (cm/hr) consistent with the observed blood concentrations of the chemical. The ratio of dermal exposure to inhalation exposure required to achieve the same internal dose of chemical was calculated for each test chemical. The calculated ratio in humans ranged from 18 for styrene to 1180 for isoflurane. This methodology can be used to estimate the dermal exposure required to reach the internal dose achieved by a specific inhalation exposure. Such extrapolation is important since allowable exposure standards are often set for inhalation exposures, but occupational exposures may be dermal.

  12. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    SciTech Connect

    Tsai, Ming-Horng; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  13. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

    PubMed Central

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-01-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage. PMID:26537189

  14. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  15. A biokinetic model for systemic technetium in adult humans

    DOE PAGES

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  16. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  17. Comprehensive cellular-resolution atlas of the adult human brain.

    PubMed

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  18. Comprehensive cellular-resolution atlas of the adult human brain.

    PubMed

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  20. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  1. The Adult Learner. The Definitive Classic in Adult Education and Human Resource Development. Fifth Edition.

    ERIC Educational Resources Information Center

    Knowles, Malcolm S.; Holton, Elwood F., III; Swanson, Richard A.

    This book examines the core principles of adult learning and the roots of andragogy, advances in adult learning, and practice in adult learning. The following are among the topics discussed in the book's 17 chapters: importance of learning theory; theories of learning (concept of part and whole models of development, theories based on elemental…

  2. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles.

    PubMed

    Jain, Sanyog; Mistry, Meghal A; Swarnakar, Nitin K

    2011-10-01

    The present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir (ACV) and evaluate their potential as the carrier for dermal delivery. ACV-loaded SLNs (ACV-SLNs) were prepared by the optimized double emulsion process using Compritol 888 ATO as solid lipid. The prepared SLNs were smooth and spherical in shape with average diameter, polydispersity index, and entrapment efficiency of 262 ± 13 nm, 0.280 ± 0.01, and 40.08 ± 4.39% at 10% (w/w) theoretical drug loading with respect to Compritol 888 ATO content. Differential scanning calorimetry and powder X-ray diffraction pattern revealed that ACV was present in the amorphous state inside the SLNs. In vitro skin permeation studies on human cadaver and Sprague-Dawley rat skin revealed 17.65 and 15.17 times higher accumulation of ACV-SLNs in the dermal tissues in comparison to commercially available ACV cream after 24 h. Mechanism of topical permeation and dermal distribution was studied qualitatively using confocal laser scanning microscopy. While free dye (calcein) failed to penetrate skin barrier, the same encapsulated in SLNs penetrated deeply into the dermal tissue suggesting that pilosebaceous route was followed by SLNs for skin penetration. Histological examination and transdermal epidermal water loss measurement suggested that no major morphological changes occurred on rat skin surface due to the application of SLNs. Overall, it was concluded that ACV-loaded SLNs might be beneficial in improving dermal delivery of antiviral agent(s) for the treatment of topical herpes simplex infection.

  3. [Cutaneous myxoma (focal dermal mucinosis)].

    PubMed

    Senff, H; Kuhlwein, A; Jänner, M; Schäfer, R

    1988-09-01

    Two cases of cutaneous myxoma are presented. In case 1 the cutaneous myxoma was localized on the left thumb and clinically resembled a pyogenic granuloma. In case 2 it was found at the left nipple. The benign cutaneous tumor may herald a cardiac myxoma and other conditions. Thus, a cutaneous myxoma should be accepted as an indication for thorough investigation of the whole body at regular intervals. As there are neither clinically nor histologically adequate criteria for differentiation, cutaneous myxoma and focal dermal mucinosis can be considered as variants of a single entity.

  4. Dermal fillers: facts and controversies.

    PubMed

    Wollina, Uwe; Goldman, Alberto

    2013-01-01

    Dermal fillers have been used for decades in soft tissue augmentation. Currently, filler implementation is among the most common minimally invasive procedures for rejuvenation and body sculpturing. There is a broad variety of filler materials and products. Despite immense experience, a number of controversies in this topic exist. Some of these controversies are addressed in this review, for example, who should perform filler injections, the difference between permanent and nonpermanent fillers, the off-label use of liquid silicone, and the role of pain reduction. Implementation of guidelines and restriction of filler use by trained physicians can improve safety for patients.

  5. Adult somatic stem cells in the human parasite, Schistosoma mansoni

    PubMed Central

    Collins, James J.; Wang, Bo; Lambrus, Bramwell G.; Tharp, Marla; Iyer, Harini; Newmark, Phillip A.

    2013-01-01

    Summary Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites. PMID:23426263

  6. A biokinetic model for systemic technetium in adult humans.

    PubMed

    Leggett, R; Giussani, A

    2015-06-01

    This paper reviews biokinetic data for technetium and proposes a biokinetic model for systemic technetium in adult humans. The development of parameter values focuses on data for pertechnetate TcO(-)(4) the most commonly encountered form of technetium and the form expected to be present in body fluids. The model is intended as a default model for occupational or environmental intake of technetium, i.e. applicable in the absence of form- or site-specific information. Tissues depicted explicitly in the model include thyroid, salivary glands, stomach wall, right colon wall, liver, kidneys, and bone. Compared with the ICRP's current biokinetic model for occupational or environmental intake of technetium (ICRP 1993, 1994), the proposed model provides a more detailed and biologically realistic description of the systemic behaviour of technetium and is based on a broader set of experimental and medical data. For acute input of (99m)Tc (T(1/2) = 6.02 h) to blood, the ratios of cumulative (time-integrated) activity predicted by the current ICRP model to that predicted by the proposed model range from 0.4-7 for systemic regions addressed explicitly in both models. For acute input of (99)Tc (T(1/2) = 2.1 × 10(5) year) to blood, the corresponding ratios range from 0.2-30.

  7. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  8. Bone-forming capacity of adult human nasal chondrocytes

    PubMed Central

    Pippenger, Benjamin E; Ventura, Manuela; Pelttari, Karoliina; Feliciano, Sandra; Jaquiery, Claude; Scherberich, Arnaud; Walboomers, X Frank; Barbero, Andrea; Martin, Ivan

    2015-01-01

    Nasal chondrocytes (NC) derive from the same multipotent embryological segment that gives rise to the majority of the maxillofacial bone and have been reported to differentiate into osteoblast-like cells in vitro. In this study, we assessed the capacity of adult human NC, appropriately primed towards hypertrophic or osteoblastic differentiation, to form bone tissue in vivo. Hypertrophic induction of NC-based micromass pellets formed mineralized cartilaginous tissues rich in type X collagen, but upon implantation into subcutaneous pockets of nude mice remained avascular and reverted to stable hyaline-cartilage. In the same ectopic environment, NC embedded into ceramic scaffolds and primed with osteogenic medium only sporadically formed intramembranous bone tissue. A clonal study could not demonstrate that the low bone formation efficiency was related to a possibly small proportion of cells competent to become fully functional osteoblasts. We next tested whether the cues present in an orthotopic environment could induce a more efficient direct osteoblastic transformation of NC. Using a nude rat calvarial defect model, we demonstrated that (i) NC directly participated in frank bone formation and (ii) the efficiency of survival and bone formation by NC was significantly higher than that of reference osteogenic cells, namely bone marrow-derived mesenchymal stromal cells. This study provides a proof-of-principle that NC have the plasticity to convert into bone cells and thereby represent an easily available cell source to be further investigated for craniofacial bone regeneration. PMID:25689393

  9. Patient safety considerations regarding dermal filler injections.

    PubMed

    Jones, Jill K

    2006-01-01

    Today's population is seeking procedures that enhance or improve its appearance, that require little or no downtime, and that provide immediate results. Dermal filler injections are among the top five procedures performed for this purpose. Patient safety must remain the ultimate goal of any practitioner delivering such procedures. This column will examine pertinent safety considerations in relation to the delivery of dermal filler injections.

  10. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    PubMed

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.

  11. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    PubMed

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. PMID:25779637

  12. Adult Education and the Human Environment: Transactions of a Celebration.

    ERIC Educational Resources Information Center

    Jones-Quartey, K. A. B., Ed.; And Others

    The document comprises a collection of speeches and seminar reports arising from the 25th anniversary celebration of the Institute of Adult Education at the University of Ghana. The theme of the celebration, introduced in the first chapter, was Adult Education and Man's Environment--the Next Quarter-Century. The second chapter comprises the…

  13. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  14. Transcriptional Profiling of Adult Neural Stem-Like Cells from the Human Brain

    PubMed Central

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O.; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A.

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33–60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate. PMID

  15. Under-dermal emulator of vascular identification

    NASA Astrophysics Data System (ADS)

    Landa, Joseph; Blake, Robert; Rich, Alex; Szu, Harold

    2012-06-01

    The goal of this paper and research effort is to develop a simple and clear apparatus and approach to quantify the effectiveness of sensor systems as it relates to their ability to penetrate camouflage and resolve skin depth. Over the last decade, several attempts have been made to leverage advances in Infrared (IR) imaging, made by the military, into medical sensing [1]. Several promising technologies have been evaluated and thus far determined to be lacking when compared to the current standards of care based on x-ray imaging [2]. While progress has been made this general class of technology has not generated wide spread interest from the medical community. This lack of interest is discouraging, especially when considering the great potential for good that would result in successfully demonstrating a truly passive tumor detection system based on thermal signatures. Recently, this team participated as part of a larger group in the development and testing of a novel class of algorithms using images from two separate IR spectra. This area of spectral fusing algorithms is called the Single Pixel-Blind Source Separation (SP-BSS). While the goal of experiment is not new, our results showed this approach provided potential improvements over more traditional thermography, particularly in the area of overcoming environmental noise. These promising results have motivated us to develop a method for running controlled experiments so that the equipment and algorithms can be optimized and the significant engineering challenges of frame registration, data standardization, and sensor optimization for wellness screening can be accomplished. Conducting these efforts using data from human subjects is both impractical and unwarranted at this time. We have developed a physics-physiological under-dermal model of internal vascular circulation that approximates not only a healthy human body (angiogenesis effect) but also a human body developing a tumor (neo-angiogenesis effect). This

  16. Stereoselective suppressive effects of protopanaxadiol epimers on UV-B-induced reactive oxygen species and matrix metalloproteinase-2 in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Kho, Ye Eun; Kim, Kyunghoon; Jin, Chang Duck; Lim, Chang-Jin

    2015-01-01

    This study aimed to assess the skin-related anti-photoaging activities of the 2 epimeric forms of protopanaxadiol (PPD), 20(S)-PPD and 20(R)-PPD, in cultured human keratinocytes (HaCaT cells). The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), as well as cell viability for HaCaT cells under UV-B irradiation. The activities for MMP-2 and -1 in conditioned medium were determined using gelatin zymography, and MMP-2 protein in the conditioned medium was detected using Western blot analysis. 20(S)-PPD, but not 20(R)-PPD, suppressed UV-B-induced ROS elevation. Neither of the epimers, at the concentrations used, exhibited cytotoxicity, irrespective of UV-B irradiation. 20(S)-PPD, but not 20(R)-PPD, exhibited an inhibitory effect on UV-B-induced MMP-2 activity and expression in HaCaT cells. In brief, only 20(S)-PPD, a major metabolic product of PPD-type ginsenosides, inhibits UV-B-induced ROS and MMP-2 elevation, implying its stereospecific anti-photoaging activity on the skin. PMID:25405256

  17. Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKT.

    PubMed

    Ranzato, Elia; Mazzucco, Laura; Patrone, Mauro; Burlando, Bruno

    2009-08-01

    There is a growing interest for the clinical use of platelet derivates in wound dressing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances, though mechanisms are mostly unknown. We studied wound-healing processes of human primary fibroblasts, by exposing cells to a platelet lysate (PL) obtained from blood samples. Crystal violet and tetrazolium salt (MTS) assays showed dose-response increase of cell proliferation and metabolism. In scratch wound and transwell assays, a dose of 20% PL induced a significant increase of wound closure rate at 6 and 24 hrs, and had a strong chemotactic effect. BAPTA-AM, SB203580 and PD98059 caused 100% inhibition of PL effects, whereas wortmannin reduced to about one third the effect of PL on wound healing and abolished the chemotactic response. Confocal imaging showed the induction by PL of serial Ca2(+) oscillations in fibroblasts. Data indicate that cell Ca2(+) plays a fundamental role in wound healing even without PL, p38 and ERK1/2 are essential for PL effects but are also activated by wounding per se, PI3K is essential for PL effects and its downstream effector Akt is activated only in the presence of PL. In conclusion, PL stimulates fibroblast wound healing through the activation of cell proliferation and motility with different patterns of involvement of different signalling pathways.

  18. Germline stem cells and neo-oogenesis in the adult human ovary.

    PubMed

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  19. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells

    PubMed Central

    2011-01-01

    Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704

  20. A comparison of erythrocyte glutathione S-transferase activity from human foetuses and adults.

    PubMed Central

    Strange, R C; Johnston, J D; Coghill, D R; Hume, R

    1980-01-01

    Glutathione S-transferase activity was measured in partially purified haemolysates of erythrocytes from human foetuses and adults. Enzyme activity was present in erythrocytes obtained between 12 and 40 weeks of gestation. The catalytic properties of the enzyme from foetal cells were similar to those of the enzyme from adult erythrocytes, indicating that probably only one form of the erythrocytes enzyme exists throughout foetal and adult life. PMID:7396875

  1. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  2. Dermal absorption of inorganic germanium in rats.

    PubMed

    Yokoi, Katsuhiko; Kawaai, Takae; Konomi, Aki; Uchida, Yuka

    2008-11-01

    So-called germanium 'health' products including dietary supplements, cosmetics, accessories, and warm bath service containing germanium compounds and metalloid are popular in Japan. Subchronic and chronic oral exposure of germanium dioxide (GeO(2)), popular chemical form of inorganic germanium causes severe germanium toxicosis including death and kidney dysfunction in humans and experimental animals. Intestinal absorption of neutralized GeO(2) or germanate is almost complete in humans and animals. However, it is not known whether germanium is cutaneously absorbed. We tested dermal absorption of neutralized GeO(2) or germanate using male F344/N rats. Three groups of rats were treated with a 3-h topical application of hydrophilic ointment containing graded level of neutralized GeO(2) (pH 7.4): 0, 0.21 and 0.42 mg GeO(2)/g. Germanium concentration in blood and tissues sampled from rats after topical application of inorganic germanium was measured by inductively coupled plasma-mass spectrometry. Animals topically applied 0.42 mg GeO(2)/g ointment had significantly higher germanium concentrations in plasma, liver, and kidney than those of rats that received no topical germanium. The results indicate that skin is permeable to inorganic germanium ion or germanate and recurrent exposure of germanium compounds may pose a potential health hazard.

  3. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast

  4. Kaposi's sarcoma-associated herpesvirus induces sustained NF-kappaB activation during de novo infection of primary human dermal microvascular endothelial cells that is essential for viral gene expression.

    PubMed

    Sadagopan, Sathish; Sharma-Walia, Neelam; Veettil, Mohanan Valiya; Raghu, Hari; Sivakumar, Ramu; Bottero, Virginie; Chandran, Bala

    2007-04-01

    In vitro Kaposi's sarcoma-associated herpesvirus (KSHV) infection of primary human dermal microvascular endothelial (HMVEC-d) cells and human foreskin fibroblast (HFF) cells is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, and induction of several cytokines, growth factors, and angiogenic factors. Since NF-kappaB is a key molecule involved in the regulation of several of these factors, here, we examined NF-kappaB induction during de novo infection of HMVEC-d and HFF cells. Activation of NF-kappaB was observed as early as 5 to 15 min postinfection by KSHV, and translocation of p65-NF-kappaB into nuclei was detected by immunofluorescence assay, electrophoretic mobility shift assay, and p65 enzyme-linked immunosorbent assay. IkappaB phosphorylation inhibitor (Bay11-7082) reduced this activation significantly. A sustained moderate level of NF-kappaB induction was seen during the observed 72 h of in vitro KSHV latency. In contrast, high levels of ERK1/2 activation at earlier time points and a moderate level of activation at later times were observed. p38 mitogen-activated protein kinase was activated only at later time points, and AKT was activated in a cyclic manner. Studies with UV-inactivated KSHV suggested a role for virus entry stages in NF-kappaB induction and a requirement for KSHV viral gene expression in sustained induction. Inhibition of NF-kappaB did not affect target cell entry by KSHV but significantly reduced the expression of viral latent open reading frame 73 and lytic genes. KSHV infection induced the activation of several host transcription factors, including AP-1 family members, as well as several cytokines, growth factors, and angiogenic factors, which were significantly affected by NF-kappaB inhibition. These results suggest that during de novo infection, KSHV induces sustained levels of NF-kappaB to regulate viral and

  5. Selective pick-up of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: a new dressing concept.

    PubMed

    Wenk, J; Foitzik, A; Achterberg, V; Sabiwalsky, A; Dissemond, J; Meewes, C; Reitz, A; Brenneisen, P; Wlaschek, M; Meyer-Ingold, W; Scharffetter-Kochanek, K

    2001-06-01

    Using atomic absorption spectrum analysis, we found iron levels in exudates from chronic wounds to be significantly increased (3.71 +/- 1.56 micromol per g protein) compared to wound fluids from acute wounds derived from blister fluids (1.15 +/- 0.62 micromol per g protein, p < 0.02), drainage fluids of acute wounds (0.87 +/- 0.34 micromol per g protein, p < 0.002), and pooled human plasma of 50 volunteers (0.42 micromol per g protein). Increased free iron and an increase in reactive oxygen species released from neutrophils represent pathogenic key steps that --via the Fenton reaction - are thought to be responsible for the persistent inflammation, increased connective tissue degradation, and lipid peroxidation contributing to the prooxidant hostile microenvironment of chronic venous leg ulcers. We herein designed a selective pick-up dressing for iron ions by covalently binding deferoxamine to cellulose. No leakage occurred following gamma sterilization of the dressing and, more importantly, the deferoxamine-coupled cellulose dressing retained its iron complexing properties sufficient to reduce iron levels found in chronic venous ulcers to levels comparable to those found in acute wounds. In order to study the functionality of the dressing, human dermal fibroblasts were exposed to a Fenton reaction mimicking combination of 220 microM Fe(III) citrate and 1 mM ascorbate resulting in a 4-fold induction of matrix-degrading metalloproteinase 1 as determined by a matrix-degrading metalloproteinase 1 specific enzyme-linked immunosorbent assay. This induction was completely suppressed by dissolved deferoxamine at a concentration of 220 microM or by an equimolar amount of deferoxamine immobilized to cellulose. In addition, the Fe(III) citrate and ascorbate driven Fenton reaction resulted in an 8-fold increase in malondialdehyde, the major product of lipid peroxidation, as determined by high pressure liquid chromatography. This increase in malondialdehyde levels could be

  6. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  7. Reaching beyond the United States: Adventures in International Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Henschke, John A.

    2005-01-01

    In this article, the author shares his experience of how travel and adult education merged, for him, into a major emphasis in international adult education (AE) and human resource development (HRD). International ventures have been some of the most exciting and learning-filled aspects of the author's career in AE and HRD. His involvement in…

  8. The application of dermal papillary rings in dermatology by in vivo confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.

    2010-08-01

    Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.

  9. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis

    NASA Astrophysics Data System (ADS)

    Hantash, Basil M.; Bedi, Vikramaditya P.; Sudireddy, Vasanthi; Struck, Steven K.; Herron, G. Scott; Chan, Kin Foong

    2006-07-01

    The wound healing process in skin is studied in human subjects treated with fractional photothermolysis. In-vivo histological evaluation of vacuoles formed over microthermal zones (MTZs) and their content is undertaken. A 30-W, 1550-nm single-mode fiber laser system delivers an array of 60 µm or 140 µm 1/e2 incidence microbeam spot size at variable pulse energy and density. Treatments span from 6 to 20 mJ with skin excisions performed 1-day post-treatment. Staining with hematoxylin and eosin demonstrates an intact stratum corneum with vacuolar formation within the epidermis. The re-epithelialization process with repopulation of melanocytes and keratinocytes at the basal layer is apparent by 1-day post-treatment. The dermal-epidermal (DE) junction is weakened and separated just above zones of dermal coagulation. Complete loss of dermal cell viability is noted within the confines of the MTZs 1-day post-treatment, as assessed by lactate dehydrogenase. All cells falling outside the irradiation field remain viable. Content within the epidermal vacuoles stain positively with Gomori trichrome, suggesting a dermal origin. However, the positive staining could be due to loss of specificity after thermal alteration. Nevertheless, this dermal extrusion hypothesis is supported by very specific positive staining with an antihuman elastin antibody. Fractional photothermolysis creates microthermal lesions that allow transport and extrusion of dermal content through a compromised DE junction. Some dermal material is incorporated into the microepidermal necrotic debris and shuttled up the epidermis to eventually be exfoliated through the stratum corneum. This is the first report of a nonablative laser-induced transport mechanism by which dermal content can be predictably extruded biologically through the epidermis. Thus, treatment with the 1550-nm fiber laser may provide the first therapeutic option for clinical indications, including pigmentary disorders such as medically

  10. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis.

    PubMed

    Hantash, Basil M; Bedi, Vikramaditya P; Sudireddy, Vasanthi; Struck, Steven K; Herron, G Scott; Chan, Kin Foong

    2006-01-01

    The wound healing process in skin is studied in human subjects treated with fractional photothermolysis. In-vivo histological evaluation of vacuoles formed over microthermal zones (MTZs) and their content is undertaken. A 30-W, 1550-nm single-mode fiber laser system delivers an array of 60 microm or 140 microm 1e2 incidence microbeam spot size at variable pulse energy and density. Treatments span from 6 to 20 mJ with skin excisions performed 1-day post-treatment. Staining with hematoxylin and eosin demonstrates an intact stratum corneum with vacuolar formation within the epidermis. The re-epithelialization process with repopulation of melanocytes and keratinocytes at the basal layer is apparent by 1-day post-treatment. The dermal-epidermal (DE) junction is weakened and separated just above zones of dermal coagulation. Complete loss of dermal cell viability is noted within the confines of the MTZs 1-day post-treatment, as assessed by lactate dehydrogenase. All cells falling outside the irradiation field remain viable. Content within the epidermal vacuoles stain positively with Gomori trichrome, suggesting a dermal origin. However, the positive staining could be due to loss of specificity after thermal alteration. Nevertheless, this dermal extrusion hypothesis is supported by very specific positive staining with an antihuman elastin antibody. Fractional photothermolysis creates microthermal lesions that allow transport and extrusion of dermal content through a compromised DE junction. Some dermal material is incorporated into the microepidermal necrotic debris and shuttled up the epidermis to eventually be exfoliated through the stratum corneum. This is the first report of a nonablative laser-induced transport mechanism by which dermal content can be predictably extruded biologically through the epidermis. Thus, treatment with the 1550-nm fiber laser may provide the first therapeutic option for clinical indications, including pigmentary disorders such as medically

  11. Citral: identifying a threshold for induction of dermal sensitization.

    PubMed

    Lalko, Jon; Api, Anne Marie

    2008-10-01

    Citral [CAS# 5392-40-5; EINECS# 226-394-6; RIFM # 116; cis- and trans-3,7-dimethyl-2,6-Octadienal] is an important fragrance ingredient appreciated for its powerful lemon-aroma. It is widely used in fragrance formulations and incorporated into numerous consumer products. A comprehensive review of the dermal sensitization data available for citral was undertaken with the goal of identifying a threshold for the induction of dermal sensitization. In 2007, a complete literature search was conducted. On-line databases that were surveyed included Chemical Abstract Services and the National Library of Medicine. In addition, the toxicologic database of the Research Institute for Fragrance materials, Inc. (RIFM) was searched, which includes numerous unpublished reports. Based on a weight of evidence approach, the data from this survey demonstrate that the human NOEL (No Observed Effect Level) for induction of dermal sensitization to citral is 1400 microg/cm(2). The identification of this induction threshold will allow for risk assessments to focus on primary prevention of contact allergy to citral based on a new Quantitative Risk Assessment (QRA) paradigm. This subsequent assessment will form the basis of a risk management approach; specifically a new IFRA (International Fragrance Association) standard on the use of citral in consumer products.

  12. Potentials of new nanocarriers for dermal and transdermal drug delivery.

    PubMed

    Neubert, Reinhard H H

    2011-01-01

    Nanocarriers (NCs) are colloidal systems having structures below a particle or droplet size of 500 nm. In the previous years, the focus for the application of NCs was primarily placed on the parenteral and oral application. However, NCs applied to the skin are in the center of attention and are expected to be increasingly applied as the skin offers a lot of advantages for the administration of such systems. For the use of NCs to the skin, one has to differentiate between the desired effects: the local effect within the skin (dermal drug delivery) or a systemic effect accompanied by the permeation through the skin (transdermal drug delivery). Both for dermal and transdermal drug delivery, the stratum corneum (SC), the main barrier of the skin, has to be overcome. SC is one of the tightest barriers of the human body. Therefore, it is the primary goal of new NC to overcome this protective and effective barrier. For that purpose, new NCs such as microemulsions, vesicular (liposomes) and nanoparticular NCs are developed and investigated. This article evaluates the potentials of these NCs for dermal and transdermal drug delivery. PMID:21111043

  13. Monitoring contractile dermal lymphatic activity following uniaxial mechanical loading.

    PubMed

    Gray, R J; Worsley, P R; Voegeli, D; Bader, D L

    2016-09-01

    It is proposed that direct mechanical loading can impair dermal lymphatic function, contributing to the causal pathway of pressure ulcers. The present study aims to investigate the effects of loading on human dermal lymphatic vessels. Ten participants were recruited with ages ranging from 24 to 61 years. Participants had intradermal Indocyanine Green injections administrated between left finger digits. Fluorescence was imaged for 5min sequences with an infra-red camera prior to lymph vessel loading, immediately after axial loading (60mmHg) and following a recovery period. Image processing was employed to defined transient lymph packets and compare lymph function between each test phase. The results revealed that between 1-8 transient events (median=4) occurred at baseline, with a median velocity of 8.1mm/sec (range 4.1-20.1mm/sec). Immediately post-loading, there was a significant (p<0.05) reduction in velocity (median=6.4, range 2.2-13.5mm/sec), although the number of transient lymph packages varied between participants. During the recovery period the number (range 1-7) and velocity (recovery median=9.6mm/sec) of transient packets were largely restored to basal values. The present study revealed that some individuals present with impaired dermal lymphatic function immediately after uniaxial mechanical loading. More research is needed to investigate the effects of pressure and shear on lymphatic vessel patency. PMID:27245749

  14. Dermal cells distribution on laser-structured ormosils.

    PubMed

    Sima, L E; Buruiana, E C; Buruiana, T; Matei, A; Epurescu, G; Zamfirescu, M; Moldovan, A; Petrescu, S M; Dinescu, M

    2013-02-01

    Several dermal substitutes for skin grafting are now commercially available, although their performance still needs improvement. Most artificial dermises have a lower take rate than autologous grafts and require more time for sufficient vascular ingrowth to overlay the skin graft. Herein we characterize new two-dimensional scaffolds for tissue-engineering applications, which were fabricated by two-photon polymerization (2PP) of ormosils hybrid materials. For the 2PP experiments, a Ti:sapphire laser was used to induce the photopolymerization. In this study we showed that the polymeric structures with controlled architectures produced via 2PP could be used as scaffolds for the in vitro culture and proliferation of human dermal fibroblasts. Fluorescence microscopy revealed that the fibroblasts' orientation was guided by the scaffold geometry, consisting of ormosils lines or grids. This 'dermal equivalent' was investigated for its ability to accommodate epidermal cells. To evaluate this interaction, two experimental approaches were hence used: (a) fibroblast-melanocyte co-cultures; and (b) fibroblast-keratinocyte organotypic cultures. During their growth on ormosil scaffolds, productive interaction of fibroblasts with both epidermal cell types was found. Moreover, this pseudo-dermis was shown to support the growth of keratinocytes for up to 8 days after their seeding.

  15. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  16. Dermal Toxicity of Flake-Like α-Alumina Pigments.

    PubMed

    Kwon, TaeWoo; Seo, HyunJeong; Jang, Seongwan; Lee, Sang-Geun; Park, Sungkyun; Park, Kang Hyun; Youn, BuHyun

    2015-02-01

    Aluminum is one of the most widely used nonferrous metals and an important industrial material, especially for automotive coatings. However, potential toxicity caused by aluminum in humans limits the used of this metal. α-alumina is the most stable form of aluminum in various phases. Although the results of studies evaluating the dermal toxicity of α-alumina remained unclear, this compound can still be used as a pigment in cosmetics for humans. In the current study, we further evaluated the dermal cytotoxic effects of α-alumina on human skin cells and an in vivo mouse model. We also measured the in vitro penetration profile of flake-like α-alumina in porcine skin and assessed the degree of cellular metabolic disorders. Our findings demonstrated that treatment with flake-like α-alumina did not significantly affect cell viability up to 24 h. This compound was found to have a non-penetration profile based on a Franz modified diffusion cell assay. In addition, flake-like α-alumina was not found to induce dermal inflammation as assessed by histology of epidermal architecture, hyperplasia, and the expression of Interleukin-1β and Cyclooxygenase-2. Results of the cellular metabolic disorder assay indicated that flake-like α-alumina does not exert a direct effect on human skin cells. Taken together, our findings provided not only evidence that flake-like α-alumina may serve as a pearlescent pigment in cosmetics but also experimental basis utilizing α-alumina for human application. Our results also obviously provide new insight of the further toxicity study to aluminum based nanoparticles for skin. PMID:26353706

  17. Dermal fillers for facial soft tissue augmentation.

    PubMed

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  18. Protective effect of pyrroloquinoline quinine on ultraviolet A irradiation-induced human dermal fibroblast senescence in vitro proceeds via the anti-apoptotic sirtuin 1/nuclear factor-derived erythroid 2-related factor 2/heme oxygenase 1 pathway.

    PubMed

    Zhang, Chunli; Wen, Chuanjun; Lin, Jinde; Shen, Gan

    2015-09-01

    The aim of the present study was to determine whether pyrroloquinoline quinine (PQQ) exerts a protective effect on ultraviolet A (UVA) irradiation‑induced senescence in human dermal fibroblasts (HDFs) and to elucidate its mechanism of action in vitro. A senescence model was constructed as follows: HDFs (1x10(4)‑1x10(6)) were cultured in a six‑well plate in vitro and then exposed to UVA irradiation at a dosage of 9 J/cm2. Various concentrations of PQQ (50, 100 and 200 ng/ml) were added to the culture medium 24 h prior to UVA exposure. Following 72 h of irradiation, senescence‑associated β‑galactosidase staining was performed in order to evaluate the senescence state. Furthermore, mRNA expression of the senescence marker genes matrix‑metalloprotease (MMP)1 and MMP3 was determined using reverse transcription quantitative polymerase chain reaction. Protein expression of sirtuin (SIRT)1, SIRT6, nuclear factor erythroid 2‑related factor 2 (Nrf2) and heme oxygenase 1 (HO‑1) were detected using western blot analysis. The results showed that the percentage of cells stained by X‑gal following 9 J/cm2 UVA irradiation was markedly increased compared with that of the control group (53 and 8%, respectively), while 50 ng/ml PQQ attenuated the ratio of positive staining compared with that of the UVA‑only cells (29 vs. 53%, respectively). Expression of fibroblast senescence marker genes MMP1 and MMP3 was decreased in cells treated with UVA and 50 ng/ml PQQ compared with that of cells in the UVA‑only group. Western blot analysis revealed significant effects of PQQ on SIRT1 and SIRT6. Nrf2 and HO‑1 exbibited mild changes with the same trend when treated with or without UVA and PQQ. In conclusion, the results of the present study showed that pyrroloquinoline quinine may have a protective effect on UVA irradiation‑induced HDF aging, which may be associated with the anti‑apoptotic SIRT1/Nrf2/HO‑1 pathway as well as SIRT6 signaling.

  19. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention. PMID:26194112

  20. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  1. The Human Function Compunction: Teleological Explanation in Adults

    ERIC Educational Resources Information Center

    Kelemen, Deborah; Rosset, Evelyn

    2009-01-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for…

  2. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells. PMID:27625564

  3. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells.

  4. Teaching Adults with Learning Disabilities. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    Jordan, Dale R.

    This book is designed to show teachers how to reach out to adults and adolescents with learning disabilities and employ specific strategies for helping them to compensate for the disabilities and acquire literacy skills. The ways in which specific differences in brain structure inhibit the mastery of reading, spelling, handwriting, phonics, and…

  5. Repeat mild heat shock increases dermal fibroblast activity and collagen production.

    PubMed

    Mayes, Andrew E; Holyoak, Caroline D

    2008-04-01

    Repeat mild heat shock (RMHS) has been shown to have anti-aging effects on cellular and biological processes within human dermal fibroblasts. We have investigated the potential of an abridged mild heat shock regime to impact upon the functional properties of human dermal fibroblasts derived from three donors (male, 12 years; female, 22 years; female, 65 years). For each donor mild heat shock increased the rate of contraction of fibroblast-containing collagen gels and increased the de novo synthesis of collagen. Thus, hormetic mechanisms are proposed to provide functional anti-aging benefits to skin cells.

  6. Culture of Dermal Papilla Cells from Ovine Wool Follicles: An In Vitro Model for Papilla Size Determination.

    PubMed

    Rufaut, Nicholas W; Nixon, Allan J; Sinclair, Rodney D

    2016-01-01

    Common human balding or hair loss is driven by follicle miniaturization. Miniaturization is thought to be caused by a reduction in dermal papilla size. The molecular mechanisms that regulate papilla size are poorly understood, and their elucidation would benefit from a tractable experimental model. We have found that dermal papilla cells from sheep spontaneously aggregate in culture to form papilla-like structures. Here, we describe methods for microdissecting dermal papillae from wool follicles, for initiating and maintaining cultures of ovine papilla cells, and for using these cells in an in vitro assay to measure the effect of bioactive molecules on aggregate size. PMID:27431251

  7. THE DEVELOPMENT AND TESTING OF A DERMAL EXPOSURE SYSTEM FOR PHARMACOKINETIC STUDIES OF ADMINISTERED AND AMBIENT WATER CONTAMINANTS: METHODS AND RESULTS

    EPA Science Inventory


    INTRODUCTION: In order to investigate the pharmacokinetics of water-borne chemicals while eliminating exposures by other routes, a dermal exposure system was developed to expose the hand and forearm of human subjects. METHODS: The goal was, primarily, to study the dermal phar...

  8. The human function compunction: teleological explanation in adults.

    PubMed

    Kelemen, Deborah; Rosset, Evelyn

    2009-04-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for why different phenomena occur. Judgments occurred in one of three conditions: fast speeded, moderately speeded, or unspeeded. Participants in speeded conditions judged significantly more scientifically unwarranted teleological explanations as correct (e.g., "the sun radiates heat because warmth nurtures life"), but were not more error-prone on control items (e.g., unwarranted physical explanations such as "hills form because floodwater freezes"). Study 2 extended these findings by examining the relationship between different aspects of adults' "promiscuous teleology" and other variables such as scientific knowledge, religious beliefs, and inhibitory control. Implications of these findings for scientific literacy are discussed. PMID:19200537

  9. The Adult Learning Disabled Employee: The Organization's Hidden Human Resource.

    ERIC Educational Resources Information Center

    Macomber, Janet A.

    This paper describes an experiment with background material designed to promote problem (learning disabled) employees as human resources rather than rejects. The material is presented in the form of the transcript of a fictional advisory committee meeting attended by the human resources manager, assistant corporate counsel, training director, line…

  10. Adult Education and Human Capital: Leadership from the Fortune 500.

    ERIC Educational Resources Information Center

    Palmer, Teresa M.

    1992-01-01

    A survey of 333 Fortune 500 firms received 81 replies indicating that (1) two-thirds formally recognized the value of human resources; (2) most had changed corporate policy regarding human capital; and (3) most training was provided in the ares of new employee orientation, current job needs, customer relations, personal development, and…

  11. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  12. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia.

  13. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  14. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases.

    PubMed

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors. PMID:27375363

  15. [Dietary phytoestrogen and its potential benefits in adult human health].

    PubMed

    Garrido, Argelia; de la Maza, María Pía; Valladares, Luis

    2003-11-01

    Human diet contains a series of bioactive vegetal compounds that can improve human health. Among these, there has been a special interest for phytoestrogens. This article reviews the evidence about the potential benefits of phytoestrogens for human health. Forty eight manuscripts were selected for their study design and relevance to human health. The cell growth inhibitory effects of phytoestrogens and their implication in breast cancer are reviewed. Also the effects of these compounds on serum lipid levels and the effectiveness of a phytoestrogen derivate, ipriflavone, on the prevention of osteoporosis are analyzed. Although these compounds have a great potential for improving health, there is still not enough evidence to recommend the routine use of phytoestrogens.

  16. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding

    PubMed Central

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2014-01-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  17. Cold Preservation of Human Adult Hepatocytes for Liver Cell Therapy.

    PubMed

    Duret, Cedric; Moreno, Daniel; Balasiddaiah, Anangi; Roux, Solene; Briolotti, Phillipe; Raulet, Edith; Herrero, Astrid; Ramet, Helene; Biron-Andreani, Christine; Gerbal-Chaloin, Sabine; Ramos, Jeanne; Navarro, Francis; Hardwigsen, Jean; Maurel, Patrick; Aldabe, Rafael; Daujat-Chavanieu, Martine

    2015-01-01

    Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation. PMID:25622096

  18. A century of trends in adult human height.

    PubMed

    2016-07-26

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

  19. A century of trends in adult human height

    PubMed Central

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. DOI: http://dx.doi.org/10.7554/eLife.13410.001 PMID:27458798

  20. Resident aerobic microbiota of the adult human nasal cavity.

    PubMed

    Rasmussen, T T; Kirkeby, L P; Poulsen, K; Reinholdt, J; Kilian, M

    2000-10-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal microbiota was dominated by species of the genera Corynebacterium, Aureobacterium, Rhodococcus, and Staphylococcus, including S. epidermis, S. capitis, S. hominis, S. haemolyticus, S. lugdunensis and S. warneri. These studies show that the microbiota of the nasal cavity of adults is strikingly different from that of the pharynx, and that the nasal cavity is a primary habitat for several species of diphtheroids recognized as opportunistic pathogens. Under special circumstances, single species, including IgA1 protease-producing bacteria, may become predominant in a restricted area of the nasal mucosa. PMID:11200821

  1. A century of trends in adult human height.

    PubMed

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. PMID:27458798

  2. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin.

  3. Estimating terrestrial amphibian pesticide body burden through dermal exposure

    EPA Science Inventory

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active...

  4. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  5. Dermal injection of immunocytes induces psoriasis.

    PubMed Central

    Wrone-Smith, T; Nickoloff, B J

    1996-01-01

    Establishing direct and causal relationships among the confederacy of activated cell types present in psoriasis has been hampered by lack of an animal model. Within psoriatic plaques there are hyperplastic keratinocytes, infiltrating immunocytes, and activated endothelial cells. The purpose of this study was to determine if psoriasis is primarily a disorder of keratinocytes or the immune system. Using a newly developed experimental system in which full-thickness human skin is orthotopically transferred onto severe combined immunodeficient mice, autologous immunocytes were injected into dermis, and the resultant phenotype characterized by clinical, histologic, and immunophenotypic analyses. Engraftment of samples included both uninvolved/ symptomless (PN) skin removed from patients with psoriasis elsewhere, or from healthy individuals with no skin disease (NN skin). In 10 different experiments involving 6 different psoriasis patients, every PN skin was converted to a full-fledged psoriatic plaque skin by injection of autologous blood-derived immunocytes. In all but one psoriatic patient, the immunocytes required preactivation with IL-2 and superantigens to convert PN skin into psoriatic plaque skin. In every case, resultant plaques were characterized by visible presence of flaking and thickened skin, loss of the granular cell layer, prominent elongation of rete pegs with a dermal angiogenic tissue reaction, and infiltration within the epidermis by T cells. Lesional skin displayed 20 different antigenic determinants of the psoriatic phenotype. None of the four NN skin samples injected with autologous immunocytes converted to psoriatic plaques. We conclude that psoriasis is caused primarily by the ability of pathogenetic blood-derived immunocytes to induce secondary activation and disordered growth of endogenous cutaneous cells including keratinocytes and vascular endothelium. PMID:8878440

  6. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin.

  7. Derivation of a No-significant-risk-level (NSRL) for dermal exposures to diethanolamine.

    PubMed

    Kirman, C R; Hughes, B; Becker, R A; Hays, S M

    2016-04-01

    Diethanolamine (DEA) has been found to produce liver and kidney tumors in mice following lifetime dermal exposures. Data regarding the mode of action by which DEA produces these tumors were used to support a dose-response assessment that resulted in a no-significant-risk-level (NSRL) for dermal exposures to DEA. DEA and its metabolites are structural analogs to endogenous agents important to choline homeostasis. Sufficient information is available to support an epigenetic MOA involving the perturbation of choline homeostasis and hepatic methylation reactions in the formation of mouse liver tumors. This MOA may also apply to mouse kidney tumors, but direct measurements for key events in kidney are lacking. For both tumor types, dose-response data were pooled across four cancer bioassays conducted for DEA and DEA-containing condensates in order to provide a more robust characterization of the dose-response relationships. Doses were expressed in terms of dermally absorbed dose so that the dose-dependency and species differences in the dermal absorption of DEA were addressed. The resulting NSRL value of 3400 ug/day for dermal exposures to DEA is considered to be protective of human health for both tumor endpoints.

  8. “A two-component pre-seeded dermal-epidermal scaffold”

    PubMed Central

    Monteiro, I.P.; Gabriel, D.; Timko, B.P.; Hashimoto, M.; Karajanagi, S.; Tong, R.; Marques, A.P.; Reis, R.L.; Kohane, D.S.

    2014-01-01

    We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease degradable elements and cell binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-L-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell type specific cues to allow for cell proliferation and form a construct that mimics the skin environment. PMID:25192821

  9. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  10. Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?

    PubMed

    Akershoek, J J; Vlig, M; Talhout, W; Boekema, B K H L; Richters, C D; Beelen, R H J; Brouwer, K M; Middelkoop, E; Ulrich, M M W

    2016-04-01

    The application of autologous dermal fibroblasts has been shown to improve burn wound healing. However, a major hurdle is the availability of sufficient healthy skin as a cell source. We investigated fetal dermal cells as an alternative source for cell-based therapy for skin regeneration. Human (hFF), porcine fetal (pFF) or autologous dermal fibroblasts (AF) were seeded in a collagen-elastin substitute (Novomaix, NVM), which was applied in combination with an autologous split thickness skin graft (STSG) to evaluate the effects of these cells on wound healing in a porcine excisional wound model. Transplantation of wounds with NVM+hFF showed an increased influx of inflammatory cells (e.g., neutrophils, macrophages, CD4(+) and CD8(+) lymphocytes) compared to STSG, acellular NVM (Acell-NVM) and NVM+AF at post-surgery days 7 and/or 14. Wounds treated with NVM+pFF presented only an increase in CD8(+) lymphocyte influx. Furthermore, reduced alpha-smooth muscle actin (αSMA) expression in wound areas and reduced contraction of the wounds was observed with NVM+AF compared to Acell-NVM. Xenogeneic transplantation of NVM+hFF increased αSMA expression in wounds compared to NVM+AF. An improved scar quality was observed for wounds treated with NVM+AF compared to Acell-NVM, NVM+hFF and NVM+pFF at day 56. In conclusion, application of autologous fibroblasts improved the overall outcome of wound healing in comparison to fetal dermal cells and Acell-NVM, whereas application of fetal dermal fibroblasts in NVM did not improve wound healing of full-thickness wounds in a porcine model. Although human fetal dermal cells demonstrated an increased immune response, this did not seem to affect scar quality.

  11. LINKING DERMAL MODELING AND LOADING DATA TO PREDICT LONG-TERM DOSES FROM INTERMITTENT DERMAL CONTACT

    EPA Science Inventory

    In this paper we assess dermal exposure and dose resulting from intermittent contact with residue-contaminated surfaces. These estimates require an understanding of (1) the quantitative relationship between exposure and absorbed dose; (2) the impact of intermittent exposure on ...

  12. Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome in Older Adults.

    PubMed

    Scott, Jake; Goetz, Matthew Bidwell

    2016-08-01

    Improved survival with combination antiretroviral therapy has led to a dramatic increase in the number of human immunodeficiency virus (HIV)-infected individuals 50 years of age or older such that by 2020 more than 50% of HIV-infected persons in the United States will be above this age. Recent studies confirm that antiretroviral therapy should be offered to all HIV-infected patients regardless of age, symptoms, CD4+ cell count, or HIV viral load. However, when compared with HIV-uninfected populations, even with suppression of measurable HIV replication, older individuals are at greater risk for cardiovascular disease, malignancies, liver disease, and other comorbidities.

  13. Skin telocytes versus fibroblasts: two distinct dermal cell populations

    PubMed Central

    Kang, Yuli; Zhu, Zaihua; Zheng, Yonghua; Wan, Weiguo; Manole, Catalin G; Zhang, Qiangqiang

    2015-01-01

    It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations – telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines – epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 – were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines – interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin – being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile. PMID:26414534

  14. Skin telocytes versus fibroblasts: two distinct dermal cell populations.

    PubMed

    Kang, Yuli; Zhu, Zaihua; Zheng, Yonghua; Wan, Weiguo; Manole, Catalin G; Zhang, Qiangqiang

    2015-11-01

    It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations - telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines - epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 - were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines - interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin - being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile.

  15. Adult human adipose tissue contains several types of multipotent cells.

    PubMed

    Tallone, Tiziano; Realini, Claudio; Böhmler, Andreas; Kornfeld, Christopher; Vassalli, Giuseppe; Moccetti, Tiziano; Bardelli, Silvana; Soldati, Gianni

    2011-04-01

    Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.

  16. 40 CFR 798.2250 - Dermal toxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... susceptible tissues. (c) Principle of the test method. The test substance is applied daily to the skin in... the vehicle on toxicity of and penetration of the skin by the test substance should be taken into... a life span. (2) Dose in a dermal test is the amount of test substance applied to the skin...

  17. 40 CFR 798.2250 - Dermal toxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... susceptible tissues. (c) Principle of the test method. The test substance is applied daily to the skin in... the vehicle on toxicity of and penetration of the skin by the test substance should be taken into... a life span. (2) Dose in a dermal test is the amount of test substance applied to the skin...

  18. Focal dermal hypoplasia: a rare case report.

    PubMed

    Srinivas, Sahana M; Hiremagalore, Ravi

    2015-01-01

    Focal dermal hypoplasia (Goltz syndrome) is a rare genetic multisystem disorder primarily involving the skin, skeletal system, eyes, and face. We report the case of an eight-month-old female child who presented with multiple hypopigmented atrophic macules along the lines of blaschko, skeletal anomalies, umbilical hernia, developmental delay, hypoplastic nails, syndactyly, and lobster claw deformity characteristic of Goltz syndrome. PMID:25657436

  19. Dermal exudate macrophages. Induction in dermal chambers and response to lymphokines.

    PubMed Central

    Goihman-Yahr, M; Ulrich, M; Noya-León, A; Rojas, A; Convit, J

    1975-01-01

    Chambers were implanted in the dorsum of guinea-pigs at the dermal-subcutaneous junction. Exudates were induced and harvested. Macrophages obtained were able to migrate in vitro. If procured from sensitized donors, macrophage migration was inhibited by the corresponding antigen. Dermal exudate macrophages are therefore subject to the effect of lymphokines. The chamber model may be useful for in vivo studies of cell to cell and cell-parasite interactions. PMID:1212821

  20. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells

    PubMed Central

    Panula, Sarita; Medrano, Jose V.; Kee, Kehkooi; Bergström, Rosita; Nguyen, Ha Nam; Byers, Blake; Wilson, Kitchener D.; Wu, Joseph C.; Simon, Carlos; Hovatta, Outi; Reijo Pera, Renee A.

    2011-01-01

    Historically, our understanding of molecular genetic aspects of human germ cell development has been limited, at least in part due to inaccessibility of early stages of human development to experimentation. However, the derivation of pluripotent stem cells may provide the necessary human genetic system to study germ cell development. In this study, we compared the potential of human induced pluripotent stem cells (iPSCs), derived from adult and fetal somatic cells to form primordial and meiotic germ cells, relative to human embryonic stem cells. We found that ∼5% of human iPSCs differentiated to primordial germ cells (PGCs) following induction with bone morphogenetic proteins. Furthermore, we observed that PGCs expressed green fluorescent protein from a germ cell-specific reporter and were enriched for the expression of endogenous germ cell-specific proteins and mRNAs. In response to the overexpression of intrinsic regulators, we also observed that iPSCs formed meiotic cells with extensive synaptonemal complexes and post-meiotic haploid cells with a similar pattern of ACROSIN staining as observed in human spermatids. These results indicate that human iPSCs derived from reprogramming of adult somatic cells can form germline cells. This system may provide a useful model for molecular genetic studies of human germline formation and pathology and a novel platform for clinical studies and potential therapeutical applications. PMID:21131292