Science.gov

Sample records for adult human intervertebral

  1. Kingella kingae intervertebral diskitis in an adult.

    PubMed

    Meis, J F; Sauerwein, R W; Gyssens, I C; Horrevorts, A M; van Kampen, A

    1992-09-01

    Kingella kingae rarely causes infection and is mainly associated with endocarditis and septic arthritis in adults. The organism is also capable of causing intervertebral diskitis in children, but thus far, no reports of this infection occurring in adults have been published. A case of diskitis due to K. kingae in an adult is reported for the first time, and the literature on this infection in children is reviewed.

  2. Human umbilical cord derivatives regenerate intervertebral disc.

    PubMed

    Beeravolu, Naimisha; Brougham, Jared; Khan, Irfan; McKee, Christina; Perez-Cruet, Mick; Chaudhry, G Rasul

    2016-09-30

    Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model. Transplanted cells survived, engrafted and dispersed into NP in situ. Significant improvement in the histology, cellularity, extracellular matrix proteins, and water and glycosaminoglycan contents in IVD recipients of CPCs was observed compared to MSCs. In addition, IVDs receiving CPCs exhibited higher expression of NP-specific human markers, SOX9, aggrecan, collagen 2, FOXF1 and KRT19. The novelty of the study is that in vitro differentiated CPCs derived from umbilical cord MSCs, demonstrated far greater capacity to regenerate damaged IVDs, which provides basis and impetus for stem cell based clinical studies to treat degenerative disc disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Aquaporin expression in the human intervertebral disc.

    PubMed

    Richardson, S M; Knowles, R; Marples, D; Hoyland, J A; Mobasheri, A

    2008-06-01

    The nucleus pulposus (NP) of the human intervertebral disc (IVD) is a hyperosmotic tissue that is subjected to daily dynamic compressive loads. In order to survive within this environment the resident chondrocyte-like cells must be able to control their cell volume, whilst also controlling the anabolism and catabolism of their extra-cellular matrix. Recent studies have demonstrated expression of a range of bi-directional, transmembrane water and solute transporters, named aquaporins (AQPs), within chondrocytes of articular cartilage. The aim of this study was to use immunohistochemsitry to investigate the expression of aquaporins 1, 2 and 3 within the human IVD. Results demonstrated expression of both AQP-1 and -3 by cells within the NP and inner annulus fibrosus (AF), while outer AF cells lacked expression of AQP-1 and showed very low numbers of AQP-3 immunopositive cells. Cells from all regions were negative for AQP-2. Therefore this study demonstrates similarities in the phenotype of NP cells and articular chondrocytes, which may be due to similarities in tissue osmolarity and mechanobiology. The decrease in expression of AQPs from the NP to the outer AF may signify changes in cellular phenotype in response to differences in mechanbiology, osmolarity and hydration between the gelatinous NP and the fibrous AF.

  4. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs

    PubMed Central

    Schaaf, Rainer; Wälchli, Beat; Boos, Norbert

    2006-01-01

    While there is consensus in the literature that blood vessels are confined to the outer anulus fibrosus of normal adult intervertebral disc, debate continues whether there is a vascular in-growths into inner parts of the intervertebral disc during degeneration. We therefore tested the hypothesis that vascular in-growth is not a distinct feature of disc degeneration. The specific endothelial cell marker CD 31 (PECAM) was used to immunohistochemically investigate 42 paraffin-embedded complete mid-sagittal human intervertebral disc sections of various ages (0–86 years) and varying extent of histomorphological degeneration. Additionally, 20 surgical disc samples from individuals (26–69 years) were included in this study. In discs of fetal to infantile age, blood vessels perforated the cartilaginous end plate and extended into the inner and outer anulus fibrosus, but not into the nucleus pulposus. In adolescents and adults, no blood vessels were seen except for the outer zone of the anulus fibrosus adjacent to the insertion to ligaments. The cartilaginous end plate remained free of vessels, except for areas with circumscribed destruction of the end plate. In advanced disc degeneration, no vessels were observed except for those few cases with complete, scar-like disc destruction. However, some rim lesions and occasionally major clefts were surrounded by a small network of capillary blood vessels extending into deeper zones of the anulus fibrosus. A subsequent morphometric analysis, revealed slightly “deeper” blood vessel extension in juvenile/adolescent discs when compared to young, mature and senile adult individuals with significantly “deeper” extension in the posterior than anterior anulus. The analysis of the surgical specimens showed that only sparse capillary blood vessels which did not extend into the nucleus pulposus even in major disc disruption. Our results show that vascular invasion deeper than the periphery was not observed during disc

  5. Fatigue responses of the human cervical spine intervertebral discs.

    PubMed

    Yoganandan, Narayan; Umale, Sagar; Stemper, Brain; Snyder, Bryan

    2017-05-01

    Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the "work hardening" phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment. Published by Elsevier

  6. Modelling creep behaviour of the human intervertebral disc.

    PubMed

    van der Veen, Albert J; Bisschop, Arno; Mullender, Margriet G; van Dieën, Jaap H

    2013-08-09

    The mechanical behaviour of an intervertebral disc is time dependent. In literature different constitutive equations have been used to describe creep. It is unsure whether these different approaches yield valid predictions. In this study, we compared the validity of different equations for the prediction of creep behaviour. To this end, human thoracic discs were preloaded at 0.1 MPa for 12h, compressed (0.8 MPa) for 24h and finally unloaded (0.1 MPa) for 24h. A Kohlrausch-Williams-Watts (KWW) model and a Double-Voight (DV) model were fitted to the creep data. Model parameters were calculated for test durations of 4, 8, 12, 16, 20 and 24h. Both models described the measured data well, but parameters were highly sensitive to test duration. The estimated time constant varied with test duration from 3.6 to 17h. When extrapolating beyond test duration, the DV model under-estimated and the KWW model over-estimated creep. The 24h experiment was still too short for an accurate determination of the parameters. Therefore, parameters obtained in this paper can be used to describe normal behaviour, but are not suitable for extrapolation beyond the test duration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system.

    PubMed

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2004-06-01

    This is a laboratory-based study examining a novel in vitro culture system for intervertebral disc tissue. Address the hypothesis that "the novel culture system will preserve intervertebral disc tissue matrix and cell function and prevent cellular apoptosis for periods up to 21 days." Studies of cell function in human intervertebral disc tissue are scarce. In vivo study of human intervertebral disc cells remains impracticable; in situ molecular biology in histologic sections lacks a dynamic dimension; and as for in vitro studies, cell culture often lacks physiologic relevance and explant cultures are subject to loss of tissue integrity and altered cell behavior. There is a biologic and therapeutic need for a satisfactory explant culture system for studying human intervertebral disc tissue in a controlled environment. Samples of human intervertebral disc tissue, obtained at surgery, were examined for a number of tissue and cell parameters immediately after excision (controls) and following culture of tissue samples either in a plastic ring or unconstrained in tissue culture medium for up to 3 weeks. Data were compared between cultured tissue and controls. By comparison with control tissue, unconstrained explants swelled, tissue structure was disturbed, and there were profound changes in cell function. By contrast, tissue cultured in plastic rings maintained tissue structure, and after 3 weeks, the cellular parameters were the same as in controls. This is the first reported system to preserve cell function of human discal explants for long periods in tissue culture. It will be a useful tool for a wide range of investigations of intervertebral disc biology that have not hitherto been possible.

  8. A videofluoroscopy-based tracking algorithm for quantifying the time course of human intervertebral displacements.

    PubMed

    Balkovec, Christian; Veldhuis, Jim H; Baird, John W; Brodland, G Wayne; McGill, Stuart M

    2017-03-15

    The motions of individual intervertebral joints can affect spine motion, injury risk, deterioration, pain, treatment strategies, and clinical outcomes. Since standard kinematic methods do not provide precise time-course details about individual vertebrae and intervertebral motions, information that could be useful for scientific advancement and clinical assessment, we developed an iterative template matching algorithm to obtain this data from videofluoroscopy images. To assess the bias of our approach, vertebrae in an intact porcine spine were tracked and compared to the motions of high-contrast markers. To estimate precision under clinical conditions, motions of three human cervical spines were tracked independently ten times and vertebral and intervertebral motions associated with individual trials were compared to corresponding averages. Both tests produced errors in intervertebral angular and shear displacements no greater than 0.4° and 0.055 mm, respectively. When applied to two patient cases, aberrant intervertebral motions in the cervical spine were typically found to correlate with patient-specific anatomical features such as disc height loss and osteophytes. The case studies suggest that intervertebral kinematic time-course data could have value in clinical assessments, lead to broader understanding of how specific anatomical features influence joint motions, and in due course inform clinical treatments.

  9. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration.

    PubMed

    Kraus, Petra; Lufkin, Thomas

    2017-01-01

    The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 10(13) cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches.

  10. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration

    PubMed Central

    Kraus, Petra; Lufkin, Thomas

    2017-01-01

    The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 1013 cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches. PMID:28326305

  11. Immune cascades in human intervertebral disc: the pros and cons

    PubMed Central

    Sun, Zhen; Zhang, Ming; Zhao, Xu-Hong; Liu, Zhi-Heng; Gao, Yang; Samartzis, Dino; Wang, Hai-Qiang; Luo, Zhuo-Jing

    2013-01-01

    The unique structural hallmark of the intervertebral disc has made its central composition, the nucleus pulposus (NP), excluded from the immunologic tolerance. Consequently, the intervertebral disc is identified as an immune-privileged organ. Traditionally, local detrimental immune activities caused by NP at the lesion sites of the disc are noted as a significant factor contributing to disc degeneration. However, given the beneficial activities of immune cells in other immune-privileged sites on basis of current evidence, the degenerate disc might need the assistance of a subpopulation of immune cells to restore its structure and lessen inflammation. In addition, the beneficial impact of immune cells can be seen in the absorption of the herniated NP, which is an important factor causes the mechanical compression of nerve roots. Consequently, a modulated immune network in degenerate disc is essential for the restoration of this immune-privileged organ. Until now, the understandings of immune response in disc degeneration still rest on the harmful aspect. Further studies are needed to explore its beneficial influence. Accordingly, there are no absolutely the pros and cons in terms of immune reactions caused by NP. PMID:23696917

  12. Immune cascades in human intervertebral disc: the pros and cons.

    PubMed

    Sun, Zhen; Zhang, Ming; Zhao, Xu-Hong; Liu, Zhi-Heng; Gao, Yang; Samartzis, Dino; Wang, Hai-Qiang; Luo, Zhuo-Jing

    2013-01-01

    The unique structural hallmark of the intervertebral disc has made its central composition, the nucleus pulposus (NP), excluded from the immunologic tolerance. Consequently, the intervertebral disc is identified as an immune-privileged organ. Traditionally, local detrimental immune activities caused by NP at the lesion sites of the disc are noted as a significant factor contributing to disc degeneration. However, given the beneficial activities of immune cells in other immune-privileged sites on basis of current evidence, the degenerate disc might need the assistance of a subpopulation of immune cells to restore its structure and lessen inflammation. In addition, the beneficial impact of immune cells can be seen in the absorption of the herniated NP, which is an important factor causes the mechanical compression of nerve roots. Consequently, a modulated immune network in degenerate disc is essential for the restoration of this immune-privileged organ. Until now, the understandings of immune response in disc degeneration still rest on the harmful aspect. Further studies are needed to explore its beneficial influence. Accordingly, there are no absolutely the pros and cons in terms of immune reactions caused by NP.

  13. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration.

    PubMed

    Tang, Xinyan; Jing, Liufang; Richardson, William J; Isaacs, Robert E; Fitch, Robert D; Brown, Christopher R; Erickson, Melissa M; Setton, Lori A; Chen, Jun

    2016-08-01

    Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study.

    PubMed

    Johnson, William E B; Patterson, Angela M; Eisenstein, Stephen M; Roberts, Sally

    2007-05-20

    An immunohistological study of surgical specimens of human intervertebral disc. To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: non-degenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers). Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

  15. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology.

    PubMed

    Bayliss, M T; Johnstone, B; O'Brien, J P

    1988-09-01

    Slices of human annulus fibrosus were cultured under conditions that controlled their hydration and prevented loss of proteoglycans from the extracellular matrix. A quantitative analysis of proteoglycan synthesis was carried out. Both the absolute rate of synthesis and the topographical variation in chondrocyte activity changed with age; the most active cells in the adult were found in the mid-annulus region, whereas in the fetal disc the cells in the inner annulus were the most active. The conditions under which the tissue was stored, and changes in hydration during culture, had considerable effects on synthesis. Pathological discs had a wide range of biological activity that reflected the heterogeneous properties of these specimens. It is suggested that this culture method provides a means of investigating the way in which the synthesis of the macromolecular components of the intervertebral disc are coordinated and subsequently incorporated into the extracellular matrix.

  16. Effect of frozen storage on the creep behavior of human intervertebral discs.

    PubMed

    Dhillon, N; Bass, E C; Lotz, J C

    2001-04-15

    A biomechanical study of the compressive creep behavior of the human intervertebral disc before and after frozen storage. To determine whether frozen storage alters the time-dependent response of the intact human intervertebral disc. The biomechanical properties of the intervertebral disc are generally determined using specimens that have been previously frozen. Although it is well established that freezing does not alter the elastic response of the disc, recent data demonstrate that freezing permanently alters the time-dependent mechanical behavior of porcine discs. Twenty lumbar motion segments from 10 human spines were harvested between 12 and 36 hours postmortem. The specimens were randomly assigned to one of two groups: Group 1 was tested promptly, stored frozen for 3 weeks, then thawed, and tested a second time; Group 2 was stored frozen for 3 weeks, thawed, and then tested. Each specimen was subjected to 5 cycles of compressive creep under 1 MPa for 20 minutes, followed by a 40-minute recovery under no load. After testing each specimen was graded on a degeneration scale. A fluid transport model was used to parameterize the creep data. There was no statistically significant effect of freezing on the elastic or creep response of the discs. The degree of pre-existing degeneration had a significant effect on the creep response, with the more degenerated discs appearing more permeable. Frozen storage for a reasonable time with a typical method does not significantly alter the creep response of human lumbar discs. Freezing may produce subtle effects, but these potential artifacts do not appear to alter the discs' time-dependent behavior in any consequential way. These results may not apply to tissue kept frozen for long durations and with poor packaging.

  17. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  18. IL-20 may contribute to the pathogenesis of human intervertebral disc herniation.

    PubMed

    Huang, Kuo-Yuan; Lin, Ruey-Mo; Chen, Wei-Yu; Lee, Chia-Lin; Yan, Jing-Jou; Chang, Ming-Shi

    2008-09-01

    The gene expression of interleukin (IL)-20 on human herniated intervertebral disc. OBJECTIVE.: To elucidate the role of novel cytokine IL-20 in the pathogenesis of human intervertebral disc (IVD) herniation. IL-20 is involved in inflammatory diseases such as psoriasis, atherosclerosis, and rheumatoid arthritis, etc. However, IL-20 is never reported to be associated with the pathogenesis of human disc herniation. Twenty consecutive patients who were diagnosed with IVD herniation and received open discectomy were included in this study. The retrieved disc material specimens and the isolated primarily cultured disc cells were immunohistochemically stained to detect the expression of IL-20 and its receptor subunits (IL-20R1, IL-20R2, and IL-22R1). Besides, to investigate the in vitro response of IL-20 on human herniated intervertebral disc, we analyzed the effects of IL-20 alone, in combination with IL-1beta, and IL-1beta alone on the gene expression and protein levels of various cytokines, chemokines, matrix metalloproteinases (MMPs), etc. IL-20 and its receptors were detectable in human herniated disc tissues and isolated disc cells. In vitro, IL-1beta induced the expression of IL-20. Furthermore, IL-20 induced transcripts of IL-1beta, IL-6, vascular endothelial growth factor (VEGF), MMP-3, and monocyte chemoattractant protein (MCP-1) on primarily cultured human disc cells. IL-1beta induced transcripts of IL-1beta, IL-6, IL-8, VEGF, MMP3, and MCP-1. IL-20 combined with IL-1beta induced transcripts of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-6, IL-8, MMP-3, and MCP-1 to a level higher than those found in cells treated with IL-20 or IL-1beta alone.Enzyme-linked immunosorbent assay, analysis also showed that IL-20 combined with IL-1beta up-regulated the secretion of TNF-alpha, IL-6, IL-8, and MCP-1. IL-20 induces proinflammatory, chemotaxtic, and matrix degradative responses in IVD cells especially in combination with IL-1beta. Our study suggests that IL-20

  19. Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs

    PubMed Central

    Tao, Hao; Lin, Yazhou; Zhang, Guoqing; Gu, Rui; Chen, Bohua

    2016-01-01

    Allogeneic bone marrow mesenchymal stem cell (BMSC) transplantation has been investigated worldwide. However, few reports have addressed the survival status of human BMSCs in the intervertebral discs (IVDs) in vivo following transplantation. The current study aimed to observe the survival status of human BMSCs in rabbit IVDs. The IVDs of 15 New Zealand white rabbits were divided into three groups: Punctured blank control group (L1-2); punctured physiological saline control group (L2-3); and punctured human BMSCs transfected with green fluorescent protein (GFP) group (L3-4, L4-5 and L5-6). One, 2, 4, 6 and 8 weeks after transplantation the IVDs were removed and a fluorescence microscope was used to observe the density of GFP-positive human BMSCs. The results indicated that in the sections of specimens removed at 1, 2, 4, 6 and 8 weeks post-transplantation, no GFP-positive cells were observed in the control groups, whereas GFP-positive cells were apparent in the nucleus pulposus at all periods in the GFP-labeled human BMSCs group, and the cell density at 6 and 8 weeks was significantly less than that at 1, 2 and 4 weeks post-transplantation (P<0.001). Thus, it was identified that human BMSCs were able to survive in the rabbit IVDs for 8 weeks. PMID:27588177

  20. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro.

    PubMed

    Tapp, H; Deepe, R; Ingram, J A; Yarmola, E G; Bubb, M R; Hanley, E N; Gruber, H E

    2009-12-01

    Loss of cells in the human disc due to programmed cell death (apoptosis) is a major factor in the aging and degenerating human intervertebral disc. Our objective here was to determine if thymosin beta(4) (TB4), a small, multifunctional 5 kDa protein with diverse activities, might block apoptosis in human annulus cells cultured in monolayer or three-dimensional (3D) culture. Apoptosis was induced in vitro using hydrogen peroxide or serum starvation. Annulus cells were processed for identification of apoptotic cells using the TUNEL method. The percentage of apoptotic cells was determined by cell counts. Annulus cells also were treated with TB4 for determination of proliferation, and proteoglycan production was assessed using cell titer and 1,2 dimethylmethylamine (DMB) assays and histological staining. A significant reduction in disc cell apoptosis occurred after TB4 treatment. The percentage of cells undergoing apoptosis decreased significantly in TB4 treated cells in both apoptosis induction designs. TB4 exposure did not alter proteoglycan production as assessed by either DMB measurement or histological staining. Our results indicate the need for further studies of the anti-apoptotic effect of TB4 and suggest that TB4 may have therapeutic application in future biological therapies for disc degeneration.

  1. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model.

    PubMed

    Henriksson, Helena B; Svanvik, Teresia; Jonsson, Marianne; Hagman, Margret; Horn, Michael; Lindahl, Anders; Brisby, Helena

    2009-01-15

    Experimental and descriptive study of a xenotransplantation model in minipigs. To study survival and function of human mesenchymal stem cells (hMSCs) after transplantation into injured porcine spinal discs, as a model for cell therapy. Biologic treatment options of the intervertebral disc are suggested for patients with chronic low back pain caused by disc degeneration. Three lumbar discs in each of 9 minipigs were injured by aspiration of the nucleus pulposus (NP), 2 weeks later hMSCs were injected in F12 media suspension (cell/med) or with a hydrogel carrier (Puramatrix) (cell/gel). The animals were sacrificed after 1, 3, or 6 months. Disc appearance was visualized by magnetic resonance imaging. Immunohistochemistry methods were used to detect hMSCs by antihuman nuclear antibody staining, and further performed for Collagen II, Aggrecan, and Collagen I. SOX 9, Aggrecan, Versican, Collagen IA, and Collagen IIA and Collagen IIB human mRNA expression was analyzed by real-time PCR. At magnetic resonance imaging all injured discs demonstrated degenerative signs. Cell/gel discs showed fewer changes compared with cell/med discs and only injured discs at later time points. hMSCs were detected in 9 of 10 of the cell/gel discs and in 8 of 9 of the cell/med discs. Immunostaining for Aggrecan and Collagen type II expression were observed in NP after 3 and 6 months in gel/cell discs and colocalized with the antihuman nuclear antibody. mRNA expression of Collagen IIA, Collagen IIB, Versican, Collagen 1A, Aggrecan, and SOX9 were detected in both cell/med and cell/gel discs at the time points 3 and 6 months by real-time PCR. hMSCs survive in the porcine disc for at least 6 months and express typical chondrocyte markers suggesting differentiation toward disc-like cells. As in autologous animal models the combination with a three-dimensional-hydrogel carrier seems to facilitate differentiation and survival of MSCs in the disc. Xenotransplantation seems to be valuable in evaluating

  2. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  3. The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc.

    PubMed Central

    DiFabio, J L; Pearce, R H; Caterson, B; Hughes, H

    1987-01-01

    Non-aggregating proteoglycans of differing average hydrodynamic volumes were prepared from nuclei pulposi and anuli fibrosi of three human lumbar spines and characterized by biochemical and immunochemical analyses. The hexose-to-hexuronate and protein-to-hexuronate ratios increased with decreasing hydrodynamic volume. Analysis by composite agarose/polyacrylamide-gel electrophoresis has demonstrated two aggregating subpopulations [McDevitt, Jahnke & Green (1982) Trans. Annu. Meet. Orthop. Res. Soc. 7, 50]. In the present study, electrophoresis of the non-aggregating pools has shown three additional subpopulations, here named bands III, IV and V. The two smallest proteoglycan pools from each tissue contained two and three components respectively. These components were isolated by preparative electrophoresis and analysed. Band III was a proteoglycan richer in keratan sulphate than in chondroitin sulphate; band IV was a proteoglycan richer in chondroitin sulphate than in keratan sulphate; band V contained only chondroitin sulphate. Unsaturated disaccharides prepared from the chondroitin sulphate of all bands were predominantly 6-sulphated, with only 5-15% 4-sulphated. The molecular masses of the chondroitin sulphate and keratan sulphate did not differ between the bands. The amino acid composition of band III differed from that of band IV. Thus three distinct subpopulations of non-aggregating proteoglycan were demonstrated in the human intervertebral disc. PMID:3117036

  4. Mechanism of parathyroid hormone-mediated suppression of calcification markers in human intervertebral disc cells.

    PubMed

    Madiraju, P; Gawri, R; Wang, H; Antoniou, J; Mwale, F

    2013-05-02

    In degenerative intervertebral discs (IVD), type X collagen (COL X) expression (associated with hypertrophic differentiation) and calcification has been demonstrated. Suppression of COL X expression and calcification during disc degeneration can be therapeutic. In the present study we investigated the potential of human parathyroid hormone 1-34 (PTH) in suppressing indicators of calcification potential (alkaline phosphatase (ALP), Ca(2+), inorganic phosphate (Pi)), and COL X expression. Further, we sought to elucidate the mechanism of PTH action in annulus fibrosus (AF) and nucleus pulposus (NP) cells from human lumbar IVDs with moderate to advanced degeneration. Mitogen activated protein kinase (MAPK) signalling and alterations in the markers of calcification potential were analysed. PTH increased type II collagen (COL II) expression in AF (~200 %) and NP cells (~163 %) and decreased COL X levels both in AF and NP cells (~75 %). These changes in the expression of collagens were preceded by MAPK phosphorylation, which was increased in both AF and NP cells by PTH after 30 min. MAPK signalling inhibitor U0126 and protein kinase-A inhibitor H-89 DCH attenuated PTH stimulated COL II expression in both cell types. PTH decreased ALP activity and increased Ca(2+) release only in NP cells. The present study demonstrates that PTH can potentially retard IVD degeneration by stimulating matrix synthesis and suppressing markers of calcification potential in degenerated disc cells via both MAPK and PKA signalling pathways. Inhibition of further mineral deposition may therefore be a viable therapeutic option for improving the status of degenerating discs.

  5. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy.

    PubMed

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.

  6. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  7. Interrelationship between silicon, aluminum, and elements associated with tissue metabolism and degenerative processes in degenerated human intervertebral disc tissue.

    PubMed

    Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Frankowski, Marcin

    2017-07-07

    There is a growing body of evidence concerning the significant role of silicon in development and composition of both connective and bone tissue. Bio-essential silicon shows strong chemical and biological affinity to aluminum, which is toxic and biologically inessential element. The presence of silicon was confirmed in a variety of tissues; however, it has never been examined in intervertebral disc tissue, neither in healthy nor in degenerated one. In this paper, for the first time in the literature, we present the content of silicon in the degenerated intervertebral disc tissue. We also compared the results of silicon analysis with aluminum values in degenerated intervertebral disc tissue in humans. We used chemometric methods to find correlations and similarities between silicon, aluminum, and elements associated with tissue metabolism (Mg) and degenerative processes (Zn and Cu). The presence of silicon was confirmed in all 30 samples harvested from 22 patients operated on due to degenerative changes. Its concentration was within the range of 5.37-12.8 μg g(-1) d.w., with the mean concentration of 7.82 μg g(-1) d.w. The analysis showed significant correlation between Si and both Al and Mg and weak or negative correlation with Zn and Cu, where the latter was probably the result of degenerative processes. Although silicon is considered essential in glycosaminoglycan and collagen synthesis in connective tissue, it did not show any correlation nor similarities with elements reflecting changes associated with the degenerative process of the intervertebral disc. Silicon showed significant correlation with aluminum, similar to those observed in other human tissues.

  8. Spatially resolved streaming potentials of human intervertebral disk motion segments under dynamic axial compression.

    PubMed

    Iatridis, James C; Furukawa, Masaru; Stokes, Ian A F; Gardner-Morse, Mack G; Laible, Jeffrey P

    2009-03-01

    Intervertebral disk degeneration results in alterations in the mechanical, chemical, and electrical properties of the disk tissue. The purpose of this study is to record spatially resolved streaming potential measurements across intervertebral disks exposed to cyclic compressive loading. We hypothesize that the streaming potential profile across the disk will vary with radial position and frequency and is proportional to applied load amplitude, according to the presumed fluid-solid relative velocity and measured glycosaminoglycan content. Needle electrodes were fabricated using a linear array of AgAgCl micro-electrodes and inserted into human motion segments in the midline from anterior to posterior. They were connected to an amplifier to measure electrode potentials relative to the saline bath ground. Motion segments were loaded in axial compression under a preload of 500 N, sinusoidal amplitudes of +/-200 N and +/-400 N, and frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Streaming potential data were normalized by applied force amplitude, and also compared with paired experimental measurements of glycosaminoglycans in each disk. Normalized streaming potentials varied significantly with sagittal position and there was a significant location difference at the different frequencies. Normalized streaming potential was largest in the central nucleus region at frequencies of 0.1 Hz and 1.0 Hz with values of approximately 3.5 microVN. Under 0.01 Hz loading, normalized streaming potential was largest in the outer annulus regions with a maximum value of 3.0 microVN. Correlations between streaming potential and glycosaminoglycan content were significant, with R(2) ranging from 0.5 to 0.8. Phasic relationships between applied force and electrical potential did not differ significantly by disk region or frequency, although the largest phase angles were observed at the outermost electrodes. Normalized streaming potentials were associated with glycosaminoglycan content, fluid, and

  9. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  10. Genome-Wide Identification of Long Noncoding RNAs in Human Intervertebral Disc Degeneration by RNA Sequencing

    PubMed Central

    Zhao, Bo; Lu, Minjuan; Wang, Dong; Li, Haopeng

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as crucial players in a myriad of biological processes. However, the precise mechanism and functions of most lncRNAs are poorly characterized. In this study, we presented genome-wide identification of lncRNAs in the patients with intervertebral disc degeneration (IDD) and spinal cord injury (control) using RNA sequencing (RNA-seq). A total of 124.6 million raw reads were yielded using Hiseq 2500 platform and approximately 88% clean reads could be aligned to human reference genome in both IDD and control groups. RNA-seq profiling indicated that 1,854 lncRNAs were differentially expressed (log2 fold change ≥ 1 or ≤−1, p < 0.05), in which 1,530 could potentially target 6,386 genes via cis-regulatory effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these target genes suggested that lncRNAs were involved in diverse pathways, such as lysosome, focal adhesion, and MAPK signaling. In addition, a competing endogenous RNA (ceRNA) network was constructed for analyzing the function of lncRNAs. Further, quantitative real time PCR (qRT-PCR) was used to confirm the differentially expressed lncRNAs and ceRNA network. In conclusion, our results present the first global identification of lncRNAs in IDD and may provide candidate diagnostic biomarkers for IDD treatment. PMID:28097131

  11. Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.

    PubMed

    Gruber, H E; Hanley, E N

    2009-06-01

    The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.

  12. Stress - Strain Response of the Human Spine Intervertebral Disc As an Anisotropic Body. Mathematical Modeling and Computation

    NASA Astrophysics Data System (ADS)

    Minárová, Mária; Sumec, Jozef

    2016-01-01

    The paper deals with the biomechanical investigation on the human lumbar intervertebral disc under the static load. The disc is regarded as a two - phased ambient consisting of a fibrous outer part called annulus fibrosis and a liquid inner part nucleus pulposus. Due to the fibrous structure, the annulus fibrosis can be treated by using a special case of anisotropy - transversal isotropy. In the paper the corresponding tensor of material constants is derived. The tensor consequently incomes to the constitutive equations determining the stress - strain relation in the material. In order to study the mechanical behaviour the disc is observed within the motion segment, the basic unit for motion tracing. The motion segment involves two neighbouring vertebrae and the intervertebral disc between them that connect them both. When constitutive equations are accomplished, they can be incorporated in the finite element analysis. The illustrative example of the intervertebral disc L2/L3, the disc between the second and the third lumbar vertebrae the lumbar part of spine, with its computer implementation is performed. Finally the comparison of the results of using anisotropic and homogenized approach is provided. The comparison illustrates the eligibility of such a kind of approach.

  13. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck.

    PubMed

    Esat, V; Acar, M

    2009-02-01

    This article presents the effects of the frontal and rear-end impact loadings on the cervical spine components by using a multi-body dynamic model of the head and neck, and a viscoelastic finite element (FE) model of the six cervical intervertebral discs. A three-dimensional multi-body model of the human head and neck is used to simulate 15 g frontal and 8.5 g rear-end impacts. The load history at each intervertebral joint from the predictions of the multi-body model is used as dynamic loading boundary conditions for the FE model of the intervertebral discs. The results from the multi-body model simulations, such as the intervertebral disc loadings in the form of compressive, tensile, and shear forces and moments, and from the FE analysis such as the von Mises stresses in the intervertebral discs are analysed. This study shows that the proposed approach that uses dynamic loading conditions from the multi-body model as input to the FE model has the potential to investigate the kinetics and the kinematics of the cervical spine and its components together with the biomechanical response of the intervertebral discs under the complex dynamic loading history.

  14. Multipoint determination of pressure-volume curves in human intervertebral discs.

    PubMed Central

    Ranu, H S

    1993-01-01

    To gain further insight into the biomechanics of the human intervertebral disc and to determine a potential mechanism for causation and relief of symptoms related to a herniated disc, the pressure-volume relation was determined within the nucleus pulposus. Pressure was measured continuously within the nucleus pulposus in 17 intact lumbar discs from human cadavers by means of a miniature strain gauge at the tip of a size 4 French (1.3 mm) catheter inserted into the nucleus pulposus. The volume of the nucleus pulposus was increased at the slow, continuous rate of 0.034 ml/min by the pump regulated infusion of saline coloured with methylene blue. In 12 unloaded discs, nucleus pulposus pressure rose in a linear fashion (linear r = 0.96) from an initial mean pressure of 174 (SD 81) kPa. The mean rate of pressure rise was 327 (SD 109) kPa/ml volume increase. The peak pressure measured was 550 kPa; this was slightly higher than the capability of the transducer. Similar linear relations were obtained during infusion of saline into five vertically loaded discs fixed at the deformation produced by a 9.1 kg weight. The data define the pressure-volume relation within the disc and show that the nucleus pulposus, surrounded by the relatively inelastic annulus and the solid vertebral end plates, has the properties of a tight hydraulic space in which a large pressure rise will regularly result from a small increase in volume. Presumably the opposite is also true. The data may provide a biomechanical basis for the physiological variation in symptoms related to the disc, and for any benefits obtained from interventions designed to remove disc tissue. PMID:8447694

  15. PGE1 Attenuates IL-1β-induced NGF Expression in Human Intervertebral Disc Cells.

    PubMed

    Murata, Kazuma; Sawaji, Yasunobu; Alimasi, Wuqikun; Suzuki, Hidekazu; Endo, Kenji; Tanaka, Hidetoshi; Yorifuji, Makiko; Kosaka, Taiichi; Shishido, Takaaki; Yamamoto, Kengo

    2016-06-01

    In vitro study using isolated human intervertebral disc (IVD) cells. To investigate the effects of prostaglandin (PG)E1 and its orally available derivative limaprost on the regulation of nerve growth factor (NGF) expression and to compare their actions with other prostanoids using interleukin (IL)-1-stimulated human IVD cells. We previously reported that a selective COX-2 inhibitor enhanced, whereas PGE2 suppressed the induction of NGF by IL-1 in human IVD cells, and proposed that PGE2 can suppress NGF expression by a negative feedback mechanism. Isolated human IVD cells were stimulated with IL-1 in the presence or absence of increasing concentrations of PGE2, PGE1, limaprost, PGI2, PGD2, or PGF2α (10-10,000 nM). For some experiments, an E-series prostanoid receptor (EP)4 antagonist (L-161,982) was added prior to the stimulation. NGF expression was determined by real-time polymerase chain reaction and its protein level was quantified by enzyme-linked immunosorbent assay. PGE2, PGE1, and limaprost inhibited the IL-1-mediated induction of NGF in a concentration-dependent manner, with IC50 values of 9.9, 10.6, and 70.9 nM, respectively. PGI2 also suppressed NGF expression but to a much less extent. PGD2, on the other hand, significantly enhanced NGF expression, whereas PGF2α had no effect. Protein expression levels of NGF mirrored its mRNA levels. The suppression of NGF expression by PGE2 and PGE1 was partly reversed by L-161,982. PGE1 and limaprost exhibited a novel pharmacological action that suppresses NGF expression in human IVD cells, and other prostanoids differentially regulated NGF expression. Limaprost has been used to treat patients with lumbar spinal stenosis in Japan and was proved to be effective in relieving symptoms. Our in vitro results may explain, in part, the mechanism of action of limaprost for low back pain. N/A.

  16. IAPP modulates cellular autophagy, apoptosis, and extracellular matrix metabolism in human intervertebral disc cells

    PubMed Central

    Wu, Xinghuo; Song, Yu; Liu, Wei; Wang, Kun; Gao, Yong; Li, Shuai; Duan, Zhenfeng; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2017-01-01

    The pathogenic process of intervertebral disc degeneration (IDD) is characterized by imbalance in the extracellular matrix (ECM) metabolism. Nucleus pulposus (NP) cells have important roles in maintaining the proper structure and tissue homeostasis of disc ECM. These cells need adequate supply of glucose and oxygen. Islet amyloid polypeptide (IAPP) exerts its biological effects by regulating glucose metabolism. The purpose of this study was to investigate the expression of IAPP in degenerated IVD tissue, and IAPP modulation of ECM metabolism in human NP cells, especially the crosstalk mechanism between apoptosis and autophagy in these cells. We found that the expression of IAPP and Calcr-RAMP decreased considerably during IDD progression, along with the decrease in the expression of AG, BG, and Col2A1. Induction of IAPP in NP cells by transfection with pLV-IAPP enhanced the synthesis of aggrecan and Col2A1 and attenuated the expression of pro-inflammatory factors, tumor necrosis factor (TNF)-α, and interleukin (IL)-1. Upregulation of IAPP also affected the expression of the catabolic markers—matrix metalloproteinases (MMPs) 3, 9 and 13 and ADAMTS 4 and 5. Downregulation of IAPP by siRNA inhibited the expression of anabolic genes but increased the expression of catabolic genes and inflammatory factors. The expressions of autophagic and apoptotic markers in NP cells transfected with pLV-IAPP were upregulated, including BECLIN1, ATG5, ATG7, LC3 II/I and Bcl-2, while significantly increase in the expression of Bax and Caspase-3 in NP cells transfected with pLV-siIAPP. Mechanistically, PI3K/AKT-mTOR and p38/JNK MAPK signal pathways were involved. We propose that IAPP might play a pivotal role in the development of IDD, by regulating ECM metabolism and controlling the crosstalk between apoptosis and autophagy in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD. PMID:28149534

  17. Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration

    PubMed Central

    O'Connell, Grace D.; Jacobs, Nathan T.; Sen, Sounok; Vresilovic, Edward J.; Elliott, Dawn M.

    2011-01-01

    The intervertebral disc maintains a balance between externally applied loads and internal osmotic pressure. Fluid flow plays a key role in this process, causing fluctuations in disc hydration and height. The objectives of this study were to quantify and model the axial creep and recovery responses of nondegenerate and degenerate human lumbar discs. Two experiments were performed. First, a slow compressive ramp was applied to 2000 N, unloaded to allow recovery for up to 24 hours, and re-applied. The linear-region stiffness and disc height were within 5% of the initial condition for recovery times greater than 8 hours. In the second experiment, a 1000 N creep load was applied for four hours, unloaded recovery monitored for 24 hours, and the creep load repeated. A viscoelastic model comprised of a “fast” and “slow” exponential response was used to describe the creep and recovery, where the fast response is associated with flow in the nucleus pulposus (NP) and endplate, while the slow response is associated with the annulus fibrosus (AF). The study demonstrated that recovery is 3-4X slower than loading. The fast response was correlated with degeneration, suggesting larger changes in the NP with degeneration compared to the AF. However, the fast response comprised only 10-15% of the total equilibrium displacement, with the AF-dominated slow response comprising 40-70%. Finally, the physiological loads and deformations and their associated long equilibrium times confirm that diurnal loading does not represent “equilibrium” in the disc, but that over time the disc is in steady-state. PMID:21783103

  18. The effect of creep on human lumbar intervertebral disk impact mechanics.

    PubMed

    Jamison, David; Marcolongo, Michele S

    2014-03-01

    The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.

  19. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells.

    PubMed

    Klawitter, Marina; Hakozaki, Michiyuki; Kobayashi, Hiroshi; Krupkova, Olga; Quero, Lilian; Ospelt, Caroline; Gay, Steffen; Hausmann, Oliver; Liebscher, Thomas; Meier, Ullrich; Sekiguchi, Miho; Konno, Shin-ichi; Boos, Norbert; Ferguson, Stephen J; Wuertz, Karin

    2014-09-01

    Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)--which have been shown to play an essential role e.g. in osteoarthritis--during degenerative disc disease. The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed. Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α. We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.

  20. Expression of semaphorin 3A and its receptors in the human intervertebral disc: potential role in regulating neural ingrowth in the degenerate intervertebral disc

    PubMed Central

    2010-01-01

    Introduction Intervertebral disc (IVD) degeneration is considered a major underlying factor in the pathogenesis of chronic low back pain. Although the healthy IVD is both avascular and aneural, during degeneration there is ingrowth of nociceptive nerve fibres and blood vessels into proximal regions of the IVD, which may contribute to the pain. The mechanisms underlying neural ingrowth are, however, not fully understood. Semaphorin 3A (sema3A) is an axonal guidance molecule with the ability to repel nerves seeking their synaptic target. This study aimed to identify whether members of the Class 3 semaphorins were expressed by chondrocyte-like cells of the IVD addressing the hypothesis that they may play a role in repelling axons surrounding the healthy disc, thus maintaining its aneural condition. Methods Human IVD samples were investigated using reverse transcription polymerase chain reaction (RT-PCR) to identify gene expression of sema3A, 3F and their receptors: neuropilins (1 and 2) and plexins (A1-4). Sema3A protein was also localised within sections of normal and degenerate human IVD and immunopositivity quantified. Serial sections were stained using PGP9.5 and CD31 to correlate semaphorin 3A expression with nerve and blood vessel ingrowth, respectively. Results Sema3A protein was expressed highly in the healthy disc, primarily localised to the outer annulus fibrosus. In degenerate samples, sema3A expression decreased significantly in this region, although cell clusters within the degenerate nucleus pulposus exhibited strong immunopositivity. mRNA for sema3A receptors was also identified in healthy and degenerate tissues. CD31 and PGP9.5 were expressed most highly in degenerate tissues correlating with low expression of sema3A. Conclusions This study is the first to establish the expression of semaphorins and their receptors in the human IVD with a decrease seen in the degenerate painful IVD. Sema3A may therefore, amongst other roles, act as a barrier to

  1. [Intervertebral instability].

    PubMed

    Colaiacomo, M C; Tortora, A; Di Biasi, C; Polettini, E; Casciani, E; Gualdi, G F

    2009-01-01

    The clinic diagnosis of degenerative lumbar intervertebral instability is a controversial topic and have not yet been clarified clinical criteria for to define this condition with accuracy. Although the lumbar pain is the most common symptom in patients who have lumbar intervertebral instability its clinical presentation is not specific; moreover in patients with lumbar pain there are no agreed signs and symptoms that can be truly attributable to instability. Despite better imaging techniques of testing spinal instability there is not a clear relations between radiologic signs of instability and clinical symptoms. It is, however, still far from unanimous definition of degenerative lumbar intervertebral instability accepted from all specialists involved in diagnosis and treatment of this condition; however, seem there is most agree about suspected vertebral instability. Nevertheless this unresolved topic, it is possible to state that imaging play an increasing role in diagnosis and management of patients with suspected instability. The aim of this study is to investigate the different imaging modalities most indicated in diagnosis if vertebral instability and whether degenerative change can be associated with lower back pain.

  2. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles.

    PubMed

    Rupp, T K; Ehlers, W; Karajan, N; Günther, M; Schmitt, S

    2015-10-01

    Determining the internal dynamics of the human spine's biological structure is one essential step that allows enhanced understanding of spinal degeneration processes. The unavailability of internal load figures in other methods highlights the importance of the forward dynamics approach as the most powerful approach to examine the internal degeneration of spinal structures. Consequently, a forward dynamics full-body model of the human body with a detailed lumbar spine is introduced. The aim was to determine the internal dynamics and the contribution of different spinal structures to loading. The multi-body model consists of the lower extremities, two feet, shanks and thighs, the pelvis, five lumbar vertebrae, and a lumped upper body including the head and both arms. All segments are modelled as rigid bodies. 202 muscles (legs, back, abdomen) are included as Hill-type elements. 58 nonlinear force elements are included to represent all spinal ligaments. The lumbar intervertebral discs were modelled nonlinearly. As results, internal kinematics, muscle forces, and internal loads for each biological structure are presented. A comparison between the nonlinear (new, enhanced modelling approach) and linear (standard modelling approach, bushing) modelling approaches of the intervertebral disc is presented. The model is available to all researchers as ready-to-use C/C++ code within our in-house multi-body simulation code demoa with all relevant binaries included.

  3. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

    PubMed

    Cortes, Daniel H; Jacobs, Nathan T; DeLucca, John F; Elliott, Dawn M

    2014-06-27

    The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390kPa) compared to the NP (100kPa) or AF (30kPa). The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical

  4. Expression of the Trp2 allele of COL9A2 is associated with alterations in the mechanical properties of human intervertebral discs.

    PubMed

    Aladin, Darwesh M K; Cheung, Kenneth M C; Chan, Danny; Yee, Anita F Y; Jim, Jeffrey J T; Luk, Keith D K; Lu, William W

    2007-12-01

    Biomechanical study into the association between genetic polymorphism in COL9A2 and mechanical properties of human nucleus pulposus. To examine whether there is an association between genetic polymorphism in a structural gene, and alterations in the mechanical properties of the intervertebral discs that may predispose to disc degeneration. Genetic studies have demonstrated that a polymorphism (Trp2 allele) in COL9A2 coding for alpha2 chain of collagen IX predisposes the individual to disc degeneration. The mechanism of this predisposition is not known. Blood and whole disc samples were retrieved from adolescents and young adults during scoliosis surgery, degenerated discs were retrieved from patients with back pain during anterior spinal fusion. Anulus fibrosus and nucleus pulposus from a set of the scoliosis discs were used to perform immunohistochemistry to demonstrate the presence of collagen IX in the scoliosis discs. For the remaining samples, DNA was extracted from blood to determine the Trp2 status by sequencing. Nondegenerated (Trp2-), nondegenerated (Trp2+), and degenerated (Trp2-) nucleus pulposus samples were tested in confined compression. Swelling pressure and compressive modulus were measured and compared between groups. Positive staining of collagen IX was detected in both anulus fibrosus and nucleus pulposus sections confirming its presence in the scoliosis discs. The mean swelling pressure and compressive modulus values of 6 nondegenerated (Trp2+) samples (swelling pressure = 0.0019 MPa, compressive modulus = 0.97 MPa) were significantly lower (P < 0.05) than those of the 6 nondegenerated (Trp2-) samples (swelling pressure = 0.015 MPa; compressive modulus = 1.89 MPa). This is the first study to demonstrate an association between the Trp2 allele and disc mechanics, thus relating genetic variations and debilitating mechanical alterations that may ultimately result in intervertebral disc degeneration.

  5. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan–gelatin scaffolds

    PubMed Central

    Renani, Hamid Bahramian; Ghorbani, Masood; Beni, Batool Hashemibeni; Karimi, Z; Mirhosseini, MM; Zarkesh, H; Kabiri, A

    2012-01-01

    Introduction: Low back pain is a major economical and social problem nowadays. Intervertebral disc herniation and central degeneration of disc are two major reasons of low back pain that occur because of structural impairment of disc. The intervertebral disc contains three parts as follows : Annulus fibrosus, transitional region, and nucleus pulposus, which forms the central nucleus of the disc. The reduction of cell count and extracellular matrix, especially in nucleus pulposus, causes disc degeneration. Different scaffolds (natural and synthetic) have been used for tissue repairing and regeneration of the intervertebral disc in tissue engineering. Most scaffolds have biodegradable and biocompatible characteristics and also prepare a fine condition for proliferation and migration of cells. In this study, proliferation of NP cells of human intervertebral disc compromised in Chitosan-gelatin scaffold with alginate scaffold was studied. Materials and Methods: NP cells derived from nucleus pulposus by collagenase enzymatic hydrolysis. They were derived from patients who undergoing open surgery for discectomy in the Isfahan Alzahra hospital. Chitosan was blended with gelatin and glutaraldehyde was used for cross linking the two polymers. Then, alginate scaffold was prepared. Cellular suspension with 1 × 105 transferred to each scaffold and cultured for 21 days. Cell viability and proliferation investigated by trypan blue and (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Scanning electron microscope (SEM) was used to assert the porosity and to survey structure of scaffold. Results: MTT assay dem1onstrated that cell viability of third day had significant difference in contrast by first day in both scaffolds. Accordingly, there was a significant decreased in cellular viability from day 3 to 21. Results of the cell count showed a punctual elevation cell numbers for alginate scaffold but there was no similar result for chitosan

  6. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration

    PubMed Central

    Shu, Cindy C.; Smith, Margaret M.; Smith, Susan M.; Dart, Andrew J.; Little, Christopher B.; Melrose, James

    2017-01-01

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i–vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3–6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs. PMID:28498326

  7. Lumbar intervertebral discs T2 relaxometry and T1ρ relaxometry correlation with age in asymptomatic young adults

    PubMed Central

    Salmon, Carlos E. Garrido; Bonugli, Gustavo P.; Mazoroski, Debora; Tamashiro, Mauricio H.; Savarese, Leonor G.; Nogueira-Barbosa, Marcello Henrique

    2016-01-01

    Background To investigate the detection of intervertebral disc (IVD) composition aging-related changes using T2 and T1ρ relaxometry in vivo in asymptomatic young adults. Methods We recruited ninety asymptomatic and young adults (42 men and 48 women) between 20 and 40 years old. T2 and T1ρ lumbar spine mappings were acquired using 1.5 T magnetic resonance imaging (MRI) scanner. Two independent observers manually segmented 450 lumbar discs in all slices. They also performed sub region segmentation of annulus fibrosus (AF) and nucleus pulposus (NP) at the central MRI sagittal slices. Results There was no difference between men and women for T2 (P=0.37) or T1ρ relaxometry (P=0.97). There was a negative correlation between age (20–40 years) and IVD T2 relaxation time of the whole disc (r=−0.30, P<0.0001), NP (r=−0.20 to −0.51, P<0.05) and posterior AF (r=−0.21 to −0.31, P<0.05) at all lumbar disc levels. There was no statistical correlation between aging and IVD T1ρ relaxation both for NP and AF. Conclusions T2 relaxometry detected gradual IVD dehydration in the first two decades of adulthood. We observed no significant variation of T1ρ or volumetry with aging in our study group. Our results suggest that T2 mapping may be more appropriate to detect early IVD aging changes. PMID:27709076

  8. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.

    PubMed

    Keller, Tony S; Colloca, Christopher J; Harrison, Deed E; Harrison, Donald D; Janik, Tadeusz J

    2005-01-01

    Sagittal profiles of the spine have been hypothesized to influence spinal coupling and loads on spinal tissues. To assess the relationship between thoracolumbar spine sagittal morphology and intervertebral disc loads and stresses. A cross-sectional study evaluating sagittal X-ray geometry and postural loading in asymptomatic men and women. Sixty-seven young and asymptomatic subjects (chiropractic students) formed the study group. Morphological data derived from radiographs (anatomic angles and sagittal balance parameters) and biomechanical parameters (intervertebral disc loads and stresses) derived from a postural loading model. An anatomically accurate, sagittal plane, upright posture, quadrilateral element model of the anterior spinal column (C2-S1) was created by digitizing lateral full-spine X-rays of 67 human subjects (51 males, 16 females). Morphological measurements of sagittal curvature and balance were compared with intervertebral disc loads and stresses obtained using a quadrilateral element postural loading model. In this young (mean 26.7, SD 4.8 years), asymptomatic male and female population, the neutral posture spine was characterized by an average thoracic angle (T1-T12) = +43.7 degrees (SD 11.4 degrees ), lumbar angle (T12-S1) = -63.2 degrees (SD 10.0 degrees ), and pelvic angle = +49.4 degrees (SD 9.9 degrees ). Sagittal curvatures exhibited relatively broad frequency distributions, with the pelvic angle showing the least variance and the thoracic angle showing the greatest variance. Sagittal balance parameters, C7-S1 and T1-T12, showed the best average vertical alignment (5.3 mm and -0.04 mm, respectively). Anterior and posterior disc postural loads were balanced at T8-T9 and showed the greatest difference at L5-S1. Disc compressive stresses were greatest in the mid-thoracic region of the spine, whereas shear stresses were highest at L5-S1. Significant linear correlations (p < .001) were found between a number of biomechanical and morphological

  9. Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration.

    PubMed

    Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C

    2009-01-01

    Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.

  10. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells.

    PubMed

    Wang, Haili; Kroeber, Markus; Hanke, Michael; Ries, Rainer; Schmid, Carsten; Poller, Wolfgang; Richter, Wiltrud

    2004-02-01

    To develop new therapeutic options for the treatment of disc degeneration we tested the possibility of overexpression of active growth and differentiation factor (GDF) 5 and of transforming growth factor (TGF) beta(1) by adenoviral gene transfer and characterized its effect on cell proliferation and matrix synthesis of cultured rabbit and human intervertebral disc cells. Recombinant adenovirus encoding for GDF-5 or TGF-beta(1) was developed and transgene expression characterized by RT-PCR, western blot and ELISA. Growth and matrix synthesis of transduced cells was measured by [(3)H]thymidine or [(35)S]sulfate incorporation. Disc cells expressed the receptors BMPR1A, BMPR1B, and BMPR2, which are relevant for GDF-5 action. Adenovirus efficiently transferred the GDF-5 gene or the TGF-beta(1) gene to rabbit and human intervertebral disc cells. About 50 ng GDF-5 protein/10(6 )cells per 24 h or 7 ng TGF-beta(1) protein/10(6 )cells per 24 h was produced. According to western blotting, two GDF-5 forms, with molecular weights consistent with the activated GDF-5 dimer and the proform, were secreted over the 3 weeks following gene transfer. Overexpressed GDF-5 and TGF-beta(1) were bioactive and promoted growth of rabbit disc cells in monolayer culture. Our results suggest that ex vivo gene delivery of GDF-5 and TGF-beta(1) is an attractive approach for the release of mature and pre-GDF-5 in surrounding tissue. This leads us to hope that it will prove possible to improve the treatment of degenerative disc disease by means of ex vivo gene transfer of single or multiple growth factors.

  11. Human-induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury.

    PubMed

    Oh, Jinsoo; Lee, Kang-In; Kim, Hyeong-Taek; You, Youngsang; Yoon, Do Heum; Song, Ki Yeong; Cheong, Eunji; Ha, Yoon; Hwang, Dong-Youn

    2015-06-24

    Induced pluripotent stem cells (iPSCs) have emerged as a promising cell source for immune-compatible cell therapy. Although a variety of somatic cells have been tried for iPSC generation, it is still of great interest to test new cell types, especially those which are hardly obtainable in a normal situation. In this study, we generated iPSCs by using the cells originated from intervertebral disc which were removed during a spinal operation after spinal cord injury. We investigated the pluripotency of disc cell-derived iPSCs (diPSCs) and neural differentiation capability as well as therapeutic effect in spinal cord injury. The diPSCs displayed similar characteristics to human embryonic stem cells and were efficiently differentiated into neural precursor cells (NPCs) with the capability of differentiation into mature neurons in vitro. When the diPSC-derived NPCs were transplanted into mice 9 days after spinal cord injury, we detected a significant amelioration of hindlimb dysfunction during follow-up recovery periods. Histological analysis at 5 weeks after transplantation identified undifferentiated human NPCs (Nestin(+)) as well as early (Tuj1(+)) and mature (MAP2(+)) neurons derived from the transplanted NPCs. Furthermore, NPC transplantation demonstrated a preventive effect on spinal cord degeneration resulting from the secondary injury. This study revealed that intervertebral discs removed during surgery for spinal stabilization after spinal cord injury, previously considered a "waste" tissue, may provide a unique opportunity to study iPSCs derived from difficult-to-access somatic cells and a useful therapeutic resource for autologous cell replacement therapy in spinal cord injury.

  12. Tissue engineering strategies applied in the regeneration of the human intervertebral disk.

    PubMed

    Silva-Correia, Joana; Correia, Sandra I; Oliveira, Joaquim M; Reis, Rui L

    2013-12-01

    Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration.

  13. Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study.

    PubMed

    du Rose, Alister; Breen, Alan

    2016-03-10

    Intervertebral motion impairment is widely thought to be related to chronic back disability, however, the movements of inter-vertebral pairs are not independent of each other and motion may also be related to morphology. Furthermore, maximum intervertebral range of motion (IV-RoMmax) is difficult to measure accurately in living subjects. The purpose of this study was to explore possible relationships between (IV-RoMmax) and lordosis, initial attainment rate and IV-RoMmax at other levels during weight-bearing flexion using quantitative fluoroscopy (QF). Continuous QF motion sequences were recorded during controlled active sagittal flexion of 60° in 18 males (mean age 27.6 SD 4.4) with no history of low back pain in the previous year. IV-RoMmax, lordotic angle, and initial attainment rate at all inter-vertebral levels from L2-S1 were extracted. Relationships between IV-RoMmax and the other variables were explored using correlation coefficients, and simple linear regression was used to determine the effects of any significant relationships. Within and between observer repeatability of IV-RoMmax and initial attainment rate measurements were assessed in a sub-set of ten participants, using the intra-class correlation coefficient (ICC) and standard error of measurement (SEM). QF measurements were highly repeatable, the lowest ICC for IV-RoMmax, being 0.94 (0.80-0.99) and highest SEM (0.76°). For initial attainment rate the lowest ICC was 0.84 (0.49-0.96) and the highest SEM (0.036). The results also demonstrated significant positive and negative correlations between IV-RoMmax and IV-RoMmax at other lumbar levels (r = -0.64-0.65), lordosis (r = -0.52-0.54), and initial attainment rate (r = -0.64-0.73). Simple linear regression analysis of all significant relationships showed that these predict between 28 and 42 % of the variance in IV-RoMmax. This study found weak to moderate effects of individual kinematic variables and lumbar lordosis on IV-RoMmax at

  14. The traction angle and cervical intervertebral separation.

    PubMed

    Wong, A M; Leong, C P; Chen, C M

    1992-02-01

    Seventeen normal young adults were evaluated for cervical intervertebral separation under different traction angles through motorized intermittent traction in the supine position. In all cases, the anterior and posterior intervertebral spaces were increased by traction at neutral position and in 30 degrees flexion, but not in 15 degrees extension. The effects of separation were 1) neutral position: anterior intervertebral separation C4-5 (12%) greater than C3-4 (8%), posterior intervertebral separation C6-7 (37%) greater than C3-4 (22%) greater than C4-5 (19%); and 2) 30 degrees flexion: anterior intervertebral separation C2-3 (21%) greater than C4-5 (16%) greater than C5-6 (15%) greater than C3-4 (10%), posterior intervertebral separation C6-7 (20%) greater than C5-6 (19%) greater than C4-5 (17%). There was a significant decrease in intervertebral separation posteriorly in extension traction, especially at C6-7 (-50%), C5-6 (-37%), C4-5 (-26%), and C3-4 (-14%). The separation of facet joint surfaces was found after traction at 15 degrees extension, but not in the neutral or flexion positions.

  15. Improvement of gagCEST imaging in the human lumbar intervertebral disc by motion correction.

    PubMed

    Müller-Lutz, Anja; Schleich, Christoph; Schmitt, Benjamin; Topgöz, Melike; Pentang, Gael; Antoch, Gerald; Wittsack, Hans-Jörg; Miese, Falk

    2015-04-01

    To investigate whether motion correction improves glycosaminoglycan chemical exchange saturation transfer imaging (gagCEST imaging) of intervertebral discs (IVDs). Magnetic resonance gagCEST imaging of 12 volunteers was obtained in lumbar IVDs at 3 T using a prototype pulse sequence. The data were motion-corrected using a prototype diffeomorphism-based motion compensation technique. For both the data with and that without motion correction (datac, datauc), CEST evaluation was performed using the magnetisation transfer ratio asymmetry (MTRasym) as a means of quantifying CEST effects. MTRasym and the signal-to-noise ratio (SNR) of the MTRasym map in the nucleus pulposus (NP) were compared for datac and datauc. A visual grading analysis was performed by a radiologist in order to subjectively quantify the quality of the MTRasym analysis (score 1: best quality, score 5: worst quality). Furthermore, a landmark analysis was performed in order to objectively quantify the motion between CEST images using the mean landmark distance dmean. MTRasym and SNR were significantly higher for the motion-corrected data than for the uncorrected CEST data (MTRasym(datac) = 3.77 % ± 0.95 %, MTRasym(datauc) = 3.41 % ± 1.54 %, p value = 0.001; SNR(datac) = 3.88 ± 2.04, SNR(datauc) = 2.77 ± 1.55, p value < 0.001, number of IVDs = 48). The visual grading analysis revealed a higher reliability for datac (maximum score = 2) compared with datauc (maximum score = 5). The landmark analysis demonstrated the superiority of the motion-corrected data (dmean(datac) = 0.08 mm ± 0.09 mm, dmean(datauc) = 0.36 mm ± 0.09 mm, p value = 0.001). Our study showed significant improvements in the ability to quantify CEST imaging in IVDs after the application of motion correction compared with uncorrected datasets.

  16. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

    PubMed

    Wagnac, Eric; Arnoux, Pierre-Jean; Garo, Anaïs; El-Rich, Marwan; Aubin, Carl-Eric

    2011-10-01

    Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with

  17. The elastic fibre network of the human lumbar anulus fibrosus: architecture, mechanical function and potential role in the progression of intervertebral disc degeneration

    PubMed Central

    Fazzalari, Nicola L.

    2009-01-01

    Elastic fibres are critical constituents of dynamic biological structures that functionally require elasticity and resilience. The network of elastic fibres in the anulus fibrosus of the intervertebral disc is extensive, however until recently, the majority of histological, biochemical and biomechanical studies have focussed on the roles of other extracellular matrix constituents such as collagens and proteoglycans. The resulting lack of detailed descriptions of elastic fibre network architecture and mechanical function has limited understanding of the potentially important contribution made by elastic fibres to healthy disc function and their possible roles in the progression of disc degeneration. In addition, it has made it difficult to postulate what the consequences of elastic fibre related disorders would be for intervertebral disc behaviour, and to develop treatments accordingly. In this paper, we review recent and historical studies which have examined both the structure and the function of the human lumbar anulus fibrosus elastic fibre network, provide a synergistic discussion in an attempt to clarify its potentially critical contribution both to normal intervertebral disc behaviour and the processes relating to its degeneration, and recommend critical areas for future research. PMID:19263091

  18. Pulsed electromagnetic field (PEMF) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells.

    PubMed

    Miller, Stephanie L; Coughlin, Dezba G; Waldorff, Erik I; Ryaby, James T; Lotz, Jeffrey C

    2016-06-01

    Pulsed electromagnetic field (PEMF) therapies have been applied to stimulate bone healing and to reduce the symptoms of arthritis, but the effects of PEMF on intervertebral disc (IVD) biology is unknown. The purpose of this study was to determine how PEMF affects gene expression of IVD cells in normal and inflammatory environments. This was an in vitro human cell culture and microarray gene expression study. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were separately encapsulated in alginate beads and exposed to interleukin 1α (IL-1α) (10 ng/mL) to stimulate the inflammatory environment associated with IVD degeneration and/or stimulated by PEMF for 4 hours daily for up to 7 days. RNA was isolated from each treatment group and analyzed via microarray to assess IL-1α- and PEMF-induced changes in gene expression. Although PEMF treatment did not completely inhibit the effects of IL-1α, PEMF treatment lessened the IL-1α-induced upregulation of genes expressed in degenerated IVDs. Consistent with our previous results, after 4 days, PEMF tended to reduce IL-1α-associated gene expression of IL-6 (25%, p=.07) in NP cells and MMP13 (26%, p=.10) in AF cells. Additionally, PEMF treatment significantly diminished IL-1α-induced gene expression of IL-17A (33%, p=.01) and MMP2 (24%, p=.006) in NP cells and NFκB (11%, p=.04) in AF cells. These results demonstrate that IVD cells are responsive to PEMF and motivate future studies to determine whether PEMF may be helpful for patients with IVD degeneration. Copyright © 2016. Published by Elsevier Inc.

  19. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression. PMID:27622181

  20. Effect of the Degenerative State of the Intervertebral Disk on the Impact Characteristics of Human Spine Segments.

    PubMed

    Wilson, Sara E; Alkalay, Ron N; Myers, Elizabeth

    2013-01-01

    Models of the dynamic response of the lumbar spine have been used to examine vertebral fractures (VFx) during falls and whole body vibration transmission in the occupational setting. Although understanding the viscoelastic stiffness or damping characteristics of the lumbar spine are necessary for modeling the dynamics of the spine, little is known about the effect of intervertebral disk degeneration on these characteristics at high loading rates. We hypothesize that disk degeneration significantly affects the viscoelastic response of spinal segments to high loading rate. We additionally hypothesize the lumbar spine stiffness and damping characteristics are a function of the degree of preload. A custom, pendulum impact tester was used to impact 19 L1-L3 human spine segments with an end mass of 20.9 kg under increasing preloads with the resulting force response measured. A Kelvin-Voigt model, fitted to the frequency and decay response of the post-impact oscillations was used to compute stiffness and damping constants. The spine segments exhibited a second-order, under-damped response with stiffness and damping values of 17.9-754.5 kN/m and 133.6-905.3 Ns/m respectively. Regression models demonstrated that stiffness, but not damping, significantly correlated with preload (p < 0.001). Degenerative disk disease, reflected as reduction in magnetic resonance T2 relaxation time, was weakly correlated with change in stiffness at low preloads. This study highlights the need to incorporate the observed non-linear increase in stiffness of the spine under high loading rates in dynamic models of spine investigating the effects of a fall on VFx and those investigating the response of the spine to vibration.

  1. Effect of the Degenerative State of the Intervertebral Disk on the Impact Characteristics of Human Spine Segments

    PubMed Central

    Wilson, Sara E.; Alkalay, Ron N.; Myers, Elizabeth

    2013-01-01

    Models of the dynamic response of the lumbar spine have been used to examine vertebral fractures (VFx) during falls and whole body vibration transmission in the occupational setting. Although understanding the viscoelastic stiffness or damping characteristics of the lumbar spine are necessary for modeling the dynamics of the spine, little is known about the effect of intervertebral disk degeneration on these characteristics at high loading rates. We hypothesize that disk degeneration significantly affects the viscoelastic response of spinal segments to high loading rate. We additionally hypothesize the lumbar spine stiffness and damping characteristics are a function of the degree of preload. A custom, pendulum impact tester was used to impact 19 L1–L3 human spine segments with an end mass of 20.9 kg under increasing preloads with the resulting force response measured. A Kelvin–Voigt model, fitted to the frequency and decay response of the post-impact oscillations was used to compute stiffness and damping constants. The spine segments exhibited a second-order, under-damped response with stiffness and damping values of 17.9–754.5 kN/m and 133.6–905.3 Ns/m respectively. Regression models demonstrated that stiffness, but not damping, significantly correlated with preload (p < 0.001). Degenerative disk disease, reflected as reduction in magnetic resonance T2 relaxation time, was weakly correlated with change in stiffness at low preloads. This study highlights the need to incorporate the observed non-linear increase in stiffness of the spine under high loading rates in dynamic models of spine investigating the effects of a fall on VFx and those investigating the response of the spine to vibration. PMID:25024122

  2. Localization of Proliferating Cells in the Inter-Vertebral Region of the Developing and Adult Vertebrae of Lizards in Relation to Growth and Regeneration.

    PubMed

    Alibardi, Lorenzo

    2016-04-01

    New cartilaginous tissues in lizards is formed during the regeneration of the tail or after vertebral damage. In order to understand the origin of new cartilaginous cells in the embryo and after injury of adult vertebrae we have studied the distribution of proliferating cartilaginous cells in the vertebral column of embryos and adults of the lizard Anolis lineatopus using autoradiography for H3-thymidine and light and ultrastructural immunocytochemistry for 5BrdU. Proliferating sclerotomal cells initially surround the notochord in a segmental pattern and give rise to the chondrocytes of the vertebral centrum that replace the original chordal cells. Qualitative observations show that proliferating sclerotomal cells dilute the labeling up to 13 days post-injection but a few maintain the labeling as long labeling retention cells and remain in the inter-centra and perichondrium after birth. These cells supply new chondroblasts for post-natal growth of vertebrae but can also proliferate in case of vertebral damage or tail amputation in lizards, a process that sustains tail regeneration. The lack of somitic organization in the regenerating tail impedes the re-formation of a segmental vertebral column that is instead replaced by a continuous cartilaginous tube. It is hypothesized that long labeling retaining cells might represent stem/primordial cells, and that their permanence in the inter-vertebral cartilages and the nearby perichondrium in adult lizards pre-adapt these reptiles to elicit a broad cartilage regeneration in case of injury of the vertebrae. © 2016 Wiley Periodicals, Inc.

  3. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs.

    PubMed

    Sivan, Sarit Sara; Tsitron, Eve; Wachtel, Ellen; Roughley, Peter; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Maroudas, Alice

    2006-10-01

    During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1-A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol x (g of protein)(-1) x year(-1). Using previously reported protein turnover rate constants (k(T)) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (k(F)) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009-13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81+/-0.25 compared with 3.71+/-0.26 micromol of pentosidine x (mol of lysine)(-1) x year(-1) respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year(-1) compared with 0.134 year(-1) for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective k(F) values of 1.81+/-0.25 and 3.18+/-0.37 micromol of pentosidine.(mol of lysine)(-1) x year(-1). We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage

  4. Human Metapneumovirus in Adults

    PubMed Central

    Haas, Lenneke E. M.; Thijsen, Steven F. T.; van Elden, Leontine; Heemstra, Karen A.

    2013-01-01

    Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination. PMID:23299785

  5. The Effect of Discectomy and the Dependence on Degeneration of Human Intervertebral Disc Strain in Axial Compression

    PubMed Central

    O’Connell, Grace D.; Malhotra, Neil R.; Vresilovic, Edward J; Elliott, Dawn M.

    2011-01-01

    Study Design Biomechanics of human intervertebral discs before and after nucleotomy. Objective To noninvasively quantify the effect of nucleotomy on internal strains under axial compression in flexion, neutral, and extension positions, and to determine whether the change in strains depended on degeneration. Summary of Background Data Herniation and discectomy may accelerate the progression of disc degeneration. Removal of NP tissue has resulted in altered disc mechanics in vitro, including in a decrease in internal pressure and an increase in the deformations at physiologically relevant strains. We recently presented a technique to quantify internal disc strains using magnetic resonance imaging. Methods Degeneration was quantitatively assessed by the T1ρ relaxation in the nucleus pulposus (NP). Samples were prepared from human levels L3-L4 and/or L4-L5. A 1000N compressive load was applied while in the MR scanner. Nucleotomy was performed by removing 2g of NP through the posterior-lateral AF. The discs were rehydrated, reimaged and retested. The analyzed parameters include axial deformation, AF radial bulge and strains. Results The axial deformation was more compressive following nucleotomy. In the neutral position, the axial deformation following nucleotomy correlated with degeneration (as quantified by T1ρ in the NP), with minimal alteration in nondegenerated discs. Nucleotomy altered the radial displacements and strains in the neutral position, such that the inner AF radial bulge decreased and the radial strains were more tensile in the lateral AF and less tensile in the posterior AF. In the bending loading positions the radial strains were not affected by nucleotomy. Conclusions Nucleotomy alters the internal radial and axial AF strains in the neutral position, which may leave the AF vulnerable to damage and microfractures. In bending, the effects of nucleotomy were minimal; likely due to more of the applied load being directed over the AF. Some of the

  6. Evaluation of the proliferation and viability rates of nucleus pulposus cells of human intervertebral disk in fabricated chitosan-gelatin scaffolds by freeze drying and freeze gelation methods

    PubMed Central

    Karimi, Zeinab; Ghorbani, Masoud; Hashemibeni, Batool; Bahramian, Hamid

    2015-01-01

    Background: Low back pain is one of the most significant musculoskeletal diseases of our time. Intervertebral disk herniation and central degeneration of the disk are two major reasons for low back pain, which occur because of structural impairment of the disk. The reduction of cell count and extracellular matrix, especially in the nucleus pulposus, causes disk degeneration. Different scaffolds have been used for tissue repairing and regeneration of the intervertebral disk in tissue engineering. Various methods are used for fabrication of the porosity scaffolds in tissue engineering. The freeze drying method has disadvantages such as: It is time consuming, needs high energy, and so on. The freeze-gelation method can save a great deal of time and energy, and large-sized porous scaffolds can be fabricated by this method. In this study, proliferation of the nucleus pulposus (NP) cells of the human intervertebral disk are compromised in the fabricated Chitosan-gelatin scaffolds by freeze drying and freeze gelation methods. Materials and Methods: The cells were obtained from the nucleus pulposus by collagenase enzymatic hydrolysis. They were obtained from patients who were undergoing open surgery for discectomy in the Isfahan Alzahra Hospital. Chitosan was blended with gelatin. Chitosan polymer, solution after freezing at -80°C, was immersed in sodium hydroxide (NaOH) solution. The cellular suspension was transferred to each scaffold and cultured in plate for 14 days. Cell viability and proliferation were investigated by Trypan blue and MTT assays. Results: The MTT and Trypan blue assays demonstrated that cell viability and the mean of the cell number showed a significant difference between three and fourteen days, in both scaffolds. Accordingly, there was a significantly decrease in the fabricated chitosan-gelatin scaffold by the freeze-drying method. Conclusion: The fabricated chitosan-gelatin scaffold by the freeze-gelation method prepared a better condition for

  7. Evaluation of the proliferation and viability rates of nucleus pulposus cells of human intervertebral disk in fabricated chitosan-gelatin scaffolds by freeze drying and freeze gelation methods.

    PubMed

    Karimi, Zeinab; Ghorbani, Masoud; Hashemibeni, Batool; Bahramian, Hamid

    2015-01-01

    Low back pain is one of the most significant musculoskeletal diseases of our time. Intervertebral disk herniation and central degeneration of the disk are two major reasons for low back pain, which occur because of structural impairment of the disk. The reduction of cell count and extracellular matrix, especially in the nucleus pulposus, causes disk degeneration. Different scaffolds have been used for tissue repairing and regeneration of the intervertebral disk in tissue engineering. Various methods are used for fabrication of the porosity scaffolds in tissue engineering. The freeze drying method has disadvantages such as: It is time consuming, needs high energy, and so on. The freeze-gelation method can save a great deal of time and energy, and large-sized porous scaffolds can be fabricated by this method. In this study, proliferation of the nucleus pulposus (NP) cells of the human intervertebral disk are compromised in the fabricated Chitosan-gelatin scaffolds by freeze drying and freeze gelation methods. The cells were obtained from the nucleus pulposus by collagenase enzymatic hydrolysis. They were obtained from patients who were undergoing open surgery for discectomy in the Isfahan Alzahra Hospital. Chitosan was blended with gelatin. Chitosan polymer, solution after freezing at -80°C, was immersed in sodium hydroxide (NaOH) solution. The cellular suspension was transferred to each scaffold and cultured in plate for 14 days. Cell viability and proliferation were investigated by Trypan blue and MTT assays. The MTT and Trypan blue assays demonstrated that cell viability and the mean of the cell number showed a significant difference between three and fourteen days, in both scaffolds. Accordingly, there was a significantly decrease in the fabricated chitosan-gelatin scaffold by the freeze-drying method. The fabricated chitosan-gelatin scaffold by the freeze-gelation method prepared a better condition for proliferation of NP cells when compared with the fabricated

  8. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc.

    PubMed

    Binch, Abbie L A; Cole, Ashley A; Breakwell, Lee M; Michael, Antony L R; Chiverton, Neil; Creemers, Laura B; Cross, Alison K; Le Maitre, Christine L

    2015-12-21

    Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs. Immunohistochemistry was performed with 61 human IVD samples, to identify and localise nerves (neurofilament 200 [NF200]/protein gene product 9.5) and blood vessels (CD31) within different regions of the IVD. Immunopositivity for NF200 was identified within all regions of the IVD within post-mortem tissues. Nerves were seen to protrude across lamellar ridges and through matrix towards NP cells. Nerves were identified deep within the NP and were in many cases, but not always, seen in close proximity to fissures or in areas where decreased matrix was seen. Fifteen percent of samples were degenerate and negative for nerves and blood vessels, whilst 16 % of all samples were degenerate with nerves and blood vessels. We identified 52% of samples that were degenerate with nerves but no blood vessels. Interestingly, only 4% of all samples were degenerate with no nerves but positive for blood vessels. Of the 85 samples investigated, only 6 % of samples were non-degenerate without nerves and blood vessels and 7% had nerves but no blood vessels. This study addresses the controversial topic of nerve and blood vessel ingrowth into the IVD in a large number of human samples. Our findings demonstrate that nerves are present within a large proportion of NP samples from degenerate IVDs. This study shows a possible link between nerve ingrowth and

  9. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and

  10. Variations in aggrecan localization and gene expression patterns characterize increasing stages of human intervertebral disk degeneration.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen L; Ingram, Jane A; Bethea, Synthia; Zinchenko, Natalia; Hanley, Edward N

    2011-10-01

    During disk degeneration, annulus dehydration and matrix fraying culminate in the formation of tears through which nucleus and annulus disk material may rupture, causing radicular pain. Annular tears are present in more than half of the patients in early adulthood and are almost always present in the elderly. Aggrecan, which provides the disk with a shock absorber function under loading, is a key disk extracellular matrix (ECM) component. The objective of the present study was to assess the immunolocalization of aggrecan in the annulus, and to assess molecular gene expression patterns in the annulus ECM utilizing microarray analysis. Immunohistochemistry was performed on 45 specimens using an anti-human aggrecan antibody. Affymetrix microarray gene expression studies used the extracellular matrix ontology approach to evaluate an additional 6 grade I-II, 9 grade III, and 4 grade IV disks. Grade III/IV disks were compared to healthier grade I/II disks. Healthy and less degenerated disks showed a general uniform aggrecan immunolocalization; more degenerated disks contained regions with little or no identifiable aggrecan localization. In degenerated disks, molecular studies showed a significant downregulation of aggrecan, ADAMTS-like 3, and ADAMTS10. Collagen types III and VIII, fibronectin, decorin, connective tissue growth factor, TIMP-3, latent TGF-β binding protein 2 and TGF-β1 were significantly upregulated with fold changes ranging from 2.4 to 9.8. Findings here help us better understand changes in the immunohistochemical distribution of a key proteoglycan during disk aging. Such information may have application as we work towards biologic therapies to improve the aging/degenerating disk matrix.

  11. The relationship between sagittal spinopelvic parameters and the degree of lumbar intervertebral disc degeneration in young adult patients with low-grade spondylolytic spondylolisthesis.

    PubMed

    Oh, Y-M; Eun, J-P

    2013-09-01

    We investigated the relationship between spinopelvic parameters and disc degeneration in young adult patients with spondylolytic spondylolisthesis. A total of 229 men with a mean age of 21 years (18 to 26) with spondylolytic spondylolisthesis were identified. All radiological measurements, including pelvic incidence, sacral slope, pelvic tilt, lumbar lordosis, sacral inclination, lumbosacral angle (LSA), and sacrofemoral distance, were calculated from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. We analysed the spinopelvic parameters according to disc level, degree of slip and disc degeneration. There were significant positive correlations between the degree of slip and pelvic incidence (p = 0.009), sacral slope (p = 0.003) and lumbar lordosis (p = 0.010). The degree of slip and the LSA were correlated with disc degeneration (p < 0.001 and p = 0.003, respectively). There was also a significant difference between the degree of slip (p < 0.001) and LSA (p = 0.006) according to the segmental level of disc degeneration.

  12. Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc.

    PubMed

    Li, Xiao-Chuan; Tang, Yong; Wu, Jian-Hong; Yang, Pu-Shan; Wang, De-Li; Ruan, Di-Ke

    2017-06-05

    Eliminating the symptoms during treatment of intervertebral disc degeneration (IVDD) is only a temporary solution that does not cure the underlying cause. A biological method to treat this disorder may be possible by the newly discovered nucleus pulposus derived stem cells (NPDCs). However, the uncertain characteristics and potential of NPDCs calls for a comprehensive study. In the present study, nucleus pulposus samples were obtained from 5 patients with IVDD undergoing discectomy procedure and NPDCs were harvested using fluorescence activated cell sorting (FACS) by the co-expression of GD2(+) and Tie2(+). After in vitro expansion, the properties of NPDCs were compared with those of bone marrow mesenchyme stem cells (BMSCs) from the same subjects. NPDCs performed similar properties in cell colony-forming ability, cell proliferation rate, cell cycle and stem cell gene expression similar to those of BMSCs. In addition, NPDCs could be differentiated into osteoblasts, adipocytes, and chondrocytes, and are found to be superior in chondrogenesis but inferior in adipocyte differentiation. NPDCs derived from the degenerated intervertebral disc still keep the regeneration ability similar to BMSCs. Besides, the superior capacity in chondrogenesis may provide a promising cell candidate for cell-based regenerative medicine and tissue engineering in IVDD.

  13. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  14. Biological Behavior of Human Nucleus Pulposus Mesenchymal Stem Cells in Response to Changes in the Acidic Environment During Intervertebral Disc Degeneration.

    PubMed

    Liu, Jianjun; Tao, Hui; Wang, Hanbang; Dong, Fulong; Zhang, Renjie; Li, Jie; Ge, Peng; Song, Peiwen; Zhang, Huaqing; Xu, Peng; Liu, Xiaoying; Shen, Cailiang

    2017-06-15

    An acidic environment is vital for the maintenance of cellular activities but can be affected tremendously during intervertebral disc degeneration (IVDD). The effect of changes in the acidity of the environment on human nucleus pulposus mesenchymal stem cells (NP-MSCs) is, however, unknown. Thus, this study aimed to observe the biological effects of acidic conditions mimicking a degenerated intervertebral disc on NP-MSCs in vitro. NP-MSCs were isolated from patients with lumbar disc herniation and were further identified by their immunophenotypes and multilineage differentiation. Then, cells were cultured at acidic pH levels (pH 6.2, pH 6.5, pH 6.8, pH 7.1, and pH 7.4) with/without amiloride, an acid-sensing ion channel (ASIC) blocker. The proliferation and apoptosis of NP-MSCs and the expression of stem cell-related genes (Oct4, Nanog, Jagged, Notch1), ASICs, and functional genes (Aggrecan, SOX-9, Collagen-I, and Collagen-II) in NP-MSCs were evaluated. Our work showed that cells obtained from human degenerated NP met the criteria of International Society for Cellular Therapy. Therefore, cells obtained from a degenerated nucleus pulposus were definitively identified as NP-MSCs. Our results also indicated that acidic conditions could significantly inhibit cell proliferation and increase cell apoptosis. Gene expression results demonstrated that acidic conditions could decrease the expression of stem cell-related genes and inhibit extracellular matrix synthesis, whereas it could increase the expression of ASICs. Our study further verified that the above-mentioned biological activities of NP-MSCs could be significantly improved by amiloride. Therefore, the results of the study indicated that the biological behavior of NP-MSCs could be inhibited by acidic conditions during IVDD, and amiloride may meliorate IVDD by improving the activities of NP-MSCs.

  15. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture.

    PubMed

    Walter, B A; Illien-Jünger, S; Nasser, P R; Hecht, A C; Iatridis, J C

    2014-06-27

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.

  16. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  17. Arts & Humanities in Adult Education.

    ERIC Educational Resources Information Center

    Word's Worth: A Quarterly Newsletter of the Lifelong Learning Network, 1998

    1998-01-01

    This issue of a quarterly newsletter on lifelong learning focuses on the theme of the arts and humanities in adult literacy education. The following articles are included: (1) "In Defense of a Practical Education" (Earl Shorris); (2) "From the Program Director" (Elizabeth Bryant McCrary); (3) "Vermont Council on the Humanities: Book Discussion…

  18. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    PubMed

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans.

    PubMed

    Brisby, Helena; Papadimitriou, Nikolaos; Brantsing, Camilla; Bergh, Peter; Lindahl, Anders; Barreto Henriksson, Helena

    2013-03-01

    Low back pain is common and degenerated discs (DDs) are believed to be a major cause. In non-degenerated intervertebral discs (IVDs) presence of stem/progenitor cells was recently reported in different mammals (rabbit, rat, pig). Understanding processes of disc degeneration and regenerative mechanisms within DDs is important. The aim of the study was to examine the presence of local stem/progenitor cells in human DDs and if these cell populations could respond to paracrine stimulation in vitro. Tissue biopsies from the IVD region (L3-S1) were collected from 15 patients, age 34-69 years, undergoing surgery (spinal fusion) and mesenchymal stem cells (MSCs) (iliac crest) from 2 donors. Non-DD cells were collected from 1 donor (scoliosis) and chordoma tissue was obtained from (positive control, stem cell markers) 2 donors. The IVD biopsies were investigated for gene and protein expression of: OCT3/4, CD105, CD90, STRO-1, and NOTCH1. DD cell cultures (pellet mass) were performed with conditioned media from MSCs and non-degenerated IVD cells. Pellets were investigated after 7, 14, 28 days for the same stem cell markers as above. Gene expression of OCT3/4 and STRO-1 was detected in 13/15 patient samples, CD105 in 14/15 samples, and CD90 and NOTCH1 were detected 15/15 samples. Immunohistochemistry analysis supported findings on the protein level, in cells sparsely distributed in DDs tissues. DDs cell cultures displayed more undifferentiated appearance with increased expression of CD105, CD90, STRO-1, OCT3/4, NOTCH1, and JAGGED1, which was observed when cultured in conditioned cell culture media from MSCs compared to cell cultures cultured with conditioned media from non-DD cells. Expression of OCT3/4 (multipotency marker) and NOTCH1 (regulator of cell fate), MSC-markers, CD105, CD90, and STRO-1, indicate that primitive cell populations are present within DDs. Furthermore, the possibility to influence cells from DDs by paracrine signaling /soluble factors from MSCs and from

  20. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic

    PubMed Central

    Ghosh, Peter

    2016-01-01

    Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored. PMID:27314030

  1. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  2. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway

    PubMed Central

    Zhou, Nian; Lin, Xin; Dong, Wen; Huang, Wei; Jiang, Wei; Lin, Liangbo; Qiu, Quanhe; Zhang, Xiaojun; Shen, Jieliang; Song, Zhaojun; Liang, Xi; Hao, Jie; Wang, Dawu; Hu, Zhenming

    2016-01-01

    Cartilage end plates (CEP) degeneration plays an integral role in intervertebral disc (IVD) degeneration resulting from nutrient diffusion disorders. Although cell senescence resulting from oxidative stress is known to contribute to degeneration, no studies concerning the role of senescence in CEP degeneration have been conducted. SIRT1 is a longevity gene that plays a pivotal role in many cellular functions, including cell senescence. Therefore, the aim of this study was to investigate whether senescence is more prominent in human degenerative CEP and whether SIRT1-regulated CEP cells senescence in degenerative IVD as well as identify the signaling pathways that control that cell fate decision. In this study, the cell senescence phenotype was found to be more prominent in the CEP cells obtained from disc degenerative disease (DDD) patients than in the CEP cells obtained from age-matched lumbar vertebral fractures (LVF) patients. In addition, the results indicated that p53/p21 pathway plays an important role in the senescence of CEP cells in vivo and vitro. Furthermore, SIRT1 was found to be capable of alleviating the oxidative stress-induced senescence of CEP cells in humans via p53/p21 pathway. Thus, the information presented in this study could be used to further investigate the underlying mechanisms of CEP. PMID:26940203

  3. Effect of Cryopreservation on Canine and Human Activated Nucleus Pulposus Cells: A Feasibility Study for Cell Therapy of the Intervertebral Disc

    PubMed Central

    Tanaka, Masahiro; Hiyama, Akihiko; Arai, Fumiyuki; Nakajima, Daisuke; Nukaga, Tadashi; Nakai, Tomoko; Mochida, Joji

    2013-01-01

    Abstract It has been shown that coculture of bone marrow–derived stromal cells (BMSCs) with intervertebral disc (IVD) nucleus pulposus (NP) cells significantly activates the biological characteristics of NP cells in animal models and in humans. We therefore predicted that activated NP cells would be a useful graft source for cellular transplantation therapy in the treatment of degenerative IVDs. However, the activation protocol is based on fresh isolation and activation of NP cells, which limits the timing of clinical application. Cell transplantation therapy could be offered to more patients than is now possible if activated NP cells could be transplanted as and when required by the condition of the patient. No study has investigated the effect of cryopreservation on NP cells after enzymatic isolation. We investigated the effects of cryopreservation of canine and human NP cells in both cell and tissue form before coculture with autologous BMSCs. Cell viability, proliferation, glycosaminoglycan production, aggrecan transcriptional activity, colony generation, and gene expression profile of the cells after cryopreservation and subsequent coculture were analyzed. The influence of cryopreservation on cell chromosomal abnormalities and tumorigenesis was also studied. The results showed that there were no clear differences between the noncryopreserved and cryopreserved cells in terms of cell viability, proliferation capacity, and capacity to synthesize extracellular matrix. Furthermore, the cells showed no apparent chromosomal abnormalities or tumorigenic ability and exhibited similar patterns of gene expression. These findings suggest that by using cryopreservation, it may be possible to transplant activated NP cells upon request for patients' needs. PMID:23914334

  4. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs

    PubMed Central

    Sun, Xue; Jin, Jun; Zhang, Ji-Gang; Qi, Lin; Braun, Frank Karl; Zhang, Xing-Ding; Xu, Feng

    2014-01-01

    Non-steroid anti-inflammatory drugs (NSAIDs) are generally used in the treatment of inflammation and pain through cyclooxygenase (COX) inhibition. Mounting evidence has indicated additional COX-independent targets for NSAIDs including acid-sensing ion channels (ASICs) 1a and 3. However, detailed function and mechanism of ASICs still remain largely elusive. In this study, the impact of NSAIDs on ASICs in nucleus pulposus cells of the human intervertebral disk was investigated. Nucleus pulposus cells were isolated and cultured from protruded disk tissues of 40 patients. It was shown that ASIC1a and ASIC3 were expressed and functional in these cells by analyzing proton-gated currents after ASIC inhibition. We further investigated the neuroprotective capacity of ibuprofen (a COX inhibitor), psalmotoxin-1 (PcTX1, a tarantula toxin specific for homomeric ASIC1a), and amiloride (a classic inhibitor of the epithelial sodium channel ENaC/DEG family to which ASICs belong). PcTX1-containing venom has been shown to be comparable with amiloride in its neuroprotective features in rodent models of ischemia. Taken together, our data showed that amiloride, PcTX1, and ibuprofen decreased ASIC protein expression and thereby exerted protective effects from ASIC inhibition-mediated cell damage. PMID:25079679

  5. Novel Human Intervertebral Disc Strain Template to Quantify Regional Three-Dimensional Strains in a Population and Compare to Internal Strains Predicted by a Finite Element Model

    PubMed Central

    Showalter, Brent L.; DeLucca, John F.; Peloquin, John M.; Cortes, Daniel H.; Yoder, Jonathon H.; Jacobs, Nathan T.; Wright, Alexander C.; Gee, James C.; Vresilovic, Edward J.; Elliott, Dawn M.

    2017-01-01

    Tissue strain is an important indicator of mechanical function, but is difficult to noninvasively measure in the intervertebral disc. The objective of this study was to generate a disc strain template, a 3D average of disc strain, of a group of human L4–L5 discs loaded in axial compression. To do so, magnetic resonance images of uncompressed discs were used to create an average disc shape. Next, the strain tensors were calculated pixel-wise by using a previously developed registration algorithm. Individual disc strain tensor components were then transformed to the template space and averaged to create the disc strain template. The strain template reduced individual variability while highlighting group trends. For example, higher axial and circumferential strains were present in the lateral and posterolateral regions of the disc, which may lead to annular tears. This quantification of group-level trends in local 3D strain is a significant step forward in the study of disc biomechanics. These trends were compared to a finite element model that had been previously validated against the disc-level mechanical response. Depending on the strain component, 81–99% of the regions within the finite element model had calculated strains within one standard deviation of the template strain results. The template creation technique provides a new measurement technique useful for a wide range of studies, including more complex loading conditions, the effect of disc pathologies and degeneration, damage mechanisms, and design and evaluation of treatments. PMID:26694516

  6. Constitutive expression of IL-22 in the human intervertebral disc and its reduction by exposure to pro-inflammatory cytokines in vitro.

    PubMed

    Gruber, H E; Marrero, E; Ingram, J A; Hoelscher, G L; Hanley, E N

    2017-01-01

    The importance of cytokines in disc degeneration is well recognized. Little is known about IL-22 expression in the human intervertebral disc. We investigated IL-22 immuno-localization in disc tissue, and molecular expression and production of IL-22 by annulus cells cultured in three-dimensional (3D) culture. We examined human disc tissue using immunohistochemistry and we cultured isolated annulus cells in 3D to analyze IL-22 expression and production, and its receptor, IL-22R, in conditioned media. Ingenuity pathway analysis (IPA) also was used to identify significant gene expression networks within the molecular data. IL-22 and IL-22R were immunolocalized in many cells in the human outer and inner annulus; fewer cells exhibited localization in the nucleus. Three-dimensional culture of annulus cells demonstrated production of IL-22 in conditioned media; exposure to IL-1ß or TNF-α significantly reduced IL-22 levels. Significant decreases also were identified in conditioned media assayed for IL-22R in TNF-α treated cells. IPA analysis showed that IL-22 ranked among the top canonical pathways. We found constitutive expression and production of IL-22 and IL-22R in the disc, which expands our understanding of the effect of pro-inflammatory cytokines on IL-22 expression and production. Three-dimensional cultured annulus cells exposed to IL-1ß or TNF produced significantly lower levels of IL-22 into their conditioned media compared to levels produced by control cells. Our findings have clinical relevance because of the elevated pro-inflammatory milieu within the degenerating human disc.

  7. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Dibra, Florian; Yadla, Sanjay; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, David Greg

    2013-05-15

    Laboratory study. To evaluate expression of chemokine regulated and normal T cell expressed and secreted (RANTES)/C-C motif ligand 5 (CCL5) and interleukins in intervertebral discs (IVDs) specimens from patients with discogram-proven painful degeneration. Discogenic back pain results in tremendous costs related to treatment and lost productivity. The relationship between inflammation, degeneration (IVD), and cytokine upregulation is well established, but other mediators of the inflammatory cascade are not well characterized. Painful IVDs were taken from 18 patients undergoing surgery for discogenic pain with positive preoperative discogram. Painless control tissue was taken at autopsy from patients without back pain/spinal pathology or spinal levels with negative discograms resected for deformity.Quantitative real time polymerase chain reaction (qRT-PCR) was performed to evaluate RANTES, IL-1β, IL-6, and IL-8 expression in painful and control discs. RANTES and interleukin expression were analyzed on the basis of Pfirrmann grade.Disc cells were cultured in alginate beads using 2 groups: an untreated group and a group treated with 10 ng/mL IL-1β, 10 ng/mL TNF-α, and 1% fetal bovine serum to induce a degenerative phenotype. Nine painless IVD specimens and 7 painful IVD specimens were collected. RANTES expression demonstrated a 3.60-fold increase in painful discs versus painless discs, a significant difference (P = 0.049). IL-1β expression demonstrated significantly higher expression in painful discs (P = 0.03). RANTES expression data demonstrated significant upregulation with increasing Pfirrmann grade (P = 0.045). RANTES expression correlated significantly with IL-1β expression (ρ = 0.67, P < 0.0001). RANTES expression increased more than 200-fold in the alginate culture model in cells treated with IL-1β/TNF-α, 1% fetal bovine serum (P < 0.001). RANTES and IL-1β expression was significantly elevated in painful IVDs after careful selection of painless versus

  8. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  9. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways.

    PubMed

    Quero, Lilian; Klawitter, Marina; Schmaus, Anja; Rothley, Melanie; Sleeman, Jonathan; Tiaden, André N; Klasen, Juergen; Boos, Norbert; Hottiger, Michael O; Wuertz, Karin; Richards, Peter J

    2013-08-22

    Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators. Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays. Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway. These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells.

  10. Novel human intervertebral disc strain template to quantify regional three-dimensional strains in a population and compare to internal strains predicted by a finite element model.

    PubMed

    Showalter, Brent L; DeLucca, John F; Peloquin, John M; Cortes, Daniel H; Yoder, Jonathon H; Jacobs, Nathan T; Wright, Alexander C; Gee, James C; Vresilovic, Edward J; Elliott, Dawn M

    2016-07-01

    Tissue strain is an important indicator of mechanical function, but is difficult to noninvasively measure in the intervertebral disc. The objective of this study was to generate a disc strain template, a 3D average of disc strain, of a group of human L4-L5 discs loaded in axial compression. To do so, magnetic resonance images of uncompressed discs were used to create an average disc shape. Next, the strain tensors were calculated pixel-wise by using a previously developed registration algorithm. Individual disc strain tensor components were then transformed to the template space and averaged to create the disc strain template. The strain template reduced individual variability while highlighting group trends. For example, higher axial and circumferential strains were present in the lateral and posterolateral regions of the disc, which may lead to annular tears. This quantification of group-level trends in local 3D strain is a significant step forward in the study of disc biomechanics. These trends were compared to a finite element model that had been previously validated against the disc-level mechanical response. Depending on the strain component, 81-99% of the regions within the finite element model had calculated strains within one standard deviation of the template strain results. The template creation technique provides a new measurement technique useful for a wide range of studies, including more complex loading conditions, the effect of disc pathologies and degeneration, damage mechanisms, and design and evaluation of treatments. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1264-1273, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.

    PubMed

    Lu, Yongtao; Maquer, Ghislain; Museyko, Oleg; Püschel, Klaus; Engelke, Klaus; Zysset, Philippe; Morlock, Michael; Huber, Gerd

    2014-07-18

    Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.

  12. Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: a novel cell source for disc repair.

    PubMed

    Anderson, D Greg; Markova, Dessislava; An, Howard S; Chee, Ana; Enomoto-Iwamoto, Motomi; Markov, Vladimir; Saitta, Biagio; Shi, Peng; Gupta, Chander; Zhang, Yejia

    2013-05-01

    Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture. This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction. We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the injected hUCB-MSCs are

  13. Injection of human umbilical tissue–derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo

    PubMed Central

    Leckie, Steven K.; Sowa, Gwendolyn A.; Bechara, Bernard P.; Hartman, Robert A.; Coelho, Joao Paulo; Witt, William T.; Dong, Qing D.; Bowman, Brent W.; Bell, Kevin M.; Vo, Nam V.; Kramer, Brian C.; Kang, James D.

    2016-01-01

    Background context Patients often present to spine clinic with evidence of intervertebral disc degeneration (IDD). If conservative management fails, a safe and effective injection directly into the disc might be preferable to the risks and morbidity of surgery. Purpose To determine whether injecting human umbilical tissue–derived cells (hUTC) into the nucleus pulposus (NP) might improve the course of IDD. Design Prospective, randomized, blinded placebo–controlled in vivo study. Patient sample Skeletally mature New Zealand white rabbits. Outcome measures Degree of IDD based on magnetic resonance imaging (MRI), biomechanics, and histology. Methods Thirty skeletally mature New Zealand white rabbits were used in a previously validated rabbit annulotomy model for IDD. Discs L2–L3, L3–L4, and L4–L5 were surgically exposed and punctured to induce degeneration and then 3 weeks later the same discs were injected with hUTC with or without a hydrogel carrier. Serial MRIs obtained at 0, 3, 6, and 12 weeks were analyzed for evidence of degeneration qualitatively and quantitatively via NP area and MRI Index. The rabbits were sacrificed at 12 weeks and discs L4–L5 were analyzed histologically. The L3–L4 discs were fixed to a robotic arm and subjected to uniaxial compression, and viscoelastic displacement curves were generated. Results Qualitatively, the MRIs demonstrated no evidence of degeneration in the control group over the course of 12 weeks. The punctured group yielded MRIs with the evidence of disc height loss and darkening, suggestive of degeneration. The three treatment groups (cells alone, carrier alone, or cells+carrier) generated MRIs with less qualitative evidence of degeneration than the punctured group. MRI Index and area for the cell and the cell+carrier groups were significantly distinct from the punctured group at 12 weeks. The carrier group generated MRI data that fell between control and punctured values but failed to reach a statistically

  14. Mechanotransduction in intervertebral discs

    PubMed Central

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-01-01

    Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. PMID:25267492

  15. Estrogens and the intervertebral disc.

    PubMed

    Calleja-Agius, J; Muscat-Baron, Y; Brincat, M P

    2009-09-01

    Intervertebral discs are an integral part of the vertebral column. It has been shown that menopause has a negative effect on bone and on intervertebral discs. Estrogen has a beneficial effect of preserving the health of collagen-containing tissues, including the intervertebral disc. The intervertebral disc allows for mobility of the spine, and maintains a uniform stress distribution of the area of the vertebral endplates. Also, the disc influences spinal height. The disc tissue is adapted for this biomechanical function. The function of the spine is impaired if there is a loss of disc tissue. Narrowing of the disc space due to degeneration of intervertebral discs is associated with a significantly increased risk of vertebral fractures. Estrogen should be seen as the first-choice therapy for bones and other collagen-rich tissues, such as intervertebral discs, because it maintains homeostasis of the bone-remodelling unit. Unlike bisphosphonates, estrogen is unique in its ability to regenerate bone collagen after its disintegration, apart from suppressing osteoclastic activity. Besides, there is insufficient data on deterioration in bone qualities and micro-cracks in patients on long-term bisphosphonates.

  16. [Stimulation of degenerative changes in the intervertebral disc through axial compression. Radiologic, histologic and biomechanical research in an animal model].

    PubMed

    Unglaub, F; Lorenz, H; Nerlich, A; Richter, W; Kroeber, M W

    2003-01-01

    Degeneration of the intervertebral disc is a common disease in the adults, especially at advanced age. A causal therapy is not known, but the progress in new therapeutic strategies, for example in tissue engineering, shows new possibilities. The goal of our study was to develop a new animal model that stimulates a load induced degeneration of the disc. We used the New Zealand rabbit, because morphology is similar to the human intervertebral disc. The degeneration was induced by axial compression of the disc L4 - L5 with an external fixateur. After different loading intervals, the animals were sacrified and the discs examined by radiology, histology, apoptosis and biomechanical testing. Radiography showed a significant decrease of the disc thickness in all loaded groups. Morphologically the intervertebral discs of loaded rabbits showed degenerative changes which were comparable to those in humans. A significantly increased number of dead cells in the annulus occurred after 14 and 28 days loading compared to the controls. The bending stress measured as the load to failure was not significantly different between the unloaded discs and the 28 days loaded discs. The results show that our animal modell can create degeneration. Four weeks compression leads to significant degeneration. Degeneration of the discs persisted in animals that were allowed a recovery time of 28 days after 28 days of loading.

  17. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification

    PubMed Central

    Ohnishi, Takashi; Sudo, Hideki; Iwasaki, Koji; Tsujimoto, Takeru; Ito, Yoichi M.; Iwasaki, Norimasa

    2016-01-01

    Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region. PMID:27482708

  18. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.

  19. The effects of human Wharton's jelly cell transplantation on the intervertebral disc in a canine disc degeneration model.

    PubMed

    Zhang, Yan; Tao, Hui; Gu, Tao; Zhou, Mingyue; Jia, Zhiwei; Jiang, Gangqiang; Chen, Chun; Han, Zhihua; Xu, Cheng; Wang, Deli; He, Qing; Ruan, Dike

    2015-08-27

    Cell-based therapy was a promising treatment method for disc degenerative diseases. Wharton's jelly cell (WJC) has been explored to cure various human diseases, while it still remains unknown about this MSC for disc repair. In our prior work, WJCs could differentiate into nucleus pulposus (NP)-like cells by co-culturing with NP cells in vitro. Thence, the aim of this study was further to investigate the survival and function of WJCs in vivo after transplantation into degenerated canine discs. WJCs were isolated from human umbilical cords and labeled with EGFP. The degeneration of L4-5, L5-6, and L6-7 discs of beagles was induced by aspirating the NP tissues. Four weeks after the operation, the injured discs were left to be no treatment at L4-5 (DS group), injected with 0.9 % saline at L5-6 (FS group), and transplanted with EGFP-labeled WJCs at L6-7 (TS group). In all animals, the intact disc L3-4 served as a control (CS group). The animals were followed up for 24 weeks after initial operation. Spine imaging was evaluated at 4, 8, 12, and 24 weeks, respectively. Histologic, biomechanics and gene expression analyses were performed at 24 weeks. Immunohistochemistry for aggrecan, types II collagen, SOX-9 was employed to investigate the matrix formation in the NP. The TS group showed a significantly smaller reduction in the disc height and T2-weighted signal intensity, and a better spinal segmental stability than DS and FS groups. Histologic assay demonstrated that WJCs were specifically detected in TS group at 24 weeks and the discs of TS group maintained a relatively well preserved structure as compared to the discs of DS and FS groups. Furthermore, real-time PCR and immunohistochemistry demonstrated that expressions of disc matrix genes, aggrecan, type II collagen, and SOX-9, were up-regulated in TS group compared to DS and FS groups. WJCs could not only survive in the degenerate IVDs, but also promote the disc matrix formation of aggrecan and type II collagen

  20. Expression of TRAIL and the death receptors DR4 and DR5 correlates with progression of degeneration in human intervertebral disks.

    PubMed

    Bertram, Helge; Nerlich, Andreas; Omlor, Georg; Geiger, Florian; Zimmermann, Gerald; Fellenberg, Joerg

    2009-07-01

    Intervertebral disks degenerate far earlier than other musculoskeletal tissues and apoptosis has been suggested to have a vital function in promoting the degeneration process that is strongly associated with back pain. However, the molecular mediators of apoptosis in the intervertebral disk are poorly understood. Fas/FasL, TRAIL/DR4, TRAIL/DR5 and TNF-alpha/TNFR1 are ligand/receptor pairs of the tumor necrosis factor/nerve growth factor family, which are able to induce apoptosis by trimerization of the receptor by its corresponding ligand. We investigated which of these molecules are expressed in intervertebral disks and whether their expression correlates to disk degeneration. Intervertebral disks from 28 donors (age 12-70 years) suffering from scoliosis, vertebrae fracture or disk degeneration were scored histologically for degeneration and analyzed for gene expression of FasL/Fas, TRAIL/DR4, TNF-alpha/TNFR1 and caspase 8. Protein expression of FasL and TRAIL was assessed by immunohistology and apoptotic cell death was quantified by poly(ADP-ribose) polymerase (PARP) p85 staining. Isolated disk cells were analyzed by flow cytometry for Fas, FasL, TRAIL, DR4 and DR5 expression. Gene expression of TRAIL (P=0.002) and caspase 8 (P=0.027) significantly correlated with degeneration. TRAIL expression further correlated with cellularity (P=0.04), muccoid matrix changes (P=0.009) and tears and cleft formation (P=0.019). FasL and TRAIL expression was confirmed by immunohistology and PARP cleavage was significantly associated with degeneration (P=0.027). Flow cytometry on isolated disk cells revealed correlations between DR4 and degeneration (P=0.014), DR4/DR5 double-positive cells and degeneration (P=0.019), as well as DR5 and changes in tissue granularity (P=0.03). This is the first study that shows that intervertebral disk cells express TRAIL, DR4 and DR5, which correlate to the degenerative state of the disk. Therefore, disk cells inherit the molecular machinery to

  1. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  2. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    2017-01-24

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair.

  3. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    PubMed Central

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  4. Human adult deglutition during sleep.

    PubMed

    Sato, Kiminori; Nakashima, Tadashi

    2006-05-01

    Clearance of the pharynx by deglutition is important in protecting the airway. The pattern of deglutition during sleep was investigated. Deglutition during sleep was examined in 8 normal human adults via time-matched recordings of polysomnography and surface electromyography (EMG) of the thyrohyoid and suprahyoid muscles. During sleep, deglutition was episodic, and was absent for long periods. The mean number of swallows per hour (+/-SD) during the total sleep time was 2.9 +/- 1.3. The mean period of the longest absence of deglutition was 50.6 +/- 10.2 minutes. Most deglutition occurred in association with spontaneous electroencephalographic arousal in rapid eye movement (REM) sleep and non-REM sleep. Deglutition was related to sleep stage. The mean number of swallows per hour was 7.2 +/- 3.5 during stage 1 sleep and 2.0 +/- 0.7 during stage 2 sleep. There was little deglutition during stages 3 and 4. The deeper the sleep stage became, the lower the mean deglutition frequency became. The mean number of swallows per hour was 2.7 +/- 2.2 during REM sleep. The EMG amplitude dropped to the lowest level of recording and hypotonic EMG activity increased during REM sleep. Deglutition, a vital function, is infrequent during sleep.

  5. Effect of in utero exposure to diethylstilbestrol on lumbar and femoral bone, articular cartilage, and the intervertebral disc in male and female adult mice progeny with and without swimming exercise.

    PubMed

    Rowas, Sora Al; Haddad, Rami; Gawri, Rahul; Al Ma'awi, Abdul Aziz; Chalifour, Lorraine E; Antoniou, John; Mwale, Fackson

    2012-01-23

    Developmental exposure to estrogens has been shown to affect the musculoskeletal system. Furthermore, recent studies have shown that environmental exposure to estrogen-like compounds is much higher than originally anticipated. The aim of this study was to determine the effects of diethylstilbestrol (DES), a well-known estrogen agonist, on articular cartilage, intervertebral disc (IVD), and bone phenotype. C57Bl/6 pregnant mice were dosed orally with vehicle (peanut oil) or 0.1, 1.0, and 10 μg/kg/day of DES on gestational days 11 to 14. Male and female pups were allowed to mature without further treatment until 3 months of age, when swim and sedentary groups were formed. After euthanasia, bone mineral density (BMD), bone mineral content (BMC), bone area (BA), and trabecular bone area (TBA) of the lumbar vertebrae and femur were measured by using a PIXImus Bone Densitometer System. Intervertebral disc proteoglycan was measured with the DMMB assay. Histologic analysis of proteoglycan for IVD and articular cartilage was performed with safranin O staining, and degeneration parameters were scored. The lumbar BMC was significantly increased in female swimmers at both the highest and lowest dose of DES, whereas the femoral BMC was increased only at the highest. The males, conversely, showed a decreased BMC at the highest dose of DES for both lumbar and femoral bone. The female swim group had an increased BA at the highest dose of DES, whereas the male counterpart showed a decreased BA for femoral bone. The TBA showed a similar pattern. Proteoglycan analysis of lumbar IVDs showed a decrease at the lowest doses but a significant increase at the highest doses for both males and females. Histologic examination showed morphologic changes of the IVD and articular cartilage for all doses of DES. DES significantly affected the musculoskeletal system of adult mice. Results suggest that environmental estrogen contaminants can have a detrimental effect on the developmental lumbar

  6. Dynamics of hippocampal neurogenesis in adult humans

    PubMed Central

    Alkass, Kanar; Bernard, Samuel; Salehpour, Mehran; Huttner, Hagen B.; Boström, Emil; Westerlund, Isabelle; Vial, Celine; Buchholz, Bruce A.; Possnert, Göran; Mash, Deborah C.; Druid, Henrik; Frisén, Jonas

    2015-01-01

    Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear bomb test-derived 14C in genomic DNA and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons, constituting one third of the neurons, is subject to exchange. In adult humans, 700 new neurons are added per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function. PMID:23746839

  7. Genetic Factors in Intervertebral Disc Degeneration

    PubMed Central

    Feng, Yi; Egan, Brian; Wang, Jinxi

    2016-01-01

    Low back pain (LBP) is a major cause of disability and imposes huge economic burdens on human society worldwide. Among many factors responsible for LBP, intervertebral disc degeneration (IDD) is the most common disorder and is a target for intervention. The etiology of IDD is complex and its mechanism is still not completely understood. Many factors such as aging, spine deformities and diseases, spine injuries, and genetic factors are involved in the pathogenesis of IDD. In this review, we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans. A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc (IVD), which may compromise the disc’s mechanical properties and metabolic activities. These genetic and proteomic studies have begun to shed light on the molecular basis of IDD, suggesting that genetic factors are important contributors to the onset and progression of IDD. By continuing to improve our understanding of the molecular mechanisms of IDD, specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. PMID:27617275

  8. Intervertebral disc calcifications in children.

    PubMed

    Beluffi, G; Fiori, P; Sileo, C

    2009-03-01

    This study was done to assess the presence of both asymptomatic and symptomatic intervertebral disc calcifications in a large paediatric population. We retrospectively reviewed the radiographs taken during the past 26 years in children (age 0-18 years) undergoing imaging of the spine or of other body segments in which the spine was adequately depicted, to determine possible intervertebral disc calcifications. The following clinical evaluation was extrapolated from the patients' charts: presence of spinal symptoms, history of trauma, suspected or clinically evident scoliosis, suspected or clinically evident syndromes, bone dysplasias, and pre- or postoperative chest or abdominal X-rays. We detected intervertebral disc calcifications in six patients only. Five calcifications were asymptomatic (one newborn baby with Patau syndrome; three patients studied to rule out scoliosis, hypochondroplasia and syndromic traits; one for dyspnoea due to sunflower seeds inhalation). Only one was symptomatic, with acute neck pain. Calcifications varied in number from one in one patient to two to five in the others. Apart from the calcification in the patient with cervical pain, all calcifications were asymptomatic and constituted an incidental finding (particularly those detected at the thoracic level in the patient studied for sunflower-seed inhalation). Calcification shapes were either linear or round. Our series confirms that intervertebral disc calcifications are a rare finding in childhood and should not be a source of concern: symptomatic calcifications tend to regress spontaneously within a short time with or without therapy and immobilisation, whereas asymptomatic calcifications may last for years but disappear before the age of 20 years. Only very few cases, such as those of medullary compression or severe dysphagia due to anterior herniation of cervical discs, may require surgical procedures.

  9. Kingella kingae intervertebral disk infection.

    PubMed

    Amir, J; Shockelford, P G

    1991-05-01

    Disk inflammation in children is believed to result from infection, and Staphylococcus aureus is reported to be the organism most commonly isolated from cases of intervertebral disk infection. A case of disk inflammation caused by the unusual pathogen Kingella kingae is described. The antibiotic susceptibility of other K. kingae isolates and the clinical features of 11 other previously reported cases of disk infection caused by this microorganism are reviewed.

  10. Constitutive expression of cathepsin K in the human intervertebral disc: new insight into disc extracellular matrix remodeling via cathepsin K and receptor activator of nuclear factor-κB ligand

    PubMed Central

    2011-01-01

    Introduction Cathepsin K is a recently discovered cysteine protease which cleaves the triple helical domains of type I to II collagen. It has been shown to be up-regulated in synovial tissue from osteoarthritic and rheumatoid patients, and is a component in normal and nonarthritic cartilage, where it increases with aging. Studies on heart valve development have recently shown that receptor activator of nuclear factor-κB ligand (RANKL) acts during valve remodeling to promote cathepsin K expression. Since extracellular matrix remodeling is a critical component of disc structure and biomechanical function, we hypothesized that cathepsin K and RANKL may be present in the human intervertebral disc. Methods Studies were performed following approval of the authors' Human Subjects Institutional Review Board. Six annulus specimens from healthier Thompson grade I to II discs, and 12 specimens from more degenerate grade III to IV discs were utilized in microarray analysis of RANKL and cathepsin K gene expression. Immunohistochemistry was also performed on 15 additional disc specimens to assess the presence of RANKL and cathepsin K. Results Cathepsin K gene expression was significantly greater in more degenerated grade III to IV discs compared to healthier grade I to II discs (P = 0.001). RANKL was also identified with immunohistochemistry and molecular analyses. RANKL gene expression was also significantly greater in more degenerated discs compared to healthier ones (P = 0.0001). A significant linear positive correlation was identified between expression of cathepsin K and RANKL (r2 = 92.2; P < 0.0001). Conclusions Extracellular matrix remodeling is a key element of disc biology. Our use of an appropriate antibody and gene expression studies showed that cathepsin K is indeed present in the human intervertebral disc. Immunolocalization and molecular analyses also confirmed that RANKL is present in the human disc. Expression of RANKL was found to be significantly greater in

  11. Text-mining network analysis of the response to osmotic stimuli in the intervertebral disc.

    PubMed

    Xu, X; Liu, L; Lu, Q Y

    2013-05-13

    Intervertebral disc cells experience a broad range of physical stimuli under physiologic conditions, including alterations in their osmotic environment. The purpose of this study was to construct a text-mining network of the genes induced during the response to osmotic stimuli in the intervertebral disc. We obtained a gene expression profile of human intervertebral disc cells from the National Center for Biotechnology Information, after culture under hyper- and hypo-osmotic conditions compared to iso-osmotic conditions, and we identified 65 differentially expressed genes of intervertebral disc cells. We constructed a text-mining network using Biblio-MetReS between the differentially expressed genes and other genes that were included in the same document as the differentially expressed genes. Then, we performed pathway-enrichment analysis to identify the most relevant pathways for the response to osmotic stimuli in intervertebral disc cells. Our data provide a comprehensive bioinformatics analysis of genes and pathways that may be involved in the response to osmotic stimuli in the intervertebral disc.

  12. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  13. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  14. On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disk models.

    PubMed

    Malandrino, Andrea; Pozo, José M; Castro-Mateos, Isaac; Frangi, Alejandro F; van Rijsbergen, Marc M; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.

  15. Intervertebral disc replacement. Experimental study.

    PubMed

    Kostuik, J P

    1997-04-01

    Arthrodesis of the lumbosacral spine, although satisfactory for a majority of patients, has long term sequelae in 30% of patients. This is particularly true for adjacent segment degeneration. Numerous attempts at providing a mobile motion segment have been made in the past. The current status of the development of dynamic intervertebral prosthesis, including biomechanical and clinical data have been presented. The relevant material properties of plastics, ceramics, and metal are presented with the conclusion that metals currently present with the greatest longevity without undue fatigue and wear as many as 100,000,000 cycles (40 years use) as an alternative to spinal fusion. An analysis of the kinematics of the motion segment have resulted, together with the material properties in the development of a dynamic intervertebral disc for use in the lumbar spine. The disc resembles a normal motion segment. In motion stiffness and center of rotation, wear debris development in 1/300 equivalent to that of a total hip prosthesis for the same given time. Safety features include immediate screw fixation to prevent displacement, a wedge elastic (spring) shape, and a bony porous ingrowth surface. The prosthesis is constructed of cobalt chromium and titanium with minimal corrosive properties on long term testing.

  16. Angiogenic properties of adult human thymus fat.

    PubMed

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  17. Uniquely hominid features of adult human astrocytes.

    PubMed

    Oberheim, Nancy Ann; Takano, Takahiro; Han, Xiaoning; He, Wei; Lin, Jane H C; Wang, Fushun; Xu, Qiwu; Wyatt, Jeffrey D; Pilcher, Webster; Ojemann, Jeffrey G; Ransom, Bruce R; Goldman, Steven A; Nedergaard, Maiken

    2009-03-11

    Defining the microanatomic differences between the human brain and that of other mammals is key to understanding its unique computational power. Although much effort has been devoted to comparative studies of neurons, astrocytes have received far less attention. We report here that protoplasmic astrocytes in human neocortex are 2.6-fold larger in diameter and extend 10-fold more GFAP (glial fibrillary acidic protein)-positive primary processes than their rodent counterparts. In cortical slices prepared from acutely resected surgical tissue, protoplasmic astrocytes propagate Ca(2+) waves with a speed of 36 microm/s, approximately fourfold faster than rodent. Human astrocytes also transiently increase cystosolic Ca(2+) in response to glutamatergic and purinergic receptor agonists. The human neocortex also harbors several anatomically defined subclasses of astrocytes not represented in rodents. These include a population of astrocytes that reside in layers 5-6 and extend long fibers characterized by regularly spaced varicosities. Another specialized type of astrocyte, the interlaminar astrocyte, abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers 3 and 4. Human fibrous astrocytes resemble their rodent counterpart but are larger in diameter. Thus, human cortical astrocytes are both larger, and structurally both more complex and more diverse, than those of rodents. On this basis, we posit that this astrocytic complexity has permitted the increased functional competence of the adult human brain.

  18. Genetics Home Reference: intervertebral disc disease

    MedlinePlus

    ... link) National Institute of Neurological Disorders and Stroke: Low Back Pain Fact Sheet Educational Resources (8 links) American Association ... MalaCards: intervertebral disc disease Merck Manual Consumer Version: Low Back Pain Merck Manual Consumer Version: Neck Pain The Children's ...

  19. Intervertebral diskitis caused by Kingella kingae.

    PubMed

    Woolfrey, B F; Lally, R T; Faville, R J

    1986-06-01

    A case of childhood intervertebral diskitis caused by Kingella kingae is presented. In a review of the literature, the authors found 33 reported cases of infection caused by species of the Kingella genus, of which 29 were due to K. kingae. Of the 33 cases, 42% represented bacterial endocarditis and 48% bone and joint infection. Of the 16 bone and joint infections, 11 represented septic arthritis, 3 osteomyelitis, and 2 intervertebral diskitis, the latter finding making the authors' case of K. kingae intervertebral diskitis the third to be reported. A review of the bacteriologic findings in cases of childhood intervertebral diskitis indicates a prominent role for fastidious microorganisms and the need for careful attention to specimen procurement and microbiologic processing.

  20. Ligaments associated with lumbar intervertebral foramina. 2. The fifth lumbar level.

    PubMed Central

    Amonoo-Kuofi, H S; el-Badawi, M G; Fatani, J A; Butt, M M

    1988-01-01

    The lumbosacral spines of two fetal and twelve adult cadavers have been studied by dissection. Evidence shows that the fifth lumbar intervertebral foramen is crossed on its external aspect by a strong, cord-like corporotransverse ligament passing obliquely downwards, forwards and medially from the inferior aspect of the accessory process of the fifth lumbar vertebra to the lateral surface of the intervertebral disc and the adjacent parts of the bodies of the fifth and first sacral vertebrae. Superficially, the ligament is related to another flat band--the lumbosacral hood. Together these ligaments separate and provide openings for the sympathetic ramus, the ventral ramus and blood vessels related to the intervertebral foramen. On the dorsal aspect, a tripartite ligament, the mamillo-transverso-accessory ligament, bears important relationships to the subdivisions of the dorsal ramus and also the zygapophyseal joint. The significance of these findings is discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 1 Fig. 5 PMID:3248957

  1. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    NASA Astrophysics Data System (ADS)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  2. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  3. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  4. [Biomechanical research on morphometric changes in adjacent inferior cervical intervertebral foramen after artificial disc replacement].

    PubMed

    Wang, Bin; Zhang, Zhigang; Li, Kanghua

    2007-10-01

    To explore changes in the height and width of the cervical intervertebral foramina of C6.7 before and after the C5.6 discetomy, the replacement or the anterior intervertebral fusion so as to provide the theoretical basis for the clinical practice. Eleven fresh cervical spinal specimens were obtained from young adult cadavers. The specimens of C5.6 were divided into the integrity group, the discectomy group, the artificial disc replacement group, and the intervertebral fusion group. The range of variety (ROV) of the C6.7 intervertebral foramen dimensions (height, width) before and after the loading tests (0.75, 1.50 Nm) were measured in the 4 groups. The C6.7 intervetebral foramen height and width increased significantly during flexion (P < 0.01) but decreased significantly during extension (P < 0.01). There was a significant difference between the two test conditions in each of the 4 groups (P < 0.01). However, in the two test conditions there was no significant difference in ROV of the C6,7 intervetebral foramen height and width during flexion and extension between the integrity group, the discectomy, and the artificial disc replacement group (P > 0.05), but a significant difference in the above changes existed in the intervertebral fusion group when compared with the other 3 groups (P < 0.05). In the same group and under the same conditions, the ROV of the C6.7 intervetebral foramen height and width was significantly different in the two test conditions (P < 0.01). The results have indicated that artificial disc replacement can meet the requirements of the normal cervical vitodynamics. The adjacent inferior cervical intervetebral foramen increases during flexion but decreases during extension. The intervertebral fusion is probably one of the causes for the cervical degeneration or the accelerated degeneration and for the cervical spondylotic radiculopathy and the brachial plexus compression.

  5. Intervertebral disc transplantation: a biological approach to motion preservation.

    PubMed

    Luk, Keith D K; Ruan, D K

    2008-12-01

    Intervertebral disc transplantation was developed in a bipedal animal model through the stages of autograft, fresh allograft and fresh frozen allograft. Results showed that the allografts were able to survive through a deep freezing protocol and maintain cell viability after transplantation without significant immunoreaction. Although degeneration of the allograft appeared to be inevitable, it was able to maintain stability and mobility of the functional spinal unit. These findings were similarly reproduced in the human clinical trial with excellent mid-term clinical results at 5 years. The process of evolution and findings were summarized in this review.

  6. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intervertebral body fusion device. 888.3080... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion device. (a) Identification. An intervertebral body fusion device is an implanted single or multiple...

  7. Latent inhibition in human adults without masking.

    PubMed

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  8. Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders

    PubMed Central

    Shenegelegn Mern, Demissew; Tschugg, Anja; Hartmann, Sebastian; Thomé, Claudius

    2017-01-01

    Inhibition of intervertebral disc (IVD) degeneration, which is often accompanied by painful inflammatory and immunopathological processes, is challenging. Current IVD gene therapeutic approaches are based on adenoviral gene delivery systems, which are limited by immune reactions to their viral proteins. Their applications in IVDs near to sensitive neural structure could provoke toxicity and immunological side-effects with neurological deficits. Self-complementary adeno-associated virus (scAAV) vectors, which do not express any viral gene and are not linked with any known disease in humans, are attractive therapeutic gene delivery vectors in degenerative IVDs. However, scAAV-based silencing of catabolic or inflammatory factor has not yet been investigated in human IVD cells. Therefore, we used scAAV6, the most suitable serotype for transduction of human nucleus pulposus (NP) cells, to knockdown the major catabolic gene (ADAMTS4) of IVD degeneration. IVD degeneration grades were determined by preoperative magnetic resonance imaging. Lumbar NP tissues of degeneration grade III were removed from 12 patients by nucleotomy. NP cells were isolated and cultured with low-glucose. Titre of recombinant scAAV6 vectors targeting ADAMTS4, transduction efficiencies, transduction units, cell viabilities and expression levels of target genes were analysed using quantitative PCR, fluorescence microscopy, fluorescence-activated cell sorting, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assays, quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assays during 48 days of post-transduction. Transduction efficiencies between 98.2% and 37.4% and transduction units between 611 and 245 TU/cell were verified during 48 days of post-transduction (p<0.001). scAAV6-mediated knockdown of ADAMTS4 with maximum 87.7% and minimum 40.1% was confirmed on day 8 and 48 with enhanced the level of aggrecan 48.5% and 30.2% respectively (p<0.001). scAAV6

  9. Astrocitary niches in human adult medulla oblongata.

    PubMed

    Rusu, Mugurel Constantin; Dermengiu, Dan; Loreto, Carla; Motoc, Andrei Gheorghe Marius; Pop, Elena

    2013-04-01

    Astrocytes are considered as neuromodulators of the CNS. Whereas experimental studies on astrocitary functions are gaining importance, the anatomy of the astrocitary niches in the human CNS has been overlooked. The study was performed on the brainstem of 10 adult cadavers. We aimed to determine astrocitary niches in the human medulla oblongata using immunohistochemical labeling with vimentin and also CD34 immunostaining to accurately diagnose associated microvessels. Niches rich in astrocytes were identified as follows: (a) the superficial layer of astrocytes, ventral and ventrolateral, in the rostral medulla oblongata; (b) the median raphe; (c) medullary nuclei: arcuate nucleus, area postrema, nucleus of the solitary tract; (d) the subependymal zone (SEZ, caudal medulla) and subventricular zone (SVZ, rostral medulla). Astrocytes were scarce in the ventrolateral medulla, and mostly present within the pyramidal tract and the olivary nucleus. Apart from the SEZ and SVZ, the brainstem niches of astrocytes mostly overlap those regions known to perform roles as central respiratory chemoreceptors. The astrocytes of the SEZ and SVZ, which are known as stem cell niches, are related to an increased microvascular density.

  10. Feasibility of a stem cell therapy for intervertebral disc degeneration.

    PubMed

    Sobajima, Satoshi; Vadala, Gianluca; Shimer, Adam; Kim, Joseph S; Gilbertson, Lars G; Kang, James D

    2008-01-01

    Different strategies to supplement/replenish the disc cell population have been proposed. Recently, adult stem cells have shown promise as a cell source for a variety of tissue engineering and cell therapy applications. A stem cell can renew itself through cell division and can be induced to develop into many different specialized cell types. Moreover, stem cells have shown ability to migrate and engraft within various tissues, as well as to exert stimulatory effects on other cell types through various mechanisms (eg, paracrine effects, cell-cell interactions). These characteristics make stem cells worthy of investigation as a source of cells for intervertebral disc (IVD) tissue engineering and cell therapy. To determine feasibility of a stem cell therapy of IVD degeneration. In vitro studies of adult human cells to examine interactions between nucleus pulposus cells (NPCs) and mesenchymal stem cells (MSCs) at different ratios in 3-D pellet culture. In vivo studies of healthy adult rabbit discs injected with allogenic adult rabbit MSCs to examine stem cell survival and engraftment in living disc tissue. In vitro study: Human NPCs were cocultured with human MSCs in different ratios (75:25, 50:50, 25:75) for 2 weeks in pellet culture, for comparison with pure NPC (100:0) and pure MSC (0:100) pellet cultures. Proteoglycan synthesis rate and glycosaminoglycan (GAG) content were measured by radioactive sulfate incorporation and dimethylmethylene blue assay, respectively. In vivo study: MSCs were isolated from the bone marrow of a New Zealand White (NZW) rabbit, retrovirally transduced with the lacZ marker gene, and injected into the nucleus pulposi of the L2-3, L3-4, and L4-5 lumbar discs of 12 other NZW rabbits. Three rabbits each were sacrificed at 3, 6, 12, or 24 weeks after cell implantation, and X-Gal staining was done to assess survival and localization of MSCs in the disc tissues. In vitro study: the 75:25 and 50:50 NPC:MSC cocultures yielded the greatest

  11. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  12. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  13. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  14. Encephalitis-Associated Human Metapneumovirus Pneumonia in Adult, Australia

    PubMed Central

    Mateevici, Cristina; Lin, Belinda; Chandra, Ronil V.; Chong, Victor H.T.

    2015-01-01

    Human metapneumovirus pneumonia, most commonly found in children, was diagnosed in an adult with encephalitis. This case suggests that testing for human metapneumovirus RNA in nasopharyngeal aspirate and cerebrospinal fluid samples should be considered in adults with encephalitis who have a preceding respiratory infection, PMID:26488420

  15. [Research advances in animal models of intervertebral disc degeneration].

    PubMed

    Zhang, Wenli; Liu, Hao; Li, Tanzhu

    2007-11-01

    To review the research advances in animal models of human disc degeneration. The relative articles in recent years were extensively reviewed. Studies both at home and abroad were analyzed and classified. The advantages and disadvantages of each method were compared. Studies were classified as either experimentally induced models or spontaneous models. The induced models were subdivided as mechanical (alteration of forces on the normal disc), structural (injury or chemical alteration) and genetically induced models. Spontaneous models included those animals that naturally developed degenerative disc disease. Animal model of intervertebral disc degeneration is an important path for revealing the pathogenesis of human disc degeneration, and play an important role in testing novel interventions. With recent advances in the relevance of animal models and humans, it has a great prospect in study of human disc degeneration.

  16. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  17. Attracting Adult Learners to Humanities Courses. Final Report.

    ERIC Educational Resources Information Center

    American Association of Community and Junior Colleges, Washington, DC.

    A round table discussion among community college presidents and humanities faculty on how to encourage adults to enroll in humanities courses resulted in eleven recommendations. These included experimentation in how to access community interests in humanities courses, the integration of humanities with occupational training to help people deal…

  18. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats

    PubMed Central

    Issy, A.C.; Castania, V.; Castania, M.; Salmon, C.E.G.; Nogueira-Barbosa, M.H.; Bel, E. Del; Defino, H.L.A.

    2013-01-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration. PMID:23532265

  19. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats.

    PubMed

    Issy, A C; Castania, V; Castania, M; Salmon, C E G; Nogueira-Barbosa, M H; Bel, E Del; Defino, H L A

    2013-03-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.

  20. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease

    PubMed Central

    Burkhardt, D.; Taylor, T. K. F.; Dillon, C. T.; Read, R.; Cake, M.; Little, C. B.

    2009-01-01

    The study design included a multidisciplinary examination of the mineral phase of ovine intervertebral disc calcifications. The objective of the study was to investigate the mineral phase and its mechanisms of formation/association with degeneration in a naturally occurring animal model of disc calcification. The aetiology of dystrophic disc calcification in adult humans is unknown, but occurs as a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. Lumbar intervertebral discs (n = 134) of adult sheep of age 6 years (n = 4), 8 years (n = 12) and 11 years (n = 2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Half of the 6-year, 84% of the 8-year and 86% of the 11-year-old discs had calcific deposits. These were not well delineated by plain radiography. They were either: (a) punctate deposits in the outer annulus, (b) diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or (c) large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5–L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1,300 Å) compared to cortical bone (300–600 Å). No type X-collagen, osteopontin or osteonectin were detected in calcific deposits, although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable, but large, crystal size and lack of protein markers indicate that this does not occur by

  1. The dynamics of adult neurogenesis in human hippocampus

    PubMed Central

    Ihunwo, Amadi O.; Tembo, Lackson H.; Dzamalala, Charles

    2016-01-01

    The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data. PMID:28197172

  2. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    PubMed Central

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p < 0.05 (two-tailed). Results Results indicate that the curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  3. Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression.

    PubMed

    Smith, Lachlan J; Elliott, Dawn M

    2011-05-01

    Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence

  4. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  5. Adult human neurogenesis: from microscopy to magnetic resonance imaging.

    PubMed

    Sierra, Amanda; Encinas, Juan M; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.

  6. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique.

    PubMed

    Ogata, K; Whiteside, L A

    1981-01-01

    The pathways of material transfer to the intervertebral disc were studied in adult dogs by measuring diffusion of hydrogen molecules in the nucleus pulposus before and after disruption of the route through the annulus fibrosus and before and after disruption of the end-plate route. The interfaces was only in the central two-thirds of one side, caused significantly greater decrease in the rate of hydrogen washout than the disruption of the annulus route. Histologically, the bone-cartilage interface was frequently perforated by marrow cavity and vascular buds. These findings suggest that the end-plate route is a major pathway for material transfer to the intervertebral disc.

  7. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  8. Developing Resourceful Humans. Adult Education within the Economic Context.

    ERIC Educational Resources Information Center

    Burton, Lynn Elen, Ed.

    This book, which explores the shifting paradigm from human resource development to developing resourceful humans, establishes the historical position of adult education within the economic context, discusses human capital propositions, and examines the learning dimensions of economic and educational change. The following chapters are included:…

  9. EVALUATION OF MAGNETIC RESONANCE IMAGING GUIDELINES FOR DIFFERENTIATION BETWEEN THORACOLUMBAR INTERVERTEBRAL DISK EXTRUSIONS AND INTERVERTEBRAL DISK PROTRUSIONS IN DOGS.

    PubMed

    De Decker, Steven; Gomes, Sergio A; Packer, Rowena Ma; Kenny, Patrick J; Beltran, Elsa; Parzefall, Birgit; Fenn, Joe; Nair, Devi; Nye, George; Volk, Holger A

    2016-09-01

    Four MRI variables have recently been suggested to be independently associated with a diagnosis of thoracolumbar intervertebral disk extrusion or protrusion. Midline intervertebral disk herniation, and partial intervertebral disk degeneration were associated with intervertebral disk protrusion, while presence of a single intervertebral disk herniation and disk material dispersed beyond the boundaries of the intervertebral disk space were associated with intervertebral disk extrusion. The aim of this retrospective, cross-sectional study was to determine whether using these MRI variables improves differentiation between thoracolumbar intervertebral disk extrusions and protrusions. Eighty large breed dogs with surgically confirmed thoracolumbar intervertebral disk extrusions or protrusions were included. Randomized MRI studies were presented on two occasions to six blinded observers, which were divided into three experience categories. During the first assessment, observers made a presumptive diagnosis of thoracolumbar intervertebral disk extrusion or protrusion without guidelines. During the second assessment they were asked to make a presumptive diagnosis with the aid of guidelines. Agreement was evaluated by Kappa-statistics. Diagnostic accuracy significantly improved from 70.8 to 79.6% and interobserver agreement for making a diagnosis of intervertebral disk extrusion or intervertebral disk protrusion improved from fair (κ = 0.27) to moderate (κ = 0.41) after using the proposed guidelines. Diagnostic accuracy was significantly influenced by degree of observer experience. Intraobserver agreement for the assessed variables ranged from fair to excellent and interobserver agreement ranged from fair to moderate. The results of this study suggest that the proposed imaging guidelines can aid in differentiating thoracolumbar intervertebral disk extrusions from protrusions. © 2016 American College of Veterinary Radiology.

  10. Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs.

    PubMed

    Gan, M F; Yang, H L; Qian, J L; Wu, C S; Yuan, C X; Li, X F; Zou, J

    2016-06-03

    RNA extraction from the nucleus pulposus of intervertebral discs has been extensively used in orthopedic studies. We compared two methods for extracting RNA from the nucleus pulposus: liquid nitrogen grinding and enzyme digestion. The RNA was detected by agarose gel electrophoresis, and the purity was evaluated by absorbance ratio using a spectrophotometer. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression was assayed by reverse transcription-polymerase chain reaction (RT-PCR). Thirty human lumbar intervertebral discs were used in this study. The liquid nitrogen-grinding method was used for RNA extraction from 15 samples, and the mean RNA concentration was 491.04 ± 44.16 ng/mL. The enzyme digestion method was used on 15 samples, and the mean RNA concentration was 898.42 ± 38.64 ng/mL. The statistical analysis revealed that there was a significant difference in concentration between the different methods. Apparent 28S, 18S, and 5S bands were detectable in RNA extracted using the enzyme digestion method, whereas no 28S or 18S bands were detected in RNA extracted using the liquid nitrogen-grinding method. The GAPDH band was visible, and no non-specific band was detected in the RT-PCR assay by the enzyme digestion method. Therefore, the enzyme digestion method is an efficient and easy method for RNA extraction from the nucleus pulposus of intervertebral discs for further intervertebral disc degeneration-related studies.

  11. Cell therapy for the degenerating intervertebral disc.

    PubMed

    Tong, Wei; Lu, Zhouyu; Qin, Ling; Mauck, Robert L; Smith, Harvey E; Smith, Lachlan J; Malhotra, Neil R; Heyworth, Martin F; Caldera, Franklin; Enomoto-Iwamoto, Motomi; Zhang, Yejia

    2017-03-01

    Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since

  12. Humanizing Adult Education Research: Five Stories from the 1930's.

    ERIC Educational Resources Information Center

    Hilton, Ronald

    Taken from the author's doctoral dissertation, this award-winning monograph describes a method for humanizing educational research in adult education and provides five stories of adult education efforts in the 1930's as examples of such research. The method described suggests valuing qualitative data as much as quantitative in the field of…

  13. Adult Literacy Education and Human Rights: A View from Afghanistan

    ERIC Educational Resources Information Center

    Andersen, Susan M.; Kooij, Christina S.

    2007-01-01

    In this article, we argue that adult literacy as part of international development is an issue of both human rights and women's rights. We explore this by presenting a case study of the effects of one innovative adult literacy program in Afghanistan that places men and women, as well as various ethnicities, together in the same classroom as…

  14. Hygroviscoelasticity of the Human Intervertebral Disc.

    DTIC Science & Technology

    1980-07-01

    INFERIOR ARTICULAR PROCESS LAMINA TRANSVERSE PROCESS SUPERIOR ARTICULAR PROCESS PEDICLE (a) Top View , PEDICLE SUPERIOR ARTICULAR PROCESS TRANSVERSE...thread seating screw . Thus for every new specimen mounted in the fixture this adjust- ment was made by trial and error so that prior to testing a...difficult. As the strain was reduced the effect of swelling changes on the original specimen lengths became more important so that the screw attachment

  15. Immunomorphological analysis of RAGE receptor expression and NF-kappaB activation in tissue samples from normal and degenerated intervertebral discs of various ages.

    PubMed

    Nerlich, Andreas G; Bachmeier, Beatrice E; Schleicher, Erwin; Rohrbach, Helmut; Paesold, Guenther; Boos, Norbert

    2007-01-01

    We immunohistochemically investigated the pattern of RAGE expression and NFkappaB translocation into the nucleus in 43 complete cross-sections of human lumbar intervertebral discs (neonatal-85 years) and compared this with the carboxymethyl-lysine (CML) modification of proteins as a marker for oxidative stress. No significant expression of RAGE, no obvious activation of NF-kappaB, and no deposition of CML-modified proteins were seen in fetal, juvenile, and young adolescent discs (until age of 13 years). In adults, 25-50% of nucleus pulposus cells were labeled for RAGE and activated NF-kappaB, which correlated well with the occurrence and extent of CML staining in the pericellular matrix. In the annulus fibrosus significantly lower values were seen than in the nucleus pulposus. In consequence, we provide evidence for activation of the NF-kappaB system in intervertebral discs in vivo, which correlates with accumulated oxidative stress and increases in age and disc degeneration. Oxidative stress (as monitored by CML modifications) may lead to RAGE activation and NF-kappaB translocation.

  16. Roentgenographic measurement of lumbar intervertebral disc height.

    PubMed

    Andersson, G B; Schultz, A; Nathan, A; Irstam, L

    1981-01-01

    The influences of differences in both intervertebral motion segment orientations and in reader judgments on measurements of the apparent intervertebral disc heights in lateral roentgenographs of the lumbar spine were examined. Forty-nine roentgenographs were obtained of nine discs that were titled laterally up to +/- 10 degrees, and rotated longitudinally up to +/- 20 degrees. Three orthopaedic surgeons and three radiologists measured disc heights from five of these roentgenographs, all using the same measurement method. The differences in apparent height that resulted from the orientation changes and differences in judgments among the six readers were considerable, usually of the order of one half of the nominal disc height. The results show that, while roentgenographic measurements can be used to estimate disc height, accurate measurements cannot readily be made from routine roentgenographs, and the interpretation should always be cautious.

  17. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  18. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  19. Atomic Absorption Spectrometry Analysis of Trace Elements in Degenerated Intervertebral Disc Tissue

    PubMed Central

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Frankowski, Marcin; Nowakowski, Andrzej; Czabak-Garbacz, Róża; Kaczmarczyk, Jacek; Gasik, Robert

    2014-01-01

    Background Few studies have investigated trace elements (TE) in human intervertebral disc (IVD) tissue. Trace element presence can have diverse meanings: essential TE show the metabolic modalities of the tissue, while environmentally-related TE indicate pollution and tissue-specific absorption and accumulation. IVD is a highly specific compartment with impaired communication with adjacent bone. Analysis of TE in IVD provides new insights regarding tissue metabolism and IVD communication with other tissues. Material/Methods Thirty intervertebral discs were acquired from 22 patients during surgical treatment for degenerative disease. Atomic absorption spectrometry was used to evaluate the concentrations of Al, Cd, Pb, Cu, Ni, Mo, Mg, and Zn. Results Al, Pb, Cu, Mg, and Zn were detected in all samples. Pb was significantly positively correlated with age, and Ni concentration was weakly correlated with population count in the patient’s place of residence. Only Cu was observed in higher concentrations in IVD compared to in other tissues. Significant positive correlations were observed between the following pairs: Mg/Zn, Mg/Al, Mg/Pb, Zn/Al, Zn/Pb, and Al/Pb. Negative correlations were observed between Mg/Cd, Zn/Cd, Mg/Mo, and Mo/Pb. Conclusions This study is one of few to profile the elements in intervertebral discs in patients with degenerative changes. We report significant differences between trace element concentrations in intervertebral discs compared to in other tissues. Knowledge of the TE accumulation pattern is vital for better understanding intervertebral disc nutrition and metabolism. PMID:25366266

  20. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure.

    PubMed

    Moore, Michael Kevin; Fulop, Steven; Tabib-Azar, Massood; Hart, David J

    2009-12-01

    An implantable, freestanding, minimally invasive, intervertebral disc pressure sensor would vastly improve the knowledge of spinal biomechanics and the understanding of spinal disease. Additionally, it would improve clinical indications for surgical interventions in disc-related pathology. Adaptation of current commercially available materials, technology, and microfabrication techniques may now make the production of such a device feasible. To determine if piezoresistive pressure sensor (PPS) technology could be applied as the functional sensing element in an intervertebral disc microsensor. Commercially available PPS chips were modified, producing sensor chips measuring 0.8 cm(2) by 0.3 cm with an internal sensing element measuring 0.15 cm(2) by 0.1cm. A needle-mounted pressure sensor functionally identical to those used in discography procedures was also tested in parallel as a control. Both sensors were calibrated for hydrostatic pressure using a purpose-built pressure chamber and then tested in human functional spinal units. Methods were developed to implant the sensor and measure the intervertebral disc pressure in response to axial compressive loads. Modified commercially available PPS elements were functionally adapted to measure intervertebral disc pressures. Both the PPS and the needle-mounted sensor measured a linear increase in hydrostatic disc pressure with applied axial load. Fluctuations between the slopes of the output versus load curves were observed in the PPS sensor experimental trials. These fluctuations were attributed to the large size of our working model and its impact on the hydrostatic and mechanical properties of the disc. It is hypothesized that future miniaturization of this working model will eliminate mechanical disruption within the disc and the fluctuations in the slope of sensor output that this induces. It should be possible to construct an implantable sensor for the intervertebral disc. This may provide valuable clinical and

  1. A comparative study of bifidobacteria in human babies and adults

    PubMed Central

    KHONSARI, Shadi; SUGANTHY, Mayuran; BURCZYNSKA, Beata; DANG, Vu; CHOUDHURY, Manika; PACHENARI, Azra

    2015-01-01

    The composition and diversity of the gut microbiota are known to be different between babies and adults. The aim of this project was to compare the level of bifidobacteria between babies and adults and to investigate the influence of lifestyle factors on the level of this bacterium in the gut. During this study, the levels of bifidobacteria in 10 human babies below 2 years of age were compared with that of 10 human adults above 40 years. The level of bifidobacteria proved to be significantly higher in babies in comparison with adults. This investigation concluded that a combination of several factors, such as age, diet, and BMI, has an important effect on the level of bifidobacteria in adults, while in babies, a combination of diet and age may influence the level of intestinal bifidobacteria. PMID:27200263

  2. EVALUATION OF TERMINAL VERTEBRAL PLATE ON CERVICAL SPINE AT DIFFERENT AGE GROUPS AND ITS CORRELATION WITH INTERVERTEBRAL DISC THICKNESS

    PubMed Central

    Luiz Vieira, Juliano Silveira; da Silva Herrero, Carlos Fernando Pereira; Porto, Maximiliano Aguiar; Nogueira Barbosa, Marcello Henrique; Garcia, Sérgio Britto; Zambelli Ramalho, Leandra Náira; Aparecido Defino, Helton Luiz

    2015-01-01

    To evaluate, by means of histomorphometry, terminal vertebral plate thickness, intervertebral disc thickness and its correlation on different age groups, seeking to identify its correlation. Methods: C4-C5 and C5-C6 cervical segments removed from human cadavers of both genders were assessed and divided into five groups of 10-year age intervals, from 21 years old. TVP and intervertebral disc thickness evaluation was made by means of histomorphometry of histological slides stained with hematoxylin and eosyn. Lower C4 TVP, upper C5 TVP, and upper C6 TVP de were compared between each other and to the interposed intervertebral disc thickness between relevant TVP. Results: The thickness of terminal vertebral plates adjacent to the same ID did not show statistic differences. However, the comparison of upper and lower vertebral plates thickness on the same cervical vertebra (C5), showed statistical difference on all age groups studied. We found a statistical correlation coefficient above 80% between terminal vertebral plate and adjacent intervertebral disc, with a proportional thickness reduction of both structures on the different cervical levels studied, and also on the different age groups assessed. Conclusion: Terminal vertebral plate shows a morphologic correlation with the intervertebral disc next to it, and does not show correlation with the terminal vertebral plate on the same vertebra. PMID:26998448

  3. Histological Features of the Degenerating Intervertebral Disc in a Goat Disc-injury Model

    PubMed Central

    Zhang, Yejia; Drapeau, Susan; An, Howard S.; Markova, Dessislava; Lenart, Brett A.; Anderson, D. Greg

    2010-01-01

    Study Design An in vivo study to develop a goat large-animal model for intervertebral disc (IVD) degeneration. Objectives To determine an optimal method for inducing goat IVD degeneration suitable for testing disc regeneration therapies. Summary of Background Data Although rodent, rabbit, and other small animal studies are useful, the narrow dimensions of IVDs in these species limit studies requiring injection of a relevant volume of therapeutics or implantation of engineered tissue constructs. For this study, the goat was selected because the size and shape of their IVDs are comparable to those of adult humans. Methods A minimally invasive approach that did not cause significant morbidity or mortality to adult goats (n = 6) was used. Under fluoroscopic guidance, goat lumbar IVDs were injured with a 4.5 mm drill bit or #15 or #10 surgical blades. Two months post-injury, the goats were euthanized and their IVDs with adjacent endplates were isolated, decalcified and stained. Results A numerical histological scale to categorize the degree of goat IVD degeneration was developed based on the histological features of rabbit IVDs previously described by Masuda et al., goat IVDs described by Hoogendoorn et al., and human IVDs described by Boos et al. The inter-rater agreement of our scoring system was assessed (weighted Kappa value = 0.6646). Mann-Whitney tests were used to compare the injured IVDs with uninjured control. A 4.5 mm drill bit inserted to a 15 mm depth resulted in a significantly higher histological score compared to uninjured controls (p = 0.01). Injury with a #15 or #10 blade did not result in increased histological scores compared with uninjured controls. Conclusions A comparison of the various injuries inflicted showed that the use of a 4.5 mm drill bit resulted in the most significant histological changes. PMID:21245789

  4. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  5. Human retrovirus in adult T-cell leukemia/lymphoma.

    PubMed

    Sugamura, K; Hinuma, Y

    1985-03-01

    In this review Kazuo Sugamura and Yorio Hinuma summarize developments in studies on the human retrovirus associated with a unique human T-cell malignancy, adult T-cell leukemia; they also discuss the possible mechanisms of retrovirus-induced leukemogenesis. Copyright © 1985. Published by Elsevier B.V.

  6. Humanities and the Adult Learner in an Information Society.

    ERIC Educational Resources Information Center

    Myers, Dale; Kamholtz, Jonathan

    Humanities courses have often been given little attention in continuing education for adults, possibly because they have been viewed as not "practical" or not "job-oriented" enough in our career-oriented, technologically advanced society. However, the humanities should be an integral part of our culture and of the lives of…

  7. Humanities and the Adult Learner in an Information Society.

    ERIC Educational Resources Information Center

    Myers, Dale; Kamholtz, Jonathan

    Humanities courses have often been given little attention in continuing education for adults, possibly because they have been viewed as not "practical" or not "job-oriented" enough in our career-oriented, technologically advanced society. However, the humanities should be an integral part of our culture and of the lives of…

  8. Propriospinal Myoclonus Induced by a Herniated Lumbar Intervertebral Disc at a Young Age: A Case Report

    PubMed Central

    Song, Kwan Su; Kim, Chang Hyun; Lee, Ho Kook

    2011-01-01

    The cause of propriospinal myoclonus (PSM) is idiopathic. Cervical trauma, ischemic myelopathy secondary to a spinal dural arteriovenous fistula, syringomyelia, Lyme neuroborreliosis, human immunodeficiency virus central nervous system infection, and cervical disc herniation can be the cause of PSM, but lumbar herniated intervertebral disc (HIVD) induced PSM has not been reported. We describe a patient who presented with PSM induced by HIVD and was treated with an epidural steroid injection using a transforaminal approach. PMID:26064150

  9. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  10. Morphological changes of the caudal cervical intervertebral foramina due to flexion-extension and compression-traction movements in the canine cervical vertebral column.

    PubMed

    Ramos, Renato M; da Costa, Ronaldo C; Oliveira, Andre L A; Kodigudla, Manoj K; Goel, Vijay K

    2015-08-06

    Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has implications in the pathogenesis of CSM. The dimensions of the cervical intervertebral foramina may significantly change during neck movements. This could have implication in the pathogenesis of CSM and other diseases associated with radiculopathy such as intervertebral disc disease. The purpose of this study was to quantify the morphological changes in the intervertebral foramina of dogs during flexion, extension, traction, and compression of the canine cervical vertebral column. All vertebral columns were examined with magnetic resonance imaging prior to biomechanic testing. Eight normal vertebral columns were placed in Group 1 and eight vertebral columns with intervertebral disc degeneration or/and protrusion were assigned to Group 2. Molds of the left and right intervertebral foramina from C4-5, C5-6 and C6-7 were taken during all positions and loading modes. Molds were frozen and vertical (height) and horizontal (width) dimensions of the foramina were measured. Comparisons were made between neutral to flexion and extension, flexion to extension, and traction to compression in neutral position. Extension decreased all the foraminal dimensions significantly, whereas flexion increased all the foraminal dimensions significantly. Compression decreased all the foraminal dimensions significantly, and traction increased the foraminal height, but did not significantly change the foraminal width. No differences in measurements were seen between groups. Our results show movement-related changes in the dimensions of the intervertebral foramina, with significant foraminal narrowing in extension

  11. Molecular Mechanisms of Biological Aging in Intervertebral Discs

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Patil, Prashanti R.; Risbud, Makarand V.; Kletsas, Dimitris; Iatridis, James C.; Hoyland, Judith A.; Le Maitre, Christine L.; Sowa, Gwendolyn A.; Kang, James D.

    2016-01-01

    Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. PMID:26890203

  12. Late Pleistocene adult mortality patterns and modern human establishment.

    PubMed

    Trinkaus, Erik

    2011-01-25

    The establishment of modern humans in the Late Pleistocene, subsequent to their emergence in eastern Africa, is likely to have involved substantial population increases, during their initial dispersal across southern Asia and their subsequent expansions throughout Africa and into more northern Eurasia. An assessment of younger (20-40 y) versus older (>40 y) adult mortality distributions for late archaic humans (principally Neandertals) and two samples of early modern humans (Middle Paleolithic and earlier Upper Paleolithic) provides little difference across the samples. All three Late Pleistocene samples have a dearth of older individuals compared with Holocene ethnographic/historical samples. They also lack older adults compared with Holocene paleodemographic profiles that have been critiqued for having too few older individuals for subsistence, social, and demographic viability. Although biased, probably through a combination of preservation, age assessment, and especially Pleistocene mobility requirements, these adult mortality distributions suggest low life expectancy and demographic instability across these Late Pleistocene human groups. They indicate only subtle and paleontologically invisible changes in human paleodemographics with the establishment of modern humans; they provide no support for a life history advantage among early modern humans.

  13. Late Pleistocene adult mortality patterns and modern human establishment

    PubMed Central

    Trinkaus, Erik

    2011-01-01

    The establishment of modern humans in the Late Pleistocene, subsequent to their emergence in eastern Africa, is likely to have involved substantial population increases, during their initial dispersal across southern Asia and their subsequent expansions throughout Africa and into more northern Eurasia. An assessment of younger (20–40 y) versus older (>40 y) adult mortality distributions for late archaic humans (principally Neandertals) and two samples of early modern humans (Middle Paleolithic and earlier Upper Paleolithic) provides little difference across the samples. All three Late Pleistocene samples have a dearth of older individuals compared with Holocene ethnographic/historical samples. They also lack older adults compared with Holocene paleodemographic profiles that have been critiqued for having too few older individuals for subsistence, social, and demographic viability. Although biased, probably through a combination of preservation, age assessment, and especially Pleistocene mobility requirements, these adult mortality distributions suggest low life expectancy and demographic instability across these Late Pleistocene human groups. They indicate only subtle and paleontologically invisible changes in human paleodemographics with the establishment of modern humans; they provide no support for a life history advantage among early modern humans. PMID:21220336

  14. Linking adult hippocampal neurogenesis with human physiology and disease.

    PubMed

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.

  15. High incidence of persistence of sacral and coccygeal intervertebral discs in South Indians – a cadaveric study

    PubMed Central

    Satheesha Nayak, B; Ashwini Aithal, P; Kumar, Naveen; George, Bincy M; Deepthinath, R; Shetty, Surekha D

    2016-01-01

    The sacrum, by virtue of its anatomic location plays a key role in providing stability and strength to the pelvis. Presence of intervertebral discs in sacrum and coccyx is rare. Knowledge of its variations is of utmost importance to surgeons and radiologists. The current study focused on the presence of intervertebral discs between the sacral and coccygeal vertebrae in south Indian cadaveric pelvises. We observed 56 adult pelvises of which, 34 (61%) pelvises showed the presence of intervertebral discs between the sacral vertebrae and between the coccygeal vertebrae, while 22 (39%) pelvises did not have the intervertebral discs either in the sacrum or the coccyx. We also found that most of the specimens had discs between S1 and S2 vertebrae (39%), followed by, between S4 and S5 (18%), between S2–S3 (14%) and least being between S3–S4 (13%). In the coccyx it was found that 7% of pelvises had disc between Co1-Co2, 4% of them had between Co2-Co3 and 4% had between Co3-Co4. Knowledge regarding such anatomic variations in the sacro-coccygeal region is important to note because they require alterations in various instrumentation procedures involving the sacrum. PMID:27385838

  16. Maps of the adult human hypothalamus

    PubMed Central

    Lemaire, Jean-Jacques; Nezzar, Hachemi; Sakka, Laurent; Boirie, Yves; Fontaine, Denys; Coste, Aurélien; Coll, Guillaume; Sontheimer, Anna; Sarret, Catherine; Gabrillargues, Jean; De Salles, Antonio

    2013-01-01

    The human hypothalamus is a small deeply located region placed at the crossroad of neurovegetative, neuroendocrine, limbic, and optic systems. Although deep brain stimulation techniques have proven that it could be feasible to modulate these systems, targeting the hypothalamus and in particular specific nuclei and white bundles, is still challenging. Our goal was to make a synthesis of relevant topographical data of the human hypothalamus, under the form of magnetic resonance imaging maps useful for mastering its elaborated structure as well as its neighborhood. As from 1.5 Tesla, Inversion-Recovery sequence allows locating the hypothalamus and most of its components. Spotting hypothalamic compartments is possible according to specific landmarks: the anterior commissure, the mammillary bodies, the preoptic recess, the infundibular recess, the crest between the preoptic and the infundibular recesses, the optical tract, the fornix, and the mammillo-thalamic bundle. The identification of hypothalamus and most of its components could be useful to allow the quantification of local pathological processes and to target specific circuitry to alleviate severe symptoms, using physical or biological agents. PMID:23682342

  17. Human Service Planning as a Collective Adult Learning Experience.

    ERIC Educational Resources Information Center

    Wright, Joan

    Based on a study by the Department of Community Service Education, Cornell University, to evaluate human service planning (HSP) nationwide, this paper discusses the premises that HSP may be defined as community learning and that the community (according to the Robert Boyd and Jerold Apps model for adult education) is both a beneficiary of and…

  18. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  19. Adult Education, Basic Human Needs, and Integrated Development Planning

    ERIC Educational Resources Information Center

    Green, Reginald Herbold

    1976-01-01

    This paper argues for an integrated approach to adult education which would require an examination of basic human needs and national development planning each in its own terms. The paper's argument is centered on liberation and participation as ends, not means: Education, development, and planning must be seen and acted on as an integrated whole.…

  20. Lumbar intervertebral disc degeneration and related factors in Korean firefighters

    PubMed Central

    Jang, Tae-Won; Ahn, Yeon-Soon; Byun, Junsu; Lee, Jong-In; Kim, Kun-Hyung; Kim, Youngki; Song, Han-Soo; Lee, Chul-Gab; Kwon, Young-Jun; Yoon, Jin-Ha; Jeong, Kyoungsook

    2016-01-01

    Objectives The job of firefighting can cause lumbar burden and low back pain. This study aimed to identify the association between age and lumbar intervertebral disc degeneration and whether the association differs between field and administrative (non-field) firefighters. Methods Subjects were selected using a stratified random sampling method. Firefighters were stratified by geographic area, gender, age and type of job. First, 25 fire stations were randomly sampled considering regional distribution. Then firefighters were stratified by gender, age and their job and randomly selected among the strata. A questionnaire survey and MRI scans were performed, and then four radiologists used Pfirrmann classification methods to determine the grade of lumbar intervertebral disc degeneration. Results Pfirrmann grade increased with lumbar intervertebral disc level. Analysis of covariance showed that age was significantly associated with lumbar intervertebral disc degeneration (p<0.05). The value of β (parameter estimate) was positive at all lumbar intervertebral disc levels and was higher in the field group than in the administrative group at each level. In logistic regression analysis, type of job was statistically significant only with regard to the L4–5 intervertebral disc (OR 3.498, 95% CI 1.241 to 9.860). Conclusions Lumbar intervertebral disc degeneration is associated with age, and field work such as firefighting, emergency and rescue may accelerate degeneration in the L4–5 intervertebral disc. The effects of field work on lumbar intervertebral disc degeneration were not clear in discs other than at the level L4–5. PMID:27354080

  1. Distinct functional programming of human fetal and adult monocytes.

    PubMed

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  2. Upregulation of intervertebral disc-cell matrix synthesis by pulsed electromagnetic field is mediated by bone morphogenetic proteins.

    PubMed

    Okada, Motohiro; Kim, Jin Hwan; Hutton, William C; Yoon, Sangwook Tim

    2013-05-01

    An in vitro study on the effects of pulsed electromagnetic field (PEMF) on intervertebral disc-cell matrix synthesis. The objective of the study was to determine whether (1) PEMF can upregulate intervertebral disc-cell matrix synthesis and (2) any upregulation obtained is through transforming growth factor (TGF)-β or bone morphogenetic proteins (BMPs). PEMF has been reported to produce cell proliferation, enhance cell function, and upregulate matrix synthesis in cell types such as osteoblasts, chondroblasts, endothelial cells, and fibroblasts through the upregulation of several growth factors. PEMF has been used clinically in the treatment of delayed bone union. However, PEMF has never been tested on human intervertebral disc cells. The PEMF signal used was similar to that used in the clinical treatment of delayed fracture healing. Human disc cells were treated with PEMF for 8 hours per day for 3 days. Quantitative real-time polymerase chain reaction was performed to determine mRNA expression levels of aggrecan, collagen-2, TGF-β, BMP-2, and BMP-7. Sulfated glycosaminoglycan synthesis was analyzed using the dimethylmethylene blue (DMMB) method. Western blot analysis was performed to determine the protein levels of TGF-β, BMP-2, and BMP-7. To determine whether any action of PEMF was through BMP, recombinant human Noggin was used at a dose of 100 ng/mL to block BMP. PEMF could upregulate intervertebral disc-cell matrix synthesis. BMP-7 was markedly upregulated by PEMF and was upregulated much more than BMP-2. TGF-β was not upregulated by PEMF. The effect of PEMF on disc-cell matrix was entirely inhibited in the presence of Noggin. PEMF acts through BMPs to upregulate intervertebral disc-cell matrix synthesis.

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  4. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  5. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  6. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  7. Does Acute Normobaric Hypoxia Induce Anapyrexia in Adult Humans?

    PubMed

    Seo, Yongsuk; Gerhart, Hayden D; Vaughan, Jeremiah; Kim, Jung-Hyun; Glickman, Ellen L

    2017-06-01

    Seo, Yongsuk, Hayden D. Gerhart, Jeremiah Vaughan, Jung-Hyun Kim, and Ellen L. Glickman. Does acute normobaric hypoxia induce anapyrexia in adult humans? High Alt Med Biol. 18:185-190, 2017.-Exposure to hypoxia is known to induce a reduction in core body temperature as a protective mechanism, which has been shown in both animals and humans. The purpose of this study was to test if acute exposure to normobaric hypoxia (NH) induces anapyrexia in adult humans in association with decreased peripheral oxygen saturation (SpO2). Ten healthy male subjects were seated in atmospheres of normobaric normoxia 21% (NN21), NH 17% (NH17), and 13% (NH13) O2 for 60 minutes in a counterbalanced manner. Rectal temperature (Tre) was continuously monitored together with the quantification of metabolic heat production (MHP) and body heat storage (S). Baseline physiological measurements showed no differences between the three conditions. SpO2 was significantly decreased in NH17 and NH13 compared with NN21 (p ≤ 0.001). Tre decreased following 60 minutes of resting in all conditions, but, independent of the conditions, showed no association between Tre and levels of hypoxic SpO2. There was also no significant difference in either MHP or S between conditions. The present results showed no evidence of hypoxia-induced anapyrexia in adult humans during 1 hour of resting after exposure to NH either at 13% or 17% O2.

  8. Perivascular mesenchymal progenitors in human fetal and adult liver.

    PubMed

    Gerlach, Jörg C; Over, Patrick; Turner, Morris E; Thompson, Robert L; Foka, Hubert G; Chen, William C W; Péault, Bruno; Gridelli, Bruno; Schmelzer, Eva

    2012-12-10

    The presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined. Here, we describe the identification, purification, and characterization of pericytes in human adult and fetal liver. Flow cytometry sorting revealed that human adult and fetal liver contains 0.56%±0.81% and 0.45%±0.39% of CD146(+)CD45(-)CD56(-)CD34(-) pericytes, respectively. Of these, 41% (adult) and 30% (fetal) were alkaline phosphatase-positive (ALP(+)). In situ, pericytes were localized around periportal blood vessels and were positive for NG2 and vimentin. Purified pericytes could be cultured extensively and had low population doubling times. Immunofluorescence of cultures demonstrated that cells were positive for pericyte and mesenchymal cell markers CD146, NG2, CD90, CD140b, and vimentin, and negative for endothelial, hematopoietic, stellate, muscle, or liver epithelial cell markers von Willebrand factor, CD31, CD34, CD45, CD144, CD326, CK19, albumin, α-fetoprotein, CYP3A7, glial fibrillary acid protein, MYF5, and Pax7 by gene expression; myogenin and alpha-smooth muscle actin expression were variable. Fluorescence-activated cell sorting analysis of cultures confirmed surface expression of CD146, CD73, CD90, CD10, CD13, CD44, CD105, and ALP and absence of human leukocyte antigen-DR. In vitro differentiation assays demonstrated that cells possessed robust osteogenic and myogenic, but low adipogenic and low chondrogenic differentiation potentials. In functional in vitro assays, cells had typical mesenchymal strong migratory and invasive activity. In conclusion, human adult and fetal livers harbor pericytes that are similar to those found in other organs and are distinct from hepatic stellate cells.

  9. Lumbosacral intervertebral disk disease in six cats.

    PubMed

    Harris, Jennipher E; Dhupa, Sarit

    2008-01-01

    Medical records of six cats diagnosed with lumbosacral intervertebral disk disease were reviewed. Clinical signs included reluctance to jump, low tail carriage, elimination outside the litter box, reluctance to ambulate, pelvic-limb paresis, urinary incontinence, and constipation. All cats had lumbosacral hyperpathia on palpation. Computed tomography in four cats revealed evidence of extradural spinal cord compression at the seventh lumbar (L(7)) to first sacral (S(1)) vertebral interspace. Compression was confirmed via myelography in three of these four cats, with confirmation in the fourth cat at the time of decompressive laminectomy. Each of the six cats underwent dorsal decompressive laminectomy at the L(7) to S(1) interspace. Postoperative clinical follow-up lasted 3 to 35 months, with most cats having excellent outcomes.

  10. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  11. Solute transport in intervertebral disc: experiments and finite element modeling.

    PubMed

    Das, D B; Welling, A; Urban, J P G; Boubriak, O A

    2009-04-01

    Loss of nutrient supply to the human intervertebral disc (IVD) cells is thought to be a major cause of disc degeneration in humans. To address this issue, transport of molecules of different size have been analyzed by a combination of experimental and modeling studies. Solute transport has been compared for steady-state and transient diffusion of several different solutes with molecular masses in the range 3-70 kDa, injected into parts of the disc where degeneration is thought most likely to occur first and into the blood supply to the disc. Diffusion coefficients of fluorescently tagged dextran molecules of different molecular weights have been measured in vitro using the concentration gradient technique in thin specimens of disc outer annulus and nucleus pulposus. Diffusion coefficients were found to decrease with molecular weight following a nonlinear relationship. Diffusion coefficients changed more rapidly for solutes with molecular masses less than 10 kDa. Although unrealistic or painful, solutes injected directly into the disc achieve the largest disc coverage with concentrations that would be high enough to be of practical use. Although more practical, solutes injected into the blood supply do not penetrate to the central regions of the disc and their concentrations dissipate more rapidly. Injection into the disc would be the best method to get drugs or growth factors to regions of degeneration in IVDs quickly; else concentrations of solute must be kept at a high value for several hours in the blood supply to the discs.

  12. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  13. [Generation of new nerve cells in the adult human brain].

    PubMed

    Poulsen, Frantz Rom; Meyer, Morten; Rasmussen, Jens Zimmer

    2003-03-31

    Generation of new nerve cells (neurogenesis) is normally considered to be limited to the fetal and early postnatal period. Thus, damaged nerve cells are not expected to be replaced by generation of new cells. The brain is, however, more plastic than previously assumed. This also includes neurogenesis in the adult human brain. In particular two brain regions show continuous division of neural stem and progenitor cells generating neurons and glial cells, namely the subgranular zone of the dentate gyrus and the subventricular zones of the lateral ventricles. From the latter region newly generated neuroblasts (immature nerve cells) migrate toward the olfactory bulb where they differentiate into neurons. In the dentate gyrus the newly generated neurons become functionally integrated in the granule cell layer, where they are believed to be of importance to learning and memory. It is at present not known whether neurogenesis in the adult human brain can be manipulated for specific repair after brain damage.

  14. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography.

    PubMed Central

    Mogilner, A; Grossman, J A; Ribary, U; Joliot, M; Volkmann, J; Rapaport, D; Beasley, R W; Llinás, R R

    1993-01-01

    Microelectrode recordings in adult mammals have clearly demonstrated that somatosensory cortical maps reorganize following peripheral nerve injuries and functional modifications; however, such reorganization has never been directly demonstrated in humans. Using magnetoencephalography, we have been able to demonstrate the somatotopic organization of the hand area in normal humans with high spatial precision. Somatosensory cortical plasticity was detected in two adults who were studied before and after surgical separation of webbed fingers (syndactyly). The presurgical maps displayed shrunken and nonsomatotopic hand representations. Within weeks following surgery, cortical reorganization occurring over distances of 3-9 mm was evident, correlating with the new functional status of their separated digits. In contrast, no modification of the somatosensory map was observed months following transfer of a neurovascular skin island flap for sensory reconstruction of the thumb in two subjects in whom sensory transfer failed to occur. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8386377

  15. Bacteriology of moderate (chronic) periodontitis in mature adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Cato, E P; Smibert, R M; Burmeister, J A; Ranney, R R

    1983-01-01

    A total of 171 taxa was represented among 1,900 bacterial isolates from 60 samples of sites affected with moderate periodontitis in 22 mature adult humans. The composition of the subgingival sulcus flora was statistically significantly different from that of the adjacent supragingival flora and the subgingival flora of 14 people with healthy gingiva, but was not significantly different from that of sulci affected with severe periodontitis in 21 young human adults. The sulcus floras of moderate periodontitis and severe periodontitis shared many of their predominant bacterial species, but there were differences in the relative proportions of some of these species. Similar relationships were found for seven taxa of treponemes that were cultured from the samples. PMID:6642641

  16. Lymphatic Stomata in the Adult Human Pulmonary Ligament

    PubMed Central

    Miura, Masahiro; Iobe, Hiroaki; Kudo, Tomoo; Shimazu, Yoshihito; Aoba, Takaaki; Okudela, Koji; Nagahama, Kiyotaka; Sakamaki, Kentaro; Yoshida, Maki; Nagao, Toshitaka; Nakaya, Takeo; Kurata, Atsushi; Ohtani, Osamu

    2015-01-01

    Abstract Background: Lymphatic stomata are small lymphatic openings in the serosal membrane that communicate with the serosal cavity. Although these stomata have primarily been studied in experimental mammals, little is known concerning the presence and properties of lymphatic stomata in the adult human pleura. Thus, adult human pleurae were examined for the presence or absence of lymphatic stomata. Methods and Results: A total of 26 pulmonary ligaments (13 left and 13 right) were obtained from 15 adult human autopsy cases and examined using electron and light microscopy. The microscopic studies revealed the presence of apertures fringed with D2-40-positive, CD31-positive, and cytokeratin-negative endothelial cells directly communicating with submesothelial lymphatics in all of the pulmonary ligaments. The apertures' sizes and densities varied from case to case according to the serial tissue section. The medians of these aperture sizes ranged from 2.25 to 8.75 μm in the left pulmonary ligaments and from 2.50 to 12.50 μm in the right pulmonary ligaments. The densities of the apertures ranged from 2 to 9 per mm2 in the left pulmonary ligaments and from 2 to 18 per mm2 in the right pulmonary ligaments. However, no significant differences were found regarding the aperture size (p=0.359) and density (p=0.438) between the left and the right pulmonary ligaments. Conclusions: Our study revealed that apertures exhibit structural adequacy as lymphatic stomata on the surface of the pulmonary ligament, thereby providing evidence that lymphatic stomata are present in the adult human pleura. PMID:25526320

  17. Doublecortin expression in the normal and epileptic adult human brain.

    PubMed

    Liu, Y W J; Curtis, M A; Gibbons, H M; Mee, E W; Bergin, P S; Teoh, H H; Connor, B; Dragunow, M; Faull, R L M

    2008-12-01

    Mesial temporal lobe epilepsy (MTLE) is a neurological disorder associated with spontaneous recurrent complex partial seizures and hippocampal sclerosis. Although increased hippocampal neurogenesis has been reported in animal models of MTLE, increased neurogenesis has not been reported in the hippocampus of adult human MTLE cases. Here we showed that cells expressing doublecortin (Dcx), a microtubule-associated protein expressed in migrating neuroblasts, were present in the hippocampus and temporal cortex of the normal and MTLE adult human brain. In particular, increased numbers of Dcx-positive cells were observed in the epileptic compared with the normal temporal cortex. Importantly, 56% of Dcx-expressing cells in the epileptic temporal cortex coexpressed both the proliferative cell marker, proliferating cell nuclear antigen and early neuronal marker, TuJ1, suggesting that they may be newly generated neurons. A subpopulation of Dcx-positive cells in the epileptic temporal cortex also coexpressed the mature neuronal marker, NeuN, suggesting that epilepsy may promote the generation of new neurons in the temporal cortex. This study has identified, for the first time, a novel population of Dcx-positive cells in the adult human temporal cortex that can be upregulated by epilepsy and thus, raises the possibility that these cells may have functional significance in the pathophysiology of epilepsy.

  18. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    PubMed Central

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  19. Are Modic changes associated with intervertebral disc cytokine profiles?

    PubMed

    Schroeder, Gregory D; Markova, Dessislava Z; Koerner, John D; Rihn, Jeffery A; Hilibrand, Alan S; Vaccaro, Alexander R; Anderson, D Greg; Kepler, Christopher K

    2017-01-01

    Degenerative changes including Modic changes (MCs) are commonly observed in patients with chronic low back pain. Although intervertebral disc (IVD) cytokine expression has been shown to be associated with low back pain, the cytokine profile for degenerative IVD with and without MC has not been compared. This study aimed to evaluate the potential association between IVD cytokine expression and MCs. A laboratory study was carried out. The IVD tissue samples from 10 patients with type II MCs and10 patients without MCs who underwent an anterior lumbar interbody and fusion for significant low back pain were collected. The expression levels of 42 cytokines were determined using a RayBio Human Cytokine Antibody Array 3 (RayBiotech Inc, Norcross, GA, USA) and the results were verified with enzyme-linked immunosorbent assay (ELISA). The cytokine array demonstrated a statistically significant increase in the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) (p=.001) and epithelial-derived neutrophil-activating peptide 78 (ENA-78) (p=.04), and a trend toward an increase in interleukin-1β (IL-1β) (p=.12) and tumor necrosis factor-α (TNF-α) (p=.22) in IVDs associated with type II MCs. These results were validated with ELISA which demonstrated a 3.85-fold increase in the GM-CSF level between IVDs with type II MCs compared with those without MCs (p=.03). Similarly there was a significant increase in the level of both ENA-78 (3.68-fold, p=.02) and IL-1β (2.11-fold, p=.01) in IVDs with type II MCs. Lastly, there was a trend (p=.07) toward an increase in TNF-α in IVDs with type II MCs (4.4-fold). Intervertebral discs with type II MCs demonstrate a significant increase in IL-1β, GM-CSF, and ENA-78, and there is a trend toward an increase in TNF-α. These results further strengthen the association between MCs and low back pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. DISTRIBUTION AND SHORT- AND LONG-TERM EFFECTS OF INJECTED GELIFIED ETHANOL INTO THE LUMBOSACRAL INTERVERTEBRAL DISC IN HEALTHY DOGS.

    PubMed

    Mackenzie, Shawn D; Brisson, Brigitte A; Gaitero, Luis; Caswell, Jeff L; Liao, Penting; Sinclair, Melissa; Chalmers, Heather J

    2016-01-01

    Radiopaque gelified ethanol preparation has been described as a useful agent for treatment of humans with intervertebral disc protrusion. The material is injected into the nucleus pulposus under image guidance with intention to cause the protruded disc material to recede. Because treatment options for dogs with chronic protrusions are limited, new and minimally invasive treatments are desirable. The aim of this experimental, descriptive, prospective study was to assess the feasibility and safety of percutaneous injection of gelified ethanol into the lumbosacral intervertebral disc of dogs. Lumbosacral intervertebral discs of normal dogs (n = 9) were imaged with magnetic resonance imaging and then injected with gelified ethanol using image guidance. The accuracy of gelified ethanol placement in the nucleus pulposus and presence of leakage of the injected material were documented. Postinjection computed tomography (CT) findings (n = 9), short-term (n = 9) and long-term (n = 4) follow-up magnetic resonance imaging and CT findings were compared to document the distribution of the injected preparation and identify effects on adjacent tissues. Percutaneous injection of the intervertebral disc was successful in delivering radiopaque gelified ethanol to the nucleus pulposus in all dogs. Leakage of the injected material into the vertebral canal was present in three dogs immediately following injection and in another additional dog at 1 year following injection. All dogs tolerated the injection well and had no clinical adverse reactions within the study period. Findings indicated that injection of the nucleus pulposus of healthy dogs was well tolerated, even in the presence of mild leakage of material from the intervertebral disc. © 2015 American College of Veterinary Radiology.

  1. Calicivirus infection in human immunodeficiency virus seropositive children and adults.

    PubMed

    Rodríguez-Guillén, L; Vizzi, E; Alcalá, A C; Pujol, F H; Liprandi, F; Ludert, J E

    2005-06-01

    The importance of enteric viral infections in HIV-related diarrhea is uncertain. Human caliciviruses have emerged as a leading cause of acute diarrhea worldwide. To evaluate the importance of calicivirus infections in HIV-related diarrhea. Study design 151 fecal samples collected from children and adults infected with HIV, with and without diarrhea, were examined. In addition, 89 fecal samples from non HIV-infected children and adults were also tested. Samples were analyzed by RT-PCR using primer sets specific to Norovirus genogroup I or genogroup II as well as primers designed to react with both Noroviruses and Sapovirus genus. Viruses were detected with equal frequencies in stools from HIV infected and non-infected adults (12%). However, specimens from HIV infected children were more likely than those of HIV-negative children to have caliciviruses (51% versus 24%, P<0.05). Viral infections were not significantly associated with diarrhea neither in children nor in adults, regardless of HIV status. Viruses genetically related to the common Lordsdale virus (Norovirus genogroup II) and London/92 virus (Sapovirus) clusters were detected circulating among children. These results suggest that caliciviruses may be an important opportunistic pathogen in children infected with HIV.

  2. Covert spatial attention is functionally intact in amblyopic human adults

    PubMed Central

    Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-01-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433

  3. Covert spatial attention is functionally intact in amblyopic human adults.

    PubMed

    Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-12-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.

  4. The nutrition intervention improved adult human capital and economic productivity.

    PubMed

    Martorell, Reynaldo; Melgar, Paul; Maluccio, John A; Stein, Aryeh D; Rivera, Juan A

    2010-02-01

    This article reviews key findings about the long-term impact of a nutrition intervention carried out by the Institute of Nutrition of Central America and Panama from 1969 to 1977. Results from follow-up studies in 1988-89 and 2002-04 show substantial impact on adult human capital and economic productivity. The 1988-89 study showed that adult body size and work capacity increased for those provided improved nutrition through age 3 y, whereas the 2002-04 follow-up showed that schooling was increased for women and reading comprehension and intelligence increased in both men and women. Participants were 26-42 y of age at the time of the 2002-04 follow-up, facilitating the assessment of economic productivity. Wages of men increased by 46% in those provided with improved nutrition through age 2 y. Findings for cardiovascular disease risk factors were heterogeneous; however, they suggest that improved nutrition in early life is unlikely to increase cardiovascular disease risk later in life and may indeed lower risk. In conclusion, the substantial improvement in adult human capital and economic productivity resulting from the nutrition intervention provides a powerful argument for promoting improvements in nutrition in pregnant women and young children.

  5. Human-Animal Interaction and Older Adults: An Overview.

    PubMed

    Gee, Nancy R; Mueller, Megan K; Curl, Angela L

    2017-01-01

    Both pet ownership and animal-assisted therapy are becoming increasingly popular in the United States, and the science of human-animal interaction (HAI) seeks to explore how these relationships with animals can impact health and well-being. In particular, one burgeoning area of research is the role of HAI in healthy aging, given the potential for HAI as an important feature of health and well-being in older adults. The purpose of this review is to summarize and evaluate existing research in this innovative area of scholarship, identifying the potential benefits and risks of both pet ownership and animals in therapeutic settings for older adults. We will also identify recommendations for future research and applications in this developing area of scholarship.

  6. A Review of Fibrocartilaginous Embolic Myelopathy and Different Types of Peracute Non-Compressive Intervertebral Disk Extrusions in Dogs and Cats

    PubMed Central

    De Risio, Luisa

    2015-01-01

    This review discusses terminology, pathological, clinical, and magnetic resonance imaging (MRI) findings, treatment, outcome, and prognostic factors of fibrocartilaginous embolic myelopathy (FCEM), acute non-compressive nucleus pulposus extrusion (ANNPE), and intradural/intramedullary intervertebral disk extrusion (IIVDE). FCEM, ANNPE, and IIVDE have a similar clinical presentation characterized by peracute onset of neurological dysfunction that is generally non-progressive after the initial 24–48 h. Differentiating between these conditions can be challenging, however, certain clinical and imaging findings can help. FCEM can occur in both adult and immature animals, whereas ANNPE or IIVDE have been reported only in animals older than 1 year. In dogs, ANNPE and IIVDE most commonly occur in the intervertebral disk spaces between T12 and L2, whereas FCEM has not such site predilection. In cats, FCEM occurs more frequently in the cervical spinal cord than in other locations. Data on cats with ANNPE and IIVDE are limited. Optimal MRI definition and experience in neuroimaging can help identify the findings that allow differentiation between FCEM, ANNPE, and IIVDE. In animals with ANNPE and IIVDE, the affected intervertebral disk space is often narrowed and the focal area of intramedullary hyperintensity on T2-weighted images is located above the affected intervertebral disk space. In dogs with ANNPE signal changes associated with the extruded nucleus pulposus and epidural fat disruption can be identified in the epidural space dorsal to the affected intervertebral disk. Identification of a linear tract (predominantly hyperintense on T2-weighted images, iso to hypointense on T1-weighted images and hypointense on T2*-weighted gradient recall echo images) extending from the intervertebral disk into the spinal cord parenchyma is highly suggestive of IIVDE. Treatment of FCEM and ANNPE is conservative. Dogs reported with IIVDE have been managed either conservatively or

  7. A Review of Fibrocartilaginous Embolic Myelopathy and Different Types of Peracute Non-Compressive Intervertebral Disk Extrusions in Dogs and Cats.

    PubMed

    De Risio, Luisa

    2015-01-01

    This review discusses terminology, pathological, clinical, and magnetic resonance imaging (MRI) findings, treatment, outcome, and prognostic factors of fibrocartilaginous embolic myelopathy (FCEM), acute non-compressive nucleus pulposus extrusion (ANNPE), and intradural/intramedullary intervertebral disk extrusion (IIVDE). FCEM, ANNPE, and IIVDE have a similar clinical presentation characterized by peracute onset of neurological dysfunction that is generally non-progressive after the initial 24-48 h. Differentiating between these conditions can be challenging, however, certain clinical and imaging findings can help. FCEM can occur in both adult and immature animals, whereas ANNPE or IIVDE have been reported only in animals older than 1 year. In dogs, ANNPE and IIVDE most commonly occur in the intervertebral disk spaces between T12 and L2, whereas FCEM has not such site predilection. In cats, FCEM occurs more frequently in the cervical spinal cord than in other locations. Data on cats with ANNPE and IIVDE are limited. Optimal MRI definition and experience in neuroimaging can help identify the findings that allow differentiation between FCEM, ANNPE, and IIVDE. In animals with ANNPE and IIVDE, the affected intervertebral disk space is often narrowed and the focal area of intramedullary hyperintensity on T2-weighted images is located above the affected intervertebral disk space. In dogs with ANNPE signal changes associated with the extruded nucleus pulposus and epidural fat disruption can be identified in the epidural space dorsal to the affected intervertebral disk. Identification of a linear tract (predominantly hyperintense on T2-weighted images, iso to hypointense on T1-weighted images and hypointense on T2*-weighted gradient recall echo images) extending from the intervertebral disk into the spinal cord parenchyma is highly suggestive of IIVDE. Treatment of FCEM and ANNPE is conservative. Dogs reported with IIVDE have been managed either conservatively or

  8. CCM2 expression during prenatal development and adult human neocortex.

    PubMed

    Tanriover, Gamze; Sozen, Berna; Gunel, Murat; Demir, Necdet

    2011-08-01

    Cerebral cavernous malformation (CCM) is one of the most common types of vascular malformations of the central nervous system, affecting nearly one in 200 people. CCM lesions are characterized by grossly dilated vascular channels lined by a single layer of endothelium. Genetic linkage analyses have mapped three CCM loci to CCM1, CCM2 and CCM3. All three causative genes have now been identified allowing new insights into CCM pathophysiology. We focused on the CCM2 protein that might take place in blood vessel formation; we report here the expression patterns of CCM2 in prenatal development and adult human neocortex by means of immunohistochemistry and Western blot analysis. CCM2 was obviously detected in vascular endothelium and neuroglial precursor cells during development and also observed in arterial endothelium, neurons, some of the glial cells in adult neocortex. The expression patterns suggest that it could be one of the arterial markers whether this is a cause or a consequence of an altered vascular identity. CCM2 might play a role during vasculogenesis and angiogenesis during human brain development. Furthermore, with this study, CCM2 have been described for the first time in developing human neocortex.

  9. Molecular basis of lactase levels in adult humans.

    PubMed Central

    Escher, J C; de Koning, N D; van Engen, C G; Arora, S; Büller, H A; Montgomery, R K; Grand, R J

    1992-01-01

    The molecular basis of adult human "lactase deficiency" has long been a subject of controversy. To address this issue, small intestinal biopsies from orienta, black, and white patients were analyzed. Adjacent samples were assayed for lactase and sucrase specific activities and the sucrase/lactase ratio (high ratio signifies lactase deficiency), and the results were compared to lactase steady-state mRNA levels detected in Northern blots probed with a human lactase mDNA. All oriental patients had high ratios and no detectable lactase mRNA. Four black patients had a similar pattern; two with low ratios had detectable mRNA. The group of white patients displayed a range of findings, from high ratio/no mRNA to low ratio/considerable mRNA. Elevated levels of lactase mRNA always correlated with the presence of elevated levels of lactase enzyme activity, suggesting that the difference in levels of adult human intestinal lactase activity among racial groups may be regulated at the level of gene transcription. Images PMID:1737837

  10. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  11. CT and MRI Determination of Intermuscular Space within Lumbar Paraspinal Muscles at Different Intervertebral Disc Levels

    PubMed Central

    Wang, Shidong; Zhang, Yu; Han, Hui; Zheng, Dengquan; Ding, Zihai; Wong, Kelvin K. L.

    2015-01-01

    Background Recognition of the intermuscular spaces within lumbar paraspinal muscles is critically important for using the paramedian muscle-splitting approach to the lumbar spine. As such, it is important to determine the intermuscular spaces within the lumbar paraspinal muscles by utilizing modern medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). Methods A total of 30 adult cadavers were studied by sectional anatomic dissection, and 60 patients were examined using CT (16 slices, 3-mm thickness, 3-mm intersection gap, n = 30) and MRI (3.0T, T2-WI, 5-mm thickness, 1-mm intersection gap, n = 30). The distances between the midline and the superficial points of the intermuscular spaces at different intervertebral disc levels were measured. Results Based on study of our cadavers, the mean distances from the midline to the intermuscular space between multifidus and longissimus, from intervertebral disc levels L1–L2 to L5–S1, were 0.9, 1.1, 1.7, 3.0, and 3.5 cm, respectively. Compared with the upper levels (L1–L3), the superficial location at the lower level (L4–S1) is more laterally to the midline (P<0.05). The intermuscular space between sacrospinalis and quadratus lumborum, and that between longissimus and iliocostalis did not exist at L4–S1. The intermuscular spaces in patients also varied at different levels of the lumbar spine showing a low discontinuous density in CT and a high signal in MRI. There were no significant differences between the observations in cadavers and those made using CT and MRI. Conclusion The intermuscular spaces within the paraspinal muscles vary at different intervertebral disc levels. Preoperative CT and MRI can facilitate selection of the muscle-splitting approach to the lumbar spine. This paper demonstrates the efficacy of medical imaging techniques in surgical planning. PMID:26458269

  12. Intervertebral disc properties: challenges for biodevices.

    PubMed

    Costi, John J; Freeman, Brian J C; Elliott, Dawn M

    2011-05-01

    Intervertebral disc biodevices that employ motion-preservation strategies (e.g., nucleus replacement, total disc replacement and posterior stabilization devices) are currently in use or in development. However, their long-term performance is unknown and only a small number of randomized controlled trials have been conducted. In this article, we discuss the following biodevices: interbody cages, nuclear pulposus replacements, total disc replacements and posterior dynamic stabilization devices, as well as future biological treatments. These biodevices restore some function to the motion segment; however, contrary to expectations, the risk of adjacent-level degeneration does not appear to have been reduced. The short-term challenge is to replicate the complex biomechanical function of the motion segment (e.g., biphasic, viscoelastic behavior and nonlinearity) to improve the quality of motion and minimize adjacent level problems, while ensuring biodevice longevity for the younger, more active patient. Biological strategies for regeneration and repair of disc tissue are being developed and these offer exciting opportunities (and challenges) for the longer term. Responsible introduction and rigorous assessment of these new technologies are required. In this article, we will describe the properties of the disc, explore biodevices currently in use for the surgical treatment of low back pain (with an emphasis on lumbar total disc replacement) and discuss future directions for biological treatments. Finally, we will assess the challenges ahead for the next generation of biodevices designed to replace the disc.

  13. Engineering alginate for intervertebral disc repair.

    PubMed

    Bron, Johannes L; Vonk, Lucienne A; Smit, Theodoor H; Koenderink, Gijsje H

    2011-10-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find preparation conditions where the viscoelastic behaviour mimics that of the NP. In addition, we measured the effect of variations in scaffold stiffness on the expression of extracellular matrix molecules specific to the NP (proteoglycans and collagen) by native NP cells. We prepared sample discs of different concentrations of alginate (1%-6%) by two different methods, diffusion and in situ gelation. The stiffness increased with increasing alginate concentration, while the loss tangent (dissipative behaviour) remained constant. The diffusion samples were ten-fold stiffer than samples prepared by in situ gelation. Sample discs prepared from 2% alginate by diffusion closely matched the stiffness and loss tangent of the NP. The stiffness of all samples declined upon prolonged incubation in medium, especially for samples prepared by diffusion. The biosynthetic phenotype of native cells isolated from NPs was preserved in alginate matrices up to 4 weeks of culturing. Gene expression levels of extracellular matrix components were insensitive to alginate concentration and corresponding matrix stiffness, likely due to the poor adhesiveness of the cells to alginate. In conclusion, alginate can mimic the viscoelastic properties of the NP and preserve the biosynthetic phenotype of NP cells but certain limitations like long-term stability still have to be addressed.

  14. Intervertebral disk degeneration and emerging biologic treatments.

    PubMed

    Kepler, Christopher K; Anderson, D Greg; Tannoury, Chadi; Ponnappan, Ravi K

    2011-09-01

    Although understanding of the biologic basis of intervertebral disk (IVD) degeneration is rapidly advancing, the unique IVD environment presents challenges to the development and delivery of biologic treatments. Acceleration of cellular senescence and apoptosis in degenerative IVDs and the depletion of matrix proteins have prompted the development of treatments based on replacing IVD cells using various cell sources. However, this strategy has not been tested in animal models. IVD degeneration and associated pain have led to interest in pathologic innervation of the IVD and ultimately to the development of percutaneous devices to ablate afferent nerve endings in the posterior annulus. Degeneration leads to changes in the expression of matrix protein, cytokines, and proteinases. Injection of growth factors and mitogens may help overcome these degenerative changes in IVD phenotype, and these potential treatments are being explored in animal studies. Gene therapy is an elegant method to address changes in protein expression, but efforts to apply this technology to IVD degeneration are still at early stages.

  15. The molecular basis of intervertebral disc degeneration.

    PubMed

    Kepler, Christopher K; Ponnappan, Ravi K; Tannoury, Chadi A; Risbud, Marakand V; Anderson, David G

    2013-03-01

    Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. To review the current understanding of the molecular basis of disc degeneration. Review article. A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    SciTech Connect

    Purmessur, D.; Walter, B.A.; Roughley, P.J.; Laudier, D.M.; Hecht, A.C.; Iatridis, James

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  17. Eye contact elicits bodily self-awareness in human adults.

    PubMed

    Baltazar, Matias; Hazem, Nesrine; Vilarem, Emma; Beaucousin, Virginie; Picq, Jean-Luc; Conty, Laurence

    2014-10-01

    Eye contact is a typical human behaviour known to impact concurrent or subsequent cognitive processing. In particular, it has been suggested that eye contact induces self-awareness, though this has never been formally proven. Here, we show that the perception of a face with a direct gaze (that establishes eye contact), as compared to either a face with averted gaze or a mere fixation cross, led adult participants to rate more accurately the intensity of their physiological reactions induced by emotional pictures. Our data support the view that bodily self-awareness becomes more acute when one is subjected to another's gaze. Importantly, this effect was not related to a particular arousal state induced by eye contact perception. Rejecting the arousal hypothesis, we suggest that eye contact elicits a self-awareness process by enhancing self-focused attention in humans. We further discuss the implications of this proposal. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  19. Symptomatic Epidural Gas-containing Cyst from Intervertebral Vacuum Phenomenon.

    PubMed

    Yun, Sung Min; Suh, Bumn Suk; Park, Jin Su

    2012-12-01

    Vacuum disc phenomenon is a collection of gas in the intervertebral disc space but rarely causes nerve compression. However, some rare type of vacuum phenomenon in the spinal canal may bring about posterior gas displacement within the epidural space. The authors describe two patients with symptomatic epidural gas-containing cyst that seem to be originating from vacuum phenomenon in the intervertebral disc, causing lumbosacral radiculopathy. Radiographic studies demonstrated intervertebral vacuum phenomenon and accumulation of gas in the lumbar epidural space compressing the dural sac and the nerve root. The nerve root in both patients was compressed by gas containing cyst that was surrounded by thin walled capsule separable from the gaseous degenerated disc space. The speculative mechanism of the nerve root compression is discussed. The possibility of gas containing cyst should be considered in case of the nerve root compression in which epidural gas is present.

  20. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.

    PubMed

    Lin, Cheng-Chung; Lu, Tung-Wu; Wang, Ting-Ming; Hsu, Chao-Yu; Hsu, Shih-Jung; Shih, Ting-Fang

    2014-10-17

    Accurate measurement of the coupled intervertebral motions is helpful for understanding the etiology and diagnosis of relevant diseases, and for assessing the subsequent treatment. No study has reported the in vivo, dynamic and three-dimensional (3D) intervertebral motion of the cervical spine during active axial rotation (AR) and lateral bending (LB) in the sitting position. The current study fills the gap by measuring the coupled intervertebral motions of the subaxial cervical spine in ten asymptomatic young adults in an upright sitting position during active head LB and AR using a volumetric model-based 2D-to-3D registration method via biplane fluoroscopy. Subject-specific models of the individual vertebrae were derived from each subject's CT data and were registered to the fluoroscopic images for determining the 3D poses of the subaxial vertebrae that were used to obtain the intervertebral kinematics. The averaged ranges of motion to one side (ROM) during AR at C3/C4, C4/C5, C5/C6, and C6/C7 were 4.2°, 4.6°, 3.0° and 1.3°, respectively. The corresponding values were 6.4°, 5.2°, 6.1° and 6.1° during LB. Intervertebral LB (ILB) played an important role in both AR and LB tasks of the cervical spine, experiencing greater ROM than intervertebral AR (IAR) (ratio of coupled motion (IAR/ILB): 0.23-0.75 in LB, 0.34-0.95 in AR). Compared to the AR task, the ranges of ILB during the LB task were significantly greater at C5/6 (p=0.008) and C6/7 (p=0.001) but the range of IAR was significantly smaller at C4/5 (p=0.02), leading to significantly smaller ratios of coupled motions at C4/5 (p=0.0013), C5/6 (p<0.001) and C6/7 (p=0.0037). The observed coupling characteristics of the intervertebral kinematics were different from those in previous studies under discrete static conditions in a supine position without weight-bearing, suggesting that the testing conditions likely affect the kinematics of the subaxial cervical spine. While C1 and C2 were not included owing to

  1. Human Handling Promotes Compliant Behavior in Adult Laboratory Rabbits

    PubMed Central

    Swennes, Alton G; Alworth, Leanne C; Harvey, Stephen B; Jones, Carolyn A; King, Christopher S; Crowell-Davis, Sharon L

    2011-01-01

    Routine laboratory procedures can be stressful for laboratory animals. We wanted to determine whether human handling of adult rabbits could induce a degree of habituation, reducing stress and facilitating research-related manipulation. To this end, adult New Zealand white rabbits were handled either frequently or minimally. After being handled over 3 wk, these rabbits were evaluated by novel personnel and compared with minimally handled controls. Evaluators subjectively scored the rabbits for their relative compliance or resistance to being scruffed and removed from their cages, being transported to a treatment room, and their behavior at all stages of the exercise. Upon evaluation, handled rabbits scored significantly more compliant than nontreated controls. During evaluation, behaviors that the rabbits displayed when they were approached in their cages and while being handled outside their cages were recorded and compared between study groups. Handled rabbits displayed behavior consistent with a reduction in human-directed fear. This study illustrates the potential for handling to improve compliance in laboratory procedures and reduce fear-related behavior in laboratory rabbits. Such handling could be used to improve rabbit welfare through the reduction of stress and exposure to novel stimuli. PMID:21333162

  2. Human handling promotes compliant behavior in adult laboratory rabbits.

    PubMed

    Swennes, Alton G; Alworth, Leanne C; Harvey, Stephen B; Jones, Carolyn A; King, Christopher S; Crowell-Davis, Sharon L

    2011-01-01

    Routine laboratory procedures can be stressful for laboratory animals. We wanted to determine whether human handling of adult rabbits could induce a degree of habituation, reducing stress and facilitating research-related manipulation. To this end, adult New Zealand white rabbits were handled either frequently or minimally. After being handled over 3 wk, these rabbits were evaluated by novel personnel and compared with minimally handled controls. Evaluators subjectively scored the rabbits for their relative compliance or resistance to being scruffed and removed from their cages, being transported to a treatment room, and their behavior at all stages of the exercise. Upon evaluation, handled rabbits scored significantly more compliant than nontreated controls. During evaluation, behaviors that the rabbits displayed when they were approached in their cages and while being handled outside their cages were recorded and compared between study groups. Handled rabbits displayed behavior consistent with a reduction in human-directed fear. This study illustrates the potential for handling to improve compliance in laboratory procedures and reduce fear-related behavior in laboratory rabbits. Such handling could be used to improve rabbit welfare through the reduction of stress and exposure to novel stimuli.

  3. Laminin chains in developing and adult human myotendinous junctions.

    PubMed

    Pedrosa-Domellöf, F; Tiger, C F; Virtanen, I; Thornell, L E; Gullberg, D

    2000-02-01

    In addition to being the specialized site for transmission of force from the muscle to the tendon, the myotendinous junction (MTJ) also plays an important role in muscle splitting during morphogenesis. An early event in the formation of the MTJ is a regional deposition of basement membranes. We used immunocytochemistry to investigate the distribution of laminin chains during the development of MTJs in human limb muscle at 8-22 weeks of gestation (wg) and in adult MTJs. We used polyclonal antibodies and a new monoclonal antibody (MAb) against the human laminin alpha1 G4/G5 domains. At 8-10 wg, laminin alpha1 and laminin alpha5 chains were specifically localized to the MTJ. Laminin alpha1 chain remained restricted to the MTJ at 22 wg as the laminin beta2 chain had appeared, whereas the laminin alpha5 chain became deposited along the entire length of the myotubes from 12 wg. In the adult MTJ, only vestigial amounts of laminin alpha1 and laminin alpha5 chains could be detected. On the basis of co-distribution data, we speculate that laminin alpha1 chain in the forming MTJ undergoes an isoform switch from laminin 1 to laminin 3. Our data indicate a potentially important role for laminin alpha1 chain in skeletal muscle formation. (J Histochem Cytochem 48:201-209, 2000)

  4. Comprehensive comparison of neonate and adult human platelet transcriptomes

    PubMed Central

    Caparrós-Pérez, Eva; López-Andreo, Mª José; Llanos, Mª Carmen; Rivera, José; Palma-Barqueros, Verónica; Blanco, Jose E.; Vicente, Vicente; Martínez, Constantino; Ferrer-Marín, Francisca

    2017-01-01

    Understanding the underlying mechanisms of the well-substantiated platelet hyporeactivity in neonates is of interest given their implications for the clinical management of newborns, a population at higher bleeding risk than adults (especially sick and preterm infants), as well as for gaining insight into the regulatory mechanisms of platelet biology. Transcriptome analysis is useful in identifying mRNA signatures affecting platelet function. However, human fetal/neonatal platelet transcriptome analysis has never before been reported. We have used mRNA expression array for the first time to compare platelet transcriptome changes during development. Microarray analysis was performed in pure platelet RNA obtained from adult and cord blood, using the same platform in two independent laboratories. A high correlation was obtained between array results for both adult and neonate platelet samples. There was also good agreement between results in our adult samples and outcomes previously reported in three different studies. Gene enrichment analysis showed that immunity- and platelet function-related genes are highly expressed at both developmental stages. Remarkably, 201 genes were found to be differentially expressed throughout development. In particular, neonatal platelets contain higher levels of mRNA that are associated with protein synthesis and processing, while carrying significantly lower levels of genes involved in calcium transport/metabolism and cell signaling (including GNAZ). Overall, our results point to variations in platelet transcriptome as possibly underlining the hypo-functional phenotype of neonatal platelets and provide further support for the role of platelets in cellular immune response. Better characterization of the platelet transcriptome throughout development can contribute to elucidate how transcriptome changes impact different pathological conditions. PMID:28813466

  5. Distribution of Tight Junction Proteins in Adult Human Salivary Glands

    PubMed Central

    Maria, Ola M.; Kim, Jung-Wan Martin; Gerstenhaber, Jonathan A.; Baum, Bruce J.; Tran, Simon D.

    2008-01-01

    Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and ∼25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland. (J Histochem Cytochem 56:1093–1098, 2008) PMID:18765838

  6. Imaging of post-operative spine in intervertebral disc pathology.

    PubMed

    Splendiani, A; D'Orazio, F; Patriarca, L; Arrigoni, F; Caranci, F; Fonio, P; Brunese, L; Barile, A; Di Cesare, E; Masciocchi, C

    2017-03-01

    This work is an imaging review of spine after surgery with special regard to imaging modality in intervertebral disc pathology. Advances in imaging technology can be evaluated. Depending on the clinical question is asked to the radiologist, it is possible to evaluate post-operative patients with conventional radiology (X-ray), computed tomography and magnetic resonance. Main indications for each technique are analysed. Imaging is important in the diagnosis of many forms of spine pathology and plays a fundamental role in evaluating post-surgical effects of treatments, according to the imaging method which is used, both on spine and on its surrounding tissues (intervertebral discs, spinal cord, muscles and vessels).

  7. [Principles of intervertebral disc assessment in private accident insurance].

    PubMed

    Steinmetz, M; Dittrich, V; Röser, K

    2015-09-01

    Due to the spread of intervertebral disc degeneration, insurance companies and experts are regularly confronted with related assessments of insured persons under their private accident insurance. These claims pose a particular challenge for experts, since, in addition to the clinical assessment of the facts, extensive knowledge of general accident insurance conditions, case law and current study findings is required. Each case can only be properly assessed through simultaneous consideration of both the medical and legal facts. These guidelines serve as the basis for experts and claims.managers with respect to the appropriate individual factual assessment of intervertebral disc degeneration in private accident insurance.

  8. Towards an affordable deep learning system: automated intervertebral disc detection in x-ray images

    NASA Astrophysics Data System (ADS)

    Sa, Ruhan; Owens, William; Wiegand, Raymond; Chaudhary, Vipin

    2017-03-01

    Adult Spinal Deformity is a prominent medical issue with about 68% of the elderly population suffering from the disease.1 Detailed biomechanical assessment is needed both in the presurgical planning of structural spinal deformity as well as in early functional biomechanical compensation in ambulatory spinal pain patients. When considering automation of this process, we have to look at photographic intervertebral disc detection technique as a way to produce a detailed model of the spine with appropriate measurements required to make efficient and accurate decisions on patient care. Deep convolutional neural network (CNN) has given remarkable results in object recognition tasks in recent years. However, massive training data, computational resources and long training time is needed for both training a deep network from scratch or finetuning a network. Using pretrained model as feature extractor has shown promising result for moderate sized medical data.2 However, most work have extracted features from the last layer and little has been explored in terms of the number of convolutional layers needed for best performance. In this work we trained Support Vector Machine (SVM) classifiers on different layers of CaffeNet3 features to show that deeper the better concept does not hold for task such as intervertebral disc detection. Furthermore, our experimental results show the potential of using very small training data, such as 15 annotated medical images in our experiment, to yield satisfactory classification performance with accuracy up to 97.2%.

  9. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  10. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs

    PubMed Central

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano

    2016-01-01

    Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394

  11. The adult human pubic symphysis: a systematic review

    PubMed Central

    Becker, Ines; Woodley, Stephanie J; Stringer, Mark D

    2010-01-01

    The pubic symphysis is a unique joint consisting of a fibrocartilaginous disc sandwiched between the articular surfaces of the pubic bones. It resists tensile, shearing and compressive forces and is capable of a small amount of movement under physiological conditions in most adults (up to 2 mm shift and 1° rotation). During pregnancy, circulating hormones such as relaxin induce resorption of the symphyseal margins and structural changes in the fibrocartilaginous disc, increasing symphyseal width and mobility. This systematic review of the English, German and French literature focuses on the normal anatomy of the adult human pubic symphysis. Although scientific studies of the joint have yielded useful descriptive data, comparison of results is hampered by imprecise methodology and/or poorly controlled studies. Several aspects of the anatomy of the pubic symphysis remain unknown or unclear: the precise attachments of surrounding ligaments and muscles; the arrangement of connective tissue fibres within the interpubic disc and the origin, structure and function of its associated interpubic cleft; the biomechanical consequences of sexual dimorphism; potential ethnic variations in morphology; and its precise innervation and blood supply. These deficiencies hinder our understanding of the normal form and function of the joint, which is particularly relevant when attempting to understand the mechanisms underlying pregnancy-related pubic symphyseal pain, a neglected and relatively common cause of pubic pain. A better understanding of the normal anatomy of the human pubic symphysis should improve our understanding of such problems and contribute to better treatments for patients suffering from symphyseal pain and dysfunction. PMID:20840351

  12. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs.

    PubMed

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano; Alves da Silva, Ricardo Henrique

    2016-09-01

    The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects.

  13. Histological Identification of Propionibacterium acnes in Nonpyogenic Degenerated Intervertebral Discs

    PubMed Central

    Yuan, Ye; Zhou, Zezhu; Jiao, Yucheng; Zheng, Yuehuan; Lin, Yazhou; Xiao, Jiaqi

    2017-01-01

    Purpose. Low-virulence anaerobic bacteria, especially the Propionibacterium acnes (P. acnes), have been thought to be a new pathogeny for a series of disc diseases. However, until now, there has been no histological evidence to confirm this link. The purpose of this study was to confirm the presence of P. acnes in nonpyogenic intervertebral discs via histological observation. Method. Degenerated intervertebral discs were harvested from 76 patients with low back pain and/or sciatica but without any symptoms of discitis or spondylodiscitis. The samples were cultured under anaerobic conditions and then examined using 16S rDNA PCR to screen for P. acnes. Samples found to be positive for P. acnes were stained with hematoxylin-eosin (HE) and modified Brown-Brenn staining and observed under a microscope. Results. Here, 16 intervertebral discs were found to be positive for P. acnes via 16S rDNA PCR and the prevalence was 21.05% (16/76). Among them, 7 samples had visible microbes stained with HE and modified Brown-Brenn staining. Morphological examination showed the bacteria to be Gram-positive and rod-shaped, so they were considered P. acnes. Conclusion. P. acnes is capable of colonizing some degenerated intervertebral discs without causing discitis, and its presence could be further confirmed by histological evidence. Targeting these bacteria may be a promising therapy method for some disc diseases. PMID:28401158

  14. In situ oxygen utilization in the rat intervertebral disc

    PubMed Central

    Lee, Deanna C; Adams, Christopher S; Albert, Todd J; Shapiro, Irving M; Evans, Sydney M; Koch, Cameron J

    2007-01-01

    Nucleus pulposus cells of the intervertebral disc have no endogenous vasculature and have thus been hypothesized to be hypoxic. This hypothesis was tested using 2-nitroimidazole, EF5, a drug that at low oxygen concentrations forms covalent adducts with cellular proteins. After administrating EF5 to rats, sections of the intervertebral disc were analysed for EF5 adducts. Drug adducts were quantified in tissue sections using a fluorescent monoclonal antibody. Although the level of EF5 fluorescence in all intervertebral disc tissues was low, the transition zone at the periphery of the nucleus pulposus exhibited the highest level of EF5 binding. To substantiate this result, tissue nitroreductase levels and drug pharmacology were evaluated. Nitroreductase levels were measured in whole discs under severe hypoxia. We noted that there was robust EF5 binding to cells in the annulus fibrosus and transition zone with modest binding to cells of the nucleus pulposus and endplate. High-performance liquid chromatography analysis indicated limitations in EF5 access to the nucleus pulposus, most probably related to the lack of vasculature and slow drug distribution through the gel-like interior of the disc. However, despite diffusion problems, the drug dose was determined to be sufficient to report the oxygen status of the nucleus pulposus cells. Based on these findings, we conclude that despite poor vascularization, the disc cells accommodate to the local environment by displaying a limited need for oxygen. Accordingly, the cells of the intervertebral disc are not severely hypoxic. PMID:17331178

  15. Polarization-sensitive optical coherence tomography applied to intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter; Gangnus, Sergei V.

    2003-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is a powerful new optical imaging modality that is sensitive to the birefringence properties of tissues. It thus has potential applications in studying the large-scale ordering of collagen fibers within connective tisues and changes related to pathology. As a tissue for study by PSOCT, intervertebral disk respresents an interesting system as the collagen organization is believed to show pronounced variations with depth, on a spatial scale of about 100 μm. We have used a polarization-sensitive optical coherence tomography system to measure the birefringence properties of bovine caudal intervertebral disk and compared this with equine flexor tendon. The result for equine tendon, δ = (3.0 +/- 0.5)x10-3 at 1.3 μm, is in broad agreement with values reported for bovine tendon, while bovine intervertebral disk displays a birefringence of about half this, δ = 1.2 x 10-3 at 1.3 μm. While tendon appears to show a uniform fast-axis over 0.8 mm depth, intervertebral disk shows image contrast at all orientations relative to a linearly polarized input beam, suggesting a variation in fast-axis orientation with depth. These initial results suggest that PSOCT could be a useful tool to study collagen organization within this tissue and its variation with applied load and disease.

  16. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study.

    PubMed

    Roberts, S; Menage, J; Duance, V; Wotton, S; Ayad, S

    1991-09-01

    Several types of collagen are known to exist in the intervertebral disc in addition to the fibrillar collagens, Types I and II. Although they constitute only a small percentage of the total collagen content, these minor collagens may have important functions. This study was designed to investigate the presence of Types I, II, III, IV, VI, and IX collagens in the intervertebral disc and cartilage end plate by immunohistochemistry, thereby establishing their location within the tissues. Types III and VI collagen have a pericellular distribution in animal and human tissue. No staining for Type IX collagen was present in normal human disc, but in rat and bovine intervertebral disc, it was also located pericellularly. These results show that cells of the intervertebral disc and cartilage end plate sit in fibrous capsules, forming chondrons similar to those described in articular cartilage. In pathologic tissue the amount and distribution of the collagen types, and the organization of the pericellular capsule, differ from that seen in control material.

  17. Inflammatory profiles in canine intervertebral disc degeneration.

    PubMed

    Willems, Nicole; Tellegen, Anna R; Bergknut, Niklas; Creemers, Laura B; Wolfswinkel, Jeannette; Freudigmann, Christian; Benz, Karin; Grinwis, Guy C M; Tryfonidou, Marianna A; Meij, Björn P

    2016-01-13

    Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene expression. A better understanding is needed in order to develop biological therapies that address both pain and degeneration in IVD disease. Therefore, in this study, we determined the levels of prostaglandin E2 (PGE2), cytokines, chemokines, and matrix components in IVDs from chondrodystrophic (CD) and non-chondrodystrophic (NCD) dogs with and without clinical signs of IVD disease, and correlated these to degeneration grade (according to Pfirrmann), or herniation type (according to Hansen). In addition, we investigated cyclooxygenase 2 (COX-2) expression and signs of inflammation in histological IVD samples of CD and NCD dogs. PGE2 levels were significantly higher in the nucleus pulposus (NP) of degenerated IVDs compared with non-degenerated IVDs, and in herniated IVDs from NCD dogs compared with non-herniated IVDs of NCD dogs. COX-2 expression in the NP and annulus fibrosus (AF), and proliferation of fibroblasts and numbers of macrophages in the AF significantly increased with increased degeneration grade. GAG content did not significantly change with degeneration grade or herniation type. Cytokines interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, immune protein (IP)-10, tumor necrosis factor (TNF)-α, and granulocyte macrophage colony-stimulating factor (GM-CSF) were not detectable in the samples. Chemokine (C-C) motif ligand (CCL)2 levels in the NP from extruded samples were significantly higher compared with the AF of these samples and the NP from protrusion samples. PGE2 levels and CCL2 levels in degenerated and herniated IVDs were significantly higher compared with non-degenerated and non-herniated IVDs. COX-2 expression in the NP and AF and reactive changes in the

  18. Ossified Ligamentum Longitudinale Anterius in Adult Human Dry Vertebrae

    PubMed Central

    Venumadhav, Nelluri; KS, Siddaraju

    2014-01-01

    Background: The ligamentum longitudinale anterius is a broad and strong band of fibrous tissue that runs along the anterior surfaces of the bodies of the vertebrae. Aim: The study was undertaken to evaluate the incidence of ossified ligamentum longitudinale anterius in adult dry human vertebra. Materials and Methods: This study was carried out on 95 sets of dry human vertebral columns irrespective of age and sex at Mayo Institute of Medical Sciences- Barabanki,-UP, Melaka Manipal Medical College-Manipal University and Department of Anatomy, KMCT Medical College, Manassery- Calicut, India. All the sets of vertebral columns were macroscopically inspected for the ossified ligamentum longitudinale anterius. Results: It was observed that out of 95 sets of vertebral columns, 27 (28.42%) vertebral columns showed ossification. Out of 27 vertebral columns, 17 (17.89%) vertebral columns showed segmental type of ossification, 2 (2.11%) vertebral columns showed continuous type of ossification and 8 (8.42%) vertebral columns showed mixed type of ossification at different vertebral level. Conclusion: Such type of ossification will affect the biomechanics of the spine and may result in stiff neck, low back pain, dysphagia, odynophagia, compression of the brachial plexus, aphonia, immobility or mucosal thickening of larynx. Hence, knowledge of such abnormalities should be kept in mind to minimise serious complications in any surgical intervention or investigative procedures in the region. PMID:25302180

  19. A biokinetic model for systemic technetium in adult humans

    DOE PAGES

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  20. Comprehensive cellular-resolution atlas of the adult human brain.

    PubMed

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. Copyright © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  1. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  2. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  3. Age-associated changes in microvasculature of human adult testis.

    PubMed

    Takizawa, T; Hatakeyama, S

    1978-07-01

    Age-associated architectural changes of the human testicular microvasculature from 70 autopsy cases were stereoscopically examined with a silicone-rubber injection technique. In the testis of a young subject, the interlobular main arteries run straight. The coiling phenomena of the interlobular centripetal or centrifugal arteries, which are commonly seen in adult testis, have been so far considered as physiological transformation of the vasculature. It was confirmed that the coiling changes in the interlobular main arteries of the human testis appear as an age-dependent alteration of the vasculature closely related to the volume of the gland. The practical importance of the spirallin or coiling of arteries is that it results in a considerable reduction of blood flow. The age-related coiling of the interlobular arteries is virtually accompanied by varying degrees of collapse of the peritubular capillary networks. The reduction of blood supply to the seminiferous tubules plays an active role in promoting aging of the testis. These stereoscopical observations of age-related transfiguration of testicular microvasculature were ascertained also by histometrical examinations.

  4. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  5. Ossified ligamentum longitudinale anterius in adult human dry vertebrae.

    PubMed

    Kosuri, Kalyan Chakravarthi; Venumadhav, Nelluri; Ks, Siddaraju

    2014-08-01

    The ligamentum longitudinale anterius is a broad and strong band of fibrous tissue that runs along the anterior surfaces of the bodies of the vertebrae. The study was undertaken to evaluate the incidence of ossified ligamentum longitudinale anterius in adult dry human vertebra. This study was carried out on 95 sets of dry human vertebral columns irrespective of age and sex at Mayo Institute of Medical Sciences- Barabanki,-UP, Melaka Manipal Medical College-Manipal University and Department of Anatomy, KMCT Medical College, Manassery- Calicut, India. All the sets of vertebral columns were macroscopically inspected for the ossified ligamentum longitudinale anterius. It was observed that out of 95 sets of vertebral columns, 27 (28.42%) vertebral columns showed ossification. Out of 27 vertebral columns, 17 (17.89%) vertebral columns showed segmental type of ossification, 2 (2.11%) vertebral columns showed continuous type of ossification and 8 (8.42%) vertebral columns showed mixed type of ossification at different vertebral level. Such type of ossification will affect the biomechanics of the spine and may result in stiff neck, low back pain, dysphagia, odynophagia, compression of the brachial plexus, aphonia, immobility or mucosal thickening of larynx. Hence, knowledge of such abnormalities should be kept in mind to minimise serious complications in any surgical intervention or investigative procedures in the region.

  6. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    PubMed

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-02-23

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation.

  7. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  8. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  9. Accuracy of survey radiographic diagnosis of intervertebral disc protrusion in dogs.

    PubMed

    Lamb, C R; Nicholls, A; Targett, M; Mannion, P

    2002-01-01

    To assess the diagnostic accuracy of survey radiography for canine thoracolumbar intervertebral disc protrusion, survey radiographs (lateral and ventrodorsal) of 64 dogs with surgically-confirmed thoracolumbar intervertebral disc protrusion, 51 dogs with negative myelograms and 29 dogs with various spinal conditions other than disc protrusion were reviewed by three independent observers who were unaware of any clinical information. There were marked differences in observer performance for diagnosis of intervertebral disc protrusion, although there were no significant differences in intraobserver diagnostic accuracy for small vs. large dogs. Accuracy of observers for determining sites of intervertebral disc protrusion using survey radiography was in the range 51-61%. All observers had low accuracy for identification of second sites of intervertebral disc protrusion. The most useful radiographic sign, narrowed intervertebral space, had only moderate sensitivity (range 64-69%) and moderate predictive value (range 63-71%) for intervertebral disc protrusion. Vacuum phenomenon was an infrequent but accurate sign of intervertebral disc protrusion. Recognition of multiple radiographic signs of intervertebral disc protrusion at one site was associated with increased accuracy of diagnosis. No observer was accurate enough to justify attempting targeted surgical treatment of intervertebral disc protrusion without myelography.

  10. Temperature Distributions of the Lumbar Intervertebral Disc during Laser Annuloplasty : A Cadaveric Study

    PubMed Central

    Lee, Min Hyung; Hong, Jae Taek; Sung, Jae Hoon; Lee, Sang Won; Kim, Daniel H.

    2016-01-01

    Objective Low back pain, caused intervertebral disc degeneration has been treated by thermal annuloplasty procedure, which is a non-surgical treatement. The theoretical backgrounds of the annuloplasty are thermal destruct of nociceptor and denaturization of collagen fiber to induce contraction, to shrink annulus and thus enhancing stability. This study is about temperature and its distribution during thermal annuloplasty using 1414 nm Nd : YAG laser. Methods Thermal annuloplasty was performed on fresh human cadaveric lumbar spine with 20 intact intervertebral discs in a 37℃ circulating water bath using newly developed 1414 nm Nd : YAG laser. Five thermocouples were attached to different locations on the disc, and at the same time, temperature during annuloplasty was measured and analyzed. Results Thermal probe's temperature was higher in locations closer to laser fiber tip and on lateral locations, rather than the in depth locations. In accordance with the laser fiber tip and the depth, temperatures above 45.0℃ was measured in 3.0 mm depth which trigger nociceptive ablation in 16 levels (80%), in accordance with the laser fiber end tip and laterality, every measurement had above 45.0℃, and also was measured temperature over 60.0℃, which can trigger collagen denaturation at 16 levels (80%). Conclusion When thermal annuloplasty is needed in a selective lesion, annuloplasty using a 1414 nm Nd : YAG laser can be one of the treatment options. PMID:27847567

  11. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    PubMed

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  12. Intervertebral disc magnetic resonance image: correlation with gross morphology and biochemical composition

    PubMed Central

    Bishop, Paul B

    1993-01-01

    The magnetic resonance image, gross morphology, and biochemical composition of the intervertebral disc nucleus pulposus (NP), anulus fibrosus (AF) and cartilaginous endplates (CEP) from two groups of three human lumbar spines were compared. Group I consisted of all healthy discs from young donors (Grade I) and group II was comprised of discs that had undergone degeneration and age-related changes (average Grade 4). The gross morphological changes in the individual disc tissues associated with ageing/degeneration were consistent with specific changes in the characteristics of the magnetic resonance image. In particular, the mid-nuclear band of decreased magnetic resonance signal intensity seen in Grade 4 discs was associated with the appearance of clefts and fissures as well as a region of mucinous infiltration. The results of the biochemical analysis suggest that the changes in signal intensity are not due merely to changes in water content, but are also associated with changes in proteoglycan content. The changes associated with ageing/degeneration in the magnetic resonance image of the disc were related to a decrease in the proteoglycan content of the AF and NP. The water content of the NP also decreased. There was no clear association between the biochemical composition of the CEP and the magnetic resonance image. These results demonstrate that magnetic resonance imaging is an effective technique for evaluating subtle morphological changes in the intervertebral disc tissues and may be a sensitive indicator of the proteoglycan content of the AF and NP. ImagesFigure 1Figure 2

  13. Nutrition of the intervertebral disc: effect of fluid flow on solute transport

    SciTech Connect

    Urban, J.P.; Holm, S.; Maroudas, A.; Nachemson, A.

    1982-10-01

    Adult dogs were injected intravenously with /sup 35/S-sulphate, and moderately exercised for one to six hours to measure isotope concentrations and profiles throughout the intervertebral discs. The isotope profiles were also observed in control animals that had been under anesthesia between injections and death. In both sets of animals, the profiles were in agreement with those expected for isotope transport by diffusion. This agreement indicates that fluid pumping during movement has an insignificant effect on transport of nutrients into the disc. Small solutes, e.g., O/sub 2/, glucose, and sulphate, are transported into the disc chiefly by diffusion. However, calculations show that because of their low diffusivities, pumping may increase the rate of transport of large solutes into the disc, as it does in articular cartilage.

  14. [Early clinical effect of intervertebral fusion of lumbar degenerative disease using nano-hydroxyapatite/polyamide 66 intervertebral fusion cage].

    PubMed

    Yang, Bo; Ou, Yunsheng; Jiang, Dianming; An, Hong; Liu, Bo; Zhang, Jian; Li, Kaiting

    2014-10-01

    The present study is aimed to investigate the early clinical effects of nano-hydroxyapatite/polyamide 66 intervertebral fusion cage (n-HA/PA66 cage) for the treatment of lumbar degenerative diseases. We selected 27 patients with lumbar degenerative diseases who were managed by posterior decompression or reset operation combined with n-HA/PA66 cage intervertebral fusion and internal fixation from August 2010 to January 2012. The oswestry disability index (ODI), low back and leg pain visual analogue score (VAS), and intervertebral height (IH) were evaluated at preoperation, 1 week postoperation and the last follow-up period, respectively. Intervertebral bony fusion was evaluated at the last follow-up time. The patients were followed up for 12-24 months (averaged 19 months). The ODI, VAS and IH were significantly improved at 1 week postoperation and the last follow-up time compared with those at preoperative period (P < 0.05). But there was no significant difference between 1 week postoperative and the last follow-up time (P < 0.05). Brantigan's standard was used to evaluate fusion at the last follow-up time. There were 19 patients with grade 5 fusion, 8 with grade 4 fusion, with a fusion rate of 100%, and none with grade 1-3 fusions. There was no cage translocation and internal fixation breakage. These results suggested that n-HA/PA66 cage was an ideal biological material in the posterior lumbar interbody fusion and internal fixation operation for treatment of lumbar degenerative diseases. It can effectively maintain the intervertebral height and keep a high rate of bony fusion. The early clinical effect has been satisfactory.

  15. Professional Fulfillment and Satisfaction of US and Canadian Adult Education and Human Resource Development Faculty

    ERIC Educational Resources Information Center

    Peterson, Shari L.; Wiesenberg, Faye

    2004-01-01

    This comparative study explored the professional fulfillment and job satisfaction of US and Canadian college and university faculty in the fields of Adult Education and Human Resource Development. In Autumn 2001, we disseminated electronically "The Adult Education and Human Resource Development Faculty Survey" to a selected sample of Canadian and…

  16. Factors associated with lumbar intervertebral disc degeneration in the elderly.

    PubMed

    Hangai, Mika; Kaneoka, Koji; Kuno, Shinya; Hinotsu, Shiro; Sakane, Masataka; Mamizuka, Naotaka; Sakai, Shinsuke; Ochiai, Naoyuki

    2008-01-01

    Lumbar intervertebral disc degeneration (DD) precedes degenerative diseases of the lumbar spine. Various factors in addition to normal aging are reported to be associated with DD, and recently atherosclerosis and risk factors for cardiovascular diseases (cardiovascular risk factors) have received much attention; however, the links between these risk factors and DD are unclear. By correlating magnetic resonance images (MRI) with suspected degenerative disc risk factors such as obesity, cardiovascular risk factors, and atherosclerosis, we hope to clarify the factors associated with DD. An observational study. Two hundred seventy adults (51-86 years old) who participated in a health promotion program. DD evaluated based on the signal intensity of MR T2-weighted mid-sagittal images of the lumbar spine. Age, gender, body mass index (BMI), low-density lipoprotein cholesterol (LDLc), triglyceride (TG), glycosylated hemoglobin (HbA(1c)), brachial-ankle pulse wave velocity (baPWV) as an index of atherosclerosis, osteo-sono-assessment index (OSI) calculated from quantitative ultrasound assessment of the calcaneus as an index of bone mineral density (BMD), history of low back pain (LBP), smoking and drinking habits, and physical loading related to occupations and sports were assessed. The univariate relationships between DD and the variables were evaluated, and finally, odds ratios (OR) and 95% confidence intervals (CI) for the associations of each factor with DD were calculated using logistic regression at each disc level. Aging correlated significantly with DD of L1/2 (OR, 2.14), L2/3 (OR, 3.56), L3/4 (OR, 2.84), and L4/5 (OR, 3.05); high BMI, with L2/3 (OR, 2.98), L3/4 (OR, 3.58), L4/5 (OR, 2.32), and L5/S1 (OR, 3.34); high LDLc, with L4/5 (OR, 2.65); occupational lifting, with L1/2 (OR, 4.25); and sports activities, with L5/S1 (OR, 3.36). Aging, high BMI, high LDLc, occupational lifting, and sports activities are associated with DD. The results of this study raise our

  17. Features of hand-foot crawling behavior in human adults.

    PubMed

    Maclellan, M J; Ivanenko, Y P; Cappellini, G; Sylos Labini, F; Lacquaniti, F

    2012-01-01

    Interlimb coordination of crawling kinematics in humans shares features with other primates and nonprimate quadrupeds, and it has been suggested that this is due to a similar organization of the locomotor pattern generators (CPGs). To extend the previous findings and to further explore the neural control of bipedal vs. quadrupedal locomotion, we used a crawling paradigm in which healthy adults crawled on their hands and feet at different speeds and at different surface inclinations (13°, 27°, and 35°). Ground reaction forces, limb kinematics, and electromyographic (EMG) activity from 26 upper and lower limb muscles on the right side of the body were collected. The EMG activity was mapped onto the spinal cord in approximate rostrocaudal locations of the motoneuron pools to characterize the general features of cervical and lumbosacral spinal cord activation. The spatiotemporal pattern of spinal cord activity significantly differed between quadrupedal and bipedal gaits. In addition, participants exhibited a large range of kinematic coordination styles (diagonal vs. lateral patterns), which is in contrast to the stereotypical kinematics of upright bipedal walking, suggesting flexible coupling of cervical and lumbosacral pattern generators. Results showed strikingly dissimilar directional horizontal forces for the arms and legs, considerably retracted average leg orientation, and substantially smaller sacral vs. lumbar motoneuron activity compared with quadrupedal gait in animals. A gradual transition to a more vertical body orientation (increasing the inclination of the treadmill) led to the appearance of more prominent sacral activity (related to activation of ankle plantar flexors), typical of bipedal walking. The findings highlight the reorganization and adaptation of CPG networks involved in the control of quadrupedal human locomotion and a high specialization of the musculoskeletal apparatus to specific gaits.

  18. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  19. Spirituality of Adult Education and Training. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    English, Leona M.; Fenwick, Tara J.; Parsons, Jim

    This book explores how spirituality intersects with the lives of adult educators and trainers. The following are among the topics discussed: (1) spirituality's role within the context of adult education and training and defining spirituality (the original spiritual purpose of adult education, as illustrated in the history of the Chautauqua,…

  20. Autophagy in the Degenerating Human Intervertebral Disc: In Vivo Molecular and Morphological Evidence, and Induction of Autophagy in Cultured Annulus Cells Exposed to Proinflammatory Cytokines-Implications for Disc Degeneration.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen L; Ingram, Jane A; Bethea, Synthia; Hanley, Edward N

    2015-06-01

    Autophagy-related gene expression and ultrastructural features of autophagy were studied in human discs. To obtain molecular/morphological data on autophagy in human disc degeneration and cultured human annulus cells exposed to proinflammatory cytokines. Autophagy is an important process by which cytoplasm and organelles are degraded; this adaptive response to sublethal stresses (such as nutrient deprivation present in disc degeneration) supplies needed metabolites. Little is known about autophagic processes during disc degeneration. Human disc specimens were obtained after institutional review board approval. Annulus mRNA was analyzed to determine autophagy-related gene expression levels. Immunolocalization and ultrastructural studies for p62, ATG3, ATG4B, ATG4C, ATG7, L3A, ULK-2, and beclin were conducted. In vitro experiments used IL-1β- or TNF-α-treated human annulus cells to test for autophagy-related gene expression. More degenerated versus healthier discs showed significantly greater upregulation of well-recognized autophagy-related genes (P ≤ 0.028): beclin 1 (upregulated 1.6-fold); ATG8 (LC3) (upregulated 2.0-fold); ATG12 (upregulated 4.0-fold); presenilin 1 (upregulated 1.6-fold); cathepsin B (upregulated 4.5-fold). p62 was localized, and ultrastructure showed autophagic vacuolization and autophagosomes with complex, redundant whorls of membrane-derived material. In vitro, proinflammatory cytokines significantly upregulated autophagy-related genes (P ≤ 0.04): DRAM1 (6.24-fold); p62 (4.98-fold); PIM-2 oncogene, a positive regulator of autophagy (3-fold); WIPI49 (linked to starvation-induced autophagy) (upregulated 2.3-fold). Data provide initial molecular and morphological evidence for the presence of autophagy in the degenerating human annulus. In vivo gene analyses showed greater autophagy-related gene expression in more degenerated than healthier discs. In vitro data suggested a mechanism implicating a role of TNF-α and IL-1β in disc autophagy

  1. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures

    PubMed Central

    Meng, Xiangjie; Bruno, Alexander G.; Cheng, Bo; Wang, Wenjun; Bouxsein, Mary L.; Anderson, Dennis E.

    2015-01-01

    Intervertebral translations and rotations are likely dependent on intervertebral stiffness properties. The objective of this study was to incorporate realistic intervertebral stiffnesses in a musculoskeletal model of the lumbar spine using a novel force-dependent kinematics approach, and examine the effects on vertebral compressive loading and intervertebral motions. Predicted vertebral loading and intervertebral motions were compared to previously reported in vivo measurements. Intervertebral joint reaction forces and motions were strongly affected by flexion stiffness, as well as force–motion coupling of the intervertebral stiffness. Better understanding of intervertebral stiffness and force–motion coupling could improve musculoskeletal modeling, implant design, and surgical planning. PMID:26299207

  2. Pediatric intervertebral disc calcification: A no touch lesion.

    PubMed

    Garg, Monika; Kumar, Sanyal; Satija, Bhawna; Gupta, Rajat

    2012-01-01

    Intervertebral disc calcification (IVDC), though rare, remains an important differential of pediatric spinal pain. A 7-year-old boy presented with sudden-onset severe neck pain and restricted movements. There was no definite history of trauma or infection. Imaging of the cervical spine showed calcification of the intervertebral disc at C2-3 level, with significant posterior protrusion into the spinal canal causing compression of the cervical spinal cord. The child was kept on conservative management. The calcification and posterior protrusion showed near-complete resolution on 3-month follow-up. This case report emphasizes that childhood IVDC is a benign condition which commonly resolves spontaneously, without any surgical intervention and neurological sequelae.

  3. Intervertebral disc segmentation and volumetric reconstruction from peripheral quantitative computed tomography imaging.

    PubMed

    Wong, Alexander; Mishra, Akshaya; Yates, Justin; Fieguth, Paul; Clausi, David A; Callaghan, Jack P

    2009-11-01

    An automatic system for segmenting and constructing volumetric representations of excised intervertebral discs from peripheral quantitative computed tomography (PQCT) imagery is presented. The system is designed to allow for automatic quantitative analysis of progressive herniation damage to the intervertebral discs under flexion/extension motions combined with a compressive load. Automatic segmentation and volumetric reconstruction of intervertebral disc from PQCT imagery is a very challenging problem due to factors such as streak artifacts and unclear material density separation between contrasted intervertebral disc and surrounding bone in the PQCT imagery, as well as the formation of multiple contrasted regions under axial scans. To address these factors, a novel multiscale level set approach based on the Mumford-Shah energy functional in iterative bilateral scale space is employed to segment the intervertebral disc regions from the PQCT imagery. A Delaunay triangulation is then performed based on the set of points associated with the intervertebral disc regions to construct the volumetric representation of the intervertebral disc. Experimental results show that the proposed system achieves segmentation and volumetric reconstructions of intervertebral discs with mean absolute distance error below 0.8 mm when compared to ground truth measurements. The proposed system is currently in operational use as a visualization tool for studying progressive intervertebral disc damage.

  4. Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans.

    PubMed

    Richards, Jennifer C; Lonac, Mark C; Johnson, Tyler K; Schweder, Melani M; Bell, Christopher

    2010-04-01

    Epigallocatechin-3-gallate (EGCG), a component of green tea, increases endurance performance in animals and promotes fat oxidation during cycle ergometer exercise in adult humans. We have investigated the hypothesis that short-term consumption of EGCG delays the onset of the ventilatory threshold (VT) and increases maximal oxygen uptake (VO2max). In this randomized, repeated-measures, double-blind study, 19 healthy adults (11 males and 8 females, age = 26 ± 2 yr (mean ± SE)) received seven placebo or seven EGCG (135-mg) pills. Forty-eight hours before data collection, participants began consuming three pills per day; the last pill was taken 2 h before exercise testing. VT and VO2max were determined from breath-by-breath indirect calorimetry data collected during continuous incremental stationary cycle ergometer exercise (20-35 W·min(-1)), from rest until volitional fatigue. Each condition/exercise test was separated by a minimum of 14 d. Compared with placebo, short-term EGCG consumption increased VO2max (3.123 ± 0.187 vs 3.259 ± 0.196 L·min(-1), P = 0.04). Maximal work rate (301 ± 15 vs 301 ± 16 W, P = 0.98), maximal RER (1.21 ± 0.01 vs 1.22 ± 0.02, P = 0.27), and maximal HR were unaffected (180 ± 3 vs 180 ± 3 beats·min(-1), P = 0.87). In a subset of subjects (n = 11), maximal cardiac output (determined via open-circuit acetylene breathing) was also unaffected by EGCG (29.6 ± 2.2 vs 30.2 ± 1.4 L·min(-1), P = 0.70). Contrary to our hypothesis, EGCG decreased VO2 at VT (1.57 ± 0.11 vs 1.48 ± 0.10 L·min(-1)), but this change was not significant (P = 0.06). Short-term consumption of EGCG increased VO2max without affecting maximal cardiac output, suggesting that EGCG may increase arterial-venous oxygen difference.

  5. Polarization-sensitive OCT of bovine intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, C. Peter; Gangnus, Sergei V.

    2003-10-01

    Polarization-sensitive optical coherence tomography (PSOCT) is a powerful new optical imaging modality that is sensitive to the birefringence properties of tissues. It thus has potential applications in studying the large-scale ordering of collagen fibers within connective tissues and changes related to pathology. As a tissue for study by PSOCT, intervertebral disk represents an interesting system as the collagen organisation is believed to show pronounced variations with depth, on a spatial scale of about 100 microns .We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of bovine caudal intervertebral disk and compared this with equine flexor tendon. The result for equine tendon, Δn = (4.4 +/- 0.15) x 10-3 at 1.3μm, is somewhat larger than values reported for bovine tendon. The annulus fibrosus of freshly excised intact bovine intervertebral disk displays an identical value of birefringence, Δn = (4.4 +/- 0.4) x 10-3 at 1.3μm. However the retardance does not increase uniformly with depth into the tissue but displays a pronounced discontinuity at a depth of around 300 microns. This is believed to be related to the lamellar structure of this tissue, in which the collagen fiber orientation alternates between successive lamellae as depth into the tissue increases. The nucleus pulposus displays polarization conversion equivalent to a birefringence an order of magnitude smaller than these values i.e. Delta;n = (0.278 +/- 0.007) x 10-3. Our measurement protocol cannot distinguish this from the effects of depolarization due to multiple scattering. These results imply that PSOCT could be a useful tool to study collagen organisation within intervertebral disk in vivo and its variation with applied load and disease.

  6. The effect of posture on diffusion into lumbar intervertebral discs.

    PubMed Central

    Adams, M A; Hutton, W C

    1986-01-01

    The diffusion of small solutes into the intervertebral discs of cadaveric lumbar motion segments was measured using a radioactive tracer technique. The motion segments were wedged and loaded to simulate erect posture and flexed sitting postures. The results show that erect posture favours diffusion into the anterior half of the disc compared to the posterior half. Flexed posture, by deforming the annulus fibrosus, reverses this imbalance. PMID:3693067

  7. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  8. Biomechanical study of a hat type cervical intervertebral fusion cage.

    PubMed

    Gu, Yu-Tong; Jia, Lian-Shun; Chen, Tong-Yi

    2007-02-01

    The purpose of this study was to evaluate the biomechanical effect of a hat type cervical intervertebral fusion cage (HCIFC). In this in vitro biomechanical study, 48 goat cervical spines (C2-5) were tested in flexion, extension, axial rotation, and lateral bending with a nondestructive stiffness method using a nonconstrained testing apparatus, and three-dimensional displacement was measured. Autologous iliac bone and cervical spine intervertebral fusion cage were implanted according to manufacturers' information after complete discectomy (C3-4). Eight spines in each of the following groups were tested: intact, autologous iliac bone graft, Harms cage, SynCage C, carbon cage, and HCIFC. The mean apparent stiffness values were calculated from the corresponding load-displacement curves. Additionally, cage volume and volume-related stiffness were determined. The stiffness of the SynCage C was statistically greatest in all directions. After implantation of the HCIFC, flexion stiffness increased compared with that of the intact motion segment. There was no significant difference in stiffness between the HCIFC and carbon cage. The stiffness of the HCIFC was statistically higher than that of the Harms cage in axial rotation and significantly lower in flexion, extension, and lateral bending. Volume-related stiffness of all cages was higher than that of iliac bone graft. The Harms cage was highest in volume-related stiffness in all directions. The HCIFC can provide enough primary stability for cervical intervertebral fusion.

  9. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  10. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  11. Hyperoxia Induces Inflammation and Cytotoxicity in Human Adult Cardiac Myocytes.

    PubMed

    Hafner, Christina; Wu, Jing; Tiboldi, Akos; Hess, Moritz; Mitulovic, Goran; Kaun, Christoph; Krychtiuk, Konstantin Alexander; Wojta, Johann; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2017-04-01

    Supplemental oxygen (O2) is used as adjunct therapy in anesthesia, emergency, and intensive care medicine. We hypothesized that excessive O2 levels (hyperoxia) can directly injure human adult cardiac myocytes (HACMs). HACMs obtained from the explanted hearts of transplantation patients were exposed to constant hyperoxia (95% O2), intermittent hyperoxia (alternating 10 min exposures to 5% and 95% O2), constant normoxia (21% O2), or constant mild hypoxia (5% O2) using a bioreactor. Changes in cell morphology, viability as assessed by lactate dehydrogenase (LDH) release and trypan blue (TB) staining, and secretion of vascular endothelial growth factor (VEGF), macrophage migration inhibitory factor (MIF), and various pro-inflammatory cytokines (interleukin, IL; chemokine C-X-C motif ligand, CXC; granulocyte-colony stimulating factor, G-CSF; intercellular adhesion molecule, ICAM; chemokine C-C motif ligand, CCL) were compared among treatment groups at baseline (0 h) and after 8, 24, and 72 h of treatment. Changes in HACM protein expression were determined by quantitative proteomic analysis after 48 h of exposure. Compared with constant normoxia and mild hypoxia, constant hyperoxia resulted in a higher TB-positive cell count, greater release of LDH, and elevated secretion of VEGF, MIF, IL-1β, IL-6, IL-8, CXCL-1, CXCL-10, G-CSF, ICAM-1, CCL-3, and CCL-5. Cellular inflammation and cytotoxicity gradually increased and was highest after 72 h of constant and intermittent hyperoxia. Quantitative proteomic analysis revealed that hypoxic and hyperoxic O2 exposure differently altered the expression levels of proteins involved in cell-cycle regulation, energy metabolism, and cell signaling. In conclusion, constant and intermittent hyperoxia induced inflammation and cytotoxicity in HACMs. Cell injury occurred earliest and was greatest after constant hyperoxia, but even relatively brief repeating hyperoxic episodes induced a substantial inflammatory response.

  12. Adult Education and the Human Environment: Transactions of a Celebration.

    ERIC Educational Resources Information Center

    Jones-Quartey, K. A. B., Ed.; And Others

    The document comprises a collection of speeches and seminar reports arising from the 25th anniversary celebration of the Institute of Adult Education at the University of Ghana. The theme of the celebration, introduced in the first chapter, was Adult Education and Man's Environment--the Next Quarter-Century. The second chapter comprises the…

  13. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs

    PubMed Central

    Nakamichi, Ryo; Ito, Yoshiaki; Inui, Masafumi; Onizuka, Naoko; Kayama, Tomohiro; Kataoka, Kensuke; Suzuki, Hidetsugu; Mori, Masaki; Inagawa, Masayo; Ichinose, Shizuko; Lotz, Martin K.; Sakai, Daisuke; Masuda, Koichi; Ozaki, Toshifumi; Asahara, Hiroshi

    2016-01-01

    The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. PMID:27527664

  14. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis.

    PubMed

    Chen, Wen-Kang; Yu, Xiao-Hua; Yang, Wei; Wang, Cheng; He, Wen-Si; Yan, Yi-Guo; Zhang, Jian; Wang, Wen-Jun

    2017-02-01

    The term long non-coding RNA (lncRNA) refers to a group of RNAs with length more than 200 nucleotides, limited protein-coding potential, and having widespread biological functions, including regulation of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs) and natural microRNA (miRNA) sponges. Intervertebral disc degeneration (IDD) and osteoarthritis (OA) are the most common chronic, prevalent and age-related degenerative musculoskeletal disorders. Numbers of lncRNAs are differentially expressed in human degenerative nucleus pulposus tissue and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes during OA, including extracellular matrix (ECM) degradation, inflammatory responses, apoptosis and angiogenesis. In this review, we summarize current knowledge concerning lncRNAs, from their biogenesis, classification and biological functions to molecular mechanisms and therapeutic potential in IDD and OA.

  15. Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study

    PubMed Central

    Walter, B. A.; Torre, O. M.; Laudier, D.; Naidich, T. P.; Hecht, A. C.; Iatridis, J. C.

    2015-01-01

    Multiple histologic measurements are commonly used to assess degenerative changes in intervertebral disc (IVD) structure; however, there is no consensus on which stains offer the clearest visualization of specific areas within the IVD. The objective of this study was to compare multiple tinctorial stains, evaluate their ability to highlight structural features within the IVD, and investigate how they influence the capacity to implement a degeneration scoring system. Lumbar IVDs from seven human autopsy specimens were stained using six commonly used stains (Hematoxylin/Eosin, Toluidine Blue, Safranin-O/Fast Green, Extended FAST, modified Gomori’s Trichrome, and Picrosirius Red Alcian Blue). All IVDs were evaluated by three separate graders to independently determine which stains (i) were most effective at discerning different structural features within different regions of the IVDs and (ii) allowed for the most reproducible assessment of degeneration grade, as assessed via the Rutges histological scoring system (Rutges et al. A validated new histological classification for intervertebral disc degeneration. Osteoarthritis Cartilage, 21, 2039-47). Although Trichrome, XFAST and PR/AB stains were all effective at highlighting different regions of whole IVDs, we recommend the use of PR/AB because it had the highest degree of rater agreement on assigned degeneration grade, allowed greater resolution of degeneration grade, has an inferential relationship between color and composition, and allowed clear differentiation of the different regions and structural disruptions within the IVD. The use of a standard set of stains together with a histological grading scheme can aid in the characterization of structural changes in different regions of the IVD and may simplify comparisons across the field. This collection of human IVD histological images highlights how IVD degeneration is not a single disease but a composite of multiple processes such as aging, injury, repair, and

  16. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  17. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  18. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  19. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  20. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain

    PubMed Central

    Ramachandran, V. S.

    1993-01-01

    Recent behavioral and physiological evidence suggests that even brief sensory deprivation can lead to the rapid emergence of new and functionally effective neural connections in the adult human brain. Images Fig. 2 PMID:8248123

  1. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  2. Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach.

    PubMed

    Jackson, Alicia; Yao, Hai; Brown, Mark D; Yong Gu, Wei

    2006-11-15

    Investigation of the transport behavior of ions in intervertebral disc using an electrical conductivity method. To determine the electrical conductivity and ion diffusivity of nucleus pulposus and anulus fibrosus in 3 major directions (axial, circumferential, and radial). Knowledge of diffusivity of small molecules is important for understanding nutrition supply in intervertebral disc and disc degeneration. However, little is known on the anisotropic behaviors of ion diffusivity and of electrical conductivity in intervertebral disc. Electrical conductivity measurement was performed on 24 axial, circumferential, and radial anulus fibrosus specimens and 24 axial nucleus pulposus specimens from bovine coccygeal discs. The diffusivity of Na and Cl were estimated by the analysis of conductivity data. The electrical conductivity (mean +/- standard deviation; n = 24) of the bovine anulus fibrosus was 4.70 +/- 1.08 mS/cm in the axial, 2.86 +/- 0.83 mS/cm in the radial, and 4.38 +/- 1.25 mS/cm in the circumferential direction. For nucleus pulposus, the electrical conductivity (mean +/- standard deviation; n = 24) was 8.95 +/- 0.89 mS/cm. The mean value for nucleus pulposus was significantly higher than that of anulus fibrosus (t test, P < 0.05). For anulus fibrosus, the conductivity in the radial direction was significantly lower than in axial or circumferential directions. Similar trends were found for both Na and Cl diffusivities. Both electrical conductivity and ion diffusivity were highly sensitive to water content. Electrical conductivity and ion diffusivity of anulus fibrosus are anisotropic.

  3. Incidental extraspinal findings on magnetic resonance imaging of intervertebral discs.

    PubMed

    Dilli, Alper; Ayaz, Umit Yasar; Turanlı, Sevim; Saltas, Hakan; Karabacak, Osman Raif; Damar, Cagrı; Hekimoglu, Baki

    2014-08-29

    We aimed to evaluate pathological extraspinal findings and congenital anomalies/anatomical variations that were incidentally detected on the magnetic resonance imaging (MRI) scans of intervertebral discs, to find the frequencies of these incidental findings, and to emphasise the clinical importance of them. A retrospective study including 1031 consecutive patients (730 females and 301 males, with a median age of 46 years) was conducted by evaluating a total of 1106 MRI examinations of intervertebral discs. Examinations were performed with a 1.5 T MRI unit. Incidental findings were classified as pathological findings and congenital anomalies/anatomical variations. The percentages of incidental extraspinal pathological findings and congenital anomalies/anatomical variations were 16.6% (95% confidence interval (CI): 14.4-18.8) and 3.7% (95% CI: 2.6-4.3), respectively. The percentage of incidental extraspinal pathological findings on cervical spinal MRI was 25.7% (95% CI: 20.1-31.7), thyroid nodules being the most common incidental findings. On thoracic spinal MRI (n = 19), inferior pole thyroid nodules were demonstrated as incidental extraspinal pathological findings, with a percentage of 10.5% (95% CI: 9.6-11.5). On lumbar spinal MRI, incidental pathological findings were detected with a percentage of 14.2% (95% CI: 11.9-16.6), while the percentage of congenital anomalies/anatomical variations was 4.8% (95% CI: 3.4-6.3). Eventually, 6.5% (95% CI: 2.6-9.4) of all cases with incidental extraspinal pathological findings underwent surgery. On MRI examination of intervertebral discs, paying attention to incidentally detected pathological extraspinal findings and congenital anomalies/anatomical variations is very important due to the fact that they can alter the treatment of the patient or affect the patient's life.

  4. Incidental extraspinal findings on magnetic resonance imaging of intervertebral discs

    PubMed Central

    Ayaz, Umit Yasar; Turanlı, Sevim; Saltas, Hakan; Karabacak, Osman Raif; Damar, Cagrı; Hekimoglu, Baki

    2014-01-01

    Introduction We aimed to evaluate pathological extraspinal findings and congenital anomalies/anatomical variations that were incidentally detected on the magnetic resonance imaging (MRI) scans of intervertebral discs, to find the frequencies of these incidental findings, and to emphasise the clinical importance of them. Material and methods A retrospective study including 1031 consecutive patients (730 females and 301 males, with a median age of 46 years) was conducted by evaluating a total of 1106 MRI examinations of intervertebral discs. Examinations were performed with a 1.5 T MRI unit. Incidental findings were classified as pathological findings and congenital anomalies/anatomical variations. Results The percentages of incidental extraspinal pathological findings and congenital anomalies/anatomical variations were 16.6% (95% confidence interval (CI): 14.4–18.8) and 3.7% (95% CI: 2.6–4.3), respectively. The percentage of incidental extraspinal pathological findings on cervical spinal MRI was 25.7% (95% CI: 20.1–31.7), thyroid nodules being the most common incidental findings. On thoracic spinal MRI (n = 19), inferior pole thyroid nodules were demonstrated as incidental extraspinal pathological findings, with a percentage of 10.5% (95% CI: 9.6–11.5). On lumbar spinal MRI, incidental pathological findings were detected with a percentage of 14.2% (95% CI: 11.9–16.6), while the percentage of congenital anomalies/anatomical variations was 4.8% (95% CI: 3.4–6.3). Eventually, 6.5% (95% CI: 2.6–9.4) of all cases with incidental extraspinal pathological findings underwent surgery. Conclusions On MRI examination of intervertebral discs, paying attention to incidentally detected pathological extraspinal findings and congenital anomalies/anatomical variations is very important due to the fact that they can alter the treatment of the patient or affect the patient's life. PMID:25276162

  5. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  6. Human Capital Development: Reforms for Adult and Community Education

    ERIC Educational Resources Information Center

    Choy, Sarojni; Haukka, Sandra

    2007-01-01

    The adult and community education (ACE) sector is consistently responsive to changing community needs and government priorities. It is this particular function that has drawn ACE into the lifelong learning debate as one model for sustaining communities. The responsiveness of ACE means that the sector and its programs continue to make valuable…

  7. Adult Literacy Programs in Uganda. Africa Region Human Development Series.

    ERIC Educational Resources Information Center

    Okech, Anthony; Carr-Hill, Roy A.; Katahoire, Anne R.; Kakooza, Teresa; Ndidde, Alice N.; Oxenham, John

    This report evaluates the outcomes and cost effectiveness of adult literacy programs in Ugandan villages and compares government programs with those provided by nongovernmental organizations (NGOs). Part 1 describes evaluation objectives, government and NGO literacy programs and the rural socioeconomic context, and evaluation design. About 100…

  8. The Human Function Compunction: Teleological Explanation in Adults

    ERIC Educational Resources Information Center

    Kelemen, Deborah; Rosset, Evelyn

    2009-01-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for…

  9. "Adult Education Is about Human Being in All Its Aspects"

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2011-01-01

    Derek Legge, who celebrated his 95th birthday at the end of last month, is one of the most dedicated and influential of the largely unsung heroes of the adult education movement in Britain. As modesty is one of the many qualities with which his friends and colleagues credit him, he is certain to shrink from the description, but there is little…

  10. An Experimental Study on the Effects of Smoking in the Perinatal Period and During Lactation on the Intervertebral Disks of Newborns.

    PubMed

    Altun, Idiris; Yuksel, Kasım Z

    2017-03-01

    To evaluate the histopathologic effects of smoking before, during, and after pregnancy on the intervertebral disk structure of newborns in an experimental rat model. Seven adult female Wistar albino rats were randomly allocated into 7 groups. Nicotine (2 mg/kg/d) was intraperitoneally introduced to these rats in 6 groups before, during, and after pregnancy, whereas the rat in the control group received isotonic saline intraperitoneally. Fourteen newborns delivered by each rat were euthanized at the end of 9 weeks after being breastfed for 3 weeks after birth. The vertebral columns of the euthanized rats were removed en bloc, and histopathologic evaluation was performed on the intervertebral disk specimens. Histopathologic alterations were noted and compared between groups. Ratio of proteoglycan amount exhibited a significant difference between groups (P < 0.001). Subjects in the control group had a predominantly mild amount of proteoglycans, whereas smoking before and during pregnancy and smoking before/during pregnancy and lactation resulted in deposition of a severe amount of proteoglycans in intervertebral disk tissue. Similarly, there was a statistically significant difference between groups with respect to the amount of fibrosis (P < 0.001). In the control group, fibrosis was absent in most (78.6%) subjects. Fibrosis was mild in groups with smoking before pregnancy and during lactation. A moderate degree of fibrosis was detected in groups with smoking during pregnancy, before and during pregnancy, during pregnancy and lactation, and before/during pregnancy and lactation. Results of this study imply that maternal smoking before and during pregnancy and in the lactation period may have deleterious effects on the intervertebral disk of the newborn. The duration of smoking and fertility period can influence the type and severity of these effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An Inventory of Skills and Attitudes Necessary for a Career in Human Services/Adult Care.

    ERIC Educational Resources Information Center

    Broadbent, William

    This document is an inventory of skills identified as necessary by professionals in the human services field specializing in adult care. It is intended as a mechanism whereby educators can compare that which they teach against what the human services industry feels is relevant. Introductory material discusses the process of the occupational…

  12. An Inventory of Skills and Attitudes Necessary for a Career in Human Services/Adult Care.

    ERIC Educational Resources Information Center

    Broadbent, William

    This document is an inventory of skills identified as necessary by professionals in the human services field specializing in adult care. It is intended as a mechanism whereby educators can compare that which they teach against what the human services industry feels is relevant. Introductory material discusses the process of the occupational…

  13. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  14. Postnatal and adult neurogenesis in the development of human disease.

    PubMed

    Danzer, Steve C

    2008-10-01

    The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.

  15. Material properties of bovine intervertebral discs across strain rates.

    PubMed

    Newell, Nicolas; Grigoriadis, Grigorios; Christou, Alexandros; Carpanen, Diagarajen; Masouros, Spyros D

    2017-01-01

    The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10(-3)-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Measurement of intervertebral disc pressure with T 1ρ MRI.

    PubMed

    Wang, Chenyang; Witschey, Walter; Elliott, Mark A; Borthakur, Arijitt; Reddy, Ravinder

    2010-12-01

    The aim of this study is to demonstrate T(1ρ) MRI's capability for measuring intervertebral disc osmotic pressure. Self-coregistered sodium and T(1ρ) -weighted MR images were acquired on ex vivo bovine intervertebral discs (N = 12) on a 3 T clinical MRI scanner. The sodium MR images were used to calculate effective nucleus pulposus fixed-charge-density (mean = 138.2 ± 27.6 mM) and subsequently osmotic pressure (mean = 0.53 ± 0.18 atm), whereas the T(1ρ) -weighted images were used to compute T(1ρ) relaxation maps. A significant linear correlation (R = 0.56, P < 0.01) between nucleus pulposus fixed-charge-density and T(1ρ) relaxation time constant was observed. More importantly, a significant power correlation (R = 0.72, P < 0.01) between nucleus pulposus osmotic pressure as predicted by sodium MRI and T(1ρ) relaxation time constant was also observed. The current clinical method for assessing disc pressure is discography, which is an invasive procedure that has been shown to have negative effects on disc biomechanical and biochemical properties. In contrast, T(1ρ) MRI is noninvasive and can be easily implemented in a clinical setting due to its superior signal-to-noise ratio compared with sodium MRI. Therefore, T(1ρ) MRI may serve as a noninvasive clinical tool for the longitudinal evaluation of disc osmotic pressure. Copyright © 2010 Wiley-Liss, Inc.

  17. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus.

    PubMed

    Iatridis, J C James C; ap Gwynn, Iolo

    2004-08-01

    Intervertebral disc degeneration results in disorganization of the laminate structure of the annulus that may arise from mechanical microfailure. Failure mechanisms in the annulus were investigated using composite lamination theory and other analyses to calculate stresses in annulus layers, interlaminar shear stress, and the region of stress concentration around a fiber break. Scanning electron microscopy (SEM) was used to evaluate failure patterns in the annulus and evaluate novel structural features of the disc tissue. Stress concentrations in the annulus due to an isolated fiber break were localized to approximately 5 microm away from the break, and only considered a likely cause of annulus fibrosus failure (i.e., radial tears in the annulus) under extreme loading conditions or when collagen damage occurs over a relatively large region. Interlaminar shear stresses were calculated to be relatively large, to increase with layer thickness (as reported with degeneration), and were considered to be associated with propagation of circumferential tears in the annulus. SEM analysis of intervertebral disc annulus fibrosus tissue demonstrated a clear laminate structure, delamination, matrix cracking, and fiber failure. Novel structural features noted with SEM also included the presence of small tubules that appear to run along the length of collagen fibers in the annulus and a distinct collagenous structure representative of a pericellular matrix in the nucleus region.

  18. Hyper-elastic modelling of intervertebral disc polyurethane implant.

    PubMed

    Pawlikowski, Marek; Skalski, Konstanty; Sowiński, Tomasz

    2013-01-01

    Artificial materials including various kinds of polymers like polyurethanes are more and more widely used in different branches of science and also in biomedical engineering. The paper presents the process of creating a constitutive equation for a polyurethane nanocomposite which is considered to be hyper-elastic. The constitutive modelling was conducted within the range of application of the material as one of the components of lumbar intervertebral disc prosthesis. In the paper, the biomechanics of the lumbar spine and the most frequently applied intervertebral disc prostheses are described. Also a polyurethane nanocomposite as a new material to be applied in prostheses is presented. The way of formulating a constitutive equation by means of mathematical formulae is described. Four various hyper-elastic potential functions are considered, i.e., Ogden, Neo-Hookean, Yeoh and Mooney-Rivlin. On the basis of monotonic compression tests the best hyper-elastic model for the material considered was chosen and hyper-elastic constants were calibrated. Finally, the constitutive model was validated on the basis of FE analysis. The paper ends with a conclusion and presentation of further plans of research directed towards the development of a constitutive equation and its application in computer simulations by means of the finite element method.

  19. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  20. [Dietary phytoestrogen and its potential benefits in adult human health].

    PubMed

    Garrido, Argelia; de la Maza, María Pía; Valladares, Luis

    2003-11-01

    Human diet contains a series of bioactive vegetal compounds that can improve human health. Among these, there has been a special interest for phytoestrogens. This article reviews the evidence about the potential benefits of phytoestrogens for human health. Forty eight manuscripts were selected for their study design and relevance to human health. The cell growth inhibitory effects of phytoestrogens and their implication in breast cancer are reviewed. Also the effects of these compounds on serum lipid levels and the effectiveness of a phytoestrogen derivate, ipriflavone, on the prevention of osteoporosis are analyzed. Although these compounds have a great potential for improving health, there is still not enough evidence to recommend the routine use of phytoestrogens.

  1. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia.

  2. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  3. Hepatobiliary disposition of 17-OHPC and taurocholate in fetal human hepatocytes: a comparison with adult human hepatocytes.

    PubMed

    Sharma, Shringi; Ellis, Ewa C S; Gramignoli, Roberto; Dorko, Kenneth; Tahan, Veysel; Hansel, Marc; Mattison, Donald R; Caritis, Steve N; Hines, Ronald N; Venkataramanan, Raman; Strom, Stephen C

    2013-02-01

    Little information is available in the literature regarding the expression and activity of transporters in fetal human liver or cultured cells. A synthetic progesterone structural analog, 17α-hydroxyprogesterone caproate (17-OHPC), is used in the prevention of spontaneous abortion in women with a history of recurrent miscarriage (habitual abortion). 17-OHPC has been reported to traverse the placental barrier and gain access to fetal circulation. In this study, the role of transporters in the disposition of 17-OHPC in fetal and adult human hepatocytes was examined. Progesterone metabolites have been reported to induce trans-inhibition of bile acid transporter, ABCB11. Thus, we investigated the effect of 17-OHPC or its metabolites on [(3)H]taurocholic acid transport in sandwich-cultured human fetal and adult hepatocytes. 17-OHPC was taken up rapidly into the cells and transported out partially by an active efflux process that was significantly inhibited by cold temperature, cyclosporine, verapamil, and rifampin. The active efflux mechanism was observed in both adult and fetal hepatocyte cultures. 17-OHPC produced a concentration-dependent inhibition of taurocholate efflux into canaliculi in sandwich-cultured adult and fetal human hepatocytes. However, given the high concentrations required to cause inhibition of these transport processes, no adverse effects would be anticipated from therapeutic levels of 17-OHPC. We also evaluated the expression of various hepatic transporters (ABCB1, ABCB4, SLCO1B1, SLCO1B3, SLCO2B1, ABCB11, SLC10A1, ABCC2, ABCC3, ABCC4, and ABCG2) in fetal and adult hepatocytes. With the exception of ABCB4, all transporters examined were expressed, albeit at lower mRNA levels in fetal hepatocytes compared with adults.

  4. Hepatobiliary Disposition of 17-OHPC and Taurocholate in Fetal Human Hepatocytes: A Comparison with Adult Human Hepatocytes

    PubMed Central

    Sharma, Shringi; Ellis, Ewa C. S.; Gramignoli, Roberto; Dorko, Kenneth; Tahan, Veysel; Hansel, Marc; Mattison, Donald R.; Caritis, Steve N.; Hines, Ronald N.; Venkataramanan, Raman

    2013-01-01

    Little information is available in the literature regarding the expression and activity of transporters in fetal human liver or cultured cells. A synthetic progesterone structural analog, 17α-hydroxyprogesterone caproate (17-OHPC), is used in the prevention of spontaneous abortion in women with a history of recurrent miscarriage (habitual abortion). 17-OHPC has been reported to traverse the placental barrier and gain access to fetal circulation. In this study, the role of transporters in the disposition of 17-OHPC in fetal and adult human hepatocytes was examined. Progesterone metabolites have been reported to induce trans-inhibition of bile acid transporter, ABCB11. Thus, we investigated the effect of 17-OHPC or its metabolites on [3H]taurocholic acid transport in sandwich-cultured human fetal and adult hepatocytes. 17-OHPC was taken up rapidly into the cells and transported out partially by an active efflux process that was significantly inhibited by cold temperature, cyclosporine, verapamil, and rifampin. The active efflux mechanism was observed in both adult and fetal hepatocyte cultures. 17-OHPC produced a concentration-dependent inhibition of taurocholate efflux into canaliculi in sandwich-cultured adult and fetal human hepatocytes. However, given the high concentrations required to cause inhibition of these transport processes, no adverse effects would be anticipated from therapeutic levels of 17-OHPC. We also evaluated the expression of various hepatic transporters (ABCB1, ABCB4, SLCO1B1, SLCO1B3, SLCO2B1, ABCB11, SLC10A1, ABCC2, ABCC3, ABCC4, and ABCG2) in fetal and adult hepatocytes. With the exception of ABCB4, all transporters examined were expressed, albeit at lower mRNA levels in fetal hepatocytes compared with adults. PMID:23129211

  5. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18.

    PubMed

    Bello, D; Webber, M M; Kleinman, H K; Wartinger, D D; Rhim, J S

    1997-06-01

    Prostate cancer and benign tumors of the prostate are the two most common neoplastic diseases in men in the United States, however, research on their causes and treatment has been slow because of the difficulty in obtaining fresh samples of human tissue and a lack of well characterized cell lines which exhibit growth and differentiation characteristics of normal prostatic epithelium. Non-neoplastic adult human prostatic epithelial cells from a white male donor were immortalized with human papillomavirus 18 which resulted in the establishment of the RWPE-1 cell line. Cells from the RWPE-1 cell line were further transformed by v-Ki-ras to establish the RWPE-2 cell line. The objectives of this study were to: (1) establish the prostatic epithelial origin and androgen responsiveness of RWPE-1 and RWPE-2 cell lines; (2) examine their response to growth factors; and (3) establish the malignant characteristics of the RWPE-2 cell line. Immunoperoxidase staining showed that both RWPE-1 and RWPE-2 cells express cytokeratins 8 and 18, which are characteristic of luminal prostatic epithelial cells, but they also coexpress basal cell cytokeratins. These cell lines show growth stimulation and prostate specific antigen (PSA) and androgen receptor (AR) expression in response to the synthetic androgen mibolerone, which establishes their prostatic epithelial origin. Both cell lines also show a dose-dependent growth stimulation by EGF and bFGF and growth inhibition when exposed to TGF-beta, however, the transformed RWPE-2 cells are less responsive. RWPE-1 cells neither grow in agar nor form tumors when injected into nude mice with or without Matrigel. However, RWPE-2 cells form colonies in agar and tumors in nude mice. In the in vitro invasion assay, RWPE-1 cells are not invasive whereas RWPE-2 cells are invasive. Nuclear expression of p53 and Rb proteins was heterogeneous but detectable by immunostaining in both cell lines. The RWPE-1 cells, which show many normal cell

  6. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin.

  7. A century of trends in adult human height.

    PubMed

    2016-07-26

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

  8. A century of trends in adult human height

    PubMed Central

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. DOI: http://dx.doi.org/10.7554/eLife.13410.001 PMID:27458798

  9. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

    PubMed Central

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity. PMID:26617738

  10. Effects of follower load and rib cage on intervertebral disc pressure and sagittal plane curvature in static tests of cadaveric thoracic spines.

    PubMed

    Anderson, Dennis E; Mannen, Erin M; Sis, Hadley L; Wong, Benjamin M; Cadel, Eileen S; Friis, Elizabeth A; Bouxsein, Mary L

    2016-05-03

    The clinical relevance of mechanical testing studies of cadaveric human thoracic spines could be enhanced by using follower preload techniques, by including the intact rib cage, and by measuring thoracic intervertebral disc pressures, but studies to date have not incorporated all of these components simultaneously. Thus, this study aimed to implement a follower preload in the thoracic spine with intact rib cage, and examine the effects of follower load, rib cage stiffening and rib cage removal on intervertebral disc pressures and sagittal plane curvatures in unconstrained static conditions. Intervertebral disc pressures increased linearly with follower load magnitude. The effect of the rib cage on disc pressures in static conditions remains unclear because testing order likely confounded the results. Disc pressures compared well with previous reports in vitro, and comparison with in vivo values suggests the use of a follower load of about 400N to approximate loading in upright standing. Follower load had no effect on sagittal plane spine curvature overall, suggesting successful application of the technique, although increased flexion in the upper spine and reduced flexion in the lower spine suggest that the follower load path was not optimized. Rib cage stiffening and removal both increased overall spine flexion slightly, although with differing effects at specific spinal locations. Overall, the approaches demonstrated here will support the use of follower preloads, intact rib cage, and disc pressure measurements to enhance the clinical relevance of future studies of the thoracic spine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. EFFECTS OF FOLLOWER LOAD AND RIB CAGE ON INTERVERTEBRAL DISC PRESSURE AND SAGITTAL PLANE CURVATURE IN STATIC TESTS OF CADAVERIC THORACIC SPINES

    PubMed Central

    Anderson, Dennis E.; Mannen, Erin M.; Sis, Hadley L.; Wong, Benjamin M.; Cadel, Eileen S.; Friis, Elizabeth A.; Bouxsein, Mary L.

    2016-01-01

    The clinical relevance of mechanical testing studies of cadaveric human thoracic spines could be enhanced by using follower preload techniques, by including the intact rib cage, and by measuring thoracic intervertebral disc pressures, but studies to date have not incorporated all of these components simultaneously. Thus, this study aimed to implement a follower preload in the thoracic spine with intact rib cage, and examine the effects of follower load, rib cage stiffening and rib cage removal on intervertebral disc pressures and sagittal plane curvatures in unconstrained static conditions. Intervertebral disc pressures increased linearly with follower load magnitude. The effect of the rib cage on disc pressures in static conditions remains unclear because testing order likely confounded the results. Disc pressures compared well with previous reports in vitro, and comparison with in vivo values suggests the use of a follower load of about 400 N to approximate loading in upright standing. Follower load had no effect on sagittal plane spine curvature overall, suggesting successful application of the technique, although increased flexion in the upper spine and reduced flexion in the lower spine suggest that the follower load path was not optimized. Rib cage stiffening and removal both increased overall spine flexion slightly, although with differing effects at specific spinal locations. Overall, the approaches demonstrated here will support the use of follower preloads, intact rib cage, and disc pressure measurements to enhance the clinical relevance of future studies of the thoracic spine. PMID:26944690

  12. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  13. Adult humans' understanding of support relations: an up-linkage replication.

    PubMed

    Silva, Francisco J; Ten Hope, Merritt I; Tucker, Ali L

    2014-12-01

    In an up-linkage replication, three experiments examined adult humans' folk physics, i.e., their naturally occurring and spontaneous understanding of the physical world, using a violation of expectation (VOE) task and stimuli similar to those used to study chimpanzees', monkeys', and rooks' folk physics. Unlike what has been reported with nonhuman primates, adult humans did not look longer at physically impossible than possible events, though they did rate the physically impossible events as more interesting and novel than the possible events. These results underscore that behavior during a VOE experiment has many possible causes, only one of which may be a subject's folk physics.

  14. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  15. A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype.

    PubMed

    Hirata, Hiroaki; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Takada, Toru; Yamamoto, Junya; Kurakawa, Takuto; Akisue, Toshihiro; Kuroda, Ryosuke; Kurosaka, Masahiro; Nishida, Kotaro

    2014-03-01

    The intervertebral disc nucleus pulposus (NP) has two phenotypically distinct cell types-notochordal cells (NCs) and non-notochordal chondrocyte-like cells. In human discs, NCs are lost during adolescence, which is also when discs begin to show degenerative signs. However, little evidence exists regarding the link between NC disappearance and the pathogenesis of disc degeneration. To clarify this, a rat tail disc degeneration model induced by static compression at 1.3 MPa for 0, 1, or 7 days was designed and assessed for up to 56 postoperative days. Radiography, MRI, and histomorphology showed degenerative disc findings in response to the compression period. Immunofluorescence displayed that the number of DAPI-positive NP cells decreased with compression; particularly, the decrease was notable in larger, vacuolated, cytokeratin-8- and galectin-3-co-positive cells, identified as NCs. The proportion of TUNEL-positive cells, which predominantly comprised non-NCs, increased with compression. Quantitative PCR demonstrated isolated mRNA up-regulation of ADAMTS-5 in the 1-day loaded group and MMP-3 in the 7-day loaded group. Aggrecan-1 and collagen type 2α-1 mRNA levels were down-regulated in both groups. This rat tail temporary static compression model, which exhibits decreased NC phenotype, increased apoptotic cell death, and imbalanced catabolic and anabolic gene expression, reproduces different stages of intervertebral disc degeneration.

  16. A morphological and histological study of the postnatal development of intervertebral discs in the lumbar spine of the rabbit.

    PubMed Central

    Scott, N A; Harris, P F; Bagnall, K M

    1980-01-01

    Some basic features in the development of the structure of the annulus fibrosus and nucleus pulposus in the rabbit, as described by previous workers, have been confirmed in the present study. However, the greater thickness of the anterior part of the disc, as compared with the posterior region, and the distinctive arrangement of lamellae in the posterior part of the disc, cannot be attributed, as conventionally claimed from studies of the human spine, to a secondary curvature in the lumbar spine associated with an upright posture: for these features are present in the lumbar spine of the quadrupedal rabbit with its primary curvature. Secondary ossification produces a plate-like epiphysis separating the growth cartilage from the intervertebral disc. A distinct cartilaginous plate, limiting the nucleus pulposus in the rabbit intervertebral disc, only becomes apparent when collagen fibres cease to traverse the area above and below the nucleus pulposus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:6154031

  17. The landscape of genomic imprinting across diverse adult human tissues.

    PubMed

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli

    2015-07-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. © 2015 Baran et al.; Published by Cold Spring Harbor Laboratory Press.

  18. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  19. Paracetamol, aspirin and indomethacin display endocrine disrupting properties in the adult human testis in vitro.

    PubMed

    Albert, O; Desdoits-Lethimonier, C; Lesné, L; Legrand, A; Guillé, F; Bensalah, K; Dejucq-Rainsford, N; Jégou, B

    2013-07-01

    Do mild analgesics affect the endocrine system of the human adult testis? Mild analgesics induce multiple endocrine disturbances in the human adult testis in vitro. Mild analgesics have recently been incriminated as potential endocrine disruptors. Studies of the effects of these widely used molecules on the androgenic status of men are limited and somewhat contradictory. This prompted us to investigate whether these compounds could alter the adult human testicular function. We therefore assessed in parallel the effects of paracetamol, aspirin and indomethacin on organo-cultured adult human testis and on the NCI-H295R steroid-producing human cell line. Adult human testis explants or NCI-H295R adrenocortical human cells were cultured with 10(-4) or 10(-5) M paracetamol, aspirin or indomethacin for 24-48 h. The effect of 10(-5) M ketoconazole, used as an anti-androgenic reference molecule, was also assessed. Testes were obtained from prostate cancer patients, who had not received any hormone therapy. The protocol was approved by the local ethics committee of Rennes, France and informed consent was given by the donors. Only testes displaying spermatogenesis, as assessed by transillumination, were used in this study. Hormone levels in the culture media were determined by radioimmunoassay (testosterone, insulin-like factor 3), Enzyme-Linked Immunosorbent Assay (inhibin B) or Enzyme Immunosorbent Assay [prostaglandin (PG) D2, and PGE2]. Tissues were observed and cells counted using classical immunohistochemical methods. The three mild analgesics caused multiple endocrine disturbances in the adult human testis. This was particularly apparent in the interstitial compartment. Effective doses were in the same range as those measured in blood plasma following standard analgesic treatment. The production of testosterone and insulin-like factor 3 by Leydig cells was altered by exposure to all these drugs. Inhibin B production by Sertoli cells was marginally affected by aspirin

  20. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs

    PubMed Central

    Nasto, Luigi A.; Wang, Dong; Robinson, Andria R.; Clauson, Cheryl L.; Ngo, Kevin; Dong, Qing; Roughley, Peter; Epperly, Michael; Huq, Saiful M.; Pola, Enrico; Sowa, Gwendolyn; Robbins, Paul D.; Kang, James; Niedernhofer, Laura J.; Vo, Nam V.

    2013-01-01

    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1−/Δ mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5x in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments were significantly increased. Additionally, new PG synthesis was reduced 2-3x in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1−/Δ mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD. PMID:23262094

  1. Spontaneous lumbar intervertebral disc protrusion in cats: literature review and case presentations.

    PubMed

    Kathmann, I; Cizinauskas, S; Rytz, U; Lang, J; Jaggy, A

    2000-12-01

    Reports on intervertebral disc disease in cats are rare in the veterinary literature. It has been postulated that intervertebral disc protrusion is a frequent finding during necropsy in cats, without having any clinical relevance (King and Smith 1958, King & Smith 1960a, King & Smith 1960b). However, a total of six cases with disc protrusions and clinically significant neurological deficits have been reported over the past decade. (Heavner 1971, Seim & Nafe 1981, Gilmore 1983, Littlewood et al 1984, Sparkes & Skerry 1990, Bagley et al 1995). As in dogs, there are also two types of intervertebral disc disease in cats: Hansen's type I (extrusion), and type II (herniation). Cervical spinal cord involvement was more commonly recognised in cats than the lumbar or the thoraco lumbar area. Cats over 15 years were mainly affected (King & Smith 1958, King & Smith 1960a, King & Smith 1960b). We describe two cats with lumbar intervertebral disc protrusions. Emphasis is placed on differential diagnoses, treatment and follow-up.

  2. Protective effect of ligustrazine on lumbar intervertebral disc degeneration of rats induced by prolonged upright posture.

    PubMed

    Liang, Qian-Qian; Ding, Dao-Fang; Xi, Zhi-Jie; Chen, Yan; Li, Chen-Guang; Liu, Shu-Fen; Lu, Sheng; Zhao, Yong-Jian; Shi, Qi; Wang, Yong-Jun

    2014-01-01

    Most chronic low back pain is the result of degeneration of the lumbar intervertebral disc. Ligustrazine, an alkaloid from Chuanxiong, reportedly is able to relieve pain, suppress inflammation, and treat osteoarthritis and it has the protective effect on cartilage and chondrocytes. Therefore, we asked whether ligustrazine could reduce intervertebral disc degeneration. To determine the effect of ligustrazine on disc degeneration, we applied a rat model. The intervertebral disc degeneration of the rats was induced by prolonged upright posture. We found that pretreatment with ligustrazine for 1 month recovered the structural distortion of the degenerative disc; inhibited the expression of type X collagen, matrix metalloproteinase (MMP)-13, and MMP3; upregulated type II collagen; and decreased IL-1 β , cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression. In conclusion, ligustrazine is a promising agent for treating lumbar intervertebral disc degeneration disease.

  3. Indigo Carmine for the Selective Endoscopic Intervertebral Nuclectomy

    PubMed Central

    Kim, Inn-Se; Shin, Sang-Wook; Kim, Tae-Kyun; Kim, Jeung-Il

    2005-01-01

    This study was undertaken to prove that the selectively infiltrated parts of nucleus pulposus with indigo carmine was degenerated parts of nucleus pulposus. This study was done, between August and October 2002, in 5 patients, who received endoscopic discectomy, due to intervertebral disc herniation. Discogram was done with mixture of indigo carmine and radioactive dye. Blue discolored part was removed through endoscope, and small undiscolored part was removed together for the control. The two parts were stained with hematoxylin and eosin and compared under the microscope. Undiscolored part was normal nucleus pulposus, composed of chondrocytes with a matrix of type II collagen and proteoglycan, mainly aggrecan. However, in discolored part, slits with destruction of collagen fiber array and ingrowth of vessel and nerve were observed. Using indigo carmine in endoscopic discectomy gives us selective removal of degenerated disc. PMID:16100472

  4. Advancing the cellular and molecular therapy for intervertebral disc disease.

    PubMed

    Sakai, Daisuke; Grad, Sibylle

    2015-04-01

    The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.

  5. The effect of kyphoscoliosis on intervertebral disc degeneration in dogs.

    PubMed

    Faller, Kiterie; Penderis, Jacques; Stalin, Catherine; Guevar, Julien; Yeamans, Carmen; Gutierrez-Quintana, Rodrigo

    2014-06-01

    In people, abnormalities in vertebral column conformation, such as kyphoscoliosis, induce degenerative changes in adjacent intervertebral disc (IVD) structure and composition. It was hypothesised that canine IVDs adjacent to a vertebral malformation undergo early degeneration. In a blinded retrospective study, thoracic IVD degeneration was evaluated in 14 dogs on magnetic resonance images using Pfirrmann's grade. IVDs adjacent to a vertebral malformation had higher grades of degeneration than non-adjacent IVDs (P < 0.0001). There was an age-dependency, with dogs between 1 and 4 years showing higher grade of degeneration in adjacent than non-adjacent IVDs (P < 0.0001). Conversely, in older dogs, all IVDs - including the non-adjacents - showed degenerative signs, possibly due to normal aging. These results suggest that congenital vertebral malformation results in early degeneration of adjacent IVDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules.

    PubMed

    Gao, Longfei; Guan, Wuqiang; Wang, Min; Wang, Huihan; Yu, Jiali; Liu, Qing; Qiu, Binlong; Yu, Yongchun; Ping, Yifang; Bian, Xiuwu; Shen, Li; Pei, Gang

    2017-03-14

    Astrocytes, due to the proximity to neuronal lineage and capability to proliferate, are ideal starting cells to regenerate neurons. Human fetal astrocytes have been successfully converted into neuronal cells by small molecules, which offered a broader range of further applications than transcription factor-mediated neuronal reprogramming. Here we report that human adult astrocytes could also be converted into neuronal cells by a different set of small molecules. These induced cells exhibited typical neuronal morphologies, expressed neuronal markers, and displayed neuronal electrophysiological properties. Genome-wide RNA-sequencing analysis showed that the global gene expression profile of induced neuronal cells resembled that of human embryonic stem cell-differentiated neurons. When transplanted into post-natal mouse brains, these induced neuronal cells could survive and become electrophysiologically mature. Altogether, our study provides a strategy to directly generate transgene-free neuronal cells from human adult astrocytes by small molecules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of canine intervertebral disc degeneration in colour-coded computed tomography.

    PubMed

    Harder, Lisa K; Galindo-Zamora, Vladimir; Beyerbach, Martin; Nolte, Ingo; Wefstaedt, Patrick

    2015-01-01

    Canine intervertebral disc degeneration can lead to intervertebral disc disease. Mild degenerative changes in the structure of the canine intervertebral disc can be identified in magnetic resonance images, whereas these changes are not visible in computed tomographic images. Therefore, one aim of this study was to detect whether colour-coded computed tomography enhances the visibility of mild degenerative changes in the canine disc structure compared to non-contrast computed tomography. Furthermore, the study aimed to detect if intervertebral disc degeneration could be classified with a higher reliability in colour-coded images than in non-contrast images. Computed tomographic image studies of 144 canine intervertebral discs were coloured using three different lookup tables. Canine intervertebral disc degeneration was evaluated by three observers using a 5-grade classification system and compared to the evaluation of non-contrast CT and MRI images. A moderate to almost perfect intraobserver and a moderate to substantial interobserver agreement were found depending on the used colour code. On comparing non-contrast and colour-coded CT significant differences were found by one observer only. Significant differences in evaluation were found in grading intervertebral disc degeneration in MRI and colour-coded CT. Intervertebral disc degeneration could not be classified with a higher reliability on colour-coded images compared to non-contrast images. Furthermore, colour-coded CT did not enhance the visibility of mild degenerative changes in disc structure compared to non-contrast CT. However, the better intraobserver agreement and the subjective impression of the observers highlighted that the usage of colour encoded CT data sets with a wide range of tonal values of few primary and secondary colours may facilitate evaluation.

  8. Cervical spine intervertebral kinematics with respect to the head are different during flexion and extension motions

    PubMed Central

    Anderst, William J.; Donaldson, William F.; Lee, Joon Y.; Kang, James D.

    2013-01-01

    Previous dynamic imaging studies of the cervical spine have focused entirely on intervertebral kinematics while neglecting to investigate the relationship between head motion and intervertebral motion. Specifically, it is unknown if the relationship between head and intervertebral kinematics is affected by movement direction. We tested the hypothesis that there would be no difference in sagittal plane intervertebral angles at identical head orientations during the flexion and extension movements. Nineteen asymptomatic subjects performed continuous head flexion-extension movements while biplane radiographs were collected at 30 images per second. A previously validated model-based volumetric tracking process determined three-dimensional vertebral position with sub-millimeter accuracy throughout the flexion–extension motion. Head movement was recorded at 60 Hz using conventional motion analysis and reflective markers. Intervertebral angles were determined at identical head orientations during the flexion and extension movements. Cervical motion segments were in a more extended orientation during flexion and in a more flexed orientation during extension for any given head orientation. The results suggest that static radiographs cannot accurately represent vertebral orientation during dynamic motion. Further, data should be collected during both flexion and extension movements when investigating intervertebral kinematics with respect to global head orientation. Also, in vitro protocols that use intervertebral total range of motion as validation criteria may be improved by assessing model fidelity using continuous intervertebral kinematics in flexion and in extension. Finally, musculoskeletal models of the head and cervical spine should account for the direction of head motion when determining muscle moment arms because vertebral orientations (and therefore muscle attachment sites) are dependent on the direction of head motion. PMID:23540377

  9. Lumbosacral Sagittal Alignment in Association to Intervertebral Disc Diseases

    PubMed Central

    Maleki, Farid; Meybodi, Ali Tayebi; Mahdavi, Ali; Saberi, Hooshang

    2014-01-01

    Study Design A cross-sectional case-control study was designed to compare the sagittal alignment of lumbosacral regions in two groups of patients suffering from low back pain, one with intervertebral disc pathologies and one without. Purpose To evaluate the correlation between lumbosacral sagittal alignment and disc degeneration. Overview of Literature Changes in lumbar lordosis and pelvic parameters in degenerative disc lesions have been assessed in few studies. Overall, patients with discopathy were shown to have lower lumbar lordosis and more vertical sacral profiles. Methods From patients with intractable low back pain undergoing lumbosacral magnetic resonance imaging, 50 subjects with disc degeneration and 50 controls with normal scans were consecutively enrolled. A method was defined with anterior tangent-lines going through anterior bodies of L1 and S1 to measure global lumbosacral angle, incorporating both lumbar lordosis and sacral slope. Global lumbosacral angle using the proposed method and lumbar lordosis using Cobb's method were measured in both groups. Results Lumbar lordosis based on Cobb's method was lower in group with discopathy (20°-67°; mean, 40.48°±9.89°) than control group (30°-62°; mean, 44.96°±7.68°), although it was not statistically significant. The proposed global lumbosacral angle in subject group (53°-103°; mean, 76.5°±11.018°) was less than control group (52°-101°; mean, 80.18°±9.95°), with the difference being statistically significant (p=0.002). Conclusions Patients with intervertebral disc lesions seem to have more straightened lumbosacral profiles, but it has not been proven which comes first: disc degeneration or changes in sagittal alignment. Finding an answer to this dilemma demands more comprehensive long-term prospective studies. PMID:25558325

  10. Impact of growth hormone hypersecretion on the adult human kidney.

    PubMed

    Grunenwald, Solange; Tack, Ivan; Chauveau, Dominique; Bennet, Antoine; Caron, Philippe

    2011-12-01

    Acromegaly is most often secondary to a GH-secreting pituitary adenoma with increased Insulin-like Growth Factor type 1 (IGF-1) level. The consequences of GH/IGF-1 hypersecretion reflect the diversity of action of these hormones. The genes of the GH receptor (GHR), IGF-1, IGF-1 receptor (IGF-1R) and IGF-binding proteins (IGF-BP) are physiologically expressed in the adult kidney, suggesting a potential role of the somatotropic axis on renal structure and functions. The expression of these proteins is highly organized and differs according to the anatomical and functional segments of the nephron suggesting different roles of GH and IGF-1 in these segments. In animals, chronic exposure to high doses of GH induces glomerulosclerosis and increases albuminuria. Studies in patients with GH hypersecretion have identified numerous targets of GH/IGF-1 axis on the kidney: 1) an impact on renal filtration with increased glomerular filtration rate (GFR), 2) a structural impact with an increase in kidney weight and glomerular hypertrophy, and 3) a tubular impact leading to hyperphosphatemia, hypercalciuria and antinatriuretic effects. Despite the increased glomerular filtration rate observed in patients with GH hypersecretion, GH is an inefficient treatment for chronic renal failure. GH and IGF-1 seem to be involved in the physiopathology of diabetic nephropathy; this finding offers the possibility of targeting the GH/IGF-1 axis for the prevention and the treatment of diabetic nephropathy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  12. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  13. Bacteriology of severe periodontitis in young adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Smibert, R M; Hash, D E; Burmeister, J A; Ranney, R R

    1982-01-01

    A total of 78 bacteriological samples were taken from the supragingival tooth surface after superficial cleaning with toothpicks or from the periodontal sulci of 42 affected sites in 21 adolescents or young adults with severe generalized periodontitis. Of 190 bacterial species, subspecies, or serotypes detected among 2,723 isolates, 11 species exceeded 1% of the subgingival flora and were most closely associated with the diseased sulci. Eleven others were also sufficiently frequent to be suspect agents of tissue destruction. Many of these species are known pathogens of other body sites. In addition, 10 species of Treponema were isolated. One of these and the "large treponeme" were also more closely associated with severe periodontitis than they were with healthy sites or gingivitis. There were highly significant differences between the composition of the flora of the affected sulci and the flora of (i) the adjacent supragingival tooth surface, (ii) the gingival crevice of periodontally healthy people, and (iii) sites with a gingival index score of 0 or 2 in experimental gingivitis studies. The floras of different individuals were also significantly different. There was no statistically detectable effect of sampling per se upon the composition of the flora of subsequent samples from the same sites. The composition of the supragingival flora of the patients with severe generalized periodontitis that had serum antibody to Actinobacillus actinomycetemcomitans was significantly different from the supragingival flora of patients without this serum antibody. However, there was no statistically significant difference in the composition of their subgingival floras. PMID:7152665

  14. Perinatal inflammation and adult psychopathology: From preclinical models to humans.

    PubMed

    Depino, Amaicha Mara

    2017-09-07

    Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fascicles of the adult human Achilles tendon - an anatomical study.

    PubMed

    Szaro, Paweł; Witkowski, Grzegorz; Smigielski, Robert; Krajewski, Paweł; Ciszek, Bogdan

    2009-12-01

    The Achilles or calcaneal tendon is the structural base for the biomechanical work of the ankle joint. The purpose of this study is to describe the internal structure of the human Achilles tendon. The anatomy of the Achilles tendon has been described in lower mammals in which it has three parts which can be dissected from its beginning to the insertion onto the calcaneus. The partial ruptures of each part suggest that the human Achilles tendon may also be composed of parts. The Achilles tendon is one of the most commonly torn tendons in the human body. Each segment of the Achilles tendon described by us can be ruptured separately, which can cause a partial dysfunction in flexion of the ankle joint as observed in clinical practice. We dissected 20 Achilles tendons previously fixed in 10% formaldehyde and 20 fresh-frozen Achilles tendons, paying particular attention to the relationship between the lateral and medial heads of the gastrocnemius and the soleus muscles. The layer-by-layer method and a microscope were used in our study. We found that the medial group of fibers from the medial head of the gastrocnemius muscle constitutes the posterior layer of the tendon. The lateral border of the tendon is composed of the fibers from the lateral part of the medial head of the gastrocnemius muscle. The fibers from the lateral head of the gastrocnemius muscle constitute the anterior layer of the Achilles tendon. The fibers from the soleus muscle are located in the anteromedial part of the Achilles tendon. Our findings are supported by clinical descriptions and observations of the partial rupture of the Achilles tendon. 2009 Elsevier GmbH.

  16. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    PubMed Central

    Sivakamasundari, V.; Kraus, Petra; Sun, Wenjie; Hu, Xiaoming; Lim, Siew Lan; Prabhakar, Shyam

    2017-01-01

    ABSTRACT Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD) of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis. PMID:28011632

  17. RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential.

    PubMed

    Kraus, Petra; Yerden, Rachel; Kocsis, Victoria; Lufkin, Thomas

    2017-03-01

    Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.

  18. Contact and perspective taking improve humanness standards and perceptions of humanness of older adults and people with dementia: a cross-sectional survey study.

    PubMed

    Miron, Anca M; McFadden, Susan H; Hermus, Nathan J; Buelow, Jennifer; Nazario, Amanda S; Seelman, Katarena

    2017-10-01

    No empirical work has systematically explored perceptions of humanness of people with dementia and of older adults and the variables that could improve these perceptions. We thus investigated the role of contact and perspective taking in improving perceptions of humanness of these social groups. To do so, we developed a new concept, humanness standards, defined as the amount of evidence of ability impairment needed to conclude that elderly people and those with dementia have lost personhood. We used a cross-sectional survey design (n = 619) to assess participants' humanness standards and perceptions of uniquely human characteristics and human nature characteristics of two social groups (people with dementia and older adults). Half the participants (n = 311) completed a survey about people with dementia and half (n = 308) assessed older adults. People with dementia were perceived as possessing humanness characteristics to a lesser extent than were older adults. For both groups, contact predicted enhanced perceptions of humanness characteristics. Participants' degree of contact with individuals with dementia also predicted humanness standards, but only under low perspective-taking conditions. As predicted, for older adults, participants set the highest humanness impairment thresholds in the high contact/high perspective-taking condition. We conclude that while social programs that bring persons with dementia and other individuals in contact could change humanness standards and perceptions of humanness characteristics of people with dementia, in the case of elderly adults, the contact must be supplemented by variables that facilitate taking the perspective of the person.

  19. Does the adult human ciliary body epithelium contain "true" retinal stem cells?

    PubMed

    Frøen, Rebecca; Johnsen, Erik O; Nicolaissen, Bjørn; Facskó, Andrea; Petrovski, Goran; Moe, Morten C

    2013-01-01

    Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.

  20. Genetic and functional characterization of clonally derived adult human brown adipocytes

    PubMed Central

    Shinoda, Kosaku; Luijten, Ineke H N; Hasegawa, Yutaka; Hong, Haemin; Sonne, Si B; Kim, Miae; Xue, Ruidan; Chondronikola, Maria; Cypess, Aaron M; Tseng, Yu-Hua; Nedergaard, Jan; Sidossis, Labros S; Kajimura, Shingo

    2015-01-01

    Brown adipose tissue (BAT) acts in mammals as a natural defense system against hypothermia, and its activation to a state of increased energy expenditure is believed to protect against the development of obesity. Even though the existence of BAT in adult humans has been widely appreciated1–8, its cellular origin and molecular identity remain elusive largely because of high cellular heterogeneity within various adipose tissue depots. To understand the nature of adult human brown adipocytes at single cell resolution, we isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures. We used RNA sequencing followed by unbiased genome-wide expression analyses and found that a population of uncoupling protein 1 (UCP1)-positive human adipocytes possessed molecular signatures resembling those of a recruitable form of thermogenic adipocytes (that is, beige adipocytes). In addition, we identified molecular markers that were highly enriched in UCP1-positive human adipocytes, a set that included potassium channel K3 (KCNK3) and mitochondrial tumor suppressor 1 (MTUS1). Further, we functionally characterized these two markers using a loss-of-function approach and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function. The results of this study present new opportunities for human BAT research, such as facilitating cell-based disease modeling and unbiased screens for thermogenic regulators. PMID:25774848

  1. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  2. NIRS Measurement of Venous Oxygen Saturation in the Adult Human Head

    NASA Astrophysics Data System (ADS)

    Brown, Derek W.; Haensse, Daniel; Bauschatz, Andrea; Wolf, Martin

    Provided that both the breathing frequency remains constant and that the temporal resolution of the instrument is sufficiently high, NIRS spiroximetry enables measurement of cerebral SvO2 in healthy human adults. Furthermore, simultaneous measurements of StO2, SaO2, and SvO2 enable calculation of both OEF and the compartmental distribution of cerebral blood volume.

  3. Equality and Human Capital: Conflicting Concepts within State-Funded Adult Education in Ireland

    ERIC Educational Resources Information Center

    Hurley, Kevin

    2015-01-01

    This article offers a critique of the concept of equality as it informs the White Paper on Adult Education: Learning for Life (2000). It also outlines the extent to which human capital theory can be seen to have effectively colonised lifelong learning from the outset of its adoption by the European Union with highly constraining implications for…

  4. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  5. An Assessemnt of Graduate Adult Education and Human Resource Development Programs: A U.S. Perspective

    ERIC Educational Resources Information Center

    Akdere, Mesut; Conceicao, Simone C. O.

    2009-01-01

    Due to recent changes in the workplace, the workforce and higher education have driven academic programs of adult education (AE) and human resource development (HRD) in the U.S. to become more integrated as part of the mission of institutions of higher education. In this exploratory study, existing graduate programs in AE and HRD in the U.S. were…

  6. Equality and Human Capital: Conflicting Concepts within State-Funded Adult Education in Ireland

    ERIC Educational Resources Information Center

    Hurley, Kevin

    2015-01-01

    This article offers a critique of the concept of equality as it informs the White Paper on Adult Education: Learning for Life (2000). It also outlines the extent to which human capital theory can be seen to have effectively colonised lifelong learning from the outset of its adoption by the European Union with highly constraining implications for…

  7. Treatment of Human-Caused Trauma: Attrition in the Adult Outcomes Research

    ERIC Educational Resources Information Center

    Matthieu, Monica; Ivanoff, Andre

    2006-01-01

    Attrition or dropout is the failure of a participant to complete, comply, or the prematurely discontinuation or discharge from treatment, resulting in lost data and affecting outcomes. This review of 10 years of adult posttraumatic stress disorder (PTSD) treatment outcome literature specific to Criterion A events of human origin examines how…

  8. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2006-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  9. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  10. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  11. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  12. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2014-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  13. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2013-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  14. Emotions and Human Concern: Adult Education and the Philosophical Thought of Martha Nussbaum

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2014-01-01

    This article argues that philosopher Martha Nussbaum's reflections on the role of the emotions in human flourishing can contribute in important ways to our understanding of the emotions in adult education contexts. The article summarises Nussbaum's exploration of the contributions of classical philosophers like Socrates, Aristotle, and…

  15. Complete Genome Sequence of Human Adenovirus 7 Associated with Fatal Adult Pneumonia.

    PubMed

    Yatsyshina, Svetlana B; Ageeva, Margarita R; Deviatkin, Andrey A; Pimkina, Ekaterina V; Markelov, Mikhail L; Dedkov, Vladimir G; Safonova, Marina V; Shumilina, Elena Y; Lukashev, Alexander N; Shipulin, German A

    2016-10-27

    Human adenovirus 7 (hAdv7) 19BOVLB/Volgograd/Rus/2014 was isolated from the autopsy material from an adult with fatal pneumonia in Volgograd, Russia, in March 2014. Whole-genome sequencing of the virus isolate was performed.

  16. Emotions and Human Concern: Adult Education and the Philosophical Thought of Martha Nussbaum

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2014-01-01

    This article argues that philosopher Martha Nussbaum's reflections on the role of the emotions in human flourishing can contribute in important ways to our understanding of the emotions in adult education contexts. The article summarises Nussbaum's exploration of the contributions of classical philosophers like Socrates, Aristotle, and…

  17. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    PubMed Central

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2011-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli. PMID:21079581

  18. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2013-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  19. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  20. Adult attachment style is associated with cerebral μ-opioid receptor availability in humans.

    PubMed

    Nummenmaa, Lauri; Manninen, Sandra; Tuominen, Lauri; Hirvonen, Jussi; Kalliokoski, Kari K; Nuutila, Pirjo; Jääskeläinen, Iiro P; Hari, Riitta; Dunbar, Robin I M; Sams, Mikko

    2015-09-01

    Human attachment behavior mediates establishment and maintenance of social relationships. Adult attachment characteristically varies on anxiety and avoidance dimensions, reflecting the tendencies to worry about the partner breaking the social bond (anxiety) and feeling uncomfortable about depending on others (avoidance). In primates and other mammals, the endogenous μ-opioid system is linked to long-term social bonding, but evidence of its role in human adult attachment remains more limited. We used in vivo positron emission tomography to reveal how variability in μ-opioid receptor (MOR) availability is associated with adult attachment in humans. We scanned 49 healthy subjects using a MOR-specific ligand [(11) C]carfentanil and measured their attachment avoidance and anxiety with the Experiences in Close Relationships-Revised scale. The avoidance dimension of attachment correlated negatively with MOR availability in the thalamus and anterior cingulate cortex, as well as the frontal cortex, amygdala, and insula. No associations were observed between MOR availability and the anxiety dimension of attachment. Our results suggest that the endogenous opioid system may underlie interindividual differences in avoidant attachment style in human adults, and that differences in MOR availability are associated with the individuals' social relationships and psychosocial well-being. © 2015 Wiley Periodicals, Inc.

  1. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2014-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  2. Rehabilitation in adults with human immunodeficiency virus-related diseases.

    PubMed

    O'Dell, M W; Dillon, M E

    1992-06-01

    The acquired immunodeficiency syndrome is a fatal disorder of cell-mediated immunity caused by the human immunodeficiency virus (HIV). As many as one million Americans infected with HIV can expect improved survival with more advanced treatment approaches. Complications of HIV infection occur in the brain, spinal cord, muscle, nerve, joints and other organ systems, which lead to extensive impairments. As survival increases, rehabilitation professionals can anticipate a greater number of referrals for the assessment and management of physical disability in persons with HIV infection. This article reviews HIV-related disease, impairment, disability and handicap pertinent to rehabilitation medicine. An agenda for future research is also proposed. Current knowledge and models or rehabilitation care can be applied to HIV-related physical disability in an effort to improve overall quality of life.

  3. Characterization of human foetal intestinal alkaline phosphatase. Comparison with the isoenzymes from the adult intestine and human tumour cell lines.

    PubMed Central

    Behrens, C M; Enns, C A; Sussman, H H

    1983-01-01

    The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line. Images Fig. 1. PMID:6882358

  4. Expression of neurotrimin in the normal and injured adult human spinal cord.

    PubMed

    Grijalva, I; Li, X; Marcillo, A; Salzer, J L; Levi, A D

    2006-05-01

    Neurotrimin (Ntm) is a member of the family of neural cell adhesion molecules. Its expression pattern suggests that Ntm promotes axonal fasciculation, guides nerve fibers to specific targets and stabilizes synapses as it accumulates coincident with synaptogenesis. Strong labeling of Ntm was observed in motor and sensory areas of the postnatal rat cortex. It is not known whether Ntm is present in adult human spinal cord (SC). In the present study, a monoclonal antibody specific for Ntm (1B1), is applied to the first study of the expression of Ntm in normal and injured adult human SC. (1) To investigate the expression pattern of Ntm in adult normal human SC, and (2) to observe the changes of Ntm expression after SC injury and compare the differences between normal and injured adult human SC. Human SC tissue was obtained from necropsies of patients with (n=5) and without (n=4) SC injury. The 1B1 Ntm monoclonal antibody was used for immunohistochemical staining on paraffin embedded sections with an ABC kit. (1) In total, 12 slides were analyzed for each group from both cervical and thoracic levels. Motor neurons and Clarke's neurons and glial-like cells were mild to moderately positive in all uninjured SC specimens. (2) In injured SC, no staining was observed in the injury epicenter between two and three levels proximally and distally, but was detected five levels away. (3) In patients older than 67 years of age, Ntm-positive inclusions were present in the white matter of the SC with or without injury. (4) Some meningeal cells were strongly Ntm-positive, especially in the uninjured human SC. Ntm is expressed by motor and Clarke's neurons and glial cells in uninjured human SC. The downregulation of Ntm in the injured SC suggests that its expression is regulated by afferent input. Spinal Cord (2006) 44, 275-279. doi:10.1038/sj.sc.3101840; published online 20 September 2005.

  5. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  6. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  7. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  8. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after...

  9. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  10. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  11. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  12. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after...

  13. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    ERIC Educational Resources Information Center

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  14. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    ERIC Educational Resources Information Center

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  15. Purinergic responses of calcium-dependent signaling pathways in cultured adult human astrocytes.

    PubMed

    Hashioka, Sadayuki; Wang, Yun Fan; Little, Jonathan P; Choi, Hyun B; Klegeris, Andis; McGeer, Patrick L; McLarnon, James G

    2014-01-22

    The properties of Ca2+ signaling mediated by purinergic receptors are intrinsically linked with functional activity of astrocytes. At present little is known concerning Ca2+-dependent purinergic responses in adult human astrocytes. This work has examined effects of purinergic stimulation to alter levels of intracellular Ca2+ in adult human astrocytes. Ca2+-sensitive spectrofluorometry was carried out to determine mobilization of intracellular Ca2+ following adenosine triphosphate (ATP) or 3'-O-(4-benzoyl)benzoyl-ATP (Bz-ATP) stimulation of adult human astrocytes. In some experiments pharmacological modulation of Ca2+ pathways was applied to help elucidate mechanisms of Ca2+ signaling. RT-PCR was also performed to confirm human astrocyte expression of specific purinoceptors which were indicated from imaging studies. The endogenous P2 receptor agonist ATP (at 100 μM or 1 mM) applied in physiological saline solution (PSS) evoked a rapid increase of [Ca2+]i to a peak amplitude with the decay phase of response exhibiting two components. The two phases of decay consisted of an initial rapid component which was followed by a secondary slower component. In the presence of Ca2+-free solution, the secondary phase of decay was absent indicating this prolonged component was due to influx of Ca2+. This prolonged phase of decay was also attenuated with the store-operated channel (SOC) inhibitor gadolinium (at 2 μM) added to standard PSS, suggesting this component was mediated by SOC activation. These results are consistent with ATP activation of P2Y receptor (P2YR) in adult human astrocytes leading to respective rapid [Ca2+]i mobilization from intracellular stores followed by Ca2+ entry through SOC. An agonist for P2X7 receptor (P2X7R), BzATP induced a very different response compared with ATP whereby BzATP (at 300 μM) elicited a slowly rising increase in [Ca2+]i to a plateau level which was sustained in duration. The BzATP-induced increase in [Ca2+]i was not enhanced with

  16. Purinergic responses of calcium-dependent signaling pathways in cultured adult human astrocytes

    PubMed Central

    2014-01-01

    Background The properties of Ca2+ signaling mediated by purinergic receptors are intrinsically linked with functional activity of astrocytes. At present little is known concerning Ca2+-dependent purinergic responses in adult human astrocytes. This work has examined effects of purinergic stimulation to alter levels of intracellular Ca2+ in adult human astrocytes. Ca2+-sensitive spectrofluorometry was carried out to determine mobilization of intracellular Ca2+ following adenosine triphosphate (ATP) or 3′-O-(4-benzoyl)benzoyl-ATP (Bz-ATP) stimulation of adult human astrocytes. In some experiments pharmacological modulation of Ca2+ pathways was applied to help elucidate mechanisms of Ca2+ signaling. RT-PCR was also performed to confirm human astrocyte expression of specific purinoceptors which were indicated from imaging studies. Results The endogenous P2 receptor agonist ATP (at 100 μM or 1 mM) applied in physiological saline solution (PSS) evoked a rapid increase of [Ca2+]i to a peak amplitude with the decay phase of response exhibiting two components. The two phases of decay consisted of an initial rapid component which was followed by a secondary slower component. In the presence of Ca2+-free solution, the secondary phase of decay was absent indicating this prolonged component was due to influx of Ca2+. This prolonged phase of decay was also attenuated with the store-operated channel (SOC) inhibitor gadolinium (at 2 μM) added to standard PSS, suggesting this component was mediated by SOC activation. These results are consistent with ATP activation of P2Y receptor (P2YR) in adult human astrocytes leading to respective rapid [Ca2+]i mobilization from intracellular stores followed by Ca2+ entry through SOC. An agonist for P2X7 receptor (P2X7R), BzATP induced a very different response compared with ATP whereby BzATP (at 300 μM) elicited a slowly rising increase in [Ca2+]i to a plateau level which was sustained in duration. The BzATP-induced increase in [Ca2+]i

  17. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.

  18. The mechanical properties of human ribs in young adult.

    PubMed

    Pezowicz, Celina; Głowacki, Maciej

    2012-01-01

    A good understanding of thoracic biomechanics is important for complete examination and control of chest behaviour under conditions of physiological and pathological work, and under the impact of external forces leading to traumatic loading of the chest. The purpose of the study was to analyse the mechanical properties of human ribs obtained from individuals under the age of 25 with scoliosis deformation and to correlate them with geometric properties of ribs. Thirty three fragments of ribs (9th to 12th) were tested in three-point bending. Rib fragments were collected intraoperatively from female patients treated for scoliosis in the thoracic, thoracolumbar, and lumbar spine. The results were used to determine the maximum failure force, stiffness, and Young's modulus. A significant relationship was found between the age and elastic modulus of the ribs. The analysis was carried out for two age groups, i.e., between the ages of 10 and 15 and between the ages of 16 and 22, and statistically significant differences were obtained for Young's modulus (p = 0.0001) amounting to, respectively, 2.79 ± 1.34 GPa for the first group and 7.44 ± 2.85 GPa for the second group. The results show a significant impact of age on the mechanical properties of ribs.

  19. Neural-competent cells of adult human dermis belong to the Schwann lineage.

    PubMed

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-11-11

    Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR(+) precursors of human foreskin can be ascribed to the Schwann (CD56(+)) and perivascular (CD56(-)) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR(+)CD56(+) Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.

  20. Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    PubMed Central

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G.; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-01-01

    Summary Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread. PMID:25418723

  1. Towards Scarless Wound Healing: A Comparison of Protein Expression between Human, Adult and Foetal Fibroblasts

    PubMed Central

    Ho, Sonia; Marçal, Helder; Foster, Leslie John Ray

    2014-01-01

    Proteins from human adult and foetal fibroblast cell lines were compared, focusing on those involved in wound healing. Proteins were separated through two-dimensional gel electrophoresis (2DE). Differences in protein spot intensity between the lineages were quantified through 3D gel scanning densitometry. Selected protein spots were excised, subjected to tryptic digests, prior to separation using HPLC with a linear ion trap mass spectrometer, and identified. Protein maps representing the proteomes from adult and foetal fibroblasts showed similar distributions but revealed differences in expression levels. Heat shock cognate 71 kDA protein, Tubulin alpha-1A chain, actin cytoplasmic-1, and neuron cytoplasmic protein were all expressed in significantly higher concentrations by foetal fibroblasts, nearly double those observed for their adult counterparts. Fructose bisphosphate aldolase A, Cofilin-1, Peroxiredoxin-1, Lactotransferrin Galectin-1, Profilin-1, and Calreticulin were expressed at comparatively higher concentrations by the adult fibroblasts. Significant differences in the expression levels of some proteins in human adult and foetal fibroblasts correlated with known differences in wound healing behaviour. This data may assist in the development of technologies to promote scarless wound healing and better functional tissue repair and regeneration. PMID:24605334

  2. Towards scarless wound healing: a comparison of protein expression between human, adult and foetal fibroblasts.

    PubMed

    Ho, Sonia; Marçal, Helder; Foster, Leslie John Ray

    2014-01-01

    Proteins from human adult and foetal fibroblast cell lines were compared, focusing on those involved in wound healing. Proteins were separated through two-dimensional gel electrophoresis (2DE). Differences in protein spot intensity between the lineages were quantified through 3D gel scanning densitometry. Selected protein spots were excised, subjected to tryptic digests, prior to separation using HPLC with a linear ion trap mass spectrometer, and identified. Protein maps representing the proteomes from adult and foetal fibroblasts showed similar distributions but revealed differences in expression levels. Heat shock cognate 71 kDA protein, Tubulin alpha-1A chain, actin cytoplasmic-1, and neuron cytoplasmic protein were all expressed in significantly higher concentrations by foetal fibroblasts, nearly double those observed for their adult counterparts. Fructose bisphosphate aldolase A, Cofilin-1, Peroxiredoxin-1, Lactotransferrin Galectin-1, Profilin-1, and Calreticulin were expressed at comparatively higher concentrations by the adult fibroblasts. Significant differences in the expression levels of some proteins in human adult and foetal fibroblasts correlated with known differences in wound healing behaviour. This data may assist in the development of technologies to promote scarless wound healing and better functional tissue repair and regeneration.

  3. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  4. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells.

    PubMed

    Mayani, Hector

    2010-03-01

    From the first studies performed by Broxmeyer and his group, in the late 1980s, evidence was presented indicating that hematopoietic progenitor cells from human umbilical cord blood (UCB) possessed certain in vitro biological features that differed from those observed in their adult counterparts. Throughout the past 20 years, these observations have been confirmed and expanded by several groups, using both in vitro and in vivo models. Today, it is widely recognized that stem and progenitor cells present in UCB are biologically different from those present in adult marrow or peripheral blood. As compared to cells from adult subjects, UCB-derived hematopoietic cells possess higher proliferation and expansion potentials, and their capacity to self-renew is also superior to that of adult cells. Although the mechanisms responsible for such biological differences are still not fully understood, telomere dynamics, cell cycle progression, certain transcription factor pathways, differential gene expression, and the autocrine production of particular cytokines are some of the mechanisms that have been implicated. Understanding, at the cellular and molecular levels, the biological differences between neonatal and adult hematopoietic cells has a 2-fold relevance. On the one hand, it will help to understand and characterize basic principles and mechanisms involved in human developmental biology; on the other hand, it will help to gain a deeper knowledge on the biology of hematopoietic cell transplants and to improve and optimize such a clinical procedure.

  5. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration.

    PubMed

    Kroeber, Markus W; Unglaub, Frank; Wang, Haili; Schmid, Carsten; Thomsen, Marc; Nerlich, Andreas; Richter, Wiltrud

    2002-12-01

    A new rabbit model was developed that produces disc degeneration through the application of controlled and quantified axial mechanical load. To characterize the changes associated with disc degeneration, and to evaluate the feasibility of local transfer of agents to the compressed discs to stimulate disc regeneration. Studies have shown that accelerated degeneration of the intervertebral disc results from altered mechanical loading conditions. The development of methods for the prevention of disc degeneration and the restoration of disc tissue that has already degenerated is needed. New Zealand white rabbits (n = 33) were used for this study. The discs in five animals remained unloaded and served as controls, whereas in 28 animals the discs were axially compressed using a custom-made external loading device. After 1 (n = 7), 14 (n = 7), and 28 (n = 7) days of dynamic loading, or 28 (n = 7) days of loading followed by 28 days of unloaded recovery time, the animals were killed and the lumbar spine was harvested for tissue preparation. Disc height, disc morphology, cell viability, disc stiffness, and load to failure were measured. Recombinant adenovirus encoding for two different marker genes (Ad-Luciferase and Ad-LacZ) was injected into the discs in loaded specimens and the gene expression was measured. The unloaded intervertebral discs of the rabbits consisted of a layered anulus fibrosus, a cartilaginous endplate, and a nucleus pulposus comparable with those of humans. After 14 and 28 days of loading, the discs demonstrated a significant decrease in disc space. Histologically, disorganization of the architecture of the anulus occurred. The number of dead cells increased significantly in the anulus and cartilage endplate. These changes were not reversible after 28 days of unloading. The stiffness and the load to failure did not change significantly in the discs after 28 days of loading, as compared with the unloaded control discs. Adenovirus-mediated gene transfer

  6. Artificial Cervical Vertebra and Intervertebral Complex Replacement through the Anterior Approach in Animal Model: A Biomechanical and In Vivo Evaluation of a Successful Goat Model

    PubMed Central

    Qin, Jie; He, Xijing; Wang, Dong; Qi, Peng; Guo, Lei; Huang, Sihua; Cai, Xuan; Li, Haopeng; Wang, Rui

    2012-01-01

    This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC) joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM) or neural zone (NZ) between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine. PMID:23300816

  7. Neuroscience of human social interactions and adult attachment style.

    PubMed

    Vrtička, Pascal; Vuilleumier, Patrik

    2012-01-01

    attachment insecurity and particularly anxiety. Emotion regulation strategies such as reappraisal or suppression of social emotions are also differentially modulated by attachment style. This research does not only help better understand the neural underpinnings of human social behavior, but also provides important insights on psychopathological conditions where attachment dysregulation is likely to play an important (causal) role.

  8. Neuroscience of human social interactions and adult attachment style

    PubMed Central

    Vrtička, Pascal; Vuilleumier, Patrik

    2012-01-01

    attachment insecurity and particularly anxiety. Emotion regulation strategies such as reappraisal or suppression of social emotions are also differentially modulated by attachment style. This research does not only help better understand the neural underpinnings of human social behavior, but also provides important insights on psychopathological conditions where attachment dysregulation is likely to play an important (causal) role. PMID:22822396

  9. The response of the anterior striatum during adult human vocal learning.

    PubMed

    Simmonds, Anna J; Leech, Robert; Iverson, Paul; Wise, Richard J S

    2014-08-15

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia "loops," which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts.

  10. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  11. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C. )

    1989-01-01

    Although children are an important human population, dosimetry models for gases have been used to predict absorption mainly in laboratory animals and adult humans. To correct this omission, we have used several sources of data on age-dependent lower respiratory tract (LRT) volumes, age-dependent airway dimensions, a model of the adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adulthood. An ozone (O3) dosimetry model was then used to estimate the regional and local uptake of O3 in the (theoretical) LRT of children and adults. For sedentary or quiet breathing, the LRT distribution of absorbed O3, the percent uptake (84 to 88%) and the centriacinar O3 tissue dose are not very sensitive to age. For maximal work during exercise, predicted LRT uptakes range from 87 to 93%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, the total quantity of O3 absorbed per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O3 is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage from O3.

  12. HMGA2 Moderately Increases Fetal Hemoglobin Expression in Human Adult Erythroblasts

    PubMed Central

    de Vasconcellos, Jaira F.; Lee, Y. Terry; Byrnes, Colleen; Tumburu, Laxminath; Rabel, Antoinette; Miller, Jeffery L.

    2016-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with beta-hemoglobin disorders. Previous studies showed that let-7 microRNAs (miRNAs) are highly regulated in erythroid cells during the fetal-to-adult developmental transition, and that targeting let-7 mediated the up-regulation of HbF to greater than 30% of the total globin levels in human adult cultured erythroblasts. HMGA2 is a member of the high-mobility group A family of proteins and a validated target of the let-7 family of miRNAs. Here we investigate whether expression of HMGA2 directly regulates fetal hemoglobin in adult erythroblasts. Let-7 resistant HMGA2 expression was studied after lentiviral transduction of CD34(+) cells. The transgene was regulated by the erythroid-specific gene promoter region of the human SPTA1 gene (HMGA2-OE). HMGA2-OE caused significant increases in gamma-globin mRNA expression and HbF to around 16% of the total hemoglobin levels compared to matched control transductions. Interestingly, no significant changes in KLF1, SOX6, GATA1, ZBTB7A and BCL11A mRNA levels were observed. Overall, our data suggest that expression of HMGA2, a downstream target of let-7 miRNAs, causes moderately increased gamma-globin gene and protein expression in adult human erythroblasts. PMID:27861570

  13. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    PubMed Central

    Harte, Richard P.; Glynn, Liam G.; Broderick, Barry J.; Rodriguez-Molinero, Alejandro; Baker, Paul M. A.; McGuiness, Bernadette; O’Sullivan, Leonard; Diaz, Marta; Quinlan, Leo R.; ÓLaighin, Gearóid

    2014-01-01

    Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications. PMID:25563225

  14. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

    PubMed Central

    Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso

    2017-01-01

    The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100

  15. Experimental studies on the effect of chymopapain on nerve root compression caused by intervertebral disk material.

    PubMed

    Krempen, J F; Minnig, D I; Smith, B S

    1975-01-01

    Chymopapain degrades the nucleus pulposus portion of the intervertebral disk of rabbits. The degradation is not grossly visible until 15 days post-injection. Depolymerization of the chondromucoprotein and decreases in the ability of a disk to imbibe fluid, is, in effect, a "chemical decompression" of the nucleur pulposus. The enzyme must come into direct contact with the chondromucoprotein complex of the disk material, and to a significant extent also must reach the area of disk material adjacent to the herniated annulus. Rapid depolymerization of the chondromucoprotein complex on a biomechanical level, and "decompression" of disk material on a biomechanical level can be correlated with relief of pain in all types of disk herniation in human beings. A primary biochemical change in the disk material would lead to a secondary decrease in inflammation if the change led to a "decompression" of the chondromucoprotein. Since the primary effect of chymopapain is on the chondromucoprotein of the disk, beneficial results would not be expected if nerve root compression is due to bony impingement or scar tissue following previous surgery. Chymopapain did not seem to possess any anti-inflammatory properties when bone was used as an irritant under a nerve root. However, this was technically difficult to evaluate and the possibility that chymopapain may also interfere with a chemical mediator of pain or interfere directly with an inflammatory reaction secondary to root compression can not be excluded.

  16. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.

    PubMed

    Schek, R M; Michalek, A J; Iatridis, J C

    2011-04-18

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

  17. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration

    PubMed Central

    Wu, Xinghuo; Liu, Wei; Duan, Zhenfeng; Gao, Yong; Li, Shuai; Wang, Kun; Song, Yu; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2016-01-01

    Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration. PMID:27460424

  18. Spatial and structural dependence of mechanical properties of porcine intervertebral disc.

    PubMed

    Causa, F; Manto, L; Borzacchiello, A; De Santis, R; Netti, P A; Ambrosio, L; Nicolais, L

    2002-12-01

    Structure-function relationship of natural tissues is crucial to design a device mimicking the structures present in human body. For this purpose, to provide guidelines to design an intervertebral disc (IVD) substitute, in this study the influence of the spatial location and structural components on the mechanical properties of porcine IVD was investigated. Local compressive stiffness (LCS) was measured on the overall disc, also constrained between the two adjacent vertebrae: the dependence on the lumbar position was evaluated. The compliance values in the anterior position (A) were higher than both in the central posterior (CP) and in the lateral-posterior (RP, LP) locations. The values of Young's Modulus (74.67+/-6.03 MPa) and compression break load (1.36x10(4)+/-0.09x10(4)N) of the disc were also evaluated by distributed compression test. The NP rheological behavior was typical of weak-gels, with elastic modulus G' always higher than viscous modulus G" all over the frequency range investigated (G' and G" respectively equal to 320 and 85 Pa at 1 Hz) and with the moduli trends were almost parallel to each other.

  19. Intervertebral Disc Cells Produce Interleukins Found in Patients with Back Pain.

    PubMed

    Zhang, Yejia; Chee, Ana; Shi, Peng; Adams, Sherrill L; Markova, Dessislava Z; Anderson, David Greg; Smith, Harvey E; Deng, Youping; Plastaras, Christopher T; An, Howard S

    2016-06-01

    To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.

  20. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres.

    PubMed

    Barile, Lucio; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Moccetti, Tiziano; Vassalli, Giuseppe

    2012-01-01

    The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34⁺ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  1. Binding of furosemide to albumin isolated from human fetal and adult serum.

    PubMed

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M

    1991-01-01

    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  2. Simulation of the Progression of Intervertebral Disc Degeneration due to Decreased Nutrition Supply

    PubMed Central

    Gu, Weiyong; Zhu, Qiaoqiao; Gao, Xin; Brown, Mark D.

    2014-01-01

    Study Design Simulate the progression of human disc degeneration. Objective The objective of this study was to quantitatively analyze and simulate the changes in cell density, nutrition level, proteoglycan content, water content, and volume change during human disc degeneration using a numerical method. Summary of Background Data Understanding the etiology and progression of intervertebral disc (IVD) degeneration is crucial for developing effective treatment strategies for IVD-degeneration related diseases. During tissue degeneration, the disc undergoes losses of cell viability and activities, changes in extracellular matrix composition and structure, and compromise of the tissue-level integrity and function, which is significantly influenced by the inter-coupled biological, chemical, electrical, and mechanical signals in the disc. Characterizing these signals in human discs in vivo is difficult. Methods A realistic 3D finite element model of the human IVD was developed based on biomechano-electrochemical continuum mixture theory. The theoretical framework and the constitutive relationships were all biophysics based. All the material properties were obtained from experimental results. The cell-mediated disc degeneration process caused by lowered nutrition levels at disc boundaries was simulated and validated by comparing with experimental results. Results Cell density reached equilibrium state in 30 days after reduced nutrition supply at the disc boundary, while the proteoglycan (PG) and water contents reached a new equilibrium state in 55 years. The simulated results for the distributions of PG and water contents within the disc were consistent with the results measured in the literature, except for the distribution of PG content in the sagittal direction. Conclusions Poor nutrition supply has a long-term effect on disc degeneration. PMID:25188596

  3. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  4. In vivo perfusion of human skin substitutes with microvessels formed by adult circulating endothelial progenitor cells.

    PubMed

    Kung, Elaine F; Wang, Feiya; Schechner, Jeffrey S

    2008-02-01

    At present, tissue-engineered human skin substitutes (HSSs) mainly function as temporary bioactive dressings due to inadequate perfusion. Failure to form functional vascular networks within the initial posttransplantation period compromises cell survival of the graft and its long-term viability in the wound bed. Our goal was to demonstrate that adult circulating endothelial progenitor cells (EPCs) seeded onto HSS can form functional microvessels capable of graft neovascularization and perfusion. Adult peripheral blood mononuclear cells (PBMCs) underwent CD34 selection and endothelial cell (EC) culture conditions. After in vitro expansion, flow cytometry verified EC phenotype before their incorporation into HSS. After 2 weeks in vivo, immunohistochemical analysis, immunofluorescent microscopy, and microfil polymer perfusion were performed. CD34+ PBMCs differentiated into EPC demonstrating characteristic EC morphology and expression of CD31, Tie-2, and E-selectin after TNFalpha-induction. Numerous human CD31 and Ulex europaeus agglutinin-1 (UEA-1) microvessels within the engineered grafts (HSS/EPCs) inosculated with recipient murine circulation. Limitation of murine CD31 immunoreactivity to HSS margins showed angiogenesis was attributable to human EPC at 2 weeks posttransplantation. Delivery of intravenous rhodamine-conjugated UEA-1 and microfil polymer to HSS/EPCs demonstrated enhanced perfusion by functional microvessels compared to HSS control without EPCs. We successfully engineered functional microvessels in HSS by incorporating adult circulating EPCs. This autologous EC source can form vascular conduits enabling perfusion and survival of human bioengineered tissues.

  5. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  6. Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone.

    PubMed

    Wang, Congmin; You, Yan; Qi, Dashi; Zhou, Xing; Wang, Lei; Wei, Song; Zhang, Zhuangzhi; Huang, Weixi; Liu, Zhidong; Liu, Fang; Ma, Lan; Yang, Zhengang

    2014-08-13

    In adult rodent and monkey brains, newly born neurons in the subventricular zone (SVZ) in the wall of the lateral ventricle migrate into the olfactory bulb (OB) via the rostral migratory stream (RMS). A recent study reported that interneurons are constantly generating in the adult human striatum from the SVZ. In contrast, by taking advantage of the continuous expression of Sp8 from the neuroblast stage through differentiation into mature interneurons, we found that the adult human SVZ does not generate new interneurons for the striatum. In the adult human SVZ and RMS, very few neuroblasts were observed, and most of them expressed the transcription factor Sp8. Neuroblasts in the adult rhesus monkey SVZ-RMS-OB pathway also expressed Sp8. In addition, we observed that Sp8 was expressed by most adult human and monkey OB interneurons. However, very few Sp8+ cells were in the adult human striatum. This suggests that neuroblasts in the adult human SVZ and RMS are likely destined for the OB, but not for the striatum. BrdU-labeling results also revealed few if any newly born neurons in the adult rhesus monkey striatum. Finally, on the basis of transcription factor expression, we provide strong evidence that the vast majority of interneurons in the human and monkey striatum are generated from the medial ganglionic eminence during embryonic developmental stages, as they are in rodents. We conclude that, although a small number of neuroblasts exist in the adult human SVZ, they do not migrate into the striatum and become mature striatal interneurons.

  7. Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study.

    PubMed

    Walter, B A; Torre, O M; Laudier, D; Naidich, T P; Hecht, A C; Iatridis, J C

    2015-12-01

    Multiple histologic measurements are commonly used to assess degenerative changes in intervertebral disc (IVD) structure; however, there is no consensus on which stains offer the clearest visualization of specific areas within the IVD. The objective of this study was to compare multiple tinctorial stains, evaluate their ability to highlight structural features within the IVD, and investigate how they influence the capacity to implement a degeneration scoring system. Lumbar IVDs from seven human autopsy specimens were stained using six commonly used stains (Hematoxylin/Eosin, Toluidine Blue, Safranin-O/Fast Green, Extended FAST, modified Gomori's Trichrome, and Picrosirius Red Alcian Blue). All IVDs were evaluated by three separate graders to independently determine which stains (i) were most effective at discerning different structural features within different regions of the IVDs and (ii) allowed for the most reproducible assessment of degeneration grade, as assessed via the Rutges histological scoring system (Rutges et al. A validated new histological classification for intervertebral disc degeneration. Osteoarthritis Cartilage, 21, 2039-47). Although Trichrome, XFAST and PR/AB stains were all effective at highlighting different regions of whole IVDs, we recommend the use of PR/AB because it had the highest degree of rater agreement on assigned degeneration grade, allowed greater resolution of degeneration grade, has an inferential relationship between color and composition, and allowed clear differentiation of the different regions and structural disruptions within the IVD. The use of a standard set of stains together with a histological grading scheme can aid in the characterization of structural changes in different regions of the IVD and may simplify comparisons across the field. This collection of human IVD histological images highlights how IVD degeneration is not a single disease but a composite of multiple processes such as aging, injury, repair, and

  8. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain

    PubMed Central

    Wang, Congmin; Liu, Fang; Liu, Ying-Ying; Zhao, Cai-Hong; You, Yan; Wang, Lei; Zhang, Jingxiao; Wei, Bin; Ma, Tong; Zhang, Qiangqiang; Zhang, Yue; Chen, Rui; Song, Hongjun; Yang, Zhengang

    2011-01-01

    It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain. PMID:21577236

  9. Origin of germ cells and formation of new primary follicles in adult human ovaries

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Upadhyaya, Nirmala B

    2004-01-01

    Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most

  10. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    PubMed

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  11. Recapitulating adult human immune traits in laboratory mice by normalizing environment

    PubMed Central

    Beura, Lalit K.; Hamilton, Sara E.; Bi, Kevin; Schenkel, Jason M.; Odumade, Oludare A.; Casey, Kerry A.; Thompson, Emily A.; Fraser, Kathryn A.; Rosato, Pamela C.; Filali-Mouhim, Ali; Sekaly, Rafick P.; Jenkins, Marc K.; Vezys, Vaiva; Haining, W. Nicholas; Jameson, Stephen C.; Masopust, David

    2016-01-01

    Our current understanding of immunology was largely defined in laboratory mice because of experimental advantages including inbred homogeneity, tools for genetic manipulation, the ability to perform kinetic tissue analyses starting with the onset of disease, and tractable models. Comparably reductionist experiments are neither technically nor ethically possible in humans. Despite revealing many fundamental principals of immunology, there is growing concern that mice fail to capture relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside1–8. Laboratory mice live in abnormally hygienic “specific pathogen free” (SPF) barrier facilities. Here we show that the standard practice of laboratory mouse husbandry has profound effects on the immune system and that environmental changes result in better recapitulation of features of adult humans. Laboratory mice lack effector-differentiated and mucosally distributed memory T cells, which more closely resembles neonatal than adult humans. These cell populations were present in free-living barn populations of feral mice, pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting a role for environment. Consequences of altering mouse housing profoundly impacted the cellular composition of the innate and adaptive immune system and resulted in global changes in blood cell gene expression patterns that more closely aligned with immune signatures of adult humans rather than neonates, altered the mouse’s resistance to infection, and impacted T cell differentiation to a de novo viral infection. These data highlight the impact of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modeling immunological events in free-living organisms, including humans. PMID

  12. Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla

    PubMed Central

    Santana, Magda M.; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Karl; Bastos, Carlos A.; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R.; Cavadas, Cláudia

    2012-01-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10–12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)+/β-3-tubulin+ cells and TH−/β-3-tubulin+ cells, and into chromaffin cells (TH+/PNMT+). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases. PMID:23197690

  13. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  14. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla.

    PubMed

    Santana, Magda M; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Klaus; Bastos, Carlos A; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R; Cavadas, Cláudia; Ehrhart-Bornstein, Monika

    2012-11-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10-12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)(+)/β-3-tubulin(+) cells and TH(-)/β-3-tubulin(+) cells, and into chromaffin cells (TH(+)/PNMT(+)). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases.

  15. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

    PubMed Central

    Yang, Minghui; Lan, Minghong; Liu, Chang; Zhang, Yang; Huang, Bo

    2017-01-01

    Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD. PMID:28392887

  16. Acupuncture treatment for feline multifocal intervertebral disc disease.

    PubMed

    Choi, Keum Hwa; Hill, Sara A

    2009-08-01

    A 14-year-old male neutered domestic shorthair cat was admitted to the Veterinary Medical Center, University of Minnesota for evaluation of severe hind limb ataxia, atrophy and paresis. Diagnosis based on physical examination, neurological assessment and magnetic resonance imaging (MRI) was multifocal intervertebral disc disease (IVDD) with dorsal disc protrusion throughout the thoracic and cranial lumbar spine. The Oriental Medicine (OM) diagnosis (pattern identification) was painful obstruction (Bi) syndrome caused by phlegm-heat accumulation with blood stagnation in the spine. High dose prednisolone therapy (1.25mg/kg PO, once daily) initially did not show any significant improvement in clinical signs. The cat was then treated with several modes of acupuncture treatment including dry needle acupuncture, electro-acupuncture and scalp acupuncture along with Tui-Na (hand manipulation in OM) and physical therapy. Significant improvements in mobility, proprioception and spinal posture were noticed and the cat was able to rise, walk and run 4 months after starting acupuncture treatments. This is the first case report of feline IVDD with multiple sites of disc compression which was successfully treated with several modes of acupuncture treatment.

  17. Matrix-assisted cell transfer for intervertebral disc cell therapy.

    PubMed

    Bertram, Helge; Kroeber, Markus; Wang, Haili; Unglaub, Frank; Guehring, Thorsten; Carstens, Claus; Richter, Wiltrud

    2005-06-17

    Cell therapy seems to be a promising way to reconstitute degenerated discs. We elucidate the basic aspects of intervertebral disc (IVD) cell therapy to estimate its potential in disc regeneration. Cell transfer efficiency and survival was quantified by luciferase expression after injection of recombinant cells into healthy, nucleotomized or mechanically degenerated rabbit IVDs in vitro, in situ or in vivo. A two-component fibrin matrix was adapted to allow injection of a fluid cell suspension that quickly polymerizes in IVDs. Thirty-five to fifty percent of matrix injected cells remained in the nucleus and transition zone in contrast to a rapid loss of medium-injected cells. Nucleotomy, which reduces intradiscal pressure, was crucial to the survival of the transferred cells over 3 days and nutritional enrichment of the fibrin matrix with potent biomolecules from serum significantly enhanced cell viability. In conclusion, advanced matrix substitutes are needed for efficient transfer and improved cell survival in the low-nutrient intradiscal environment to further improve disc cell therapy.

  18. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  19. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions.

    PubMed

    Sakai, Daisuke; Andersson, Gunnar B J

    2015-04-01

    Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.

  20. Fibroblast Transplantation Results to the Degenerated Rabbit Lumbar Intervertebral Discs.

    PubMed

    Ural, Ibrahim Halil; Alptekin, Kerem; Ketenci, Aysegul; Solakoglu, Seyhun; Alpak, Hasan; Özyalçın, Süleyman

    2017-01-01

    Our study is an analysis of the histological and radiological changes in degenerated lumbar intervertebral discs, after transplantation of fibroblasts in rabbits. With that study we aimed to show the viability of the fibroblasts injected to the degenerated discs, and observe their potential for further studies. The apoptosis of the cell is one of the factors at the disc degeneration process. Fibroblasts may act as mesenchymal stem cells at the tissue to which they are injected and they may replace the apoptotic cells. The nucleus pulposus of the discs from eight rabbits were aspirated under scopic guidance to induce disc degeneration. One month later, cultured fibroblasts, which had been taken from the skin, were injected into the disc. The viability and the potential of the injected cells for reproduction were studied histologically and radiologically. Cellular formations and organizations indicating to the histological recovery were observed at the discs to which fibroblasts were transplanted. The histological findings of the discs to which no fibroblasts were transplanted, did not show any histological recovery. Radiologically, no finding of the improvement was found in both groups. The fibroblasts injected to the degenerated discs are viable. The findings of improvement, observed in this study, suggest that fibroblast transplantation could be an effective method of therapy for the prevention or for the retardation of the degenerative disease of the discs.

  1. Fibroblast Transplantation Results to the Degenerated Rabbit Lumbar Intervertebral Discs

    PubMed Central

    Ural, Ibrahim Halil; Alptekin, Kerem; Ketenci, Aysegul; Solakoglu, Seyhun; Alpak, Hasan; Özyalçın, Süleyman

    2017-01-01

    Background: Our study is an analysis of the histological and radiological changes in degenerated lumbar intervertebral discs, after transplantation of fibroblasts in rabbits. With that study we aimed to show the viability of the fibroblasts injected to the degenerated discs, and observe their potential for further studies. Method: The apoptosis of the cell is one of the factors at the disc degeneration process. Fibroblasts may act as mesenchymal stem cells at the tissue to which they are injected and they may replace the apoptotic cells. The nucleus pulposus of the discs from eight rabbits were aspirated under scopic guidance to induce disc degeneration. Results: One month later, cultured fibroblasts, which had been taken from the skin, were injected into the disc. The viability and the potential of the injected cells for reproduction were studied histologically and radiologically. Cellular formations and organizations indicating to the histological recovery were observed at the discs to which fibroblasts were transplanted. The histological findings of the discs to which no fibroblasts were transplanted, did not show any histological recovery. Radiologically, no finding of the improvement was found in both groups. The fibroblasts injected to the degenerated discs are viable. Conclusion: The findings of improvement, observed in this study, suggest that fibroblast transplantation could be an effective method of therapy for the prevention or for the retardation of the degenerative disease of the discs. PMID:28603572

  2. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis

    PubMed Central

    Bian, Qin; Ma, Lei; Jain, Amit; Crane, Janet L; Kebaish, Khaled; Wan, Mei; Zhang, Zhengdong; Edward Guo, X; Sponseller, Paul D; Séguin, Cheryle A; Riley, Lee H; Wang, Yongjun; Cao, Xu

    2017-01-01

    Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD. PMID:28392965

  3. Mesenchymal stem cell tracking in the intervertebral disc

    PubMed Central

    Handley, Charles; Goldschlager, Tony; Oehme, David; Ghosh, Peter; Jenkin, Graham

    2015-01-01

    Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD. PMID:25621106

  4. Higher risk for cervical herniated intervertebral disc in physicians

    PubMed Central

    Liu, Cheng; Huang, Chien-Cheng; Hsu, Chien-Chin; Lin, Hung-Jung; Guo, How-Ran; Su, Shih-Bin; Wang, Jhi-Joung; Weng, Shih-Feng

    2016-01-01

    Abstract There is no study about cervical herniated intervertebral disc (cervical HIVD) in physicians in the literature; therefore, we conceived a retrospective nationwide, population-based cohort study to elucidate the topic. We identified 26,038 physicians, 33,057 non-physician healthcare providers (HCPs), and identical numbers of non-HCP references (i.e., general population). All cohorts matched a 1:1 ratio with age and gender, and each were chosen from the Taiwan National Health Insurance Research Database (NHIRD). We compared cervical HIVD risk among physicians, nonphysician HCPs, and non-HCP references and performed a follow-up between 2007 and 2011. We also made comparisons among physician specialists. Both physicians and nonphysician HCPs had higher cervical HIVD risk than non-HCP references (odds ratio [OR]: 1.356; 95% confidence interval (CI): 1.162–1.582; OR: 1.383; 95% CI: 1.191–1.605, respectively). There was no significant difference of cervical HIVD risk between physicians and nonphysician HCPs. In the comparison among physician specialists, orthopedists had a higher cervical HIVD risk than other specialists, but the difference was not statistically significant (adjusted OR: 1.547; 95% CI: 0.782–3.061). Physicians are at higher cervical HIVD risk than the general population. Because unknown confounders could exist, further prospective studies are needed to identify possible causation. PMID:27741118

  5. Intervertebral foramen venous obstruction. A cause of periradicular fibrosis?

    PubMed

    Hoyland, J A; Freemont, A J; Jayson, M I

    1989-06-01

    Disc herniation into the intervertebral foramen (IVF) or osteophytic outgrowths from the margins of the apophyseal joints that project into the IVF may compress the neural structures, but in this cadaveric study of 160 lumbar foramens (age range, 35-91 years), the authors have found that they were much more commonly associated with compression and distortion of the large venous plexus within the IVF. In the absence of direct nerve compression (seen in only eight specimens), the most severe neural changes were associated with compression, congestion, and resultant dilatation of foraminal veins. Pathologic changes within and around the nerve root complex included peri- and intraneural fibrosis, edema of nerve roots, and focal demyelination. Inflammatory cells were notably absent. Vascular changes within the thickened fibrous sheath about damaged nerves, namely, basement membrane thickening, suggestive of endothelial cell injury also were observed. The association between vascular compression, tissue fibrosis, and endothelial injury distant from the compression may be causal--probably due to ischemia as a result of reduced venous outflow. Such observations have led the authors to propose that venous obstruction may be an important pathogenic mechanism in the development of perineural and intraneural fibrosis.

  6. A Comparison of Pure Tone Auditory Thresholds in Human Infants and Adults.

    PubMed

    Sinnott, Joan M; Pisoni, David B; Aslin, Richard N

    1983-01-01

    Pure tone auditory thresholds for frequencies from .250 to 8.0 kHz were obtained from 277-to-11-month-old human infants and nine adults using a go-no-go operant head-turning technique combined with an adaptive staircase (tracking) discrimination procedure. New methods were devised for maintaining infants under stimulus control during threshold testing through the use of randomly interleaved "probe" and "catch" trials. Reliable threshold data were obtained from every infant studied, and identical threshold criteria were applied to infants and adults alike. Although infant thresholds were 17-27 dB higher than those of adults, infant inter-subject variability was no greater than that of adults. Adult audiograms were nearly flat between frequencies of .500 and 8.0 kHz with sensitivity ranging between 7 and 14 dB SPL. Infant audiograms were flat between frequencies of .500 and 4.0 kHz, with sensitivity ranging between 30 and 36 dB SPL. The most sensitive frequency for infants was 8.0 kHz (25 dB SPL).

  7. Molecular subtypification of human papillomavirus in male adult individuals with recurrent respiratory papillomatosis.

    PubMed

    García-Romero, Carmen S; Akaki-Caballero, Matsuharu; Saavedra-Mendoza, Ana G; Guzmán-Romero, Ana K; Canto, Patricia; Coral-Vázquez, Ramón M

    2015-10-01

    This study aimed to identify the isotype of human papillomavirus (HPV) in fresh tissue samples of 35 male adults with adult recurrent adult respiratory papillomatosis which may be important to define the precise etiology of the disease, and determine the therapeutic and prophylactic measures. A total of 35 adult male patients diagnosed with active RRP who have been treated for several years were included in the study. DNA of patients was extracted from fresh biological samples and analyzed by PCR and a Linear Array® HPV Genotyping system. Most cases (95%) corresponded to adult-onset of RRP. A questionnaire was applied to obtain demographic and clinical data. Using a PCR-based detection system all patients showed the presence of HPV; 80% were positive for HPV-6, 8% for HPV-11 and one for HPV-16. Most patients presented HPV-6 and consequently it was not feasible to correlate clinical and demographic characteristics with viral type. Besides, co-infections were not evident. This knowledge may be relevant to delineate therapeutic and preventive measures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. A seroprevalence survey for human immunodeficiency virus antibody in mentally retarded adults.

    PubMed

    Pincus, S H; Schoenbaum, E E; Webber, M

    1990-03-01

    The prevalence of human immunodeficiency virus (HIV) infection among adults who are mentally retarded is not known. Policies for those in residential settings are being established despite incomplete information. Knowledge regarding HIV seroprevalence would enable administrators to make more effective policy decisions concerning testing and HIV prevention. Discarded sera from mentally retarded adults were anonymously tested for HIV antibody. Sera were collected from a health facility in Westchester County, NY, that provides care to developmentally disabled adults. After identifications were removed, sera were coded and linked to demographic and clinical variables from hospital and laboratory records. Sera came from individuals living in both institutional and less restrictive community settings in metropolitan New York City and more distant locations in New York State, all of whom were seen by the above facility. No HIV antibody was detected in sera from 241 mentally retarded adults. This study suggests that the prevalence of HIV antibody in mentally retarded adults is not high. Mandatory screening programs may not be appropriate for these individuals. Monies might be better spent on educational programs directed at AIDS prevention, and further development of ethical and safe policies for those who are mentally retarded.

  9. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery

    PubMed Central

    Fan, Xiaoyao; Paulsen, Keith D.; Roberts, David W.; Mirza, Sohail K.; Lollis, S. Scott

    2016-01-01

    Purpose An accurate and reliable benchmark of registration accuracy and intervertebral motion compensation is important for spinal image guidance. In this study, we evaluated the utility of intraoperative CT (iCT) in place of bone-implanted screws as the ground-truth registration and illustrated its use to benchmark the performance of intraoperative stereovision (iSV). Methods A template-based, multi-body registration scheme was developed to individually segment and pair corresponding vertebrae between preoperative CT and iCT of the spine. Intervertebral motion was determined from the resulting vertebral pair-wise registrations. The accuracy of the image-driven registration was evaluated using surface-to-surface distance error (SDE) based on segmented bony features and was independently verified using point-to-point target registration error (TRE) computed from bone-implanted mini-screws. Both SDE and TRE were used to assess the compensation accuracy using iSV. Results The iCT-based technique was evaluated on four explanted porcine spines (20 vertebral pairs) with artificially induced motion. We report a registration accuracy of 0.57 ± 0.32 mm (range 0.34–1.14 mm) and 0.29 ± 0.15 mm (range 0.14–0.78 mm) in SDE and TRE, respectively, for all vertebrae pooled, with an average intervertebral rotation of 4.9° ± 1.2° (range 1.5°–7.9°). The iSV-based compensation accuracy for one sample (four vertebrae) was 1.32 ± 0.19 mm and 1.72 ± 0.55 mm in SDE and TRE, respectively, exceeding the recommended accuracy of 2 mm. Conclusion This study demonstrates the effectiveness of iCT in place of invasive fiducials as a registration ground truth. These findings are important for future development of on-demand spinal image guidance using radiation-free images such as stereovision and ultrasound on human subjects. PMID:26194485

  10. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery.

    PubMed

    Ji, Songbai; Fan, Xiaoyao; Paulsen, Keith D; Roberts, David W; Mirza, Sohail K; Lollis, S Scott

    2015-12-01

    An accurate and reliable benchmark of registration accuracy and intervertebral motion compensation is important for spinal image guidance. In this study, we evaluated the utility of intraoperative CT (iCT) in place of bone-implanted screws as the ground-truth registration and illustrated its use to benchmark the performance of intraoperative stereovision (iSV). A template-based, multi-body registration scheme was developed to individually segment and pair corresponding vertebrae between preoperative CT and iCT of the spine. Intervertebral motion was determined from the resulting vertebral pair-wise registrations. The accuracy of the image-driven registration was evaluated using surface-to-surface distance error (SDE) based on segmented bony features and was independently verified using point-to-point target registration error (TRE) computed from bone-implanted mini-screws. Both SDE and TRE were used to assess the compensation accuracy using iSV. The iCT-based technique was evaluated on four explanted porcine spines (20 vertebral pairs) with artificially induced motion. We report a registration accuracy of 0.57 [Formula: see text] 0.32 mm (range 0.34-1.14 mm) and 0.29 [Formula: see text] 0.15 mm (range 0.14-0.78 mm) in SDE and TRE, respectively, for all vertebrae pooled, with an average intervertebral rotation of [Formula: see text] (range 1.5[Formula: see text]-7.9[Formula: see text]). The iSV-based compensation accuracy for one sample (four vertebrae) was 1.32 [Formula: see text] 0.19 mm and 1.72 [Formula: see text] 0.55 mm in SDE and TRE, respectively, exceeding the recommended accuracy of 2 mm. This study demonstrates the effectiveness of iCT in place of invasive fiducials as a registration ground truth. These findings are important for future development of on-demand spinal image guidance using radiation-free images such as stereovision and ultrasound on human subjects.

  11. Adult human gingival epithelial cells as a source for whole-tooth bioengineering.

    PubMed

    Angelova Volponi, A; Kawasaki, M; Sharpe, P T

    2013-04-01

    Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin.

  12. Long-term culture and functional characterization of follicular cells from adult normal human thyroids.

    PubMed Central

    Curcio, F; Ambesi-Impiombato, F S; Perrella, G; Coon, H G

    1994-01-01

    We have obtained long-term cultures of differentiated proliferating follicular cells from normal adult human thyroid glands. In vitro growth of such human cells has been sustained by a modified F-12 medium, supplemented with bovine hypothalamus and pituitary extracts and no added thyrotropin. Cultures have been expanded, cloned, frozen, successfully retrieved, and characterized. Functional characterization of these cells shows constitutive thyroglobulin production and release and thyrotropin-dependent adenosine 3',5'-cyclic monophosphate production, the latter apparently not associated with significant increases in DNA synthesis or cell proliferation. Genetic characterization of these cells by chromosome counting showed the normal diploid chromosome number. The ability to cultivate differentiated human thyroid follicular cells in long-term culture opens possibilities for investigating the transduction pathways of thyrotropin stimulation in normal and pathological human tissues, developing clinically relevant in vitro assays, and considering cellular and molecular therapies. Images PMID:8090760

  13. Attitudes of Korean adults towards human dignity: A Q methodology approach

    PubMed Central

    Kae Hwa, JO; Gyeong-Ju, AN; DOORENBOS, Ardith Z.

    2013-01-01

    Aim The aim of this study was to identify the perceived attitudes of Korean adults towards human dignity in order to determine the relationship of human dignity to its social and cultural background. Methods The Q methodology research technique was used to explore perceived attitude typology on the basis of the respondents’ ranking order for different statements. A convenience sampling method was used to select 40 Korean adults who were interested in human dignity to create statements. From the questionnaires, in-depth interviews, and a literature review, a total of 158 statements was obtained. The final 34 Q samples were selected from a review by two nursing professors and a Q methodology expert. Moreover, 38 respondents participated as P samples by sorting 34 Q statements on a nine-point normal distribution scale. The data were analyzed by using the QUANL software package. Results The following four types of attitudes about human dignity were identified in Korea: a happiness-oriented–self-pursuit type, relationship-oriented–self-recognition type, reflection-oriented–self-unification type, and discrimination-oriented–self-maintenance type. Conclusions The results indicate that approaches to developing human dignity education need to take this typology into account and the characteristics of the participants who fall into each category. These results provide general guidelines to understand Korean values for professional practice in various healthcare settings. PMID:22583944

  14. Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness.

    PubMed

    Maslin, M R D; Lloyd, S K; Rutherford, S; Freeman, S; King, A; Moore, D R; Munro, K J

    2015-10-01

    Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.

  15. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts

    PubMed Central

    2013-01-01

    Background Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury – by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. Results We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. Conclusions Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential. PMID:24066673

  16. Spinal manipulation reduces pain and hyperalgesia after lumbar intervertebral foramen inflammation in the rat.

    PubMed

    Song, Xue-Jun; Gan, Qiang; Cao, Jun-Li; Wang, Zheng-Bei; Rupert, Ronald L

    2006-01-01

    To document potential mediating effects of the Activator-assisted spinal manipulative therapy (ASMT) on pain and hyperalgesia after acute intervertebral foramen (IVF) inflammation. The IVF inflammation was mimicked by in vivo delivery of inflammatory soup directly into the L5 IVF in adult male Sprague-Dawley rats. Thermal hyperalgesia and mechanical allodynia were determined by the shortened latency of foot withdrawal to radiant heat and von Frey filament stimulation to the hind paw, respectively. Intracellular recordings were obtained in vitro from L5 dorsal root ganglion (DRG) somata. DRG inflammation was examined by observation of the appearance and hematoxylin and eosin staining. ASMT was applied to the spinous process of L4, L5, and L6. A series of 10 adjustments were initiated 24 hours after surgery and subsequently applied daily for 7 consecutive days and every other day during the second week. (1) ASMT applied on L5, L6, or L5 and L6 spinous process significantly reduced the severity and duration of thermal and mechanical hyperalgesia produced by the IVF inflammation. However, ASMT applied on L4 did not affect the response in rats with IVF inflammation or the controls; (2) electrophysiological studies showed that hyperexcitability of the DRG neurons produced by IVF inflammation was significantly reduced by ASMT; (3) pathological studies showed that manifestations of the DRG inflammation, such as the increased vascularization and satellitosis, were significantly reduced 2 to 3 weeks after ASMT. These studies show that ASMT can significantly reduce the severity and shorten the duration of pain and hyperalgesia caused by lumbar IVF inflammation. This effect may result from ASMT-induced faster elimination of the inflammation and recovery of excitability of the inflamed DRG neurons by improving blood and nutrition supplement to the DRG within the affected IVF. Manipulation of a specific spinal segment may play an important role in optimizing recovery from

  17. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    PubMed

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi.

  18. Urinary concentrations of parabens in Chinese young adults: implications for human exposure.

    PubMed

    Ma, Wan-Li; Wang, Lei; Guo, Ying; Liu, Li-Yan; Qi, Hong; Zhu, Ning-Zheng; Gao, Chong-Jing; Li, Yi-Fan; Kannan, Kurunthachalam

    2013-10-01

    Parabens are widely used as preservatives in foods, cosmetics, and pharmaceuticals. However, recent studies have indicated that high and systemic exposure to parabens can be harmful to human health. Although a few studies have reported urinary paraben levels in western countries, studies on paraben exposure in the Chinese population are limited. China is currently a major producer of parabens in the world. In this study, 109 urine samples collected from Chinese young adults (approximately 20 years old) were analyzed for five parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl-parabens) by high-performance liquid chromatography-tandem mass spectrometry. Methyl-, propyl-, and ethyl-parabens were the three major paraben analogues found in all (100%) samples. The concentration of the sum of the five parabens ranged from 0.82 to 728 ng/mL with a geometric mean value of 17.4 ng/mL. Urinary concentration of parabens was 2-fold greater in females than in males. Based on the measured urinary concentrations, daily intake of parabens by the Chinese young adults was estimated and compared with those reported for United States adults. The estimated daily intakes (EDIurine) of parabens were 18.4 and 40.8 μg/kg bw/day for Chinese males and females, respectively, values that were lower than those reported for United States adults (74.7 μg/kg bw/day). Based on the reported concentrations of parabens in foods from China and the United States, the contribution of dietary intake to EDIurine was estimated to be 5.5, 2.6, and 0.42% for Chinese males, Chinese females, and United States adults, respectively, which indicates the significance of nondietary sources of parabens to human exposures.

  19. Regulated gene expression in cultured type II cells of adult human lung

    PubMed Central

    Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for ∼4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of ∼3% of probed genes by ≥1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (≥10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells. PMID:20382749

  20. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    PubMed Central

    Figueroa-Cavazos, J. Obedt; Flores-Villalba, Eduardo; Diaz-Elizondo, José A.

    2016-01-01

    This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated. PMID:27578960

  1. Intervertebral Fusion with Mobile Microendoscopic Discectomy for Lumbar Degenerative Disc Disease.

    PubMed

    Xu, Bao-Shan; Liu, Yue; Xu, Hai-Wei; Yang, Qiang; Ma, Xin-Long; Hu, Yong-Cheng

    2016-05-01

    The aim of this article is to introduce a technique for lumbar intervertebral fusion that incorporates mobile microendoscopic discectomy (MMED) for lumbar degenerative disc disease. Minimally invasive transforaminal lumbar interbody fusion is frequently performed to treat degenerative diseases of the lumbar spine; however, the scope of such surgery and vision is limited by what the naked eye can see through the expanding channel system. To expand the visual scope and reduce trauma, we perform lumbar intervertebral fusion with the aid of a MMED system that provides a wide field through freely tilting the surgical instrument and canals. We believe that this technique is a good option for treating lumbar degenerative disc disease that requires lumbar intervertebral fusion. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  2. The mental representation of the human gait in young and older adults

    PubMed Central

    Stöckel, Tino; Jacksteit, Robert; Behrens, Martin; Skripitz, Ralf; Bader, Rainer; Mau-Moeller, Anett

    2015-01-01

    The link between mental representation (MREP) structures and motor performance has been evidenced for a great variety of movement skills, but not for the human gait. Therefore the present study sought to investigate the cognitive memory structures underlying the human gait in young and older adults. In a first experiment, gait parameters at comfortable gait speed (OptoGait) were compared with gait-specific MREPs (structural dimensional analysis of MREP; SDA-M) in 36 young adults. Participants were divided into a slow- and fast-walking group. The proven relationship between gait speed and executive functions such as working memory led to the hypothesis that gait pattern and MREP differ between slow- and fast-walking adults. In a second experiment, gait performance and MREPs were compared between 24 young (27.9 years) and 24 elderly (60.1 years) participants. As age-related declines in gait performance occur from the seventh decade of life onward, we hypothesized that gait parameters would not be affected until the age of 60 years accompanied by unchanged MREP. Data of experiment one revealed that gait parameters and MREPs differed significantly between slow and fast walkers. Notably, eleven previously incurred musculoskeletal injuries were documented for the slow walkers but only two injuries and one disorder for fast walkers. Experiment two revealed no age-related differences in gait parameters or MREPs between healthy young and older adults. In conclusion, the differences in gait parameters associated with lower comfortable gait speeds are reflected by differences in MREPs, whereby SDA-M data indicate that the single limb support phase may serve as a critical functional period. These differences probably resulted from previously incurred musculoskeletal injuries. Our data further indicate that the human gait and its MREP are stable until the age of 60. SDA-M may be considered as a valuable clinical tool for diagnosis of gait abnormalities and monitoring of

  3. Arteriovenous Malformation in the Adult Mouse Brain Resembling the Human Disease

    PubMed Central

    Walker, Espen J.; Su, Hua; Shen, Fanxia; Choi, Eun-Jung; Oh, S. Paul; Chen, Grant; Lawton, Michael T.; Kim, Helen; Chen, Yongmei; Chen, Wanqiu; Young, William L.

    2010-01-01

    Objective Brain arteriovenous malformations (bAVM) are an important cause of hemorrhagic stroke. The underlying mechanisms are not clear. No animal model for adult bAVM is available for mechanistic exploration. Patients with Hereditary Hemorrhagic Telangiectasia Type2 (HHT2) with activin receptor-like kinase 1 (ALK1; ACVRL1) mutations have a higher incidence of bAVM than the general population. We tested the hypothesis that VEGF stimulation with regional homozygous deletion of Alk1 induces severe dysplasia in the adult mouse brain, akin to human bAVM. Methods Alk12f/2f (exons 4–6 flanked by loxP sites) and wild-type (WT) mice (8–10 weeks old) were injected with Ad-Cre (2×107 PFU, adenoviral vector expressing Cre recombinase) and AAV-VEGF (2×109 genome copies, adeno-associated viral vectors expressing VEGF) into the basal ganglia. At 8 weeks, blood vessels were analyzed. Results Gross vascular irregularities were seen in Alk1 2f/2f mouse brain injected with Ad-Cre and AAV-VEGF. The vessels were markedly enlarged with abnormal patterning resembling aspects of the human bAVM phenotype, displayed altered expression of the arterial and venous markers (EphB4 and Jagged-1), and showed evidence of arteriovenous shunting. Vascular irregularities were not seen in similarly treated WT mice. Interpretation Our data indicate that post-natal, adult formation of the human disease bAVM is possible, and that both genetic mutation and angiogenic stimulation are necessary for lesion development. Our work not only provides a testable adult mouse bAVM model for the first time, but also suggests that specific medical therapy can be developed to slow bAVM growth and potentially stabilize the rupture-prone abnormal vasculature. PMID:21437931

  4. The mental representation of the human gait in young and older adults.

    PubMed

    Stöckel, Tino; Jacksteit, Robert; Behrens, Martin; Skripitz, Ralf; Bader, Rainer; Mau-Moeller, Anett

    2015-01-01

    The link between mental representation (MREP) structures and motor performance has been evidenced for a great variety of movement skills, but not for the human gait. Therefore the present study sought to investigate the cognitive memory structures underlying the human gait in young and older adults. In a first experiment, gait parameters at comfortable gait speed (OptoGait) were compared with gait-specific MREPs (structural dimensional analysis of MREP; SDA-M) in 36 young adults. Participants were divided into a slow- and fast-walking group. The proven relationship between gait speed and executive functions such as working memory led to the hypothesis that gait pattern and MREP differ between slow- and fast-walking adults. In a second experiment, gait performance and MREPs were compared between 24 young (27.9 years) and 24 elderly (60.1 years) participants. As age-related declines in gait performance occur from the seventh decade of life onward, we hypothesized that gait parameters would not be affected until the age of 60 years accompanied by unchanged MREP. Data of experiment one revealed that gait parameters and MREPs differed significantly between slow and fast walkers. Notably, eleven previously incurred musculoskeletal injuries were documented for the slow walkers but only two injuries and one disorder for fast walkers. Experiment two revealed no age-related differences in gait parameters or MREPs between healthy young and older adults. In conclusion, the differences in gait parameters associated with lower comfortable gait speeds are reflected by differences in MREPs, whereby SDA-M data indicate that the single limb support phase may serve as a critical functional period. These differences probably resulted from previously incurred musculoskeletal injuries. Our data further indicate that the human gait and its MREP are stable until the age of 60. SDA-M may be considered as a valuable clinical tool for diagnosis of gait abnormalities and monitoring of

  5. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies.

    PubMed

    Camelliti, Patrizia; Al-Saud, Sara Abou; Smolenski, Ryszard T; Al-Ayoubi, Samha; Bussek, Alexandra; Wettwer, Erich; Banner, Nicholas R; Bowles, Christopher T; Yacoub, Magdi H; Terracciano, Cesare M

    2011-09-01

    Electrophysiological and pharmacological data from the human heart are limited due to the absence of simple but representative experimental model systems of human myocardium. The aim of this study was to establish and characterise adult human myocardial slices from small patients' heart biopsies as a simple, reproducible and relevant preparation suitable for the study of human cardiac tissue at the multicellular level. Vibratome-cut myocardial slices were prepared from left ventricular biopsies obtained from end-stage heart failure patients undergoing heart transplant or ventricular assist device implantation, and from hearts of normal dogs. Multiple slices were prepared from each biopsy. Regular contractility was observed at a range of stimulation frequencies (0.1-2 Hz), and stable electrical activity, monitored using multi-electrode arrays (MEA), was maintained for at least 8 h from slice preparation. ATP/ADP and phosphocreatine/creatine ratios were comparable to intact organ values, and morphology and gap junction distribution were representative of native myocardium. MEA recordings showed that field potential duration (FPD) and conduction velocity (CV) in human and dog slices were similar to the values previously reported for papillary muscles, ventricular wedges and whole hearts. Longitudinal CV was significantly faster than transversal CV, with an anisotropic ratio of 3:1 for human and 2.3:1 for dog slices. Importantly, slices responded to the application of E-4031, chromanol and 4-aminopyridine, three potassium channel blockers known to affect action potential duration, with an increase in FPD. We conclude that viable myocardial slices with preserved structural, biochemical and electrophysiological properties can be prepared from adult human and canine heart biopsies and offer a novel preparation suitable for the study of heart failure and drug screening.

  6. Epidemiologic, clinical, and virologic characteristics of human rhinovirus infection among otherwise healthy children and adults

    PubMed Central

    Chen, Wei-Ju; Arnold, John C.; Fairchok, Mary P.; Danaher, Patrick J.; McDonough, Erin A.; Blair, Patrick J.; Garcia, Josefina; Halsey, Eric S.; Schofield, Christina; Ottolini, Martin; Mor, Deepika; Ridoré, Michelande; Burgess, Timothy H.; Millar, Eugene V.

    2015-01-01

    Background Human rhinovirus (HRV) is a major cause of influenza-like illness (ILI) in adults and children. Differences in disease severity by HRV species have been described among hospitalized patients with underlying illness. Less is known about the clinical and virologic characteristics of HRV infection among otherwise healthy populations, particularly adults. Objectives To characterize molecular epidemiology of HRV and association between HRV species and clinical presentation and viral shedding. Study design Observational, prospective, facility-based study of ILI was conducted from February 2010 to April 2012. Collection of nasopharyngeal specimens, patient symptoms, and clinical information occurred on days 0, 3, 7, and 28. Patients recorded symptom severity daily for the first 7 days of illness in a symptom diary. HRV was identified by RT-PCR and genotyped for species determination. Cases who were co-infected with other viral respiratory pathogens were excluded from the analysis. We evaluated the associations between HRV species, clinical severity, and patterns of viral shedding. Results Eighty-four HRV cases were identified and their isolates genotyped. Of these, 62 (74%) were >18y. Fifty-four were HRV-A, 11 HRV-B, and 19 HRV-C. HRV-C infection was more common among children than adults (59% vs. 10%, P<0.001). Among adults, HRV-A was associated with higher severity of upper respiratory symptoms compared to HRV-B (P=0.02), but no such association was found in children. In addition, adults shed HRV-A significantly longer than HRV-C (Ptrend=0.01). Conclusions Among otherwise healthy adults with HRV infection, we observed species-specific differences in respiratory symptom severity and duration of viral shedding. PMID:25728083

  7. Comparison of human growth hormone products' cost in pediatric and adult patients. A budgetary impact model.

    PubMed

    Bazalo, Gary R; Joshi, Ashish V; Germak, John

    2007-09-01

    We assessed the economic impact to the United States payer of recombinant human growth hormone (rhGH) utilization, comparing the relative dosage efficiency of marketed pen-based and vial-based products in a pediatric and in an adult population. A budgetary impact model calculated drug costs based on product waste and cost. Waste was the difference between prescribed dose, based on patient weight, and actual delivered dose, based on dosing increments and maximum deliverable dose for pens and a fixed-percent waste as derived from the literature for vials. Annual wholesale acquisition costs were calculated based upon total milligrams delivered, using a daily dose of 0.03 mg/kg for pediatric patients and 0.016 mg/kg for adults. Total annual drug costs were compared for two scenarios: 1) a product mix based on national market share and 2) restricting use to the product with lowest waste. Based on the literature, waste for each vial product was 23 percent. Among individual pens, waste was highest for Humatrope 24 mg (19.5 percent pediatric, 14.3 percent adult) and lowest for Norditropin Nordi-Flex 5 mg (1.1 percent pediatric, 1 percent adult). Restricting use to the brand with least waste (Norditropin), compared to national product share mix, resulted in a 10.2 percent reduction in annual pediatric patient cost from $19,026 to $17,089 and an 8 percent reduction in annual adult patient cost from $24,099 to $22,161. We concluded that pen delivery systems result in less waste than vial and syringe. Considering all approved delivery systems, Norditropin resulted in the least product waste and lower annual patient cost for both pediatric and adult populations.

  8. Differential expression of galectin-1 and its interactions with cells and laminins in the intervertebral disc.

    PubMed

    Jing, Liufang; So, Stephen; Lim, Shaun W; Richardson, William J; Fitch, Robert D; Setton, Lori A; Chen, Jun

    2012-12-01

    Galectin-1 (Gal-1), an endogenous β-galactoside-binding protein, binds to laminins, which are highly expressed in the nucleus pulposus (NP) of the intervertebral disc (IVD). The objective of this study is to evaluate the expression of Gal-1 protein in IVD tissues during aging and the effect of Gal-1 on IVD cell adhesion to laminins. Tissues from rat, porcine, and human (scoliosis or disc degeneration) IVDs were used to evaluate Gal-1 expression via immunostaining, RT-PCR, and Western blot analysis. Attachment of isolated IVD cells (porcine and human) on select laminin isoforms (LM-111 and LM-511) was compared with/without pre-incubation with exogenous Gal-1. A biotinylated Gal-1(B-Gal-1) was used to evaluate for binding to IVD cells and to select for IVD cells by magnetic activated cell sorting (MACS). NP cells expressed high levels of Gal-1 protein as compared to anulus fibrosus (AF) cells in immature tissues, while exogenous Gal-1 increased both NP and AF cell attachment to laminins and exhibited a similar binding to both cell types in vitro. With aging, Gal-1 levels in NP tissue appeared to decrease. In addition, incubation with B-Gal-1 was able to promote the retention of more than 50% of IVD cells via MACS. Our results provide new findings for the presence and functional role of Gal-1 within IVDs. Similar staining patterns for Gal-1 and LM-511 in IVD tissue suggest that Gal-1 may serve as an adhesion molecule to interact with both cells and laminins. This MACS protocol may be useful for selecting pure IVD cells from mixed cells of pathological tissue.

  9. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system.

    PubMed

    Illien-Jünger, Svenja; Pattappa, Girish; Peroglio, Marianna; Benneker, Lorin M; Stoddart, Martin J; Sakai, Daisuke; Mochida, Joji; Grad, Sibylle; Alini, Mauro

    2012-10-15

    Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs). To investigate in a whole organ culture whether metabolic and mechanical challenges can induce BMSC recruitment into the IVD. Cells from injured tissues release cytokines and mediators that enable the recruitment of progenitor cells. BMSCs have the ability to survive within the IVD. Bovine IVDs with or without endplates were cultured for 1 week under simulated physiological or degenerative conditions; disc cells were analyzed for cell viability and gene expression, whereas media was analyzed for nitric oxide production and chemotaxis. Homing of BMSCs was investigated by supplying PKH-labeled human BMSCs onto cultured IVDs (1 × 10(6) cells/disc on d 8, 10, and 12 of culture); on day 14, the number of homed BMSCs was microscopically assessed. Moreover, a comparative study was performed between transduced BMSCs (transduced with an adenovirus encoding for insulin-like growth factor 1 [IGF-1]) and nontransduced BMSCs. Disc proteoglycan synthesis rate was quantified via (35)S incorporation. The secretion of IGF-1 was evaluated by enzyme-linked immunosorbent assay on both simulated physiological and degenerative discs. Discs cultured under degenerative conditions showed reduced cell viability, upregulation of matrix degrading enzymes, and increased nitric oxide production compared with simulated physiological discs. Greater homing occurred under degenerative compared with physiological conditions with or without endplate. Media of degenerative discs demonstrated a chemoattractive activity toward BMSCs. Finally, discs homed with IGF-1-transduced BMSCs showed increased IGF-1 secretion and significantly higher proteoglycan synthesis rate than discs supplied with nontransduced BMSCs. We have demonstrated for the first time that degenerative conditions induce the release of factors promoting BMSC recruitment in an ex vivo organ

  10. Prolonged upright posture induces degenerative changes in intervertebral discs of rat cervical spine.

    PubMed

    Liang, Qian-Qian; Cui, Xue-Jun; Xi, Zhi-Jie; Bian, Qin; Hou, Wei; Zhao, Yong-Jian; Shi, Qi; Wang, Yong-Jun

    2011-01-01

    An in vivo study of the cervical intervertebral discs (IVDs) response to upright posture was performed using an amputated bipedal rat model. To investigate the effects of upright posture on IVDs of rat cervical spine. The distinct arrangement of human neck muscle from that of cat and rhesus indicated that in the evolution process, upright posture might have affected cervical spine of human ancestors. However, the effects of upright posture on cervical spine have not been assessed. Forty-one-month-old rats were randomly divided into 5-month-control, 5-month-surgery, 7-month-control, and 7-month surgery group (n = 10 per group). Both forelimbs of 2 surgery group rats were amputated, and those rats were then induced to be upright in the custom-made cages. Two control group rats were kept in regular cages. These rats were respectively killed at the fifth and seventh month after surgery and the IVD samples of lumbar spine were harvested for histologic and immunohistochemical studies. Total RNA isolated from these samples were used for real-time polymerase chain reaction of type II collagen (Col2a1), type X collagen, matrix metalloproteinase 13 (MMP-13), MMP-3, aggre-can, and aggrecanase-2 (ADAMTS-5). Upright posture affects histologic changes of the cervical IVDs such as fissures of anulus fibrosus and decreased height of disc, decreased protein level of Col2a1 at nucleus pulposus and anulus fibrosus, up-regulated MMP-13, MMP-3, ADAMTS-5, and type X collagen mRNA expression, and downregulated mRNA expression of Col2a1 and aggrecan. Upright stance accelerates cervical disc degeneration in rats.

  11. Thermal phantom of the intervertebral disc for evaluating intradiscal electrothermal therapies.

    PubMed

    Fitch, David A; de Ana, Javier

    2011-01-15

    a silicone material was evaluated as an intervertebral disc thermal phantom. Temperature mapping was performed during the intradiscal electrothermal therapy (IDET) procedure and compared with results from the cadaver studies. to determine whether a silicone material can be used as an intervertebral disc thermal phantom for evaluating thermal distributions of intradiscal electrothermal therapies and for reducing the need for cadaver and animal studies. studies mapping thermal profiles of intradiscal heating therapies have been performed in cadavers and animal models. These studies are expensive, require special facilities and institutional reviews, and are susceptible to intercadaver and/or interanimal variation. A search of published data yielded no proposed thermal phantoms of the intervertebral disc. METHODS.: The thermal conductivity of a silicone material was measured and compared with that of an intervertebral disc. Thermal distributions were mapped in the material during the IDET procedure and compared with the distributions seen in cadaver studies. Logarithmic regression was performed to predict temperatures at certain distances from the IDET catheter. Mapping and regression were also performed for a decompression catheter. the thermal conductivity of the silicone material, 0.587 W/m · °C, was similar to that previously reported for the intervertebral disc, 0.595 W/m · °C. Thermal distributions during the IDET procedure were comparable with those seen in previous cadaver studies. Logarithmic regression analysis predicted temperatures greater than 42°C and 60°C at distances of 14.10 and 2.31 mm, respectively, for the IDET catheter. These distances were 12.98 and 3.30 mm, respectively, for the decompression catheter. the silicone material has a thermal conductivity similar to that of intervertebral disc. Temperature distributions in the material during IDET treatment are similar to that seen in cadaver studies. The material provides an alternative to

  12. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  13. Distribution of constitutively expressed MEF-2A in adult rat and human nervous systems.

    PubMed

    Ruffle, Rebecca A; Mapley, Andrew C; Malik, Manmeet K; Labruzzo, Salvatore V; Chabla, Janet M; Jose, Riya; Hallas, Brian H; Yu, Han-Gang; Horowitz, Judith M; Torres, German

    2006-06-15

    Myocyte enhancer factor 2A (MEF-2A) is a calcium-regulated transcription factor that promotes cell survival during nervous system development. To define and further characterize the distribution pattern of MEF-2A in the adult mammalian brain, we used a specific polyclonal antiserum against human MEF-2A to identify nuclear-localized MEF-2A protein in hippocampal and frontal cortical regions. Western blot and immunocytochemical analyses showed that MEF-2A was expressed not only in laminar structures but also in blood vessels of rat and human brains. MEF-2A was colocalized with doublecortin (DCX), a microtubule-associated protein expressed by migrating neuroblasts, in CA1 and CA2 boundaries of the hippocampus. MEF-2A was expressed heterogeneously in additional structures of the rat brain, including the striatum, thalamus, and cerebellum. Furthermore, we found a strong nuclear and diffuse MEF-2A labeling pattern in spinal cord cells of rat and human material. Finally, the neurovasculature of adult rats and humans not only showed a strong expression of MEF-2A but also labeled positive for hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels. This study further characterizes the distribution pattern of MEF-2A in the mammalian nervous system, demonstrates that MEF-2A colocalizes with DCX in selected neurons, and finds MEF-2A and HCN1 proteins in the neurovasculature network.

  14. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms.

    PubMed

    Pereira, Adriana S A; Cavalcanti, Marília G S; Zingali, Russolina B; Lima-Filho, José L; Chaves, Maria E C

    2015-03-01

    Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.

  15. Uptake of dietary milk miRNAs by adult humans: a validation study

    PubMed Central

    Auerbach, Amanda; Vyas, Gopi; Li, Anne; Halushka, Marc; Witwer, Kenneth

    2016-01-01

    Breast milk is replete with nutritional content as well as nucleic acids including microRNAs (miRNAs). In a recent report, adult humans who drank bovine milk appeared to have increased circulating levels of miRNAs miR-29b-3p and miR-200c-3p. Since these miRNAs are homologous between human and cow, these results could be explained by xeno-miRNA influx, endogenous miRNA regulation, or both. More data were needed to validate the results and explore for additional milk-related alterations in circulating miRNAs. Samples from the published study were obtained, and 223 small RNA features were profiled with a custom OpenArray, followed by individual quantitative PCR assays for selected miRNAs. Additionally, small RNA sequencing (RNA-seq) data obtained from plasma samples of the same project were analyzed to find human and uniquely bovine miRNAs. OpenArray revealed no significantly altered miRNA signals after milk ingestion, and this was confirmed by qPCR. Plasma sequencing data contained no miR-29b or miR-200c reads and no intake-consistent mapping of uniquely bovine miRNAs. In conclusion, the results do not support transfer of dietary xenomiRs into the circulation of adult humans. PMID:27158459

  16. Postfusion magnetic resonance imaging artifacts caused by a titanium, cobalt-chromium-molybdenum, and carbon intervertebral disc spacer.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert

    2007-04-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and CoCrMo-alloys or carbon fiber reinforced polymers (CFRP). Implant-related susceptibility artifacts can decrease the quality of magnetic resonance imaging (MRI) scans. This cadaveric study aimed to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of the spinal canal (SC) and intervertebral disc space (IDS). In 6 cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, CoCrMo-spacer and CFRP-spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into regions of interest (ROI) to characterize the SC and IDS. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists artifact-affected image quality of the median MRI slice was rated on a score of 0-1-2-3. A maximum score of 15 points for the SC and 9 points for the IDS (100%) was possible. Turbo spin echo sequences produced the best scores for both spacers and the control. Only the control achieved a score of 100%. For the IDS the CoCrMo-spacer, titanium and CFRP-spacer maximally scored 0%, 0% and 74%, for the SC 60%, 80% and 99%, respectively. By using favored T1 TSE sequences the CFRP-spacer represented clear advantages in postfusion spinal imaging. Independent of artifact dimensions the used scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  17. Hydrogen sulfide protects against endoplasmic reticulum stress and mitochondrial injury in nucleus pulposus cells and ameliorates intervertebral disc degeneration.

    PubMed

    Xu, Daoliang; Jin, Haiming; Wen, Jianxia; Chen, Jiaoxiang; Chen, Deheng; Cai, Ningyu; Wang, Yongli; Wang, Jianle; Chen, Yu; Zhang, Xiaolei; Wang, Xiangyang

    2017-03-01

    It has been suggested that excessive apoptosis in intervertebral disc cells induced by inflammatory cytokines, such as interleukin (IL)-1β, is related to the process of intervertebral disc degeneration (IVDD). Hydrogen sulfide (H2S), a gaseous signaling molecule, has drawn attention for its anti-apoptosis role in various pathophysiological processes in degenerative diseases. To date, there has been no investigation of the correlation of H2S production and IVDD or of the effects of H2S on IL-1β-induced apoptosis in nucleus pulposus (NP) cells. Here, we found that the expression levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), two key enzymes in the generation of H2S, were significantly decreased in human degenerate NP tissues as well as in IL-1β-treated NP cells. NaHS (H2S donor) administration showed a protective effect by inhibiting the endoplasmic reticulum (ER) stress response and mitochondrial dysfunction induced by IL-1β stimulation in vitro, the effect was related to activation of the PI3K/Akt and ERK1/2 signaling pathways. Suppression of these pathways by specific inhibitors, LY294002 and PD98059, partially reduced the protective effect of NaHS. Moreover, in the percutaneous needle puncture disc degeneration rat tail model, disc degeneration was partially reversed by NaHS administration. Taken together, our results suggest that H2S plays a protective role in IVDD and the underlying mechanism involves PI3K/Akt and ERK1/2 signaling pathways-mediated suppression of ER stress and mitochondrial dysfunction in IL-1β-induced NP cells.

  18. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2014-04-11

    Novel strategies to heal discogenic low back pain could highly benefit from comprehensive biophysical studies that consider both mechanical and biological factors involved in intervertebral disc degeneration. A decrease in nutrient availability at the bone-disc interface has been indicated as a relevant risk factor and as a possible initiator of cell death processes. Mechanical behaviour of both healthy and degenerated discs could highly interact with cell death in these compromised situations. In the present study, a mechano-transport finite element model was used to investigate the nature of mechanical effects on cell death processes via load-induced metabolic transport variations. Cycles of static sustained compression were chosen to simulate daily human activity. Healthy and degenerated cases were simulated as well as a reduced supply of solutes and an increase in solute exchange area at the bone-disc interface. Results showed that a reduction in metabolite concentrations at the bone-disc boundaries induced cell death, even when the increased exchange area was simulated. Slight local mechanical enhancements of glucose in the disc centre were capable of decelerating cell death but occurred only with healthy mechanical properties. However, mechanical deformations were responsible for a worsening in terms of cell death in the inner annulus, a disadvantaged zone far from the boundary supply with both an increased cell demand and a strain-dependent decrease of diffusivity. Such adverse mechanical effects were more accentuated when degenerative properties were simulated. Overall, this study paves the way for the use of biophysical models for a more integrated understanding of intervertebral disc pathophysiology.

  19. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to this...

  20. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to this...

  1. Silver Editions II: Advancing the Concept of Library-Centered Humanities Programs for Older Adults. An Evaluation.

    ERIC Educational Resources Information Center

    Van Fleet, Connie; And Others

    This report is an evaluation of the Silver Edition II Project, a program to offer library-centered humanities programming to older adults. In the program local scholars in seven geographically dispersed library systems led discussion groups made up of 20 to 25 participating older adults. This evaluation focuses on the stated goals of the project:…

  2. Oral Human Papillomavirus Detection in Older Adults Who Have Human Immunodeficiency Virus Infection

    PubMed Central

    Fatahzadeh, Mahnaz; Schlecht, Nicolas F.; Chen, Zigui; Bottalico, Danielle; McKinney, Sharod; Ostoloza, Janae; Dunne, Anne; Burk, Robert D.

    2014-01-01

    Objective To evaluate reproducibility of oral rinse self-collection for HPV detection and investigate associations between oral HPV, oral lesions, immune and sociodemographic factors, we performed a cross-sectional study of older adults with HIV infection. Study Design We collected oral rinse samples from 52 subjects at two different times of day followed by an oral examination and interview. We identified HPV using PCR platforms optimized for detection of mucosal and cutaneous types. Results Eighty seven percent of individuals had oral HPV, of which 23% had oncogenic alpha, 40% had non-oncogenic alpha, and 46% had beta or gamma HPV. Paired oral specimens were concordant in all parameters tested. Significant associations observed for oral HPV with increased HIV viral load, hepatitis-C seropositivity, history of sexually transmitted diseases and lifetime number of sexual partners. Conclusions Oral cavity may be a reservoir of subclinical HPV in older adults who have HIV infection. Understanding natural history, transmission and potential implications of oral HPV warrants further investigations. PMID:23375488

  3. The landscape of sex-differential transcriptome and its consequent selection in human adults.

    PubMed

    Gershoni, Moran; Pietrokovski, Shmuel

    2017-02-07

    The prevalence of several human morbid phenotypes is sometimes much higher than intuitively expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women have almost identical genomes but are distinctly dimorphic, wit