Sample records for adult human intervertebral

  1. CT morphometry of adult thoracic intervertebral discs.

    PubMed

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  2. Notochordal cells in the adult intervertebral disc: new perspective on an old question.

    PubMed

    Risbud, Makarand V; Shapiro, Irving M

    2011-01-01

    The intervertebral disc is a tissue positioned between each of the vertebrae that accommodates applied biomechanical forces to the spine. The central compartment of the disc contains the nucleus pulposus (NP) which is enclosed by the annulus fibrosus and the endplate cartilage.The NP is derived from the notochord, a rod-like structure of mesodermal origin. Development of the notochord is tightly regulated by interactive transcription factors and target genes. Since a number of these molecules are unique they have be used for cell lineage and fate mapping studies of tissues of the intervertebral disc. These studies have shown that in a number of species including human, NP tissue retains notochordal cells throughout life. In the adult NP, there are present both large and small notochordal cells, as well as a progenitor cell population which can differentiate along the mesengenic pathway. Since tissue renewal in the intervertebral disc is dependent on the ability of these cells to commit to the NP lineage and undergo terminal differentiation, studies have been performed to assess which signaling pathways may regulate these activities. The notch signaling pathway is active in the intervertebral disc and is responsive to hypoxia, probably through HIF-1a. From a disease viewpoint, it is hypothesized that an oxemic shift, possibly mediated by alterations in the vascular supply to the tissues of the disc would be expected to lead to a failure in notochordal progenitor cell activation and a decrease in the number of differentiated cells. In turn, this would lead to decrements in function and enhancement of the effect of agents that are known to promote disc degeneration.

  3. Elastin in the human intervertebral disk. A histological and biochemical study comparing it with elastin in the human yellow ligament.

    PubMed

    Mikawa, Y; Hamagami, H; Shikata, J; Yamamuro, T

    1986-01-01

    The elastic fiber and elastin in the human yellow ligament and intervertebral disk were studied histologically and biochemically. The elastic fiber in the human intervertebral disk, which until now had not been clearly identified microscopically, was observed clearly. We found the distribution of the elastic fiber in the intervertebral disk to be very sparse and irregular, and its diameter was small, being about one-tenth of that found in the yellow ligament. The elastin contents of the yellow ligament and intervertebral disk were 46.7% +/- 0.9% and 1.7% +/- 0.2% respectively (mean +/- SE) of the total dry weight. The amino acid composition of elastin in the yellow ligament is similar to that of other tissue, as reported in the literature; however, that found in the intervertebral disk is significantly different. It would appear, therefore, that the elastin in the intervertebral disk is of a different type from that found elsewhere.

  4. [In situ analysis of pathomechanisms of human intervertebral disc degeneration].

    PubMed

    Weiler, C

    2013-11-01

    Low back pain is one of the major causes of pain and disability in the western world, with a constantly rising life-time prevalence of approximately 60-85 %. Degeneration of the intervertebral disc is believed to be a major cause of low back pain. Semiquantitative macroscopic and microscopic changes of the intervertebral disc were assessed and classified. Furthermore additional methods, such as immunohistochemistry, in situ hybridization and in situ zymography were used to analyze phenotypic cellular and matrix changes. We have developed and tested a practicable, valid and reliable histological classification system for lumbar discs which can serve as a morphological reference framework to allow more sophisticated molecular biological studies on the pathogenesis of ageing and degeneration of discs. Secondly, we were able to demonstrate that intrinsic (genetic) and extrinsic (e.g. overweight) factors have a profound effect on the process of disc degeneration. Cells with a notochord-like phenotype are present in a considerable fraction of adult lumbar intervertebral discs. The presence of these cells is associated with distinct features of (early) age-related disc degeneration. During the process of disc degeneration, the intervertebral disc shows a progressive and significant reduction in height due to tissue resorption. This matrix loss is related to an imbalance between matrix synthesis and degradation. During this process an inflammatory reaction takes place and resident disc cells are causatively involved. In summary, disc degeneration is a multifactorial disease with a strong intrinsic (hereditary) and extrinsic (e.g. mechanical factors) background. The process starts as early as in the second decade of life and shows high interindividual differences. The loss of regenerative capacity in the intervertebral disc is probably related to the loss of stem cells, e.g. notochord-like cells. Resident disc cells are involved in the inflammatory reaction with increased

  5. Intervertebral discitis caused by nontypeable Haemophilus influenzae in an adult: Case report.

    PubMed

    Boulton, R; Swayamprakasam, A; Raza, M

    2012-01-01

    Haemophilus influenzae is a common cause of bacterial meningitis in children and can cause upper respiratory tract infections in adults, but has yet to be reported solely involving intervertebral discitis. A 67-year-old builder presenting with fever, myalgia and back pain is found to have intervertebral discitis (confirmed on MRI) caused by H. influenzae (identified on blood cultures). A nontypeable form of H. influenzae has not been reported causing discitis. We describe a case in a relatively fit individual who was treated successfully with antimicrobial treatment. A preceding upper respiratory tract infection is the presumed source of infection, predisposed by long-term low-dose steroid therapy. H. influenzae is a rare, but treatable cause of discitis. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  6. The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study.

    PubMed

    Johnson, William E B; Patterson, Angela M; Eisenstein, Stephen M; Roberts, Sally

    2007-05-20

    An immunohistological study of surgical specimens of human intervertebral disc. To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: non-degenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers). Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

  7. Effects of C5/C6 Intervertebral Space Distraction Height on Pressure on the Adjacent Intervertebral Disks and Articular Processes and Cervical Vertebrae Range of Motion.

    PubMed

    Lu, Tingsheng; Luo, Chunshan; Ouyang, Beiping; Chen, Qiling; Deng, Zhongliang

    2018-04-25

    BACKGROUND This study aimed to investigate the association between range of motion of the cervical vertebrae and various C5/C6 intervertebral space distraction heights. MATERIAL AND METHODS The cervical vertebrae from 6 fresh adult human cadavers were used to prepare the models. Changes in C4/C5 and C6/C7 intervertebral disk pressures, articular process pressure, and range of motion of the cervical vertebrae before and after the distraction of the C5/C6 intervertebral space at benchmark heights of 100%, 120%, 140%, and 160% were tested under different exercise loads. RESULTS The pressure on the adjacent intervertebral disks was highest with the standing upright position before distraction, varied with different positions of the specimens and distraction heights after distraction, and was closest to that before distraction at a distraction height of 120% (P<0.05). The pressure of the adjacent articular processes was highest with left and right rotations before distraction, varied with different positions of the specimens and distraction heights after distraction, and was lowest under the same exercise load with different positions at a distraction height of 120% (P<0.05). The ranges of motion of the cervical vertebrae and intervertebral disks were largest without distraction and at a distraction height of 120% after distraction, respectively (P<0.05). CONCLUSIONS When removing the C5/C6 intervertebral disk and implanting an intervertebral bone graft, a benchmark height of 120% had little influence on the pressure of the adjacent intervertebral disks and articular processes and range of motion of the cervical vertebrae and is therefore an appropriate intervertebral space distraction height.

  8. Effects of C5/C6 Intervertebral Space Distraction Height on Pressure on the Adjacent Intervertebral Disks and Articular Processes and Cervical Vertebrae Range of Motion

    PubMed Central

    Lu, Tingsheng; Luo, Chunshan; Ouyang, Beiping; Chen, Qiling

    2018-01-01

    Background This study aimed to investigate the association between range of motion of the cervical vertebrae and various C5/C6 intervertebral space distraction heights. Material/Methods The cervical vertebrae from 6 fresh adult human cadavers were used to prepare the models. Changes in C4/C5 and C6/C7 intervertebral disk pressures, articular process pressure, and range of motion of the cervical vertebrae before and after the distraction of the C5/C6 intervertebral space at benchmark heights of 100%, 120%, 140%, and 160% were tested under different exercise loads. Results The pressure on the adjacent intervertebral disks was highest with the standing upright position before distraction, varied with different positions of the specimens and distraction heights after distraction, and was closest to that before distraction at a distraction height of 120% (P<0.05). The pressure of the adjacent articular processes was highest with left and right rotations before distraction, varied with different positions of the specimens and distraction heights after distraction, and was lowest under the same exercise load with different positions at a distraction height of 120% (P<0.05). The ranges of motion of the cervical vertebrae and intervertebral disks were largest without distraction and at a distraction height of 120% after distraction, respectively (P<0.05). Conclusions When removing the C5/C6 intervertebral disk and implanting an intervertebral bone graft, a benchmark height of 120% had little influence on the pressure of the adjacent intervertebral disks and articular processes and range of motion of the cervical vertebrae and is therefore an appropriate intervertebral space distraction height. PMID:29693646

  9. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  10. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body fusion...

  11. Measurement of occlusion of the spinal canal and intervertebral foramen by intervertebral disc bulge

    PubMed Central

    Cuchanski, Mathieu; Cook, Daniel; Whiting, Donald M.; Cheng, Boyle C.

    2011-01-01

    Background Disc protrusion has been proposed to be a possible cause of both pain and stenosis in the lower spine. No previous study has described the amount of disc occlusion of the spinal canal and intervertebral foramen that occurs under different loading conditions. The objective of this study was to quantitatively assess the percent occlusion of the spinal canal and intervertebral foramen by disc bulge under different loading conditions. Methods Spinal canal depth and foraminal width were measured on computed tomography–scanned images of 7 human lumbar spine specimens. In vitro disc bulge measurements were completed by use of a previously described method in which single functional spinal units were subjected to 3 separate load protocols in a spine test machine and disc bulge was recorded with an optoelectric motion system that tracked active light-emitting diodes placed on the posterior and posterolateral aspects of the intervertebral disc. Occlusion was defined as percentage of encroachment into area of interest by maximum measured disc bulge at corresponding point of interest (the spinal canal is at the posterior point; the intervertebral foramen is at the posterolateral point). Results The mean spinal canal depth and mean foraminal width were 19 4 ± mm and 5 ± 2 mm, respectively. Mean spinal canal occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 2.5% ± 1.9%, 2.5% ± 1.6%, and 1.5% ± 0.8%, respectively. Mean intervertebral foramen occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 7.8% ± 4.7%, 9.5% ± 5.7%, and 11.3% ± 6.2%, respectively. Conclusion Percent occlusion of the spinal canal and intervertebral foramen is dependent on magnitude and direction of load. Exiting neural elements at the location of the intervertebral foramen are the most vulnerable to impingement and generation of pain. PMID:25802663

  12. Hygroviscoelasticity of the Human Intervertebral Disc.

    DTIC Science & Technology

    1980-07-01

    the intervertebral disc (Figures 2(a) and 2(b)). -7- 7 CERVICAL CURVE (C1 -C7 (CERVICAL LORDOSIS CURVE) THORACIC CURVE (T I- T12) $ (DORSAL KYPHOSIS...CURVE) LUMBAR CURVE (L 1-1.5 ) (LUMBAR LORDOSIS CURVE) PELVIC CURVE (SACRUM) COCCYX FIGURE 1 Lateral View of Vertebral Column *1 -8- POSTERIOR

  13. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Spinal intervertebral body fixation orthosis. 888.3060 Section 888.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3060 Spinal intervertebral...

  14. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Spinal intervertebral body fixation orthosis. 888.3060 Section 888.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3060 Spinal intervertebral...

  15. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Spinal intervertebral body fixation orthosis. 888.3060 Section 888.3060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3060 Spinal intervertebral...

  16. The multidirectional bending properties of the human lumbar intervertebral disc.

    PubMed

    Spenciner, David; Greene, David; Paiva, James; Palumbo, Mark; Crisco, Joseph

    2006-01-01

    While the biomechanical properties of the isolated intervertebral disc have been well studied in the three principal anatomic directions of flexion/extension, axial rotation, and lateral bending, there is little data on the properties in the more functional directions that are combinations of these principal anatomic directions. To determine the bending flexibility, range of motion (ROM), and neutral zone (NZ) of the human lumbar disc in multiple directions and to determine if the values about the combined moment axes can be predicted from the values about principal moment axes. Three-dimensional biomechanical analysis of the elastic bending properties of human lumbar discs about principal and combined moment axes. Pure, unconstrained moments were applied about multiple axes. The bending properties (flexibility, ROM, and NZ) of isolated lumbar discs (n=4 for L2/L3 and n=3 for L4/L5) were determined in the six principal directions and in 20 combined directions. The experimental values were compared with those predicted from the linear combination of the six principal moment axes. The maximum and minimum values of the biomechanical properties were found at the principal moment axes. Among combined moment axes, ROM and NZ (but not flexibility) values were predicted from the principal moment axis values. The principal moment axes coincide with the primary mechanical axes of the intervertebral disc and demonstrate significant differences in direction for values of flexibility, ROM, and NZ. Not all combined moment axis values can be predicted from principal moment axis values.

  17. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis.

    PubMed

    Yee, A; Lam, M P Y; Tam, V; Chan, W C W; Chu, I K; Cheah, K S E; Cheung, K M C; Chan, D

    2016-03-01

    Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Molecular signaling in intervertebral disk development.

    PubMed

    DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A

    2005-09-01

    The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.

  19. Geometry of the intervertebral volume and vertebral endplates of the human spine.

    PubMed

    van der Houwen, E B; Baron, P; Veldhuizen, A G; Burgerhof, J G M; van Ooijen, P M A; Verkerke, G J

    2010-01-01

    Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column.

  20. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Complex Analysis of Diffusion Transport and Microstructure of an Intervertebral Disk.

    PubMed

    Byvaltsev, V A; Kolesnikov, S I; Belykh, E G; Stepanov, I A; Kalinin, A A; Bardonova, L A; Sudakov, N P; Klimenkov, I V; Nikiforov, S B; Semenov, A V; Perfil'ev, D V; Bespyatykh, I V; Antipina, S L; Giers, M; Prul, M

    2017-12-01

    We studied the relationship between diffusion transport and morphological and microstructural organization of extracellular matrix of human intervertebral disk. Specimens of the lumbar intervertebral disks without abnormalities were studied ex vivo by diffusion-weighed magnetic resonance imaging, histological and immunohistochemical methods, and electron microscopy. Distribution of the diffusion coefficient in various compartments of the intervertebral disk was studied. Significant correlations between diffusion coefficient and cell density in the nucleus pulposus, posterior aspects of annulus fibrosus, and endplate at the level of the posterior annulus fibrosus were detected for each disk. In disks with nucleus pulposus diffusion coefficient below 15×10 -4 mm 2 /sec, collagens X and XI were detected apart from aggrecan and collagens I and II. The results supplement the concept on the relationship between the microstructure and cell composition of various compartments of the intervertebral disk and parameters of nutrient transport.

  2. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Yan, Feng; Chong, Beng H; Diwan, Ashish D

    2016-04-01

    Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  4. Moderate-intensity running causes intervertebral disc compression in young adults.

    PubMed

    Kingsley, Michael Ian; D'Silva, Lindsay Antonio; Jennings, Cameron; Humphries, Brendan; Dalbo, Vincent James; Scanlan, Aaron Terrance

    2012-11-01

    Decreased intervertebral disc (IVD) volume can result in diminished load-carrying capacity of the spinal region. Although moderate-intensity running is generally advocated for apparently healthy adults, running causes a loss in stature that is thought to reflect IVD compression. The aim of this investigation was to use magnetic resonance imaging (MRI) to quantify the influence of moderate-intensity treadmill running on IVD height and volume in the thoracic and lumbar regions of the vertebral column. A clinic-based repeated-measures design was used in eight healthy young asymptomatic adults. After preliminary measurements and familiarization (day 1), participants reported to the clinic on two further occasions. MRI scans and stature measurements were completed at baseline (day 2), preexercise (day 3), and after 30 min of moderate-intensity treadmill running (postexercise, day 3). Mean height and volume were derived for all thoracic and lumbar IVDs from digitized MRIs, and stature was determined with a stadiometer. Moderate-intensity running resulted in 6.3% ± 0.9% reduction in mean IVD height and 6.9% ± 1.0% reduction in calculated IVD volume. The day-to-day variation in mean IVD height and volume were 0.6% ± 0.6% and 0.4% ± 0.6%, respectively. This is the first study to quantify the influence of moderate-intensity running on IVD height and volume. Changes in IVD height and volume were observed throughout the thoracic and lumbar vertebral regions. These findings suggest that future studies evaluating the influence of various loading activities and recovery techniques on IVD structure should consider thoracic as well as lumbar regions of the spine.

  5. A Large Animal Model that Recapitulates the Spectrum of Human Intervertebral Disc Degeneration

    PubMed Central

    Gullbrand, Sarah E.; Malhotra, Neil R.; Schaer, Thomas P.; Zawacki, Zosia; Martin, John T.; Bendigo, Justin R.; Milby, Andrew H.; Dodge, George R.; Vresilovic, Edward J.; Elliott, Dawn M.; Mauck, Robert L.; Smith, Lachlan J.

    2016-01-01

    Objective The objective of this study was to establish a large animal model that recapitulates the spectrum of intervertebral disc degeneration that occurs in humans and which is suitable for pre-clinical evaluation of a wide range of experimental therapeutics. Design Degeneration was induced in the lumbar intervertebral discs of large frame goats by either intradiscal injection of chondroitinase ABC (ChABC) over a range of dosages (0.1U, 1U or 5U) or subtotal nucleotomy. Radiographs were used to assess disc height changes over 12 weeks. Degenerative changes to the discs and endplates were assessed via magnetic resonance imaging (MRI), semi-quantitative histological grading, micro-computed tomography (µCT), and measurement of disc biomechanical properties. Results Degenerative changes were observed for all interventions that ranged from mild (0.1U ChABC) to moderate (1U ChABC and nucleotomy) to severe (5U ChABC). All groups showed progressive reductions in disc height over 12 weeks. Histological scores were significantly increased in the 1U and 5U ChABC groups. Reductions in T2 and T1ρ, and increased Pfirrmann grade were observed on MRI. Resorption and remodeling of the cortical boney endplate adjacent to ChABC injected discs also occurred. Spine segment range of motion was greater and compressive modulus was lower in 1U ChABC and nucleotomy discs compared to intact. Conclusions A large animal model of disc degeneration was established that recapitulates the spectrum of structural, compositional and biomechanical features of human disc degeneration. This model may serve as a robust platform for evaluating the efficacy of therapeutics targeted towards varying degrees of disc degeneration. PMID:27568573

  6. Modelling and simulation of the intervertebral movements of the lumbar spine using an inverse kinematic algorithm.

    PubMed

    Sun, L W; Lee, R Y W; Lu, W; Luk, K D K

    2004-11-01

    An inverse kinematic model is presented that was employed to determine the optimum intervertebral joint configuration for a given forward-bending posture of the human trunk. The lumbar spine was modelled as an open-end, kinematic chain of five links that represented the five vertebrae (L 1-L5). An optimisation equation with physiological constraints was employed to determine the intervertebral joint configuration. Intervertebral movements were measured from sagittal X-ray films of 22 subjects. The mean difference between the X-ray measurements of intervertebral rotations in the sagittal plane and the values predicted by the kinematic model was less than 1.6 degrees. Pearson product-moment correlation R was used to measure the relationship between the measured and predicted values. The R-values were found to be high, ranging from 0.83 to 0.97, for prediction of intervertebral rotation, but poor for intervertebral translation (R= 0.08-0.67). It is concluded that the inverse kinematic model will be clinically useful for predicting intervertebral rotation when X-ray or invasive measurements are undesirable. It will also be useful to biomechanical modelling, which requires accurate kinematic information as model input data.

  7. [Diagnostic imaging of changes of the canine intervertebral disc].

    PubMed

    Harder, Lisa K

    2016-10-12

    Intervertebral disc degeneration can cause intervertebral disc herniation. Diagnostic imaging, including radiography, computed tomography and magnetic resonance imaging, is the most important tool in diagnosis. Firstly, an overview of macroscopic and biochemical physiology and pathology of the intervertebral disc will be given. Subsequently, the physics of diagnostic imaging and the appearance of intervertebral disc degeneration and displacement in several imaging methods are described.

  8. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model.

    PubMed

    Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun

    2009-10-01

    To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

  9. Biomaterials for intervertebral disc regeneration and repair.

    PubMed

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Role of Adipokines in Intervertebral Disc Degeneration.

    PubMed

    Sharma, Anirudh

    2018-04-24

    Intervertebral disc degeneration (IDD) is an important cause of low back pain. Recent evidence suggests that in addition to abnormal and excessive mechanical loading, inflammation may be a key driver for both IDD and low back pain. Obesity, a known mechanical risk factor of IDD, is now increasingly being recognized as a systemic inflammatory state with adipokines being postulated as likely inflammatory mediators. The aim of this review was to summarize the current literature regarding the inflammatory role of adipokines in the pathophysiology of IDD. A systematic literature search was performed using the OVID Medline, EMBASE and PubMed databases to identify all studies assessing IDD and adipokines. Fifteen studies were included in the present review. Leptin was the most commonly assessed adipokine. Ten of 15 studies were conducted in humans; three in rats and two in both humans and rats. Studies focused on a variety of topics ranging from receptor identification, pathway analysis, genetic associations, and proteonomics. Currently, data from both human and animal experiments demonstrate significant effects of leptin and adiponectin on the internal milieu of intervertebral discs. However, future studies are needed to determine the molecular pathway relationships between adipokines in the pathophysiology of IDD as avenues for future therapeutic targets.

  11. Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering.

    PubMed

    Yang, Qiang; Xu, Hai-wei; Hurday, Sookesh; Xu, Bao-shan

    2016-02-01

    Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  12. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  13. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.

    PubMed

    Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K

    2014-06-01

    Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently

  14. Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study.

    PubMed

    Liu, Xu; Che, Lu; Xie, Yan-Ke; Hu, Qing-Jie; Ma, Chi-Jiao; Pei, Yan-Jun; Wu, Zhi-Gang; Liu, Zhi-Heng; Fan, Li-Ying; Wang, Hai-Qiang

    2015-09-01

    Accumulating evidence indicates that noncoding RNAs play important roles in a multitude of biological processes. The striking findings of miRNAs (microRNAs) and lncRNAs (long noncoding RNAs) as members of noncoding RNAs open up an exciting era in the studies of gene regulation. More recently, the reports of circRNAs (circular RNAs) add fuel to the noncoding RNAs research. Human intervertebral disc degeneration (IDD) is a main cause of low back pain as a disabling spinal disease. We have addressed the expression profiles if miRNAs, lncRNAs and mRNAs in IDD (Wang et al., J Pathology, 2011 and Wan et al., Arthritis Res Ther, 2014). Furthermore, we thoroughly analysed noncoding RNAs, including miRNAs, lncRNAs and circRNAs in IDD using the very same samples. Here we delineate in detail the contents of the aforementioned microarray analyses. Microarray and sample annotation data were deposited in GEO under accession number GSE67567 as SuperSeries. The integrated analyses of these noncoding RNAs will shed a novel light on coding-noncoding regulatory machinery.

  15. Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study.

    PubMed

    du Rose, Alister; Breen, Alan

    2016-03-10

    Intervertebral motion impairment is widely thought to be related to chronic back disability, however, the movements of inter-vertebral pairs are not independent of each other and motion may also be related to morphology. Furthermore, maximum intervertebral range of motion (IV-RoMmax) is difficult to measure accurately in living subjects. The purpose of this study was to explore possible relationships between (IV-RoMmax) and lordosis, initial attainment rate and IV-RoMmax at other levels during weight-bearing flexion using quantitative fluoroscopy (QF). Continuous QF motion sequences were recorded during controlled active sagittal flexion of 60° in 18 males (mean age 27.6 SD 4.4) with no history of low back pain in the previous year. IV-RoMmax, lordotic angle, and initial attainment rate at all inter-vertebral levels from L2-S1 were extracted. Relationships between IV-RoMmax and the other variables were explored using correlation coefficients, and simple linear regression was used to determine the effects of any significant relationships. Within and between observer repeatability of IV-RoMmax and initial attainment rate measurements were assessed in a sub-set of ten participants, using the intra-class correlation coefficient (ICC) and standard error of measurement (SEM). QF measurements were highly repeatable, the lowest ICC for IV-RoMmax, being 0.94 (0.80-0.99) and highest SEM (0.76°). For initial attainment rate the lowest ICC was 0.84 (0.49-0.96) and the highest SEM (0.036). The results also demonstrated significant positive and negative correlations between IV-RoMmax and IV-RoMmax at other lumbar levels (r = -0.64-0.65), lordosis (r = -0.52-0.54), and initial attainment rate (r = -0.64-0.73). Simple linear regression analysis of all significant relationships showed that these predict between 28 and 42 % of the variance in IV-RoMmax. This study found weak to moderate effects of individual kinematic variables and lumbar lordosis on IV-RoMmax at

  16. Running exercise strengthens the intervertebral disc

    PubMed Central

    Belavý, Daniel L.; Quittner, Matthew J.; Ridgers, Nicola; Ling, Yuan; Connell, David; Rantalainen, Timo

    2017-01-01

    There is currently no evidence that the intervertebral discs (IVDs) can respond positively to exercise in humans. Some authors have argued that IVD metabolism in humans is too slow to respond anabolically to exercise within the human lifespan. Here we show that chronic running exercise in men and women is associated with better IVD composition (hydration and proteoglycan content) and with IVD hypertrophy. Via quantitative assessment of physical activity we further find that accelerations at fast walking and slow running (2 m/s), but not high-impact tasks, lower intensity walking or static positions, correlated to positive IVD characteristics. These findings represent the first evidence in humans that exercise can be beneficial for the IVD and provide support for the notion that specific exercise protocols may improve IVD material properties in the spine. We anticipate that our findings will be a starting point to better define exercise protocols and physical activity profiles for IVD anabolism in humans. PMID:28422125

  17. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  18. [Meniscoids of the intervertebral joints].

    PubMed

    Kos, J; Hert, J; Sevcík, P

    2002-01-01

    A large amount of material was used to study the distribution, location and shape of meniscoids in intervertebral joints of the human spine, from the atlanto-occipital joint to the sacrum, in order to find out how many of intervertebral joints had mobile meniscoids. These might be regarded as possible causes of spinal blockade or other vertebrogenous complaints. The materials provided by the Department of Anatomy and Department of Forensic Medicine at the Faculty of Medicine of Charles University in Pilznen included 20 cadaverous spines from humans aged 20 to 80 years. Access to each joint was provided by dissection of the articular capsule from the lower articular processes of the vertebra situated above. In the orthograde view, all meniscoids were described in terms of shape, size, consistence and location. Their structure was ascertained by histological examination of cross sections stained with haematoxylin and eosin. Meniscoids varying in shape and size were found in all of the intervertebral joints. They were classified by their histological structure as synovial, fat and fibrous meniscoids. The first category was observed frequently, the last only rarely. A total of 29 mobile meniscoids were recorded, most of them in the lumbar spine. Most of the meniscoids present in the cervical spine were of synovial and less frequently of fat types. Meniscoids found in the thoracic spine were poorly developed synovial ones and those present in the lumbar spine were of all types and were also largest in size. The most conspicuous meniscoids were seen in the spines that showed degenerative changes in intervertebral joints. Large fat pads were found in atlanto-occipital and atlanto-axial joints. Mobile meniscoids, most of them present in the lumbar spine (6.4% of all joints.), were connected with the capsule by a thin pedicle and it was possible to move them over a half of the articular surface. Some inter-individual changes were also found; in some spines, the most

  19. Genetic and functional studies of the intervertebral disc: a novel murine intervertebral disc model.

    PubMed

    Pelle, Dominic W; Peacock, Jacqueline D; Schmidt, Courtney L; Kampfschulte, Kevin; Scholten, Donald J; Russo, Scott S; Easton, Kenneth J; Steensma, Matthew R

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration.

  20. Genetic and Functional Studies of the Intervertebral Disc: A Novel Murine Intervertebral Disc Model

    PubMed Central

    Pelle, Dominic W.; Peacock, Jacqueline D.; Schmidt, Courtney L.; Kampfschulte, Kevin; Scholten, Donald J.; Russo, Scott S.; Easton, Kenneth J.; Steensma, Matthew R.

    2014-01-01

    Intervertebral disc (IVD) homeostasis is mediated through a combination of micro-environmental and biomechanical factors, all of which are subject to genetic influences. The aim of this study is to develop and characterize a genetically tractable, ex vivo organ culture model that can be used to further elucidate mechanisms of intervertebral disc disease. Specifically, we demonstrate that IVD disc explants (1) maintain their native phenotype in prolonged culture, (2) are responsive to exogenous stimuli, and (3) that relevant homeostatic regulatory mechanisms can be modulated through ex-vivo genetic recombination. We present a novel technique for isolation of murine IVD explants with demonstration of explant viability (CMFDA/propidium iodide staining), disc anatomy (H&E), maintenance of extracellular matrix (ECM) (Alcian Blue staining), and native expression profile (qRT-PCR) as well as ex vivo genetic recombination (mT/mG reporter mice; AdCre) following 14 days of culture in DMEM media containing 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin/streptomycin. IVD explants maintained their micro-anatomic integrity, ECM proteoglycan content, viability, and gene expression profile consistent with a homeostatic drive in culture. Treatment of genetically engineered explants with cre-expressing adenovirus efficaciously induced ex vivo genetic recombination in a variety of genetically engineered mouse models. Exogenous administration of IL-1ß and TGF-ß3 resulted in predicted catabolic and anabolic responses, respectively. Genetic recombination of TGFBR1fl/fl explants resulted in constitutively active TGF-ß signaling that matched that of exogenously administered TGF-ß3. Our results illustrate the utility of the murine intervertebral disc explant to investigate mechanisms of intervertebral disc degeneration. PMID:25474689

  1. Nonlinear dynamics of the human lumbar intervertebral disc.

    PubMed

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Human cartilage endplate permeability varies with degeneration and intervertebral disc site.

    PubMed

    DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M

    2016-02-29

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Human Cartilage Endplate Permeability Varies with Degeneration and Intervertebral Disc Site

    PubMed Central

    DeLucca, John F.; Cortes, Daniel H.; Jacobs, Nathan T.; Vresilovic, Edward J.; Duncan, Randall L.; Elliott, Dawn M.

    2016-01-01

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50–60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1–0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969

  4. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy.

    PubMed

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.

  5. Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression.

    PubMed

    Smith, Lachlan J; Elliott, Dawn M

    2011-05-01

    Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence

  6. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology.

    PubMed

    Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan

    2007-04-15

    A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.

  7. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  8. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  9. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc.

    PubMed

    Gruber, Helen E; Mougeot, Jean-Luc; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2007-05-15

    Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.

  10. Strain on intervertebral discs after anterior cervical decompression and fusion.

    PubMed

    Matsunaga, S; Kabayama, S; Yamamoto, T; Yone, K; Sakou, T; Nakanishi, K

    1999-04-01

    An analysis of the change in strain distribution of intervertebral discs present after anterior cervical decompression and fusion by an original method. The analytical results were compared to occurrence of herniation of the intervertebral disc on magnetic resonance imaging. To elucidate the influence of anterior cervical decompression and fusion on the unfused segments of the spine. There is no consensus regarding the exact significance of the biomechanical change in the unfused segment present after surgery. Ninety-six patients subjected to anterior cervical decompression and fusion for herniation of intervertebral discs were examined. Shear strain and longitudinal strain of intervertebral discs were analyzed on pre- and postoperative lateral dynamic routine radiography of the cervical spine. Thirty of the 96 patients were examined by magnetic resonance imaging before and after surgery, and the relation between alteration in strains and postsurgical occurrence of disc herniation was examined. In the cases of double- or triple-level fusion, shear strain of adjacent segments had increased 20% on average 1 year after surgery. Thirteen intervertebral discs that had an abnormally high degree of strain showed an increase in longitudinal strain after surgery. Eleven (85%) of the 13 discs that showed an abnormal increase in longitudinal strain had herniation in the same intervertebral discs with compression of the spinal cord during the follow-up period. Relief of symptoms was significantly poor in the patients with recent herniation. Close attention should be paid to long-term biomechanical changes in the unfused segment.

  11. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests.

    PubMed

    Lafon, Yoann; Lafage, Virginie; Steib, Jean-Paul; Dubousset, Jean; Skalli, Wafa

    2010-01-15

    A numerical study was conducted to identify the intervertebral stiffness of scoliotic spines from spinal flexibility tests. To study the intervertebral 3-dimensional (3D) stiffness distribution along scoliotic spine. Few methods have been reported in literature to quantify the in vivo 3D intervertebral stiffness of the scoliotic spine. Based on the simulation of flexibility tests, these methods were operator-dependent and could yield to clinically irrelevant stiffnesses. This study included 30 patients surgically treated for severe idiopathic scoliosis. A previously validated trunk model, with patient-specific geometry, was used to simulate bending tests according to the in vivo displacements of T1 and L5 measured from bending test radiographs. Differences between in vivo and virtual spinal behaviors during bending tests (left and right) were computed in terms of vertebral rotations and translation. An automated method, driven by a priori knowledge, identified intervertebral stiffnesses in order to reproduce the in vivo spinal behavior. Because of the identification of intervertebral stiffnesses, differences between in vivo and virtual spinal displacements were drastically reduced (95% of the differences less than +/-3 mm for vertebral translation). Intervertebral stiffness distribution after identification was analyzed. On convex side test, the intervertebral stiffness of the compensatory curves increased in most cases, whereas the major curve became more flexible. Stiffness singularities were found in junctional zones: these specific levels were predominantly flexible, both in torsion and in lateral bending. The identification of in vivo intervertebral stiffness may improve our understanding of scoliotic spine and the relevance of patient-specific methods for surgical planning.

  12. Organ Culture Bioreactors – Platforms to Study Human Intervertebral Disc Degeneration and Regenerative Therapy

    PubMed Central

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha CW; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of “smart” biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments. PMID:25764196

  13. Elastic fibre organization in the intervertebral discs of the bovine tail

    PubMed Central

    Yu, Jing; Peter, C; Roberts, Sally; Urban, Jill PG

    2002-01-01

    Elastic fibres have been revealed by both elastin immunostaining and conventional histological orcein-staining in the intervertebral discs of the bovine tail. These fibres are distributed in all regions of the disc but their organization varies from region to region. In the centre of the nucleus, long (>150 μm) elastic fibres are orientated radially. In the transitional region between nucleus and annulus, the orientation of the elastic fibres changes, producing a criss-cross pattern. In the annulus itself, elastic fibres appear densely distributed in the region between the lamellae and also in ‘bridges’ across the lamellae, particularly in the adult. Elastic fibres are apparent within the lamellae, orientated parallel to the collagen fibres of each lamella, particularly in the young (12-day-old) discs. In the region between the disc and the cartilaginous endplate, elastic fibres appear to anchor into the plate and terminate there. The results of this study suggest that elastic fibres contribute to the mechanical functioning of the intervertebral disc. The varying organization of the elastic fibres in the different regions of the disc is likely to relate to the different regional loading patterns PMID:12489758

  14. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  15. Overview: the role of Propionibacterium acnes in nonpyogenic intervertebral discs.

    PubMed

    Chen, Zhe; Cao, Peng; Zhou, Zezhu; Yuan, Ye; Jiao, Yucheng; Zheng, Yuehuan

    2016-06-01

    Propionibacterium acnes (P. acnes), an important opportunistic anaerobic Gram-positive bacterium, causes bone and joint infections, discitis and spondylodiscitis. Accumulated evidence suggested that this microbe can colonise inside intervertebral discs without causing symptoms of discitis. Epidemiological investigation shows that the prevalence ranges from 13 % to 44 %. Furthermore, colonisation by P. acnes inside nonpyogenic intervertebral discs is thought to be one pathogen causing sciatica, Modic changes and nonspecific low back pain. Specially, patients can attain significant relief of low back pain, amelioration of Modic changes and alleviation of sciatica after antibiotic therapy, indicating the role of P. acnes in these pathological changes. However, until now, there were hypotheses only to explain problems such as how P. acnes access intervertebral discs and what the exact pathological mechanism it employs during its latent infection period. In addition, research regarding diagnostic procedures and treatment strategies were also rare. Overall, the prevalence and possible pathological role that P. acnes plays inside nonpyogenic intervertebral discs is summarised in this paper.

  16. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure.

    PubMed

    Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison

    2008-01-01

    The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.

  17. Intervertebral disk width in dogs with and without clinical signs of disk associated cervical spondylomyelopathy

    PubMed Central

    2012-01-01

    Background Disk-associated cervical spondylomyelopathy (DA-CSM) is a multifactorial neurological disorder in which progressive caudal cervical spinal cord compression is mainly caused by one or more intervertebral disk protrusions. The Doberman pinscher breed seems predisposed for this condition. The underlying cause and pathophysiology of DA-CSM are currently unknown. Recently, wider intervertebral disks have been put forward as a risk factor for development of clinically relevant DA-CSM. However, little is known about other factors affecting intervertebral disk width. Therefore the aim of this study was to assess the association between intervertebral disk width, measured on magnetic resonance imaging (MRI), and clinical status, age, gender and intervertebral disk location in dogs with and without clinical signs of DA-CSM. Methods Doberman pinschers with clinical signs of DA-CSM (N=17),clinically normal Doberman pinschers (N=20), and clinically normal English Foxhounds (N=17), underwent MRI of the cervical vertebral column. On sagittal T2-weighted images, intervertebral disk width was measured from C2-C3 to C6-C7. Intra –and interobserver agreement were assessed on a subset of 20 of the 54 imaging studies. Results Intervertebral disk width was not significantly different between Doberman pinschers with clinical signs of DA-CSM, clinically normal Doberman pinschers or clinically normal English Foxhounds (p=0.43). Intervertebral disk width was positively associated with increasing age (p=0.029). Each monthly increase in age resulted in an increase of disk width by 0.0057mm. Intervertebral disk width was not significantly affected by gender (p=0.056), but was significantly influenced by intervertebral disk location (p <0.0001). The assessed measurements were associated with a good intra –and interobserver agreement. Conclusions The present study does not provide evidence that wider intervertebral disks are associated with clinical status in dogs with and without

  18. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  19. Morphological changes of the caudal cervical intervertebral foramina due to flexion-extension and compression-traction movements in the canine cervical vertebral column.

    PubMed

    Ramos, Renato M; da Costa, Ronaldo C; Oliveira, Andre L A; Kodigudla, Manoj K; Goel, Vijay K

    2015-08-06

    Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has implications in the pathogenesis of CSM. The dimensions of the cervical intervertebral foramina may significantly change during neck movements. This could have implication in the pathogenesis of CSM and other diseases associated with radiculopathy such as intervertebral disc disease. The purpose of this study was to quantify the morphological changes in the intervertebral foramina of dogs during flexion, extension, traction, and compression of the canine cervical vertebral column. All vertebral columns were examined with magnetic resonance imaging prior to biomechanic testing. Eight normal vertebral columns were placed in Group 1 and eight vertebral columns with intervertebral disc degeneration or/and protrusion were assigned to Group 2. Molds of the left and right intervertebral foramina from C4-5, C5-6 and C6-7 were taken during all positions and loading modes. Molds were frozen and vertical (height) and horizontal (width) dimensions of the foramina were measured. Comparisons were made between neutral to flexion and extension, flexion to extension, and traction to compression in neutral position. Extension decreased all the foraminal dimensions significantly, whereas flexion increased all the foraminal dimensions significantly. Compression decreased all the foraminal dimensions significantly, and traction increased the foraminal height, but did not significantly change the foraminal width. No differences in measurements were seen between groups. Our results show movement-related changes in the dimensions of the intervertebral foramina, with significant foraminal narrowing in extension

  20. Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.

    PubMed

    Gruber, H E; Hanley, E N

    2009-06-01

    The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.

  1. [Intervertebral disk disease among oil drilling workers].

    PubMed

    Fernandes, R C; Carvalho, F M

    2000-01-01

    A cross-sectional study among 1,026 oil drilling workers in Northeast Brazil found a prevalence rate of 5% for intervertebral disk disease, varying from 1.8% (activities without heavy lifting) and 4.5% (occasional lifting) to 7.2% (routine lifting). Disease prevalence was 10.5% among drilling workers with more than 15 years in the industry and 11.3% among those over 40 years of age. Prevalence ratio (PR) for the association between working in oil drilling operations and intervertebral disk disease was 2.3 (95% CI: 1.3-4.0). Retrospective information about exposure was collected to minimize the healthy worker survival effect. Using information on current occupation instead of occupational life history would cause an underestimated PR of 1.1 (95% CI: 0.6-1.9). Logistic regression showed results similar to the tabular analysis. Neither confounding nor interaction was evident. Growth of the Brazilian oil industry and recent changes in the work force contract and management, involving changes in risk management and health control, indicate a need for prompt ergonomic intervention in order to control intervertebral disk disease among oil drilling workers.

  2. A Review of Fibrocartilaginous Embolic Myelopathy and Different Types of Peracute Non-Compressive Intervertebral Disk Extrusions in Dogs and Cats

    PubMed Central

    De Risio, Luisa

    2015-01-01

    This review discusses terminology, pathological, clinical, and magnetic resonance imaging (MRI) findings, treatment, outcome, and prognostic factors of fibrocartilaginous embolic myelopathy (FCEM), acute non-compressive nucleus pulposus extrusion (ANNPE), and intradural/intramedullary intervertebral disk extrusion (IIVDE). FCEM, ANNPE, and IIVDE have a similar clinical presentation characterized by peracute onset of neurological dysfunction that is generally non-progressive after the initial 24–48 h. Differentiating between these conditions can be challenging, however, certain clinical and imaging findings can help. FCEM can occur in both adult and immature animals, whereas ANNPE or IIVDE have been reported only in animals older than 1 year. In dogs, ANNPE and IIVDE most commonly occur in the intervertebral disk spaces between T12 and L2, whereas FCEM has not such site predilection. In cats, FCEM occurs more frequently in the cervical spinal cord than in other locations. Data on cats with ANNPE and IIVDE are limited. Optimal MRI definition and experience in neuroimaging can help identify the findings that allow differentiation between FCEM, ANNPE, and IIVDE. In animals with ANNPE and IIVDE, the affected intervertebral disk space is often narrowed and the focal area of intramedullary hyperintensity on T2-weighted images is located above the affected intervertebral disk space. In dogs with ANNPE signal changes associated with the extruded nucleus pulposus and epidural fat disruption can be identified in the epidural space dorsal to the affected intervertebral disk. Identification of a linear tract (predominantly hyperintense on T2-weighted images, iso to hypointense on T1-weighted images and hypointense on T2*-weighted gradient recall echo images) extending from the intervertebral disk into the spinal cord parenchyma is highly suggestive of IIVDE. Treatment of FCEM and ANNPE is conservative. Dogs reported with IIVDE have been managed either conservatively or

  3. New Challenges for Intervertebral Disc Treatment Using Regenerative Medicine

    PubMed Central

    Masuda, Koichi

    2010-01-01

    The development of tissue engineering therapies for the intervertebral disc is challenging due to ambiguities of disease and pain mechanisms in patients, and lack of consensus on preclinical models for safety and efficacy testing. Although the issues associated with model selection for studying orthopedic diseases or treatments have been discussed often, the multifaceted challenges associated with developing intervertebral disc tissue engineering therapies require special discussion. This review covers topics relevant to the clinical translation of tissue-engineered technologies: (1) the unmet clinical need, (2) appropriate models for safety and efficacy testing, (3) the need for standardized model systems, and (4) the translational pathways leading to a clinical trial. For preclinical evaluation of new therapies, we recommend establishing biologic plausibility of efficacy and safety using models of increasing complexity, starting with cell culture, small animals (rats and rabbits), and then large animals (goat and minipig) that more closely mimic nutritional, biomechanical, and surgical realities of human application. The use of standardized and reproducible experimental procedures and outcome measures is critical for judging relative efficacy. Finally, success will hinge on carefully designed clinical trials with well-defined patient selection criteria, gold-standard controls, and objective outcome metrics to assess performance in the early postoperative period. PMID:19903086

  4. PSOCT studies of intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.

    2004-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.

  5. Intervertebral disc adaptation to wedging deformation.

    PubMed

    Stokes, Ian A F; Aronsson, David D; Clark, Katherine C; Roemhildt, Maria L

    2006-01-01

    Although scoliosis includes wedge deformities of both vertebrae and discs, little is known about the causes of the discal changes, and whether they result from mechanical influences on growth and/or remodelling. An external apparatus attached to transvertebral pins applied compression and 15 degrees of angulation to each of two adjacent young rat caudal intervertebral discs for 5 weeks (four animals), or for 10 weeks (four animals). Each week, micro-CT scanning documented the in vivo discal wedging. After euthanasia, tail segments (three vertebrae and the 2 angulated discs) were excised and their flexibility was measured over a range of lateral bending. The angle of maximum flexibility was recorded. Then discs were fixed in situ (with the external apparatus in place) and sectioned for polarized light microscopy. The disc-wedging deformity averaged 15 degrees initially, it averaged 20 degrees after 5 weeks, and then reduced to 10 degrees (in 10 week animals). The lateral bending flexibility showed a distinct maximum at an average of 1.1 degrees from the in vivo position in the 5-week animals, indicating structural remodeling of the discs almost to the deformed geometry. The 10-week animals had maximum flexibility at 1.4 degrees from the in vivo position (no significant difference between 5 and 10-week animals.) Collagen crimp angles [Cassidy et al., Conn Tiss Res 1989, 23:75-88] were not significantly different between convex and concave sides, again suggesting that remodeling had occurred. In a mechanically induced scoliosis deformity in skeletally immature rats, the intervertebral discs underwent remodeling within 5 weeks. This indicates that this animal model is suitable for studying adaptive wedging changes in human scoliosis.

  6. [Expression and distribution of xenoantigen alpha-Gal in intervertebral disk of Chinese banna minipig inbred line].

    PubMed

    Shou, Jian-guo; Mi, Jian-hong; Ying, Da-jun

    2002-09-01

    To investigate the expression and distribution of xenoantigen in intervertebral disk of Chinese banna minipig inbred line, and to study the availability of xenograft transplantation of intervertebral disk. Samples of intervertebral disk were collected from six Banna pigs of 8 to 11-month-old. The fixation, embedment and slice were performed. alpha-Gal specific binding lection (BSI-B4) were used as affinity reagents and affinity-immunohistochemistry assays (SABC methods and DAB stain) were conducted to detect the expression and distribution of xenoantigen (alpha-Gal). alpha-Gal was found in chondrocyte cell and chondrocyte-like cell in intervertebral disk which have the positive yellow-stained particulate aggradation. There was no stain in the matrix, elastic fiber and collagen fiber. The distribution of xenoantigen is locally in the tissue of intervertebral disk and its expression is weak. This suggests that the intervertebral disk of Banna pig may be alternative donor for xenotransplantation.

  7. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  8. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony John; Hoyland, Judith Alison

    2007-01-01

    Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration. PMID:17498290

  9. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration.

    PubMed

    Hua, Wen-Bin; Wu, Xing-Huo; Zhang, Yu-Kun; Song, Yu; Tu, Ji; Kang, Liang; Zhao, Kang-Cheng; Li, Shuai; Wang, Kun; Liu, Wei; Shao, Zeng-Wu; Yang, Shu-Hua; Yang, Cao

    2017-08-01

    Intervertebral disc degeneration (IDD) is a chronic disease associated with the degradation of extracellular matrix (ECM). Matrix metalloproteinase (MMP)-13 is a major enzyme that mediates the degradation of ECM components. MMP-13 has been predicted to be a potential target of miR-127-5p. However, the exact function of miR-127-5p in IDD is still unclear. We designed this study to evaluate the correlation between miR-127-5p level and the degeneration of human intervertebral discs and explore the potential mechanisms. miR-127-5p levels and MMP-13 mRNA levels were detected by quantitative real-time polymerase chain reaction (qPCR). To determine whether MMP-13 is a target of miR-127-5p, dual luciferase reporter assays were performed. miR-127-5p mimic and miR-127-5p inhibitor were used to overexpress or downregulate miR-127-5p expression in human NP cells, respectively. Small interfering RNA (siRNA) was used to knock down MMP-13 expression in human NP cells. Type II collagen expression in human NP cells was detected by qPCR, western blotting, and immunofluorescence staining. We confirmed that miR-127-5p was significantly downregulated in nucleus pulposus (NP) tissue of degenerative discs and its expression was inversely correlated with MMP-13 mRNA levels. We reveal that MMP-13 may act as a target of miR-127-5p. Expression of miR-127-5p was inversely correlated with type II collagen expression in human NP cells. Moreover, suppression of MMP-13 expression by siRNA blocked downstream signaling and increased type II collagen expression. Dysregulated miR-127-5p contributed to the degradation of type II collagen by targeting MMP-13 in human IDD. Our findings highlight that miR-127-5p may serve as a new therapeutic target in IDD. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. The interobserver-validated relevance of intervertebral spacer materials in MRI artifacting

    PubMed Central

    Heidrich, G.; Bruening, T.; Krefft, S.; Buchhorn, G.; Klinger, H.M.

    2006-01-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium, carbon or cobalt-chrome, which can affect the post-fusion MRI scans. Implant-related susceptibility artifacts can decrease the quality of MRI scans, thwarting proper evaluation. This cadaver study aimed to demonstrate the extent that implant-related MRI artifacting affects the post-fusion evaluation of intervertebral spacers. In a cadaveric porcine spine, we evaluated the post-implantation MRI scans of three intervertebral spacers that differed in shape, material, surface qualities and implantation technique. A spacer made of human cortical bone was used as a control. The median sagittal MRI slice was divided into 12 regions of interest (ROI). No significant differences were found on 15 different MRI sequences read independently by an interobserver-validated team of specialists (P>0.05). Artifact-affected image quality was rated on a score of 0-1-2. A maximum score of 24 points (100%) was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. The carbon, titanium and cobalt-chrome spacers scored 83.3, 62.5 and 50%, respectively. Our scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the control that was independent of artifact dimensions. The carbon spacer had the lowest percentage of susceptibility artifacts. Even with turbo spin echo sequences, the susceptibility artifacts produced by the metallic spacers showed a high degree of variability. Despite optimum sequencing, implant design and material are relevant factors in MRI artifacting. PMID:16463200

  11. Canine pancreatic lipase immunoreactivity concentrations associated with intervertebral disc disease in 84 dogs.

    PubMed

    Schueler, R O; White, G; Schueler, R L; Steiner, J M; Wassef, A

    2018-05-01

    To determine the differences in serum canine pancreatic lipase immunoreactivity between dogs with intervertebral disc herniation and healthy control dogs. Eighty-four client-owned dogs with intervertebral disc herniation, diagnosed by neurologic examination and imaging, and 18 healthy control dogs. Samples of whole blood were collected within 90 minutes of admission. Serum canine pancreatic lipase immunoreactivity concentrations were measured by a commercial immunoassay and evaluated for association with intervertebral disc herniation, signalment, neurolocalisation and the preadmission administration of glucocorticosteriods or non-steroidal anti-inflammatory drugs. Serum canine pancreatic lipase immunoreactivity concentrations were statistically increased in dogs with intervertebral disc herniation (P<0·01, n=38). A subgroup of dogs (19/38) with elevated canine pancreatic lipase immunoreactivity concentrations was re-evaluated between 2 and 4 weeks later, and 15 had resolution of clinical signs and values less than 200 μg/L. Serum canine pancreatic lipase immunoreactivity concentrations were not significantly correlated with clinical gastrointestinal disease, neurolocalisation or the preadmission administration of corticosteroids or non-steroidal anti-inflammatory drugs. These results suggest that serum canine pancreatic lipase immunoreactivity concentrations are significantly elevated in dogs with intervertebral disc herniation. © 2018 British Small Animal Veterinary Association.

  12. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  13. Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy.

    PubMed

    Harvey, Steven; Hukins, David; Smith, Francis; Wardlaw, Douglas; Kader, Deiary

    2016-08-10

    Static radiographic techniques are unable to capture the wealth of kinematic information available from lumbar spine sagittal plane motion. Demonstration of a viable non-invasive technique for acquiring and quantifying intervertebral motion of the lumbar spine in the sagittal plane. Videofluoroscopic footage of sagittal plane lumbar spine flexion-extension in seven symptomatic volunteers (mean age = 48 yrs) and one asymptomatic volunteer (age = 54 yrs) was recorded. Vertebral bodies were digitised using customised software employing a novel vertebral digitisation scheme that was minimally affected by out-of-plane motion. Measurement errors in intervertebral rotation (± 1°) and intervertebral displacement (± 0.5 mm) compare favourably with the work of others. Some subjects presenting with an identical condition (disc prolapse) exhibited a similar column vertebral flexion-extension relative to S1 (L3: max. 5.9°, min. 5.6°), while in others (degenerative disc disease) there was paradoxically a significant variation in this measurement (L3: max. 28.1°, min. 0.7°). By means of a novel vertebral digitisation scheme and customised digitisation/analysis software, sagittal plane intervertebral motion data of the lumbar spine data has been successfully extracted from videofluoroscopic image sequences. Whilst the intervertebral motion signatures of subjects in this study differed significantly, the available sample size precluded the inference of any clinical trends.

  14. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. CT Fluoroscopy-Guided Transsacral Intervertebral Drainage for Pyogenic Spondylodiscitis at the Lumbosacral Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomohiro, E-mail: t-matsu@tokai-u.jp; Mine, Takahiko, E-mail: mine@tsc.u-tokai.ac.jp; Hayashi, Toshihiko, E-mail: t.hayashi@tokai.ac.jp

    PurposeTo retrospectively describe the feasibility and efficacy of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction with a combination of two interventional radiological techniques—CT-guided bone biopsy and abscess drainage.Materials and methodsThree patients with pyogenic spondylodiscitis at the lumbosacral junction were enrolled in this study between July 2013 and December 2015. The procedure of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction was as follows: the sacrum at S1 pedicle was penetrated with an 11-gauge (G) bone biopsy needle to create a path for an 8-French (F) pigtail drainage catheter. The bone biopsymore » needle was withdrawn, and an 18-G needle was inserted into the intervertebral space of the lumbosacral junction. Then, a 0.038-inch guidewire was inserted into the intervertebral space. Finally, the 8-F pigtail drainage catheter was inserted over the guidewire until its tip reached the intervertebral space. All patients received six-week antibiotics treatment.ResultsSuccessful placement of the drainage catheter was achieved for each patient without procedural complications. The duration of drainage was 17–33 days. For two patients, specific organisms were isolated; thus, definitive medical therapy was possible. All patients responded well to the treatment.ConclusionsCT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction is feasible and can be effective with a combination of two interventional techniques—CT fluoroscopy-guided bone biopsy and abscess drainage.« less

  16. Histological Identification of Propionibacterium acnes in Nonpyogenic Degenerated Intervertebral Discs.

    PubMed

    Yuan, Ye; Zhou, Zezhu; Jiao, Yucheng; Li, Changwei; Zheng, Yuehuan; Lin, Yazhou; Xiao, Jiaqi; Chen, Zhe; Cao, Peng

    2017-01-01

    Purpose . Low-virulence anaerobic bacteria, especially the Propionibacterium acnes (P. acnes) , have been thought to be a new pathogeny for a series of disc diseases. However, until now, there has been no histological evidence to confirm this link. The purpose of this study was to confirm the presence of P. acnes in nonpyogenic intervertebral discs via histological observation. Method . Degenerated intervertebral discs were harvested from 76 patients with low back pain and/or sciatica but without any symptoms of discitis or spondylodiscitis. The samples were cultured under anaerobic conditions and then examined using 16S rDNA PCR to screen for P. acnes . Samples found to be positive for P. acnes were stained with hematoxylin-eosin (HE) and modified Brown-Brenn staining and observed under a microscope. Results . Here, 16 intervertebral discs were found to be positive for P. acnes via 16S rDNA PCR and the prevalence was 21.05% (16/76). Among them, 7 samples had visible microbes stained with HE and modified Brown-Brenn staining. Morphological examination showed the bacteria to be Gram-positive and rod-shaped, so they were considered P. acnes . Conclusion . P. acnes is capable of colonizing some degenerated intervertebral discs without causing discitis, and its presence could be further confirmed by histological evidence. Targeting these bacteria may be a promising therapy method for some disc diseases.

  17. [Principles of intervertebral disc assessment in private accident insurance].

    PubMed

    Steinmetz, M; Dittrich, V; Röser, K

    2015-09-01

    Due to the spread of intervertebral disc degeneration, insurance companies and experts are regularly confronted with related assessments of insured persons under their private accident insurance. These claims pose a particular challenge for experts, since, in addition to the clinical assessment of the facts, extensive knowledge of general accident insurance conditions, case law and current study findings is required. Each case can only be properly assessed through simultaneous consideration of both the medical and legal facts. These guidelines serve as the basis for experts and claims.managers with respect to the appropriate individual factual assessment of intervertebral disc degeneration in private accident insurance.

  18. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  19. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.

    PubMed

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-10-01

    Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding

  20. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  1. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  2. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  4. Localization of Proliferating Cells in the Inter-Vertebral Region of the Developing and Adult Vertebrae of Lizards in Relation to Growth and Regeneration.

    PubMed

    Alibardi, Lorenzo

    2016-04-01

    New cartilaginous tissues in lizards is formed during the regeneration of the tail or after vertebral damage. In order to understand the origin of new cartilaginous cells in the embryo and after injury of adult vertebrae we have studied the distribution of proliferating cartilaginous cells in the vertebral column of embryos and adults of the lizard Anolis lineatopus using autoradiography for H3-thymidine and light and ultrastructural immunocytochemistry for 5BrdU. Proliferating sclerotomal cells initially surround the notochord in a segmental pattern and give rise to the chondrocytes of the vertebral centrum that replace the original chordal cells. Qualitative observations show that proliferating sclerotomal cells dilute the labeling up to 13 days post-injection but a few maintain the labeling as long labeling retention cells and remain in the inter-centra and perichondrium after birth. These cells supply new chondroblasts for post-natal growth of vertebrae but can also proliferate in case of vertebral damage or tail amputation in lizards, a process that sustains tail regeneration. The lack of somitic organization in the regenerating tail impedes the re-formation of a segmental vertebral column that is instead replaced by a continuous cartilaginous tube. It is hypothesized that long labeling retaining cells might represent stem/primordial cells, and that their permanence in the inter-vertebral cartilages and the nearby perichondrium in adult lizards pre-adapt these reptiles to elicit a broad cartilage regeneration in case of injury of the vertebrae. © 2016 Wiley Periodicals, Inc.

  5. The effect of creep on human lumbar intervertebral disk impact mechanics.

    PubMed

    Jamison, David; Marcolongo, Michele S

    2014-03-01

    The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.

  6. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs.

    PubMed

    Bonavita, Raffaella; Vincent, Kathleen; Pinelli, Robert; Dahia, Chitra Lekha

    2018-05-21

    In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of HH signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. © 2018. Published by The Company of Biologists Ltd.

  7. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development

    PubMed Central

    McCann, Matthew R.; Tamplin, Owen J.; Rossant, Janet; Séguin, Cheryle A.

    2012-01-01

    SUMMARY Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration. PMID:22028328

  8. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development.

    PubMed

    McCann, Matthew R; Tamplin, Owen J; Rossant, Janet; Séguin, Cheryle A

    2012-01-01

    Back pain related to intervertebral disc degeneration is the most common musculoskeletal problem, with a lifetime prevalence of 82%. The lack of effective treatment for this widespread problem is directly related to our limited understanding of disc development, maintenance and degeneration. The aim of this study was to determine the developmental origins of nucleus pulposus cells within the intervertebral disc using a novel notochord-specific Cre mouse. To trace the fate of notochordal cells within the intervertebral disc, we derived a notochord-specific Cre mouse line by targeting the homeobox gene Noto. Expression of this gene is restricted to the node and the posterior notochord during gastrulation [embryonic day 7.5 (E7.5)-E12.5]. The Noto-cre mice were crossed with a conditional lacZ reporter for visualization of notochord fate in whole-mount embryos. We performed lineage-tracing experiments to examine the contribution of the notochord to spinal development from E12.5 through to skeletally mature mice (9 months). Fate mapping studies demonstrated that, following elongation and formation of the primitive axial skeleton, the notochord gives rise to the nucleus pulposus in fully formed intervertebral discs. Cellular localization of β-galactosidase (encoded by lacZ) and cytokeratin-8 demonstrated that both notochordal cells and chondrocyte-like nucleus pulposus cells are derived from the embryonic notochord. These studies establish conclusively that notochordal cells act as embryonic precursors to all cells found within the nucleus pulposus of the mature intervertebral disc. This suggests that notochordal cells might serve as tissue-specific progenitor cells within the disc and establishes the Noto-cre mouse as a unique tool to interrogate the contribution of notochordal cells to both intervertebral disc development and disc degeneration.

  9. Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research.

    PubMed

    Reitmaier, Sandra; Graichen, Friedmar; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik

    2017-10-04

    Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.

  10. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  11. [Expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro].

    PubMed

    Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee

    2005-12-15

    To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.

  12. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc

    PubMed Central

    Purmessur, Devina; Freemont, Anthony J; Hoyland, Judith A

    2008-01-01

    Introduction The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD. Methods Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P. Results Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only. Conclusion Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and

  13. Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability.

    PubMed

    Teichtahl, Andrew J; Urquhart, Donna M; Wang, Yuanyuan; Wluka, Anita E; O'Sullivan, Richard; Jones, Graeme; Cicuttini, Flavia M

    2015-05-07

    Although physical inactivity has been associated with numerous chronic musculoskeletal complaints, few studies have examined its associations with spinal structures. Moreover, previously reported associations between physical activity and low back pain are conflicting. This study examined the associations between physical inactivity and intervertebral disc height, paraspinal fat content and low back pain and disability. Seventy-two community-based volunteers not selected for low back pain underwent magnetic resonance imaging (MRI) of their lumbosacral spine (L1 to S1) between 2011 and 2012. Physical activity was assessed between 2005 and 2008 by questionnaire, while low back pain and disability were assessed by the Chronic Pain Grade Scale at the time of MRI. Intervertebral disc height and cross-sectional area and fat content of multifidus and erector spinae were assessed from MRI. Lower physical activity levels were associated with a more narrow average intervertebral disc height (β -0.63 mm, 95% confidence interval (CI) -1.17 mm to -0.08 mm, P = 0.026) after adjusting for age, gender and body mass index (BMI). There were no significant associations between physical activity levels and the cross-sectional area of multifidus or erector spinae. Lower levels of physical activity were associated with an increased risk of high fat content in multifidus (odds ratio (OR) 2.7, 95% CI 1.1 to 6.7, P = 0.04) and high-intensity pain/disability (OR = 5.0, 95% CI 1.5 to 16.4, P = 0.008) after adjustment for age, gender and BMI. Physical inactivity is associated with narrower intervertebral discs, high fat content of the multifidus and high-intensity low back pain and disability in a dose-dependent manner among community-based adults. Longitudinal studies will help to determine the cause and effect nature of these associations.

  14. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D.

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in thes middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. PMID:22841806

  15. Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2016-01-01

    Award Number: W81XWH-13-1-0050 TITLE: Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics PRINCIPAL...CONTRACT NUMBER W81XWH-13-1-0050 Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics 5b. GRANT NUMBER 5c...elasticity during compression or tension. As a portable, low cost imaging modality, the dual ultrasound system quantified cervical spine IVD displacement and

  16. Sparse intervertebral fence composition for 3D cervical vertebra segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Cong, Weijian; Jiao, Peifeng; Song, Hong; Ai, Danni; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Statistical shape models are capable of extracting shape prior information, and are usually utilized to assist the task of segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, and it also is difficult to achieve satisfactory results for complex shapes. This study proposed a novel statistical model for cervical vertebra segmentation, called sparse intervertebral fence composition (SiFC), which can reconstruct the boundary between adjacent vertebrae by modeling intervertebral fences. The complex shape of the cervical spine is replaced by a simple intervertebral fence, which considerably reduces the difficulty of cervical segmentation. The final segmentation results are obtained by using a 3D active contour deformation model without shape constraint, which substantially enhances the recognition capability of the proposed method for objects with complex shapes. The proposed segmentation framework is tested on a dataset with CT images from 20 patients. A quantitative comparison against corresponding reference vertebral segmentation yields an overall mean absolute surface distance of 0.70 mm and a dice similarity index of 95.47% for cervical vertebral segmentation. The experimental results show that the SiFC method achieves competitive cervical vertebral segmentation performances, and completely eliminates inter-process overlap.

  17. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    PubMed

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  18. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  19. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  20. Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability?

    PubMed

    Pearson, Adam M; Spratt, Kevin F; Genuario, James; McGough, William; Kosman, Katherine; Lurie, Jon; Sengupta, Dilip K

    2011-04-01

    Comparison of intra- and interobserver reliability of digitized manual and computer-assisted intervertebral motion measurements and classification of "instability." To determine if computer-assisted measurement of lumbar intervertebral motion on flexion-extension radiographs improves reliability compared with digitized manual measurements. Many studies have questioned the reliability of manual intervertebral measurements, although few have compared the reliability of computer-assisted and manual measurements on lumbar flexion-extension radiographs. Intervertebral rotation, anterior-posterior (AP) translation, and change in anterior and posterior disc height were measured with a digitized manual technique by three physicians and by three other observers using computer-assisted quantitative motion analysis (QMA) software. Each observer measured 30 sets of digital flexion-extension radiographs (L1-S1) twice. Shrout-Fleiss intraclass correlation coefficients for intra- and interobserver reliabilities were computed. The stability of each level was also classified (instability defined as >4 mm AP translation or 10° rotation), and the intra- and interobserver reliabilities of the two methods were compared using adjusted percent agreement (APA). Intraobserver reliability intraclass correlation coefficients were substantially higher for the QMA technique THAN the digitized manual technique across all measurements: rotation 0.997 versus 0.870, AP translation 0.959 versus 0.557, change in anterior disc height 0.962 versus 0.770, and change in posterior disc height 0.951 versus 0.283. The same pattern was observed for interobserver reliability (rotation 0.962 vs. 0.693, AP translation 0.862 vs. 0.151, change in anterior disc height 0.862 vs. 0.373, and change in posterior disc height 0.730 vs. 0.300). The QMA technique was also more reliable for the classification of "instability." Intraobserver APAs ranged from 87 to 97% for QMA versus 60% to 73% for digitized manual

  1. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Lee, Chanmi; Harfe, Brian D

    2012-01-01

    The intervertebral discs, located between adjacent vertebrae, are required for stability of the spine and distributing mechanical load throughout the vertebral column. All cell types located in the middle regions of the discs, called nuclei pulposi, are derived from the embryonic notochord. Recently, it was shown that the hedgehog signaling pathway plays an essential role during formation of nuclei pulposi. However, during the time that nuclei pulposi are forming, Shh is expressed in both the notochord and the nearby floor plate. To determine the source of SHH protein sufficient for formation of nuclei pulposi we removed Shh from either the floor plate or the notochord using tamoxifen-inducible Cre alleles. Removal of Shh from the floor plate resulted in phenotypically normal intervertebral discs, indicating that Shh expression in this tissue is not required for disc patterning. In addition, embryos that lacked Shh in the floor plate had normal vertebral columns, demonstrating that Shh expression in the notochord is sufficient for pattering the entire vertebral column. Removal of Shh from the notochord resulted in the absence of Shh in the floor plate, loss of intervertebral discs and vertebral structures. These data indicate that Shh expression in the notochord is sufficient for patterning of the intervertebral discs and the vertebral column. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure.

    PubMed

    Kasra, Mehran; Merryman, W David; Loveless, Kristen N; Goel, Vijay K; Martin, James D; Buckwalter, Joseph A

    2006-10-01

    The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. Dynamic loads with frequencies close to that of the in vivo human spine resonant frequency (4-6 Hz) have a destructive effect, which may induce extracellular disc matrix (ECM) degradation. To investigate this issue, three-dimensional (3D) alginate cultures of normal pig intervertebral disc nucleus and inner annulus cells were tested under dynamic hydrostatic loading. Alginate cultures of each region were divided into six groups; five groups were exposed to cyclic hydrostatic pressures of frequencies 1, 3, 5, 8, and 10 Hz with the same amplitude (1 MPa), and group 6 was the control group (no loading). Cultures of different groups were loaded for 3 days (30 min daily) in a hydraulic chamber. Effects of loading frequency on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. The results indicated a poor synthesis rate and more degradation near the 5 Hz frequency. The repeatability of experiments was verified by performing two experiments with the same protocol. Both experiments indicated that a threshold frequency of around 5 Hz disrupted protein metabolism. Copyright (c) 2006 Orthopaedic Research Society.

  3. Vertebral end-plate fractures as a result of high rate pressure loading in the nucleus of the young adult porcine spine.

    PubMed

    Brown, Stephen H M; Gregory, Diane E; McGill, Stuart M

    2008-01-01

    In a healthy spine, end-plate fractures occur from excessive pressurization of the intervening nucleus. Younger spines are most susceptible to such type of injury due to the highly hydraulic nature of their intervertebral discs. The purpose of this paper was to confirm this fracture mechanism of the healthy spine through the pressurization of the nucleus in the absence of external compressive loading. Sixteen functional porcine spine units were dissected and both injection and pressure transducer needles were inserted into the nucleus of the intervertebral disc. Hydraulic fluid was rapidly injected into the nucleus until failure occurred. Peak pressure and rate of pressure development were monitored. Spine units were dissected to determine the type and location of fracture. Fifteen of the 16 spine units fractured (the remaining unit had a degenerated disc). Of the 15 fractures, 13 occurred at the posterior margin of the end-plate along the lines of the growth plates. A slightly exponential relationship was found between peak pressure and its rate of development (R(2) = 0.544). Also, in each of the growth-plate fractured specimens, nuclear material was forcefully emitted, during fracture, from the intervertebral disc into the vertebral foramen. The posterior end-plate fractures produced here are similar to those often seen in young adult humans. This provides insight into a mechanism of fracture development through pressurization of the nucleus that might be seen in older adolescents and younger adults during athletic events or mild trauma.

  4. Towards an affordable deep learning system: automated intervertebral disc detection in x-ray images

    NASA Astrophysics Data System (ADS)

    Sa, Ruhan; Owens, William; Wiegand, Raymond; Chaudhary, Vipin

    2017-03-01

    Adult Spinal Deformity is a prominent medical issue with about 68% of the elderly population suffering from the disease.1 Detailed biomechanical assessment is needed both in the presurgical planning of structural spinal deformity as well as in early functional biomechanical compensation in ambulatory spinal pain patients. When considering automation of this process, we have to look at photographic intervertebral disc detection technique as a way to produce a detailed model of the spine with appropriate measurements required to make efficient and accurate decisions on patient care. Deep convolutional neural network (CNN) has given remarkable results in object recognition tasks in recent years. However, massive training data, computational resources and long training time is needed for both training a deep network from scratch or finetuning a network. Using pretrained model as feature extractor has shown promising result for moderate sized medical data.2 However, most work have extracted features from the last layer and little has been explored in terms of the number of convolutional layers needed for best performance. In this work we trained Support Vector Machine (SVM) classifiers on different layers of CaffeNet3 features to show that deeper the better concept does not hold for task such as intervertebral disc detection. Furthermore, our experimental results show the potential of using very small training data, such as 15 annotated medical images in our experiment, to yield satisfactory classification performance with accuracy up to 97.2%.

  5. Cost-benefit value of microscopic examination of intervertebral discs.

    PubMed

    Grzybicki, D M; Callaghan, E J; Raab, S S

    1998-09-01

    Given the virtual absence of histologically detected, clinically unsuspected disease in intervertebral disc specimens, some authors have advocated that histological examination be discontinued. However, the examination of intervertebral disc specimens remains common practice in most pathology laboratories. No cost-benefit analysis of this practice has been made; therefore, the authors' goal in this study was perform such an analysis. Using the University of Iowa surgical pathology database, 1109 patients who had undergone a laminectomy were identified retrospectively. These cases were classified into four categories based on the patients' preoperative clinical diagnosis and final histopathological diagnosis: insignificant clinical diagnosis/insignificant pathological diagnosis (ICIP), significant clinical diagnosis/insignificant pathological diagnosis (SCIP), significant clinical diagnosis/significant pathological diagnosis (SCSP), and insignificant clinical diagnosis/significant pathological diagnosis (ICSP). A significant clinical diagnosis was defined as one other than a benign, noninfectious indication for laminectomy. A significant pathological diagnosis was a diagnosis other than degenerative changes. The cost-benefit value of performing a histological examination in cases with significant or insignificant clinical diagnoses was examined. The cases were classified as: 1068 ICIP, 17 SCIP, 21 SCSP, and three ICSP. On chart review, in all three cases of ICSP an epidural abscess was identified perioperatively and the subsequent histological diagnosis did not affect patient care. The costs per case of identifying a significant pathological diagnosis with a significant and an insignificant clinical diagnosis were $44.79 and $8811, respectively. Histological examination of intervertebral disc specimens is cost beneficial only if there is a significant preoperative clinical diagnosis.

  6. Comparison of the intervertebral disc spaces between axial and anterior lean cervical traction.

    PubMed

    Chung, Chin-Teng; Tsai, Sen-Wei; Chen, Chun-Jung; Wu, Ting-Chung; Wang, David; Lan, Haw-Chang H; Wu, Shyi-Kuen

    2009-11-01

    The insufficient investigations on the changes of spinal structures during traction prevent further exploring the possible therapeutic mechanism of cervical traction. A blind randomized crossover-design study was conducted to quantitatively compare the intervertebral disc spaces between axial and anterior lean cervical traction in sitting position. A total of 96 radiographic images from the baseline measurements, axial and anterior lean tractions in 32 asymptomatic subjects were digitized for further analysis. The intra- and inter-examiner reliabilities for measuring the intervertebral disc spaces were in good ranges (ICCs = 0.928-0.942). With the application of anterior lean traction, the statistical increases were detected both in anterior and in posterior disc spaces compared to the baseline (0.29 mm and 0.24 mm; both P < 0.01) and axial traction (0.16 mm and 0.35 mm; both P < 0.01). The greater intervertebral disc spaces obtained during anterior lean traction might be associated with the more even distribution of traction forces over the anterior and posterior neck structures. The neck extension moment through mandible that generally occurred in the axial traction could be counteracted by the downward force of head weight during anterior lean traction. This study quantitatively demonstrated that anterior lean traction in sitting position provided more intervertebral disc space enlargements in both anterior and posterior aspects than axial traction did. These findings may serve as a therapeutic reference when cervical traction is suggested.

  7. Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation.

    PubMed

    López, Alejandro; Persson, Cecilia; Hilborn, Jöns; Engqvist, Håkan

    2010-10-01

    Degeneration of the intervertebral disk constitutes one of the major causes of low back pain in adults aged 20-50 years old. In this study, injectable, in situ setting, degradable composites aimed for intervertebral disk replacement were prepared. β-TCP and calcium carbonate particles were mixed into acrylic-terminated oligo[D,L-lactide-co-(ε-caprolactone)], which were crosslinked at room temperature. The structure of the oligomers was confirmed by 1H-NMR spectroscopy. The composites were examined via SEM, and the mechanical properties of the crosslinked networks were determined. The porous β-TCP particles showed good mechanical anchorage to the matrix due to polymer penetration into the pores. In vitro degradation tests showed that the composites containing β-TCP slowly degraded, whereas the composites containing CaCO3 exhibited apatite formation capacity. It was concluded that the surface area, morphology, and solubility of the fillers might be used to control the degradation properties. The incorporation of fillers also increased both the elastic modulus and the maximum compression strength of the composites, properties that were similar to those of the physiological disk. These materials have potential for long-term intervertebral disk replacement and regenerative scaffolds because of their low degradation rates, bioactivity, and mechanical properties.

  8. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, C. Peter; Gangnus, Sergei V.

    2004-04-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Dgrn is (6.0 ± 0.2) × 10-3 at a wavelength of 1.3 µm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Dgrn = (6.0 ± 0.6) × 10-3 at 1.3 µm. The nucleus pulposus does not display birefringence, the measured apparent value of Dgrn = (0.39 ± 0.01) × 10-3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  9. On the stiffness matrix of the intervertebral joint: application to total disk replacement.

    PubMed

    O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C

    2009-08-01

    The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.

  10. Artificial Cervical Vertebra and Intervertebral Complex Replacement through the Anterior Approach in Animal Model: A Biomechanical and In Vivo Evaluation of a Successful Goat Model

    PubMed Central

    Qin, Jie; He, Xijing; Wang, Dong; Qi, Peng; Guo, Lei; Huang, Sihua; Cai, Xuan; Li, Haopeng; Wang, Rui

    2012-01-01

    This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC) joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM) or neural zone (NZ) between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine. PMID:23300816

  11. Evaluation of Water Retention in Lumbar Intervertebral Disks Before and After Exercise Stress With T2 Mapping.

    PubMed

    Chokan, Kou; Murakami, Hideki; Endo, Hirooki; Mimata, Yoshikuni; Yamabe, Daisuke; Tsukimura, Itsuko; Oikawa, Ryosuke; Doita, Minoru

    2016-04-01

    T2 mapping was used to quantify moisture content of the lumbar spinal disk nucleus pulposus (NP) and annulus fibrosus before and after exercise stress, and after rest, to evaluate the intervertebral disk function. To clarify water retention in intervertebral disks of the lumbar vertebrae by performing magnetic resonance imaging before and after exercise stress and quantitatively measuring changes in moisture content of intervertebral disks with T2 mapping. To date, a few case studies describe functional evaluation of articular cartilage with T2 mapping; however, T2 mapping to the functional evaluation of intervertebral disks has rarely been applied. Using T2 mapping might help detect changes in the moisture content of intervertebral disks, including articular cartilage, before and after exercise stress, thus enabling the evaluation of changes in water retention shock absorber function. Subjects, comprising 40 healthy individuals (males: 26, females: 14), underwent magnetic resonance imaging T2 mapping before and after exercise stress and after rest. Image J image analysis software was then used to set regions of interest in the obtained images of the anterior annulus fibrosus, posterior annulus fibrosus, and NP. T2 values were measured and compared according to upper vertebrae position and degeneration grade. T2 values significantly decreased in the NP after exercise stress and significantly increased after rest. According to upper vertebrae position, in all of the upper vertebrae positions, T2 values for the NP significantly decreased after exercise stress and significantly increased after rest. According to the degeneration grade, in the NP of grade 1 and 2 cases, T2 values significantly decreased after exercise stress and significantly increased after rest. T2 mapping could be used to not only diagnose the degree of degeneration but also evaluate intervertebral disk function. 3.

  12. Transcript Levels of Major Interleukins in Relation to the Clinicopathological Profile of Patients with Tuberculous Intervertebral Discs and Healthy Controls

    PubMed Central

    Liu, Chong; Zhan, Xinli; Xiao, Zengming; Fan, Qie; Deng, Li; Cui, Mingxing; Xiong, Chunxiang; Xue, Jingbo; Xie, Xiangtao

    2014-01-01

    Objectives The purpose of the present study was to simultaneously examine the transcript levels of a large number of interleukins (ILs; IL-9, IL-10, IL-12, IL-13, IL-16, IL-17, IL-18, IL-26, and IL-27) and investigate their correlation with the clinicopathological profiles of patients with tuberculous intervertebral discs. Methods Clinical data were collected from 150 patients participating in the study from January 2013 to December 2013. mRNA expression levels in 70 tuberculous, 70 herniated, and 10 control intervertebral disc specimens were determined by real-time polymerase chain reaction. Results IL-10, IL-16, IL-17, IL-18, and IL-27 displayed stronger expression in tuberculous spinal disc tissue than in normal intervertebral disc tissue (P<0.05). Our results illustrated multiple correlations among IL-10, IL-16, IL-17, IL-18, and IL-27 mRNA expression in tuberculous samples. Smoking habits were found to have a positive correlation with IL-17 transcript levels and a negative correlation with IL-10 transcript levels (P<0.05). Pain intensity, symptom duration, C-reactive protein levels, and the erythrocyte sedimentation rate exhibited multiple correlations with the transcript levels of several ILs (P<0.05). Conclusions The experimental data imply a double-sided effect on the activity of ILs in tuberculous spinal intervertebral discs, suggesting that they may be involved in intervertebral discs destruction. Our findings also suggest that smoking may affect the intervertebral discs destruction process of spinal tuberculosis. However, further studies are necessary to elucidate the exact role of ILs in the intervertebral discs destruction process of spinal tuberculosis. PMID:24971599

  13. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending.

    PubMed

    Chow, Daniel H K; Luk, Keith D K; Holmes, Andrew D; Li, Xing-Fei; Tam, Steven C W

    2004-02-01

    To assess the changes in the multi-planar bending properties of intervertebral joints following cyclic bending along different directions. An in vitro biomechanical study using porcine lumbar motion segments. Repeated bending has been suggested as part of the etiology of gradual prolapse of the intervertebral disc, but the multi-planar changes in bending properties following cyclic loading have not been examined in detail. Porcine lumbar motion segments were subject to 1500 cycles of bending along directions of 0 degrees (flexion), 30 degrees, 60 degrees, or 90 degrees (right lateral bending). The multi-planar bending moments and hysteresis energies were recorded before loading and after various cycle numbers. Repeated bending at 30 degrees and 60 degrees resulted in greater decreases in mean bending moment and hysteresis energy than bending at 0 degrees or 90 degrees. No significant differences were seen between loading groups for the change in bending moment along the anterior testing directions, but significant differences were observed in the posterior and lateral testing directions, with bending at 30 degrees causing a significantly greater decrease in bending moment in the postero-lateral directions. The change in mechanical properties of porcine intervertebral joints due to cyclic bending depend on the direction of loading and the direction in which the properties are measured. Loading at 30 degrees provokes the most marked changes in bending moment and hysteresis energy.

  14. Development of a computerized intervertebral motion analysis of the cervical spine for clinical application.

    PubMed

    Piché, Mathieu; Benoît, Pierre; Lambert, Julie; Barrette, Virginie; Grondin, Emmanuelle; Martel, Julie; Paré, Amélie; Cardin, André

    2007-01-01

    The objective of this study was to develop a measurement method that could be implemented in chiropractic for the evaluation of angular and translational intervertebral motion of the cervical spine. Flexion-extension radiographs were digitized with a scanner at a ratio of 1:1 and imported into a software, allowing segmental motion measurements. The measurements were obtained by selecting the most anteroinferior point and the most posteroinferior point of a vertebral body (anterior and posterior arch, respectively, for C1), with the origin of the reference frame set at the most posteroinferior point of the vertebral body below. The same procedure was performed for both the flexion and extension radiographs, and the coordinates of the 2 points were used to calculate the angular movement and the translation between the 2 vertebrae. This method provides a measure of intervertebral angular and translational movement. It uses a different reference frame for each joint instead of the same reference frame for all joints and thus provides a measure of motion in the plane of each articulation. The calculated values obtained are comparable to other studies on intervertebral motion and support further development to validate the method. The present study proposes a computerized procedure to evaluate intervertebral motion of the cervical spine. This procedure needs to be validated with a reliability study but could provide a valuable tool for doctors of chiropractic and further spinal research.

  15. Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration.

    PubMed

    Hu, Bo; Xu, Chen; Tian, Ye; Shi, Changgui; Zhang, Ying; Deng, Lianfu; Zhou, Hongyu; Cao, Peng; Chen, Huajiang; Yuan, Wen

    2017-07-25

    Intervertebral disc degeneration (IDD) is characterized by dehydration and loss of extracellular matrixes in the nucleus pulposus region. Chondroitin sulfate has been found to be the water-binding molecule that played a key role in IDD. Although investigators have reported that inflammatory cytokines are involved in the reduction of chondroitin sulfate in IDD, but the underlying mechanism is unrevealed. Since chondroitin sulfate synthesis is controlled by chondroitin sulfate glycosyltransferases CHSY-1/2/3 and CSGALNACT-1/2, their functional role and regulatory mechanism in IDD is not fully studied. Here, we set out to investigate the function and regulatory roles of these factors during IDD development. We found that among these chondroitin sulfate glycosyltransferases, CHSY-1/2/3 are significantly down-regulated in severe IDD samples than mild IDD samples. In vitro experiments revealed that Interleukin-1β and Tumor Necrosis Factor-α stimulation led to significant reduction of CHSY-1/2/3 at protein level than mRNA level in NP cells, indicating a post-transcriptional regulatory mechanisms are involved. By computational prediction and analysis, we found that inflammatory cytokines stimulated microRNA-194 and -515 target CHSY-1/2/3 mRNA and significantly interrupt their translation and downstream chondroitin sulfate deposition. Inhibition of microRNA-194 and -515 however, significantly rescued CHSY-1/2/3 expressions and chondroitin sulfate deposition. These findings together demonstrated a vital role of inflammatory stimulated microRNAs in promoting intervertebral disc degeneration by interrupt chondroitin sulfate synthesis, which may provide new insights into the mechanism and therapeutic approaches in IDD.

  16. Imaging of degenerative lumbar intervertebral discs; linking anatomy, pathology and imaging.

    PubMed

    Adams, Ashok; Roche, Oran; Mazumder, Asif; Davagnanam, Indran; Mankad, Kshitij

    2014-09-01

    Low back pain is a common medical condition that has significant implications for healthcare providers and the UK economy. Low back pain can be classified as 'specific' in which an underlying pathophysiological mechanism is identified (eg, herniated intervertebral disc). Advanced imaging should be performed in this situation and in those patients in whom systemic disease is strongly suspected. In the majority (approximately 90%), low back pain in 'non specific' and there is a weak correlation with imaging abnormalities. This is an area of ongoing research and remains controversial in terms of imaging approach and treatment (eg, theory of discogenic pain, interpretation and treatment of endplate changes). With regards Modic endplate changes, current research suggests that an infective component may be involved that may identify novel potential treatments in patients with chronic low back pain refractory to other treatment modalities. MRI is the imaging modality of choice for the assessment of degenerative changes in intervertebral discs. MRI has superior soft tissue contrast resolution when compared to other imaging modalities (eg, plain radiography, CT). An understanding of normal anatomy and MR appearances of intervertebral discs, particularly with regards to how these appearances change with advancing age, is required to aid image interpretation. Knowledge of the spectrum of degenerative processes that may occur in the intervertebral discs is required in order to identify and explain abnormal MRI appearances. As the communication of MRI findings may guide therapeutic decision making and surgical intervention, the terminology used by radiologists must be accurate and consistent. Therefore, description of degenerative disc changes in the current paper is based on the most up-to-date recommendations, the aim being to aid reporting by radiologists and interpretation of reports by referring clinicians. Published by the BMJ Publishing Group Limited. For permission to

  17. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs

    PubMed Central

    Sivan, Sarit Sara; Tsitron, Eve; Wachtel, Ellen; Roughley, Peter; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Maroudas, Alice

    2006-01-01

    During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1–A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol·(g of protein)−1·year−1. Using previously reported protein turnover rate constants (kT) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (kF) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009–13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81±0.25 compared with 3.71±0.26 μmol of pentosidine·(mol of lysine)−1·year−1 respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year−1 compared with 0.134 year−1 for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective kF values of 1.81±0.25 and 3.18±0.37 μmol of pentosidine·(mol of lysine)−1·year−1. We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of

  18. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    PubMed

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  19. Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression

    PubMed Central

    Stokes, Ian A. F.; Laible, Jeffrey P.; Gardner-Morse, Mack G.; Costi, John J.; Iatridis, James C.

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force–time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754

  20. Changes in intervertebral disc cross-sectional area with bed rest and space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A. D.; Evans, H. J.; Schneider, V. S.; Wendt, R. E. 3rd; Hedrick, T. D.

    1994-01-01

    STUDY DESIGN. We measured the cross-sectional area of the intervertebral discs of normal volunteers after an overnight rest; before, during, and after 5 or 17 weeks of bed rest; and before and after 8 days of weightlessness. OBJECTIVES. This study sought to determine the degree of expansion of the lumbar discs resulting from bed rest and space flight. SUMMARY OF BACKGROUND DATA. Weightlessness and bed rest, an analog for weightlessness, reduce the mechanical loading on the musculoskeletal system. When unloaded, intervertebral discs will expand, increasing the nutritional diffusion distance and altering the mechanical properties of the spine. METHODS. Magnetic resonance imaging was used to measure the cross-sectional area and transverse relaxation time (T2) of the intervertebral discs. RESULTS. Overnight or longer bed rest causes expansion of the disc area, which reaches an equilibrium value of about 22% (range 10-40%) above baseline within 4 days. Increases in disc area were associated with modest increases in disc T2. During bed rest, disc height increased approximately 1 mm, about one-half of previous estimates based on body height measurements. After 5 weeks of bed rest, disc area returned to baseline within a few days of ambulation, whereas after 17 weeks, disc area remained above baseline 6 weeks after reambulation. After 8 days of weightlessness, T2, disc area, and lumbar length were not significantly different from baseline values 24 hours after landing. CONCLUSIONS. Significant adaptive changes in the intervertebral discs can be expected during weightlessness. These changes, which are rapidly reversible after short-duration flights, may be an important factor during and after long-duration missions.

  1. Three-dimensional movements of the pelvis and the lumbar intervertebral joints in walking and trotting dogs.

    PubMed

    Wachs, K; Fischer, M S; Schilling, N

    2016-04-01

    Current knowledge of the physiological range of motion (ROM) in the canine axial system during locomotion is relatively limited. This is particularly problematic because dogs with back-related dysfunction frequently present for routine consultations. To collect detailed kinematic information and describe the three-dimensional motions of the pelvis and the lumbar spine (i.e. intervertebral joints S1/L7-L2/L1), we recorded ventro-dorsal and latero-lateral X-ray videos of three walking and trotting dogs and reconstructed their pelvic and intervertebral motions using X-ray reconstruction of moving morphology and scientific rotoscoping. Pelvic roll displayed a monophasic motion pattern and the largest ROM with on average 13° and 11° during walking and trotting, respectively. Pelvic yaw had the smallest ROM with on average 5° (walk) and 6° (trot). A biphasic pattern was observed for pelvic pitch with a mean ROM of 8°. At both gaits, the greatest intervertebral motions occurred either in S1/L7 or L7/L6. The intervertebral motions were mono- or biphasic in the horizontal and the transverse body planes and biphasic in the sagittal plane. Cranial to L6/5, the ROM tended to decrease from 3° to <1.5° in all three planes. Our results confirm that pelvic displacement and intervertebral joint movements are tightly linked with pelvic limb action at symmetrical gaits. The overall small movements, particularly cranial to L5, are consistent with the epaxial musculature globally stabilising the spine against the external and internal limb forces acting on the pelvis and the trunk during walking and trotting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Tissue engineering strategies applied in the regeneration of the human intervertebral disk.

    PubMed

    Silva-Correia, Joana; Correia, Sandra I; Oliveira, Joaquim M; Reis, Rui L

    2013-12-01

    Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration. © 2013.

  3. Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside.

    PubMed

    Bach, Frances C; Tellegen, Anna R; Beukers, Martijn; Miranda-Bedate, Alberto; Teunissen, Michelle; de Jong, Willem A M; de Vries, Stefan A H; Creemers, Laura B; Benz, Karin; Meij, Björn P; Ito, Keita; Tryfonidou, Marianna A

    2018-05-29

    The socioeconomic burden of chronic back pain related to intervertebral disc (IVD) disease is high and current treatments are only symptomatic. Minimally invasive strategies that promote biological IVD repair should address this unmet need. Notochordal cells (NCs) are replaced by chondrocyte-like cells (CLCs) during IVD maturation and degeneration. The regenerative potential of NC-secreted substances on CLCs and mesenchymal stromal cells (MSCs) has already been demonstrated. However, identification of these substances remains elusive. Innovatively, this study exploits the regenerative NC potential by using healthy porcine NC-derived matrix (NCM) and employs the dog as a clinically relevant translational model. NCM increased the glycosaminoglycan and DNA content of human and canine CLC aggregates and facilitated chondrogenic differentiation of canine MSCs in vitro . Based on these results, NCM, MSCs and NCM+MSCs were injected in mildly (spontaneously) and moderately (induced) degenerated canine IVDs in vivo and, after six months of treatment, were analyzed. NCM injected in moderately (induced) degenerated canine IVDs exerted beneficial effects at the macroscopic and MRI level, induced collagen type II-rich extracellular matrix production, improved the disc height, and ameliorated local inflammation. MSCs exerted no (additive) effects. In conclusion, NCM induced in vivo regenerative effects on degenerated canine IVDs. NCM may, comparable to demineralized bone matrix in bone regeneration, serve as 'instructive matrix', by locally releasing growth factors and facilitating tissue repair. Therefore, intradiscal NCM injection could be a promising regenerative treatment for IVD disease, circumventing the cumbersome identification of bioactive NC-secreted substances.

  4. Morphological changes in the cervical intervertebral foramen dimensions with unilateral facet joint dislocation.

    PubMed

    Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K

    2009-11-01

    Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due

  5. The serine proteinase inhibitory proteins of the chondrodystrophoid (beagle) and non-chondrodystrophoid (greyhound) canine intervertebral disc.

    PubMed

    Melrose, J; Taylor, T K; Ghosh, P

    1997-06-01

    Trypsin inhibitory proteins of low buoyant density (p < or = 1.35 g/mL) fractions were prepared by CsCl density gradient ultracentrifugation of 4 M guanidinium hydrochloride extracts of lumbar beagle and greyhound annulus fibrosus and nucleus pulposus from animals aged 1 to 6 years. Affinity blotting with biotinylated trypsin was used to identify active trypsin inhibitory protein species; these species were also identified immunologically by Western blotting using antibodies against bovine pancreatic trypsin inhibitor (BPTI), and human inter-alpha-trypsin inhibitor (ITI). None of the trypsin inhibitory species evident in Western blots were reactive with anti-human alpha1-proteinase inhibitor (alpha-1-PI), alpha2-macroglobulin or secretory leucocyte proteinase inhibitor. The greyhound intervertebral disc samples generally had higher levels of active trypsin inhibitor species per unit weight of tissue extracted, and a more extensive range of inhibitor species. Inhibitor species of 30, 32, 34 kDa were identified in both beagle and greyhound intervertebral disc samples; these species were generally most prominent in the annulus fibrosus samples. In contrast, the nucleus pulposus samples contained relatively large trypsin inhibitor species; the anti-BPTI detected an inhibitor species of approximately 85-90 kDa; anti-ITI detected species of 120-250 kDa; biotinylated trypsin detected species of 60-110 kDa. A small molecular mass trypsin inhibitor species of 6 kDa, which was of similar mobility to BPTI, was also detected in annulus fibrosus samples; however, this species did not react with anti-BPTI.

  6. Measurement of intervertebral cervical motion by means of dynamic x-ray image processing and data interpolation.

    PubMed

    Bifulco, Paolo; Cesarelli, Mario; Romano, Maria; Fratini, Antonio; Sansone, Mario

    2013-01-01

    Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements.

  7. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation.

    PubMed

    Wang, Feng; Gao, Zeng-Xin; Cai, Feng; Sinkemani, Arjun; Xie, Zhi-Yang; Shi, Rui; Wei, Ji-Nan; Wu, Xiao-Tao

    2017-08-22

    Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration.

  8. Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration.

    PubMed

    Allon, Aliza A; Schneider, Richard A; Lotz, Jeffrey C

    2009-01-01

    Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function.

  9. Intervertebral infection due to Candida albicans in an intravenous heroin abuser.

    PubMed Central

    Rowe, I F; Wright, E D; Higgens, C S; Burnie, J P

    1988-01-01

    A 25 year old woman who had received intravenous heroin over one year previously developed an intervertebral abscess due to infection with Candida albicans. Immunological investigation of this patient showed no evidence of a specific defect in the host response to candida. Images PMID:3382272

  10. Engineered disc-like angle-ply structures for intervertebral disc replacement.

    PubMed

    Nerurkar, Nandan L; Sen, Sounok; Huang, Alice H; Elliott, Dawn M; Mauck, Robert L

    2010-04-15

    To develop a construction algorithm in which electrospun nanofibrous scaffolds are coupled with a biocompatible hydrogel to engineer a mesenchymal stem cell (MSC)-based disc replacement. To engineer a disc-like angle-ply structure (DAPS) that replicates the multiscale architecture of the intervertebral disc. Successful engineering of a replacement for the intervertebral disc requires replication of its mechanical function and anatomic form. Despite many attempts to engineer a replacement for ailing and degenerated discs, no prior study has replicated the multiscale hierarchical architecture of the native disc, and very few have assessed the mechanical function of formed neo-tissues. A new algorithm for the construction of a disc analogue was developed, using agarose to form a central nucleus pulposus (NP) and oriented electrospun nanofibrous scaffolds to form the anulus fibrosus region (AF). Bovine MSCs were seeded into both regions and biochemical, histologic, and mechanical maturation were evaluated with in vitro culture. We show that mechanical testing in compression and torsion, loading methods commonly used to assess disc mechanics, reveal equilibrium and time-dependent behaviors that are qualitatively similar to native tissue, although lesser in magnitude. Further, we demonstrate that cells seeded into both AF and NP regions adopt distinct morphologies that mirror those seen in native tissue, and that, in the AF region, this ordered community of cells deposit matrix that is organized in an angle-ply configuration. Finally, constructs demonstrate functional development with long-term in vitro culture. These findings provide a new approach for disc tissue engineering that replicates multi-scale form and function of the intervertebral disc, providing a foundation from which to build a multi-scale, biologic, anatomically and hierarchically relevant composite disc analogue for eventual disc replacement.

  11. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  12. Development of intervertebral disk calcification in the dachshund: a prospective longitudinal radiographic study.

    PubMed

    Jensen, V F; Arnbjerg, J

    2001-01-01

    Plain spinal radiography was performed in 40 dachshunds at regular intervals from 6 or 12 months of age to 2 years of age. A follow-up study at 3 to 4 years of age included 12 dogs. High incidence rates of intervertebral disk calcification were seen at 6 to 18 months of age. The number of dogs affected and number of calcified disks seemed to reach a steady level or a maximum at about 24 to 27 months of age. Dissolution of previously calcified disks without clinical signs was demonstrated, causing decreasing numbers of visibly calcified disks after 2 years of age. Radiographic examination for calcified intervertebral disks in the dachshund is recommended at 24 to 30 months of age for heritability studies and selective breeding.

  13. Combined Therapies of Modified Taiyi Miraculous Moxa Roll and Cupping for Patients with Lumbar Intervertebral Disc Herniation

    PubMed Central

    Dong, Dayong; Xue, Jinbiao; Zheng, Xiaoting

    2018-01-01

    Lumbar intervertebral disc herniation is a kind of syndrome caused by stimulation or pressure of nerve root and cauda equina due to intervertebral disc disorder, fibrous ring rupture, and pulpiform nucleus protrusion. Application of traditional Chinese medicine (TCM) including acupuncture therapy and cupping therapy is unique and effective treatment for lumbar intervertebral disc herniation in China. Hence, we try to investigate the combined clinical efficacy of modified Taiyi miraculous moxa roll and cupping therapy on patients with lumbar intervertebral disc herniation. Seventy patients were randomly assigned into combined treatment group (n = 35) and control group (n = 35). The treatment group received combined therapy of modified Taiyi miraculous moxa roll and cupping therapy, while control group received acupuncture therapy alone. Diagnostic criteria of TCM syndrome, Japanese Orthopedic Association (JOA) score, and simplified McGill pain questionnaire (MPQ) were used to evaluate the therapy. 11 and 13 out of 35 subjects in the combined treatment group had improvement > 75% and between 50% and 75%, respectively. The corresponding number was 2 and 22 of 35 subjects in the acupuncture group. There was significant difference in the clinical efficacy between the treatment group and control group (P = 0.036). The scores of JOA and MPQ detected in the patients of the two groups (P < 0.05) also showed statistically significant differences. Moreover, no serious adverse events occurred in the patients, who received cupping therapy or acupuncture. The combined or alone therapies can effectively improve the treatment efficacy in the patients with lumbar intervertebral disc herniation, while the combined therapies show more comparative effectiveness. Furthermore, the combined therapies are potentially safe and cost-effective and also benefit the improvement of short-term pain. Therefore, the combined therapies of the two ancient TCM deserve further clinical applications

  14. Combined Therapies of Modified Taiyi Miraculous Moxa Roll and Cupping for Patients with Lumbar Intervertebral Disc Herniation.

    PubMed

    Cai, Chunyue; Gong, Yuefeng; Dong, Dayong; Xue, Jinbiao; Zheng, Xiaoting; Zhong, Zhangfeng; Shao, Jialong; Mi, Daguo

    2018-01-01

    Lumbar intervertebral disc herniation is a kind of syndrome caused by stimulation or pressure of nerve root and cauda equina due to intervertebral disc disorder, fibrous ring rupture, and pulpiform nucleus protrusion. Application of traditional Chinese medicine (TCM) including acupuncture therapy and cupping therapy is unique and effective treatment for lumbar intervertebral disc herniation in China. Hence, we try to investigate the combined clinical efficacy of modified Taiyi miraculous moxa roll and cupping therapy on patients with lumbar intervertebral disc herniation. Seventy patients were randomly assigned into combined treatment group ( n = 35) and control group ( n = 35). The treatment group received combined therapy of modified Taiyi miraculous moxa roll and cupping therapy, while control group received acupuncture therapy alone. Diagnostic criteria of TCM syndrome, Japanese Orthopedic Association (JOA) score, and simplified McGill pain questionnaire (MPQ) were used to evaluate the therapy. 11 and 13 out of 35 subjects in the combined treatment group had improvement > 75% and between 50% and 75%, respectively. The corresponding number was 2 and 22 of 35 subjects in the acupuncture group. There was significant difference in the clinical efficacy between the treatment group and control group ( P = 0.036). The scores of JOA and MPQ detected in the patients of the two groups ( P < 0.05) also showed statistically significant differences. Moreover, no serious adverse events occurred in the patients, who received cupping therapy or acupuncture. The combined or alone therapies can effectively improve the treatment efficacy in the patients with lumbar intervertebral disc herniation, while the combined therapies show more comparative effectiveness. Furthermore, the combined therapies are potentially safe and cost-effective and also benefit the improvement of short-term pain. Therefore, the combined therapies of the two ancient TCM deserve further clinical

  15. A comparison between porcine, ovine, and bovine intervertebral disc anatomy and single lamella annulus fibrosus tensile properties.

    PubMed

    Monaco, Lauren A; DeWitte-Orr, Stephanie J; Gregory, Diane E

    2016-02-01

    This project aimed to compare gross anatomical measures and biomechanical properties of single lamellae from the annulus fibrosus of ovine and porcine lumbar vertebrae, and bovine tail vertebrae. The morphology of the vertebrae of these species differ significantly both from each other and from human, yet how these differences alter biomechanical properties is unknown. Geometric parameters measured in this study included: 1) absolute and relative intervertebral (IVD) and vertebral body height and 2) absolute and relative intervertebral disc (IVD) anterior-posterior (AP) and medial-lateral (ML) widths. Single lamella tensile properties included toe-region stress and stretch ratio, stiffness, and tensile strength. As expected, the bovine tail IVD revealed a more circular shape compared with both the ovine and porcine lumbar IVD. The bovine tail also had the largest IVD to vertebral body height ratio (due to having the highest absolute IVD height). Bovine tail lamellae were also found to be strongest and stiffest (in tension) while ovine lumbar lamellae were weakest and most compliant. Histological analysis revealed the greatest proportion of collagen in the bovine corroborating findings of increased strength and stiffness. The observed differences in anatomical shape, connective tissue composition, and tensile properties need to be considered when choosing an appropriate model for IVD research. © 2015 Wiley Periodicals, Inc.

  16. Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs.

    PubMed

    Kobielarz, Magdalena; Szotek, Sylwia; Głowacki, Maciej; Dawidowicz, Joanna; Pezowicz, Celina

    2016-09-01

    The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: an in vitro proof of concept study.

    PubMed

    Breen, Alexander C; Dupac, Mihai; Osborne, Neil

    2015-01-01

    Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). This study found good correlation between the

  18. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration

    PubMed Central

    Shu, Cindy C.; Smith, Margaret M.; Smith, Susan M.; Dart, Andrew J.; Little, Christopher B.; Melrose, James

    2017-01-01

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i–vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3–6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs. PMID:28498326

  19. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration.

    PubMed

    Shu, Cindy C; Smith, Margaret M; Smith, Susan M; Dart, Andrew J; Little, Christopher B; Melrose, James

    2017-05-12

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i-vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3-6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 ( p = 0.001) over a three-month recovery period but no recovery in carrier injected discs.

  20. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  1. Mechanical design criteria for intervertebral disc tissue engineering.

    PubMed

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Quantitative T2 Magnetic Resonance Imaging Compared to Morphological Grading of the Early Cervical Intervertebral Disc Degeneration: An Evaluation Approach in Asymptomatic Young Adults

    PubMed Central

    Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    Objective The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Methods Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18–25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I–V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Findings Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60–62.03 ms), grade III (<54.60 ms). Conclusions T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults. PMID:24498384

  3. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults.

    PubMed

    Chen, Chun; Huang, Minghua; Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18-25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I-V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60-62.03 ms), grade III (<54.60 ms). T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults.

  4. Continuous lumbar hemilaminectomy for intervertebral disc disease in an Amur tiger (Panthera tigris altaica).

    PubMed

    Flegel, Thomas; Böttcher, Peter; Alef, Michaele; Kiefer, Ingmar; Ludewig, Eberhard; Thielebein, Jens; Grevel, Vera

    2008-09-01

    A 13-yr-old Amur tiger (Panthera tigris altaica) was presented for an acute onset of paraplegia. Spinal imaging that included plain radiographs, myelography, and computed tomography performed under general anesthesia revealed lateralized spinal cord compression at the intervertebral disc space L4-5 caused by intervertebral disc extrusion. This extrusion was accompanied by an extensive epidural hemorrhage from L3 to L6. Therefore, a continuous hemilaminectomy from L3 to L6 was performed, resulting in complete decompression of the spinal cord. The tiger was ambulatory again 10 days after the surgery. This case suggests that the potential benefit of complete spinal cord decompression may outweigh the risk of causing clinically significant spinal instability after extensive decompression.

  5. Intervertebral disc space infection caused by Aspergillus fumigatus.

    PubMed

    Lang, E W; Pitts, L H

    1996-01-01

    The authors describe the case of a 53-year-old woman who suffered from an Aspergillus fumigatus infection of the L2/3 intervertebral disc space unrelated to previous operations on her lumbar spine. After surgical debridement combined with amphotericin therapy she died on the 23rd postoperative day from a fulminant bacterial sepsis of pulmonary origin. Although she had intermittently used steroids for bronchial asthma, this is an unusual case of fungal infection of the lumbar spine in an apparently immunocompetent patient.

  6. Cervical intervertebral disk herniation in chondrodystrophoid and nonchondrodystrophoid small-breed dogs: 187 cases (1993-2013).

    PubMed

    Hakozaki, Takaharu; Iwata, Munetaka; Kanno, Nobuo; Harada, Yasuji; Yogo, Takuya; Tagawa, Masahiro; Hara, Yasushi

    2015-12-15

    To identify characteristics of chondrodystrophoid and nonchondrodystrophoid small-breed dogs with cervical intervertebral disk herniation (IVDH). Retrospective case series. 187 small-breed (≤ 15 kg [33 lb]) dogs that underwent surgery because of cervical IVDH. Medical records were reviewed for information on breed, sex, age, weight, location of affected intervertebral disks, duration and severity of neurologic signs, and recovery time. 55 of the 187 (29.4%) dogs were Beagles. The most frequently affected intervertebral disk was C2-3 (81/253 [32.0%]), and this was the more frequently affected intervertebral disk in dogs of several chondrodystrophoid breeds, including Beagles (29/66 [43.9%]), Dachshunds (13/37 [35.1%]), Shih Tzus (16/41 [39.0%]), and Pekingese (3/10 [30.0%]). However, caudal disks (C5-6 or C6-7) were more frequently affected in Yorkshire Terriers (13/24 [54.2%]) and Chihuahuas (9/13 [69%]). Shih Tzus and Yorkshire Terriers were significantly older at the time of surgery (mean ± SD age, 9.6 ± 2.3 years and 9.5 ± 2.5 years, respectively) than were Pomeranians (6.2 ± 2.3 years), and Yorkshire Terriers had a significantly higher number of affected disks (2.0 ± 0.9) than did Dachshunds (1.1 ± 0.3). Mean recovery time was significantly longer in Yorkshire Terriers (36.7 ± 13.0 days) than in Beagles (16.5 ± 17.1 days), Shih Tzus (17.8 ± 14.5 days), or Chihuahuas (12.2 ± 7. 2 days). Results suggested that there may be breed-specific differences in the characteristics of cervical IVDH in small-breed dogs.

  7. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation

    PubMed Central

    Sinkemani, Arjun; Xie, Zhi-Yang; Shi, Rui; Wei, Ji-Nan; Wu, Xiao-Tao

    2017-01-01

    Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration. PMID:28915712

  8. Low level light therapy modulates inflammatory mediators secreted by human annulus fibrosus cells during intervertebral disc degeneration in vitro.

    PubMed

    Hwang, Min Ho; Shin, Jae Hee; Kim, Kyoung Soo; Yoo, Chang Min; Jo, Ga Eun; Kim, Joo Han; Choi, Hyuk

    2015-01-01

    Intervertebral disc degeneration (IVD) is one of the important causes of low back pain and is associated with inflammation induced by interaction between macrophages and the human annulus fibrosus (AF) cells. Low-level light therapy (LLLT) has been widely known to regulate inflammatory reaction. However, the effect of LLLT on macrophage-mediated inflammation in the AF cells has not been studied till date. The aim of this study is to mimic the inflammatory microenvironment and to investigate the anti-inflammatory effect of LLLT at a range of wavelengths (405, 532 and 650 nm) on the AF treated with macrophage-like THP-1 cells conditioned medium (MCM) containing proinflammatory cytokines and chemokines (interleukin-1beta, tumor necrosis factor-alpha, interleukin-6 and 8). We observed that AF cells exposed to MCM secrete significantly higher concentrations of IL-6, IL-8, IL-1β and TNF-α. LLLT markedly inhibited secretion of IL-6 at 405 nm in a time-dependent manner. Level of IL-8 was significantly decreased at all wavelengths in a time-dependent manner. We showed that MCM can induce the inflammatory microenvironment in AF cells and LLLT selectively suppressed IL-6 and 8 levels. The results indicate that LLLT is a potential method of IVD treatment and provide insights into further investigation of its anti-inflammation effect on IVD. © 2015 The American Society of Photobiology.

  9. In vitro corrosion resistance of porous NiTi intervertebral fusion devices

    NASA Astrophysics Data System (ADS)

    Schrooten, Jan; Assad, Michel; Van Humbeeck, Jan; Leroux, Michel A.

    2007-02-01

    Porous titanium-nickel (PTN) intervertebral fusion devices, produced by self-propagating high-temperature synthesis, represent an alternative to traditional long-term implants in the orthopaedic field. PTN promotes tissue ingrowth and has succeeded short-term and long-term biocompatibility in vivo testing. In this in vitro study, the PTN morphology was characterized using microfocus computer tomography (μCT) in order to calculate the active PTN surface. Potentiodynamic polarization testing was then performed to evaluate the in vitro corrosion resistance of PTN devices in Hanks' based salt solution. Direct coupling experiments of PTN with Ti6Al4V were also performed in order to establish the galvanic corrosion resistance of PTN intervertebral implants in the presence of potential Ti6Al4V supplemental fixation devices. Compared to the behaviour of other orthopaedic biomaterials and solid NiTi devices, PTN devices showed a level of corrosion resistance that is comparable to other NiTi devices and acceptable for the intended orthopaedic application. Further improvement of the corrosion resistance is still possible by specific electrochemical surface treatments.

  10. [Posterior debridement and bone grafting via intervertebral space combined with internal fixation for the treatment of lumbosacral tuberculosis].

    PubMed

    Li, Wei-Wei; Liu, Jun; Duan, Liang; Duan, Da-Peng; Wei, Wen-Bo; Fan, Ya-Yi

    2017-02-25

    To explore the clinical effects of posterior debridement, bone grafting via intervertebral space combined with internal fixation for the treatment of lumbosacral tuberculosis. The clinical data of 32 patients with lumbosacral tuberculosis underwent the procedure of one-stage posterior intervertebral debridement, bone grafting and internal fixation from January 2007 to July 2013 were retrospectively analyzed. There were 17 males and 15 females, aged from 27 to 63 years with an average of (49.8±9.2) years. The course of disease was from 5 to 18 months with the mean of (10.7±3.2) months. There was involved the vertebral body of L₅ in 1 case, the intervertebral space of L₅S₁ in 8 cases, and the vertebral body of L₅ or S₁ combined with intervertebral space of L₅S₁ in 23 cases. VAS, ESR, CRP, the lumbosacral angle, the height of intervertebral space of L₅S₁, and ASIA grade were used to evaluate clinical effects. All the patients were followed up from 18 to 39 months with an average of 21.6 months. Operative time was 120 to 260 min with the mean of 175 min, and intraoperative bleeding was 700 to 1 450 ml with the mean of 1 050 ml. VAS before operation was 8.4±1.6, then descended to 3.5±0.8( P <0.05) on the 3rd month after operation and redescended to the level of 1.7±0.6( P <0.05) at the final follow-up. The ESR and CRP before operation were (48.8±10.2) mm and (58.6±5.6) mg/L, respectively, then decreased to (35.6±6.9) mm and (22.5±4.3) mg/L ( P <0.05) at the 3rd month after operation and returned to the normal level at the final follow-up. The height of intervertebral space of L₅S₁ and lumbosacral angle before operation were (7.7±0.4) mm and (19.3±1.2)°, respectively, then improved to (10.3±0.3) mm and (22.4±1.5)° on the 3rd month after operation( P <0.05), and maintained such level, no obvious lost at later. According to ASIA grade, 8 cases were grade C, 19 were grade D, 5 were grade E before operation, and at final follow-up, 1 case

  11. In vivo effects of bupivacaine and gadobutrol on the intervertebral disc following discoblock and discography: a histological analysis.

    PubMed

    Strube, Patrick; Pfitzner, Berit M; Streitparth, Florian; Hartwig, Tony; Putzier, Michael

    2017-01-01

    The aim of the present study was to histologically compare chondrotoxicity in surgically harvested intervertebral discs (IVDs) of patients following discoblock, discography, or no preoperative intervention. Thirty patients (IVD degeneration Modic ≥ 2°, Pfirrmann 3° or 4°) at L4/5 or L5/S1 who were planned for anterior lumbar interbody fusion were randomly assigned to three groups (open MRI: group DG - discography with gadobutrol; group DB - discoblock with bupivacaine at 4 weeks prior to surgery; group C - no intervention). The intervertebral discs were histologically evaluated and compared using ANOVA and Bonferroni tests for cell count, apoptosis, and proliferation. A reduced cell count (groups DG vs. DB vs. C: 14.9 ± 7.1, 9.2 ± 3.8, and 16.6 ± 5.2 cells/mm 2 , respectively; p ANOVA  = 0.016), increased apoptosis (groups DG vs. DB vs. C: 34.9 ± 10.2, 47.4 ± 16.3, 32.6 ± 12.2 %, respectively; p ANOVA  = 0.039) and increased cell proliferation (post hoc pDB vs. DG or C p < 0.001; for 3-7 cell monoclonal cell nests: groups DG vs. DB vs. C: 2.4 ± 1, 3.9 ± 1, 2.2 ± 1.1, respectively; p intervention x nest size  = 0.006) were found in the IVDs of patients in group DB. This in vivo study suggests that chondrotoxic effects occur in IVD cells after the intradiscal injection of bupivacaine but not after gadobutrol administration. • Local bupivacaine administration to intervertebral discs leads to cell toxicity and proliferation. • Gadobutrol demonstrated no significant effect on cell count, apoptosis, or cell proliferation. • In vivo cytotoxicity was demonstrated histologically in humans for the first time. • Addition/administration of bupivacaine during discographies must be judged critically.

  12. Effect of Survivin gene therapy via lentivirus vector on the course of intervertebral disc degeneration in an in vivo rabbit model.

    PubMed

    Yue, Bin; Lin, Yazhou; Ma, Xuexiao; Zhang, Guoqing; Chen, Bohua

    2016-11-01

    The aim of the current study was to use gene therapy to attenuate or reverse the degenerative process within the intervertabral disc. The effect of survivin gene therapy via lentiviral vector transfection on the course of intervertebral disc degeneration was investigated in the current study in an in vivo rabbit model. A total of 15 skeletally mature female New Zealand White rabbits were randomly divided into three groups: Punctured blank control group (group A, n=5), punctured empty vector control group (group B, n=5) and the treatment group (group C, n=5). Computed tomography‑guided puncture was performed at the L3‑L4 and L4‑L5 discs, in accordance with a previously validated rabbit annulotomy model for intervertebral disc degeneration. After 3 weeks, a lentiviral vector (LV) carrying survivin was injected into the nucleus pulposus. The results demonstrated that through magnetic resonance imaging, histology, gene expression, protein content and apoptosis analyses, group A and B were observed to exhibit disc degeneration, which increased over time, and no significant difference was observed between the two groups (P>0.05). However, there was reduced disc degeneration in group C compared with the punctured control groups, and the difference was statistically significant (P<0.05). Overall, the results of the present study demonstrated that injection of the LV carrying survivin into punctured rabbit intervertebral discs acted to delay changes associated with the degeneration of the discs. Although data from animal models should be extrapolated to the human condition with caution, the present study suggests potential for the use of gene therapy to decelerate disc degeneration.

  13. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  14. Intervertebral disc regeneration or repair with biomaterials and stem cell therapy--feasible or fiction?

    PubMed

    Chan, Samantha C W; Gantenbein-Ritter, Benjamin

    2012-05-31

    The "gold standard" for treatment of intervertebral disc herniations and degenerated discs is still spinal fusion, corresponding to the saying "no disc - no pain". Mechanical prostheses, which are currently implanted, do only have medium outcome success and have relatively high re-operation rates. Here, we discuss some of the biological intervertebral disc replacement approaches, which can be subdivided into at least two classes in accordance to the two different tissue types, the nucleus pulposus (NP) and the annulus fibrosus (AF). On the side of NP replacement hydrogels have been extensively tested in vitro and in vivo. However, these gels are usually a trade-off between cell biocompatibility and load-bearing capacity, hydrogels which fulfill both are still lacking. On the side of AF repair much less is known and the question of the anchoring of implants is still to be addressed. New hope for cell therapy comes from developmental biology investigations on the existence of intervertebral disc progenitor cells, which would be an ideal cell source for cell therapy. Also notochordal cells (remnants of the embryonic notochord) have been recently pushed back into focus since these cells have regenerative potential and can activate disc cells. Growth factor treatment and molecular therapies could be less problematic. The biological solutions for NP and AF replacement are still more fiction than fact. However, tissue engineering just scratched the tip of the iceberg, more satisfying solutions are yet to be added to the biomedical pipeline.

  15. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid.

    PubMed

    Sivan, Sarit-Sara; Wachtel, Ellen; Tsitron, Eve; Sakkee, Nico; van der Ham, Frits; Degroot, Jeroen; Roberts, Sally; Maroudas, Alice

    2008-04-04

    Knowledge of rates of protein turnover is important for a quantitative understanding of tissue synthesis and catabolism. In this work, we have used the racemization of aspartic acid as a marker for the turnover of collagen obtained from healthy and pathological human intervertebral disc matrices. We measured the ratio of the d- and l-isomers in collagen extracted from these tissues as a function of age between 16 and 77 years. For collagen taken from healthy discs, the fractional increase of d-Asp was found to be 6.74 x 10(-4)/year; for degenerate discs, the corresponding rate was 5.18 x 10(-4)/year. Using the racemization rate found previously for the stable population of collagen molecules in dentin, we found that the rate of collagen turnover (k(T)) in discs is not constant but rather a decreasing function of age. The average turnover rate in normal disc between the ages of 20 and 40 is 0.00728 +/- 0.00275/year, and that between the ages of 50 and 80 is 0.00323 +/- 0.000947/year, which correspond to average half-lives of 95 and 215 years, respectively. Turnover of collagen from degenerate discs may be more rapid than that found for normal discs; however, statistical analysis leaves this point uncertain. The finding of a similar correlation between the accumulation of d-Asp and that of pentosidine for three normal collagenous tissues further supports the idea that the accumulation of pentosidine in a particular tissue can, along with the racemization of aspartic acid, be used as a reliable measure of protein turnover.

  16. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  17. Integrating MRI-based geometry, composition and fiber architecture in a finite element model of the human intervertebral disc.

    PubMed

    Stadelmann, Marc A; Maquer, Ghislain; Voumard, Benjamin; Grant, Aaron; Hackney, David B; Vermathen, Peter; Alkalay, Ron N; Zysset, Philippe K

    2018-05-17

    Intervertebral disc degeneration is a common disease that is often related to impaired mechanical function, herniations and chronic back pain. The degenerative process induces alterations of the disc's shape, composition and structure that can be visualized in vivo using magnetic resonance imaging (MRI). Numerical tools such as finite element analysis (FEA) have the potential to relate MRI-based information to the altered mechanical behavior of the disc. However, in terms of geometry, composition and fiber architecture, current FE models rely on observations made on healthy discs and might therefore not be well suited to study the degeneration process. To address the issue, we propose a new, more realistic FE methodology based on diffusion tensor imaging (DTI). For this study, a human disc joint was imaged in a high-field MR scanner with proton-density weighted (PD) and DTI sequences. The PD image was segmented and an anatomy-specific mesh was generated. Assuming accordance between local principal diffusion direction and local mean collagen fiber alignment, corresponding fiber angles were assigned to each element. Those element-wise fiber directions and PD intensities allowed the homogenized model to smoothly account for composition and fibrous structure of the disc. The disc's in vitro mechanical behavior was quantified under tension, compression, flexion, extension, lateral bending and rotation. The six resulting load-displacement curves could be replicated by the FE model, which supports our approach as a first proof of concept towards patient-specific disc modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.

    PubMed

    Li, Haiyun; Wang, Zheng

    2006-01-01

    In this paper, a 3D geometric model of the intervertebral and lumbar disks has been presented, which integrated the spine CT and MRI data-based anatomical structure. Based on the geometric model, a 3D finite element model of an L1-L2 segment was created. Loads, which simulate the pressure from above were applied to the FEM, while a boundary condition describing the relative L1-L2 displacement is imposed on the FEM to account for 3D physiological states. The simulation calculation illustrates the stress and strain distribution and deformation of the spine. The method has two characteristics compared to previous studies: first, the finite element model of the lumbar are based on the data directly derived from medical images such as CTs and MRIs. Second, the result of analysis will be more accurate than using the data of geometric parameters. The FEM provides a promising tool in clinical diagnosis and for optimizing individual therapy in the intervertebral disc herniation.

  19. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  20. Slow deformation of intervertebral discs.

    PubMed

    Broberg, K B

    1993-01-01

    Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.

  1. [Effect of exercise load on apparent diffusion coefficient and fractional anisotropy of normal lumbar intervertebral discs in diffusion tensor imaging].

    PubMed

    Zhong, Xiu; Qiu, Shijun

    2015-06-01

    To investigate the effect of exercise load on apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of normal lumbar intervertebral discs in magnetic resonance (MR) diffusion tensor imaging (DTI). Thirty healthy volunteers (24 males and 6 females, aged 19 to 25 years) underwent examinations with MR T2WI and DTI of the lumbar intervertebral discs before and after exercise load. Pfirrmann grading was evaluated with T2WI, and the B0 map, ADC map and FA map were reconstructed based on the DTI data to investigate the changes in ADC and FA after exercise. Of the 30 volunteers (150 intervertebral discs) receiving the examination, 27 with discs of Pfirrminn grade II were included for analysis. In these 27 volunteers, the average ADC and FA before exercise were (1.99 ± 0.18)×10⁻³ mm²/s and 0.155∓0.059, respectively. After exercise, ADC was lowered significantly to (1.93 ± 0.17)×10⁻³ mm²/s (P<0.05) and FA increased slightly to 0.1623 ± 0.017 (P>0.05). DTI allows quantitatively analysis of the changes in water molecular diffusion and anisotropy of the lumbar intervertebral discs after exercise load, which can cause a decreased ADC and a increased FA value, and the change of ADC is more sensitive to exercise load.

  2. Chemometric evaluation of concentrations of trace elements in intervertebral disc tissue in patient with degenerative disc disease.

    PubMed

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Gasik, Zuzanna; Frankowski, Marcin; Dąbrowski, Mikołaj; Molisak, Bartłomiej; Kaczmarczyk, Jacek; Gasik, Robert

    2017-12-23

    The work is designed to uncover the pattern of mutual relation among trace elements and epidemiological data in the degenerated intervertebral disk tissue in humans. Hitherto the reason of the degenerative process is not fully understood. Trace elements are the basic components of the biological compound related both its metabolism as well as environmental exposure. The relation pattern among elements occurs gives new perspective in solving the cause of the disease. We have analysed trace elements content in the 30 intervertebral disc from 22 patients with degenerative disc disease. The concentrations of Al, Cu, Cd, Mo, Ni and Pb were determined with Atomic Absorption Spectrometry. To analyse the multidimentional relation between trace element concentration and epidemiological data the chemometric analysis was applied. The similarity have been shown in occurrence of following pairs: Cd-Mo as well as Mg-Zn. The second pair was correlated with Pb concentration. Pb levels are observed to be competitive to Cu concentration. Cd concentration was related to Zn and Mg deficiency. No single but rather cluster of epidemiological data show observable influence on the TE tissue variance. Zn and Cu was related to the male sex. Operation with orthopedic implants were related to combined Al, Mo and Zn concentration. This is the first chemometric analysis of trace elements in disk tissue. It shows multidimentional relations that are missed by the classical statistic. The analysis shows significant relation. The nature of the relations is the basis for further metabolic and environmental research.

  3. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung

    2013-03-15

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method

  4. Link-N: The missing link towards intervertebral disc repair is species-specific

    PubMed Central

    Bach, Frances C.; Laagland, Lisanne T.; Grant, Michael P.; Creemers, Laura B.; Ito, Keita; Meij, Björn P.; Mwale, Fackson

    2017-01-01

    Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s

  5. Link-N: The missing link towards intervertebral disc repair is species-specific.

    PubMed

    Bach, Frances C; Laagland, Lisanne T; Grant, Michael P; Creemers, Laura B; Ito, Keita; Meij, Björn P; Mwale, Fackson; Tryfonidou, Marianna A

    2017-01-01

    Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. This study's objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates' DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.

  6. The effects of flexion-distraction and drop techniques on disorders and Ferguson’s angle in female patients with lumbar intervertebral disc herniation

    PubMed Central

    Oh, Hyunju; Lee, Sangyong; Lee, Kwansub; Jeong, Mugeun

    2018-01-01

    [Purpose] This study examines the effects of the flexion-distraction technique and the drop technique on disorders and on Ferguson’s angle in female patients with lumbar intervertebral disc herniation. [Subjects and Methods] Thirty female patients with lumbar intervertebral disc herniation were divided into an experimental group (n=15) treated with flexion-distraction and drop techniques and a control group (n=15) treated with spinal decompression therapy. Both groups were treated three times a week over an eight-week period. [Results] In the comparison of changes within each group after treatment, both groups showed statistically significant decreases in disorders and in Ferguson’s angle. [Conclusion] Flexion-distraction and drop techniques may be an effective intervention to improve disorders and Ferguson’s angle in female patients with lumbar intervertebral disc herniation. PMID:29706701

  7. The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro

    PubMed Central

    Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame

    2014-01-01

    Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347

  8. [The possibilities for diagnostics of prescription of death coming based on the changes in the lumbar intervertebral disks (the comparison of the morphological, immunohistochemical and topographical findings)].

    PubMed

    Byval'tsev, V A; Stepanov, I A; Semenov, A V; Perfil'ev, D V; Belykh, E G; Bardonova, L A; Nikiforov, S B; Sudakov, N P; Bespyatykh, I V; Antipina, S L

    The objective of the present study was the comprehensive analysis of the postmortem changes in the lumbar intervertebral disks within different periods after death. A total of seven vertebromotor segments were distinguished in the lumbosacral region of the vertebral column based on the examination of 7 corpses. All these segments were divided into three groups in accordance with the prescription of death coming as follows: up to 12 hours (group 1), between 12 and 24 hours (group 2), and between 24 and 36 hours (group 3) after death. The models of the segments thus obtained were subjected to the study by means of diffusion weighted MRI. The removed intervertebral disks were used for morphological and immunohistochemical investigations. The comparison of the diffusion coefficients (DI) revealed the significant difference between the intervertebral disks assigned to groups 1 and 2 (p<0.01). The number of the cells in the pulpal core, the vertebral end plate, and the fibrous ring in all the above groups of the intervertebral disks was significantly reduced (p<0.01). The analysis of the correlation dependence between cell density and diffusion coefficients has demonstrated the well apparent relationship between these characteristics of the intervertebral disks comprising groups 1 and 2. It is concluded that diffusion weighted MRI in the combination with the calculation of diffusion coefficients for the intervertebral disks provides a tool for diagnostics of prescription of death coming as confirmed by the results of the morphometric studies and immunohistochemical analysis.

  9. Evaluation of T2-weighted versus short-tau inversion recovery sagittal sequences in the identification and localization of canine intervertebral disc extrusion with low-field magnetic resonance imaging.

    PubMed

    Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier

    2017-07-01

    Sagittal T2-weighted sequences (T2-SAG) are the foundation of spinal protocols when screening for the presence of intervertebral disc extrusion. We often utilize sagittal short-tau inversion recovery sequences (STIR-SAG) as an adjunctive screening series, and experience suggests that this combined approach provides superior detection rates. We hypothesized that STIR-SAG would provide higher sensitivity than T2-SAG in the identification and localization of intervertebral disc extrusion. We further hypothesized that the parallel evaluation of paired T2-SAG and STIR-SAG series would provide a higher sensitivity than could be achieved with either independent sagittal series when viewed in isolation. This retrospective diagnostic accuracy study blindly reviewed T2-SAG and STIR-SAG sequences from dogs (n = 110) with surgically confirmed intervertebral disc extrusion. A consensus between two radiologists found no significant difference in sensitivity between T2-SAG and STIR-SAG during the identification of intervertebral disc extrusion (T2-SAG: 92.7%, STIR-SAG: 94.5%, P = 0.752). Nevertheless, STIR-SAG accurately identified intervertebral disc extrusion in 66.7% of cases where the evaluation of T2-SAG in isolation had provided a false negative diagnosis. Additionally, one radiologist found that the parallel evaluation of paired T2-SAG and STIR-SAG series provided a significantly higher sensitivity than T2-SAG in isolation, during the identification of intervertebral disc extrusion (T2-SAG: 78.2%, paired T2-SAG, and STIR-SAG: 90.9%, P = 0.017). A similar nonsignificant trend was observed when the consensus of both radiologists was taken into consideration (T2-SAG: 92.7%, paired T2-SAG, and STIR-SAG = 97.3%, P = 0.392). We therefore conclude that STIR-SAG is capable of identifying intervertebral disc extrusion that is inconspicuous in T2-SAG, and that STIR-SAG should be considered a useful adjunctive sequence during preliminary sagittal screening for intervertebral disc

  10. [Clinical efficacy of posterior intervertebral surgery for treating single-segment thoracolumbar spinal tuberculosis].

    PubMed

    Yang, Zongqiang; He, Jinwen; Shi, Jiandang; Niu, Ningkui; Ding, Huiqiang; Wang, Zili

    2018-05-28

    To determine the clinical efficacy of posterior intervertebral surgery for single-segment thoracolumbar spinal tuberculosis.
 Methods: Clinical data were retrospectively analyzed in 62 patients with thoracolumbar spinal tuberculosis who underwent posterior intervertebral surgery (A group) or posterior and anterior combined intervertebral surgery (B group) from January 2010 to January 2015 in Department of Spinal Surgery, General Hospital, Ningxia Medical University. The operative time, blood loss, length of hospital stay, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, neurological function, VAS score, vertebral Cobb angle, bone healing, and postoperative complications were compared between the 2 groups.
 Results: All patients were followed up for 10 to 30 (average 22) months after the operation. In the A group, operative time, blood loss, and hospital stay were less than those in the B group (P<0.05). In the follow-up, the pain of patients was alleviated and nervous function was improved obviously in the 2 groups compared with pre-operation. The ESR and CRP at the 6 months after operation returned to the normal range in patients of the 2 groups. There were significant differences in the ESR and CRP among the pre-operation, the 6 months after operation, and the end of follow-up within the group (P<0.05), while there were no significant differences in ESR and CRP between the 6 months after operation and the end of follow-up (P>0.05). There were no significant differences in the ESR and CRP among the pre-operation, the 6 months after operation, and the end of follow-up in the 2 group (P>0.05). The Cobb angles after the operation and the end of follow-up were significanthy smaller than those before the operation (P<0.01), while there were no significant differences in Cobb angle before operation, after the operation, and the end of follow-up between the 2 groups (P>0.05). There were no significant differences in the bone healing rate at 6

  11. Can the pattern of vertebral marrow oedema differentiate intervertebral disc infection from degenerative changes?

    PubMed

    Shrot, S; Sayah, A; Berkowitz, F

    2017-07-01

    To evaluate whether various patterns of bone marrow oedema could be used to discriminate between infection and degenerative change. Seventy patients with imaging features suspicious for discitis and available clinical follow-up were blindly reviewed for vertebral marrow oedema on sagittal short-tau inversion recovery (STIR) images according to the following patterns: I, vertebra oedema is adjacent to the intervertebral space and sharply-marginated; II, vertebral oedema is adjacent to the intervertebral space but not sharply marginated from normal marrow or involves the entire vertebral body; and III, vertebral oedema is distant from the endplate with intervening hypointense marrow signal. Of 45 patients with a clinical diagnosis of discitis, pattern II was the most common oedema pattern (64%). Approximately 20% and 9% of discitis patients showed patterns I and III, respectively. In patients with degenerative changes, 44% patients showed pattern I, 32% showed pattern II, and 24% showed pattern III. Pattern II had a sensitivity, specificity, and positive predictive value of 0.64, 0.68, and 0.78 for diagnosing spine infection, respectively. Although bone marrow oedema in infective discitis most often extends from the disc space and has indistinct margins, the oedema may also have sharp margins or be remote from the involved intervertebral space. Bone marrow oedema patterns of infective discitis overlap with those of degenerative disease and are not sufficiently reliable to exclude infection in cases with magnetic resonance imaging findings suggestive of discitis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Harfe, Brian D.

    2011-01-01

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a “wrapper” around the notochord to constrain these cells along the vertebral column. PMID:21606373

  13. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Harfe, Brian D

    2011-06-07

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.

  14. Developments in intervertebral disc disease research: pathophysiology, mechanobiology, and therapeutics.

    PubMed

    Weber, Kathryn T; Jacobsen, Timothy D; Maidhof, Robert; Virojanapa, Justin; Overby, Chris; Bloom, Ona; Quraishi, Shaheda; Levine, Mitchell; Chahine, Nadeen O

    2015-03-01

    Low back pain is a leading cause of disability worldwide and the second most common cause of physician visits. There are many causes of back pain, and among them, disc herniation and intervertebral disc degeneration are the most common diagnoses and targets for intervention. Currently, clinical treatment outcomes are not strongly correlated with diagnoses, emphasizing the importance for characterizing more completely the mechanisms of degeneration and their relationships with symptoms. This review covers recent studies elucidating cellular and molecular changes associated with disc mechanobiology, as it relates to degeneration and regeneration. Specifically, we review findings on the biochemical changes in disc diseases, including cytokines, chemokines, and proteases; advancements in disc disease diagnostics using imaging modalities; updates on studies examining the response of the intervertebral disc to injury; and recent developments in repair strategies, including cell-based repair, biomaterials, and tissue engineering. Findings on the effects of the omega-6 fatty acid, linoleic acid, on nucleus pulposus tissue engineering are presented. Studies described in this review provide greater insights into the pathogenesis of disc degeneration and may define new paradigms for early or differential diagnostics of degeneration using new techniques such as systemic biomarkers. In addition, research on the mechanobiology of disease enriches the development of therapeutics for disc repair, with potential to diminish pain and disability associated with disc degeneration.

  15. Human Adult Neurogenesis: Evidence and Remaining Questions.

    PubMed

    Kempermann, Gerd; Gage, Fred H; Aigner, Ludwig; Song, Hongjun; Curtis, Maurice A; Thuret, Sandrine; Kuhn, H Georg; Jessberger, Sebastian; Frankland, Paul W; Cameron, Heather A; Gould, Elizabeth; Hen, Rene; Abrous, D Nora; Toni, Nicolas; Schinder, Alejandro F; Zhao, Xinyu; Lucassen, Paul J; Frisén, Jonas

    2018-04-18

    Renewed discussion about whether or not adult neurogenesis exists in the human hippocampus, and the nature and strength of the supporting evidence, has been reignited by two prominently published reports with opposite conclusions. Here, we summarize the state of the field and argue that there is currently no reason to abandon the idea that adult-generated neurons make important functional contributions to neural plasticity and cognition across the human lifespan. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  17. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  18. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

    PubMed Central

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2007-01-01

    Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the

  19. Quantitative in vivo MRI evaluation of lumbar facet joints and intervertebral discs using axial T2 mapping.

    PubMed

    Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried

    2011-11-01

    To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.

  20. Biomechanical effect of altered lumbar lordosis on intervertebral lumbar joints during the golf swing: a simulation study.

    PubMed

    Bae, Tae Soo; Cho, Woong; Kim, Kwon Hee; Chae, Soo Won

    2014-11-01

    Although the lumbar spine region is the most common site of injury in golfers, little research has been done on intervertebral loads in relation to the anatomical-morphological differences in the region. This study aimed to examine the biomechanical effects of anatomical-morphological differences in the lumbar lordosis on the lumbar spinal joints during a golf swing. The golf swing motions of ten professional golfers were analyzed. Using a subject-specific 3D musculoskeletal system model, inverse dynamic analyses were performed to compare the intervertebral load, the load on the lumbar spine, and the load in each swing phase. In the intervertebral load, the value was the highest at the L5-S1 and gradually decreased toward the T12. In each lumbar spine model, the load value was the greatest on the kypholordosis (KPL) followed by normal lordosis (NRL), hypolordosis (HPL), and excessive lordosis (EXL) before the impact phase. However, results after the follow-through (FT) phase were shown in reverse order. Finally, the load in each swing phase was greatest during the FT phase in all the lumbar spine models. The findings can be utilized in the training and rehabilitation of golfers to help reduce the risk of injury by considering individual anatomical-morphological characteristics.

  1. Chemonucleolysis for relief of sciatica due to a herniated intervertebral disc.

    PubMed Central

    McCulloch, J A

    1981-01-01

    Chemonucleolysis is the nonoperative chemical removal of displaced lumbar disc material. The enzyme chymopapain, which has a wide margin of safety between its effective therapeutic and toxic doses, is effective in the management of sciatica due to a herniated intervertebral disc. The patient will have leg pain as the dominant symptom and a 50% reduction in straight-leg raising with or without bowstring discomfort and crossover pain. Neurologic symptoms and signs are usual, as are abnormal results of contrast studies, which will verify the level of involvement. In 220 randomly selected patients who met criteria for the diagnosis of sciatica due to a herniated intervertebral disc and did not have psychogenic or nonorganic spinal pain, a spinal stenosis or a history of a previous, unsuccessful operation to relieve the sciatica, chemonucleolysis had a success rate of 80%. The only complications were a severe anaphylactic reaction in two patients and lesser, delayed reactions in five others. All of the reactions were successfully treated. Of the 45 patients in whom chemonucleolysis was unsuccessful, 38 underwent a laminectomy. In 3 of the 38 the results of chemonucleolysis were initially good, but later the disc herniation recurred; thus, the long-term treatment failure rate was 1.4%. PMID:7011530

  2. Level of Education as a Risk Factor for Extensive Prevalence of Cervical Intervertebral Disc Degenerative Changes and Chronic Neck Pain.

    PubMed

    Markotić, Vedran; Zubac, Damir; Miljko, Miro; Šimić, Goran; Zalihić, Amra; Bogdan, Gojko; Radančević, Dorijan; Šimić, Ana Dugandžić; Mašković, Josip

    2017-09-01

    The aim of this study was to document the prevalence of degenerative intervertebral disc changes in the patients who previously reported symptoms of neck pain and to determine the influence of education level on degenerative intervertebral disc changes and subsequent chronic neck pain. One hundred and twelve patients were randomly selected from the University Hospital in Mostar, Bosna and Herzegovina, (aged 48.5±12.7 years) and submitted to magnetic resonance imaging (MRI) of the cervical spine. MRI of 3.0 T (Siemens, Skyrim, Erlangen, Germany) was used to obtain cervical spine images. Patients were separated into two groups based on their education level: low education level (LLE) and high education level (HLE). Pfirrmann classification was used to document intervertebral disc degeneration, while self-reported chronic neck pain was evaluated using the previously validated Oswestry questionnaire. The entire logistic regression model containing all predictors was statistically significant, (χ 2 (3)=12.2, p=0.02), and was able to distinguish between respondents who had chronic neck pain and vice versa. The model explained between 10.0% (Cox-Snell R 2 ) and 13.8% (Nagelkerke R 2 ) of common variance with Pfirrmann classification, and it had the strength to discriminate and correctly classify 69.6% of patients. The probability of a patient being classified in the high or low group of degenerative disc changes according to the Pfirrmann scale was associated with the education level (Wald test: 5.5, p=0.02). Based on the Pfirrmann assessment scale, the HLE group was significantly different from the LLE group in the degree of degenerative changes of the cervical intervertebral discs (U=1,077.5, p=0.001). A moderate level of intervertebral disc degenerative changes (grade II and III) was equally matched among all patients, while the overall results suggest a higher level of education as a risk factor leading to cervical disc degenerative changes, regardless of age

  3. Mechanoreceptors in Diseased Cervical Intervertebral Disc and Vertigo.

    PubMed

    Yang, Liang; Yang, Cheng; Pang, Xiaodong; Li, Duanming; Yang, Hong; Zhang, Xinwu; Yang, Yi; Peng, Baogan

    2017-04-15

    We collected the samples of cervical intervertebral discs from patients with vertigo to examine the distribution and types of mechanoreceptors in diseased cervical disc. The aim of this study was to determine whether mechanoreceptors are distributed more abundantly in cervical discs from patients with cervical spondylosis, and whether they are related to vertigo. Previous limited studies have found that normal cervical intervertebral discs are supplied with mechanoreceptors that have been considered responsible for proprioceptive functions. Several clinical studies have indicated that the patients with cervical spondylosis manifested significantly impaired postural control and subjective balance disturbance. We collected 77 samples of cervical discs from 62 cervical spondylosis patients without vertigo, 61 samples from 54 patients with vertigo, and 40 control samples from 8 cadaveric donors to investigate distribution of mechanoreceptors containing neurofilament (NF200) and S-100 protein immunoreactive nerve endings. The immunohistochemical investigation revealed that the most frequently encountered mechanoreceptors were the Ruffini corpuscles in all groups of cervical disc samples. They were obviously increased in the number and deeply ingrown into inner annulus fibrosus and even into nucleus pulposus in the diseased cervical discs from patients with vertigo in comparison with the discs from patients without vertigo and control discs. Only three Golgi endings were seen in the three samples from patients with vertigo. No Pacinian corpuscles were found in any samples of cervical discs. The diseased cervical discs from patients with vertigo had more abundant distribution of Ruffini corpuscles than other discs. A positive association between the increased number and ingrowth of Ruffini corpuscles in the diseased cervical disc and the incidence of vertigo in the patients with cervical spondylosis was found, which may indicate a key role of Ruffini corpuscles in the

  4. The distribution of lumbar intervertebral angles in upright standing and extension is related to low back pain developed during standing.

    PubMed

    Viggiani, Daniel; Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P

    2017-11-01

    Lumbar lordosis measures are poorly related to clinical low back pain, however using a controlled exposure such as prolonged standing to identify pain groups may clarify this relationship. The purpose of this study was to determine the distribution of lumbar intervertebral angles in asymptomatic persons who do (pain developers) and do not (non-pain developers) develop low back pain during standing. Sagittal plane lumbar spine radiographs of eight pain developers and eight non-pain developers were taken in three poses: upright standing, full extension and full flexion. Measures of vertebral end plate orientations from L1 to S1 were taken in each pose to compute: intervertebral angles, contribution of each level to the total curve, total lordosis, ranges of motion, relative pose positioning within the range of motion, vertebral shape, and lumbar spine recurve. Measures were compared between pain groups and lumbar levels. Pain group differences in intervertebral angles and level contributions were greatest in the full extension pose, with pain developers having greater contributions from higher lumbar levels and fewer contributions from lower levels than non-pain developers. Pain group differences in intervertebral angle distributions were less pronounced in upright standing and non-existent in full flexion. No other measures differentiated pain groups. Although participants had similar gross-lumbar spine curvature characteristics, non-pain developers have more curvature at lower levels in upright standing and full extension. These differences in regional vertebral kinematics may partially be responsible for standing-induced low back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  6. Germline stem cells and neo-oogenesis in the adult human ovary.

    PubMed

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  7. Sensitivity of MRI parameters within intervertebral discs to the severity of adolescent idiopathic scoliosis.

    PubMed

    Huber, Maxime; Gilbert, Guillaume; Roy, Julien; Parent, Stefan; Labelle, Hubert; Périé, Delphine

    2016-11-01

    To measure magnetic resonance imaging (MRI) parameters including relaxation times (T 1 ρ, T 2 ), magnetization transfer (MT) and diffusion parameters (mean diffusivity [MD], fractional anisotropy [FA]) of intervertebral discs in adolescents with idiopathic scoliosis, and to investigate the sensitivity of these MR parameters to the severity of the spine deformities. Thirteen patients with adolescent idiopathic scoliosis and three control volunteers with no history of spine disease underwent an MRI acquisition at 3T including the mapping of T 1 ρ, T 2 , MT, MD, and FA. The apical zone included all discs within the scoliotic curve while the control zone was composed of other discs. The severity was analyzed through low (<32°) versus high (>40°) Cobb angles. One-way analysis of variance (ANOVA) and agglomerative hierarchical clustering (AHC) were performed. Significant differences were found between the apical zone and the control zone for T 2 (P = 0.047), and between low and high Cobb angles for T 2 (P = 0.014) and MT (P = 0.002). AHC showed two distinct clusters, one with mainly low Cobb angles and one with mainly high Cobb angles, for the MRI parameters measured within the apical zone, with an accuracy of 0.9 and a Matthews correlation coefficient (MCC) of 0.8. Within the control zone, the AHC showed no clear classification (accuracy of 0.6 and MCC of 0.2). We successfully performed an in vivo multiparametric MRI investigation of young patients with adolescent idiopathic scoliosis. The MRI parameters measured within the intervertebral discs were found to be sensitive to intervertebral disc degeneration occurring with scoliosis and to the severity of scoliosis. J. Magn. Reson. Imaging 2016;44:1123-1131. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Measurement of intervertebral motion using quantitative fluoroscopy: report of an international forum and proposal for use in the assessment of degenerative disc disease in the lumbar spine.

    PubMed

    Breen, Alan C; Teyhen, Deydre S; Mellor, Fiona E; Breen, Alexander C; Wong, Kris W N; Deitz, Adam

    2012-01-01

    Quantitative fluoroscopy (QF) is an emerging technology for measuring intervertebral motion patterns to investigate problem back pain and degenerative disc disease. This International Forum was a networking event of three research groups (UK, US, Hong Kong), over three days in San Francisco in August 2009. Its aim was to reach a consensus on how best to record, analyse, and communicate QF information for research and clinical purposes. The Forum recommended that images should be acquired during regular trunk motion that is controlled for velocity and range, in order to minimise externally imposed variability as well as to correlate intervertebral motion with trunk motion. This should be done in both the recumbent passive and weight bearing active patient configurations. The main recommended outputs from QF were the true ranges of intervertebral rotation and translation, neutral zone laxity and the consistency of shape of the motion patterns. The main clinical research priority should initially be to investigate the possibility of mechanical subgroups of patients with chronic, nonspecific low back pain by comparing their intervertebral motion patterns with those of matched healthy controls.

  9. The analysis of axisymmetric viscoelasticity, time-dependent recovery, and hydration in rat tail intervertebral discs by radial compression test.

    PubMed

    Lin, Leou-Chyr; Hedman, Thomas P; Wang, Shyu-Jye; Huoh, Michael; Chang, Shih-Youeng

    2009-05-01

    The goal of this study was to develop a nondestructive radial compression technique and to investigate the viscoelastic behavior of the rat tail disc under repeated radial compression. Rat tail intervertebral disc underwent radial compression relaxation testing and creep testing using a custom-made gravitational creep machine. The axisymmetric viscoelasticity and time-dependent recovery were determined. Different levels of hydration (with or without normal saline spray) were supplied to evaluate the effect of changes in viscoelastic properties. Viscoelasticity was found to be axisymmetric in rat-tail intervertebral discs at four equidistant locations. Complete relaxation recovery was found to take 20 min, whereas creep recovery required 25 min. Hydration was required for obtaining viscoelastic axisymmetry and complete viscoelastic recovery.

  10. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2015-01-01

    1 AD_________ Award Number: W81XWH-13-1-0050 TITLE: Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc...COVERED 27 Dec 2013 - 26 Dec 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Neck pain is pervasive problems in military population

  11. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc.

    PubMed

    Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A

    2005-12-01

    Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic

  12. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells.

    PubMed

    Kasra, Mehran; Goel, Vijay; Martin, James; Wang, Shea-Tien; Choi, Woosung; Buckwalter, Joseph

    2003-07-01

    The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. The objective of this study was to establish a method to investigate the ranges of constructive and destructive hydrostatic loading frequencies and amplitudes in preventing or inducing extracellular disc matrix degradation. Using a hydraulic chamber, normal rabbit intervertebral disc cells were tested under dynamic hydrostatic loading. Monolayer cultures of disc outer annulus cells and 3-dimensional (3-D) alginate cultures of disc nucleus pulposus cells were tested. Effects of different loading amplitudes (3-D culture, 0-3 MPa; monolayer, 0-1.7 MPa) and frequencies (1-20 Hz) on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. High frequency and high amplitude hydrostatic stress stimulated collagen synthesis in cultures of outer annulus cells whereas the lower amplitude and frequency hydrostatic stress had little effect. For the same loading duration and repetition, neither treatment significantly affected the relative amount of protein released from the cell layers, indicating that protein degradation and stability were unaffected. In the 3-D nucleus culture, higher amplitude and frequency increased synthesis rate and lowered degradation. In this case, loading amplitude had a stronger influence on cell response than that of loading frequency. Considering the ranges of loading amplitude and frequency used in this study, short-term application of high loading amplitudes and frequencies was beneficial in stimulation of protein synthesis and reduction of protein degradation.

  13. Comparison between cranial thoracic intervertebral disc herniations in German Shepherd dogs and other large breed dogs.

    PubMed

    Gaitero, Luis; Nykamp, Stephanie; Daniel, Rob; Monteith, Gabrielle

    2013-01-01

    Cranial thoracic intervertebral disc herniations have been reported to be rare in dogs due to the presence of the intercapital ligament, however some studies have proposed they may not be uncommon in German Shepherd dogs. The purpose of this retrospective study was to compare cranial thoracic intervertebral disc herniations in German Shepherd dogs and other large breed dogs (control group). Medical records at the Ontario Veterinary College were searched for German Shepherd dogs and other large breed dogs that had magnetic resonance imaging studies including the T1-T9 region. For each dog and each disc space from T1-T9, three variables (compression, disc degeneration, and herniation) were recorded and graded based on review of sagittal T2-weighted images. Twenty-three German Shepherd dogs and 47 other large breed dogs met inclusion criteria. The German Shepherd dog group had higher scores than the control group for compression (P = 0.0099) and herniation (P < 0.001), but not disc degeneration (P = 0.97). In the German Shepherd dog group, intervertebral discs T2-T3 and T4-T5 had an increased risk for compression and T3-T4 had an increased risk for compression and herniation. Findings from this study indicated that German Shepherd dogs may be more likely than other large breed dogs to have spinal cord compression due to cranial thoracic disc herniations. Imaging of the cranial thoracic spine, including T2-T3, is recommended for German Shepherd dogs with T3-L3 neurological signs. © 2012 Veterinary Radiology & Ultrasound.

  14. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc.

    PubMed

    Mwale, F; Roughley, P; Antoniou, J

    2004-12-15

    Tissue engineering of intervertebral discs (IVD) using mesenchymal stem cells (MSCs) induced to differentiate into a disc-cell phenotype has been considered as an alternative treatment for disc degeneration. However, since there is no unique marker characteristic of discs and since hyaline cartilage and immature nucleus pulposus (NP) possess similar macromolecules in their extracellular matrix, it is currently difficult to recognize MSC conversion to a disc cell. This study was performed to compare the proteoglycan to collagen ratio (measured as GAG to hydroxyproline ratio) in the NP of normal disc to that of the hyaline cartilage of the endplate within the same group of individuals and test the hypothesis that this ratio can be used for in vivo studies to distinguish between a normal NP and hyaline cartilage phenotype. Whole human lumbar spine specimens from fresh cadavers, ranging in age from 12 weeks to 79 years, were used to harvest the IVDs and adjacent endplates. The GAG to hydroxyproline ratio within the NP of young adults is approximately 27:1, whereas the ratio within the hyaline cartilage endplate of the same aged individuals is about 2:1. The production of an extracellular matrix with a high proteoglycan to collagen ratio can be used in vivo to distinguish NP cells from chondrocytes, and could help in identifying a NP-like phenotype in vivo as opposed to a chondrocyte when MSCs are induced to differentiate for tissue engineering of a disc.

  15. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs.

    PubMed

    Matsunaga, Shunji; Nagano, Satoshi; Onishi, Toshiyuki; Morimoto, Norio; Suzuki, Shusaku; Komiya, Setsuro

    2003-01-01

    The authors conducted a study to determine age-related changes in expression of transforming growth factor (TGF)-beta1, -beta2, -beta3, and Type I and Type II receptors in various cells in the nucleus pulposus and anulus fibrosus. Immunolocalization of TGFbetas and Type I and II receptors was examined during the aging process of cervical intervertebral discs in senescence-accelerated mice (SAM). The TGFbeta family has important roles for cellular function of various tissues. Its role in disc aging, however, is unknown. Detailed information on the temporal and spatial localization of TGFbetas and their receptors in discs is required before discussing introduction of them clinically into the intervertebral disc. Three groups of five SAM each were used. The groups of SAM were age 8, 24, and 50 weeks, respectively. Hematoxylin and eosin staining and immunohistochemical study involving specific antibodies for TGFbeta1, -beta2, -beta3, and Types I and II TGF receptors were performed. Intervertebral discs exhibited degenerative change with advancing age. The TGFbetas and their receptors were present in the fibrocartilaginous cells within the anulus fibrosus and notochord-like cells within the nucleus pulposus of young mice. Expression of TGFbetas and Type I and Type II receptors changed markedly in the cells within the anulus fibrosus during the aging process. The TGFbetas and their receptors were present in cells within the nucleus pulposus and the anulus fibrosus of young mice, and their expression decreased with age.

  16. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults.

  17. [Effect of Basic Fibroblast Growth Factor and Transforming Growth Factor-Β1 Combined with Bone Marrow Mesenchymal Stem Cells on the Repair of Degenerated Intervertebral Discs in Rat Models].

    PubMed

    Jiang, Chao; Li, Da-peng; Zhang, Zhi-jian; Shu, Hao-ming; Hu, Lang; Li, Zheng-nan; Huang, Yong-hui

    2015-08-01

    To evaluate the effects of the combination of basic fibroblast growth factor (bFGF), transforming growth factor-Β1 (TGF-Β1), bone marrow mesenchymal stem cells (BMSCs), and temperature-responsive chitosan hydrogel (TCH) gel on the repair of degenerative intervertebral disc in rat models. Rat models of intervertebral disc degeneration were established by acupuncture. The degenerative effects were observed under magnetic resonance imaging (MRI). The BMSCs was cultured in vitro and then transfected by adenovirus with enhanced green fluorescent protein to make it carry the gene of enhanced green fluorescent protein,which functioned as fluorescence labeling. The SD rat models of intervertebral disc degeneration were divided into four groups: group A, treated with the combination of bFGF, TGF-Β1,BMSCs,and TCH gel; group B, treated with the combination of BMSCs and TCH gel;group C, treated with the combination of bFGF,TGF-Β1, and TCH gel;and group D, treated with PBS buffer solution. After the corresponding reagents were injected into the degenerative intervertebral discs of each group, the rats were cultivated for another four weeks and then the repair effects of the intervertebral discs were observed under MRI. Furthermore,the intervertebral discs of each group were taken out and observed by HE and Masson staining. The nucleus pulposus was aspirated and the expressions of aggrecan,collagen 2,Sox-9,and collagen I of nucleus pulposus of each group were tested by reverse transcription polymerase chain reaction and Western blot. The transplanted BMSCs survived in the intervertebral disc and differentiated into nucleus pulposus-like cells. MRI showed that:the signal intensity of the nucleus pulposus of group A was much higher than that of the rest groups, the signal intensity of group B was higher than that of group C, and the signal intensity of group D was the lowest,in which the dura mater spinalis was in compression and the spinal cord changed in beaded shape. The

  18. Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study

    PubMed Central

    Capoor, Manu N.; Ruzicka, Filip; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Schmitz, Jonathan E.; Hermanova, Marketa; Sana, Jiri; Michu, Elleni; Baird, John C.; Ahmed, Fahad S.; Maca, Karel; Lipina, Radim; Alamin, Todd F.; Coscia, Michael F.; Stonemetz, Jerry L.; Witham, Timothy; Ehrlich, Garth D.; Gokaslan, Ziya L.; Mavrommatis, Konstantinos; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2016-01-01

    Background The relationship between intervertebral disc degeneration and chronic infection by Propionibacterium acnes is controversial with contradictory evidence available in the literature. Previous studies investigating these relationships were under-powered and fraught with methodical differences; moreover, they have not taken into consideration P. acnes’ ability to form biofilms or attempted to quantitate the bioburden with regard to determining bacterial counts/genome equivalents as criteria to differentiate true infection from contamination. The aim of this prospective cross-sectional study was to determine the prevalence of P. acnes in patients undergoing lumbar disc microdiscectomy. Methods and Findings The sample consisted of 290 adult patients undergoing lumbar microdiscectomy for symptomatic lumbar disc herniation. An intraoperative biopsy and pre-operative clinical data were taken in all cases. One biopsy fragment was homogenized and used for quantitative anaerobic culture and a second was frozen and used for real-time PCR-based quantification of P. acnes genomes. P. acnes was identified in 115 cases (40%), coagulase-negative staphylococci in 31 cases (11%) and alpha-hemolytic streptococci in 8 cases (3%). P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. The prevalence of intervertebral discs with abundant P. acnes (≥ 1x103 CFU/ml) was 11% (39 cases). There was significant correlation between the bacterial counts obtained by culture and the number of P. acnes genomes detected by real-time PCR (r = 0.4363, p<0.0001). Conclusions In a large series of patients, the prevalence of discs with abundant P. acnes was 11%. We believe, disc tissue homogenization releases P. acnes from the biofilm so that they can then potentially be cultured, reducing the rate of false-negative cultures. Further, quantification study revealing significant bioburden based on both culture and real-time PCR minimize the likelihood that observed

  19. Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study.

    PubMed

    Capoor, Manu N; Ruzicka, Filip; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Schmitz, Jonathan E; Hermanova, Marketa; Sana, Jiri; Michu, Elleni; Baird, John C; Ahmed, Fahad S; Maca, Karel; Lipina, Radim; Alamin, Todd F; Coscia, Michael F; Stonemetz, Jerry L; Witham, Timothy; Ehrlich, Garth D; Gokaslan, Ziya L; Mavrommatis, Konstantinos; Birkenmaier, Christof; Fischetti, Vincent A; Slaby, Ondrej

    2016-01-01

    The relationship between intervertebral disc degeneration and chronic infection by Propionibacterium acnes is controversial with contradictory evidence available in the literature. Previous studies investigating these relationships were under-powered and fraught with methodical differences; moreover, they have not taken into consideration P. acnes' ability to form biofilms or attempted to quantitate the bioburden with regard to determining bacterial counts/genome equivalents as criteria to differentiate true infection from contamination. The aim of this prospective cross-sectional study was to determine the prevalence of P. acnes in patients undergoing lumbar disc microdiscectomy. The sample consisted of 290 adult patients undergoing lumbar microdiscectomy for symptomatic lumbar disc herniation. An intraoperative biopsy and pre-operative clinical data were taken in all cases. One biopsy fragment was homogenized and used for quantitative anaerobic culture and a second was frozen and used for real-time PCR-based quantification of P. acnes genomes. P. acnes was identified in 115 cases (40%), coagulase-negative staphylococci in 31 cases (11%) and alpha-hemolytic streptococci in 8 cases (3%). P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. The prevalence of intervertebral discs with abundant P. acnes (≥ 1x103 CFU/ml) was 11% (39 cases). There was significant correlation between the bacterial counts obtained by culture and the number of P. acnes genomes detected by real-time PCR (r = 0.4363, p<0.0001). In a large series of patients, the prevalence of discs with abundant P. acnes was 11%. We believe, disc tissue homogenization releases P. acnes from the biofilm so that they can then potentially be cultured, reducing the rate of false-negative cultures. Further, quantification study revealing significant bioburden based on both culture and real-time PCR minimize the likelihood that observed findings are due to contamination and supports the

  20. Evaluation of Electrospun Nanofiber-Anchored Silicone for the Degenerative Intervertebral Disc

    PubMed Central

    Riahanizad, S.

    2017-01-01

    The nucleus pulposus (NP) substitution by polymeric gel is one of the promising techniques for the repair of the degenerative intervertebral disc (IVD). Silicone gel is one of the potential candidates for a NP replacement material. Electrospun fiber anchorage to silicone disc, referred as ENAS disc, may not only improve the biomechanical performances of the gel but it can also improve restoration capability of the gel, which is unknown. This study successfully produced a novel process to anchor any size and shape of NP gel with electrospun fiber mesh. Viscoelastic properties of silicone and ENAS disc were measured using standard experimental techniques and compared with the native tissue properties. Ex vivo mechanical tests were conducted on ENAS disc-implanted rabbit tails to the compare the mechanical stability between intact and ENAS implanted spines. This study found that viscoelastic properties of ENAS disc are higher than silicone disc and comparable to the viscoelastic properties of human NP. The ex vivo studies found that the ENAS disc restore the mechanical functionality of rabbit tail spine, after discectomy of native NP and replacing the NP by ENAS disc. Therefore, the PCL ENF mesh anchoring technique to a NP implant can have clinical potential. PMID:29181144

  1. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  2. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration.

    PubMed

    Pereira, D R; Silva-Correia, J; Oliveira, J M; Reis, R L

    2013-02-01

    Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific community. Biomaterials-based therapies are the most interesting solutions to date, whereby tissue engineering and regenerative medicine (TE&RM) strategies are included. By using such strategies, i.e., combining biomaterials, cells, and biomolecules, the ultimate goal of reaching a complete integration between native and neo-tissue can be achieved. Hydrogels are promising materials for restoring IVD, mainly nucleus pulposus (NP). This study presents an overview of the use of hydrogels in acellular and cellular strategies for intervertebral disc regeneration. To better understand IVD and its functioning, this study will focus on several aspects: anatomy, pathophysiology, cellular and biomolecular performance, intrinsic healing processes, and current therapies. In addition, the application of hydrogels as NP substitutes will be addressed due to their similarities to NP mechanical properties and extracellular matrix. These hydrogels can be used in cellular strategies when combined with cells from different sources, or in acellular strategies by performing the functionalization of the hydrogels with biomolecules. In addition, a brief summary of therapies based on simple injection for primary biological repair will be examined. Finally, special emphasis will focus on reviewing original studies reporting on the use of autologous cells and biomolecules such as platelet-rich plasma and their potential clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.

  3. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; François, Robert; Vande Berg, Bruno C; Duprez, Thierry; Cosnard, Guy; Maldague, Baudouin E

    2005-02-01

    To explain a cause of high signal intensity on T1-weighted MR images in calcified intervertebral disks associated with spinal fusion. Magnetic resonance and radiological examinations of 13 patients were reviewed, presenting one or several intervertebral disks showing a high signal intensity on T1-weighted MR images, associated both with the presence of calcifications in the disks and with peripheral fusion of the corresponding spinal segments. Fusion was due to ligament ossifications (n=8), ankylosing spondylitis (n=4), or posterior arthrodesis (n=1). Imaging files included X-rays and T1-weighted MR images in all cases, T2-weighted MR images in 12 cases, MR images with fat signal suppression in 7 cases, and a CT scan in 1 case. Histological study of a calcified disk from an anatomical specimen of an ankylosed lumbar spine resulting from ankylosing spondylitis was examined. The signal intensity of the disks was similar to that of the bone marrow or of perivertebral fat both on T1-weighted MR images and on all sequences, including those with fat signal suppression. In one of these disks, a strongly negative absorption coefficient was focally measured by CT scan, suggesting a fatty content. The histological examination of the ankylosed calcified disk revealed the presence of well-differentiated bone tissue and fatty marrow within the disk. The high signal intensity of some calcified intervertebral disks on T1-weighted MR images can result from the presence of fatty marrow, probably related to a disk ossification process in ankylosed spines.

  4. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  5. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.

    PubMed

    Vergari, Claudio; Mansfield, Jessica; Meakin, Judith R; Winlove, Peter C

    2016-06-01

    The intervertebral disc is a multicomposite structure, with an outer fibrous ring, the annulus fibrosus, retaining a gel-like core, the nucleus pulposus. The disc presents complex mechanical behaviour, and it is of high importance for spine biomechanics. Advances in multiscale modelling and disc repair raised a need for new quantitative data on the finest details of annulus fibrosus mechanics. In this work we explored inter-lamella and inter-bundle behaviour of the outer annulus using micromechanical testing and second harmonic generation microscopy. Twenty-one intervertebral discs were dissected from cow tails; the nucleus and inner annulus were excised to leave a ring of outer annulus, which was tested in circumferential loading while imaging the tissue's collagen fibres network with sub-micron resolution. Custom software was developed to determine local tissue strains through image analysis. Inter-bundle linear and shear strains were 5.5 and 2.8 times higher than intra-bundle strains. Bundles tended to remain parallel while rotating under loading, with large slipping between them. Inter-lamella linear strain was almost 3 times the intra-lamella one, but no slipping was observed at the junction between lamellae. This study confirms that outer annulus straining is mainly due to bundles slipping and rotating. Further development of disc multiscale modelling and repair techniques should take into account this modular behaviour of the lamella, rather than considering it as a homogeneous fibre-reinforced matrix. The intervertebral disc is an organ tucked between each couple of vertebrae in the spine. It is composed by an outer fibrous layer retaining a gel-like core. This organ undergoes severe and repeated loading during everyday life activities, since it is the compliant component that gives the spine its flexibility. Its properties are affected by pathologies such as disc degeneration, a major cause of back pain. In this article we explored the micromechanical

  6. Implantation of hyaluronic acid hydrogel prevents the pain phenotype in a rat model of intervertebral disc injury

    PubMed Central

    Sakai, Daisuke; Dockery, Peter

    2018-01-01

    Painful intervertebral disc degeneration is mediated by inflammation that modulates glycosylation and induces hyperinnervation and sensory sensitization, which result in discogenic pain. Hyaluronic acid (HA) used as a therapeutic biomaterial can reduce inflammation and pain, but the effects of HA therapy on glycosylation and pain associated with disc degeneration have not been previously determined. We describe a novel rat model of pain induced by intervertebral disc injury, with validation of the pain phenotype by morphine treatment. Using this model, we assessed the efficacy of HA hydrogel for the alleviation of pain, demonstrating that it reduced nociceptive behavior, an effect associated with down-regulation of nociception markers and inhibition of hyperinnervation. Furthermore, HA hydrogel altered glycosylation and modulated key inflammatory and regulatory signaling pathways, resulting in attenuation of inflammation and regulation of matrix components. Our results suggest that HA hydrogel is a promising clinical candidate for the treatment of back pain caused by degenerated discs. PMID:29632893

  7. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  8. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method.

    PubMed

    Gómez, Fátima Somovilla; Lorza, Rubén Lostado; Bobadilla, Marina Corral; García, Rubén Escribano

    2017-09-21

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3-L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the

  9. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method

    PubMed Central

    Somovilla Gómez, Fátima

    2017-01-01

    The kinematic behavior of models that are based on the finite element method (FEM) for modeling the human body depends greatly on an accurate estimate of the parameters that define such models. This task is complex, and any small difference between the actual biomaterial model and the simulation model based on FEM can be amplified enormously in the presence of nonlinearities. The current paper attempts to demonstrate how a combination of the FEM and the MRS methods with desirability functions can be used to obtain the material parameters that are most appropriate for use in defining the behavior of Finite Element (FE) models of the healthy human lumbar intervertebral disc (IVD). The FE model parameters were adjusted on the basis of experimental data from selected standard tests (compression, flexion, extension, shear, lateral bending, and torsion) and were developed as follows: First, three-dimensional parameterized FE models were generated on the basis of the mentioned standard tests. Then, 11 parameters were selected to define the proposed parameterized FE models. For each of the standard tests, regression models were generated using MRS to model the six stiffness and nine bulges of the healthy IVD models that were created by changing the parameters of the FE models. The optimal combination of the 11 parameters was based on three different adjustment criteria. The latter, in turn, were based on the combination of stiffness and bulges that were obtained from the standard test FE simulations. The first adjustment criteria considered stiffness and bulges to be equally important in the adjustment of FE model parameters. The second adjustment criteria considered stiffness as most important, whereas the third considered the bulges to be most important. The proposed adjustment methods were applied to a medium-sized human IVD that corresponded to the L3–L4 lumbar level with standard dimensions of width = 50 mm, depth = 35 mm, and height = 10 mm. Agreement between the

  10. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo

    2011-01-01

    This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

  11. Biological intervertebral disc replacement: an in vivo model and comparison of two surgical techniques to approach the rat caudal disc

    PubMed Central

    Gebhard, Harry; James, Andrew R.; Bowles, Robby D.; Dyke, Jonathan P.; Saleh, Tatianna; Doty, Stephen P.; Bonassar, Lawrence J.; Härtl, Roger

    2011-01-01

    Study design: Prospective randomized animal study. Objective: To determine a surgical technique for reproducible and functional intervertebral disc replacement in an orthotopic animal model. Methods: The caudal 3/4 intervertebral disc (IVD) of the rat tail was approached by two surgical techniques: blunt dissection, stripping and retracting (Technique 1) or incising and repairing (Technique 2) the dorsal longitudinal tendons. The intervertebral disc was dissected and removed, and then either discarded or reinserted. Outcome measures were perioperative complications, spontaneous tail movement, 7T MRI (T1- and T2-sequences for measurement of disc space height (DSH) and disc hydration). Microcomputed tomographic imaging (micro CT) was additionally performed postmortem. Results: No vascular injuries occurred and no systemic or local infections were observed over the course of 1 month. Tail movements were maintained. With tendon retraction (Technique 1) gross loss of DSH occurred with both discectomy and reinsertion. Tendon division (Technique 2) maintained DSH with IVD reinsertion but not without. The DSH was demonstrated on MRI measurement. A new scoring system to assess IVD appearances was described. Conclusions: The rat tail model, with a tendon dividing surgical technique, can function as an orthotopic animal model for IVD research. Mechanical stimulation is maintained by preserved tail movements. 7T MRI is a feasible modality for longitudinal monitoring for the rat caudal disc. PMID:22956934

  12. Polyetheretherketone (PEEK) intervertebral cage as a cause of chronic systemic allergy: a case report.

    PubMed

    Maldonado-Naranjo, Andres L; Healy, Andrew T; Kalfas, Iain H

    2015-07-01

    Polyetheretherketone (PEEK) is an organic polymer thermoplastic with strong mechanical and chemical resistance properties. It has been used in industry to fabricate items for demanding applications such as bearings, piston parts, compressor plate valves, and cable insulation. Since the early 1980s, polyetheretherketone polymers have been increasingly used in orthopedic and spinal surgery applications. Numerous studies and years of clinical experience have confirmed the biocompatibility of this material. The purpose of the study was to report a case of chronic systemic allergy after anterior cervical decompression and fusion (ACDF) and implantation of an intervertebral PEEK cage, with resolution of symptoms after removal of PEEK cage. This study is a case report with clinical evidence for allergy to PEEK. The methods involve clinical findings and review of current literature. After ACDF and implantation of an intervertebral PEEK cage, the patient had developed an angioedema-like picture marked by severe redness, itching, swelling of his tongue, and skin thickening. A skin patch test was positive for PEEK. Removal of the implant resulted in the resolution of his allergy symptoms shortly after surgery. Tissue reactions to PEEK are extremely rare. Herein, we present the first report of a chronic allergic response to interbody PEEK material. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    PubMed Central

    Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  14. Cartilage of the Intervertebral Disc Eng-Plate, A Histological, Histochemical, Fine Structure Study.

    DTIC Science & Technology

    1982-08-01

    degeneration (Nachemson et al., 1970). These and related studies consider the end-plates to be composed of hyaline cartilage and thus homologues of articular...results of this study in rhesus indicate, that while present, the cartilage of the end-plate is quite different in structure and presumably...HZSTOLO6ZCAL,-ETCfU) I AUG 82 N 5 NUSSBAUM IUNCLASSIFDATRL8R-1222NL.rnximommmB~iIEND2 AFAMRL-TR-81 - 122 " CARTILAGE OF THE INTERVERTEBRAL DISC END-PLATE A

  15. Intervertebral Disc Cells Produce Interleukins Found in Patients with Back Pain.

    PubMed

    Zhang, Yejia; Chee, Ana; Shi, Peng; Adams, Sherrill L; Markova, Dessislava Z; Anderson, David Greg; Smith, Harvey E; Deng, Youping; Plastaras, Christopher T; An, Howard S

    2016-06-01

    To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.

  16. Acquired degenerative changes of the intervertebral segments at and suprajacent to the lumbosacral junction. A radioanatomic analysis of the nondiskal structures of the spinal column and perispinal soft tissues.

    PubMed

    Jinkins, J R

    2001-01-01

    In earlier evolutionary times, mammals were primarily quadrupeds. However, other bipeds have also been represented during the course of the Earth's several billion year history. In many cases, either the bipedal stance yielded a large tail and hypoplastic upper extremities (e.g., Tyrannosaurus rex and the kangaroo), or it culminated in hypoplasia of the tail and further development and specialization of the upper extremities (e.g., nonhuman primates and human beings). In the human species this relatively recently acquired posture resulted in a more or less pronounced lumbosacral kyphosis. In turn, certain compensatory anatomic features have since occurred. These include the normal characteristic posteriorly directed wedge-shape of the L5 vertebral body and the L5-S1 intervertebral disk; the L4 vertebral body and the L4-L5 disk may be similarly visibly affected. These compensatory mechanisms, however, have proved to be functionally inadequate over the long term of the human life span. Upright posture also leads to increased weight bearing in humans that progressively causes excess stresses at and suprajacent to the lumbosacral junction. These combined factors result in accelerated aging and degenerative changes and a predisposition to frank biomechanical failure of the subcomponents of the spinal column in these spinal segments. One other specific problem that occurs at the lumbosacral junction that predisposes toward premature degeneration is the singular relationship that exists between a normally mobile segment of spine (i.e., the lumbar spine) and a normally immobile one (i.e., the sacrum). It is well known that mobile spinal segments adjacent to congenitally or acquired fused segments have a predilection toward accelerated degenerative changes. The only segment of the spine in which this is invariably normally true is at the lumbosacral junction (i.e., the unfused lumbar spine adjoining the fused sacrum). Nevertheless, biomechanical failures of the human spine

  17. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    PubMed Central

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  18. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development.

    PubMed

    Rodrigues-Pinto, Ricardo; Berry, Andrew; Piper-Hanley, Karen; Hanley, Neil; Richardson, Stephen M; Hoyland, Judith A

    2016-08-01

    In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.

  19. Age-related differences in the response of the L5-S1 intervertebral disc to spinal traction.

    PubMed

    Mitchell, Ulrike H; Beattie, Paul F; Bowden, Jennifer; Larson, Robert; Wang, Haonan

    2017-10-01

    Lumbar traction is a common treatment for low back pain; however its mechanisms of action are poorly understood. It has been hypothesized that a key effect of lumbar traction is its capacity to influence fluid movement within the intervertebral disc (IVD). To determine differences in the apparent diffusion coefficient (ADC) obtained with lumbar diffusion-weighted imaging (DWI) of the L5-S1 IVD before, and during, the application of lumbar traction. Case series, repeated measures. A static traction load of ∼50% of body-weight was applied to the low back using a novel "MRI-safe" apparatus. DWI of the lumbar spine was performed prior to, and during the application of the traction load. Participants were currently asymptomatic and included a young adult group (n = 18) and a middle-aged group (n = 15). The young adult group had a non-significant 2.2% increase in ADC (mean change = 0.03 × 10 -3  mm 2 /s, SD = 0.24, 95% CI = -0.09, 0.15). The ADC for the middle-aged group significantly increased by 20% (mean change of 0.18 × 10 -3  mm 2 /s, SD = 0.19; 95% CI = 0.07, 0.28; p = 0.003; effect size = 0.95). There was an inverse relationship between the ADC obtained before traction and the percent increase in ADC that was measured during traction. Static traction was associated with an increase in diffusion of water within the L5-S1 IVDs of middle-age individuals, but not in young adults, suggesting age-related differences in the diffusion response. Further study is needed to assess the relationship between these findings and the symptoms of back pain. 4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration

    NASA Astrophysics Data System (ADS)

    Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris

    2017-02-01

    Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

  1. Percutaneous treatment of intervertebral disc herniation.

    PubMed

    Buy, Xavier; Gangi, Afshin

    2010-06-01

    Interventional radiology plays a major role in the management of symptomatic intervertebral disc herniations. In the absence of significant pain relief with conservative treatment including oral pain killers and anti-inflammatory drugs, selective image-guided periradicular infiltrations are generally indicated. The precise control of needle positioning allows optimal distribution of steroids along the painful nerve root. After 6 weeks of failure of conservative treatment including periradicular infiltration, treatment aiming to decompress or remove the herniation is considered. Conventional open surgery offers suboptimal results and is associated with significant morbidity. To achieve minimally invasive discal decompression, different percutaneous techniques have been developed. Their principle is to remove a small volume of nucleus, which results in an important reduction of intradiscal pressure and subsequently reduction of pressure inside the disc herniation. However, only contained disc herniations determined by computed tomography or magnetic resonance are indicated for these techniques. Thermal techniques such as radiofrequency or laser nucleotomy seem to be more effective than purely mechanical nucleotomy; indeed, they achieve discal decompression but also thermal destruction of intradiscal nociceptors, which may play a major role in the physiopathology of discal pain. The techniques of image-guided spinal periradicular infiltration and percutaneous nucleotomy with laser and radiofrequency are presented with emphasis on their best indications.

  2. Can sleep deprivation studies explain why human adults sleep?

    PubMed

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  3. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom™

    PubMed Central

    Zander, T.; Burra, N. K.; Bergmann, G.

    2007-01-01

    The orthobiom™ non-fusion scoliosis correction system consists of two longitudinal rods, polyaxial pedicle screws, mobile and fixed connectors and a cross-connector. The mobile connectors can move along and around the rod, thus allowing length adaptation during growth. The aim of this study was to determine the effects of different features of this novel implant on intervertebral rotations, to calculate the movement of the mobile connectors along the rods for different loading cases and to compare the results with those of a rigid implant construct. A finite element analysis was performed using six versions (M1–M6) of a three-dimensional, nonlinear model of a spine ranging from T3 to L2. The models were loaded with pure moments of 7.5 N m in the three main anatomical planes. First, the validated intact model (M1) was studied. Then, the orthobiom™ implant system was inserted, bridging the segments between T4 and L1 (M2). The effect of pedicle screws only in every second vertebrae was investigated (M3). For comparison, three connection variations of screws and rods were investigated: (1) an implant with rigid screws and mobile connectors (M4), (2) an implant with non-locking polyaxial screws and fixed connectors (M5) and (3) a completely rigid implant construct (M6). For flexion, extension and lateral bending, intervertebral rotation was reduced at all implant levels due to the implants. A rigid implant construct (M6) and an implant with non-locking polyaxial screws and fixed connectors (M5) led to the strongest reduction of intervertebral rotation. The orthobiom™ non-fusion implant system (M2, M3) allowed much more intervertebral rotation than a rigid implant (M6). Differences in intervertebral rotations were small when polyaxial screws were placed at every second level only (M3) instead of at every level (M2). For axial rotation, intervertebral rotation was strongly reduced by a rigid implant construct (M6) and by an implant with rigid screws and mobile

  4. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.

    PubMed

    Karajan, N; Otto, D; Oladyshkin, S; Ehlers, W

    2014-10-01

    A possibility to simulate the mechanical behaviour of the human spine is given by modelling the stiffer structures, i.e. the vertebrae, as a discrete multi-body system (MBS), whereas the softer connecting tissue, i.e. the softer intervertebral discs (IVD), is represented in a continuum-mechanical sense using the finite-element method (FEM). From a modelling point of view, the mechanical behaviour of the IVD can be included into the MBS in two different ways. They can either be computed online in a so-called co-simulation of a MBS and a FEM or offline in a pre-computation step, where a representation of the discrete mechanical response of the IVD needs to be defined in terms of the applied degrees of freedom (DOF) of the MBS. For both methods, an appropriate homogenisation step needs to be applied to obtain the discrete mechanical response of the IVD, i.e. the resulting forces and moments. The goal of this paper was to present an efficient method to approximate the mechanical response of an IVD in an offline computation. In a previous paper (Karajan et al. in Biomech Model Mechanobiol 12(3):453-466, 2012), it was proven that a cubic polynomial for the homogenised forces and moments of the FE model is a suitable choice to approximate the purely elastic response as a coupled function of the DOF of the MBS. In this contribution, the polynomial chaos expansion (PCE) is applied to generate these high-dimensional polynomials. Following this, the main challenge is to determine suitable deformation states of the IVD for pre-computation, such that the polynomials can be constructed with high accuracy and low numerical cost. For the sake of a simple verification, the coupling method and the PCE are applied to the same simplified motion segment of the spine as was used in the previous paper, i.e. two cylindrical vertebrae and a cylindrical IVD in between. In a next step, the loading rates are included as variables in the polynomial response functions to account for a more

  5. Contact and perspective taking improve humanness standards and perceptions of humanness of older adults and people with dementia: a cross-sectional survey study.

    PubMed

    Miron, Anca M; McFadden, Susan H; Hermus, Nathan J; Buelow, Jennifer; Nazario, Amanda S; Seelman, Katarena

    2017-10-01

    No empirical work has systematically explored perceptions of humanness of people with dementia and of older adults and the variables that could improve these perceptions. We thus investigated the role of contact and perspective taking in improving perceptions of humanness of these social groups. To do so, we developed a new concept, humanness standards, defined as the amount of evidence of ability impairment needed to conclude that elderly people and those with dementia have lost personhood. We used a cross-sectional survey design (n = 619) to assess participants' humanness standards and perceptions of uniquely human characteristics and human nature characteristics of two social groups (people with dementia and older adults). Half the participants (n = 311) completed a survey about people with dementia and half (n = 308) assessed older adults. People with dementia were perceived as possessing humanness characteristics to a lesser extent than were older adults. For both groups, contact predicted enhanced perceptions of humanness characteristics. Participants' degree of contact with individuals with dementia also predicted humanness standards, but only under low perspective-taking conditions. As predicted, for older adults, participants set the highest humanness impairment thresholds in the high contact/high perspective-taking condition. We conclude that while social programs that bring persons with dementia and other individuals in contact could change humanness standards and perceptions of humanness characteristics of people with dementia, in the case of elderly adults, the contact must be supplemented by variables that facilitate taking the perspective of the person.

  6. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study.

    PubMed

    Molinares, Diana M; Davis, Timothy T; Fung, Daniel A

    2015-10-09

    OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5-S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2-S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors' database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2-5 discs have the following mean distances: L2-3 = 16.04 mm, L3-4 = 14.21 mm, and L4-5 = 10.28 mm. The L5-S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3-4 disc in 5%, at the L-4 vertebral body in 43%, at the L4-5 disc in 11%, and at the L-5 vertebral

  7. Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus).

    PubMed

    Neiworth, Julie J; Gleichman, Amy J; Olinick, Anne S; Lamp, Kristen E

    2006-11-01

    This study compared adults (Homo sapiens), young children (Homo sapiens), and adult tamarins (Saguinus oedipus) while they discriminated global and local properties of stimuli. Subjects were trained to discriminate a circle made of circle elements from a square made of square elements and were tested with circles made of squares and squares made of circles. Adult humans showed a global bias in testing that was unaffected by the density of the elements in the stimuli. Children showed a global bias with dense displays but discriminated by both local and global properties with sparse displays. Adult tamarins' biases matched those of the children. The striking similarity between the perceptual processing of adult monkeys and humans diagnosed with autism and the difference between this and normatively developing human perception is discussed.

  8. Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.

    PubMed

    Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E

    2006-08-01

    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for

  9. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs.

    PubMed

    Taylor, Michael P; Wedel, Mathew J

    2013-01-01

    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised.

  10. The Effect of Intervertebral Cartilage on Neutral Posture and Range of Motion in the Necks of Sauropod Dinosaurs

    PubMed Central

    Taylor, Michael P.; Wedel, Mathew J.

    2013-01-01

    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised. PMID:24205163

  11. Understanding Older Adult's Perceptions of Factors that Support Trust in Human and Robot Care Providers.

    PubMed

    Stuck, Rachel E; Rogers, Wendy A

    2017-06-01

    As the population of older adults increase so will the need for care providers, both human and robot. Trust is a key aspect to establish and maintain a successful older adult-care provider relationship. However, due to trust volatility it is essential to understand it within specific contexts. This proposed mixed methods study will explore what dimensions of trust emerge as important within the human-human and human-robot dyads in older adults and care providers. First, this study will help identify key qualities that support trust in a care provider relationship. By understanding what older adults perceive as needing to trust humans and robots for various care tasks, we can begin to provide recommendations based on user expectations for design to support trust.

  12. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    PubMed

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    PubMed Central

    Frost, Jennifer M.; Monk, Dave; Stojilkovic-Mikic, Taita; Woodfine, Kathryn; Chitty, Lyn S.; Murrell, Adele; Stanier, Philip; Moore, Gudrun E.

    2010-01-01

    Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression. PMID:21042416

  14. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds.

    PubMed

    Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens

    2008-10-01

    To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.

  15. Clinical characterization of thoracolumbar and lumbar intervertebral disk extrusions in English Cocker Spaniels.

    PubMed

    Cardy, Thomas J A; Tzounos, Caitlin E; Volk, Holger A; De Decker, Steven

    2016-02-15

    To assess the anatomic distribution of thoracolumbar and lumbar intervertebral disk extrusions (IVDEs) in English Cocker Spaniels as compared with findings in Dachshunds and to characterize clinical findings in English Cocker Spaniels with thoracolumbar or lumbar IVDEs affecting various regions of the vertebral column. Retrospective observational study. 81 English Cocker Spaniels and 81 Dachshunds with IVDEs. Signalment, clinical signs, neurologic examination findings, and affected intervertebral disk spaces (IVDSs) were recorded for both breeds. Management methods and outcomes were recorded for English Cocker Spaniels. Lesions were categorized as thoracolumbar (IVDSs T9-10 through L1-2), midlumbar (L2-3 through L4-5), or caudal lumbar (L5-6 through L7-S1). Midlumbar and caudal lumbar IVDEs were significantly more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDEs had a longer median duration of clinical signs before evaluation and more commonly had unilateral pelvic limb lameness or spinal hyperesthesia as the predominant clinical sign than did those with IVDEs at other sites. Those with caudal lumbar IVDEs less commonly had neurologic deficits and had a higher median neurologic grade (indicating lesser severity), shorter mean postoperative hospitalization time, and faster mean time to ambulation after surgery than those with other sites affected. These variables did not differ between English Cocker Spaniels with thoracolumbar and midlumbar IVDEs. Caudal and midlumbar IVDEs were more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDE had clinical signs and posttreatment responses that differed from those in dogs with midlumbar or thoracolumbar IVDE.

  16. Posterior intervertebral space debridement, annular bone grafting and instrumentation for treatment of lumbosacral tuberculosis.

    PubMed

    Li, Weiwei; Liu, Jun; Gong, Liqun; Zhou, Yongchun; Duan, Dapeng

    2017-12-04

    The choice of surgical methods for lumbosacral tuberculosis is controversial due to the complex anterior anatomy and peculiar biomechanics of the lumbosacral junction. The objective of this study was to explore the clinical effect of posterior intervertebral space debridement with annular bone graft fusion and fixation for the treatment of lumbosacral tuberculosis. We retrospectively analysed data from 23 patients with lumbosacral tuberculosis who had undergone posterior intervertebral space debridement with annular bone fusion and fixation between January 2008 and September 2014. The mean age of the patients was 49.0 years (range, 27-71), and the mean duration of disease until treatment was 10.2 months (range, 6-20). The lumbosacral angle, visual analogue scale (VAS) score, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, American Spinal Injury Association (ASIA) grade and Social Functioning-36 (SF-36) score were determined to ascertain the clinical effects of the treatment. All patients underwent follow-up observation. The mean follow-up time was 34.2 months (range, 18-45), the mean operation time was 167.0 min (range, 130-210) and the mean blood loss was 767.4 ml (range, 500-1150). The lumbosacral angle was 21.0° ± 2.1° before operation, rising to 28.8° ± 1.7° after operation (p < 0.05) and being maintained thereafter. The mean VAS score before operation was 8.1 ± 0.6, decreasing to 1.2 ± 0.5 (p < 0.05) at the final follow-up. The mean ESR and CRP values were 49.1 ± 5.6 mm and 64.9 ± 11.9 mg/L, respectively, before operation, decreasing to normal at the final follow-up. The preoperative ASIA grade was C in 6 patients, D in 12 and E in 5. At the final follow-up, all patients had an ASIA grade of E except for one patient with a grade of D. For all patients, the SF-36 score at the final follow-up was higher than the preoperative and postoperative scores. Posterior intervertebral space debridement

  17. Cytotoxic Effects of the Radiocontrast Agent Iotrolan and Anesthetic Agents Bupivacaine and Lidocaine in Three-Dimensional Cultures of Human Intervertebral Disc Nucleus Pulposus Cells: Identification of the Apoptotic Pathways

    PubMed Central

    Iwasaki, Koji; Sudo, Hideki; Yamada, Katsuhisa; Ito, Manabu; Iwasaki, Norimasa

    2014-01-01

    Background Discography and discoblock are imaging procedures used to diagnose discogenic low back pain. Although needle puncture of the intervertebral disc (IVD) itself induces disc degeneration, the agents used in these procedures may also have harmful effects on IVD cells. The purpose of this study was to analyze whether radiocontrast agents and local anesthetic agents have detrimental effects on human nucleus pulposus (NP) cells. Methods Healthy human NP cells were cultured for 7 days in three-dimensional (3D) cell–alginate bead composites, and were then exposed to clinically relevant doses of a radiocontrast agent (iotrolan) or local anesthetic (lidocaine or bupivacaine). Cell viability and apoptosis were measured by confocal microscopy and flow cytometry. On the basis of caspase expression profiles, the apoptotic pathways activated by the agents were identified by Western blot analysis. Results The radiocontrast agent iotrolan did not affect NP cell viability or induce apoptosis. In contrast, both the anesthetic agents significantly decreased cell viability and increased the apoptotic cell number in a time- and dose-dependent manner. After 120 min, 2% lidocaine and 0.5% bupivacaine decreased percent live cells to 13% and 10%, respectively (p<0.05). The number of apoptotic cells was doubled by increasing lidocaine dosage from 1% to 2% (23% and 42%) and bupivacaine from 0.25% to 0.50% (25% and 48%) (p<0.05). Western blot analysis revealed that both anesthetic agents upregulated cleaved caspase-3 and caspase-8, whereas only bupivacaine upregulated cleaved caspase-9. Conclusions/Significance The present study demonstrates that iotrolan does not affect the viability of healthy human NP cells. In contrast, the two anesthetic agents commonly used in discography or discoblock may cause extensive damage to IVDs by inducing apoptotic cell death. PMID:24642945

  18. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints.

    PubMed

    Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan

    2009-03-01

    Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0

  19. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining.

    PubMed

    Sharp, Christopher A; Roberts, Sally; Evans, Helena; Brown, Sharon J

    2009-11-01

    Intervertebral disc (IVD) cells within the annulus fibrosus (AF) and nucleus pulposus (NP) maintain distinct functional extracellular matrices and operate within a potentially noxious and stressful environment. How disc cells respond to stress and whether stress is responsible for triggering degeneration is unknown. Disc cell proliferation and cluster formation are most marked in degenerate IVDs, possibly indicating attempts at matrix repair. In other tissues, stress proteins increase rapidly after stress protecting cell function and, although implicated in degeneration of articular cartilage, have received little attention in degenerative IVD pathologies. We have compared the distribution of stress protein immunolocalization in pathological and control IVDs. Disc tissues were obtained at surgery from 43 patients with degenerative disc disease (DDD) and herniation, and 12 controls at postmortem. Tissues were immunostained with a polyclonal antibody for heat shock factor 1 (HSF-1) and monoclonal antibodies for the heat shock proteins, Hsp27 and Hsp72, using an indirect immunoperoxidase method. Positively stained cells were expressed as a percentage of the total. Cell cluster formation was also assessed. The proportion of cells in clusters was similar in the AF (both 2%) and NP (8 and 9%) of control and DDD samples, whereas in herniated tissues this was increased (AF 12%, NP 14%). Stress antigen staining tended to be more frequent in clustered rather than in single/doublet cells, and this was significant (P < 0.005) in both the AF and NP of herniated discs. Clustered cells, which are most common in herniated discs, may be mounting a protective response to abnormal environmental factors associated with disc degeneration. A better understanding of the stress response in IVD cells may allow its utilization in disc cell therapies.

  20. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    PubMed

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti

  1. Modeling of the heat distribution in the intervertebral disk.

    PubMed

    Persson, Johan; Hansen, Eskil; Lidgren, Lars; McCarthy, Ian

    2005-05-01

    The heat transfer equation was used to model the heat distribution in an intervertebral disk during ultrasound (US) exposure. The influence of thermal and acoustic parameters was studied to get a quantitative understanding of the heat transfer in the system. Heating of collagen to 65 degrees C or above will lead to denaturation and is believed to stabilize and contract the outer part of the disk in a herniated disk. In our model, the US intensity was approximated by a Gaussian distribution and nonlinear propagation was excluded. The effect of self-heating and cooling of the transducer was also studied. The simulations were performed using the finite element method. From this model, it can be concluded that it is possible to heat parts of the disk to treatment temperature using a focused 5-mm diameter US probe. The physical constraints on the piezocrystal set the limit of the size of the treatment volume.

  2. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy.

    PubMed

    Capoor, Manu N; Ruzicka, Filip; Schmitz, Jonathan E; James, Garth A; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S; Alamin, Todd F; Anand, Neel; Baird, John C; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K; Fisher, Steve; Garfin, Steven R; Gogia, Jaspaul S; Gokaslan, Ziya L; Kuo, Calvin C; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A Nick; Stewart, Philip S; Stonemetz, Jerry L; Wang, Jeffrey C; Witham, Timothy F; Coscia, Michael F; Birkenmaier, Christof; Fischetti, Vincent A; Slaby, Ondrej

    2017-01-01

    In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it provides the first visual evidence of P

  3. Novel Human Intervertebral Disc Strain Template to Quantify Regional Three-Dimensional Strains in a Population and Compare to Internal Strains Predicted by a Finite Element Model

    PubMed Central

    Showalter, Brent L.; DeLucca, John F.; Peloquin, John M.; Cortes, Daniel H.; Yoder, Jonathon H.; Jacobs, Nathan T.; Wright, Alexander C.; Gee, James C.; Vresilovic, Edward J.; Elliott, Dawn M.

    2017-01-01

    Tissue strain is an important indicator of mechanical function, but is difficult to noninvasively measure in the intervertebral disc. The objective of this study was to generate a disc strain template, a 3D average of disc strain, of a group of human L4–L5 discs loaded in axial compression. To do so, magnetic resonance images of uncompressed discs were used to create an average disc shape. Next, the strain tensors were calculated pixel-wise by using a previously developed registration algorithm. Individual disc strain tensor components were then transformed to the template space and averaged to create the disc strain template. The strain template reduced individual variability while highlighting group trends. For example, higher axial and circumferential strains were present in the lateral and posterolateral regions of the disc, which may lead to annular tears. This quantification of group-level trends in local 3D strain is a significant step forward in the study of disc biomechanics. These trends were compared to a finite element model that had been previously validated against the disc-level mechanical response. Depending on the strain component, 81–99% of the regions within the finite element model had calculated strains within one standard deviation of the template strain results. The template creation technique provides a new measurement technique useful for a wide range of studies, including more complex loading conditions, the effect of disc pathologies and degeneration, damage mechanisms, and design and evaluation of treatments. PMID:26694516

  4. A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine L; Freemont, Anthony J; Hoyland, Judith A

    2006-01-01

    Conventional therapies for low back pain (LBP) are purely symptomatic and do not target the cause of LBP, which in approximately 40% of cases is caused by degeneration of the intervertebral disc (DIVD). Targeting therapies to inhibit the process of degeneration would be a potentially valuable treatment for LBP. There is increasing evidence for a role for IL-1 in DIVD. A natural inhibitor of IL-1 exists, IL-1Ra, which would be an ideal molecular target for inhibiting IL-1-mediated effects involved in DIVD and LBP. In this study, the feasibility of ex vivo gene transfer of IL-1Ra to the IVD was investigated. Monolayer and alginate cultures of normal and degenerate human intervertebral disc (IVD) cells were infected with an adenoviral vector carrying the IL-1Ra gene (Ad-IL-1Ra) and protein production measured using an enzyme-linked immunosorbent assay. The ability of these infected cells to inhibit the effects of IL-1 was also investigated. In addition, normal and degenerate IVD cells infected with Ad-IL-1Ra were injected into degenerate disc tissue explants and IL-1Ra production in these discs was assessed. This demonstrated that both nucleus pulposus and annulus fibrosus cells infected with Ad-IL-1Ra produced elevated levels of IL-1Ra for prolonged time periods, and these infected cells were resistant to IL-1. When the infected cells were injected into disc explants, IL-1Ra protein expression was increased which was maintained for 2 weeks of investigation. This in vitro study has shown that the use of ex vivo gene transfer to degenerate disc tissue is a feasible therapy for the inhibition of IL-1-mediated events during disc degeneration. PMID:16436110

  5. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and

  6. Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; An, Howard S; Yan, Dongyao; van Wijnen, Andre J; Murphy, Gillian; Hoskin, David W; Im, Hee-Jeong

    2012-04-01

    Lactoferricin (LfcinB) antagonizes biological effects mediated by angiogenic and catabolic growth factors, in addition to pro-inflammatory cytokines and chemokines in human endothelial cells and tumor cells. However, the effect of LfcinB on intervertebral disc (IVD) cell metabolism has not yet been investigated. Using bovine nucleus pulposus (NP) cells, we analyzed the effect of LfcinB on proteoglycan (PG) accumulation, PG synthesis, and anabolic gene expression. We assessed expression of genes for matrix-degrading enzymes such as matrix metalloproteases (MMPs) and a disintegrin-like and metalloprotease with thrombospondin motifs (ADAMTS family), as well as their endogenous inhibitors, tissue inhibitor of metalloproteases (TIMPs). In order to understand the specific molecular mechanisms by which LfcinB exerts its biological effects, we investigated intracellular signaling pathways in NP cells. LfcinB increased PG accumulation mainly via PG synthesis in a dose-dependent manner. Simultaneously, LfcinB dose-dependently downregulated catabolic enzymes. LfcinB's anti-catabolic effects were further demonstrated by a dose-dependent increase in multiple TIMP family members. Our results demonstrate that ERK and/or p38 mitogen-activated protein kinase pathways are the key signaling cascades that exert the biological effects of LfcinB in NP cells, regulating transcription of aggrecan, SOX-9, TIMP-1, TIMP-2, TIMP-3, and iNOS. Our results suggest that LfcinB has anabolic and potent anti-catabolic biological effects on bovine IVD cells that may have considerable promise in the treatment of disc degeneration in the future. Copyright © 2011 Wiley Periodicals, Inc.

  7. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  8. Localization of PPAR isotypes in the adult mouse and human brain.

    PubMed

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B; Mayfield, R Dayne; Harris, R Adron

    2016-06-10

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.

  9. Lactoferricin Enhances BMP7-Stimulated Anabolic Pathways in Intervertebral Disc Cells

    PubMed Central

    Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wijnen, Andre J.; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong

    2013-01-01

    Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral (IVD) matrix and cell homeostasis. Similarly, lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc (IVD) matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin (BMP receptor antagonist) and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. PMID:23644135

  10. Lactoferricin enhances BMP7-stimulated anabolic pathways in intervertebral disc cells.

    PubMed

    Ellman, Michael B; Kim, Jaesung; An, Howard S; Chen, Di; Kc, Ranjan; Li, Xin; Xiao, Guozhi; Yan, Dongyao; Suh, Joon; van Wjnen, Andre J; Wang, James H-C; Kim, Su-Gwan; Im, Hee-Jeong

    2013-07-25

    Bone-morphogenetic protein-7 (BMP7) is a well-known anabolic and anti-catabolic growth factor on intervertebral disc (IVD) matrix and cell homeostasis. Similarly, Lactoferricin B (LfcinB) has recently been shown to have pro-anabolic, anti-catabolic, anti-oxidative and/or anti-inflammatory effects in bovine disc cells in vitro. In this study, we investigated the potential benefits of using combined peptide therapy with LfcinB and BMP7 for intervertebral disc matrix repair and to understand cellular and signaling mechanisms controlled by these factors. We studied the effects of BMP7 and LfcinB as individual treatments and combined therapy on bovine nucleus pulposus (NP) cells by assessing proteoglycan (PG) accumulation and synthesis, and the gene expression of matrix protein aggrecan and transcription factor SOX-9. We also analyzed the role of Noggin, a BMP antagonist, in IVD tissue and examined its effect after stimulation with LfcinB. To understand the molecular mechanisms by which LfcinB synergizes with BMP7, we investigated the ERK-SP1 axis as a downstream intracellular signaling regulator involved in BMP7 and LfcinB-mediated activities. Treatment of bovine NP cells cultured in alginate with LfcinB plus BMP7 synergistically stimulates PG synthesis and accumulation in part by upregulation of aggrecan gene expression. The synergism results from LfcinB-mediated activation of Sp1 and SMAD signaling pathways by (i) phosphorylation of SMAD 1/5/8; (ii) downregulation of SMAD inhibitory factors [i.e., noggin and SMAD6 (inhibitory SMAD)]; and (iii) upregulation of SMAD4 (universal co-SMAD). These data indicate that LfcinB-suppression of Noggin may eliminate the negative feedback of BMP7, thereby maximizing biological activity of BMP7 and ultimately shifting homeostasis to a pro-anabolic state in disc cells. We propose that combination growth factor therapy using BMP7 and LfcinB may be beneficial for treatment of disc degeneration. Copyright © 2013 Elsevier B.V. All

  11. The potential pitfalls of studying adult sex ratios at aggregate levels in humans.

    PubMed

    Pollet, Thomas V; Stoevenbelt, Andrea H; Kuppens, Toon

    2017-09-19

    Human adult sex ratios have been studied extensively across the biological and social sciences. While several studies have examined adult sex ratio effects in a multilevel perspective, many studies have focused on effects at an aggregated level only. In this paper, we review some key issues relating to such analyses. We address not only nation-level analyses, but also aggregation at lower levels, to investigate whether these issues extend to lower levels of aggregation. We illustrate these issues with novel databases covering a broad range of variables. Specifically, we discuss distributional issues with aggregated measures of adult sex ratio, significance testing, and statistical non-independence when using aggregate data. Firstly, we show that there are severe distributional issues with national adult sex ratio, such as extreme cases. Secondly, we demonstrate that many 'meaningless' variables are significantly correlated with adult sex ratio (e.g. the max. elevation level correlates with sex ratio at US state level). Finally, we re-examine associations between adult sex ratios and teenage fertility and find no robust evidence for an association at the aggregate level. Our review highlights the potential issues of using aggregate data on adult sex ratios to test hypotheses from an evolutionary perspective in humans.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  12. Implant detectibility of intervertebral disc spacers in post fusion MRI: evaluation of the MRI scan quality by using a scoring system--an in vitro study.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert; Schultz, Wolfgang; Grabbe, Eckhardt

    2007-02-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and cobalt chromium alloys and carbon fiber-reinforced polymers. Implant-related susceptibility artifacts can decrease the quality of MRI scans. The aim of this cadaveric study was to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of determined regions of interest (ROIs). In six cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, cobalt-chromium and carbon spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into ROIs to characterize the spinal canal as well as the intervertebral disc space. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists the artifact-affected image quality of the median MRI slice was rated on a score of 0-3. A maximum score of 18 points (100%) for the determined ROIs was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. For the determined ROI maximum scores for the cobalt-chromium, titanium and carbon spacers were 24%, 32% and 84%, respectively. By using favored T1 TSE sequences the carbon spacer showed a clear advantage in postfusion spinal imaging. Independent of artifact dimensions, the scoring system used allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  13. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Liang; Hu, Jia; Weng, Yuxiong

    Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptionalmore » activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.« less

  14. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs.

    PubMed

    Taylor, Michael P

    2014-01-01

    Attempts to reconstruct the neutral neck posture of sauropod dinosaurs, or indeed any tetrapod, are doomed to failure when based only on the geometry of the bony cervical vertebrae. The thickness of the articular cartilage between the centra of adjacent vertebrae affects posture. It extends (raises) the neck by an amount roughly proportional to the thickness of the cartilage. It is possible to quantify the angle of extension at an intervertebral joint: it is roughly equal, in radians, to the cartilage thickness divided by the height of the zygapophyseal facets over the centre of rotation. Applying this formula to published measurements of well-known sauropod specimens suggests that if the thickness of cartilage were equal to 4.5%, 10% or 18% of centrum length, the neutral pose of the Apatosaurus louisae holotype CM 3018 would be extended by an average of 5.5, 11.8 or 21.2 degrees, respectively, at each intervertebral joint. For the Diplodocus carnegii holotype CM 84, the corresponding angles of additional extension are even greater: 8.4, 18.6 or 33.3 degrees. The cartilaginous neutral postures (CNPs) calculated for 10% cartilage-the most reasonable estimate-appear outlandish. But it must be remembered that these would not have been the habitual life postures, because tetrapods habitually extend the base of their neck and flex the anterior part, yielding the distinctive S-curve most easily seen in birds.

  15. S100β Levels in CSF of Nonambulatory Dogs with Intervertebral Disk Disease Treated with Electroacupuncture

    PubMed Central

    Fonseca Pinto, Ana Carolina Brandão Campos; Cortopassi, Silvia Renata Gaido; Marvulle, Valdecir; Ruivo Maximino, Jessica; Chadi, Gerson

    2013-01-01

    The aim of the study was to investigate S100β levels in the cerebrospinal fluid of nonambulatory dogs with intervertebral disk disease treated with electroacupuncture: 10 dogs with thoracolumbar disk extrusion graded 3 to 5 (EA group) and 7 dogs without neurologic dysfunction (control group). All dogs regained ambulation. S100β was detected by Western blot analysis where EA group dogs were evaluated at two time points (M1 = before EA and M2 = when the dogs return ambulation) and at one time point from control group. In EA group dogs M1-S100β levels were significantly higher than in control group. EA group dogs were divided into subgroups A (n = 7—early motor recovery; 6.7 ± 7.8 days) and B (n = 3—late motor recovery; 76 ± 17.0 days). M1-S100β levels were similar between subgroups A and B. However, M2-S100β levels were significantly higher in subgroup B than in subgroup A. An elevated S100β levels were observed in dogs with late motor recovery. S100β may be associated with neuroplasticity following spinal cord injuries with intervertebral disk extrusion. Further studies with larger numbers of subjects and control group with affected dogs are necessary to investigate the relationship between neurotrophic factors and electroacupuncture stimulation. PMID:26464906

  16. [Treatment of postoperative nonunion of fracture of lower limb with bone grafting by intervertebral disc endoscope].

    PubMed

    Zhang, Jianlin; Tan, Yu'e; Ye, Jun; Han, Fangmin

    2012-02-01

    To explore the effectiveness of bone grafting by intervertebral disc endoscope for postoperative nonunion of fracture of lower limb. Between August 2004 and August 2008, 40 patients (23 males and 17 females) with postoperative nonunion of femoral and tibial fracture, aged 20-63 years (mean, 41.5 years) were treated. Nonunion of fracture occurred at 10-16 months after internal fixation. During the first operation, the internal fixation included interlocking intramedullary nailing of femoral fracture in 12 cases and plate in 16 cases, and interlocking intramedullary nailing of tibial fractures in 9 cases and plate in 3 cases. The X-ray films showed hypertrophic nonunion in 24 cases, common nonunion in 3 cases, and atrophic nonunion in 13 cases. The average operation time was 61 minutes (range, 40-80 minutes), and the blood loss was 80-130 mL (mean, 100 mL). The hospitalization time were 6-11 days (mean, 8.1 days). Incisions healed by first intention in all patients with no complication of infection or neurovascular injury. Forty patients were followed up 10-16 months (mean, 12.3 months). The X-ray films showed that all patients achieved healing of fracture after 4-10 months (mean, 6.8 months). No pain, disfunction, or internal fixation failure occurred. Bone grafting by intervertebral disc endoscope is an effective method for treating postoperative nonunion of femoral and tibial fracture.

  17. Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans

    PubMed Central

    Gabay, Shai; Nestor, Adrian; Dundas, Eva; Behrmann, Marlene

    2014-01-01

    The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical structures, and recently, some investigations in adult humans indicate subcortical correlates of face perception as well. The questions addressed here are whether low-level subcortical mechanisms for face perception (in the absence of changes in expression) are conserved in human adults, and if so, what is the nature of these subcortical representations. In a series of four experiments, we presented pairs of images to the same or different eyes. Participants’ performance demonstrated that subcortical mechanisms, indexed by monocular portions of the visual system, play a functional role in face perception. These mechanisms are sensitive to face-like configurations and afford a coarse representation of a face, comprised of primarily low spatial frequency information, which suffices for matching faces but not for more complex aspects of face perception such as sex differentiation. Importantly, these subcortical mechanisms are not implicated in the perception of other visual stimuli, such as cars or letter strings. These findings suggest a conservation of phylogenetically and ontogenetically lower-order systems in adult human face perception. The involvement of subcortical structures in face recognition provokes a reconsideration of current theories of face perception, which are reliant on cortical level processing, inasmuch as it bolsters the cross-species continuity of the biological system for face recognition. PMID:24236767

  18. Human umbilical cord mesenchymal stromal cells in regenerative medicine.

    PubMed

    Detamore, Michael S

    2013-11-25

    Cells of the human umbilical cord offer tremendous potential for improving human health. Cells from the Wharton’s jelly (umbilical cord stroma) in particular, referred to as human umbilical cord mesenchymal stromal cells (HUCMSCs), hold several advantages that make them appealing for translational research. In the previous issue of Stem Cell Research & Therapy, Chon and colleagues made an important contribution to the HUCMSC literature not only by presenting HUCMSCs as an emerging cell source for intervertebral disc regeneration in general and the nucleus pulposus in particular, but also by demonstrating that an extracellular matrix-based strategy might be preferred over the use of growth factors. By culturing HUCMSCs under hypoxia in serum-free conditions in the presence of Matrigel with laminin-111, they were able to achieve intense collagen II staining by 21 days without the addition of exogenous growth factors. There is tremendous translational significance here in that such raw materials may alleviate the need for the use of growth factors in some instances, and this may have important ramifications in reducing product cost and streamlining regulatory approval. Chon and colleagues provide a promising example of the potential of HUCMSCs, demonstrating the ability to guide HUCMSC differentiation even in the absence of serum and growth factors and supporting the use of HUCMSCs as a viable alternative in intervertebral disc regeneration.

  19. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  20. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  1. Hemivertebra resection with posterior unilateral intervertebral fusion and transpedicular fixation for congenital scoliosis: results with at least 3 years of follow-up.

    PubMed

    Feng, Yi; Hai, Yong; Zhao, Sheng; Zang, Lei

    2016-10-01

    The main treatment for congenital scoliosis is posterior hemivertebra resection with bilateral transpedicular fixation. Reports describing posterior unilateral intervertebral fusion and transpedicular screw fixation are rare, with no long-term follow-up results, especially in older children. Retrospective analysis of the long-term outcomes of unilateral fusion and fixation after hemivertebra resection for congenital scoliosis. From April 2004 to May 2012, 19 consecutive cases (12 males; age range 2.3-13.4 years) of congenital scoliosis treated by hemivertebra resection with posterior unilateral or bilateral exposure and unilateral intervertebral fusion with transpedicular screw instrumentation alone were investigated retrospectively. All cases were followed-up for at least 3 years. The mean Cobb angle of the segmental scoliosis was improved from 34.8 to 13.4° (correction rate 61.5 %). The mean Cobb angle of the segmental kyphosis was improved from 23.5 to 5.8° (correction rate 75.3 %). The mean correction rates of compensatory cranial and caudal curves were 46.1 and 54.5 %, respectively. 11 patients (57.8 %) exhibited continuous segmental curve improvement during the follow-up. One pedicle fracture and one instrumentation failure were recorded. Unilateral transpedicular screw fixation provides satisfactory correction of the spinal deformity in both very young and older children. Unilateral intervertebral fusion and transpedicular fixation represents an advisable alternative method for the correction of congenital scoliosis and has advantages of reduced trauma, less surgery time and lower expense. Furthermore, the non-fused concave side offers the opportunity for correction of subsequent spine deformity.

  2. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse.

    PubMed

    Winkler, Tamara; Mahoney, Eric J; Sinner, Debora; Wylie, Christopher C; Dahia, Chitra Lekha

    2014-01-01

    Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.

  3. Optimal Parameters for Intervertebral Disk Resection Using Aqua-Plasma Beams.

    PubMed

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Yushin; Kim, Nack Hwan; Lee, Sangheon; Kawai, Christina; Hong, Youngki

    2018-06-14

     A minimally invasive procedure for intervertebral disk resection using plasma beams has been developed. Conventional parameters for the plasma procedure such as voltage and tip speed mainly rely on the surgeon's personal experience, without adequate evidence from experiments. Our objective was to determine the optimal parameters for plasma disk resection.  Rate of ablation was measured at different procedural tip speeds and voltages using porcine nucleus pulposi. The amount of heat formation during experimental conditions was also measured to evaluate the thermal safety of the plasma procedure.  The ablation rate increased at slower procedural speeds and higher voltages. However, for thermal safety, the optimal parameters for plasma procedures with minimal tissue damage were an electrical output of 280 volts root-mean-square (V rms ) and a procedural tip speed of 2.5 mm/s.  Our findings provide useful information for an effective and safe plasma procedure for disk resection in a clinical setting. Georg Thieme Verlag KG Stuttgart · New York.

  4. The impact of office chair features on lumbar lordosis, intervertebral joint and sacral tilt angles: a radiographic assessment.

    PubMed

    De Carvalho, Diana; Grondin, Diane; Callaghan, Jack

    2017-10-01

    The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1-L3 in all conditions (p < 0.0001). No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture. Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.

  5. Ligament, nerve, and blood vessel anatomy of the lateral zone of the lumbar intervertebral foramina.

    PubMed

    Yuan, Shi-Guo; Wen, You-Liang; Zhang, Pei; Li, Yi-Kai

    2015-11-01

    To provide an anatomical basis for intrusive treatment using an approach through the lateral zones of the lumbar intervertebral foramina (LIF), especially for acupotomology lysis, percutaneous transforaminal endoscopy, and lumbar nerve root block. Blood vessels, ligaments, nerves, and adjacent structures of ten cadavers were exposed through the L1-2 to L5-S1 intervertebral foramina and examined. The lateral zones of the LIF were almost filled by ligaments, nerves, and blood vessels, which were separated into compartments by superior/inferior transforaminal ligaments and corporotransverse superior/inferior ligaments. Two zones relatively lacking in blood vessels and nerves (triangular working zones) were found beside the lamina of the vertebral arch and on the root of the transverse processus. Both the ascending lumbar vein and branches of the intervetebral vein were observed in 12 Kambin's triangles, and in only seven Kambin's triangles were without any veins. Nerves and blood vessels are fixed and protected by transforaminal ligaments and/or corporotransverse ligaments. It is necessary to distinguish the ligaments from nerves using transforaminal endoscopy so that the ligaments can be cut without damaging nerves. Care needs to be taken in intrusive operations because of the veins running through Kambin's triangle. We recommend injecting into the lamina of the vertebral arch and the midpoint between the adjacent roots of the transverse processus when administering nerve root block. Blind percutaneous incision and acupotomology lysis is dangerous in the lateral zones of the LIF, as they are filled with nerves and blood vessels.

  6. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy

    PubMed Central

    Ruzicka, Filip; Schmitz, Jonathan E.; James, Garth A.; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S.; Alamin, Todd F.; Anand, Neel; Baird, John C.; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K.; Fisher, Steve; Garfin, Steven R.; Gogia, Jaspaul S.; Gokaslan, Ziya L.; Kuo, Calvin C.; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A. Nick; Stewart, Philip S.; Stonemetz, Jerry L.; Wang, Jeffrey C.; Witham, Timothy F.; Coscia, Michael F.; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2017-01-01

    Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it

  7. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.

    PubMed

    Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2013-06-01

    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.

  8. Changes in intervertebral disk dimensions after a loading task and the relationship with stature change measurements.

    PubMed

    Lewis, Sandra E; Fowler, Neil E

    2009-10-01

    Lewis SE, Fowler NE. Changes in intervertebral disk dimensions after a loading task and the relationship with stature change measurements. To test the hypothesis that there would be a linear relationship between overall stature change determined by stadiometry and markers of lumbar disk height loss determined from magnetic resonance imaging (MRI). The short-term loading response of the lumbar spine was evaluated with both stadiometry and MRI, using a within-subject repeated-measures design. Measures were obtained both before and after 15 minutes of walking wearing a weighted vest (20% of body mass). Stature loss measured on the stadiometer was compared with change in lumbar spine length assessed from the MRI images. A university laboratory. Participants (N=13; mean age +/- SD, 28.5+/-5.2y; mean height +/- SD, 1.76+/-0.10m; mean body mass +/- SD, 76.6+/-14.9kg) were invited to take part in the investigation. The group was mixed (9 men, 4 women) and comprised people with no history of low back pain. Not applicable. Lumbar spine length assessed via MRI and stature change measured via stadiometry. A significant height loss was observed over the complete lumbar spine (P<.05), and a significant correlation was found between the decrease in posterior spine length and stature loss (r=.61). The results were supportive of the use of stadiometry as an indirect measure of changes in intervertebral disk height.

  9. Reliability of macroscopic grading of intervertebral disk degeneration in dogs by use of the Thompson system and comparison with low-field magnetic resonance imaging findings.

    PubMed

    Bergknut, Niklas; Grinwis, Guy; Pickee, Emile; Auriemma, Edoardo; Lagerstedt, Anne-Sofie; Hagman, Ragnvi; Hazewinkel, Herman A W; Meij, Björn P

    2011-07-01

    To evaluate the reliability of the Thompson system for use in grading the gross pathological changes of intervertebral disk (IVD) degeneration in dogs and to investigate the agreement between gross pathological findings and low-field (0.2-T) magnetic resonance imaging (MRI) findings. Vertebral columns from cadavers of 19 dogs of various ages, breeds, and origins. 182 intervertebral segments were collected from 19 canine cadavers. Sagittal T2-weighted MRI of the T11 through S1 portion of the vertebral column was performed within 24 hours after the dogs were euthanized. The vertebral columns were subsequently divided in the midsagittal plane, and high-resolution photographs were obtained of each intervertebral segment (end plate-disk-end plate). The MRI images and photographs were graded separately in a blinded manner by 4 observers who used both Pfirrmann and Thompson grading criteria. The interobserver agreement for Thompson scores ranged from 0.76 to 0.88, and the intraobserver agreement ranged from 0.88 to 0.94 (Cohen weighted κ analysis). Agreement between scores for the Pfirrmann and Thompson grading criteria was κ = 0.70. Grading of IVD degeneration in dogs by use of the Thompson system resulted in high interobserver and intraobserver agreement, and scores for the Thompson system had substantial agreement with low-field MRI findings graded by use of the Pfirrmann system. This suggested that low-field MRI can be used to diagnose IVD degeneration in dogs.

  10. [Effectiveness of Sacral Intervertebral Epidural Block for Umbilical Hernia Repair in Children].

    PubMed

    Nagamine, Norimitsu; Furuya, Atsushi; Suzuki, Sho; Kondo, Satoko; Kiuchi, Riko; Suzuki, Satomi; Nonaka, Akihiko

    2015-02-01

    Effectiveness of sacral intervertebral epidural block (S 2-3 block) for umbilical hernia repair has not been clarified. We investigate 24 children, undergoing umbilical hernia repair; mean age of 3 years (age range: 20-65 months). Under general anesthesia, epidural block was performed at S 2-3 interspace with 1 ml x kg(-1) ropivacaine (0.2%) at injecting rate of 1 ml x sec(-1) followed by 0.25 ml x kg(-1) normal saline. In all cases, neither systolic blood pressure nor heart rate increased > 15% from those just before the block. Postoperative analgesics were given in 6 patients (25%) rectally. Mean time between the block and the administration of analgesic was 10.5 hours. S 2-3 block can be effective for postoperative pain in umbilical hernia repair.

  11. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  12. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  13. Energy metabolism of intervertebral disc under mechanical loading.

    PubMed

    Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles

    2013-11-01

    Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.

  14. The nutrition intervention improved adult human capital and economic productivity.

    PubMed

    Martorell, Reynaldo; Melgar, Paul; Maluccio, John A; Stein, Aryeh D; Rivera, Juan A

    2010-02-01

    This article reviews key findings about the long-term impact of a nutrition intervention carried out by the Institute of Nutrition of Central America and Panama from 1969 to 1977. Results from follow-up studies in 1988-89 and 2002-04 show substantial impact on adult human capital and economic productivity. The 1988-89 study showed that adult body size and work capacity increased for those provided improved nutrition through age 3 y, whereas the 2002-04 follow-up showed that schooling was increased for women and reading comprehension and intelligence increased in both men and women. Participants were 26-42 y of age at the time of the 2002-04 follow-up, facilitating the assessment of economic productivity. Wages of men increased by 46% in those provided with improved nutrition through age 2 y. Findings for cardiovascular disease risk factors were heterogeneous; however, they suggest that improved nutrition in early life is unlikely to increase cardiovascular disease risk later in life and may indeed lower risk. In conclusion, the substantial improvement in adult human capital and economic productivity resulting from the nutrition intervention provides a powerful argument for promoting improvements in nutrition in pregnant women and young children.

  15. Case report: the first case of human infection by adult of SPIROMETRA ERINACEIEUROPAEI in VIETNAM.

    PubMed

    Le, Anh Tran; Do, Le-Quyen Thi; Nguyen, Huong-Binh Thi; Nguyen, Hong-Ngoc Thi; Do, Anh Ngoc

    2017-10-10

    Tapeworms of the genus Spirometra include species whose larval stages can infect humans, causing a disease called sparganosis. Cases of human infection with adult worms are very rare and have been reported in Korea and China. Here we report the first case of human infection with an adult of Spirometra erinaceieuropaei in Vietnam. A 23-year-old male was admitted to 103 Military Hospital, Hanoi, Vietnam with fever, weight loss and epigastric discomfort. Preliminary diagnosis based on discovery of parasite eggs in his faeces incorrectly determined a fluke as the agent of the infection and praziquantel was prescribed. Two days later he passed out proglottids in his stool. The tapeworm was identified as Spirometra erinaceieuropaei using morphological and molecular tools. This is the first case of human infection with adult worm of Spirometra erinaceieuropaei in Vietnam.

  16. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  17. [The assessment of the impact of rehabilitation on the pain intensity level in patients with herniated nucleus pulposus of the intervertebral disc].

    PubMed

    Koszela, Kamil; Krukowska, Sylwia; Woldańska-Okońska, Marta

    2017-05-23

    Back pain may be caused by many factors. In many cases it is difficult to unambiguously determine a cause of the pathology, which can involve various structures in the spine. In this paper we will discuss the symptoms associated with the degenerative changes of the intervertebral disc, which involve, among others, its bulging, dislocation and pressure on the surrounding structures. These problems require an adequate clinical and imaging diagnostics in order to implement an appropriate treatment. In the first place, it should be based on the conservative methods (such as: pharmacotherapy, rehabilitation and lifestyle changes). Only in the absence of improvement it is recommended to consider a surgical treatment. The aim of the study is to assess the impact of rehabilitation on the pain intensity level in patients with herniated nucleus pulposus of the intervertebral disc. The study was performed in 46 patients (age range: 19-85), including 26 women and 20 men. On the basis of imaging, all patients showed the presence of a slipped disc with disc herniation. The patients were treated conservatively. For pain assessment was used the The Laitinen Modified Questionnaire Indicators of Pain and The Visual- Analogue Scale. The results were statistically analyzed. The results clearly demonstrate the analgesic efficacy of specialized rehabilitation in the spinal pain syndrome in a discopathy with a spinal disc herniation of an intervertebral disc. The rehabilitation of patients with a back pain due to the presence of herniated nucleus pulposus has a significant analgesic effect. In the case of a presence of the herniated nucleus pulposus, the rehabilitation should be considered in a first place. If no improvement, a possible surgery should be considered. An important element of a conservative treatment is an effective rehabilitation, which is of vital economic importance, because a therapy including surgery usually requires subsequent rehabilitation and is much more expensive.

  18. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    PubMed

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation

  19. Facet joint geometry and intervertebral disk degeneration in the L5-S1 region of the vertebral column in German Shepherd dogs.

    PubMed

    Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann

    2002-01-01

    To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.

  20. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  1. Stress in Lumbar Intervertebral Discs during Distraction

    PubMed Central

    Gay, Ralph E.; Ilharreborde, Brice; Zhao, Kristin D.; Berglund, Lawrence J.; Bronfort, Gert; An, Kai-Nan

    2008-01-01

    BACKGROUND CONTEXT The intervertebral disc is a common source of low back pain. Prospective studies suggest that treatments that intermittently distract the disc might be beneficial for chronic low back pain. Although the potential exists for distraction therapies to affect the disc biomechanically their effect on intradiscal stress is debated. PURPOSE To determine if distraction alone, distraction combined with flexion or distraction combined with extension can reduce nucleus pulposus pressure and posterior anulus compressive stress in cadaveric lumbar discs compared to simulated standing or lying. STUDY DESIGN Laboratory study using single cadaveric motion segments. OUTCOME MEASURES Strain gauge measures of nucleus pulposus pressure and compressive stress in the anterior and posterior annulus fibrosus METHODS Intradiscal stress profilometry was performed on 15 motion segments during 5 simulated conditions: standing, lying, and 3 distracted conditions. Disc degeneration was graded by inspection from 1 (normal) to 4 (severe degeneration). RESULTS All distraction conditions markedly reduced nucleus pressure compared to either simulated standing or lying. There was no difference between distraction with flexion and distraction with extension in regard to posterior annulus compressive stress. Discs with little or no degeneration appeared to distributed compressive stress differently than those with moderate or severe degeneration. CONCLUSIONS Distraction appears to predictably reduce nucleus pulposus pressure. The effect of distraction therapy on the distribution of compressive stress may be dependent in part on the health of the disc. PMID:17981092

  2. Human Amniotic Tissue-derived Allograft, NuCel, in Posteriolateral Lumbar Fusions for Degenerative Disc Disease

    ClinicalTrials.gov

    2017-09-14

    Lumbar Degenerative Disc Disease; Spinal Stenosis; Spondylolisthesis; Spondylosis; Intervertebral Disk Displacement; Intervertebral Disk Degeneration; Spinal Diseases; Bone Diseases; Musculoskeletal Diseases; Spondylolysis

  3. Paracetamol, aspirin and indomethacin display endocrine disrupting properties in the adult human testis in vitro.

    PubMed

    Albert, O; Desdoits-Lethimonier, C; Lesné, L; Legrand, A; Guillé, F; Bensalah, K; Dejucq-Rainsford, N; Jégou, B

    2013-07-01

    Do mild analgesics affect the endocrine system of the human adult testis? Mild analgesics induce multiple endocrine disturbances in the human adult testis in vitro. Mild analgesics have recently been incriminated as potential endocrine disruptors. Studies of the effects of these widely used molecules on the androgenic status of men are limited and somewhat contradictory. This prompted us to investigate whether these compounds could alter the adult human testicular function. We therefore assessed in parallel the effects of paracetamol, aspirin and indomethacin on organo-cultured adult human testis and on the NCI-H295R steroid-producing human cell line. Adult human testis explants or NCI-H295R adrenocortical human cells were cultured with 10(-4) or 10(-5) M paracetamol, aspirin or indomethacin for 24-48 h. The effect of 10(-5) M ketoconazole, used as an anti-androgenic reference molecule, was also assessed. Testes were obtained from prostate cancer patients, who had not received any hormone therapy. The protocol was approved by the local ethics committee of Rennes, France and informed consent was given by the donors. Only testes displaying spermatogenesis, as assessed by transillumination, were used in this study. Hormone levels in the culture media were determined by radioimmunoassay (testosterone, insulin-like factor 3), Enzyme-Linked Immunosorbent Assay (inhibin B) or Enzyme Immunosorbent Assay [prostaglandin (PG) D2, and PGE2]. Tissues were observed and cells counted using classical immunohistochemical methods. The three mild analgesics caused multiple endocrine disturbances in the adult human testis. This was particularly apparent in the interstitial compartment. Effective doses were in the same range as those measured in blood plasma following standard analgesic treatment. The production of testosterone and insulin-like factor 3 by Leydig cells was altered by exposure to all these drugs. Inhibin B production by Sertoli cells was marginally affected by aspirin

  4. Creativity, Social Justice and Human Rights within Adult Education

    ERIC Educational Resources Information Center

    Brown, Susannah

    2015-01-01

    In this paper, the author describes philosophical concepts of adult learning and their application as integrated with creative problem solving within the context of social justice and human rights. The context is framed by the work of the United Nations (1992) which emphasizes importance of women's roles and creativity in the process of forming a…

  5. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    PubMed

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

  6. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    NASA Astrophysics Data System (ADS)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  7. Maternal and child undernutrition: consequences for adult health and human capital.

    PubMed

    Victora, Cesar G; Adair, Linda; Fall, Caroline; Hallal, Pedro C; Martorell, Reynaldo; Richter, Linda; Sachdev, Harshpal Singh

    2008-01-26

    In this paper we review the associations between maternal and child undernutrition with human capital and risk of adult diseases in low-income and middle-income countries. We analysed data from five long-standing prospective cohort studies from Brazil, Guatemala, India, the Philippines, and South Africa and noted that indices of maternal and child undernutrition (maternal height, birthweight, intrauterine growth restriction, and weight, height, and body-mass index at 2 years according to the new WHO growth standards) were related to adult outcomes (height, schooling, income or assets, offspring birthweight, body-mass index, glucose concentrations, blood pressure). We undertook systematic reviews of studies from low-income and middle-income countries for these outcomes and for indicators related to blood lipids, cardiovascular disease, lung and immune function, cancers, osteoporosis, and mental illness. Undernutrition was strongly associated, both in the review of published work and in new analyses, with shorter adult height, less schooling, reduced economic productivity, and--for women--lower offspring birthweight. Associations with adult disease indicators were not so clear-cut. Increased size at birth and in childhood were positively associated with adult body-mass index and to a lesser extent with blood pressure values, but not with blood glucose concentrations. In our new analyses and in published work, lower birthweight and undernutrition in childhood were risk factors for high glucose concentrations, blood pressure, and harmful lipid profiles once adult body-mass index and height were adjusted for, suggesting that rapid postnatal weight gain--especially after infancy--is linked to these conditions. The review of published works indicates that there is insufficient information about long-term changes in immune function, blood lipids, or osteoporosis indicators. Birthweight is positively associated with lung function and with the incidence of some cancers, and

  8. A Systematic Review of Mesenchymal Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal Fusion.

    PubMed

    Khan, Shujhat; Mafi, Pouya; Mafi, Reza; Khan, Wasim

    2018-01-01

    Spinal surgery presents a challenge for both neurosurgery and orthopaedic surgery. Due to the heterogeneous differentiation potential of mesenchymal stem cells, there is much interest in the treatment of spine surgery. Animal and human trials focussing on the efficacy of mesenchymal stem cells in spinal cord injury, spine fusion and disc degeneration were included in this systematic review. Published articles up to January 2016 from MEDLINE, PubMed and Ovid were used by searching for specific terms. Of the 2595 articles found, 53 met the selection criteria and were included for analysis (16 on spinal cord injury, 28 on intervertebral disc repair and 9 on spinal fusion). Numerous studies reported better results when the mesenchymal stem cells were used in co-culture with other cells or used in scaffolds. Mesenchymal stem cells were also found to have an immune-modulatory role, which can improve surgical outcome. This systematic review suggests that mesenchymal stem cells can be used safely and effectively for these spinal surgery treatments. Whilst, in certain studies, mesenchymal stem cells did not necessarily show improved results from existing treatments, they provide an alternative option. This can reduce morbidity that arises from current surgical treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  10. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.

    PubMed

    Dong, Rui-Chun; Guo, Li-Xin

    2017-11-01

    The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Attitudes of Korean adults towards human dignity: A Q methodology approach

    PubMed Central

    Kae Hwa, JO; Gyeong-Ju, AN; DOORENBOS, Ardith Z.

    2013-01-01

    Aim The aim of this study was to identify the perceived attitudes of Korean adults towards human dignity in order to determine the relationship of human dignity to its social and cultural background. Methods The Q methodology research technique was used to explore perceived attitude typology on the basis of the respondents’ ranking order for different statements. A convenience sampling method was used to select 40 Korean adults who were interested in human dignity to create statements. From the questionnaires, in-depth interviews, and a literature review, a total of 158 statements was obtained. The final 34 Q samples were selected from a review by two nursing professors and a Q methodology expert. Moreover, 38 respondents participated as P samples by sorting 34 Q statements on a nine-point normal distribution scale. The data were analyzed by using the QUANL software package. Results The following four types of attitudes about human dignity were identified in Korea: a happiness-oriented–self-pursuit type, relationship-oriented–self-recognition type, reflection-oriented–self-unification type, and discrimination-oriented–self-maintenance type. Conclusions The results indicate that approaches to developing human dignity education need to take this typology into account and the characteristics of the participants who fall into each category. These results provide general guidelines to understand Korean values for professional practice in various healthcare settings. PMID:22583944

  12. Dysregulation of YAP by the Hippo pathway is involved in intervertebral disc degeneration, cell contact inhibition, and cell senescence.

    PubMed

    Zhang, Cong; Wang, Feng; Xie, Zhiyang; Chen, Lu; Sinkemani, Arjun; Yu, Haomin; Wang, Kun; Mao, Lu; Wu, Xiaotao

    2018-01-05

    The Hippo pathway plays important roles in wound healing, tissue repair and regeneration, and in the treatment of degenerative diseases, by regulating cell proliferation and apoptosis in mammals. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain, a widespread issue associated with a heavy economic burden. However, the mechanism underlying how the Hippo pathway regulates IDD is not well understood. Here, we demonstrate that the Hippo pathway is involved in natural IDD. Activation and dephosphorylation of yes-associated protein (YAP) were observed in younger rat discs, and decreased gradually with age. Surprisingly, Hippo pathway suppression was accompanied by overexpression of YAP, caused by acute disc injury, suggesting a limited ability for self-repair in IDD. We also demonstrated that YAP is inhibited by cell-to-cell contact via the Hippo pathway in vitro . Phosphorylation by large tumor suppressor kinases 1/2 (LATS1/2) led to cytoplasmic translocation and inactivation of YAP. YAP dephosphorylation was mainly localized in the nucleus and regulated by the Hippo pathway, whereas YAP dephosphorylation occurred in the cytoplasm and was associated with nucleus pulposus cell (NPC) senescence. Moreover, NPCs were transfected with shYAP and it accelerates the premature senescence of cells by interfered Hippo pathway through YAP. Therefore, our results indicate that the Hippo pathway plays an important role in maintaining the homeostasis of intervertebral discs and controlling NPC proliferation.

  13. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  14. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after...

  15. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  16. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after...

  17. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  18. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  19. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after...

  20. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before...

  1. Asymmetrical and smaller size of trunk muscles in combat sports athletes with lumbar intervertebral disc degeneration.

    PubMed

    Iwai, Kazunori; Koyama, Koji; Okada, Takashi; Nakazato, Koichi; Takahashi, Ray; Matsumoto, Shingo; Yamamoto, Yosuke; Hiranuma, Kenji

    2016-01-01

    Lumbar intervertebral disc degeneration (LDD) frequently occurs in athletes. Associations between LDD and trunk muscles still remain unclear. This study examined whether there is an association between the prevalence of LDD and the symmetry and size of the cross-sectional areas (CSAs) of the trunk muscles in combat sports athletes. Participants in this study were 151 collegiate male combat sports athletes. A total of 755 lumbar intervertebral discs from L1-2 to L5-S1 in 151 athletes were assessed using magnetic resonance imaging (MRI) and a comprehensive grading system of LDD (grades I-V). All 151 athletes were divided into 2 groups: LDD and non-LDD. CSAs of trunk muscles at the L3-4 disc level were measured using MRI. Sixty-nine athletes had LDD at 1 or more disc levels (45.7 %). The LDD grade for the lower 2 disc levels was significantly higher than that for the other disc levels (p < 0.001). The CSAs of the left and right sides in trunk muscles were significantly asymmetrical, independent of the LDD which was prevalent in the disc levels (obliques: p = 0.040; quadratus lumborum: p < 0.001). The relative CSAs of trunk muscles to their body weight in the LDD group were significantly smaller than those in the non-LDD group (rectus abdominis: p = 0.011; obliques: p = 0.024; quadratus lumborum: p = 0.006; lumbar erector spinae plus multifidus: p = 0.001). This study suggests that the prevalence of LDD is associated with asymmetrical and relatively smaller CSAs of trunk muscles in combat sports athletes.

  2. Electro-acupuncture and Chinese herbs for treatment of cervical intervertebral disk disease in a dog

    PubMed Central

    Matera, Júlia Maria; da Silva, Tatiana Soares; de Campos Fonseca Pinto, Ana Carolina Brandão; Cortopassi, Sílvia Renata Gaido

    2007-01-01

    A non-ambulatory dog with tetraparesis following a pain episode that had evolved over 2 months was submitted for medical treatment and diagnosed with intervertebral disk disease at C3-C4 and dorsal extradural compression at C1-C2 and C3-C4 using myelography and computed tomography. The dog experienced ambulation recovery after 15 days of treatment with only electroacupuncture and Chinese herbal medicine, with marked improvement occurring after only 10 treatments. Six months of follow-up demonstrated that the dog was stable and had no recurrence of symptoms. Therefore, it was concluded that the combination of electroacupuncture and Chinese herbal medicine was responsible for motor rehabilitation. PMID:17322780

  3. Human Handling Promotes Compliant Behavior in Adult Laboratory Rabbits

    PubMed Central

    Swennes, Alton G; Alworth, Leanne C; Harvey, Stephen B; Jones, Carolyn A; King, Christopher S; Crowell-Davis, Sharon L

    2011-01-01

    Routine laboratory procedures can be stressful for laboratory animals. We wanted to determine whether human handling of adult rabbits could induce a degree of habituation, reducing stress and facilitating research-related manipulation. To this end, adult New Zealand white rabbits were handled either frequently or minimally. After being handled over 3 wk, these rabbits were evaluated by novel personnel and compared with minimally handled controls. Evaluators subjectively scored the rabbits for their relative compliance or resistance to being scruffed and removed from their cages, being transported to a treatment room, and their behavior at all stages of the exercise. Upon evaluation, handled rabbits scored significantly more compliant than nontreated controls. During evaluation, behaviors that the rabbits displayed when they were approached in their cages and while being handled outside their cages were recorded and compared between study groups. Handled rabbits displayed behavior consistent with a reduction in human-directed fear. This study illustrates the potential for handling to improve compliance in laboratory procedures and reduce fear-related behavior in laboratory rabbits. Such handling could be used to improve rabbit welfare through the reduction of stress and exposure to novel stimuli. PMID:21333162

  4. The effects of dynamic loading on the intervertebral disc.

    PubMed

    Chan, Samantha C W; Ferguson, Stephen J; Gantenbein-Ritter, Benjamin

    2011-11-01

    Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

  5. Characterization of primary cultures of adult human epididymis epithelial cells.

    PubMed

    Leir, Shih-Hsing; Browne, James A; Eggener, Scott E; Harris, Ann

    2015-03-01

    To establish cultures of epithelial cells from all regions of the human epididymis to provide reagents for molecular approaches to functional studies of this epithelium. Experimental laboratory study. University research institute. Epididymis from seven patients undergoing orchiectomy for suspected testicular cancer without epididymal involvement. Human epididymis epithelial cells harvested from adult epididymis tissue. Establishment of a robust culture protocol for adult human epididymal epithelial cells. Cultures of caput, corpus, and cauda epithelial cells were established from epididymis tissue of seven donors. Cells were passaged up to eight times and maintained differentiation markers. They were also cryopreserved and recovered successfully. Androgen receptor, clusterin, and cysteine-rich secretory protein 1 were expressed in cultured cells, as shown by means of immunofluorescence, Western blot, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The distribution of other epididymis markers was also shown by means of qRT-PCR. Cultures developed transepithelial resistance (TER), which was androgen responsive in the caput but androgen insensitive in the corpus and cauda, where unstimulated TER values were much higher. The results demonstrate a robust in vitro culture system for differentiated epithelial cell types in the caput, corpus, and cauda of the human epididymis. These cells will be a valuable resource for molecular analysis of epididymis epithelial function, which has a pivotal role in male fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Synergistic use of adult and embryonic stem cells to study human hematopoiesis.

    PubMed

    Martin, Colin H; Kaufman, Dan S

    2005-10-01

    Embryonic stem cells (ESCs) and adult stem cells both provide important resources to define the mechanisms of hematopoietic cell development. To date, studies that utilize hematopoietic stem cells (HSCs) isolated from sites such as bone marrow or umbilical cord blood have been the primary means to identify molecular and phenotypic characteristics of blood cell populations able to mediate long-term hematopoietic engraftment. Although these HSCs are very useful clinically, they are difficult to expand in culture. Now, basic research on human ESCs provides opportunities for novel investigations into the mechanisms of HSC self-renewal. Eventually, the long history of basic and clinical research with adult hematopoietic cell transplantation could translate to establish human ESCs as a suitable alternative starting cell source for clinical hematopoietic reconstitution.

  7. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    PubMed

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  8. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    ERIC Educational Resources Information Center

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  9. Safety of dietary supplementation with arginine in adult humans.

    PubMed

    McNeal, Catherine J; Meininger, Cynthia J; Wilborn, Colin D; Tekwe, Carmen D; Wu, Guoyao

    2018-06-01

    Previous studies with animals and humans have shown beneficial effects of dietary supplementation with L-arginine (Arg) on reducing white fat and improving health. At present, a long-term safe level of Arg administration to adult humans is unknown. The objective of this study was to conduct a randomized, placebo-controlled, clinical trial to evaluate the safety and tolerability of oral Arg in overweight or obese but otherwise healthy adults with a body mass index of ≥ 25 kg/m 2 . A total of 142 subjects completed a 7-day wash-in period using a 12 g Arg/day dose. All the remaining eligible 101 subjects who tolerated the wash-in dose (45 men and 56 women) were assigned randomly to ingest 0, 15 or 30 g Arg (as pharmaceutical-grade Arg-HCl) per day for 90 days. Arg was taken daily in at least two divided doses by mixing with a flavored beverage. At Days 0 and 90, blood pressures of study subjects were recorded, their physical examinations were performed, and their blood and 24-h urine samples were obtained to measure: (1) serum concentrations of amino acids, glucose, fatty acids, and related metabolites; and (2) renal, hepatic, endocrine and metabolic parameters. Our results indicate that the serum concentration of Arg in men or women increased (P < 0.05) progressively with increasing oral Arg doses from 0 to 30 g/day. Dietary supplementation with 30 g Arg/day reduced (P < 0.05) systolic blood pressure and serum glucose concentration in females, as well as serum concentrations of free fatty acids in both males and females. Based on physiological and biochemical variables, study subjects tolerated oral administration of 15 and 30 g Arg/day without adverse events. We conclude that a long-term safe level of dietary Arg supplementation is at least 30 g/day in adult humans.

  10. Why do some intervertebral discs degenerate, when others (in the same spine) do not?

    PubMed

    Adams, Michael A; Lama, Polly; Zehra, Uruj; Dolan, Patricia

    2015-03-01

    This review suggests why some discs degenerate rather than age normally. Intervertebral discs are avascular pads of fibrocartilage that allow movement between vertebral bodies. Human discs have a low cell density and a limited ability to adapt to mechanical demands. With increasing age, the matrix becomes yellowed, fibrous, and brittle, but if disc structure remains intact, there is little impairment in function, and minimal ingrowth of blood vessels or nerves. Approximately half of old lumbar discs degenerate in the sense of becoming physically disrupted. The posterior annulus and lower lumbar discs are most affected, presumably because they are most heavily loaded. Age and genetic inheritance can weaken discs to such an extent that they are physically disrupted during everyday activities. Damage to the endplate or annulus typically decompresses the nucleus, concentrates stress within the annulus, and allows ingrowth of nerves and blood vessels. Matrix disruption progresses by mechanical and biological means. The site of initial damage leads to two disc degeneration "phenotypes": endplate-driven degeneration is common in the upper lumbar and thoracic spine, and annulus-driven degeneration is common at L4-S1. Discogenic back pain can be initiated by tissue disruption, and amplified by inflammation and infection. Healing is possible in the outer annulus only, where cell density is highest. We conclude that some discs degenerate because they are disrupted by excessive mechanical loading. This can occur without trauma if tissues are weakened by age and genetic inheritance. Moderate mechanical loading, in contrast, strengthens all spinal tissues, including discs. © 2014 Wiley Periodicals, Inc.

  11. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.

    PubMed

    Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H

    2015-05-01

    The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it

  12. Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model

    PubMed Central

    Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason

    2018-01-01

    Introduction: Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Methods: Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Results: Increasing distraction led to greater Spinal canal area. From 4.27 cm2 to 5.72 cm2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm2 to 3.22 cm2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). Discussion: For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. PMID:29727270

  13. Pedicle distraction increases intervertebral and spinal canal area in a cadaver and bone model.

    PubMed

    Hughes, Matthew; Papadakos, Nikolaos; Bishop, Tim; Bernard, Jason

    2018-01-01

    Lumbar spinal stenosis is degenerative narrowing of the spinal canal and/or intervertebral foramen causing compression of the spinal cord and nerve roots. Traditional decompression techniques can often cause significant trauma and vertebral instability. This paper evaluates a method of increasing pedicle length to decompress the spinal and intervertebral foramen, which could be done minimally invasive. Three Sawbone (Sawbones Europe, Sweden) and 1 cadaveric lumbar spine underwent bilateral pedicle distraction at L4. A pedicle channel was drilled between the superior articular process and transverse process into the vertebral body. The pedicles underwent osteotomy at the midpoint. Screws were inserted bilaterally and fixated distraction of 0 mm, 2 mm, 4 mm and 6 mm. CT images were taken at each level of distraction. Foramen area was measured in the sagittal plane at L3/4. Spinal canal area was measured at L4 in the axial images. The cadaver was used to evaluate safety of osteotomy and soft tissue interactions preventing distraction. Statistical analysis was by student paired t-test and Pearson rank test. Increasing distraction led to greater Spinal canal area. From 4.27 cm 2 to 5.72 cm 2 (p = 0.002) with 6 mm distraction. A Maximal increase of 34.1%. Vertebral foramen area also increased with increasing pedicle distraction. From 2.43 cm 2 to 3.22 cm 2 (p = 0.022) with 6 mm distraction. A maximal increase of 32.3%. The cadaver spinal canal increased in area by 21.7%. The vertebral foramen increased in area by 36.2% (left) and 22.6% (right). For each increase in pedicle distraction the area of the spinal and vertebral foramen increases. Pedicle distraction could potentially be used to alleviate spinal stenosis and root impingement. A potential osteotomy plane could be at the midpoint of the pedicle with minimal risk to nerve roots and soft tissue restrictions to prevent distraction. © The Authors, published by EDP Sciences, 2018.

  14. Comparing Blast Effects on Human Torso Finite Element Model against Existing Lethality Curves

    DTIC Science & Technology

    2010-07-15

    vertebrae, intervertebral discs, ribs, cartilage, sternum, scapula, and clavicle . The internal organs include the heart and aorta, lungs and trachea...Thoracic Vertebrae  Intervertebral Disc  Scapula  Clavicle Heritage Style Viewgraphs6 HTFEM Development Internal Organs Ten-noded tetrahedral

  15. Attitudes of Korean adults towards human dignity: a Q methodology approach.

    PubMed

    Jo, Kae Hwa; An, Gyeong-Ju; Doorenbos, Ardith Z

    2012-06-01

    The aim of this study was to identify the perceived attitudes of Korean adults towards human dignity in order to determine the relationship of human dignity to its social and cultural background. The Q methodology research technique was used to explore perceived attitude typology on the basis of the respondents' ranking order for different statements. A convenience sampling method was used to select 40 Korean adults who were interested in human dignity to create statements. From the questionnaires, in-depth interviews, and a literature review, a total of 158 statements was obtained. The final 34 Q samples were selected from a review by two nursing professors and a Q methodology expert. Moreover, 38 respondents participated as P samples by sorting 34 Q statements on a nine-point normal distribution scale. The data were analyzed by using the QUANL software package. The following four types of attitudes about human dignity were identified in Korea: a happiness-oriented-self-pursuit type, relationship-oriented-self-recognition type, reflection-oriented-self-unification type, and discrimination-oriented-self-maintenance type. The results indicate that approaches to developing human dignity education need to take this typology into account and the characteristics of the participants who fall into each category. These results provide general guidelines to understand Korean values for professional practice in various healthcare settings. © 2011 The Authors. Japan Journal of Nursing Science © 2011 Japan Academy of Nursing Science.

  16. A putative mesenchymal stem cells population isolated from adult human testes.

    PubMed

    Gonzalez, R; Griparic, L; Vargas, V; Burgee, K; Santacruz, P; Anderson, R; Schiewe, M; Silva, F; Patel, A

    2009-08-07

    Mesenchymal stem cells (MSCs) isolated from several adult human tissues are reported to be a promising tool for regenerative medicine. In order to broaden the array of tools for therapeutic application, we isolated a new population of cells from adult human testis termed gonadal stem cells (GSCs). GSCs express CD105, CD166, CD73, CD90, STRO-1 and lack hematopoietic markers CD34, CD45, and HLA-DR which are characteristic identifiers of MSCs. In addition, GSCs express pluripotent markers Oct4, Nanog, and SSEA-4. GSCs propagated for at least 64 population doublings and exhibited clonogenic capability. GSCs have a broad plasticity and the potential to differentiate into adipogenic, osteogenic, and chondrogenic cells. These studies demonstrate that GSCs are easily obtainable stem cells, have growth kinetics and marker expression similar to MSCs, and differentiate into mesodermal lineage cells. Therefore, GSCs may be a valuable tool for therapeutic applications.

  17. Moment arms of the human neck muscles in flexion, bending and rotation.

    PubMed

    Ackland, David C; Merritt, Jonathan S; Pandy, Marcus G

    2011-02-03

    There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. The immediate reduction in low back pain intensity following lumbar joint mobilization and prone press-ups is associated with increased diffusion of water in the L5-S1 intervertebral disc.

    PubMed

    Beattie, Paul F; Arnot, Cathy F; Donley, Jonathan W; Noda, Harmony; Bailey, Lane

    2010-05-01

    Single-group, prospective, repeated-measures design. To determine differences in the changes of diffusion of water in the L5-S1 intervertebral disc between subjects with nonspecific low back pain (LBP) who reported an immediate reduction in pain intensity of 2 or greater on an 11-point (0-10) numeric rating scale after a 10-minute session of lumbar joint mobilization, followed by prone press-up exercises, compared to those who did not report an immediate reduction in pain intensity of 2 or greater on the pain scale. Combining lumbar joint mobilization and prone press-up exercises is a common intervention for patients with LBP; however, there is conflicting evidence regarding the effectiveness and efficacy of this approach. Increased knowledge of the physiologic effects of the combined use of these treatments, and the relationship to pain reports, can lead to refinement of their clinical application. Twenty adults, aged 22 to 54, participated in this study. All subjects reported LBP of at least 2 on an 11-point (0-10) verbally administered numeric rating scale at the time of enrollment in the study and were classified as being candidates for the combination of joint mobilization and prone press-ups. Subjects underwent T2- and diffusion-weighted lumbar magnetic resonance imaging scans before and immediately after receiving a 10-minute session of lumbar pressures in a posterior-to-anterior direction and prone press-up exercises. Subjects who reported a decrease in current pain intensity of 2 or greater immediately following treatment were classified as immediate responders, while the remainder were classified as not-immediate responders. The apparent diffusion coefficient, representing the diffusion of water in the nucleus pulposis, was calculated from the midsagittal diffusion-weighted images. Following treatment, immediate responders (n = 10) had a mean increase in the apparent diffusion coefficient in the middle portion of the L5-S1 intervertebral disc of 4

  19. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    PubMed Central

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  20. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  1. Acceptance and Attitudes Toward a Human-like Socially Assistive Robot by Older Adults.

    PubMed

    Louie, Wing-Yue Geoffrey; McColl, Derek; Nejat, Goldie

    2014-01-01

    Recent studies have shown that cognitive and social interventions are crucial to the overall health of older adults including their psychological, cognitive, and physical well-being. However, due to the rapidly growing elderly population of the world, the resources and people to provide these interventions is lacking. Our work focuses on the use of social robotic technologies to provide person-centered cognitive interventions. In this article, we investigate the acceptance and attitudes of older adults toward the human-like expressive socially assistive robot Brian 2.1 in order to determine if the robot's human-like assistive and social characteristics would promote the use of the robot as a cognitive and social interaction tool to aid with activities of daily living. The results of a robot acceptance questionnaire administered during a robot demonstration session with a group of 46 elderly adults showed that the majority of the individuals had positive attitudes toward the socially assistive robot and its intended applications.

  2. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  3. Prevalence of Age-Related Changes in Ovine Lumbar Intervertebral Discs during Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Nisolle, Jean-François; Bihin, Benoît; Kirschvink, Nathalie; Neveu, Fabienne; Clegg, Peter; Dugdale, Alexandra; Wang, Xiaoqing; Vandeweerd, Jean-Michel

    2016-01-01

    Ovine models are used to study intervertebral disc (IVD) degeneration. The objective of the current study was to assess the naturally occurring age-related changes of the IVD that can be diagnosed by CT and MRI in the lumbar spine of sheep. We used CT and T2-weighted MR images to score the IVD (L6S1 to L1L2) in 41 sheep (age, 6 mo to 11 y) that were euthanized for reasons not related to musculoskeletal disease. T2 mapping and measurement of T2 time of L6S1 to L2L3 were performed in 22 of the sheep. Degenerative changes manifested as early as 2 y of age and occurred at every IVD level. Discs were more severely damaged in older sheep. The age effect of the L6S1 IVD was larger than the average age effect for the other IVD. The current study provides evidence that lesions similar to those encountered in humans can be identified by CT and MRI in lumbar spine of sheep. Ideally, research animals should be assessed at the initiation of preclinical trials to determine the extent of prevalent degenerative changes. The ovine lumbosacral disc seems particularly prone to degeneration and might be a favorable anatomic site for studying IVD degeneration. PMID:27538861

  4. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections.

    PubMed

    Zawadzki, Paweł J; Perkowski, Konrad; Padzik, Marcin; Mierzwińska-Nastalska, Elżbieta; Szaflik, Jacek P; Conn, David Bruce; Chomicz, Lidia

    2017-01-01

    The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.

  5. Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint.

    PubMed

    Stenhamre, H; Slynarski, K; Petrén, C; Tallheden, T; Lindahl, A

    2008-11-01

    The aim of this study was to investigate the topographic variation in matrix production and cell density in the adult human knee joint. Additionally, we have examined the redifferentiation potential of chondrocytes expanded in vitro from the different locations. Full thickness cartilage-bone biopsies were harvested from seven separate anatomical locations of healthy knee joints from deceased adult human donors. Chondrocytes were isolated, expanded in vitro and redifferentiated in a pellet mass culture. Biochemical analysis of total collagen, proteoglycans and cellular content as well as histology and immunohistochemistry were performed on biopsies and pellets. In the biochemical analysis of the biopsies, we found lower proteoglycan to collagen (GAG/HP) ratio in the non-weight bearing (NWB) areas compared to the weight bearing (WB) areas. The chondrocytes harvested from different locations in femur showed a significantly better attachment and proliferation ability as well as good post-expansion chondrogenic capacity in pellet mass culture compared with the cells harvested from tibia. These results demonstrate that there are differences in extra cellular content within the adult human knee in respect to GAG/HP ratio. Additionally, the data show that clear differences between chondrocytes harvested from femur and tibia from healthy human knee joints exist and that the differences are not completely abolished during the process of de- and redifferentiation. These findings emphasize the importance of the understanding of topographic variation in articular cartilage biology when approaching new cartilage repair strategies.

  6. Covert spatial attention is functionally intact in amblyopic human adults.

    PubMed

    Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-12-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.

  7. Covert spatial attention is functionally intact in amblyopic human adults

    PubMed Central

    Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-01-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433

  8. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  9. Computation models simulating notochordal cell extinction during early ageing of an intervertebral disc.

    PubMed

    Louman-Gardiner, K M; Coombe, D; Hunter, C J

    2011-12-01

    Lower back pain due to intervertebral disc (IVD) degeneration is a prevalent problem which drastically affects the quality of life of millions of sufferers. Healthy IVDs begin with high populations of notochordal cells in the nucleus pulposus, while by the second stage of degeneration, these cells will be replaced by chondrocyte-like cells. Because the IVD is avascular, these cells rely on passive diffusion of nutrients to survive. It is thought that this transition in cell phenotype causes the shift of the IVD's physical properties, which impede the flow of nutrients. Our computational model of the IVD illustrates its ability to simulate the evolving chemical and mechanical environments occurring during the early ageing process. We demonstrate that, due to the insufficient nutrient supply and accompanying changes in physical properties of the IVD, there was a resultant exponential decay in the number of notochordal cells over time.

  10. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    PubMed

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  11. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    PubMed

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  12. The Adult Livers of Immunodeficient Mice Support Human Hematopoiesis: Evidence for a Hepatic Mast Cell Population that Develops Early in Human Ontogeny

    PubMed Central

    Muench, Marcus O.; Beyer, Ashley I.; Fomin, Marina E.; Thakker, Rahul; Mulvaney, Usha S.; Nakamura, Masato; Suemizu, Hiroshi; Bárcena, Alicia

    2014-01-01

    The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117++CD203c+ mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38−CD34++ and CD133+CD34++ cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver

  13. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

    PubMed Central

    Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso

    2017-01-01

    The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100

  14. The Longitudinal Study of Aging in Human Young Adults: Knowledge Gaps and Research Agenda.

    PubMed

    Moffitt, Terrie E; Belsky, Daniel W; Danese, Andrea; Poulton, Richie; Caspi, Avshalom

    2017-02-01

    To prevent onset of age-related diseases and physical and cognitive decline, interventions to slow human aging and extend health span must eventually be applied to people while they are still young and healthy. Yet most human aging research examines older adults, many with chronic disease, and little is known about aging in healthy young humans. This article explains how this knowledge gap is a barrier to extending health span and puts forward the case that geroscience should invest in researching the pace of aging in young adults. As one illustrative example, we describe an initial effort to study the pace of aging in a young-adult birth cohort by using repeated waves of biomarkers collected across the third and fourth decades to quantify the pace of coordinated physiological deterioration across multiple organ systems (eg, pulmonary, periodontal, cardiovascular, renal, hepatic, metabolic, and immune function). Findings provided proof of principle that it is possible to quantify individual variation in the pace of aging in young adults still free of age-related diseases. This article articulates research needs to improve longitudinal measurement of the pace of aging in young people, to pinpoint factors that slow or speed the pace of aging, to compare pace of aging against genomic clocks, to explain slow-aging young adults, and to apply pace of aging in preventive clinical trials of antiaging therapies. This article puts forward a research agenda to fill the knowledge gap concerning lifelong causes of aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat.

    PubMed

    Cypess, Aaron M; White, Andrew P; Vernochet, Cecile; Schulz, Tim J; Xue, Ruidan; Sass, Christina A; Huang, Tian Liang; Roberts-Toler, Carla; Weiner, Lauren S; Sze, Cathy; Chacko, Aron T; Deschamps, Laura N; Herder, Lindsay M; Truchan, Nathan; Glasgow, Allison L; Holman, Ashley R; Gavrila, Alina; Hasselgren, Per-Olof; Mori, Marcelo A; Molla, Michael; Tseng, Yu-Hua

    2013-05-01

    The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to have a functional role in rodents and human infants only, but it has been recently shown that in response to mild cold exposure, adult human BAT consumes more glucose per gram than any other tissue. In addition to this nonshivering thermogenesis, human BAT may also combat weight gain by becoming more active in the setting of increased whole-body energy intake. This phenomenon of BAT-mediated diet-induced thermogenesis has been observed in rodents and suggests that activation of human BAT could be used as a safe treatment for obesity and metabolic dysregulation. In this study, we isolated anatomically defined neck fat from adult human volunteers and compared its gene expression, differentiation capacity and basal oxygen consumption to different mouse adipose depots. Although the properties of human neck fat vary substantially between individuals, some human samples share many similarities with classical, also called constitutive, rodent BAT.

  16. Mental rotation and the human body: Children's inflexible use of embodiment mirrors that of adults.

    PubMed

    Krüger, Markus; Ebersbach, Mirjam

    2017-12-25

    Adults' mental rotation performance with body-like stimuli is enhanced if these stimuli are anatomically compatible with a human body, but decreased by anatomically incompatible stimuli. In this study, we investigated these effects for kindergartners and first-graders: When asked to mentally rotate cube configurations attached with human body parts in an anatomically compatible way, allowing for the projection of a human body, children performed better than with pure cube combinations. By contrast, when body parts were attached in an anatomically incompatible way, disallowing the projection of a human body, children performed worse than with pure combinations. This experiment is of specific interest against the background of two different theoretical approaches concerning imagery and the motor system in development: One approach assumes an increasing integration of motor processes and imagery over time that enables older children and adults to requisition motor resources for imagery processes, while the other postulates that imagery stems from early sensorimotor processes in the first place, and is disentangled from it over time. The finding that children of the two age groups tested show exactly the same effects as adults when mentally rotating anatomically compatible and incompatible stimuli is interpreted in favour of the latter approach. Statement of contribution What is already known on this subject? In mental rotation, adults perform better when rotating anatomically possible stimuli as compared to rotating standard cube combinations. Performance is worse when rotating anatomically impossible stimuli. What does this study add? The present study shows that children's mental transformations mirror those of adults in these respects. In case of the anatomically impossible stimuli, this highlights an inflexible use of embodiment in both age groups. This is in line with the Piagetian assumption of imagery being based on sensorimotor processes. © 2017 The British

  17. Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments.

    PubMed

    Huang, Yong-Can; Xiao, Jun; Lu, William W; Leung, Victor Y L; Hu, Yong; Luk, Keith D K

    2017-03-01

    Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model. Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb's method. The anatomy of the adjacent discs was observed histologically. DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved. Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.

  18. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc.

    PubMed

    Wu, W J; Zhang, X K; Zheng, X F; Yang, Y H; Jiang, S D; Jiang, L S

    2013-01-01

    Hypoxia-inducible factor-1alpha (HIF-1 alpha) has been reported to have an important role in the metabolism and synthesis of extracellular matrix of the nucleus pulposus cells (NPCs) and was assumed to be involved in the process of intervertebral disc degeneration. The objective of this study was to investigate the role of HIF-1alpha in disc degeneration in vivo using a conditional HIF-1alpha knockout (KO) mouse model. ShhCre transgenic mice were mated with HIF-1 alpha fl/fl mice to generate conditional HIF-1alpha KO mice (HIF-1alpha fl/fl-ShhCre+). Three mice of each genotype (Wide-type and HIF-1alpha KO) at the age of 3 days, 6, and 12 weeks were sacrificed after genotyping. Five lumbar disc samples were harvested from each mouse, with a total of 45 disc samples for each genotype. In situ hybridization and immunohistochemical analysis were used to check the efficacy of HIF-1alpha knockout. Histological grading of the disc degeneration was performed according to the classification system proposed by Boos et al. Picro-sirius red staining, Safranine O/fast green staining and immunohistochemical study were used to evaluate the expression of aggrecan, type-II collagen and vascular endothelial growth factor (VEGF). Histologic analysis revealed more NPC deaths and signs of degeneration in HIF-1alpha KO mice and the degeneration scores of HIF-1alpha KO mice were significantly higher than those of the Wide-type mice at the age of 6 weeks and 12 weeks. There were less expressions of aggrecan, type-II collagen and VEGF in the intervertebral discs of HIF1-alpha KO mice than in those of wild-type mice. Taken together, the results of our study indicated that HIF-1alpha is a pivotal contributor to NPC survival and the homeotasis of extracellular matrix through the HIF-1alpha/VEGF signaling pathway, and plays an important role in the development of disc degeneration.

  19. Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure.

    PubMed

    Zhang, Tao; Gan, Zhiwei; Gao, Chuanzi; Ma, Ling; Li, Yanxi; Li, Xiao; Sun, Hongwen

    2016-09-14

    In this study, acesulfame (ACE), saccharin (SAC) and cyclamate (CYC) were found in all paired urine and blood samples collected from healthy adults, with mean values of 4070, 918 and 628 ng mL(-1), respectively, in urine and 9.03, 20.4 and 0.72 ng mL(-1), respectively, in blood. SAC (mean: 84.4 ng g(-1)) and CYC (4.29 ng g(-1)) were detectable in all liver samples collected from liver cancer patients, while ACE was less frequently detected. Aspartame (ASP) was not found in any analyzed human sample, which can be explained by the fact that this chemical metabolized rapidly in the human body. Among all adults, significantly positive correlations between SAC and CYC levels were observed (p < 0.001), regardless of human matrices. Nevertheless, no significant correlations between concentrations of SAC (or CYC) and ACE were found in any of the human matrices. Our results suggest that human exposure to SAC and CYC is related, whereas ACE originates from a discrete source. Females (or young adults) were exposed to higher levels of SAC and CYC than males (or elderly). The mean renal clearance of SAC was 730 mL per day per kg in adults, which was significantly (p < 0.001) lower than those for CYC (10 800 mL per day per kg) and ACE (10 300 mL per day per kg). The average total daily intake of SAC and ACE was 9.27 and 33.8 μg per kg bw per day, respectively.

  20. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Periodontitis and oral human papillomavirus infection among Hispanic adults.

    PubMed

    Ortiz, Ana Patricia; González, Daisy; Vivaldi-Oliver, José; Castañeda, Maira; Rivera, Vivian; Díaz, Elba; Centeno, Hilmaris; Muñoz, Cristina; Palefsky, Joel; Joshipura, Kaumudi; Pérez, Cynthia M

    2018-06-01

    Research on the association between periodontitis and oral human papilloma virus (HPV) infection is inconsistent. The cross-sectional association of severe periodontitis with oral HPV infection was investigated in a sample of Hispanic adults. Data from the 2014-2016 San Juan Overweight Adults Longitudinal Study (n = 740) was analyzed. Periodontitis assessment and self-collection of oral HPV samples followed the National Health and Nutrition Examination Survey methodology. Periodontitis was defined using the Centers of Disease Control and Prevention/American Academy of Periodontology definition. HPV typing was performed using polymerase chain reaction. Multivariate logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). 5.7% of participants had oral HPV infection and 20.3% had severe periodontitis. Adults with severe periodontitis had higher odds of oral HPV infection than those with none/mild disease (OR=2.9, 95% CI: 1.0-8.4, p < 0.05) in multivariable analysis. Adults with clinical attachment loss≥ 7 mm and pocket depth PD≥ 6 mm had 2- to 3-fold higher odds of HPV infection. Severe periodontitis was positively associated to oral HPV infection. Longitudinal evaluation of periodontal inflammation's role in acquisition and persistence of oral HPV infection is needed, as periodontitis screening could identify individuals at increased risk of HPV-related oral malignancies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  3. The adult human pubic symphysis: a systematic review

    PubMed Central

    Becker, Ines; Woodley, Stephanie J; Stringer, Mark D

    2010-01-01

    The pubic symphysis is a unique joint consisting of a fibrocartilaginous disc sandwiched between the articular surfaces of the pubic bones. It resists tensile, shearing and compressive forces and is capable of a small amount of movement under physiological conditions in most adults (up to 2 mm shift and 1° rotation). During pregnancy, circulating hormones such as relaxin induce resorption of the symphyseal margins and structural changes in the fibrocartilaginous disc, increasing symphyseal width and mobility. This systematic review of the English, German and French literature focuses on the normal anatomy of the adult human pubic symphysis. Although scientific studies of the joint have yielded useful descriptive data, comparison of results is hampered by imprecise methodology and/or poorly controlled studies. Several aspects of the anatomy of the pubic symphysis remain unknown or unclear: the precise attachments of surrounding ligaments and muscles; the arrangement of connective tissue fibres within the interpubic disc and the origin, structure and function of its associated interpubic cleft; the biomechanical consequences of sexual dimorphism; potential ethnic variations in morphology; and its precise innervation and blood supply. These deficiencies hinder our understanding of the normal form and function of the joint, which is particularly relevant when attempting to understand the mechanisms underlying pregnancy-related pubic symphyseal pain, a neglected and relatively common cause of pubic pain. A better understanding of the normal anatomy of the human pubic symphysis should improve our understanding of such problems and contribute to better treatments for patients suffering from symphyseal pain and dysfunction. PMID:20840351

  4. Expression of growth differentiation factor 6 in the human developing fetal spine retreats from vertebral ossifying regions and is restricted to cartilaginous tissues.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Gulati, Twishi; Fang, Zhimin; Pathmanandavel, Sarennya; Diwan, Ashish D

    2016-02-01

    During embryogenesis vertebral segmentation is initiated by sclerotomal cell migration and condensation around the notochord, forming anlagen of vertebral bodies and intervertebral discs. The factors that govern the segmentation are not clear. Previous research demonstrated that mutations in growth differentiation factor 6 resulted in congenital vertebral fusion, suggesting this factor plays a role in development of vertebral column. In this study, we detected expression and localization of growth differentiation factor 6 in human fetal spinal column, especially in the period of early ossification of vertebrae and the developing intervertebral discs. The extracellular matrix proteins were also examined. Results showed that high levels of growth differentiation factor 6 were expressed in the nucleus pulposus of intervertebral discs and the hypertrophic chondrocytes adjacent to the ossification centre in vertebral bodies, where strong expression of proteoglycan and collagens was also detected. As fetal age increased, the expression of growth differentiation factor 6 was decreased correspondingly with the progress of ossification in vertebral bodies and restricted to cartilaginous regions. This expression pattern and the genetic link to vertebral fusion suggest that growth differentiation factor 6 may play an important role in suppression of ossification to ensure proper vertebral segmentation during spinal development. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Derivation of Neural Stem Cells from Human Adult Peripheral CD34+ Cells for an Autologous Model of Neuroinflammation

    PubMed Central

    Wang, Tongguang; Choi, Elliot; Monaco, Maria Chiara G.; Campanac, Emilie; Medynets, Marie; Do, Thao; Rao, Prashant; Johnson, Kory R.; Elkahloun, Abdel G.; Von Geldern, Gloria; Johnson, Tory; Subramaniam, Sriram; Hoffman, Dax; Major, Eugene; Nath, Avindra

    2013-01-01

    Proinflammatory factors from activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox2, Oct3/4, c-Myc and Klf4. The derived NSC could be differentiated to glial cells and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine. PMID:24303066

  6. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  7. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    EPA Science Inventory

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  8. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2.

    PubMed

    Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A

    2013-10-01

    Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.

  9. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.

  10. Localization of the putative precursor of Alzheimer's disease-specific amyloid at nuclear envelopes of adult human muscle.

    PubMed Central

    Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G

    1988-01-01

    Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589

  11. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  12. Development of a Physiologically Based Model to Describe the Pharmacokinetics of Methylphenidate in Juvenile and Adult Humans and Nonhuman Primates

    PubMed Central

    Yang, Xiaoxia; Morris, Suzanne M.; Gearhart, Jeffery M.; Ruark, Christopher D.; Paule, Merle G.; Slikker, William; Mattison, Donald R.; Vitiello, Benedetto; Twaddle, Nathan C.; Doerge, Daniel R.; Young, John F.; Fisher, Jeffrey W.

    2014-01-01

    The widespread usage of methylphenidate (MPH) in the pediatric population has received considerable attention due to its potential effect on child development. For the first time a physiologically based pharmacokinetic (PBPK) model has been developed in juvenile and adult humans and nonhuman primates to quantitatively evaluate species- and age-dependent enantiomer specific pharmacokinetics of MPH and its primary metabolite ritalinic acid. The PBPK model was first calibrated in adult humans using in vitro enzyme kinetic data of MPH enantiomers, together with plasma and urine pharmacokinetic data with MPH in adult humans. Metabolism of MPH in the small intestine was assumed to account for the low oral bioavailability of MPH. Due to lack of information, model development for children and juvenile and adult nonhuman primates primarily relied on intra- and interspecies extrapolation using allometric scaling. The juvenile monkeys appear to metabolize MPH more rapidly than adult monkeys and humans, both adults and children. Model prediction performance is comparable between juvenile monkeys and children, with average root mean squared error values of 4.1 and 2.1, providing scientific basis for interspecies extrapolation of toxicity findings. Model estimated human equivalent doses in children that achieve similar internal dose metrics to those associated with pubertal delays in juvenile monkeys were found to be close to the therapeutic doses of MPH used in pediatric patients. This computational analysis suggests that continued pharmacovigilance assessment is prudent for the safe use of MPH. PMID:25184666

  13. Instructional Patterns for Maximizing Human Potential. A Curriculum Design for Human Development and Interpersonal Relationships: Kindergarten through Adult Education.

    ERIC Educational Resources Information Center

    Kern Joint Union High School District, Bakersfield, CA.

    Intended for consumer and homemaking education program development in kindergarten through adult education, this curriculum design emphasizes human development and interpersonal relationships. Presented in two sections, the document covers both the curriculum development process and the resulting products. The curriculum addresses five…

  14. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion–Extension of the Neck

    PubMed Central

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.

    2017-01-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358

  15. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-06-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  16. Molecular subtypification of human papillomavirus in male adult individuals with recurrent respiratory papillomatosis.

    PubMed

    García-Romero, Carmen S; Akaki-Caballero, Matsuharu; Saavedra-Mendoza, Ana G; Guzmán-Romero, Ana K; Canto, Patricia; Coral-Vázquez, Ramón M

    2015-10-01

    This study aimed to identify the isotype of human papillomavirus (HPV) in fresh tissue samples of 35 male adults with adult recurrent adult respiratory papillomatosis which may be important to define the precise etiology of the disease, and determine the therapeutic and prophylactic measures. A total of 35 adult male patients diagnosed with active RRP who have been treated for several years were included in the study. DNA of patients was extracted from fresh biological samples and analyzed by PCR and a Linear Array® HPV Genotyping system. Most cases (95%) corresponded to adult-onset of RRP. A questionnaire was applied to obtain demographic and clinical data. Using a PCR-based detection system all patients showed the presence of HPV; 80% were positive for HPV-6, 8% for HPV-11 and one for HPV-16. Most patients presented HPV-6 and consequently it was not feasible to correlate clinical and demographic characteristics with viral type. Besides, co-infections were not evident. This knowledge may be relevant to delineate therapeutic and preventive measures. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain.

    PubMed

    Makino, Hiroto; Seki, Shoji; Yahara, Yasuhito; Shiozawa, Shunichi; Aikawa, Yukihiko; Motomura, Hiraku; Nogami, Makiko; Watanabe, Kenta; Sainoh, Takeshi; Ito, Hisakatsu; Tsumaki, Noriyuki; Kawaguchi, Yoshiharu; Yamazaki, Mitsuaki; Kimura, Tomoatsu

    2017-12-05

    Intervertebral disc (IVD) degeneration is a major cause of low back pain. The transcription factor c-Fos/Activator Protein-1 (AP-1) controls the expression of inflammatory cytokines and matrix metalloproteinases (MMPs) that contribute to the pathogenesis IVD degeneration. We investigated the effects of inhibition of c-Fos/AP-1 on IVD degeneration and associated pain. A selective inhibitor, T-5224, significantly suppressed the interleukin-1β-induced up-regulation of Mmp-3, Mmp-13 and Adamts-5 transcription in human nucleus pulposus cells and in a mouse explant culture model of IVD degeneration. We used a tail disc percutaneous needle puncture method to further assess the effects of oral administration of T-5224 on IVD degeneration. Analysis of disc height, T2-magnetic resonance imaging (MRI) findings, and histology revealed that IVD degeneration was significantly mitigated by T-5224. Further, oral administration of T-5224 ameliorated pain as indicated by the extended tail-flick latency in response to heat stimulation of rats with needle-puncture-induced IVD degeneration. These findings suggest that the inhibition of c-Fos/AP-1 prevents disc degeneration and its associated pain and that T-5224 may serve as a drug for the prevention of IVD degeneration.

  18. Cyclophilin D-Sensitive Mitochondrial Permeability Transition in Adult Human Brain and Liver Mitochondria

    PubMed Central

    Morota, Saori; Chen, Li; Matsuyama, Nagahisa; Suzuki, Yoshiaki; Nakajima, Satoshi; Tanoue, Tadashi; Omi, Akibumi; Shibasaki, Futoshi; Shimazu, Motohide; Ikeda, Yukio; Uchino, Hiroyuki; Elmér, Eskil

    2011-01-01

    Abstract The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death under a variety of pathophysiological conditions of the central nervous system (CNS) and other organs. Pharmacological inhibition or genetic knockout of the matrix protein cyclophilin D (CypD) prevents mPT and cell degeneration in several models of brain injury. If these findings in animal models are translatable to human disease, pharmacological inhibition of mPT offers a promising therapeutic target. The objective of this study was to validate the presence of a CypD-sensitive mPT in adult human brain and liver mitochondria. In order to perform functional characterization of human mitochondria, fresh tissue samples were obtained during hemorrhage or tumor surgery and mitochondria were rapidly isolated. Mitochondrial calcium retention capacity, a quantitative assay for mPT, was significantly increased by the CypD inhibitor cyclosporin A in both human brain and liver mitochondria, whereas thiol-reactive compounds and oxidants sensitized mitochondria to calcium-induced mPT. Brain mitochondria underwent swelling upon calcium overload, which was reversible upon calcium removal. To further explore mPT of human mitochondria, liver mitochondria were demonstrated to exhibit several classical features of the mPT phenomenon, such as calcium-induced loss of membrane potential and respiratory coupling, as well as release of the pro-apoptotic protein cytochrome c. We concluded that adult viable human brain and liver mitochondria possess an active CypD-sensitive mPT. Our findings support the rationale of CypD and mPT inhibition as pharmacological targets in acute and chronic neurodegeneration. PMID:21121808

  19. Chymodiactin in patients with herniated lumbar intervertebral disc(s). An open-label, multicenter study.

    PubMed

    McDermott, D J; Agre, K; Brim, M; Demma, F J; Nelson, J; Wilson, R R; Thisted, R A

    1985-04-01

    To extent the safety information for Chymodiactin (chymopapain for injection), 37 neurologic and orthopedic surgeons conducted an open-label, multicenter, phase 3 clinical study. A total of 1,498 patients with one or two herniated lumbar intervertebral discs were enrolled. Therapeutic results were generally favorable, with the percentages of patients achieving either excellent or good (or successful) results ranging from 79.6% to 88.9%, depending on criteria employed in the tabulation. There were 13 cases of anaphylaxis, and 2 of these patients died of complications of anaphylaxis. Two additional patients experienced serious neurologic problems. The first of these two patients developed transverse myelitis and paraplegia approximately 3 weeks following chemonucleolysis. Transdural discograms at three levels had been done approximately 2 days prior to chemonucleolysis, in violation of the protocol. The second patient developed acute cauda equina syndrome, and, despite emergency laminectomy, had permanent neurologic sequelae. Back spasm and stiffness/soreness were the most frequently encountered adverse experiences.

  20. Dysuria due to discospondylitis and intervertebral disc herniation in a male alpaca (Vicugna pacos).

    PubMed

    Sickinger, Marlene; Hirz, Manuela; Schmidt, Martin J; Reinacher, Manfred

    2016-05-31

    Dysuria in camelids is usually associated with the presence of lower urinary tract disease such as urolithiasis. As another differential diagnosis, urine retention may be caused by neurological disturbances resulting from infections of the spinal cord, discospondylitis or trauma. A 2.5-year-old male Huacaya alpaca (Vicugna pacos) presented with dysuria due to damage of the lumbosacral intumescence of the spinal cord. On presentation the alpaca was recumbent. Clinical examination revealed abdominal pain, oliguria, leucopenia with neutrophilia, and slightly elevated creatinine kinase. Ultrasonography of the abdomen showed an irregularly shaped, dilated urinary bladder with hyperechoic serosa. Magnetic resonance imaging revealed discospondylitis of the fourth and fifth lumbar vertebrae and herniation of the intervertebral disc between these vertebrae and the spinal cord. Postmortem examination confirmed severe chronic purulent discospondylitis with ventral spondylosis and narrowing of the spinal canal. Urolithiasis could not be verified. Although rare, diseases of the spinal cord should be considered as a differential diagnosis for impaired micturition in camelids.

  1. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  2. Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.

    PubMed

    Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S

    2002-06-01

    Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.

  3. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    PubMed Central

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p < 0.05 (two-tailed). Results Results indicate that the curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  4. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    PubMed Central

    Harte, Richard P.; Glynn, Liam G.; Broderick, Barry J.; Rodriguez-Molinero, Alejandro; Baker, Paul M. A.; McGuiness, Bernadette; O’Sullivan, Leonard; Diaz, Marta; Quinlan, Leo R.; ÓLaighin, Gearóid

    2014-01-01

    Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications. PMID:25563225

  5. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  6. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells.

    PubMed

    Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing

    2017-05-10

    The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.

  7. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc

    PubMed Central

    Smith, Lachlan J; Fazzalari, Nicola L

    2006-01-01

    Elastic fibres are critical components of the extracellular matrix in dynamic biological structures that undergo extension and recoil. Their presence has been demonstrated in the anulus fibrosus of the human lumbar intervertebral disc; however, a detailed regional analysis of their density and arrangement has not been undertaken, limiting our understanding of their structural and functional roles. In this investigation we have quantitatively described regional variations in elastic fibre density in the anulus fibrosus of the human L3–L4 intervertebral disc using histochemistry and light microscopy. Additionally, a multiplanar comparison of patterns of elastic fibre distribution in the intralamellar and interlamellar zones was undertaken. Novel imaging techniques were developed to facilitate the visualization of elastic fibres otherwise masked by dense surrounding matrix. Elastic fibre density was found to be significantly higher in the lamellae of the posterolateral region of the anulus than the anterolateral, and significantly higher in the outer regions than the inner, suggesting that elastic fibre density in each region of the anulus is commensurate with the magnitude of the tensile deformations experienced in bending and torsion. Elastic fibre arrangments in intralamellar and interlamellar zones were shown to be architecturally distinct, suggesting that they perform multiple functional roles within the anulus matrix structural hierarchy. PMID:16928204

  8. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to this...

  9. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to this...

  10. Experiences of intervertebral motion palpation in osteopathic practice - A qualitative interview study among Swedish osteopaths.

    PubMed

    Sposato, Niklas S; Bjerså, Kristofer

    2017-01-01

    Assessment in manual therapy includes quantitative and qualitative procedures, and intervertebral motion palpation (IMP) is one of the core assessment methods in osteopathic practice. The aim of this study was to explore osteopathic practitioners' experiences of clinical decision-making and IMP as a diagnostic tool for planning and evaluation of osteopathic interventions. The study was conducted with semi-structured interviews that included eight informants. Content analysis was used as the analytical procedure. In total, three categories emerged from the analysis: strategic decision-making, diagnostic usability of IMP, and treatment applicability of IMP. The study indicated that IMP was considered relevant and was given particular importance in cases where IMP findings confirmed clinical information attained from other stages in the diagnostic process as a whole. However, IMP findings were experienced as less important if they were not correlated to other findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  12. Catabolic Effects of Endothelial Cell-Derived Microparticles on Disc Cells: Implications in Intervertebral Disc Neovascularization and Degeneration

    PubMed Central

    Pohl, Pedro H. I.; Lozito, Thomas P.; Cuperman, Thais; Yurube, Takashi; Moon, Hong J.; Ngo, Kevin; Tuan, Rocky S.; Croix, Claudette St.; Sowa, Gwendolyn A.; Rodrigues, Luciano M. R.; Kang, James D.; Vo, Nam V.

    2017-01-01

    Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs. Passage 1 human AF cells grown in monolayer cultures were treated for 72 hours with 250μg of EMPs or SUP fraction isolated from culture of the microvascular endothelial cell line, HEMC-I. Live-cell imaging revealed uptake of EMPs by AF cells. RT-PCR analysis demonstrated increased mRNA expression of MMP-1 (50.3 fold), MMP-3 (4.5 fold) and MMP-13 (5.5 fold) in AF cell cultures treated with EMPs compared to untreated control. Western analysis also demonstrated increased MMP protein expression in EMP-treated AF cells. AF cells treated with the SUP fraction also exhibited a dramatic increase in MMP mRNA and protein expression. Increased MMP expression is primarily due to EMP or SUP stimulation of AF cells since EMPs or SUP fraction alone contained negligible amount of MMPs. Interestingly, MMP activity was elevated in AF cell cultures treated with EMPs but not with SUP. This study revealed enhanced matrix catabolism as a molecular consequence of action of ECs on AF cells via EMPs, which might be expected during neo-angiogenesis of degenerating disc. PMID:27246627

  13. Ablation of intervertebral discs in dogs using a MicroJet-assisted dye-enhanced injection device coupled with the diode laser

    NASA Astrophysics Data System (ADS)

    Bartels, Kenneth E.; Henry, George A.; Dickey, D. Thomas; Stair, Ernest L.; Powell, Ronald; Schafer, Steven A.; Nordquist, Robert E.; Frederickson, Christopher J.; Hayes, Donald J.; Wallace, David B.

    1998-07-01

    Use of holmium laser energy for vaporization/coagulation of the nucleus pulposus in canine intervertebral discs has been previously reported and is currently being applied clinically in veterinary medicine. The procedure was originally developed in the canine model and intended for potential human use. Since the pulsed (15 Hz) holmium laser energy exerts photomechanical and photothermal effects, the potential for extrusion of additional disc material to the detriment of the patient is possible using the procedure developed for the dog. To reduce this potential complication, use of diode laser (805 nm - CW mode) energy, coupled with indocyanine green (ICG) as a selective laser energy absorber, was formulated as a possible alternative. Delivery of the ICG and diode laser energy was through a MicroJet device that could dispense dye interactively between individual laser 'shots.' Results have shown that it is possible to selectively ablate nucleus pulposus in the canine model using the device described. Acute observations (gross and histopathologic) illustrate that accurate placement of the spinal needle before introduction of the MicroJet device is critically dependent on the expertise of the interventional radiologist. In addition, the success of the overall technique depends on consistent delivery of both ICG and diode laser energy. Minimizing tissue carbonization on the tip of the MicroJet device is also of crucial importance for effective application of the technique in clinical veterinary medicine.

  14. How long and low can you go? Effect of conformation on the risk of thoracolumbar intervertebral disc extrusion in domestic dogs.

    PubMed

    Packer, Rowena M A; Hendricks, Anke; Volk, Holger A; Shihab, Nadia K; Burn, Charlotte C

    2013-01-01

    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for 'long and low' morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders.

  15. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  16. [Treatment of lumbar intervertebral disc herniation and sciatica with percutaneous transforaminal endoscopic technique].

    PubMed

    Jiang, Yi; Song, Hua-Wei; Wang, Dong; Yang, Ming-Lian

    2013-10-01

    To analyze the clinical effects of percutaneous transforaminal endoscopic technique in treating lumbar intervertebral disc herniation and sciatica. From June 2011 to January 2012,the clinical data of 46 patients with lumbar intervertebral disc herniation and sciatica underwent percutaneous transforaminal endoscopic technique were retrospectively analyzed. There were 28 males and 18 females,ranging in age from 11 to 77 years old with an average of (39.7_ 15.3) years old,20 cases were L5S1 and 26 cases were L4,5. All patients had the symptoms such as lumbago and sciatica and their straight-leg raising test were positive. Straight-leg raising test of patients were instantly repeated after operation;operative time,volume of blood loss,complication, length of stay and duration of back to work or daily life were recorded. The clinical effects were assessed according to the VAS,JOA and JOABPEQ score. All operations were successful,postoperative straight-leg raising test were all negative. Operative time,volume of blood loss,length of stay,duration of back to work or daily life,follow-up time were (93.0+/-28.0) min, (20.0+/-9.0)ml, (3.1+/-1.5) d, (11.6+/-4.2) d, (13.9+/-1.6) months,respectively. VAS score of lumbar before operation and at the 1st and 3rd,6th,12th month after operation were 5.3+/-1.2,1.9+/-1.1,1.0+/-0.8,0.9+/-0.8,0.8+/-0.6,respectively;VAS score of leg before operation and at the 1st and 3rd,6th,12th month after operation were 7.2+ 1.2,0.8+/-1.2,0.5+/-0.8,0.5+/-0.8,0.3+/-0.8,respectively. Five factors of JOABPEQ score,including lumbar pain,lumbar function, locomotor activity,social life viability and mental status,were respectively 27.0+/-30.6,37.3+/-27.4,38.5+/-26.6,33.0+/-13.7,55.4+/-19.0 before operation and 83.6+/-24.8,89.4+/-15.7,87.0+/-17.9,58.4+/-14.6,79.5+/-13.4 at final follow-up. Preoperative and postoperative JOA score were 9.1+/-2.6 and 27.3+/- 1.7, respectively. The postoperative VAS,JOA and JOABPEQ score had significantly improved (P<0

  17. Are adolescents more vulnerable to the harmful effects of cannabis than adults? A placebo-controlled study in human males.

    PubMed

    Mokrysz, C; Freeman, T P; Korkki, S; Griffiths, K; Curran, H V

    2016-11-29

    Preclinical research demonstrates that cannabinoids have differing effects in adolescent and adult animals. Whether these findings translate to humans has not yet been investigated. Here we believe we conducted the first study to compare the acute effects of cannabis in human adolescent (n=20; 16-17 years old) and adult (n=20; 24-28 years old) male cannabis users, in a placebo-controlled, double-blind cross-over design. After inhaling vaporized active or placebo cannabis, participants completed tasks assessing spatial working memory, episodic memory and response inhibition, alongside measures of blood pressure and heart rate, psychotomimetic symptoms and subjective drug effects (for example, 'stoned', 'want to have cannabis'). Results showed that on active cannabis, adolescents felt less stoned and reported fewer psychotomimetic symptoms than adults. Further, adults but not adolescents were more anxious and less alert during the active cannabis session (both pre- and post-drug administration). Following cannabis, cognitive impairment (reaction time on spatial working memory and prose recall following a delay) was greater in adults than adolescents. By contrast, cannabis impaired response inhibition accuracy in adolescents but not in adults. Moreover, following drug administration, the adolescents did not show satiety; instead they wanted more cannabis regardless of whether they had taken active or placebo cannabis, while the opposite was seen for adults. These contrasting profiles of adolescent resilience (blunted subjective, memory, physiological and psychotomimetic effects) and vulnerability (lack of satiety, impaired inhibitory processes) show some degree of translation from preclinical findings, and may contribute to escalated cannabis use by human adolescents.

  18. Are adolescents more vulnerable to the harmful effects of cannabis than adults? A placebo-controlled study in human males

    PubMed Central

    Mokrysz, C; Freeman, T P; Korkki, S; Griffiths, K; Curran, H V

    2016-01-01

    Preclinical research demonstrates that cannabinoids have differing effects in adolescent and adult animals. Whether these findings translate to humans has not yet been investigated. Here we believe we conducted the first study to compare the acute effects of cannabis in human adolescent (n=20; 16–17 years old) and adult (n=20; 24–28 years old) male cannabis users, in a placebo-controlled, double-blind cross-over design. After inhaling vaporized active or placebo cannabis, participants completed tasks assessing spatial working memory, episodic memory and response inhibition, alongside measures of blood pressure and heart rate, psychotomimetic symptoms and subjective drug effects (for example, ‘stoned', ‘want to have cannabis'). Results showed that on active cannabis, adolescents felt less stoned and reported fewer psychotomimetic symptoms than adults. Further, adults but not adolescents were more anxious and less alert during the active cannabis session (both pre- and post-drug administration). Following cannabis, cognitive impairment (reaction time on spatial working memory and prose recall following a delay) was greater in adults than adolescents. By contrast, cannabis impaired response inhibition accuracy in adolescents but not in adults. Moreover, following drug administration, the adolescents did not show satiety; instead they wanted more cannabis regardless of whether they had taken active or placebo cannabis, while the opposite was seen for adults. These contrasting profiles of adolescent resilience (blunted subjective, memory, physiological and psychotomimetic effects) and vulnerability (lack of satiety, impaired inhibitory processes) show some degree of translation from preclinical findings, and may contribute to escalated cannabis use by human adolescents. PMID:27898071

  19. Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Silva-Correia, J; Oliveira, J M; Caridade, S G; Oliveira, J T; Sousa, R A; Mano, J F; Reis, R L

    2011-06-01

    Intervertebral disc (IVD) degeneration is a challenging clinical problem that urgently demands viable nucleus pulposus (NP) implant materials. The best suited biomaterial for NP regeneration has yet to be identified, but it is believed that biodegradable hydrogel-based materials are promising candidates. In this work, we have developed ionic- and photo-crosslinked methacrylated gellan gum (GG-MA) hydrogels to be used in acellular and cellular tissue-engineering strategies for the regeneration of IVDs. The physicochemical properties of the developed hydrogels were investigated by Fourier-transform infrared spectroscopy, (1) H nuclear magnetic resonance and differential scanning calorimetry. The swelling ability and degradation rate of hydrogels were also analysed in phosphate-buffered saline solution at physiological pH for a period of 30 days. Additionally, the morphology and mechanical properties of the hydrogels were assessed under a scanning electron microscope and dynamic compression, respectively. An in vitro study was carried out to screen possible cytotoxicity of the gellan gum-based hydrogels by culturing rat lung fibroblasts (L929 cells) with hydrogel leachables up to 7 days. The results demonstrated that gellan gum was successfully methacrylated. We observed that the produced GG-MA hydrogels possess improved mechanical properties and lower water uptake ability and degradation rate as compared to gellan gum. This work also revealed that GG-MA hydrogels are non-cytotoxic in vitro, thus being promising biomaterials to be used in IVD tissue-engineering strategies. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Emotions and Human Concern: Adult Education and the Philosophical Thought of Martha Nussbaum

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2014-01-01

    This article argues that philosopher Martha Nussbaum's reflections on the role of the emotions in human flourishing can contribute in important ways to our understanding of the emotions in adult education contexts. The article summarises Nussbaum's exploration of the contributions of classical philosophers like Socrates, Aristotle, and…

  1. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs

    PubMed Central

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano

    2016-01-01

    Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394

  2. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

    PubMed

    Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M

    2012-07-01

    Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

  3. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    PubMed Central

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  4. Histological and reference system for the analysis of mouse intervertebral disc.

    PubMed

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    PubMed

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  6. Comparison of Intervertebral ROM in Multi-Level Cadaveric Lumbar Spines Using Distinct Pure Moment Loading Approaches.

    PubMed

    Santoni, Brandon; Cabezas, Andres F; Cook, Daniel J; Yeager, Matthew S; Billys, James B; Whiting, Benjamin; Cheng, Boyle C

    2015-01-01

    Pure-moment loading is the test method of choice for spinal implant evaluation. However, the apparatuses and boundary conditions employed by laboratories in performing spine flexibility testing vary. The purpose of this study was to quantify the differences, if they exist, in intervertebral range of motion (ROM) resulting from different pure-moment loading apparatuses used in two laboratories. Twenty-four (laboratory A) and forty-two (laboratory B) intact L1-S1 specimens were loaded using pure moments (±7.5 Nm) in flexion-extension (FE), lateral bending (LB) and axial torsion (AT). At laboratory A, pure moments were applied using a system of cables, pulleys and suspended weights in 1.5 Nm increments. At laboratory B, specimens were loaded in a pneumatic biaxial test frame mounted with counteracting stepper-motor-driven biaxial gimbals. ROM was obtained in both labs using identical optoelectronic systems and compared. In FE, total L1-L5 ROM was similar, on average, between the two laboratories (lab A: 37.4° ± 9.1°; lab B: 35.0° ± 8.9°, p=0.289). Larger apparent differences, on average, were noted between labs in AT (lab A: 19.4° ± 7.3°; lab B: 15.7° ± 7.1°, p=0.074), and this finding was significant for combined right and left LB (lab A: 45.5° ± 11.4°; lab B: 35.3° ± 8.5°, p < 0.001). To our knowledge, this is the first study comparing ROM of multi-segment lumbar spines between laboratories utilizing different apparatuses. The results of this study show that intervertebral ROM in multi-segment lumbar spine constructs are markedly similar in FE loading. Differences in boundary conditions are likely the source of small and sometimes statistically significant differences between the two techniques in LB and AT ROM. The relative merits of each testing strategy with regard to the physiologic conditions that are to be simulated should be considered in the design of a study including LB and AT modes of loading. An understanding of these differences also

  7. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis.

    PubMed

    Gervais, Julien; Périé, Delphine; Parent, Stefan; Labelle, Hubert; Aubin, Carl-Eric

    2012-12-03

    Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle ≤50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one- and two-way ANOVAs. There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the distribution of the MR

  8. Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering

    PubMed Central

    Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.

    2013-01-01

    Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883

  9. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2006-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  10. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  11. Anisotropic Multishell Analytical Modeling of an Intervertebral Disk Subjected to Axial Compression.

    PubMed

    Demers, Sébastien; Nadeau, Sylvie; Bouzid, Abdel-Hakim

    2016-04-01

    Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models. This paper presents an analytical method based on thin-shell, beam-on-elastic-foundation and composite materials theories to evaluate the stresses in the anulus fibrosus (AF) of an axisymmetric disk composed of multiple thin lamellae. Large deformations of the soft tissues are accounted for using an iterative method and the anisotropic material properties are derived from a published biaxial experiment. The results are compared to those obtained by FE modeling. The results demonstrate the capability of the analytical model to evaluate the stresses at any location of the simplified AF. It also demonstrates that anisotropy reduces stresses in the lamellae. This novel model is a preliminary step in developing valuable analytical models of IVDs, and represents a distinctive groundwork that is able to sustain future refinements. This paper suggests important features that may be included to improve model realism.

  12. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  13. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    PubMed

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  14. How Long and Low Can You Go? Effect of Conformation on the Risk of Thoracolumbar Intervertebral Disc Extrusion in Domestic Dogs

    PubMed Central

    Packer, Rowena M. A.; Hendricks, Anke; Volk, Holger A.; Shihab, Nadia K.; Burn, Charlotte C.

    2013-01-01

    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for ‘long and low’ morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders. PMID:23894518

  15. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.

    PubMed

    Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart

    2018-03-21

    The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Functional histology of the macula flava in the human vocal fold--Part 1: its role in the adult vocal fold.

    PubMed

    Sato, Kiminori; Umeno, Hirohito; Nakashima, Tadashi

    2010-01-01

    This study aims to clarify the role of the maculae flavae (MFe) in the human adult vocal fold mucosa (VFM). Our current results concerning MFe in the human adult VFM are summarized. MFe were found to be composed of dense masses of vocal fold stellate cells (VFSCs) and extracellular matrices (EM), such as fibrous proteins and glycosaminoglycans, which are essential for the EM in the human VFM. VFSCs in the MFe demonstrated marked morphologic differences from conventional fibroblasts. They were irregular and stellate in shape and possessed slender cytoplasmic processes. They had well-developed intracellular organelles. A number of vesicles were present at the periphery of the cytoplasm. They constantly synthesized EM. The VFSCs possessed lipid droplets and stored vitamin A. VFSCs formed an independent cell category of cells in the human VFM. The VFSCs in aged adult MFe decreased their activity, and had abnormal metabolism. Human MFe including VFSCs seem to be involved in the metabolism of EM which are essential for the viscoelasticity of the lamina propria of the VFM, and to be responsible for maintaining the characteristic layered structure of the human VFM. Age-related changes in VFSCs were found to influence the metabolism of EM in the VFM. (c) 2010 S. Karger AG, Basel.

  17. Equality and Human Capital: Conflicting Concepts within State-Funded Adult Education in Ireland

    ERIC Educational Resources Information Center

    Hurley, Kevin

    2015-01-01

    This article offers a critique of the concept of equality as it informs the White Paper on Adult Education: Learning for Life (2000). It also outlines the extent to which human capital theory can be seen to have effectively colonised lifelong learning from the outset of its adoption by the European Union with highly constraining implications for…

  18. Update on the Notochord Including its Embryology, Molecular Development, and Pathology: A Primer for the Clinician

    PubMed Central

    Ramesh, Tushar; Nagula, Sai V; Saker, Erfanul; Shoja, Mohammadali; Loukas, Marios; Oskouian, Rod J; Tubbs, R. Shane

    2017-01-01

    The notochord is a rod-like embryological structure, which plays a vital role in the development of the vertebrate. Though embryological, remnants of this structure have been observed in the nucleus pulposus of the intervertebral discs of normal adults. Pathologically, these remnants can give rise to slow-growing and recurrent notochord-derived tumors called chordomas. Using standard search engines, the literature was reviewed regarding the anatomy, embryology, molecular development, and pathology of the human notochord. Clinicians who interpret imaging or treat patients with pathologies linked to the notochord should have a good working knowledge of its development and pathology. PMID:28480155

  19. Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.

    PubMed

    Bhunia, Bibhas K; Kaplan, David L; Mandal, Biman B

    2018-01-16

    Recapitulation of the form and function of complex tissue organization using appropriate biomaterials impacts success in tissue engineering endeavors. The annulus fibrosus (AF) represents a complex, multilamellar, hierarchical structure consisting of collagen, proteoglycans, and elastic fibers. To mimic the intricacy of AF anatomy, a silk protein-based multilayered, disc-like angle-ply construct was fabricated, consisting of concentric layers of lamellar sheets. Scanning electron microscopy and fluorescence image analysis revealed cross-aligned and lamellar characteristics of the construct, mimicking the native hierarchical architecture of the AF. Induction of secondary structure in the silk constructs was confirmed by infrared spectroscopy and X-ray diffraction. The constructs showed a compressive modulus of 499.18 ± 86.45 kPa. Constructs seeded with porcine AF cells and human mesenchymal stem cells (hMSCs) showed ∼2.2-fold and ∼1.7-fold increases in proliferation on day 14, respectively, compared with initial seeding. Biochemical analysis, histology, and immunohistochemistry results showed the deposition of AF-specific extracellular matrix (sulfated glycosaminoglycan and collagen type I), indicating a favorable environment for both cell types, which was further validated by the expression of AF tissue-specific genes. The constructs seeded with porcine AF cells showed ∼11-, ∼5.1-, and ∼6.7-fold increases in col I α 1 , sox 9, and aggrecan genes, respectively. The differentiation of hMSCs to AF-like tissue was evident from the enhanced expression of the AF-specific genes. Overall, the constructs supported cell proliferation, differentiation, and ECM deposition resulting in AF-like tissue features based on ECM deposition and morphology, indicating potential for future studies related to intervertebral disc replacement therapy.

  20. Identification of Distinct Layers Within the Stratified Squamous Epithelium of the Adult Human True Vocal Fold

    PubMed Central

    Dowdall, Jayme R.; Sadow, Peter M.; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C.; Franco, Ramon A.; Rajagopal, Jayaraj

    2016-01-01

    Objectives/Hypothesis A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Study Design Qualitative study with adult human larynges. Methods Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). Results We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. Conclusion We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. Level of Evidence N/A. PMID:25988619

  1. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    PubMed

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Effect of collagen fibre orientation on intervertebral disc torsion mechanics.

    PubMed

    Yang, Bo; O'Connell, Grace D

    2017-12-01

    The intervertebral disc is a complex fibro-cartilaginous material, consisting of a pressurized nucleus pulposus surrounded by the annulus fibrosus, which has an angle-ply structure. Disc injury and degeneration are noted by significant changes in tissue structure and function, which significantly alters stress distribution and disc joint stiffness. Differences in fibre orientation are thought to contribute to changes in disc torsion mechanics. Therefore, the objective of this study was to evaluate the effect of collagen fibre orientation on internal disc mechanics under compression combined with axial rotation. We developed and validated a finite element model (FEM) to delineate changes in disc mechanics due to fibre orientation from differences in material properties. FEM simulations were performed with fibres oriented at [Formula: see text] throughout the disc (uniform by region and fibre layer). The initial model was validated by published experimental results for two load conditions, including [Formula: see text] axial compression and [Formula: see text] axial rotation. Once validated, fibre orientation was rotated by [Formula: see text] or [Formula: see text] towards the horizontal plane, resulting in a decrease in disc joint torsional stiffness. Furthermore, we observed that axial rotation caused a sinusoidal change in disc height and radial bulge, which may be beneficial for nutrient transport. In conclusion, including anatomically relevant fibre angles in disc joint FEMs is important for understanding stress distribution throughout the disc and will be important for understanding potential causes for disc injury. Future models will include regional differences in fibre orientation to better represent the fibre architecture of the native disc.

  3. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  4. Neuropeptide Y in the Adult and Fetal Human Pineal Gland

    PubMed Central

    Møller, Morten; Phansuwan-Pujito, Pansiri

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally. PMID:24757681

  5. Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner

    PubMed Central

    Sinding, Charlotte; Thomas-Danguin, Thierry; Chambault, Adeline; Béno, Noelle; Dosne, Thibaut; Chabanet, Claire; Schaal, Benoist; Coureaud, Gérard

    2013-01-01

    Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints. PMID:23341948

  6. Health Human Capital in Sub-Saharan Africa: Conflicting Evidence from Infant Mortality Rates and Adult Heights

    PubMed Central

    Akachi, Yoko; Canning, David

    2011-01-01

    We investigate trends in cohort infant mortality rates and adult heights in 39 developing countries since 1960. In most regions of the world improved nutrition, and reduced childhood exposure to disease, have lead to improvements in both infant mortality and adult stature. In Sub-Saharan Africa, however, despite declining infant mortality rates, adult heights have not increased. We argue that in Sub-Saharan Africa the decline in infant mortality may have been due to interventions that prevent infant deaths rather than improved nutrition and childhood morbidity. Despite declining infant mortality, Sub-Saharan Africa may not be experiencing increases in health human capital. PMID:20634153

  7. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  8. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate

  9. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2.

    PubMed

    Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira

    2017-11-01

    The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.

  10. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  11. Intervertebral disc segmentation in MR images with 3D convolutional networks

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2017-02-01

    The vertebral column is a complex anatomical construct, composed of vertebrae and intervertebral discs (IVDs) supported by ligaments and muscles. During life, all components undergo degenerative changes, which may in some cases cause severe, chronic and debilitating low back pain. The main diagnostic challenge is to locate the pain generator, and degenerated IVDs have been identified to act as such. Accurate and robust segmentation of IVDs is therefore a prerequisite for computer-aided diagnosis and quantification of IVD degeneration, and can be also used for computer-assisted planning and simulation in spinal surgery. In this paper, we present a novel fully automated framework for supervised segmentation of IVDs from three-dimensional (3D) magnetic resonance (MR) spine images. By considering global intensity appearance and local shape information, a landmark-based approach is first used for the detection of IVDs in the observed image, which then initializes the segmentation of IVDs by coupling deformable models with convolutional networks (ConvNets). For this purpose, a 3D ConvNet architecture was designed that learns rich high-level appearance representations from a training repository of IVDs, and then generates spatial IVD probability maps that guide deformable models towards IVD boundaries. By applying the proposed framework to 15 3D MR spine images containing 105 IVDs, quantitative comparison of the obtained against reference IVD segmentations yielded an overall mean Dice coefficient of 92.8%, mean symmetric surface distance of 0.4 mm and Hausdorff surface distance of 3.7 mm.

  12. Reduced Nucleus Pulposus Glycosaminoglycan Content Alters Intervertebral Disc Dynamic Viscoelastic Mechanics

    PubMed Central

    Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936

  13. A Comparison between the Purpose and Goals of Human Resource Development and Adult Education: Whose Interests Are Being Served?

    ERIC Educational Resources Information Center

    Batchelder, John Stuart; Byxbe, Ferris

    2002-01-01

    The purposes and goals of adult education and human resource development (HRD) differ and even clash. They find common ground in the personal development function but differ in the control and motivation for learning. Adult education seeks to enable learner self-determination; HRD's focus is enabling organizational control through employee…

  14. The expression patterns of pro-apoptotic and anti-apoptotic factors in human fetal and adult ovary.

    PubMed

    Poljicanin, Ana; Vukusic Pusic, Tanja; Vukojevic, Katarina; Caric, Ana; Vilovic, Katarina; Tomic, Snjezana; Soljic, Violeta; Saraga-Babic, Mirna

    2013-07-01

    The influence of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins on the cell death (caspase-3, TUNEL) of different ovarian cell lineages was immunohistochemically analyzed in six fetal and five adult human ovaries in order to disclose possible mechanisms of cell number control. Mild to moderate expression of Bcl-2 characterized ovarian surface epithelium, follicular cells and oocytes of 15 and 22 week human ovaries, while expression of Bax and caspase-3 gradually increased in all ovarian cell populations, except caspase-3 in the ovarian surface epithelium. Different levels of Bax and Bcl-2 proteins co-expression characterized fetal ovarian cells, while TUNEL and caspase-3 co-expression was found only in some of them. In adult ovaries, Bcl-2 was moderately and Bax strongly expressed in the surface ovarian epithelium and stroma. Bcl-2 and Bax expression in granulosa and theca interna cells varied depending on the stage of follicular atresia. Caspase-3 apoptotic cells characterized granulosa cells of adult atretic follicles. Our results indicate that intracellular levels of Bcl-2 and Bax protein might regulate the final destiny of developing germ cells. Caspase-3 dependent apoptosis seems to be the most important, but not the only cell death pathway in ovaries. In adult ovaries, caspase-dependent cell death characterized granulosa cells, but not the germ cells. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Closure of the vertebral canal in human embryos and fetuses.

    PubMed

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  16. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies.

    PubMed

    Kasimatis, Georgios B; Panagiotopoulos, Elias; Megas, Panagiotis; Matzaroglou, Charalambos; Gliatis, John; Tyllianakis, Minos; Lambiris, Elias

    2008-07-01

    Spinal cord injury without radiographic abnormalities (SCIWORA) is thought to represent mostly a pediatric entity and its incidence in adults is rather underreported. Some authors have also proposed the term spinal cord injury without radiologic evidence of trauma, as more precisely describing the condition of adult SCIWORA in the setting of cervical spondylosis. The purpose of the present study was to evaluate adult patients with cervical spine injuries and radiological-clinical examination discrepancy, and to discuss their characteristics and current management. During a 16-year period, 166 patients with a cervical spine injury were admitted in our institution (Level I trauma center). Upper cervical spine injuries (occiput to C2, 54 patients) were treated mainly by a Halo vest, whereas lower cervical spine injuries (C3-T1, 112 patients) were treated surgically either with an anterior, or posterior procedure, or both. Seven of these 166 patients (4.2%) had a radiologic-clinical mismatch, i.e., they presented with frank spinal cord injury with no signs of trauma, and were included in the study. Magnetic resonance imaging was available for 6 of 7 patients, showing intramedullary signal changes in 5 of 6 patients with varying degrees of compression from the disc and/or the ligamentum flavum, whereas the remaining patient had only traumatic herniation of the intervertebral disc and ligamentum flavum bulging. Follow-up period was 6.4 years on average (1-10 years). This retrospective chart review provides information on adult patients with cervical spinal cord injuries whose radiographs and computed tomography studies were normal. It furthers reinforces the pathologic background of SCIWORA in an adult population, when evaluated by magnetic resonance imaging. Particularly for patients with cervical spondylosis, special attention should be paid with regard to vascular compromise by predisposing factors such as smoking or vascular disease, since they probably contribute in

  17. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers.

    PubMed

    Amalric, Marie; Wang, Liping; Pica, Pierre; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a "geometrical language" with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.

  18. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

    PubMed Central

    Amalric, Marie; Wang, Liping; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. PMID:28125595

  19. C-130J Human Vibration

    DTIC Science & Technology

    2005-08-01

    Hulshof , 1999; Dupuis & Zerlett, 1986; Kittusamy & Buchholz, 2004; Seidel, 1993). There is also evidence of intervertebral disc problems and...Bovenzi, M., & Hulshof , C.T.J. (1999). An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and

  20. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    PubMed

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  1. 4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin

    PubMed Central

    1984-01-01

    The 4F2 monoclonal antibody (mAb) has been shown to recognize a 120- kilodalton glycoprotein expressed on the cell surface of human peripheral blood monocytes, activated (but not resting) T or B cells, and T and B lymphoblastoid cell lines. In this report we show that 4F2 mAb specifically binds to the surface of adherent human embryonic fibroblasts but fails to bind to normal adult fibroblasts. Moreover, 4F2 antigen was expressed on sarcoma-derived or SV40-transformed adult fibroblastic cells. Finally, addition of 4F2 mAb inhibited the growth of cultured HT-1080 fibrosarcoma cell line, but had no inhibitory effect on various embryonic and adult normal or transformed fibroblasts. PMID:6538202

  2. The effect of human engagement depicted in contextual photographs on the visual attention patterns of adults with traumatic brain injury.

    PubMed

    Thiessen, Amber; Brown, Jessica; Beukelman, David; Hux, Karen

    2017-09-01

    Photographs are a frequently employed tool for the rehabilitation of adults with traumatic brain injury (TBI). Speech-language pathologists (SLPs) working with these individuals must select photos that are easily identifiable and meaningful to their clients. In this investigation, we examined the visual attention response to camera- (i.e., depicted human figure looking toward camera) and task-engaged (i.e., depicted human figure looking at and touching an object) contextual photographs for a group of adults with TBI and a group of adults without neurological conditions. Eye-tracking technology served to accurately and objectively measure visual fixations. Although differences were hypothesized given the cognitive deficits associated with TBI, study results revealed little difference in the visual fixation patterns of adults with and without TBI. Specifically, both groups of participants tended to fixate rapidly on the depicted human figure and fixate more on objects in which a human figure was task-engaged than when a human figure was camera-engaged. These results indicate that strategic placement of human figures in a contextual photograph may modify the way in which individuals with TBI visually attend to and interpret photographs. In addition, task-engagement appears to have a guiding effect on visual attention that may be of benefit to SLPs hoping to select more effective contextual photographs for their clients with TBI. Finally, the limited differences in visual attention patterns between individuals with TBI and their age and gender matched peers without neurological impairments indicates that these two groups find similar photograph regions to be worthy of visual fixation. Readers will gain knowledge regarding the photograph selection process for individuals with TBI. In addition, readers will be able to identify camera- and task-engaged photographs and to explain why task-engagement may be a beneficial component of contextual photographs. Copyright © 2017

  3. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice.

    PubMed

    Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling

    2018-01-01

    Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.

  4. Early-life experiences and the development of adult diseases with a focus on mental illness: The Human Birth Theory.

    PubMed

    Maccari, Stefania; Polese, Daniela; Reynaert, Marie-Line; Amici, Tiziana; Morley-Fletcher, Sara; Fagioli, Francesca

    2017-02-07

    In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. A biokinetic model for systemic technetium in adult humans

    DOE PAGES

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T 1/2=2.1x10 5 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T 1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body formore » use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  6. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.

    2008-08-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.

  7. Quantitative Chemical Exchange Saturation Transfer MRI of Intervertebral Disc in a Porcine Model

    PubMed Central

    Zhou, Zhengwei; Bez, Maxim; Tawackoli, Wafa; Giaconi, Joseph; Sheyn, Dmitriy; de Mel, Sandra; Maya, Marcel M.; Pressman, Barry D.; Gazit, Zulma; Pelled, Gadi; Gazit, Dan; Li, Debiao

    2017-01-01

    Purpose Previous studies have associated low pH in interver-tebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. Methods The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. Results Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10−pH + 196.9, R2 = 0.7883. Conclusion The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. PMID:27670140

  8. In-situ photopolymerized and monitored implants: successful application to an intervertebral disc replacement

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2016-02-01

    Photopolymerization is a common method to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler by using ultra-violet light. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. We designed a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 500 μm in diameter. Using a combination of Raman and fluorescence spectroscopy, the current state of the photopolymerization was inferred and monitored in real time within an in-vitro tissue model. It was also possible to determine roughly the position of the probe within the tissue cavity by analysing the fluorescence signal. Using the technique hydrogels were successfully implanted into a bovine intervertebral disc model. Mechanical tests could not obstruct the functionality of the implant. Finally, the device was also used for other application such as the implantation of a hydrogel into an aneurysm tissue cavity which will be presented at the conference.

  9. The Model Human Processor and the Older Adult: Parameter Estimation and Validation Within a Mobile Phone Task

    PubMed Central

    Jastrzembski, Tiffany S.; Charness, Neil

    2009-01-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; Mage = 20) and older (N = 20; Mage = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies. PMID:18194048

  10. The Model Human Processor and the older adult: parameter estimation and validation within a mobile phone task.

    PubMed

    Jastrzembski, Tiffany S; Charness, Neil

    2007-12-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; M-sub(age) = 20) and older (N = 20; M-sub(age) = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies.

  11. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro?

    PubMed

    Mincheva, M; Sandhowe-Klaverkamp, R; Wistuba, J; Redmann, K; Stukenborg, J-B; Kliesch, S; Schlatt, S

    2018-02-01

    Can enzymatically dispersed testicular cells from adult men reassemble into seminiferous cord-like structures in vitro? Adult human testicular somatic cells reassembled into testicular cord-like structures via dynamic interactions of Sertoli and peritubular cells. In vitro approaches using dispersed single cell suspensions of human testes to generate seminiferous tubule structures and to initiate their functionality have as yet shown only limited success. Testes from 15 adult gender dysphoria patients (mean ± standard deviation age 35 ± 9.3 years) showing spermatogonial arrest became available for this study after sex-reassignment surgery. In vitro primary testicular somatic cell cultures were generated to explore the self-organizing ability of testicular somatic cells to form testis cords over a 2-week period. Morphological phenotype, protein marker expression and temporal dynamics of cell reassembly were analyzed. Cell suspensions obtained by two-step enzymatic digestion were plated onto glass coverslips in 24-well plates. To obtain adherent somatic cells, the supernatant was discarded on Day 2. The culture of the attached cell population was continued. Reassembly into cord-like structures was analyzed daily by microscopic observations. Endpoints were qualitative changes in morphology. Cell types were characterized by phase-contrast microscopy and immunohistochemistry. Dynamics of cord formation were recorded by time-lapse microscopy. Primary adult human testicular cells underwent sequential morphological changes including compaction and reaggregation resulting in round or elongated cord-like structures. Time-lapse video recordings within the first 4 days of culture revealed highly dynamic processes of migration and coalescence of reaggregated cells. The cellular movements were mediated by peritubular cells. Immunohistochemical analysis showed that both SRY-related high mobility box 9-positive Sertoli and α-smooth muscle actin-positive peritubular myoid cells

  12. The effect of the X-Stop implantation on intervertebral foramen, segmental spinal canal length and disc space in elderly patients with lumbar spinal stenosis.

    PubMed

    Wan, Zongmiao; Wang, Shaobai; Kozanek, Michal; Xia, Qun; Mansfield, Frederick L; Lü, Guohua; Wood, Kirkham B; Li, Guoan

    2012-03-01

    To evaluate the biomechanical effect of the X-Stop device on the intervertebral foramen (IVF) and segmental spinal canal length (SSCL), as well as the intervertebral disc space at the implanted and the adjacent segments in patients with lumbar spinal stenosis (LSS). Eight elderly patients with LSS, scheduled for X-stop implantation, were CT or MRI scanned to construct 3D vertebral models (L2-S1). Before and after the surgery, each patient was also imaged using a dual-fluoroscopic image system during weight-bearing standing and maximum extension-flexion. The positions of the vertebrae were then determined using an established 2D-3D model matching method. The data revealed that the postoperative IVF area was significantly increased by 32.9% (or 32 mm2) (p<0.05) and the IVF width was increased by 24.4% (or 1.1 mm, p=0.06) during extension, but with minimal change in standing and flexion. The IVF heights were significantly (p<0.05) increased at standing by 1.2 mm and extension by 1.8 mm, but not at flexion. The SSCL were significantly (p<0.05) increased at extension by 1.2 mm, but not at standing and flexion. Anterior disc space of the implanted level was significantly decreased from 8.0 to 6.6 mm during standing. The X-Stop implantation efficiently enlarged the IVF area in the elderly patients with LSS at the operated level with little biomechanical effect immediately on the superior and inferior adjacent levels. However, it reduced the anterior disc space at the implanted level.

  13. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  14. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  15. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  16. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    PubMed

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  17. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates.

    PubMed

    Abdala, C

    2000-01-01

    Distortion product otoacoustic emissions (DPOAEs) are thought to be by-products of an active amplification process in the cochlea and thus serve as a metric for evaluating the integrity of this process. Because the cochlear amplifier functions in a level-dependent fashion, DPOAEs recorded as a function of stimulus level (i.e., a DPOAE growth function) may provide important information about the range and operational characteristics of the cochlear amplifier. The DPOAE growth functions recorded in human adults and neonates may provide information about the maturation of these active cochlear processes. Two experiments were conducted. Experiment I included normal-hearing adults and term-born neonates. The 2f1-f2 DPOAE growth functions were recorded for both age groups at three f2 frequencies. Experiment II was an extension of the first experiment but added a subject group of premature neonates. The results of these studies indicate that DPOAE growth functions most often show amplitude saturation and nonmonotonic growth for all age groups. However, premature neonates show monotonic growth and the absence of amplitude saturation more often than adults. Those premature neonates who do show saturation also show an elevated threshold for amplitude saturation relative to adults. In contrast, term neonates are adultlike for most measures except that they show a larger percentage of nonsaturating growth functions than adults. These results may indicate immaturity in cochlear amplifier function prior to term birth in humans. Outer hair cell function and/or efferent regulation of outer hair cell function are hypothesized sources of this immaturity, although some contribution from the immature middle ear cannot be ruled out.

  18. The use of computerized image guidance in lumbar disk arthroplasty.

    PubMed

    Smith, Harvey E; Vaccaro, Alexander R; Yuan, Philip S; Papadopoulos, Stephen; Sasso, Rick

    2006-02-01

    Surgical navigation systems have been increasingly studied and applied in the application of spinal instrumentation. Successful disk arthroplasty requires accurate midline and rotational positioning for optimal function and longevity. A surgical simulation study in human cadaver specimens was done to evaluate and compare the accuracy of standard fluoroscopy, computer-assisted fluoroscopic image guidance, and Iso-C3D image guidance in the placement of lumbar intervertebral disk replacements. Lumbar intervertebral disk prostheses were placed using three different image guidance techniques in three human cadaver spine specimens at multiple levels. Postinstrumentation accuracy was assessed with thin-cut computed tomography scans. Intervertebral disk replacements placed using the StealthStation with Iso-C3D were more accurately centered than those placed using the StealthStation with FluoroNav and standard fluoroscopy. Intervertebral disk replacements placed with Iso-C3D and FluoroNav had improved rotational divergence compared with standard fluoroscopy. Iso-C3D and FluoroNav had a smaller interprocedure variance than standard fluoroscopy. These results did not approach statistical significance. Relative to both virtual and standard fluoroscopy, use of the StealthStation with Iso-C3D resulted in improved accuracy in centering the lumbar disk prosthesis in the coronal midline. The StealthStation with FluoroNav appears to be at least equivalent to standard fluoroscopy and may offer improved accuracy with rotational alignment while minimizing radiation exposure to the surgeon. Surgical guidance systems may offer improved accuracy and less interprocedure variation in the placement of intervertebral disk replacements than standard fluoroscopy. Further study regarding surgical navigation systems for intervertebral disk replacement is warranted.

  19. Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration

    PubMed Central

    Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn

    2013-01-01

    Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these

  20. Catabolic effects of endothelial cell-derived microparticles on disc cells: Implications in intervertebral disc neovascularization and degeneration.

    PubMed

    Pohl, Pedro H I; Lozito, Thomas P; Cuperman, Thais; Yurube, Takashi; Moon, Hong J; Ngo, Kevin; Tuan, Rocky S; St Croix, Claudette; Sowa, Gwendolyn A; Rodrigues, Luciano M R; Kang, James D; Vo, Nam V

    2016-08-01

    Neovascularization of intervertebral discs, a phenomenon considered pathological since normal discs are primarily avascular structures, occurs most frequently in annulus fibrosus (AF) of degenerated discs. Endothelial cells (ECs) are involved in this process, but the mechanism of the interaction between AF and endothelial cells is unclear. In this study, we evaluated the effects on matrix catabolic activity of AF cells by the extracellular endothelial microparticles (EMPs) and soluble protein factors (SUP fraction) produced from ECs. Passage 1 human AF cells grown in monolayer cultures were treated for 72 h with 250 µg of EMPs or SUP fraction isolated from culture of the microvascular endothelial cell line, HEMC-I. Live-cell imaging revealed uptake of EMPs by AF cells. RT-PCR analysis demonstrated increased mRNA expression of MMP-1 (50.3-fold), MMP-3 (4.5-fold) and MMP-13 (5.5-fold) in AF cell cultures treated with EMPs compared to untreated control. Western analysis also demonstrated increased MMP protein expression in EMP-treated AF cells. AF cells treated with the SUP fraction also exhibited a dramatic increase in MMP mRNA and protein expression. Increased MMP expression is primarily due to EMP or SUP stimulation of AF cells since EMPs or SUP fraction alone contained negligible amount of MMPs. Interestingly, MMP activity was elevated in AF cell cultures treated with EMPs but not with SUP. This study revealed enhanced matrix catabolism as a molecular consequence of action of ECs on AF cells via EMPs, which might be expected during neo-angiogenesis of degenerating disc. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1466-1474, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Upregulation of BDNF and NGF in cervical intervertebral discs exposed to painful whole-body vibration.

    PubMed

    Kartha, Sonia; Zeeman, Martha E; Baig, Hassam A; Guarino, Benjamin B; Winkelstein, Beth A

    2014-09-01

    In vivo study defining expression of the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), in cervical intervertebral discs after painful whole-body vibration (WBV). The goal of this study is to determine if BDNF and NGF are expressed in cervical discs after painful WBV in a rat model. WBV is a possible source of neck pain and has been implicated as increasing the risk for disc disorders. Typically, aneural regions of painful human lumbar discs exhibit hyperinnervation, suggesting nerve ingrowth as potentially contributing to disc degeneration and pain. BDNF and NGF are upregulated in painfully degenerate lumbar discs and hypothesized to contribute to this pathology. Male Holtzman rats underwent 7 days of repeated WBV (15 Hz, 30 min/d) or sham exposures, followed by 7 days of rest. Cervical discs were collected for analysis of BDNF and NGF expression through RT-qPCR and Western blot analysis. Immunohistochemistry also evaluated their regional expression in the disc. Vibration significantly increases BDNF messenger ribonucleic acid (mRNA) levels (P=0.036), as well as total-NGF mRNA (P=0.035). Protein expression of both BDNF (P=0.006) and the 75-kDa NGF (P=0.045) increase by nearly 4- and 10-fold, respectively. Both BDNF mRNA (R=0.396; P=0.012) and protein (R=0.280; P=0.035) levels are significantly correlated with the degree of behavioral sensitivity (i.e., pain) at day 14. Total-NGF mRNA is also significantly correlated with the extent of behavioral sensitivity (R=0.276; P=0.044). Both neurotrophins are most increased in the inner annulus fibrosus and nucleus pulposus. The increases in BDNF and NGF in the cervical discs after painful vibration are observed in typically aneural regions of the disc, consistent with reports of its hyperinnervation. Yet, the induction of nerve ingrowth into the disc was not explicitly investigated. Neurotrophin expression also correlates with behavioral sensitivity, suggesting a role for both

  2. Limits on efficient human mindreading: convergence across Chinese adults and Semai children.

    PubMed

    Wang, Bo; Hadi, Nur Shafiqah Abdul; Low, Jason

    2015-11-01

    We tested Apperly and Butterfill's (2009, Psychological Review, 116, 753) theory that humans have two mindreading systems whereby the efficient-system guiding anticipatory glances displays signature limits that do not apply to the flexible system guiding verbal predictions. Experiments 1 and 2 tested urban Mainland-Chinese adults (n = 64) and Experiment 3 tested Semai children living in the rainforests of Peninsular Malaysia (3- to 4-year-olds, n = 60). Participants - across different ages, groups and methods - anticipated others' false-beliefs about object-location but not object-identity. Convergence in signature limits signalled that the early-developing efficient system involved minimal theory-of-mind. Chinese adults and older Semai children showed flexibility in their direct predictions. The flexible mindreading system in ascribing others' beliefs as such was task-sensitive and implicated maturational and cultural contributions. © 2015 The British Psychological Society.

  3. Adult education as a human right: The Latin American context and the ecopedagogic perspective

    NASA Astrophysics Data System (ADS)

    Gadotti, Moacir

    2011-08-01

    This article presents the concept and practice of adult education as a key issue for Brazil and other Latin American countries, both for formal and non-formal education in the public and private sectors. It includes citizen education focused on democratisation of society and sustainable development. The concept is pluralist and ideological as well as technical. All along the history of contemporary education it is essential to highlight the importance of the CONFINTEA conferences for the construction of an expanded vision of this concept. Adult education is understood as a human right. The right to education does not end when a person has reached the so-called "proper" age; it continues to be a right for the duration of everyone's entire life. This article explores Paulo Freire's contribution, particularly the methodology of MOVA (Youth and Adult Literacy Movement). It also presents the ecopedagogic perspective, which was inspired by Paulo Freire's legacy. Finally, this article stresses the need to support a long-term policy for adult education, following the recommendations of the Civil Society International Forum (FISC) and CONFINTEA VI, both held in Belém, Brazil, in 2009.

  4. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging.

    PubMed

    Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles

    2012-10-12

    The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. Multilinear regressions showed that 45 to 80% of the Young's modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural

  5. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  6. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2014-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  7. Stepwise immortalization and transformation of adult human prostate epithelial cells by a combination of HPV-18 and v-Ki-ras.

    PubMed Central

    Rhim, J S; Webber, M M; Bello, D; Lee, M S; Arnstein, P; Chen, L S; Jay, G

    1994-01-01

    Recent investigations have shown the presence of ras gene mutations and human papillomavirus (HPV) DNA in prostate carcinomas. In the present study, secondary adult human prostatic epithelial cells, upon transfection with a plasmid containing the entire HPV-18 genome, acquired an indefinite life-span in culture but did not undergo malignant conversion. Subsequent infection of these immortalized cells with the Kirsten murine sarcoma virus, which contains an activated Ki-ras oncogene, induced morphological transformation that led to the acquisition of neoplastic properties. These findings demonstrate the malignant transformation of adult human prostate epithelial cells in culture by a combination of viral oncogenes and the successive roles of HPV infection and Ki-ras activation in a multistep process responsible for prostate carcinogenesis. Images PMID:7991549

  8. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    PubMed

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  9. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  10. A Clinical Comparison of Anterior Cervical Plates Versus Stand-Alone Intervertebral Fusion Devices for Single-Level Anterior Cervical Discectomy and Fusion Procedures.

    PubMed

    Panchal, Ripul R; Kim, Kee D; Eastlack, Robert; Lopez, John; Clavenna, Andrew; Brooks, Daina M; Joshua, Gita

    2017-03-01

    To compare radiologic and clinical outcomes, including rates of dysphagia and dysphonia, using a no-profile stand-alone intervertebral spacer with integrated screw fixation versus an anterior cervical plate and spacer construct for single-level anterior cervical discectomy and fusion (ACDF) procedures. This multicenter, randomized, prospective study included 54 patients with degenerative disc disease requiring ACDF at a single level at C3-C7. Twenty-six patients underwent single-level ACDF with stand-alone spacers, and 28 with plate fixation and spacers. Analyses were based on comparison of perioperative outcomes, radiologic and clinical metrics, and incidence of dysphagia and/or dysphonia. Mean patient age was 48.8 ± 10.1years (53.7% female). No significant differences were observed between groups in operative time (101.8 ± 34.4 minutes, 114.4 ± 31.5 minutes), estimated blood loss (44.8 ± 76.5 mL, 82.5 ± 195.1 mL), or length of hospital stay (1.2 ± 0.6 days, 1.3 ± 0.6 days). Mean visual analog scale pain scores and Neck Disability Index scores improved significantly from preoperative to last follow-up (10.8 ± 2.6 months) in both groups (P < 0.05). Mean Voice Handicap Index and Eating Assessment Tool scores improved significantly from discharge to last follow-up in both groups (P < 0.05). From discharge to 6 months, the stand-alone spacers group consistently demonstrated greater improvement in Voice Handicap Index. Preoperative intervertebral disc and neuroforaminal heights increased significantly across treatment groups (P < 0.01), and no cases required surgical revision at index or adjacent levels. Anterior cervical discectomy and fusion with stand-alone spacers resulted in similar clinical and radiologic outcomes as compared with plate and spacers and may help minimize postoperative dysphonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing.

    PubMed

    Whatley, Benjamin R; Kuo, Jonathan; Shuai, Cijun; Damon, Brooke J; Wen, Xuejun

    2011-03-01

    A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.

  12. Does core mobility of lumbar total disc arthroplasty influence sagittal and frontal intervertebral displacement? Radiologic comparison with fixed-core prosthesis

    PubMed Central

    Delécrin, Joël; Allain, Jérôme; Beaurain, Jacques; Steib, Jean-Paul; Chataigner, Hervé; Aubourg, Lucie; Huppert, Jean; Ameil, Marc; Nguyen, Jean-Michel

    2009-01-01

    Background An artificial disc prosthesis is thought to restore segmental motion in the lumbar spine. However, it is reported that disc prosthesis can increase the intervertebral translation (VT). The concept of the mobile-core prosthesis is to mimic the kinematic effects of the migration of the natural nucleus and therefore core mobility should minimize the VT. This study explored the hypothesis that core translation should influence VT and that a mobile core prosthesis may facilitate physiological motion. Methods Vertebral translation (measured with a new method presented here), core translation, range of motion (ROM), and distribution of flexion-extension were measured on flexion-extension, neutral standing, and lateral bending films in 89 patients (63 mobile-core [M]; 33 fixed-core [F]). Results At L4-5 levels the VT with M was lower than with F and similar to the VT of untreated levels. At L5-S1 levels the VT with M was lower than with F but was significantly different compared to untreated levels. At M levels a strong correlation was found between VT and core translation; the VT decreases as the core translation increases. At F levels the VT increases as the ROM increases. No significant difference was found between the ROM of untreated levels and levels implanted with either M or F. Regarding the mobility distribution with M and F we observed a deficit in extension at L5-S1 levels and a similar distribution at L4-5 levels compared to untreated levels. Conclusion The intervertebral mobility was different between M and F. The M at L4-5 levels succeeded to replicate mobility similar to L4-5 untreated levels. The M at L5-S1 succeeded in ROM, but failed regarding VT and mobility distribution. Nevertheless M minimized VT at L5-S1 levels. The F increased VT at both L4-5 and L5-S1. Clinical Relevance This study validates the concept that the core translation of an artificial lumbar disc prosthesis minimizes the VT. PMID:25802632

  13. Therapeutic effects of naringin on degenerative human nucleus pulposus cells for discogenic low back pain.

    PubMed

    Li, Nianhu; Whitaker, Camden; Xu, Zhanwang; Heggeness, Michael; Yang, Shang-You

    2016-10-01

    Over half the population of the world will suffer from moderate or severe low back pain (LBP) during their life span. Studies have shown that naringin, a major flavonoid in grapefruit and an active compound extracted from a Chinese herbal medicine (Rhizoma Drynariae) possesses many pharmacological effects. The aim of this study was to evaluate the influence of naringin on the growth of degenerative human nucleus pulposus (NP) cells, and its repair effects on protein and gene expressions of the cells. This was an in vitro investigation of the human NP cells isolated from degenerated intervertebral discs that were interacted with various concentrated of naringin. This study was exempted by the institutional Human Subjects Committee-2, University of Kansas School of Medicine-Wichita. Degenerative human NP cells were isolated from intervertebral discs of patients with discogenic LBP and cultured at 37°C with 5% CO 2 . The proliferation of NP cells was determined following treatment with various concentrations of naringin. The protein expressions of tumor necrosis factor-α (TNF-α) and Bone morphogenetic protein 2 (BMP-2) were tested using enzyme-linked immunosorbent assay. Aggrecan and type II collagen levels were measured by immunohistological staining. Further examination of the gene expression of aggrecan, Sox6, and MMP3 was performed after intervention with naringin for 3 days. The human NP cells were successfully propagated in culture and stained positive with toluidine blue staining. Naringin effectively enhanced the cell proliferation at an optimal concentration of 20 µg/mL. Naringin treatment resulted in significant inhibition of TNF-α, but elevated protein expressions of BMP-2, collagen II, and aggrecan. Naringin also increased disc matrix gene activity including aggrecan and Sox6, and decreased the gene expression of MMP3. Naringin effectively promotes the proliferation of degenerative human NP cells and improves the recuperation of the cells from

  14. Evaluating human papillomavirus vaccination programs in Canada: should provincial healthcare pay for voluntary adult vaccination?

    PubMed

    Llamazares, Marco; Smith, Robert J

    2008-04-10

    Recently, provincial health programs in Canada and elsewhere have begun rolling out vaccination against human papillomavirus for girls aged 9-13. While vaccination is voluntary, the cost of vaccination is waived, to encourage parents to have their daughters vaccinated. Adult women who are eligible for the vaccine may still receive it, but at a cost of approximately CAN$400. Given the high efficacy and immunogenicity of the vaccine, the possibility of eradicating targeted types of the virus may be feasible, assuming the vaccination programs are undertaken strategically. We develop a mathematical model to describe the epidemiology of vaccination against human papillomavirus, accounting for a widespread childhood vaccination program that may be supplemented by voluntary adult vaccination. A stability analysis is performed to determine the stability of the disease-free equilibrium. The critical vaccine efficacy and immunogenicity thresholds are derived, and the minimum level of adult vaccination required for eradication of targeted types is determined. We demonstrate that eradication of targeted types is indeed feasible, although the burden of coverage for a childhood-only vaccination program may be high. However, if a small, but non-negligible, proportion of eligible adults can be vaccinated, then the possibility of eradication of targeted types becomes much more favourable. We provide a threshold for eradication in general communities and illustrate the results with numerical simulations. We also investigate the effects of suboptimal efficacy and immunogenicity and show that there is a critical efficacy below which eradication of targeted types is not possible. If eradication is possible, then there is a critical immunogenicity such that even 100% childhood vaccination will not eradicate the targeted types of the virus and must be supplemented with voluntary adult vaccination. However, the level of adult vaccination coverage required is modest and may be achieved

  15. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls

    NASA Astrophysics Data System (ADS)

    Carrete, Martina; Tella, José L.

    2013-12-01

    Human-induced rapid environmental changes challenge individuals by creating evolutionarily novel scenarios, where species encounter novel enemies, the new species sometimes being humans themselves. However, little is known about how individuals react to human presence, specifically whether they are able to habituate to human presence, as frequently assumed, or are selected based on their fear of humans. We tested whether fear of humans (measured as flight initiation distance in a diurnal owl) is reduced through habituation to human presence (plasticity) or whether it remains unchanged throughout the individuals' life. Results show an unusually high level of individual consistency in fear of humans throughout the adult lifespan of both rural (r = 0.96) and urban (r = 0.90) birds, lending no support to habituation. Further research should assess the role of inter-individual variability in fear of humans in shaping the distribution of individuals and species in an increasingly humanized world.

  16. Impact of Zika Virus on adult human brain structure and functional organization.

    PubMed

    Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh

    2018-06-01

    To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.

  17. Protocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans

    PubMed Central

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061

  18. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    PubMed

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  19. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  20. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  1. Severe Infections with Human Adenovirus 7d in 2 Adults in Family, Illinois, USA, 2014

    PubMed Central

    Ison, Michael G.

    2016-01-01

    Human adenovirus 7d, a genomic variant with no reported circulation in the United States, was isolated from 2 adults with severe respiratory infections in Illinois. Molecular typing identified a close relationship with strains of the same genome type isolated from cases of respiratory disease in several provinces of China since 2009. PMID:26982199

  2. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Occupational and genetic risk factors associated with intervertebral disc disease.

    PubMed

    Virtanen, Iita M; Karppinen, Jaro; Taimela, Simo; Ott, Jürg; Barral, Sandra; Kaikkonen, Kaisu; Heikkilä, Olli; Mutanen, Pertti; Noponen, Noora; Männikkö, Minna; Tervonen, Osmo; Natri, Antero; Ala-Kokko, Leena

    2007-05-01

    Cross-sectional epidemiologic study. To evaluate the interaction between known genetic risk factors and whole-body vibration for symptomatic intervertebral disc disease (IDD) in an occupational sample. Risk factors of IDD include, among others, whole-body vibration and heredity. In this study, the importance of a set of known genetic risk factors and whole-body vibration was evaluated in an occupational sample of train engineers and sedentary controls. Eleven variations in 8 genes (COL9A2, COL9A3, COL11A2, IL1A, IL1B, IL6, MMP-3, and VDR) were genotyped in 150 male train engineers with an average of 21-year exposure to whole-body vibration and 61 male paper mill workers with no exposure to vibration. Subjects were classified into IDD-phenotype and asymptomatic groups, based on the latent class analysis. The number of individuals belonging to the IDD-phenotype was significantly higher among train engineers (42% of train engineers vs. 17.5% of sedentary workers; P = 0.005). IL1A -889T allele represented a significant risk factor for the IDD-phenotype both in the single marker allelic association test (P = 0.043) and in the logistic regression analysis (P = 0.01). None of the other allele markers was significantly associated with symptoms when analyzed independently. However, for all the SNP markers considered, whole-body vibration represents a nominally significant risk factor. The results suggest that whole-body vibration is a risk factor for symptomatic IDD. Moreover, whole-body vibration had an additive effect with genetic risk factors increasing the likelihood of belonging to the IDD-phenotype group. Of the independent genetic markers, IL1A -889T allele had strongest association with IDD-phenotype.

  4. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas.

    PubMed

    Lardon, Jessy; Corbeil, Denis; Huttner, Wieland B; Ling, Zhidong; Bouwens, Luc

    2008-01-01

    Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.

  5. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer's disease-associated Aβ oligomers.

    PubMed

    Mendes, Niele D; Fernandes, Artur; Almeida, Glaucia M; Santos, Luis E; Selles, Maria Clara; Lyra-Silva, Natalia; Machado, Carla M; Horta-Júnior, José A C; Louzada, Paulo R; De Felice, Fernanda G; Alvez-Leon, Soniza; Marcondes, Jorge; Assirati, João Alberto; Matias, Caio M; Klein, William L; Garcia-Cairasco, Norberto; Ferreira, Sergio T; Neder, Luciano; Sebollela, Adriano

    2018-05-31

    Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  7. Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues.

    PubMed

    Tran, Cassie M; Shapiro, Irving M; Risbud, Makarand V

    2013-08-08

    Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration. © 2013 Elsevier B.V. All rights reserved.

  8. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc

    PubMed Central

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Introduction Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Methods Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-α), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-α and NGF were assessed along with NGF with substance P. Results MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-α was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. Conclusions MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration. PMID:19695094

  9. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc.

    PubMed

    Richardson, Stephen M; Doyle, Paul; Minogue, Ben M; Gnanalingham, Kanna; Hoyland, Judith A

    2009-01-01

    Matrix metalloproteinases (MMPs) are known to be involved in the degradation of the nucleus pulposus (NP) during intervertebral disc (IVD) degeneration. This study investigated MMP-10 (stromelysin-2) expression in the NP during IVD degeneration and correlated its expression with pro-inflammatory cytokines and molecules involved in innervation and nociception during degeneration which results in low back pain (LBP). Human NP tissue was obtained at postmortem (PM) from patients without a history of back pain and graded as histologically normal or degenerate. Symptomatic degenerate NP samples were also obtained at surgery for LBP. Expression of MMP-10 mRNA and protein was analysed using real-time polymerase chain reaction and immunohistochemistry. Gene expression for pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), nerve growth factor (NGF) and the pain-associated neuropeptide substance P were also analysed. Correlations between MMP-10 and IL-1, TNF-alpha and NGF were assessed along with NGF with substance P. MMP-10 mRNA was significantly increased in surgical degenerate NP when compared to PM normal and PM degenerate samples. MMP-10 protein was also significantly higher in degenerate surgical NP samples compared to PM normal. IL-1 and MMP-10 mRNA demonstrated a significant correlation in surgical degenerate samples, while TNF-alpha was not correlated with MMP-10 mRNA. NGF was significantly correlated with both MMP-10 and substance P mRNA in surgical degenerate NP samples. MMP-10 expression is increased in the symptomatic degenerate IVD, where it may contribute to matrix degradation and initiation of nociception. Importantly, this study suggests differences in the pathways involved in matrix degradation between painful and pain-free IVD degeneration.

  10. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  11. Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

    USGS Publications Warehouse

    Brodie, Jedediah; Johnson, Heather; Mitchell, Michael; Zager, Peter; Proffitt, Kelly; Hebblewhite, Mark; Kauffman, Matthew; Johnson, Bruce; Bissonette, John; Bishop, Chad; Gude, Justin; Herbert, Jeff; Hersey, Kent R.; Hurley, Mark; Lukacs, Paul M.; McCorquodale, Scott; McIntire, Eliot; Nowak, Josh; Sawyer, Hall; Smith, Douglas; White, P.J.

    2013-01-01

    Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. Proportional hazard analysis revealed that 'baseline' (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores. Mortality from native carnivores peaked in late winter and early spring, while harvest-induced mortality peaked in autumn. The strong peak in harvest-induced mortality during the autumn hunting season decreased as the number of native carnivore species increased. Synthesis and applications. Elevated baseline adult female elk mortality from wolves in years with high winter precipitation could affect elk abundance as

  12. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    for other sources of ECs such as those derived from embryonic and adult progenitor cells ( Rafii ; Lyden 2003). For example, human ES-derived...functional endothelial precursors. Blood, 95, 952-958. Rafii , S., and D. Lyden, 2003: Therapeutic stem and progenitor cell transplantation for

  13. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  14. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2013-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  15. Comparative study of the chondrogenic potential of human bone marrow stromal cells, neonatal chondrocytes and adult chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sushmita; Kirkham, Jennifer; NIHR Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds LS74SA

    2010-10-22

    Research highlights: {yields} This study has characterised three different cell types under conditions similar to those used for autologous chondrocyte implantation (ACI) for applications in cartilage repair/regeneration. {yields} Compared for the first time the chondrogenic potential of neonatal chondrocytes with human bone marrow stromal cells (HBMSCs) and adult chondrocytes. {yields} Demonstrated that adult chondrocytes hold greatest potential for use in ACI based on their higher proliferation rates, lower alkaline phosphatise activity and enhanced expression of chondrogenic genes. {yields} Demonstrated the need for chondroinduction as a necessary pre-requisite to efficient chondrogenesis in vitro and, by extrapolation, for cell based therapy (e.g.more » ACI or cartilage tissue engineering). -- Abstract: Cartilage tissue engineering is still a major clinical challenge with optimisation of a suitable source of cells for cartilage repair/regeneration not yet fully addressed. The aims of this study were to compare and contrast the differences in chondrogenic behaviour between human bone marrow stromal cells (HBMSCs), human neonatal and adult chondrocytes to further our understanding of chondroinduction relative to cell maturity and to identify factors that promote chondrogenesis and maintain functional homoeostasis. Cells were cultured in monolayer in either chondrogenic or basal medium, recapitulating procedures used in existing clinical procedures for cell-based therapies. Cell doubling time, morphology and alkaline phosphatase specific activity (ALPSA) were determined at different time points. Expression of chondrogenic markers (SOX9, ACAN and COL2A1) was compared via real time polymerase chain reaction. Amongst the three cell types studied, HBMSCs had the highest ALPSA in basal culture and lowest ALPSA in chondrogenic media. Neonatal chondrocytes were the most proliferative and adult chondrocytes had the lowest ALPSA in basal media. Gene expression analysis

  16. Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease.

    PubMed

    Bennaim, Michael; Porato, Mathilde; Jarleton, Astrid; Hamon, Martin; Carroll, James D; Gommeren, Kris; Balligand, Marc

    2017-02-01

    OBJECTIVE To evaluate the effects of postoperative photobiomodulation therapy and physical rehabilitation on early recovery variables for dogs after hemilaminectomy for treatment of intervertebral disk disease. ANIMALS 32 nonambulatory client-owned dogs. PROCEDURES Dogs received standard postoperative care with photobiomodulation therapy (n = 11), physical rehabilitation with sham photobiomodulation treatment (11), or sham photobiomodulation treatment only (10) after surgery. Neurologic status at admission, diagnostic and surgical variables, duration of postoperative IV analgesic administration, and recovery grades (over 10 days after surgery) were assessed. Time to reach recovery grades B (able to support weight with some help), C (initial limb movements present), and D (ambulatory [≥ 3 steps unassisted]) was compared among groups. Factors associated with ability to ambulate on day 10 or at last follow-up were assessed. RESULTS Time to reach recovery grades B, C, and D and duration of postoperative IV opioid administration did not differ among groups. Neurologic score at admission and surgeon experience were negatively associated with the dogs' ability to ambulate on day 10. The number of disk herniations identified by diagnostic imaging before surgery was negatively associated with ambulatory status at last follow-up. No other significant associations and no adverse treatment-related events were identified. CONCLUSIONS AND CLINICAL RELEVANCE This study found no difference in recovery-related variables among dogs that received photobiomodulation therapy, physical rehabilitation with sham photobiomodulation treatment, or sham photobiomodulation treatment only. Larger studies are needed to better evaluate effects of these postoperative treatments on dogs treated surgically for intervertebral disk disease.

  17. Bridging community and prison for older adults: invoking human rights and elder and intergenerational family justice.

    PubMed

    Maschi, Tina; Viola, Deborah; T Harrison, Mary; Harrison, William; Koskinen, Lindsay; Bellusa, Stephanie

    2014-01-01

    Older adults in prison present a significant health and human rights challenge for the criminal justice system. To date, there is no known study that provides a comprehensive examination or portrait of older persons in prison. The purpose of this paper is to understand individual, family, system, and community vulnerabilities that can complicate successful community reintegration for these individuals. This study provides a cross-sectional, descriptive analysis of biopsychosocial, spiritual, and prison use characteristics associated with a sample of 677 older prisoners, aged 50+, in a state-wide prison system. Results indicate the extent of diversity within this population based on demographic, clinical, social, legal profiles, prison service use patterns, and professional and personal contacts. Due to the diversity within this population, an interdisciplinary approach is needed to address the complex social and health care needs of an aging prison population and to plan for their reentry. Practical implications - These findings suggest the need for holistic prevention, assessment, and interventions to interrupt the social-structural disparities that foster and support pathways to incarceration and recidivism. The human rights implications for the current treatment of older adults in prison include providing in-prison treatment that promotes safety, well-being, reconciliation, and seamless bridges between prison and community for older adults and their families. The True Grit Program is presented as an example of a humanistic and holistic approach of such an approach.

  18. Histomorphometry and cortical robusticity of the adult human femur.

    PubMed

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  19. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  20. The landscape of sex-differential transcriptome and its consequent selection in human adults.

    PubMed

    Gershoni, Moran; Pietrokovski, Shmuel

    2017-02-07

    The prevalence of several human morbid phenotypes is sometimes much higher than intuitively expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women have almost identical genomes but are distinctly dimorphic, with dissimilar disease susceptibilities. Sexually dimorphic traits mainly result from differential expression of genes present in both sexes. Such genes can be subject to different, and even opposing, selection constraints in the two sexes. This can impact human evolution by differential selection on mutations with dissimilar effects on the two sexes. We comprehensively mapped human sex-differential genetic architecture across 53 tissues. Analyzing available RNA-sequencing data from 544 adults revealed thousands of genes differentially expressed in the reproductive tracts and tissues common to both sexes. Sex-differential genes are related to various biological systems, and suggest new insights into the pathophysiology of diverse human diseases. We also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Interestingly, many of the sex-specific genes that also undergo reduced selection efficiency are essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility. This work provides a comprehensive overview of the sex-differential transcriptome and its importance to human evolution and human physiology in health and in disease.

  1. Infants' response to the audible and visible properties of the human face: II. Discrimination of differences between singing and adult-directed speech.

    PubMed

    Lewkowicz, D J

    1998-05-01

    Human infants' responsiveness to the audible and visible features of human faces was studied by habituating them to a person speaking a prepared script in an adult-directed manner and then administering a series of separate test trials where a person could be seen, heard, or seen and heard singing. When habituated to a female person speaking in an adult-directed manner and tested with a singing female 4, 6, and 8-month-old infants responded to the audible, visible, and bimodal changes, whereas 3-month-old infants only responded to the visual and bimodal changes. In contrast, when habituated to a male person speaking in an adult-directed manner and tested with a singing female, all age groups discriminated all three types of changes. These findings demonstrate that infants are responsive to differences between low- and high-prosody content inherent in both the facial and vocal characteristics of the human face and that, whereas responsiveness to the visible and bimodal features associated with differences between adult-directed speech and singing is present as early as 3 months of age, responsiveness to the audible features emerges between 3 and 4 months of age depending on whether gender differences are present as well.

  2. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM

  3. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    PubMed Central

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  4. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong

    2013-09-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.

  5. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches.

    PubMed

    Chakraborty, Mukta; Chen, Liang-Fu; Fridel, Emma E; Klein, Marguerita E; Senft, Rebecca A; Sarkar, Abhra; Jarvis, Erich D

    2017-04-21

    Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.

  6. The notochord in Atlantic salmon (Salmo salar L.) undergoes profound morphological and mechanical changes during development.

    PubMed

    Kryvi, Harald; Rusten, Iselin; Fjelldal, Per Gunnar; Nordvik, Kari; Totland, Geir K; Karlsen, Tine; Wiig, Helge; Long, John H

    2017-11-01

    We present the development of the notochord of the Atlantic salmon (Salmo salar L.), from early embryo to sexually mature fish. Over the salmon's lifespan, profound morphological changes occur. Cells and gross structures of the notochord reorganize twice. In the embryo, the volume of the notochord is dominated by large, vacuolated chordocytes; each cell can be modeled as a hydrostat organized into a larger cellular-hydrostat network, structurally bound together with desmosomes. After the embryo hatches and grows into a fry, vacuolated chordocytes disappear, replaced by extracellular lacunae. The formation of mineralized, segmental chordacentra stiffens the notochord and creates intervertebral joints, where tissue strain during lateral bending is now focused. As development proceeds towards the parr stage, a process of devacuolization and intracellular filament accumulation occur, forming highly dense, non-vacuolated chordocytes. As extracellular lacunae enlarge, they are enclosed by dense filamentous chordocytes that form transverse intervertebral septa, which are connected to the intervertebral ligaments, and a longitudinal notochordal strand. In the vertebral column of pelagic adults, large vacuolated chordocytes reappear; cells of this secondary population have a volume up to 19 000 times larger than the primary vacuolated chordocytes of the early notochord. In adults the lacunae have diminished in relative size. Hydrostatic pressure within the notochord increases significantly during growth, from 525 Pa in the alevins to 11 500 Pa in adults, at a rate of increase with total body length greater than that expected by static stress similarity. Pressure and morphometric measurements were combined to estimate the stress in the extracellular material of the notochordal sheath and intervertebral ligaments and the flexural stiffness of the axial skeleton. The functional significance of the morphological changes in the axial skeleton is discussed in relation to the

  7. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution.

    PubMed

    Marini, Giacomo; Studer, Harald; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2016-06-01

    Patient-specific modelling of the spine is a powerful tool to explore the prevention and the treatment of injuries and pathologies. Albeit several methods have been proposed for the discretization of the bony structures, the efficient representation of the intervertebral disc anisotropy remains a challenge, especially with complex geometries. Furthermore, the swelling of the disc's nucleus pulposus is normally added to the model after geometry definition, at the cost of changes of the material properties and an unrealistic description of the prestressed state. The aim of this study was to develop techniques, which preserve the patient-specific geometry of the disc and allow the representation of the system anisotropy and residual stresses, independent of the system discretization. Depending on the modelling features, the developed approaches resulted in a response of patient-specific models that was in good agreement with the physiological response observed in corresponding experiments. The proposed methods represent a first step towards the development of patient-specific models of the disc which respect both the geometry and the mechanical properties of the specific disc.

  8. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential.

    PubMed

    Linning, Katrina D; Tai, Mei-Hui; Madhukar, Burra V; Chang, C C; Reed, Donald N; Ferber, Sarah; Trosko, James E; Olson, L Karl

    2004-10-01

    The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.

  9. Prevalence of antibody to adult T-cell leukemia virus-associated antigens (ATLA) in Japanese monkeys and other non-human primates.

    PubMed

    Hayami, M; Komuro, A; Nozawa, K; Shotake, T; Ishikawa, K; Yamamoto, K; Ishida, T; Honjo, S; Hinuma, Y

    1984-02-15

    The prevalence of adult T-cell-leukemia virus (ATLV) infection was examined in Japanese monkeys living naturally in various parts of Japan and in other species of non-human primates imported into and kept in Japan. Sera of 2,650 Japanese monkeys from 41 troops throughout Japan were tested. High incidences of anti-ATLV-associated antigen (ATLA)-positive monkeys were found in most troops, not only in the endemic area of human ATL(Southwestern Japan), but also in non-endemic areas. The incidence of sero-positive individuals increased gradually with age, reaching a maximum when the animals became adult, indicating age dependency, like that found by epidemiological studies on humans. Anti-ATLA antibodies were also detected in 90 of 815 sera of imported non-human primates of 33 species other than Japanese monkeys. All the anti-ATLA sero-positive monkeys were Catarrhines (Old World monkeys), mainly macaques of Asian origin. Some sero-positive monkeys were also found among animals of African origin, but no antibody was detected in Prosimians and Platyrrhines (New World monkeys). The clear-cut difference between the geographical distribution of sero-positive simians and that of humans indicates the improbability of direct transmission of ATLV from simians to humans.

  10. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  11. Lumbar spine intervertebral disc gene delivery: a pilot study in lewis rats.

    PubMed

    Damle, Sheela R; Rawlins, Bernard A; Boachie-Adjei, Oheneba; Crystal, Ronald G; Hidaka, Chisa; Cunningham, Matthew E

    2013-02-01

    Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc. This study was designed to develop and describe a surgical technique for lumbar spine exposure and disc space preparation, and use of a matrix-free method for gene delivery. Naïve or genetically programmed isogeneic bone marrow stromal cells were surgically delivered to adolescent male Lewis rat lumbar discs, and utilizing quantitative biochemical and qualitative immunohistological assessments, the implanted cells were detected 3 days post-procedure. Statistically significant differences were noted for recovery of the β-galactosidase marker gene comparing delivery of naïve or labeled cells (10(5) cells per disc) from the site of implantation, and between delivery of 10(5) or 10(6) labeled cells per disc at the site of implantation and the adjacent vertebral body. Immunohistology confirmed that the β-galactosidase marker was detected in the adjacent vertebra bone in the zone of surgical implantation. The model requires further testing in larger cohorts and with biologically active genes of interest, but the observations from the pilot experiments are very encouraging that this will be a useful comparative model for basic spine research involving gene or cell delivery, or other locally delivered therapies to the intervertebral disc or adjacent vertebral bodies in rats.

  12. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes.

    PubMed

    Kim, Seoyeon; Kim, Yea Woon; Shim, Sung Han; Kim, Chul Geun; Kim, Aeri

    2012-03-01

    The β-like globin genes are transcribed in a developmental stage specific fashion in erythroid cells. The specific transcription of globin genes is conferred by the locus control region (LCR), but the chromatin structure of the LCR in the human adult β-globin locus transcribing the δ- and β-globin genes is not clear. Here, we employed hybrid MEL cells that contain a human chromosome 11. The δ- and β-globin genes were highly transcribed in hybrid MEL/ch11 cells after transcriptional induction. LCR HS3 and HS2 were strongly occupied by erythroid specific transcriptional activators and co-factors in the induced locus. These HSs, but not HS4 and HS1, were in close proximity with the active globin genes as revealed by high resolution 3C experiments. The active features at HS3 were markedly established after transcriptional induction, while HS2 was in a relatively active conformation before the induction. Unexpectedly, HS1 did not show notable active features except histone hyperacetylation. Taken together, the LCR of the human β-globin locus transcribing the adult δ- and β-globin genes has HS specific chromatin structure. The structure at each HS, which is different from the locus transcribing the fetal globin genes, might relate to its role in transcribing the adult genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review.

    PubMed

    Oliver, Stephen P; Murinda, Shelton E; Jayarao, Bhushan M

    2011-03-01

    Antibiotics have saved millions of human lives, and their use has contributed significantly to improving human and animal health and well-being. Use of antibiotics in food-producing animals has resulted in healthier, more productive animals; lower disease incidence and reduced morbidity and mortality in humans and animals; and production of abundant quantities of nutritious, high-quality, and low-cost food for human consumption. In spite of these benefits, there is considerable concern from public health, food safety, and regulatory perspectives about the use of antimicrobials in food-producing animals. Over the last two decades, development of antimicrobial resistance resulting from agricultural use of antibiotics that could impact treatment of diseases affecting the human population that require antibiotic intervention has become a significant global public health concern. In the present review, we focus on antibiotic use in lactating and nonlactating cows in U.S. dairy herds, and address four key questions: (1) Are science-based data available to demonstrate antimicrobial resistance in veterinary pathogens that cause disease in dairy cows associated with use of antibiotics in adult dairy cows? (2) Are science-based data available to demonstrate that antimicrobial resistance in veterinary pathogens that cause disease in adult dairy cows impacts pathogens that cause disease in humans? (3) Does antimicrobial resistance impact the outcome of therapy? (4) Are antibiotics used prudently in the dairy industry? On the basis of this review, we conclude that scientific evidence does not support widespread, emerging resistance among pathogens isolated from dairy cows to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in adult dairy cows and other food-producing animals does contribute to increased antimicrobial resistance

  14. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo.

    PubMed

    Lee, Song; Lee, Chan Mi; Kim, Song Cheol

    2016-11-11

    Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may

  15. Human herpesvirus 6 encephalitis followed by acute disseminated encephalomyelitis in an immunocompetent adult.

    PubMed

    Horie, Junichi; Suzuki, Keisuke; Nakamura, Toshiki; Okamura, Madoka; Iwasaki, Akio; Hirata, Koichi

    2017-04-28

    A 26-year-old, otherwise healthy man presented with visual abnormality followed by loss of consciousness and convulsion. The patient then developed headache and fever 14 days later. Brain MRI showed hyperintensities in the left cingulate cortex. The cerrebrospinal fluid examinations showed mononuclear pleocytosis and positive PCR results for human herpesvirus 6 (HHV-6). A diagnosis of HHV-6 encephalitis and symptomatic epilepsy was made. The patient's clinical symptoms improved promptly following acyclovir treatment. However, 3 months later the patient noticed dysesthesia in the trunk, the left upper limb and the right lower limb. Brain and spine MRI showed multiple brain white matter lesions, the middle cerebellar peduncle and cervical spinal lesions. The symptoms resolved following methylprednisolone pulse therapy only. We report an adult patient with HHV-6 encephalitis followed by acute disseminated encephalomyelitis whose initial presentation was epilepsy. HHV-6 encephalitis should be included in the differential diagnosis of encephalitis of unknown etiology in an immunocompetent adult.

  16. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs in the lateral position: an anatomic study.

    PubMed

    Davis, Timothy T; Hynes, Richard A; Fung, Daniel A; Spann, Scott W; MacMillan, Michael; Kwon, Brian; Liu, John; Acosta, Frank; Drochner, Thomas E

    2014-11-01

    Access to the intervertebral discs from L2-S1 in one surgical position can be challenging. The transpsoas minimally invasive surgical (MIS) approach is preferred by many surgeons, but this approach poses potential risk to neural structures of the lumbar plexus as they course through the psoas. The lumbar plexus and iliac crest often restrict the L4-5 disc access, and the L5-S1 level has not been a viable option from a direct lateral approach. The purpose of the present study was to investigate an MIS oblique corridor to the L2-S1 intervertebral disc space in cadaveric specimens while keeping the specimens in a lateral decubitus position with minimal disruption of the psoas and lumbar plexus. Twenty fresh-frozen full-torso cadaveric specimens were dissected, and an oblique anatomical corridor to access the L2-S1 discs was examined. Measurements were taken in a static state and with mild retraction of the psoas. The access corridor was defined at L2-5 as the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 corridor of access was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel and vertically to the first vascular structure that crosses midline. The mean access corridor diameters in the static state and with mild psoas retraction, respectively, were as follows: at L2-3, 18.60 mm and 25.50 mm; at L3-4, 19.25 mm and 27.05 mm; and at L4-5, 15.00 mm and 24.45 mm. The L5-S1 corridor mean values were 14.75 mm transversely, from midline to the left common iliac vessel and 23.85 mm from the inferior endplate of L-5 cephalad to the first midline vessel. The oblique corridor allows access to the L2-S1 discs while keeping the patient in a lateral decubitus position without a break in the table. Minimal psoas retraction without significant tendon disruption allowed for a generous corridor to the disc space. The L5-S1 disc space can be

  17. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine

    PubMed Central

    Wang, Zhi-peng; Pei, Xiao-long

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3–L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56–0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position. PMID:29511680

  18. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine.

    PubMed

    Zhu, Rui; Niu, Wen-Xin; Wang, Zhi-Peng; Pei, Xiao-Long; He, Bin; Zeng, Zhi-Li; Cheng, Li-Ming

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3-L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56-0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position.

  19. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma.

    PubMed

    Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico

    2010-02-01

    Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.

  20. A Novel Modality for Functional Imaging in Acute Intervertebral Disk Herniation via Tracking Leukocyte Infiltration.

    PubMed

    Xiao, Li; Ding, Mengmeng; Zhang, Yi; Chordia, Mahendra; Pan, Dongfeng; Shimer, Adam; Shen, Francis; Glover, David; Jin, Li; Li, Xudong

    2017-10-01

    Inflammation plays a key role in the progression of intervertebral disk (IVD) herniation and associated low back pain. However, real-time spatial diagnosis of inflammation associated with acute disk herniation has not been investigated. We sought to detect local neutrophil and macrophage infiltration near disk herniation via the formyl peptide receptor 1 (FPR1)-mediated molecular imaging in a disk puncture mouse model to elucidate pathophysiological process of disk herniation. Disk herniation was induced in mouse with an established needle puncture procedure. Degenerative change of disk and infiltration of neutrophils and macrophages were detected with Safranin-O, hematoxylin and eosin (H&E), and immunohistochemical staining after injury. FPR1-specific imaging probes cFLFLF-PEG-Cy7 and [ 99m Tc]HYNIC-PEG-cFLFLF were administered systemically to sham and disk injury mice. Leukocyte infiltration was tracked by in vivo near-infrared fluorescence (NIRF) and single-photon emission tomography (SPECT) imaging. The peptide-receptor binding specificity was further investigated with FPR1 -/- mice via ex vivo NIRF scan and in vitro binding assays. Safranin-O staining exhibited disorganized disk structure and loss of proteoglycan after puncture. Massive inflammatory cells were observed in the anterior region of punctured annulus in the injury group. The majority of neutrophils were detected at 1 through 3 days, while infiltration of macrophages appeared the most at 7 days after injury. NIRF and SPECT images revealed preferential accumulation of cFLFLF probes in herniation site in wild-type mice but not in FPR1 -/- mice. Binding of the cFLFLF peptide to FPR1 was also observed in RAW 267.4 cells and macrophages isolated from wild-type mice, whereas much less signal was observed in macrophages from FPR1 -/- mice. The presence of macrophage infiltration was also detected in human-herniated disk samples by immunohistochemistry. For the first time, leukocyte infiltration around