Sample records for adult human phantoms

  1. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  2. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  3. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    PubMed Central

    Na, Yong Hum; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F; Xu, X George

    2012-01-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999–2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals’ size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  4. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    NASA Astrophysics Data System (ADS)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  5. Phantom smoking among young adult bar patrons

    PubMed Central

    Guillory, Jamie; Lisha, Nadra; Lee, Youn Ok; Ling, Pamela M

    2016-01-01

    Objective To explore the prevalence and sociodemographic makeup of smokers who do not self-identify as smokers (ie, phantom smokers) compared with self-identifying smokers in a sample of bar-going young adults aged 18–30 years to more accurately assess young adult prevalence of smoking and inform cessation message targeting. Methods Cross-sectional surveys of smokers (n=3089) were conducted in randomly selected bars/nightclubs in seven US cities. Logistic regression models assessed associations between phantom smoking ( past 30-day smoking and denial of being a smoker), tobacco and alcohol use behaviours (eg, social smoking, nicotine dependence, smoking while drinking, past 30-day alcohol use) and demographics. Results Compared with smokers, phantom smokers were more likely to be college graduates (OR=1.43, 95% CI 1.03 to 1.98) and to identify themselves as social smokers (OR=1.60, 95% CI 1.27 to 2.12). Phantom smokers had lower odds of smoking while drinking (OR=0.28, 95% CI 0.25 to 0.32), being nicotine dependent (OR=0.36, 95% CI 0.22 to 0.76) and having quit for at least 1 day in the last year (OR=0.46, 95% CI 0.36 to 0.69) compared with smokers. Conclusions This research extends phantom smoking literature on college students to provide a broader picture of phantom smoking among young adults in high-risk contexts and of varying levels of educational attainment. Phantom smokers may be particularly sensitive to social pressures against smoking, suggesting the importance of identifying smoking as a behaviour (rather than identity) in cessation messaging to ensure that phantom smokers are reached. PMID:27048205

  6. Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry.

    PubMed

    Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E

    2012-03-01

    Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms

  7. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.

    2003-05-01

    The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.

  8. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    PubMed

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  9. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Cheng, Meng-Yun; Long, Peng-Cheng; Hu, Li-Qin

    2015-07-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03040000), National Natural Science Foundation of China (910266004, 11305205, 11305203) and National Special Program for ITER (2014GB112001)

  10. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    NASA Astrophysics Data System (ADS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  11. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement.

    PubMed

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-07

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM_S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  12. Averaged head phantoms from magnetic resonance images of Korean children and young adults

    NASA Astrophysics Data System (ADS)

    Han, Miran; Lee, Ae-Kyoung; Choi, Hyung-Do; Jung, Yong Wook; Park, Jin Seo

    2018-02-01

    Increased use of mobile phones raises concerns about the health risks of electromagnetic radiation. Phantom heads are routinely used for radiofrequency dosimetry simulations, and the purpose of this study was to construct averaged phantom heads for children and young adults. Using magnetic resonance images (MRI), sectioned cadaver images, and a hybrid approach, we initially built template phantoms representing 6-, 9-, 12-, 15-year-old children and young adults. Our subsequent approach revised the template phantoms using 29 averaged items that were identified by averaging the MRI data from 500 children and young adults. In females, the brain size and cranium thickness peaked in the early teens and then decreased. This is contrary to what was observed in males, where brain size and cranium thicknesses either plateaued or grew continuously. The overall shape of brains was spherical in children and became ellipsoidal by adulthood. In this study, we devised a method to build averaged phantom heads by constructing surface and voxel models. The surface model could be used for phantom manipulation, whereas the voxel model could be used for compliance test of specific absorption rate (SAR) for users of mobile phones or other electronic devices.

  13. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  14. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  15. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  16. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, W. P.; Bond, Jason; Frush, Jack

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantommore » were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  17. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  18. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  19. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, H.; Jenkins, M.; Lodwick, J.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less

  20. A Dosimetric Study on Slab-pinewood-slab Phantom for Developing the Heterogeneous Chest Phantom Mimicking Actual Human Chest

    PubMed Central

    Gurjar, Om Prakash; Paliwal, Radha Kishan; Mishra, Surendra Prasad

    2017-01-01

    The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS) phantom, solid phantom SP34 (made up of polystyrene), and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm × 10 cm was directed perpendicular to the surface of computed tomography (CT) images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS) and measured on linear accelerator (LA) were calculated for three points, namely, near slab–pinewood interfaces (6 and 18 cm depths) and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood. PMID:28706353

  1. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  2. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  3. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  4. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also

  5. Thermal human phantom for testing of millimeter wave cameras

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Ryniec, Radoslaw; Piszczek, Marek; Szustakowski, Mieczyslaw; Zyczkowski, Marek; Kowalski, Marcin

    2012-06-01

    Screening cameras working in millimetre band gain more and more interest among security society mainly due to their capability of finding items hidden under clothes. Performance of commercially available passive cameras is still limited due to not sufficient resolution and contrast in comparison to other wavelengths (visible or infrared range). Testing of such cameras usually requires some persons carrying guns, bombs or knives. Such persons can have different clothes or body temperature, what makes the measurements even more ambiguous. To avoid such situations we built a moving phantom of human body. The phantom consists of a polystyrene manikin which is covered with a number of small pipes with water. Pipes were next coated with a silicone "skin". The veins (pipes) are filled with water heated up to 37 C degrees to obtain the same temperature as human body. The phantom is made of non-metallic materials and is placed on a moving wirelessly-controlled platform with four wheels. The phantom can be dressed with a set of ordinary clothes and can be equipped with some dangerous (guns, bombs) and non-dangerous items. For tests we used a passive commercially available camera TS4 from ThruVision Systems Ltd. operating at 250 GHz. We compared the images taken from phantom and a man and we obtained good similarity both for naked as well as dressed man/phantom case. We also tested the phantom with different sets of clothes and hidden items and we got good conformity with persons.

  6. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun

    2006-02-15

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, andmore » manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian

  7. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults.

    PubMed

    Johnson, Mark I; Mulvey, Matthew R; Bagnall, Anne-Marie

    2015-08-18

    This is the first update of a Cochrane review published in Issue 5, 2010 on transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Pain may present in a body part that has been amputated (phantom pain) or at the site of amputation (stump pain), or both. Phantom pain and stump pain are complex and multidimensional and the underlying pathophysiology remains unclear. The condition remains a severe burden for those who are affected by it. The mainstay treatments are predominately pharmacological, with increasing acknowledgement of the need for non-drug interventions. TENS has been recommended as a treatment option but there has been no systematic review of available evidence. Hence, the effectiveness of TENS for phantom pain and stump pain is currently unknown. To assess the analgesic effectiveness of TENS for the treatment of phantom pain and stump pain following amputation in adults. For the original version of the review we searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, AMED, CINAHL, PEDRO and SPORTDiscus (February 2010). For this update, we searched the same databases for relevant randomised controlled trials (RCTs) from 2010 to 25 March 2015. We only included RCTs investigating the use of TENS for the management of phantom pain and stump pain following an amputation in adults. Two review authors independently assessed trial quality and extracted data. We planned that where available and appropriate, data from outcome measures were to be pooled and presented as an overall estimate of the effectiveness of TENS. In the original review there were no RCTs that examined the effectiveness of TENS for the treatment of phantom pain and stump pain in adults. For this update, we did not identify any additional RCTs for inclusion. There were no RCTs to judge the effectiveness of TENS for the management of phantom pain and stump pain. The published literature on TENS

  8. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  9. SU-F-J-174: A Series of Computational Human Phantoms in DICOM-RT Format for Normal Tissue Dose Reconstruction in Epidemiological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Moroz, B; Lee, C

    2016-06-15

    Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less

  10. Deformable torso phantoms of Chinese adults for personalized anatomy modelling.

    PubMed

    Wang, Hongkai; Sun, Xiaobang; Wu, Tongning; Li, Congsheng; Chen, Zhonghua; Liao, Meiying; Li, Mengci; Yan, Wen; Huang, Hui; Yang, Jia; Tan, Ziyu; Hui, Libo; Liu, Yue; Pan, Hang; Qu, Yue; Chen, Zhaofeng; Tan, Liwen; Yu, Lijuan; Shi, Hongcheng; Huo, Li; Zhang, Yanjun; Tang, Xin; Zhang, Shaoxiang; Liu, Changjian

    2018-04-16

    In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RC vlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community. © 2018 Anatomical Society.

  11. Soft 3D-Printed Phantom of the Human Kidney with Collecting System.

    PubMed

    Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-04-01

    Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

  12. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  13. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  14. Population of 224 realistic human subject-based computational breast phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a

  15. Population of 224 realistic human subject-based computational breast phantoms

    PubMed Central

    Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.

    2016-01-01

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  16. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    NASA Astrophysics Data System (ADS)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  17. Technical Note: Construction of heterogeneous head phantom for quality control in stereotactic radiosurgery.

    PubMed

    Najafi, Mohsen; Teimouri, Javad; Shirazi, Alireza; Geraily, Ghazale; Esfahani, Mahbod; Shafaei, Mostafa

    2017-10-01

    Stereotactic radiosurgery is a high precision modality for conformally delivering high doses of radiation to the brain lesion with a large dose volume. Several studies for the quality control of this technique were performed to measure the dose delivered to the target with a homogenous head phantom and some dosimeters. Some studies were also performed with one or two instances of heterogeneity in the head phantom to measure the dose delivered to the target. But these studies assumed the head as a sphere and simple shape heterogeneity. The construction of an adult human head phantom with the same size, shape, and real inhomogeneity as an adult human head is needed. Only then is measuring the accurate dose delivered to the area of interest and comparison with the calculated dose possible. According to the ICRU Report 44, polytetrafluoroethylene (PTFE) and methyl methacrylate were selected as a bone and soft tissue, respectively. A set of computed tomography (CT) scans from a standard human head were taken, and simplification of the CT images was used to design the layers of the phantom. The parts of each slice were cut and attached together. Tests of density and CT number were done to compare the material of the phantom with tissues of the head. The dose delivered to the target was measured with an EBT3 film. The density of the PTFE and Plexiglas that were inserted in the phantom are in good agreement with bone and soft tissue. Also, the CT numbers of these materials have a low difference. The dose distribution from the EBT3 film and the treatment planning system is similar. The constructed phantom with a size and inhomogeneity like an adult human head is suitable to measure the dose delivered to the area of interest. It also helps make an accurate comparison with the calculated dose by the treatment planning system. By using this phantom, the actual dose delivered to the target was obtained. This anthropomorphic head phantom can be used in other modalities of

  18. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or

  19. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    NASA Astrophysics Data System (ADS)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  20. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  1. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    DOEpatents

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  2. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-03-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  3. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  4. Dose comparison between CTDI and the AAPM Report No. 111 methodology in adult, adolescent, and child head phantom

    NASA Astrophysics Data System (ADS)

    Li, Celina L.; Thakur, Yogesh; Ford, Nancy L.

    2017-03-01

    The standard computed tomography dose index (CTDI) metric tends to underestimate scatter radiation in cone beam computed tomography (CBCT) acquisition; therefore, the American Association of Physicists in Medicine (AAPM) Task Group 111 proposed a new dosimetry methodology to measure equilibrium dose at the center of a phantom (z = 0) using a 2-cm thimble ionization chamber. In this study, we implement the CTDI and the AAPM method with a thimble chamber on adult, adolescent, and child head phantoms using the Toshiba Aquilion One CBCT and compare the results to the CTDI measured with a 10-cm pencil chamber. Following the AAPM protocol, the normalized (100 mAs) equilibrium doses (Deq) computed using dose measurements taken in the central hole of the phantom (Deq,c), the peripheral hole of the phantom, (Deq,p), and by the CTDIw equation (Deq,w) are 20.13 +/- 0.19, 21.53 +/- 0.48, and 20.93 +/- 0.40 mGy for adult; 21.55 +/- 0.40, 21.14 +/- 0.43, and 21.08 +/- 0.45 mGy for adolescent; and 24.58 +/- 0.40, 24.92 +/- 0.85, and 24.77 +/- 0.72 mGy for child, respectively. The CTDIw, which measured 17.70, 19.86, and 22.43 mGy for adult, adolescent and child respectively, is about 10% lower than their corresponding Deq's. The extended AAPM method proposed by Deman et al., which estimates the dose profile along the rotational axis (z axis), has demonstrated consistency between theoretical and experimental results for all phantoms. With the introduction of the child and the adolescent head phantoms, we not only have emphasized the practical aspects including relative convenience of the CTDI method and accuracy of the AAPM method, but also proposed a method to approximate Deq for different sized patients.

  5. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; MacFall, James; Dewhirst, Mark; Das, Shiva K.

    2012-04-01

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  6. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  7. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.

    2016-04-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.

  8. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms.

    PubMed

    Ben-Shlomo, A; Cohen, D; Bruckheimer, E; Bachar, G N; Konstantinovsky, R; Birk, E; Atar, E

    2016-05-01

    To compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT. Effective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms. The effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590% for upper lung, 639 and 525% for mid-lung, and 461 and 251% for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762% for liver and 513 and 608% for kidney biopsies. Based on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  9. COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.

    PubMed

    Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang

    2017-04-20

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    PubMed

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01). Compared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  12. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Shlomo, A.; Cohen, D.; Bruckheimer, E.

    PurposeTo compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT.MethodEffective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms.ResultsThe effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv withmore » the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590 % for upper lung, 639 and 525 % for mid-lung, and 461 and 251 % for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762 % for liver and 513 and 608 % for kidney biopsies.ConclusionsBased on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.« less

  13. Numerical Analysis of Organ Doses Delivered During Computed Tomography Examinations Using Japanese Adult Phantoms with the WAZA-ARI Dosimetry System.

    PubMed

    Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-08-01

    A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults.

  14. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  15. Inclusion of thin target and source regions in alimentary and respiratory tract systems of mesh-type ICRP adult reference phantoms

    NASA Astrophysics Data System (ADS)

    Kim, Han Sung; Yeom, Yeon Soo; Tat Nguyen, Thang; Choi, Chansoo; Han, Min Cheol; Lee, Jai Ki; Kim, Chan Hyeong; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Qiu, Rui; Eckerman, Keith; Chung, Beom Sun

    2017-03-01

    It is not feasible to define very small or complex organs and tissues in the current voxel-type adult reference computational phantoms of the International Commission on Radiological Protection (ICRP), which limit dose coefficients for weakly penetrating radiations. To address the problem, the ICRP is converting the voxel-type reference phantoms into mesh-type phantoms. In the present study, as a part of the conversion project, the micrometer-thick target and source regions in the alimentary and respiratory tract systems as described in ICRP Publications 100 and 66 were included in the mesh-type ICRP reference adult male and female phantoms. In addition, realistic lung airway models were simulated to represent the bronchial (BB) and bronchiolar (bb) regions. The electron specific absorbed fraction (SAF) values for the alimentary and respiratory tract systems were then calculated and compared with the values calculated with the stylized models of ICRP Publications 100 and 66. The comparisons show generally good agreement for the oral cavity, oesophagus, and BB, whereas for the stomach, small intestine, large intestine, extrathoracic region, and bb, there are some differences (e.g. up to ~9 times in the large intestine). The difference is mainly due to anatomical difference in these organs between the realistic mesh-type phantoms and the simplified stylized models. The new alimentary and respiratory tract models in the mesh-type ICRP reference phantoms preserve the topology and dimensions of the voxel-type ICRP phantoms and provide more reliable SAF values than the simplified models adopted in previous ICRP Publications.

  16. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    NASA Astrophysics Data System (ADS)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  17. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming

    2008-07-01

    The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential

  18. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  19. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  20. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Christina M. L.; Palmeri, Mark L.; Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710

    2013-04-15

    Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphingmore » technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the 'base' and 'target' for morphing. Several combinations of transformations were applied to morph between the 'base' and 'target' datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three

  1. Development of Chinese reference man deformable surface phantom and its application to the influence of physique on electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wang, M.; Liu, Q.

    2015-09-01

    A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.

  2. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  3. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond.

    PubMed

    Segars, W Paul; Tsui, B M W; Cai, Jing; Yin, Fang-Fang; Fung, George S K; Samei, Ehsan

    2018-03-01

    The four-dimensional (4-D) eXtended CArdiac-Torso (XCAT) series of phantoms was developed to provide accurate computerized models of the human anatomy and physiology. The XCAT series encompasses a vast population of phantoms of varying ages from newborn to adult, each including parameterized models for the cardiac and respiratory motions. With great flexibility in the XCAT's design, any number of body sizes, different anatomies, cardiac or respiratory motions or patterns, patient positions and orientations, and spatial resolutions can be simulated. As such, the XCAT phantoms are gaining a wide use in biomedical imaging research. There they can provide a virtual patient base from which to quantitatively evaluate and improve imaging instrumentation, data acquisition, techniques, and image reconstruction and processing methods which can lead to improved image quality and more accurate clinical diagnoses. The phantoms have also found great use in radiation dosimetry, radiation therapy, medical device design, and even the security and defense industry. This review paper highlights some specific areas in which the XCAT phantoms have found use within biomedical imaging and other fields. From these examples, we illustrate the increasingly important role that computerized phantoms and computer simulation are playing in the research community.

  4. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective

  5. A numerical and experimental comparison of human head phantoms for compliance testing of mobile telephone equipment.

    PubMed

    Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels

    2005-02-01

    A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.

  6. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    NASA Astrophysics Data System (ADS)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  7. Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi

    2018-02-01

    Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.

  8. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  9. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  10. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  11. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  12. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  13. Fabrication of subcutaneous veins phantom for vessel visualization system

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Narita, Kazuyuki; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio

    2013-09-01

    The technique of subcutaneous veins imaging by using NIR (Near Infrared Radiation) is widely used in medical applications, such as the intravenous injection and the blood sampling. In the previous study, an automatic 3D blood vessel search and automatic blood sampling system was newly developed. In order to validate this NIR imaging system, we adopted the subcutaneous vein in the human arm and its artificial phantom, which imitate the human fat and blood vessel. The human skin and subcutaneous vein is characterized as the uncertainty object, which has the individual specificity, non-accurate depth information, non-steady state and hardly to be fixed in the examination apparatus. On the other hand, the conventional phantom was quite distinct from the human's characteristics, such as the non-multilayer structure, disagreement of optical property. In this study, we develop a multilayer phantom, which is quite similar with human skin, for improvement of NIR detection system evaluation. The phantom consists of three layers, such as the epidermis layer, the dermis layer and the subcutaneous fat layer. In subcutaneous fat layer, we built a blood vessel. We use the intralipid to imitate the optical scattering characteristics of human skin, and the hemoglobin and melanin for the optical absorption characteristics. In this study, we did two subjects. First, we decide the fabrication process of the phantom. Second, we compared newly developed phantoms with human skin by using our NIR detecting system, and confirm the availability of these phantoms.

  14. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    PubMed

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  15. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  16. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  17. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Spencer, J

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (asmore » a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional

  18. Changes in radiation dose with variations in human anatomy: moderately and severely obese adults.

    PubMed

    Clark, Landon D; Stabin, Michael G; Fernald, Michael J; Brill, Aaron B

    2010-06-01

    The phantoms used in standardized dose assessment are based on a median (i.e., 50th percentile) individual of a large population, for example, adult males or females or children of a particular age. Here we describe phantoms that model instead the influence of obesity on specific absorbed fractions (SAFs) and dose factors in adults. The literature was reviewed to evaluate how individual organ sizes change with variations in body weight in mildly and severely obese adult men and women. On the basis of the literature evaluation, changes were made to our deformable reference adult male and female total-body models. Monte Carlo simulations of radiation transport were performed. SAFs for photons were generated for mildly and severely obese adults, and comparisons were made to the reference (50th) percentile SAF values. SAFs studied between the obese phantoms and the 50th percentile reference phantoms were not significantly different from the reference 50th percentile individual, with the exception of intestines irradiating some abdominal organs, because of an increase in separation between folds caused by an increase in mesenteric adipose deposits. Some low-energy values for certain organ pairs were different, possibly due only to the statistical variability of the data at these low energies. The effect of obesity on dose calculations for internal emitters is minor and may be neglected in the routine use of standardized dose estimates.

  19. Optical coherence tomography technique for noninvasive blood glucose monitoring: phantom, animal, and human studies

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ashitkov, Taras V.; Larina, Irina V.; Petrova, Irina Y.; Eledrisi, Mohsen S.; Motamedi, Massoud; Esenaliev, Rinat O.

    2002-06-01

    Continuous noninvasive monitoring of blood glucose concentration can improve management of Diabetes Mellitus, reduce mortality, and considerably improve quality of life of diabetic patients. Recently, we proposed to use the OCT technique for noninvasive glucose monitoring. In this paper, we tested noninvasive blood glucose monitoring with the OCT technique in phantoms, animals, and human subjects. An OCT system with the wavelength of 1300 nm was used in our experiments. Phantom studies performed on aqueous suspensions of polystyrene microspheres and milk showed 3.2% decrease of exponential slope of OCT signals when glucose concentration increased from 0 to 100 mM. Theoretical calculations based on the Mie theory of scattering support the results obtained in phantoms. Bolus glucose injections and glucose clamping experiments were performed in animals (New Zealand rabbits and Yucatan micropigs). Good correlation between changes in the OCT signal slope and actual blood glucose concentration were observed in these experiments. First studies were performed in healthy human subjects (using oral glucose tolerance tests). Dependence of the slope of the OCT signals on the actual blood glucose concentration was similar to that obtained in animal studies. Our studies suggest that the OCT technique can potentially be used for noninvasive blood glucose monitoring.

  20. Development of an Arm Phantom for Testing Non-Invasive Blood Pressure Monitors

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia D.

    Approximately one in every three adults age 20 older are diagnosed with high blood pressure or hypertension. It is estimated that hypertension affects 78 million people in the United States, is equally prevalent in both men and woman (Crabtree, Stuart-Shor, & McAllister, 2013). In the United States, around 78% of people suffering from hypertension are aware of their condition, with only 68% using hypertensive medications to control their blood pressure (Writing Group et al., 2010). Clinically, blood pressure measurements may lack accuracy, which can be attributed to various factors, including device limitations, cuff mis-sizing and misplacement, white-coat effect, masked hypertension, and lifestyle factors. The development of an arm phantom to simulate physiologic properties of a human arm and arterial BP waveforms may allow us to better assess the accuracy of non-invasive blood pressure (NIBP) monitors. The objective of this study are to: (1) Develop an arm phantom to replicate physiological properties of the human arm, and (2) Incorporate the arm phantom into a mock circulatory flow loop to simulate different physiological blood pressure readings on the bench. A tissue mimicking material, styrene-ethylene-butylene-styrene (SEBS), a co-block polymer was used to develop the arm phantom for in-vitro testing. To determine the optimal mechanical properties for the arm phantom, individual arm components were isolated and tested. A protocol was developed to evaluate various components for optimal arm phantom development. Mechanical testing was conducted on 10%, 15%, and 20% SEBS gel samples for modulus of elasticity measurements in order to simulate physiological properties of the human arm. As a result of the SEBS polymer being a new material for this application, this investigation will contribute to resolving the limitations that occurred during experimentation. In this study, we demonstrated that although SEBS polymer may be an ideal material to use for simulating

  1. Food source provisioning and susceptibility of immature and adult Tribolium castaneum on concrete partially treated with chlorfenapyr (Phantom®)

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted in which adults, pupae, and 4-week-old larvae of Tribolium castaneum (Herbst), the red flour beetle, were exposed separately on concrete arenas partially treated (14.4 % of the total area) with the insecticide chlorfenapyr (Phantom®) at 1.1 g active ingredient/...

  2. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  3. New eye phantom for ophthalmic surgery

    NASA Astrophysics Data System (ADS)

    Fogli, Gessica; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Palla, Michele; Rizzo, Stanislao; Vozzi, Giovanni

    2014-06-01

    In this work, we designed and realized a new phantom able to mimic the principal mechanical, rheological, and physical cues of the human eye and that can be used as a common benchmark to validate new surgical procedures, innovative vitrectomes, and as a training system for surgeons. This phantom, in particular its synthetic humor vitreous, had the aim of reproducing diffusion properties of the natural eye and can be used as a system to evaluate the pharmacokinetics of drugs and optimization of their dose, limiting animal experiments. The eye phantom was built layer-by-layer starting from the sclera up to the retina, using low cost and easy to process polymers. The validation of the phantom was carried out by mechanical characterization of each layer, by diffusion test with commercial drugs into a purposely developed apparatus, and finally by a team of ophthalmic surgeons. Experiments demonstrated that polycaprolactone, polydimethylsiloxane, and gelatin, properly prepared, are the best materials to mimic the mechanical properties of sclera, choroid, and retina, respectively. A polyvinyl alcohol-gelatin polymeric system is the best for mimicking the viscosity of the human humor vitreous, even if the bevacizumab half-life is lower than in the human eye.

  4. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.

    PubMed

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E; Nikolov, Svetoslav; Torp-Pedersen, Søren T; Delachartre, Philippe; Jensen, Jørgen A

    2013-02-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load cell. Load-compression data and ultrasound B-mode images were simultaneously acquired in 19 compression steps of 0.1mm each. The internal tissue displacement was for each step calculated by a phase-based cross-correlation technique and internal strain maps were derived from these displacement maps. Elastic moduli were found from the resulting stress-strain curves. The elastic moduli made it possible to distinguish eight of nine phantoms from each other according to the manufactured stiffness and showed very little dependence of the thickness. Mean elastic moduli for the three soft, the three medium, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Rat Body Phantom for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  6. A set of 4D pediatric XCAT reference phantoms for multimodality research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Hannah, E-mail: Hannah.norris@duke.edu; Zhang, Yakun; Bond, Jason

    Purpose: The authors previously developed an adult population of 4D extended cardiac-torso (XCAT) phantoms for multimodality imaging research. In this work, the authors develop a reference set of 4D pediatric XCAT phantoms consisting of male and female anatomies at ages of newborn, 1, 5, 10, and 15 years. These models will serve as the foundation from which the authors will create a vast population of pediatric phantoms for optimizing pediatric CT imaging protocols. Methods: Each phantom was based on a unique set of CT data from a normal patient obtained from the Duke University database. The datasets were selected tomore » best match the reference values for height and weight for the different ages and genders according to ICRP Publication 89. The major organs and structures were segmented from the CT data and used to create an initial pediatric model defined using nonuniform rational B-spline surfaces. The CT data covered the entire torso and part of the head. To complete the body, the authors manually added on the top of the head and the arms and legs using scaled versions of the XCAT adult models or additional models created from cadaver data. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from a template XCAT phantom (male or female 50th percentile adult) to the target pediatric model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. The masses of the organs in each phantom were matched to the reference values given in ICRP Publication 89. The new reference models were checked for anatomical accuracy via visual inspection. Results: The authors created a set of ten pediatric reference phantoms that have the same level of detail and functionality as the original XCAT phantom adults. Each consists of thousands of anatomical structures and includes parameterized

  7. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and

  8. DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS AND APPLICATION FOR CT DOSE CALCULATIONS.

    PubMed

    Pi, Yifei; Liu, Tianyu; Xu, X George

    2018-06-01

    Phantoms for organ dose calculations are essential in radiation protection dosimetry. This article describes the development of a set of mesh-based and age-dependent phantoms for Chinese populations using reference data recommended by the Chinese government and by the International Atomic Energy Agency (IAEA). Existing mesh-based RPI adult male (RPI-AM) and RPI adult female (RPI-AF) phantoms were deformed to form new phantoms according to anatomical data for the height and weight of Chinese individuals of 5 years old male, 5 years old female, 10 years old male, 10 years old female,15 years old male, 15 years old female, adult male and adult female-named USTC-5 M, USTC-5F, USTC-10M, USTC-10F, USTC-15M, USTC-15F, USTC-AM and USTC-AF, respectively. Following procedures to ensure the accuracy, more than 120 organs/tissues in each model were adjusted to match the Chinese reference parameters and the mass errors were within 0.5%. To demonstrate the usefulness, these new set of phantoms were combined with a fully validated model of the GE LightSpeed Pro 16 multi-detector computed tomography (MDCT) scanner and the GPU-based ARCHER Monte Carlo code to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower than these of the USTC adult phantoms whose body sizes are smaller. Comparisons for the doses among different ages and genders were also made. It was found that teenagers receive more radiation doses than adults do. Such Chinese-specific phantoms are clearly better suited in organ dose studies for the Chinese individuals than phantoms designed for western populations. As already demonstrated, data derived from age-specific Chinese phantoms can help CT operators and designers to optimize image quality and doses.

  9. SU-E-J-07: IGRT Gently: Evaluating Imaging Dose in Phantoms of Different Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, B; Duggar, W; Stanford, J

    Purpose: IGRT imaging procedures have emerged as a common method of patient position verification in radiotherapy, though imaging dose is generally neglected in the treatment plan. Consequently, evaluating and optimizing the dose from these procedures is worthwhile. This process is especially important for children, who are more radiosensitive than adults. The aim of this work was to gain some understanding of the relative doses involved with various XVI-preset parameters for an “adult” and “child” phantom set, with the hopes that imaging dose for a child can be reduced. Methods: 32 and 16cm CTDI-phantoms were used as surrogates for adult andmore » child torsos, respectively. Dose was measured in the central and peripheral chamber positions of the phantoms. CBCT scans were made for both phantoms using Elekta’s Chest-preset to establish a dose baseline. The child-phantom was then scanned using the Elekta Head and Neck (HN) preset. A modified HN-preset (named Peds Abd-pelvis) was also created with a doubled mAs to maintain a reduction in dose to the child-phantom (relative to the baseline), while providing clinically-usable image quality. Results: The baseline dose to the child-phantom from the Chest-preset was 310% that of the adult-phantom for the center chamber position and 150% at the periphery. An average dose reduction of 97% was obtained in the childphantom by switching from the Chest-preset to the HN-preset, while the Peds Abd-pelvis-preset similarly reduced the dose by an average of 92%. Conclusion: XVI-preset parameters significantly affect dose, and should be optimized to reduce dose, while ensuring clinically-usable image quality. Using a modified imaging preset (Peds Abd-pelvis-preset) greatly reduced the dose to the child-phantom compared to the dose for the Chest-preset for both the child and adult-phantoms. This outcome provides support for the development of child-specific protocols for IGRT imaging in pediatric patients.« less

  10. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  11. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  12. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiller, Mauritius; Dewji, Shaheen Azim

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  13. RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Zhang, Juying; Hum Na, Yong; Caracappa, Peter F.; Xu, X. George

    2009-10-01

    This paper describes the development of a pair of adult male and adult female computational phantoms that are compatible with anatomical parameters for the 50th percentile population as specified by the International Commission on Radiological Protection (ICRP). The phantoms were designed entirely using polygonal mesh surfaces—a Boundary REPresentation (BREP) geometry that affords the ability to efficiently deform the shape and size of individual organs, as well as the body posture. A set of surface mesh models, from Anatomium™ 3D P1 V2.0, including 140 organs (out of 500 available) was adopted to supply the basic anatomical representation at the organ level. The organ masses were carefully adjusted to agree within 0.5% relative error with the reference values provided in the ICRP Publication 89. The finalized phantoms have been designated the RPI adult male (RPI-AM) and adult female (RPI-AF) phantoms. For the purposes of organ dose calculations using the MCNPX Monte Carlo code, these phantoms were subsequently converted to voxel formats. Monoenergetic photons between 10 keV and 10 MeV in six standard external photon source geometries were considered in this study: four parallel beams (anterior-posterior, posterior-anterior, left lateral and right lateral), one rotational and one isotropic. The results are tabulated as fluence-to-organ-absorbed-dose conversion coefficients and fluence-to-effective-dose conversion coefficients and compared against those derived from the ICRP computational phantoms, REX and REGINA. A general agreement was found for the effective dose from these two sets of phantoms for photon energies greater than about 300 keV. However, for low-energy photons and certain individual organs, the absorbed doses exhibit profound differences due to specific anatomical features. For example, the position of the arms affects the dose to the lung by more than 20% below 300 keV in the lateral source directions, and the vertical position of the testes

  14. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, U; Erdi, Y; Wang, W

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACRmore » CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.« less

  15. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    PubMed Central

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  16. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean

  17. Whole-body voxel phantoms of paediatric patients—UF Series B

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  18. Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

    PubMed

    Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John

    2013-04-01

    The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT

  19. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness.

    PubMed

    Keshvari, J; Kivento, M; Christ, A; Bit-Babik, G

    2016-04-21

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  20. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  1. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes

    PubMed Central

    Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768

  2. WE-D-303-01: Development and Application of Digital Human Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, P.

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less

  3. Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom.

    PubMed

    Ahmed, Syed Rakin; Jia, Jeremy Mengyu; Bruza, Petr; Vinogradov, Sergei; Jiang, Shudong; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2018-03-01

    Radiation therapy produces Cherenkov optical emission in tissue, and this light can be utilized to activate molecular probes. The feasibility of sensing luminescence from a tissue molecular oxygen sensor from within a human body phantom was examined using the geometry of the axillary lymph node region. Detection of regions down to 30-mm deep was feasible with submillimeter spatial resolution with the total quantity of the phosphorescent sensor PtG4 near 1 nanomole. Radiation sheet scanning in an epi-illumination geometry provided optimal coverage, and maximum intensity projection images provided illustration of the concept. This work provides the preliminary information needed to attempt this type of imaging in vivo. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  5. Design of a digital phantom population for myocardial perfusion SPECT imaging research.

    PubMed

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric

    2014-06-21

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk

  6. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  7. Everyman's prostate phantom: kiwi-fruit substitute for human prostates at magnetic resonance imaging, diffusion-weighted imaging and magnetic resonance spectroscopy.

    PubMed

    Mueller-Lisse, Ullrich G; Murer, Sophie; Mueller-Lisse, Ulrike L; Kuhn, Marissa; Scheidler, Juergen; Scherr, Michael

    2017-08-01

    To apply an easy-to-assemble phantom substitute for human prostates in T2-weighted magnetic resonance imaging (T2WI), diffusion-weighted imaging (DWI) and 3D magnetic resonance spectroscopy (MRS). Kiwi fruit were fixed with gel hot and cold compress packs on two plastic nursery pots, separated by a plastic plate, and submerged in tap water inside a 1-L open-spout plastic watering can for T2WI (TR/TE 7500/101 ms), DWI (5500/61 ms, ADC b50-800 s/mm 2 map) and MRS (940/145 ms) at 3.0 T, with phased array surface coils. One green kiwi fruit was additionally examined with an endorectal coil. Retrospective comparison with benign peripheral zone (PZ) and transitional zone (TZ) of prostate (n = 5), Gleason 6-7a prostate cancer (n = 8) and Gleason 7b-9 prostate cancer (n = 7) validated the phantom. Mean contrast between central placenta (CP) and outer pericarp (OP, 0.346-0.349) or peripheral placenta (PP, 0.364-0.393) of kiwi fruit was similar to Gleason 7b-9 prostate cancer and PZ (0.308) in T2WI. ADC values of OP and PP (1.27 ± 0.07-1.37 ± 0.08 mm 2 /s × 10 -3 ) resembled PZ and TZ (1.39 ± 0.17-1.60 ± 0.24 mm 2 /s × 10 -3 ), while CP (0.91 ± 0.14-0.99 ± 0.10 mm 2 /s × 10 -3 ) resembled Gleason 7b-9 prostate cancer (1.00 ± 0.25 mm 2 /s × 10 -3 ). MR spectra showed peaks of citrate and myo-inositol in kiwi fruit, and citrate and "choline+creatine" in prostates. The phantom worked with an endorectal coil, too. The kiwi fruit phantom reproducibly showed zones similar to PZ, TZ and cancer in human prostates in T2WI and DWI and two metabolite peaks in MRS and appears suitable to compare different MR protocols, coil systems and scanners. • Kiwi fruit appear suitable as phantoms for human prostate in MR examinations. • Kiwi fruit show zonal anatomy like human prostates in T2-weighted MRI and DWI. • MR spectroscopy reliably shows peaks in kiwi fruit (citrate/inositol) and human prostates (citrate

  8. Phantom Radiculopathy: Case Report and Review of the Literature.

    PubMed

    Croci, Davide; Fandino, Javier; Marbacher, Serge

    2016-06-01

    Phantom radicular pain is very uncommon. To the best of our knowledge, only 14 cases have been described in the literature. A review of the literature revealed the most common cause of phantom radicular pain to be lumbar disc herniation and, furthermore, that treatment with epidural steroid injection or surgical decompression relieves pain in almost all cases. A significant number of patients with superimposed phantom radiculopathy may be missed because of the high incidence of degenerative lumbar spine diseases in the adult population, as well as the fact that amputee patients very often present with mixed stump and phantom pain. We report a case of a patient presenting with new-onset phantom radicular pain (S1 left) 4 years after an above-the-knee amputation (left). Computed tomography myelography showed compression of the left S1 nerve root caused by recurrent disc herniation and scar tissue formation after previous discectomy at L5-S1. The patient experienced temporarily relief of the sciatic pain after a fluoroscopically-guided epidural transforaminal steroid injection. Subsequent microsurgical decompression led to complete remission of the phantom radicular pain. Amputees experiencing recurrent phantom radicular pain or new-onset superimposed pain deserve further radiologic evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. An anthropomorphic phantom for quantitative evaluation of breast MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Loud, Jennifer T; El Khouli, Riham H; Myers, Kyle J; Greene, Mark H; Duyn, Jeff H; Badano, Aldo

    2011-02-01

    In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom's adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for the optimization and standardization of

  10. A methodology to develop computational phantoms with adjustable posture for WBC calibration.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Hunt, John; Vanhavere, F

    2014-11-21

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  11. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    NASA Astrophysics Data System (ADS)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  12. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    PubMed

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  13. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    USDA-ARS?s Scientific Manuscript database

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  14. Development of a head-phantom and measurement setup for lightning effects.

    PubMed

    Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael

    2016-08-01

    Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.

  15. Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography.

    PubMed

    Ludlow, John B; Walker, Cameron

    2013-12-01

    The increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern about the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Effective doses resulting from various combinations of field of view size and field location comparing child and adult anthropomorphic phantoms with the recently introduced i-CAT FLX cone-beam computed tomography unit (Imaging Sciences, Hatfield, Pa) were measured with optical stimulated dosimetry using previously validated protocols. Scan protocols included high resolution (360° rotation, 600 image frames, 120 kV[p], 5 mA, 7.4 seconds), standard (360°, 300 frames, 120 kV[p], 5 mA, 3.7 seconds), QuickScan (180°, 160 frames, 120 kV[p], 5 mA, 2 seconds), and QuickScan+ (180°, 160 frames, 90 kV[p], 3 mA, 2 seconds). Contrast-to-noise ratio was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Child phantom doses were on average 36% greater than adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than standard protocols for the child (P = 0.0167) and adult (P = 0.0055) phantoms. The 13 × 16-cm cephalometric fields of view ranged from 11 to 85 μSv in the adult phantom and 18 to 120 μSv in the child phantom for the QuickScan+ and standard protocols, respectively. The contrast-to-noise ratio was reduced by approximately two thirds when comparing QuickScan+ with standard exposure parameters. QuickScan+ effective doses are comparable with conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off might be acceptable for certain diagnostic tasks such as interim assessment of treatment results. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc

  16. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    NASA Astrophysics Data System (ADS)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  17. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  18. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull.

    PubMed

    Wydra, A; Maev, R Gr

    2013-11-21

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  19. Development and application of a set of mesh-based and age-dependent Chinese family phantoms for radiation protection dosimetry: Preliminary Data for external photon beams

    NASA Astrophysics Data System (ADS)

    Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George

    2017-09-01

    A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.

  20. Matroshka-R Phantom experiment

    NASA Image and Video Library

    2006-12-01

    ISS014-E-09091 (December 2006) --- The European Matroshka-R Phantom experiment was photographed by an Expedition 14 crewmember in the Zvezda Service Module of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  1. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  2. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    PubMed

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  3. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  4. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.

    PubMed

    van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C

    2005-09-01

    International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines. (c) 2005 Wiley-Liss, Inc.

  5. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yakun; Li Xiang; Paul Segars, W.

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representativemore » CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its

  6. Organ doses, effective doses, and risk indices in adult CT: Comparison of four types of reference phantoms across different examination protocols

    PubMed Central

    Zhang, Yakun; Li, Xiang; Paul Segars, W.; Samei, Ehsan

    2012-01-01

    Purpose: Radiation exposure from computed tomography (CT) to the public has increased the concern among radiation protection professionals. Being able to accurately assess the radiation dose patients receive during CT procedures is a crucial step in the management of CT dose. Currently, various computational anthropomorphic phantoms are used to assess radiation dose by different research groups. It is desirable to better understand how the dose results are affected by different choices of phantoms. In this study, the authors assessed the uncertainties in CT dose and risk estimation associated with different types of computational phantoms for a selected group of representative CT protocols. Methods: Routinely used CT examinations were categorized into ten body and three neurological examination categories. Organ doses, effective doses, risk indices, and conversion coefficients to effective dose and risk index (k and q factors, respectively) were estimated for these examinations for a clinical CT system (LightSpeed VCT, GE Healthcare). Four methods were used, each employing a different type of reference phantoms. The first and second methods employed a Monte Carlo program previously developed and validated in our laboratory. In the first method, the reference male and female extended cardiac-torso (XCAT) phantoms were used, which were initially created from the Visible Human data and later adjusted to match organ masses defined in ICRP publication 89. In the second method, the reference male and female phantoms described in ICRP publication 110 were used, which were initially developed from tomographic data of two patients and later modified to match ICRP 89 organ masses. The third method employed a commercial dosimetry spreadsheet (ImPACT group, London, England) with its own hermaphrodite stylized phantom. In the fourth method, another widely used dosimetry spreadsheet (CT-Expo, Medizinische Hochschule, Hannover, Germany) was employed together with its associated

  7. A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig.

    PubMed

    Lee, Sang Heun; Lee, Jaebok; Yoon, Young Joong; Park, Sangbok; Cheon, Changyul; Kim, Kihyun; Nam, Sangwook

    2011-06-01

    This paper presents the design of a wideband spiral antenna for ingestible capsule endoscope systems and a comparison between the experimental results in a human phantom and a pig under general anesthesia. As wireless capsule endoscope systems transmit real-time internal biological image data at a high resolution to external receivers and because they operate in the human body, a small wideband antenna is required. To incorporate these properties, a thick-arm spiral structure is applied to the designed antenna. To make practical and efficient use of antennas inside the human body, which is composed of a high dielectric and lossy material, the resonance characteristics and radiation patterns were evaluated through a measurement setup using a liquid human phantom. The total height of the designed antenna is 5 mm and the diameter is 10 mm. The fractional bandwidth of the fabricated antenna is about 21% with a voltage standing-wave ratio of less than 2, and it has an isotropic radiation pattern. These characteristics are suitable for wideband capsule endoscope systems. Moreover, the received power level was measured using the proposed antenna, a circular polarized receiver antenna, and a pig under general anesthesia. Finally, endoscopic capsule images in the stomach and large intestine were captured using an on-off keying transceiver system.

  8. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.

    PubMed

    Kim, Hanna; Hau, Nguyen Trung; Chae, Yu-Gyeong; Lee, Byeong-Il; Kang, Hyun Wook

    2016-04-01

    Artificial skin phantoms have been developed as an alternative tissue for human skin experiments due to convenient use and easy storage. However, fabricating both thin (∼100 μm) epidermis and relatively thick dermis is often cumbersome, and most developed phantoms have hardly reflected specific human skin types. The objective of this study was to fabricate skin phantoms with 3D printing technique to emulate various human skin types (I-VI) along with the corresponding optical and mechanical properties for laser tattoo removal. Both gelatin and agar powders were mixed with coffee and TiO2 particles to fabricate skin phantoms with materials properties for various skin types (I-VI). A 3D printer was employed to precisely control the thickness of each phantom for epidermis and dermis layers. A number of concentrations of the coffee and TiO2 particles were used to determine the degree of absorption and scattering effects in various skin types. The optical properties between 500 and 1,000 nm for the fabricated phantoms were measured by double-integrating spheres with an inverse adding-doubling (IAD) algorithm. Optical coherence tomography (OCT) and rheometer were also utilized to evaluate optical (absorption and reduced scattering coefficients) and mechanical properties (compression modulus) of the fabricated phantoms, respectively. Visible color inspections presented that the skin phantoms for types I, III, and VI similarly emulated the color space of the human skin types. The optical property measurements demonstrated that the absorption (μa) and reduced scattering (μ(s')) coefficients decreased with wavelengths. Compared to the human skin type VI, a dermis phantom represented quite equivalent values of μa and μ(s') whereas an epidermis phantom showed up to 30% lower μa but almost identical μ(s') over the wavelengths. The OCT measurements confirmed that the thicknesses of the epidermis and the dermis phantoms were measured to be 138.50 ± 0.01 μm and

  9. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... purposes to simulate a human body for positioning radiographic equipment. (b) Classification. Class I... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiographic anthropomorphic phantom. 892.1950 Section 892.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  10. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... purposes to simulate a human body for positioning radiographic equipment. (b) Classification. Class I... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiographic anthropomorphic phantom. 892.1950 Section 892.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  11. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... purposes to simulate a human body for positioning radiographic equipment. (b) Classification. Class I... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiographic anthropomorphic phantom. 892.1950 Section 892.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... purposes to simulate a human body for positioning radiographic equipment. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic anthropomorphic phantom. 892.1950 Section 892.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  13. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... purposes to simulate a human body for positioning radiographic equipment. (b) Classification. Class I... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic anthropomorphic phantom. 892.1950 Section 892.1950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. Development and test of sets of 3D printed age-specific thyroid phantoms for 131I measurements

    NASA Astrophysics Data System (ADS)

    Beaumont, Tiffany; Caldeira Ideias, Pedro; Rimlinger, Maeva; Broggio, David; Franck, Didier

    2017-06-01

    In the case of a nuclear reactor accident the release contains a high proportion of iodine-131 that can be inhaled or ingested by members of the public. Iodine-131 is naturally retained in the thyroid and increases the thyroid cancer risk. Since the radiation induced thyroid cancer risk is greater for children than for adults, the thyroid dose to children should be assessed as accurately as possible. For that purpose direct measurements should be carried out with age-specific calibration factors but, currently, there is no age-specific thyroid phantoms allowing a robust measurement protocol. A set of age-specific thyroid phantoms for 5, 10, 15 year old children and for the adult has been designed and 3D printed. A realistic thyroid shape has been selected and material properties taken into account to simulate the attenuation of biological tissues. The thyroid volumes follow ICRP recommendations and the phantoms also include the trachea and a spine model. Several versions, with or without spine, with our without trachea, with or without age-specific neck have been manufactured, in order to study the influence of these elements on calibration factors. The calibration factor obtained with the adult phantom and a reference phantom are in reasonable agreement. In vivo calibration experiments with germanium detectors have shown that the difference in counting efficiency, the inverse of the calibration factor, between the 5 year and adult phantoms is 25% for measurement at contact. It is also experimentally evidenced that the inverse of the calibration factor varies linearly with the thyroid volume. The influence of scattering elements like the neck or spine is not evidenced by experimental measurements.

  15. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  16. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Mille, Matthew M.; Liu, Tianyu; Caracappa, Peter F.; Xu, X. George

    2012-05-01

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m-2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set

  17. Characterization of a phantom setup for breast conserving cancer surgery

    NASA Astrophysics Data System (ADS)

    Chadwell, Jacob T.; Conley, Rebekah H.; Collins, Jarrod A.; Meszoely, Ingrid M.; Miga, Michael I.

    2016-03-01

    The purpose of this work is to develop an anatomically and mechanically representative breast phantom for the validation of breast conserving surgical therapies, specifically, in this case, image guided surgeries. Using three patients scheduled for lumpectomy and four healthy volunteers in mock surgical presentations, the magnitude, direction, and location of breast deformations was analyzed. A phantom setup was then designed to approximate such deformations in a mock surgical environment. Specifically, commercially available and custom-built polyvinyl alcohol (PVA) phantoms were used to mimic breast tissue during surgery. A custom designed deformation apparatus was then created to reproduce deformations seen in typical clinical setups of the pre- and intra-operative breast geometry. Quantitative analysis of the human subjects yielded a positive correlation between breast volume and amount of breast deformation. Phantom results reflected similar behavior with the custom-built PVA phantom outperforming the commercial phantom.

  18. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  19. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  20. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  1. 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom.

    PubMed

    Kangarlu, Allahyar; Shellock, Frank G; Chakeres, Donald W

    2003-02-01

    To investigate if the heat induced in biological tissues by typical radio frequency (RF) energy associated with an 8.0-Tesla magnetic resonance (MR) system causes excessive temperature changes. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast. A series of experiments were conducted with measurements obtained at RF power levels ranging from a specific absorption rate (SAR) of up to 4.0 W/kg for 10 minutes. The highest temperature increases were up to 0.7 degrees C. An inhomogeneous heating pattern was observed. In general, the deep regions within the phantom registered higher temperature increases compared to the peripheral sites. The expectation of an inhomogeneous RF distribution in ultra high field systems (> 4 T) was confirmed. At a frequency of 340 MHz and in-tissue RF wave length of about 10 cm, the RF inhomogeneity was measured to create higher temperatures in deeper regions of a human head phantom compared to peripheral tissues. Our results agree with the computational electromagnetic calculations for such frequencies. Importantly, these experiments indicated that there were no regions of heating that exceeded the current FDA guidelines. Copyright 2003 Wiley-Liss, Inc.

  2. Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald

    2016-03-01

    Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.

  3. Geometrically complex 3D-printed phantoms for diffuse optical imaging.

    PubMed

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C

    2017-03-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  4. Geometrically complex 3D-printed phantoms for diffuse optical imaging

    PubMed Central

    Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.

    2017-01-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863

  5. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    PubMed

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  6. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  7. Multi-Modality Phantom Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less

  8. 4D XCAT phantom for multimodality imaging research

    PubMed Central

    Segars, W. P.; Sturgeon, G.; Mendonca, S.; Grimes, Jason; Tsui, B. M. W.

    2010-01-01

    Purpose: The authors develop the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. Methods: Highly detailed whole-body anatomies for the adult male and female were defined in the XCAT using nonuniform rational B-spline (NURBS) and subdivision surfaces based on segmentation of the Visible Male and Female anatomical datasets from the National Library of Medicine as well as patient datasets. Using the flexibility of these surfaces, the Visible Human anatomies were transformed to match body measurements and organ volumes for a 50th percentile (height and weight) male and female. The desired body measurements for the models were obtained using the PEOPLESIZE program that contains anthropometric dimensions categorized from 1st to the 99th percentile for US adults. The desired organ volumes were determined from ICRP Publication 89 [ICRP, ‘‘Basic anatomical and physiological data for use in radiological protection: reference values,” ICRP Publication 89 (International Commission on Radiological Protection, New York, NY, 2002)]. The male and female anatomies serve as standard templates upon which anatomical variations may be modeled in the XCAT through user-defined parameters. Parametrized models for the cardiac and respiratory motions were also incorporated into the XCAT based on high-resolution cardiac- and respiratory-gated multislice CT data. To demonstrate the usefulness of the phantom, the authors show example simulation studies in PET, SPECT, and CT using publicly available simulation packages. Results: As demonstrated in the pilot studies, the 4D XCAT (which includes thousands of anatomical structures) can produce realistic imaging data when combined with accurate models of the imaging process. With the flexibility of the NURBS surface primitives, any number of different anatomies, cardiac or respiratory motions or patterns, and spatial resolutions can be simulated to perform imaging research. Conclusions: With the ability to produce

  9. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults—application to CT dosimetry

    NASA Astrophysics Data System (ADS)

    Geyer, Amy M.; O'Reilly, Shannon; Lee, Choonsik; Long, Daniel J.; Bolch, Wesley E.

    2014-09-01

    Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.

  10. Liver phantom for quality control and training in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  11. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this

  12. Development and clinical application of a length-adjustable water phantom for total body irradiation.

    PubMed

    Chen, Zhi-Wei; Yao, Sheng-Yu; Zhang, Tie-Ning; Zhu, Zhen-Hua; Hu, Zhe-Kai; Lu, Xun

    2012-08-01

    A new type of water phantom which would be specialised for the absorbed dose measurement in total body irradiation (TBI) treatment is developed. Ten millimetres of thick Plexiglas plates were arranged to form a square cube with 300 mm of edge length. An appropriate sleeve-type piston was installed on the side wall, and a tabular Plexiglas piston was positioned inside the sleeve. By pushing and pulling the piston, the length of the self-made water phantom could be varied to meet the required patients' physical sizes. To compare the international standard water phantom with the length-adjustable and the Plexiglas phantoms, absorbed dose for 6-MV X ray was measured by an ionisation chamber at different depths in three kinds of phantoms. In 70 cases with TBI, midplane doses were metered using the length-adjustable and the Plexiglas phantoms for simulating human dimensions, and dose validation was synchronously carried out. There were no significant statistical differences, p > 0.05, through statistical processing of data from the international standard water phantom and the self-designed one. There were significant statistical differences, p < 0.05, between the two sets of data from the standard and the Plexiglas one. In addition, the absolute difference had a positive correlation with the varied depth of the detector in the Plexiglas phantom. Comparing the data of clinical treatment, the differences were all <1 % among the prescription doses and the validation data collected from the self-design water phantom. However, the differences collected from the Plexiglas phantom were increasing gradually from +0.77 to +2.30 % along with increasing body width. Obviously, the difference had a positive correlation with the body width. The results proved that the new length-adjustable water phantom is more accurate for simulating human dimensions than Plexiglas phantom.

  13. A low-cost, durable, combined ultrasound and fluoroscopic phantom for cervical transforaminal injections.

    PubMed

    Lerman, Imanuel R; Souzdalnitski, Dmitri; Narouze, Samer

    2012-01-01

    This technical report describes a durable, low-cost, anatomically accurate, and easy-to-prepare combined ultrasound (US) and fluoroscopic phantom of the cervical spine. This phantom is meant to augment training in US- and fluoroscopic-guided pain medicine procedures. The combined US and fluoroscopic phantom (CUF-P) is prepared from commercially available liquid plastic that is ordinarily used to prepare synthetic fishing lures. The liquid plastic is heated and then poured into a metal canister that houses an anatomical cervical spine model. Drops of dark purple dye are added to make the phantom opaque. After cooling, tubing is attached to the CUF-P to simulate blood vessels. The CUF-P accurately simulates human tissue by imitating both the tactile texture of skin and the haptic resistance of human tissue as the needle is advanced. This phantom contains simulated fluid-filled vertebral arteries that exhibit pulsed flow under color Doppler US. Under fluoroscopic examination, the CUF-P-simulated vertebral arteries also exhibit uptake of contrast dye if mistakenly injected. The creation of a training phantom allows the pain physician to practice needle positioning technique while simultaneously visualizing both targeted and avoidable vascular structures under US and fluoroscopic guidance. This low-cost CUF-P is easy to prepare and is reusable, making it an attractive alternative to current homemade and commercially available phantom simulators.

  14. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  15. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  16. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  17. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmin, G; Lee, C; Lee, C

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations

  18. Human Eye Phantom for Developing Computer and Robot-Assisted Epiretinal Membrane Peeling*

    PubMed Central

    Gupta, Amrita; Gonenc, Berk; Balicki, Marcin; Olds, Kevin; Handa, James; Gehlbach, Peter; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    A number of technologies are being developed to facilitate key intraoperative actions in vitreoretinal microsurgery. There is a need for cost-effective, reusable benchtop eye phantoms to enable frequent evaluation of these developments. In this study, we describe an artificial eye phantom for developing intraocular imaging and force-sensing tools. We test four candidate materials for simulating epiretinal membranes using a handheld tremor-canceling micromanipulator with force-sensing micro-forceps tip and demonstrate peeling forces comparable to those encountered in clinical practice. PMID:25571573

  19. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    PubMed

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  20. The design and fabrication of two portal vein flow phantoms by different methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less

  1. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  2. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of changemore » of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.« less

  3. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  4. Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom

    NASA Astrophysics Data System (ADS)

    Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.

    2017-02-01

    The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.

  5. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies.

    PubMed

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S; Moses, William W; Qi, Jinyi

    2018-03-16

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  6. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  7. Phantom penis: historical dimensions.

    PubMed

    Wade, Nicholas J; Finger, Stanley

    2010-10-01

    Interest in sensations from removed body parts other than limbs has increased with modern surgical techniques. This applies particularly to operations (e.g., gender-changing surgeries) that have resulted in phantom genitalia. The impression given in modern accounts, especially those dealing with phantoms associated with penis amputation, is that this is a recently discovered phenomenon. Yet the historical record reveals several cases of phantom penises dating from the late-eighteenth century and the early-nineteenth century. These cases, recorded by some of the leading medical and surgical figures of the era, are of considerable historical and theoretical significance. This is partly because these phantoms were associated with pleasurable sensations, in contrast to the loss of a limb, which for centuries had been associated with painful phantoms. We here present several early reports on phantom penile sensations, with the intent of showing what had been described and why more than 200 years ago.

  8. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  9. Computerized quantitative evaluation of mammographic accreditation phantom images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yongbum; Tsai, Du-Yih; Shinohara, Norimitsu

    2010-12-15

    Purpose: The objective was to develop and investigate an automated scoring scheme of the American College of Radiology (ACR) mammographic accreditation phantom (RMI 156, Middleton, WI) images. Methods: The developed method consisted of background subtraction, determination of region of interest, classification of fiber and mass objects by Mahalanobis distance, detection of specks by template matching, and rule-based scoring. Fifty-one phantom images were collected from 51 facilities for this study (one facility provided one image). A medical physicist and two radiologic technologists also scored the images. The human and computerized scores were compared. Results: In terms of meeting the ACR's criteria,more » the accuracies of the developed method for computerized evaluation of fiber, mass, and speck were 90%, 80%, and 98%, respectively. Contingency table analysis revealed significant association between observer and computer scores for microcalcifications (p<5%) but not for masses and fibers. Conclusions: The developed method may achieve a stable assessment of visibility for test objects in mammographic accreditation phantom image in whether the phantom image meets the ACR's criteria in the evaluation test, although there is room left for improvement in the approach for fiber and mass objects.« less

  10. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    PubMed

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  11. New VHP-Female v. 2.0 full-body computational phantom and its performance metrics using FEM simulator ANSYS HFSS.

    PubMed

    Yanamadala, Janakinadh; Noetscher, Gregory M; Rathi, Vishal K; Maliye, Saili; Win, Htay A; Tran, Anh L; Jackson, Xavier J; Htet, Aung T; Kozlov, Mikhail; Nazarian, Ara; Louie, Sara; Makarov, Sergey N

    2015-01-01

    Simulation of the electromagnetic response of the human body relies heavily upon efficient computational models or phantoms. The first objective of this paper is to present a new platform-independent full-body electromagnetic computational model (computational phantom), the Visible Human Project(®) (VHP)-Female v. 2.0 and to describe its distinct features. The second objective is to report phantom simulation performance metrics using the commercial FEM electromagnetic solver ANSYS HFSS.

  12. Development of a universal medical X-ray imaging phantom prototype.

    PubMed

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the

  13. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  14. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  15. Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies

    NASA Astrophysics Data System (ADS)

    Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.

    2012-01-01

    Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum

  16. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  17. Use of optical skin phantoms for preclinical evaluation of laser efficiency for skin lesion therapy

    PubMed Central

    Wróbel, Maciej S.; Jędrzejewska-Szczerska, Malgorzata; Galla, Stanislaw; Piechowski, Leszek; Sawczak, Miroslaw; Popov, Alexey P.; Bykov, Alexander V.; Tuchin, Valery V.; Cenian, Adam

    2015-01-01

    Abstract. Skin lesions are commonly treated using laser heating. However, the introduction of new devices into clinical practice requires evaluation of their performance. This study presents the application of optical phantoms for assessment of a newly developed 975-nm pulsed diode laser system for dermatological purposes. Such phantoms closely mimic the absorption and scattering of real human skin (although not precisely in relation to thermal conductivity and capacitance); thus, they can be used as substitutes for human skin for approximate evaluation of laser heating efficiency in an almost real environment. Thermographic imaging was applied to measure the spatial and temporal temperature distributions on the surface of laser-irradiated phantoms. The study yielded results of heating with regard to phantom thickness and absorption, as well as laser settings. The methodology developed can be used in practice for preclinical evaluations of laser treatment for dermatology. PMID:26263414

  18. Development of a Tailored Thyroid Gland Phantom for Fine-Needle Aspiration Cytology by Three-Dimensional Printing.

    PubMed

    Baba, Masayuki; Matsumoto, Keitaro; Yamasaki, Naoya; Shindo, Hisakazu; Yano, Hiroshi; Matsumoto, Megumi; Otsubo, Ryota; John Lawn, Murray; Matsuo, Naoto; Yamamoto, Ikuo; Hidaka, Shigekazu; Nagayasu, Takeshi

    Fine-needle aspiration cytology (FNAC) is a challenging and risky procedure for inexperienced clinicians to perform because of the proximity of the thyroid to the jugular veins, carotid arteries, and trachea. A phantom model for transfixion practice would help train clinicians in FNAC. To fabricate a tailored phantom with consideration for authenticity of size, touch, feel, and ultrasonographic (US) characteristics. A three-dimensional (3D) digital model of the human neck was reconstructed from computed tomography data of a subject. This model was used to create 3D-printed templates for various organs that require US visualization. The templates were injected with polymers that provided similar degrees of ultrasound permeability as the corresponding organs. For fabrication of each organ, the respective molds of organs, blood vessels, thyroid gland, and tumor were injected with the material. The fabricated components were then removed from the templates and colored. Individual components were then positioned in the neck mold, and agar gel was poured in. The complete phantom was then removed from the mold. Thereafter, 45 medical doctors and students performed ultrasound-guided FNAC using the phantom, following which they were queried regarding the value of the phantom. The structure, US characteristics, and elasticity of the phantom were similar to those of the human subject. In the survey, all 45 participants replied that they found the phantom useful for FNAC training, and 30 medical students professed increased interest in thyroid diseases after using the phantom. We successfully fabricated a tailored thyroid gland phantom for transfixion practice. As most of the phantom parts are injected in molds fabricated using a 3D printer, they can be easily reproduced once the molds are fabricated. This phantom is expected to serve as an effective and fully tailored training model for practicing thyroid gland transfixion. Copyright © 2017. Published by Elsevier Inc.

  19. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  20. Control volume based hydrocephalus research; a phantom study

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  1. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  2. Phantom Torso in HRF section of Destiny module

    NASA Image and Video Library

    2001-05-02

    ISS002-E-6080 (2 May 2001) --- The Phantom Torso, seen here in the Human Research Facility (HRF) section of the Destiny/U.S. laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights. The experiment was delivered to the orbiting outpost during by the STS-100/6A crew in April 2001. Dr. Gautam Badhwar, NASA JSC, Houston, TX, is the principal investigator for this experiment. A digital still camera was used to record this image.

  3. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  4. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  5. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders.

    PubMed

    Tatu, Laurent; Bogousslavsky, Julien

    2018-01-01

    Body representation disorders continue to be mysterious and involve the anatomical substrate that underlies the mental representation of the body. These disorders sit on the boundaries of neurological and psychiatric diseases. We present the main characteristics of 3 examples of body representation disorders: phantom sensations, supernumerary phantom limb, and apotemnophilia. The dysfunction of anatomical circuits that regulate body representation can sometimes have paradoxical features. In the case of phantom sensations, the patient feels the painful subjective sensation of the existence of the lost part of the body after amputation, surgery or trauma. In case of apotemnophilia, now named body integrity identity disorder, the subject wishes for the disappearance of the existing and normal limb, which can occasionally lead to self-amputation. More rarely, a brain-damaged patient with 4 existing limbs can report the existence of a supernumerary phantom limb. © 2018 S. Karger AG, Basel.

  6. A physical breast phantom for 2D and 3D x-ray imaging made through inkjet printing

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda C.; Graff, Christian G.; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y.; Glick, Stephen J.

    2017-03-01

    Physical breast phantoms are used for imaging evaluation studies with 2D and 3D breast x-ray systems, serving as surrogates for human patients. However, there is a presently a limited selection of available phantoms that are realistic, in terms of containing the complex tissue architecture of the human breast. In addition, not all phantoms can be successfully utilized for both 2D and 3D breast imaging. Additionally, many of the phantoms are uniform or unrealistic in appearance, expensive, or difficult to obtain. The purpose of this work was to develop a new method to generate realistic physical breast phantoms using easy to obtain and inexpensive materials. First, analytical modeling was used to design a virtual model, which was then compressed using finite element modeling. Next, the physical phantom was realized through inkjet printing with a standard inkjet printer using parchment paper and specialized inks, formulated using silver nanoparticles and a bismuth salt. The printed phantom sheets were then aligned and held together using a custom designed support plate made of PMMA, and imaged on clinical FFDM and DBT systems. Objects of interest were also placed within the phantom to simulate microcalcifications, pathologies that often occur in the breast. The linear attenuation coefficients of the inks and parchment were compared against tissue equivalent samples and found to be similar to breast tissue. The phantom is promising for use in imaging studies and developing QC protocols.

  7. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  8. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  9. New conversion factors between human and automatic readouts of the CDMAM phantom for CR systems

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Homolka, Peter; Osanna-Elliot, Angelika; Kaar, Marcus; Semtrus, Friedrich; Figl, Michael

    2016-03-01

    Mammography screenings demand for profound image quality (IQ) assessment to guarantee their screening success. The European protocol for the quality control of the physical and technical aspects of mammography screening (EPQCM) suggests a contrast detail phantom such as the CDMAM phantom to evaluate IQ. For automatic evaluation a software is provided by the EUREF. As human and automatic readouts differ systematically conversion factors were published by the official reference organisation (EUREF). As we experienced a significant difference for these factors for Computed Radiography (CR) systems we developed an objectifying analysis software which presents the cells including the gold disks randomly in thickness and rotation. This allows to overcome the problem of an inevitable learning effect where observers know the position of the disks in advance. Applying this software, 45 computed radiography (CR) systems were evaluated and the conversion factors between human and automatic readout determined. The resulting conversion factors were compared with the ones resulting from the two methods published by EUREF. We found our conversion factors to be substantially lower than those suggested by EUREF, in particular 1.21 compared to 1.42 (EUREF EU method) and 1.62 (EUREF UK method) for 0.1 mm, and 1.40 compared to 1.73 (EUREF EU) and 1.83 (EUREF UK) for 0.25 mm disc diameter, respectively. This can result in a dose increase of up to 90% using either of these factors to adjust patient dose in order to fulfill image quality requirements. This suggests the need of an agreement on their proper application and limits the validity of the assessment methods. Therefore, we want to stress the need for clear criteria for CR systems based on appropriate studies.

  10. Use of patient specific 3D printed neurovascular phantoms to evaluate the clinical utility of a high resolution x-ray imager

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Russ, M.; Ionita, C. N.; Bednarek, D.; Rudin, S.

    2017-03-01

    Modern 3D printing technology can fabricate vascular phantoms based on an actual human patient with a high degree of precision facilitating a realistic simulation environment for an intervention. We present two experimental setups using 3D printed patient-specific neurovasculature to simulate different disease anatomies. To simulate the human neurovasculature in the Circle of Willis, patient-based phantoms with aneurysms were 3D printed using a Objet Eden 260V printer. Anthropomorphic head phantoms and a human skull combined with acrylic plates simulated human head bone anatomy and x-ray attenuation. For dynamic studies the 3D printed phantom was connected to a pulsatile flow loop with the anthropomorphic phantom underneath. By combining different 3D printed phantoms and the anthropomorphic phantoms, different patient pathologies can be simulated. For static studies a 3D printed neurovascular phantom was embedded inside a human skull and used as a positional reference for treatment devices such as stents. To simulate tissue attenuation acrylic layers were added. Different combinations can simulate different patient treatment procedures. The Complementary-Metal-Oxide-Semiconductor (CMOS) based High Resolution Fluoroscope (HRF) with 75μm pixels offers an advantage over the state-of-the-art 200 μm pixel Flat Panel Detector (FPD) due to higher Nyquist frequency and better DQE performance. Whether this advantage is clinically useful during an actual clinical neurovascular intervention can be addressed by qualitatively evaluating images from a cohort of various cases performed using both detectors. The above-mentioned method can offer a realistic substitute for an actual clinical procedure. Also a large cohort of cases can be generated and used for a HRF clinical utility determination study.

  11. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar, E-mail: amowlavi@hsu.ac.ir; ICTP, Associate Federation Scheme, Medical Physics Field, Trieste

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that havemore » the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.« less

  12. Low tube voltage dual source computed tomography to reduce contrast media doses in adult abdomen examinations: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thor, Daniel; Brismar, Torkel B., E-mail: torkel.brismar@gmail.com; Fischer, Michael A.

    Purpose: To evaluate the potential of low tube voltage dual source (DS) single energy (SE) and dual energy (DE) computed tomography (CT) to reduce contrast media (CM) dose in adult abdominal examinations of various sizes while maintaining soft tissue and iodine contrast-to-noise ratio (CNR). Methods: Four abdominal phantoms simulating a body mass index of 16 to 35 kg/m{sup 2} with four inserted syringes of 0, 2, 4, and 8 mgI/ml CM were scanned using a 64-slice DS-CT scanner. Six imaging protocols were used; one single source (SS) reference protocol (120 kV, 180 reference mAs), four low kV SE protocols (70more » and 80 kV using both SS and DS), and one DE protocol at 80/140 kV. Potential CM reduction with unchanged CNRs relative to the 120 kV protocol was calculated along with the corresponding increase in radiation dose. Results: The potential contrast media reductions were determined to be approximately 53% for DS 70 kV, 51% for SS 70 kV, 44% for DS 80 kV, 40% for SS 80 kV, and 20% for DE (all differences were significant, P < 0.05). Constant CNR could be achieved by using DS 70 kV for small to medium phantom sizes (16–26 kg/m{sup 2}) and for all sizes (16–35 kg/m{sup 2}) when using DS 80 kV and DE. Corresponding radiation doses increased by 60%–107%, 23%–83%, and 6%–12%, respectively. Conclusions: DS single energy CT can be used to reduce CM dose by 44%–53% with maintained CNR in adult abdominal examinations at the cost of an increased radiation dose. DS dual-energy CT allows reduction of CM dose by 20% at similar radiation dose as compared to a standard 120 kV single source.« less

  13. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms -more » takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male

  14. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research: Computer models that take account of body movements promise to provide evaluation and improvement of medical imaging devices and technology.

    PubMed

    Paul Segars, W; Tsui, Benjamin M W

    2009-12-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal "hybrid" models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  15. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS.

    PubMed

    Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther

    2014-11-01

    The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.

  16. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights

    NASA Technical Reports Server (NTRS)

    Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  18. Phantom stars and topology change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence ofmore » a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.« less

  19. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  20. Phantom energy traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo, Francisco S.N.; Campo Grande, Ed. C8 1749-016 Lisbon

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy.more » Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed

  1. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  2. Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Sevick-Muraca, Eva M.

    2013-02-01

    Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.

  3. Development of PIMAL: Mathematical Phantom with Moving Arms and Legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, Hatice; Eckerman, Keith F.

    2007-05-01

    The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates onmore » the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the

  4. Phantom vibration and phantom ringing among mobile phone users: A systematic review of literature.

    PubMed

    Deb, Amrita

    2015-09-01

    The last decade has witnessed considerable interest in pathological conditions stemming from misuse or overuse of technology, a condition commonly referred to as technopathology. Of the several complaints reported, phantom vibration or phantom ringing is one that has not yet been widely explored. The objective of conducting a systematic review is to provide an understanding of the phenomena and summarize the research conducted so far. Major databases were searched and articles that matched the inclusion criteria were selected for final analysis. According to findings obtained, phantom vibration or phantom ringing was commonly experienced by mobile phone users; however, few found it bothersome and hence took no steps to eliminate it. As of now, literature in the area is limited and many aspects of the phenomena such as its prevalence across populations, causal factors, consequences, and treatment plans are yet to be studied. Also, a clinical criterion for identification of the condition needs to be formulated. With increase in the number of individuals reporting mobile phone-related problem behavior, phantom vibration, or phantom ringing may be expected to become a cause of concern for mental health professionals within some years. Finally, the need for further research is emphasized while presenting directions for future investigations. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  6. High Ringxiety: Attachment Anxiety Predicts Experiences of Phantom Cell Phone Ringing.

    PubMed

    Kruger, Daniel J; Djerf, Jaikob M

    2016-01-01

    Mobile cell phone users have reported experiencing ringing and/or vibrations associated with incoming calls and messages, only to find that no call or message had actually registered. We believe this phenomenon can be understood as a human signal detection issue, with potentially important influences from psychological attributes. We hypothesized that individuals higher in attachment anxiety would report more frequent phantom cell phone experiences, whereas individuals higher in attachment avoidance would report less frequent experiences. If these experiences are primarily psychologically related to attributes of interpersonal relationships, associations with attachment style should be stronger than for general sensation seeking. We also predicted that certain contexts would interact with attachment style to increase or decrease the likelihood of experiencing phantom cell phone calls and messages. Attachment anxiety directly predicted the frequency of phantom ringing and notification experiences, whereas attachment avoidance and sensation seeking did not directly predict frequency. Attachment anxiety and attachment avoidance interacted with contextual factors (expectations for a call or message and concerned about an issue that one may be contacted about) in the expected directions for predicting phantom cell phone experiences.

  7. The subresolution DaTSCAN phantom: a cost-effective, flexible alternative to traditional phantom technology.

    PubMed

    Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John

    2018-03-01

    The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.

  8. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  9. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Perry B.; Geyer, Amy; Borrego, David

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific andmore » patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical

  10. Phantom Preparation and Optical Property Determination

    NASA Astrophysics Data System (ADS)

    He, Di; He, Jie; Mao, Heng

    2018-12-01

    Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine

  11. TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks

    NASA Astrophysics Data System (ADS)

    Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.

    2018-01-01

    In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.

  12. Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles

    NASA Astrophysics Data System (ADS)

    In, Eunji; Naguib, Hani E.; Haider, Masoom

    2012-04-01

    Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize the detailed internal structure and body soft tissues in complete 3D image. MRI performs best when optimal imaging parameters such as contrast, signal to noise ratio (SNR), spatial resolution and total scan time are utilized. However, due to a variety of imaging parameters that differ with the manufacturer, a calibration medium that allows the control of these parameters is necessary. Therefore, a phantom that behaves similar to human soft tissue is developed to replace a real human. Polymer gel is novel material that has great potential in the medical imaging. Since very few have focused on examining the behavior of polymer lesions, the motivation of this study is to develop a polymer gel phantom, especially for liver, with embedded lesions. Both the phantom and lesions should be capable of reflecting T1 and T2 relaxation values through various characterization processes. In this paper, phantom and lesion particles were fabricated with carrageenan as a gelling agent by physical aggregation. Agar was used as supplementary gelling agent and T2 modifier and Gd-DTPA as T1 modifier. The polymer gel samples were fabricated by varying the concentrations of the gelling agent, and T1 and T2 modifiers. The lesion particles were obtained by extracting molten polymer gel solution in chilled oil bath to obtain spherical shape. The polymer gel properties including density, elastic modulus, dielectric constant and optical properties were measured to compare with human tissue values for long period of time.

  13. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  14. Organosilicon phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  15. SU-F-J-172: Hybrid MR/CT Compatible Phantom for MR-Only Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Lee, S; Song, K

    2016-06-15

    Purpose: Development of hybrid MR/CT compatible phantom was introduced to fully establish MR image only radiation treatment and this suggested technique using in-house developed hybrid MR/CT compatible phantom image would utilize to generate radiation treatment planning and perform dose calculation without multi-modal registration process or generation of pseudo CT. Methods: Fundamental characteristics for “hybrid MR/CT compatible phantom” was established: Relaxation times equivalent to human tissue, dielectric properties, homogeneous relaxation times, sufficient strength to fabricate a torso, ease of handling, a wide variety of density material for calibration, chemical and physical stability over an extended time. For this requirements, chemical componentmore » in each tested plug which would be tissue equivalent to human tissue on MR and CT image and production of phantom body and plug was performed. Chemical component has described below: Agaros, GdCl{sub 3}, NaN{sub 3}, NaCl, K{sub 2}Co{sub 3}, deionized-distilled water. Various mixture of chemical component to simulate human tissue on both MR and CT image was tested by measuring T1, T2 relaxation time and signal intensity (SI) on MR image and Hounsfield unit (HU) on CT and each value was compared. The hybrid MR/CT compatible phantom with 14 plugs was designed and has made. Total height and external diameter was decided by internal size of 32 channel MR head-coil. Results: Tissue-equivalent chemical component materials and hybrid MR/CT compatible phantom was developed. The range of T1, T2 relaxation time and SI on MR image, HU on CT was acquired and could be adjusted to correspond to simulated human tissue. Conclusion: Current result shows its possibility for MR-only based radiotherapy and the best mixing rate of chemical component for tissue-equivalent image on MR and CT was founded. However, additional technical issues remain to be overcome. Conversion of SI on MR image into HU and dose calculation

  16. Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.

    PubMed

    Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon

    2017-05-15

    The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.

  17. Human Adult Neurogenesis: Evidence and Remaining Questions.

    PubMed

    Kempermann, Gerd; Gage, Fred H; Aigner, Ludwig; Song, Hongjun; Curtis, Maurice A; Thuret, Sandrine; Kuhn, H Georg; Jessberger, Sebastian; Frankland, Paul W; Cameron, Heather A; Gould, Elizabeth; Hen, Rene; Abrous, D Nora; Toni, Nicolas; Schinder, Alejandro F; Zhao, Xinyu; Lucassen, Paul J; Frisén, Jonas

    2018-04-18

    Renewed discussion about whether or not adult neurogenesis exists in the human hippocampus, and the nature and strength of the supporting evidence, has been reignited by two prominently published reports with opposite conclusions. Here, we summarize the state of the field and argue that there is currently no reason to abandon the idea that adult-generated neurons make important functional contributions to neural plasticity and cognition across the human lifespan. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    NASA Technical Reports Server (NTRS)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  19. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  20. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography

    PubMed Central

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-01-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  1. HOME-BASED SELF-DELIVERED MIRROR THERAPY FOR PHANTOM PAIN: A PILOT STUDY*

    PubMed Central

    Darnall, Beth D.; Li, Hong

    2014-01-01

    Objective To test the feasibility and preliminary efficacy of self-delivered home-based mirror therapy for phantom pain. Design Uncontrolled prospective treatment outcome pilot study. Participants Forty community-dwelling adults with unilateral amputation and phantom pain >3 on a 0–10 numeric rating scale enrolled either during a one-time study visit (n = 30) or remotely (n = 10). Methods Participants received an explanation of mirror therapy and were asked to self-treat for 25 min daily. Participants completed and posted back sets of outcomes questionnaires at months 1 and 2 post-treatment. Main outcome was mean phantom pain intensity at post-treatment. Results A significant reduction in mean phantom pain intensity was found at month 1 (n = 31, p = 0.0002) and at month 2 (n = 26, p = 0.002). The overall median percentage reduction at month 2 was 15.4%. Subjects with high education (>16 years) compared with low education (<16 years) (37.5% vs 4.1%) had greater reduction in pain intensity (p = 0.01). Conclusion These findings support the feasibility and efficacy of home-based self-delivered mirror therapy; this low-cost treatment may defray medical costs, therapy visits, and the patient travel burden for people with motivation and a high level of education. More research is needed to determine methods of cost-effective support for people with lower levels of education. PMID:22378591

  2. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  3. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver.

    PubMed

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-21

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  4. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less

  5. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.

    PubMed

    Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R

    2018-01-01

    Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences <1 mm for all structures. Tensile tests of the materials used for the phantom show that the phantom is able to endure radiation doses over 24,000 Gy. It is feasible to create an anthropomorphic thorax phantom using 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.

  6. Effect of leaded glasses and thyroid shielding on cone beam CT radiation dose in an adult female phantom

    PubMed Central

    Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC

    2013-01-01

    Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460

  7. An arm phantom for in vivo determination of Americium-241 in bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, G.S.; Palmer, H.E.

    1988-04-01

    The focus of this research has been to construct a realistic arm phantom as a calibration tool in estimation of /sup 241/Am in the bone. The United States Transuranium Registry (USTR), through its program of whole body donations, continues to provide data on transuranic incorporation in man that would not otherwise be readily available (Norwood 1972; Breitenstein 1981; Swint, et al. 1985). This project uses well-characterized human bones loaned by the USTR for the construction of realistic phantoms for improvement of whole-body counter calibrations. 27 refs., 2 figs., 4 tabs.

  8. 3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities

    NASA Astrophysics Data System (ADS)

    Kedia, Nikita; Liu, Zhuolin; Sochol, Ryan; Hammer, Daniel X.; Agrawal, Anant

    2018-02-01

    Adaptive optics-enabled optical coherence tomography (AO-OCT) and scanning laser ophthalmoscopy (AO-SLO) devices can resolve retinal cones and rods in three dimensions. To evaluate the improved resolution of AO-OCT and AO-SLO, a phantom that mimics retinal anatomy at the cellular level is required. We used a two-photon polymerization approach to fabricate three-dimensional (3D) photoreceptor phantoms modeled on the central foveal cones. By using a femtosecond laser to selectively photocure precise locations within a liquid-based photoresist via two-photon absorption, we produced high-resolution phantoms with μm-level dimensions similar to true anatomy. In this work, we present two phantoms to evaluate the resolution limits of an AO imaging system: one that models only the outer segments of the photoreceptor cells at varying retinal eccentricities and another that contains anatomically relevant features of the full-length photoreceptor. With these phantoms we are able to quantitatively estimate transverse resolution of an AO system and produce images that are comparable to those found in the human retina.

  9. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  10. Characterization of a novel anthropomorphic plastinated lung phantom

    PubMed Central

    Yoon, Sungwon; Henry, Robert W.; Bouley, Donna M.; Bennett, N. Robert; Fahrig, Rebecca

    2008-01-01

    Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148

  11. Occurrence of phantom genitalia after gender reassignment surgery.

    PubMed

    Ramachandran, V S; McGeoch, Paul D

    2007-01-01

    Transsexuals are individuals who identify as a member of the gender opposite to that which they are born. Many transsexuals report that they have always had a feeling of a mismatch between their inner gender-based "body image" and that of their body's actual physical form. Often transsexuals undergo gender reassignment surgery to convert their bodies to the sex they feel they should have been born. The vivid sensation of still having a limb although it has been amputated, a phantom limb, was first described by Weir Mitchell over a century ago. The same phenomenon is also occurs after amputation of the penis or a breast. Around 60% of men who have had to have their penis amputated for cancer will experience a phantom penis. It has recently been shown that a significant factor in these phantom sensations is "cross-activation" between the de-afferented cortex and surrounding areas. Despite this it also known that much of our body image is innately "hard-wired" into our brains; congenitally limbless patients can still experience phantom sensations. We hypothesise that, perhaps due to a dissociation during embryological development, the brains of transsexuals are "hard-wired" in manner, which is opposite to that of their biological sex. We go on to predict that male-to-female transsexuals will be much less likely to experience a phantom penis than a "normal" man who has had his penis amputated for another reason. The same will be true of female-to-male transsexuals who have had breast removal surgery. We also predict that some female-to-male transsexuals will have a phantom penis even although there is not one physically there. We believe that this is an easily testable hypothesis, which, if correct, would offer insights into both the basis of transsexuality and provide farther evidence that we have a gender specific body image, with a strong innate component that is "hard-wired" into our brains. This would furnish us with a better understanding the mechanism by which

  12. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    NASA Astrophysics Data System (ADS)

    Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.

    2012-05-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.

  13. Matroshka-R Phantom experiment

    NASA Image and Video Library

    2006-12-01

    ISS014-E-09097 (December 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the European Matroshka-R Phantom experiment in the Zvezda Service Module of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies. The activity, supported by ground specialist tag-up, requires equipping the torso's individual horizontal slice-like layers with 356 thermo luminescent detectors (TLDs) and five nuclear radiation tracking detectors (NTDPs). The mannequin was then to be reassembled, covered with poncho and hood and installed in the Pirs Docking Compartment for studies of on-orbit radiation and long-term dose accumulation.

  14. SU-E-T-399: Evaluation of Selection Criteria for Computational Human Phantoms for Use in Out-Of-Field Organ Dosimetry for Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelletier, C; Jung, J; Lee, C

    2015-06-15

    Purpose: To quantify the dosimetric uncertainty due to organ position errors when using height and weight as phantom selection criteria in the UF/NCI Hybrid Phantom Library for the purpose of out-of-field organ dose reconstruction. Methods: Four diagnostic patient CT images were used to create 7-field IMRT plans. For each patient, dose to the liver, right lung, and left lung were calculated using the XVMC Monte Carlo code. These doses were taken to be the ground truth. For each patient, the phantom with the most closely matching height and weight was selected from the body size dependent phantom library. The patientmore » plans were then transferred to the computational phantoms and organ doses were recalculated. Each plan was also run on 4 additional phantoms with reference heights and or weights. Maximum and mean doses for the three organs were computed, and the DVHs were extracted and compared. One sample t-tests were performed to compare the accuracy of the height and weight matched phantoms against the additional phantoms in regards to both maximum and mean dose. Results: For one of the patients, the height and weight matched phantom yielded the most accurate results across all three organs for both maximum and mean doses. For two additional patients, the matched phantom yielded the best match for one organ only. In 13 of the 24 cases, the matched phantom yielded better results than the average of the other four phantoms, though the results were only statistically significant at the .05 level for three cases. Conclusion: Using height and weight matched phantoms does yield better results in regards to out-of-field dosimetry than using average phantoms. Height and weight appear to be moderately good selection criteria, though this selection criteria failed to yield any better results for one patient.« less

  15. A statistically defined anthropomorphic software breast phantom.

    PubMed

    Lau, Beverly A; Reiser, Ingrid; Nishikawa, Robert M; Bakic, Predrag R

    2012-06-01

    Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Phantoms with (0.5 mm)(3) voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm)(3) voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm(2) regions of interest. Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable with published values for breast

  16. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    PubMed

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less

  18. Evaluation of phantom-based education system for acupuncture manipulation.

    PubMed

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator.

  19. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  20. Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: animal, phantom, and human study.

    PubMed

    Heiberg, Einar; Ugander, Martin; Engblom, Henrik; Götberg, Matthias; Olivecrona, Göran K; Erlinge, David; Arheden, Håkan

    2008-02-01

    Ethics committees approved human and animal study components; informed written consent was provided (prospective human study [20 men; mean age, 62 years]) or waived (retrospective human study [16 men, four women; mean age, 59 years]). The purpose of this study was to prospectively evaluate a clinically applicable method, accounting for the partial volume effect, to automatically quantify myocardial infarction from delayed contrast material-enhanced magnetic resonance images. Pixels were weighted according to signal intensity to calculate infarct fraction for each pixel. Mean bias +/- variability (or standard deviation), expressed as percentage left ventricular myocardium (%LVM), were -0.3 +/- 1.3 (animals), -1.2 +/- 1.7 (phantoms), and 0.3 +/- 2.7 (patients), respectively. Algorithm had lower variability than dichotomous approach (2.7 vs 7.7 %LVM, P < .01) and did not differ from interobserver variability for bias (P = .31) or variability (P = .38). The weighted approach provides automatic quantification of myocardial infarction with higher accuracy and lower variability than a dichotomous algorithm. (c) RSNA, 2007.

  1. The phantom robot - Predictive displays for teleoperation with time delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.

    1990-01-01

    An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.

  2. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on

  3. A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia.

    PubMed

    Hocking, Graham; Hebard, Simon; Mitchell, Christopher H

    2011-01-01

    With the growth of ultrasound-guided regional anesthesia, so has the requirement for training tools to practice needle guidance skills and evaluate echogenic needles. Ethically, skills in ultrasound-guided needle placement should be gained in a phantom before performance of nerve blocks on patients in clinical practice. However, phantom technology is varied, and critical evaluation of the images is needed to understand their application to clinical use. Needle visibility depends on the echogenicity of the needle relative to the echogenicity of the tissue adjacent the needle. We demonstrate this point using images of echogenic and nonechogenic needles in 5 different phantoms at both shallow angles (20 degrees) and steep angles (45 degrees). The echogenicity of phantoms varies enormously, and this impacts on how needles are visualized. Water is anechoic, making all needles highly visible, but does not fix the needle to allow practice placement. Gelatin phantoms and Blue Phantoms provide tactile feedback but have very low background echogenicity, which greatly exaggerates needle visibility. This makes skill acquisition easier but can lead to false confidence in regard to clinical ability. Fresh-frozen cadavers retain much of the textural feel of live human tissue and are nearly as echogenic. Similar to clinical practice, this makes needles inserted at steep angles practically invisible, unless they are highly echogenic. This review describes the uses and pitfalls of phantoms that have been described or commercially produced. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  4. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Young; Lee, Choonsik; Mcguire, Lynn

    Purpose: To calculate organ S values (mGy/Bq-s) and effective doses per time-integrated activity (mSv/Bq-s) for pediatric and adult family members exposed to an adult male or female patient treated with I-131 using a series of hybrid computational phantoms coupled with a Monte Carlo radiation transport technique.Methods: A series of pediatric and adult hybrid computational phantoms were employed in the study. Three different exposure scenarios were considered: (1) standing face-to-face exposures between an adult patient and pediatric or adult family phantoms at five different separation distances; (2) an adult female patient holding her newborn child, and (3) a 1-yr-old child standingmore » on the lap of an adult female patient. For the adult patient model, two different thyroid-related diseases were considered: hyperthyroidism and differentiated thyroid cancer (DTC) with corresponding internal distributions of {sup 131}I. A general purpose Monte Carlo code, MCNPX v2.7, was used to perform the Monte Carlo radiation transport.Results: The S values show a strong dependency on age and organ location within the family phantoms at short distances. The S values and effective dose per time-integrated activity from the adult female patient phantom are relatively high at shorter distances and to younger family phantoms. At a distance of 1 m, effective doses per time-integrated activity are lower than those values based on the NRC (Nuclear Regulatory Commission) by a factor of 2 for both adult male and female patient phantoms. The S values to target organs from the hyperthyroid-patient source distribution strongly depend on the height of the exposed family phantom, so that their values rapidly decrease with decreasing height of the family phantom. Active marrow of the 10-yr-old phantom shows the highest S values among family phantoms for the DTC-patient source distribution. In the exposure scenario of mother and baby, S values and effective doses per time

  5. 3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua

    2015-03-01

    The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.

  6. Phantom eye syndrome: a review of the literature.

    PubMed

    Andreotti, Agda M; Goiato, Marcelo C; Pellizzer, Eduardo P; Pesqueira, Aldiéris A; Guiotti, Aimée M; Gennari-Filho, Humberto; dos Santos, Daniela M

    2014-01-01

    The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: "eye amputation," "eye trauma," "phantom eye syndrome," "phantom pain," and "quality of life," associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.

  7. Can conclusions drawn from phantom-based image noise assessments be generalized to in vivo studies for the nonlinear model-based iterative reconstruction method?

    PubMed Central

    Gomez-Cardona, Daniel; Li, Ke; Hsieh, Jiang; Lubner, Meghan G.; Pickhardt, Perry J.; Chen, Guang-Hong

    2016-01-01

    Purpose: Phantom-based objective image quality assessment methods are widely used in the medical physics community. For a filtered backprojection (FBP) reconstruction-based linear or quasilinear imaging system, the use of this methodology is well justified. Many key image quality metrics acquired with phantom studies can be directly applied to in vivo human subject studies. Recently, a variety of image quality metrics have been investigated for model-based iterative image reconstruction (MBIR) methods and several novel characteristics have been discovered in phantom studies. However, the following question remains unanswered: can certain results obtained from phantom studies be generalized to in vivo animal studies and human subject studies? The purpose of this paper is to address this question. Methods: One of the most striking results obtained from phantom studies is a novel power-law relationship between noise variance of MBIR (σ2) and tube current-rotation time product (mAs): σ2 ∝ (mAs)−0.4 [K. Li et al., “Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance,” Med. Phys. 41, 041906 (15pp.) (2014)]. To examine whether the same power-law works for in vivo cases, experimental data from two types of in vivo studies were analyzed in this paper. All scans were performed with a 64-slice diagnostic CT scanner (Discovery CT750 HD, GE Healthcare) and reconstructed with both FBP and a MBIR method (Veo, GE Healthcare). An Institutional Animal Care and Use Committee-approved in vivo animal study was performed with an adult swine at six mAs levels (10–290). Additionally, human subject data (a total of 110 subjects) acquired from an IRB-approved clinical trial were analyzed. In this clinical trial, a reduced-mAs scan was performed immediately following the standard mAs scan; the specific mAs used for the two scans varied across human subjects and were determined based on patient size and

  8. Can conclusions drawn from phantom-based image noise assessments be generalized to in vivo studies for the nonlinear model-based iterative reconstruction method?

    PubMed

    Gomez-Cardona, Daniel; Li, Ke; Hsieh, Jiang; Lubner, Meghan G; Pickhardt, Perry J; Chen, Guang-Hong

    2016-02-01

    Phantom-based objective image quality assessment methods are widely used in the medical physics community. For a filtered backprojection (FBP) reconstruction-based linear or quasilinear imaging system, the use of this methodology is well justified. Many key image quality metrics acquired with phantom studies can be directly applied to in vivo human subject studies. Recently, a variety of image quality metrics have been investigated for model-based iterative image reconstruction (MBIR) methods and several novel characteristics have been discovered in phantom studies. However, the following question remains unanswered: can certain results obtained from phantom studies be generalized to in vivo animal studies and human subject studies? The purpose of this paper is to address this question. One of the most striking results obtained from phantom studies is a novel power-law relationship between noise variance of MBIR (σ(2)) and tube current-rotation time product (mAs): σ(2) ∝ (mAs)(-0.4) [K. Li et al., "Statistical model based iterative reconstruction (MBIR) in clinical CT systems: Experimental assessment of noise performance," Med. Phys. 41, 041906 (15pp.) (2014)]. To examine whether the same power-law works for in vivo cases, experimental data from two types of in vivo studies were analyzed in this paper. All scans were performed with a 64-slice diagnostic CT scanner (Discovery CT750 HD, GE Healthcare) and reconstructed with both FBP and a MBIR method (Veo, GE Healthcare). An Institutional Animal Care and Use Committee-approved in vivo animal study was performed with an adult swine at six mAs levels (10-290). Additionally, human subject data (a total of 110 subjects) acquired from an IRB-approved clinical trial were analyzed. In this clinical trial, a reduced-mAs scan was performed immediately following the standard mAs scan; the specific mAs used for the two scans varied across human subjects and were determined based on patient size and clinical indications. The

  9. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  10. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    NASA Astrophysics Data System (ADS)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  11. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    NASA Astrophysics Data System (ADS)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  12. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  13. Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging

    NASA Astrophysics Data System (ADS)

    Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.

    2018-02-01

    Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.

  14. Effect of surface topographic features on the optical properties of skin: a phantom study

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.

    2016-10-01

    Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.

  15. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  16. Development and application of anthropomorphic voxel phantom of the head for in vivo measurement.

    PubMed

    Vrba, T

    2007-01-01

    The in vivo measurement of the activity deposited in the skeleton is a very useful source of information on human internal contaminations with transuranic elements, e.g. americium 241, especially for long time periods after intake. Measurements are performed on the skull or the larger joints such as the knee or elbow. The paper deals with the construction of an anthropomorphic numerical phantom based on CT scans, its potential for calibration and the estimation of the uncertainties of the detection system. The density of bones, activity distribution and position of the detectors were changed in individual simulations in order to estimate their effects on the result of the measurement. The results from simulations with the numerical phantom were compared with the results of physical phantoms.

  17. Germline stem cells and neo-oogenesis in the adult human ovary.

    PubMed

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  18. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    PubMed

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four

  19. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    NASA Astrophysics Data System (ADS)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  20. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  1. Resolution study of imaging in nanoparticle optical phantoms

    NASA Astrophysics Data System (ADS)

    Ortiz-Rascón, E.; Bruce, N. C.; Flores-Flores, J. O.; Sato-Berru, R.

    2011-08-01

    We present results of resolution and optical characterization studies of silicon dioxide nanoparticle solutions. These phantoms consist of spherical particles with a mean controlled diameter of 168 and 429 nm. The importance of this work lies in using these solutions to develop phantoms with optical properties that closely match those of human breast tissue at near-IR wavelengths, and also to compare different resolution criteria for imaging studies at these wavelengths. Characterization involves illuminating the solution with a laser beam transmitted through a recipient of known width containing the solution. Resulting intensity profiles from the light spot are measured as function of the detector position. Measured intensity profiles were fitted to the calculated profiles obtained from diffusion theory, using the method of images. Fitting results give us the absorption and transport scattering coefficients. These coefficients can be modified by changing the particle concentration of the solution. We found that these coefficients are the same order of magnitude as those of human tissue reported in published studies. The resolution study involves measuring the edge response function (ERF) for a mask embedded on the nanoparticle solutions and fitting it to the calculated ERF, obtaining the resolution for the Hebden, Sparrow and Bentzen criteria.

  2. Tissue-mimicking gel phantoms for thermal therapy studies.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty

    2014-10-01

    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.

  3. Phantom Recollection of Bridging and Elaborative Inferences

    ERIC Educational Resources Information Center

    Singer, Murray; Spear, Jackie

    2015-01-01

    The phantom recollection model is a multiprocess analysis according to which memory judgments are collaboratively supported by one's recollection of an item in its context, a vaguer sense of stimulus familiarity, and the phantom recollection of the substance and even perceptual details of unstudied but related lures. Phantom recollection has…

  4. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  5. Evaluation of Phantom-Based Education System for Acupuncture Manipulation

    PubMed Central

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Background Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. Objectives In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. Methods We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. Results After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). Conclusions The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator. PMID:25689598

  6. WE-D-303-00: Computational Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John; Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less

  7. New ANSI standard for thyroid phantom

    DOE PAGES

    Mallett, Michael W.; Bolch, Wesley E.; Fulmer, Philip C.; ...

    2015-08-01

    Here, a new ANSI standard titled “Thyroid Phantom Used in Occupational Monitoring” (Health Physics Society 2014) has been published. The standard establishes the criteria for acceptable design, fabrication, or modeling of a phantom suitable for calibrating in vivo monitoring systems to measure photon-emitting radionuclides deposited in the thyroid. The current thyroid phantom standard was drafted in 1973 (ANSI N44.3-1973), last reviewed in 1984, and a revision of the standard to cover a more modern approach was deemed warranted.

  8. Human pancreatic polypeptide in children and young adults.

    PubMed

    Hanukoglu, A; Chalew, S; Kowarski, A A

    1990-01-01

    Measurement of human pancreatic polypeptide may be useful for assessment of gastrointestinal function, integrity of the parasympathetic nervous system or screening for endocrine neoplasia. In adults hPP levels have been reported to increase with age. However hPP levels throughout childhood have not been well characterized in comparison with the adult range. We studied fasting human pancreatic polypeptide (hPP) from 45 pediatric patients, from infancy - 15 years, and 18 older adolescents and adults aged 16-45 years. The mean hPP level of children (233 +/- 147 pg/ml) was significantly higher than that (113 +/- 35 pg/ml) of adults (P less than .0001). There was no difference in mean hPP levels of children with normal growth hormone secretion compared to growth hormone deficient patients. There was no effect of gender or body mass index on hPP levels. We conclude that fasting hPP levels must be interpreted with respect to the age of the subject, children particularly, in that preteens may have higher fasting levels than older teenagers and adults.

  9. Automated modification and fusion of voxel models to construct body phantoms with heterogeneous breast tissue: Application to MRI simulations.

    PubMed

    Rispoli, Joseph V; Wright, Steven M; Malloy, Craig R; McDougall, Mary P

    2017-01-01

    Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB ® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in

  10. Automated modification and fusion of voxel models to construct body phantoms with heterogeneous breast tissue: Application to MRI simulations

    PubMed Central

    Rispoli, Joseph V.; Wright, Steven M.; Malloy, Craig R.; McDougall, Mary P.

    2017-01-01

    Background Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Methods Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. Results The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Conclusions Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably

  11. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    PubMed

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  12. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

    2014-08-01

    Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

  13. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perks, J; Benedict, S; Lucero, S

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specificallymore » mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of

  14. Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures

    NASA Astrophysics Data System (ADS)

    Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry

    2012-02-01

    Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.

  15. A Monte Carlo study of lung counting efficiency for female workers of different breast sizes using deformable phantoms

    NASA Astrophysics Data System (ADS)

    Hegenbart, L.; Na, Y. H.; Zhang, J. Y.; Urban, M.; Xu, X. George

    2008-10-01

    There are currently no physical phantoms available for calibrating in vivo counting devices that represent women with different breast sizes because such phantoms are difficult, time consuming and expensive to fabricate. In this work, a feasible alternative involving computational phantoms was explored. A series of new female voxel phantoms with different breast sizes were developed and ported into a Monte Carlo radiation transport code for performing virtual lung counting efficiency calibrations. The phantoms are based on the RPI adult female phantom, a boundary representation (BREP) model. They were created with novel deformation techniques and then voxelized for the Monte Carlo simulations. Eight models have been selected with cup sizes ranging from AA to G according to brassiere industry standards. Monte Carlo simulations of a lung counting system were performed with these phantoms to study the effect of breast size on lung counting efficiencies, which are needed to determine the activity of a radionuclide deposited in the lung and hence to estimate the resulting dose to the worker. Contamination scenarios involving three different radionuclides, namely Am-241, Cs-137 and Co-60, were considered. The results show that detector efficiencies considerably decrease with increasing breast size, especially for low energy photon emitting radionuclides. When the counting efficiencies of models with cup size AA were compared to those with cup size G, a difference of up to 50% was observed. The detector efficiencies for each radionuclide can be approximated by curve fitting in the total breast mass (polynomial of second order) or the cup size (power).

  16. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  17. Monte Carlo simulations in CT for the study of the surface air kerma and energy imparted to phantoms of varying size and position

    NASA Astrophysics Data System (ADS)

    Avilés Lucas, P.; Dance, D. R.; Castellano, I. A.; Vañó, E.

    2004-04-01

    A Monte Carlo computational model of CT has been developed and used to investigate the effect of various physical factors on the surface air kerma length product, the peak surface air kerma, the air kerma length product within a phantom and the energy imparted. The factors investigated were the bow-tie filter and the size, shape and position of a phantom which simulates the patient. The calculations show that the surface air kerma length product and the maximum surface air kerma are mainly dependent on phantom position and decrease along the vertical axis of the CT plane as the phantom surface moves away from the isocentre along this axis. As a result, measurements using standard body dosimetry phantoms may underestimate the skin dose for real patients. This result is specially important for CT fluoroscopic procedures: for an adult patient the peak skin dose can be 37% higher than that estimated with a standard measurement on the body AAPM (American Association of Physicists in Medicine) phantom. The results also show that the energy imparted to a phantom is mainly influenced by phantom size and is nearly independent of phantom position (within 3%) and shape (up to 5% variation). However, variations of up to 30% were found for the air kerma to regions within the AAPM body phantom when it is moved vertically. This highlights the importance of calculating doses to organs taking into account their size and position within the gantry.

  18. A novel breast software phantom for biomechanical modeling of elastography.

    PubMed

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were

  19. Dynamic phantom for radionuclide cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickles, R.J.

    1979-06-01

    A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.

  20. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  1. Modification of the NEMA XR21-2000 cardiac phantom for testing of imaging systems used in endovascular image guided interventions.

    PubMed

    Ionita, C N; Dohatcu, A; Jain, A; Keleshis, C; Hoffmann, K R; Bednarek, D R; Rudin, S

    2009-01-01

    X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardio-vascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "head-equivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.

  2. Modification of the NEMA XR21-2000 cardiac phantom for testing of imaging systems used in endovascular image guided interventions

    NASA Astrophysics Data System (ADS)

    Ionita, C. N.; Dohatcu, A.; Jain, A.; Keleshis, C.; Hoffmann, K. R.; Bednarek, D. R.; Rudin, S.

    2009-02-01

    X-ray equipment testing using phantoms that mimic the specific human anatomy, morphology, and structure is a very important step in the research, development, and routine quality assurance for such equipment. Although the NEMA XR21 phantom exists for cardiac applications, there is no such standard phantom for neuro-, peripheral and cardiovascular angiographic applications. We have extended the application of the NEMA XR21-2000 phantom to evaluate neurovascular x-ray imaging systems by structuring it to be head-equivalent; two aluminum plates shaped to fit into the NEMA phantom geometry were added to a 15 cm thick section. Also, to enable digital subtraction angiography (DSA) testing, two replaceable central plates with a hollow slot were made so that various angiographic sections could be inserted into the phantom. We tested the new modified phantom using a flat panel C-arm unit dedicated for endovascular image-guided interventions. All NEMA XR21-2000 standard test sections were used in evaluations with the new "headequivalent" phantom. DSA and DA are able to be tested using two standard removable blocks having simulated arteries of various thickness and iodine concentrations (AAPM Report 15). The new phantom modifications have the benefits of enabling use of the standard NEMA phantom for angiography in both neuro- and cardio-vascular applications, with the convenience of needing only one versatile phantom for multiple applications. Additional benefits compared to using multiple phantoms are increased portability and lower cost.

  3. New head equivalent phantom for task and image performance evaluation representative for neurovascular procedures occurring in the Circle of Willis

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Loughran, Brendan; Jain, Amit; Swetadri Vasan, S. N.; Bednarek, Daniel R.; Levy, Elad; Siddiqui, Adnan H.; Snyder, Kenneth V.; Hopkins, L. N.; Rudin, Stephen

    2012-03-01

    Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV's relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.

  4. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    PubMed

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method

  5. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation

    PubMed Central

    Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.

    2013-01-01

    Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188

  6. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to

  7. The viability of phantom dark energy: A review

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin J.

    2017-09-01

    In this brief review, we examine the theoretical consistency and viability of phantom dark energy. Almost all data sets from cosmological probes are compatible with the dark energy of the phantom variety (i.e. equation-of-state parameter w < -1) and may even favor evolving dark energy, and since we expect every physical entity to have some kind of field description, we set out to examine the case for phantom dark energy as a field theory. We discuss the many attempts at frameworks that may mitigate and eliminate theoretical pathologies associated with phantom dark energy. We also examine frameworks that provide an apparent measurement w < -1 while avoiding the need for a phantom field theory.

  8. Body and organ dimensions of the 1945 Japanese population used in dosimetry system DS86 and data available for an expanded series of phantoms.

    PubMed

    Cullings, Harry M; Kawamura, Hisao; Chen, Jing

    2012-03-01

    The computational phantoms used in dosimetry system DS86 and re-used in DS02 were derived from models and methods developed at Oak Ridge National Laboratories (ORNL) in the US, but referred to Japanese anthropometric data for the Japanese population of 1945, from studies conducted at the Japanese National Institute of Radiological Sciences and other sources. The phantoms developed for DS86 were limited to three hermaphroditic models: infant, child and adult. After comparing data from Japanese and Western populations, phantoms were adapted from the pre-existing ORNL series, adjusting some organs in the adult phantom to reflect differences between Japanese and Western data, but not in the infant and child phantoms. To develop a new and larger series of more age- and sex-specific models, it appears necessary to rely on the original Japanese data and values derived from them, which can directly provide population-average body dimensions for various ages. Those data were re-analysed in conjunction with other Asian data for an Asian Reference Man model, providing a rather complete table of organ weights that could be used to scale organs for growth during childhood and adolescence. Although the resulting organ volumes might have some inaccuracies in relation to true population-average values, this is a minor concern because in the DS02 context organ size per se is less important than the correct body size and correct placement of the organ in the body.

  9. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT

  10. Measuring radiation dose in computed tomography using elliptic phantom and free-in-air, and evaluating iterative metal artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Morgan, Ashraf

    The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated i

  11. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  12. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.

    PubMed

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz

    2016-05-01

    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Adjustable fetal phantom for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stubán, Norbert; Niwayama, Masatsugu

    2009-05-01

    As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.

  14. Phantom bite: a real or a phantom diagnosis? A case report.

    PubMed

    Sutter, Ben A

    2017-01-01

    This case report describes computer-guided occlusal therapy in a patient who met the unified diagnostic criteria for phantom bite. After a review of the patient's medical history, along with a diagnostic work-up that included cone beam computed tomography, temporomandibular joint vibration analysis, and digital occlusal analysis, problematic dental components were discovered (including prolonged disclusion time and imbalanced bite force). A digital occlusal analyzer evaluated the patient's occlusion and systematically guided the necessary changes. After reduction of the disclusion time and correction of the occlusal force imbalance, the patient reported significant improvement in comfort. The results suggest that phantom bite could be an abnormal occlusal condition and not a psychological or neurologic somatoform disorder.

  15. Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Winfield, J. M.; Douglas, N. H. M.; deSouza, N. M.; Collins, D. J.

    2014-05-01

    We present the development and application of a phantom for assessment and optimization of fat suppression over a large field-of-view in diffusion-weighted magnetic resonance imaging at 1.5 T and 3 T. A Perspex cylinder (inner diameter 185 mm, height 300 mm) which contains a second cylinder (inner diameter 140 mm) was constructed. The inner cylinder was filled with water doped with copper sulphate and sodium chloride and the annulus was filled with corn oil, which closely matches the spectrum and longitudinal relaxation times of subcutaneous abdominal fat. Placement of the phantom on the couch at 45° to the z-axis presented an elliptical cross-section, which was of a similar size and shape to axial abdominal images. The use of a phantom for optimization of fat suppression allowed quantitative comparison between studies without the differences introduced by variability between human subjects. We have demonstrated that the phantom is suitable for selection of inversion delay times, spectral adiabatic inversion recovery delays and assessment of combinatorial methods of fat suppression. The phantom is valuable in protocol development and the assessment of new techniques, particularly in multi-centre trials.

  16. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

    PubMed

    Moilanen, Petro; Zhao, Zuomin; Karppinen, Pasi; Karppinen, Timo; Kilappa, Vantte; Pirhonen, Jalmari; Myllylä, Risto; Haeggström, Edward; Timonen, Jussi

    2014-03-01

    Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  18. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  19. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  20. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  1. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  2. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  3. Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom.

    PubMed

    Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R; Zöllner, Frank G

    2017-06-01

    This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for 1 H and 23 Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1 H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T 1 and T 2 values comparable to human tissues (lung module: -756±148HU, artificial ribs: 218±56HU (low CaCO 3 concentration) and 339±121 (high CaCO 3 concentration), liver module: T 1 =790±28ms, T 2 =65±1ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900HU, T 1 relaxation time from 550ms to 2000ms, T 2 relaxation time from 40ms to 200ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, 23 Na MR quantification experiments and an increasing level of complexity for motion studies. Copyright © 2016. Published by Elsevier GmbH.

  4. MO-F-CAMPUS-I-03: Tissue Equivalent Material Phantom to Test and Optimize Coherent Scatter Imaging for Tumor Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Lakshmanan, M

    Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke

  5. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for

  6. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  7. Daily quality assurance phantom for ultrasound image guided radiation therapy

    PubMed Central

    Drever, Laura

    2007-01-01

    A simple phantom was designed, constructed, tested, and clinically implemented for daily quality assurance (QA) of an ultrasound‐image‐guided radiation therapy (US‐IGRT) system, the Restitu Ultrasound system (Resonant Medical, Montreal, QC). The phantom consists of a high signal echogenic background gel surrounding a low signal hypoechoic egg‐shaped target. Daily QA checks involve ultrasound imaging of the phantom and segmenting of the embedded target using the automated tools available on the US‐IGRT system. This process serves to confirm system hardware and software functions and, in particular, accurate determination of the target position. Experiments were conducted to test the stability of the phantom at room temperature, its tissue‐mimicking properties, the reproducibility of target position measurements, and the usefulness of the phantom as a daily QA device. The phantom proved stable at room temperature, exhibited no evidence of bacterial or fungal invasion in 9 months, and showed limited desiccation (resulting in a monthly reduction in ultrasound‐measured volume of approximately 0.2 cm3). Furthermore, the phantom was shown to be nearly tissue‐mimicking, with speed of sound in the phantom estimated to be 0.8% higher than that assumed by the scanner calibration. The phantom performs well in a clinical setting, owing to its light weight and ease of operation. It provides reproducible measures of target position even with multiple users. At our center, the phantom is being used for daily QA of the US‐IGRT system with clinically acceptable tolerances of ±1 cm3 on target volume and ±2 mm on target position. For routine daily QA, this phantom is a good alternative to the manufacturer‐supplied calibration phantom, and we recommended that that larger phantom be reserved for less frequent, more detailed QA checks and system calibration. PACS numbers: 87.66.Xa, 87.63.Df

  8. Comparison of photon organ and effective dose coefficients for PIMAL stylized phantom in bent positions in standard irradiation geometries.

    PubMed

    Dewji, Shaheen; Reed, K Lisa; Hiller, Mauritius

    2017-08-01

    Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45° bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the 90

  9. A computational model unifies apparently contradictory findings concerning phantom pain

    PubMed Central

    Boström, Kim J.; de Lussanet, Marc H. E.; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-01-01

    Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels. PMID:24931344

  10. Comparison of different phantoms used in digital diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Bor, Dogan; Unal, Elif; Uslu, Anil

    2015-09-01

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  11. Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation.

    PubMed

    Yiu, Billy Y S; Yu, Alfred C H

    2017-12-01

    As new ultrasound flow imaging methods are being developed, there is a growing need to devise appropriate flow phantoms that can holistically assess the accuracy of the derived flow estimates. In this paper, we present a novel spiral flow phantom design whose Archimedean spiral lumen naturally gives rise to multi-directional flow over all possible angles (i.e., from 0° to 360°). Developed using lost-core casting principles, the phantom geometry comprised a three-loop spiral (4-mm diameter and 5-mm pitch), and it was set to operate in steady flow mode (3 mL/s flow rate). After characterizing the flow pattern within the spiral vessel using computational fluid dynamics (CFD) simulations, the phantom was applied to evaluate the performance of color flow imaging (CFI) and high-frame-rate vector flow imaging. Significant spurious coloring artifacts were found when using CFI to visualize flow in the spiral phantom. In contrast, using vector flow imaging (least-squares multi-angle Doppler based on a three-transmit and three-receive configuration), we observed consistent depiction of flow velocity magnitude and direction within the spiral vessel lumen. The spiral flow phantom was also found to be a useful tool in facilitating demonstration of dynamic flow visualization based on vector projectile imaging. Overall, these results demonstrate the spiral flow phantom's practical value in analyzing the efficacy of ultrasound flow estimation methods.

  12. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  13. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  14. Design and characterization of a phantom that simultaneously simulates tissue optical properties between 400 and 650 nm

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert

    1996-12-01

    The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.

  15. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.

    PubMed

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R

    2015-12-15

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A , 1985, 2 .] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a [Formula: see text] external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.

  16. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging

    NASA Astrophysics Data System (ADS)

    Corcoran, Anthony; Muyo, Gonzalo; van Hemert, Jano; Gorman, Alistair; Harvey, Andrew R.

    2015-12-01

    Optical coherence tomography (OCT) and reflectance imaging are used in clinical practice to measure the thickness and transverse dimensions of retinal features. The recent trend towards increasing the field of view (FOV) of these devices has led to an increasing significance of the optical aberrations of both the human eye and the device. We report the design, manufacture and application of the first phantom eye that reproduces the off-axis optical characteristics of the human eye, and allows the performance assessment of wide-field ophthalmic devices. We base our design and manufacture on the wide-field schematic eye, [Navarro, R. J. Opt. Soc. Am. A, 1985, 2.] as an accurate proxy to the human eye and enable assessment of ophthalmic imaging performance for a ? external FOV. We used multi-material 3D-printed retinal targets to assess imaging performance of the following ophthalmic instruments: the Optos 200Tx, Heidelberg Spectralis, Zeiss FF4 fundus camera and Optos OCT SLO and use the phantom to provide an insight into some of the challenges of wide-field OCT.

  17. [Psychotherapies for the Treatment of Phantom Limb Pain].

    PubMed

    Cárdenas, Katherine; Aranda, Mariana

    The phantom limb pain has been described as a condition in which patients experience a feeling of itching, spasm or pain in a limb or body part that has been previously amputated. Such pain can be induced by a conflict between the representation of the visual and proprioceptive feedback of the previously healthy limb. The phantom limb pain occurs in at least 42 to 90% of amputees. Regular drug treatment of phantom limb pain is almost never effective. A systematic review of the literature was conducted in Medline and Cochrane using the MESH terms "phantom limb pain" and "psychotherapy", published in the last 10 years, in English and Spanish, finding 49 items. After reviewing the abstracts, 25 articles were excluded for not being related to the objective of the research. Additionally cross references of included articles and literature were reviewed. To describe the psychotherapies used in the management of phantom limb pain, their effectiveness and clinical application reported in the literature. The mechanisms underlying phantom limb pain were initially explained, as were the published studies on the usefulness of some psychotherapies such as mirror visual feedback and immersive virtual reality, visual imagery, desensitization and reprocessing eye movements and hypnosis. The phantom limb pain is a complex syndrome that requires pharmacological and psychotherapeutic intervention. The psychotherapies that have been used the most as adjuvants in the treatment of phantom limb pain are mirror visual feedback, desensitization and reprocessing eye movements, imagery and hypnosis. Studies with more representative samples, specifically randomized trials are required. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. Reconstruction of Human Monte Carlo Geometry from Segmented Images

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Cheng, Mengyun; Fan, Yanchang; Wang, Wen; Long, Pengcheng; Wu, Yican

    2014-06-01

    Human computational phantoms have been used extensively for scientific experimental analysis and experimental simulation. This article presented a method for human geometry reconstruction from a series of segmented images of a Chinese visible human dataset. The phantom geometry could actually describe detailed structure of an organ and could be converted into the input file of the Monte Carlo codes for dose calculation. A whole-body computational phantom of Chinese adult female has been established by FDS Team which is named Rad-HUMAN with about 28.8 billion voxel number. For being processed conveniently, different organs on images were segmented with different RGB colors and the voxels were assigned with positions of the dataset. For refinement, the positions were first sampled. Secondly, the large sums of voxels inside the organ were three-dimensional adjacent, however, there were not thoroughly mergence methods to reduce the cell amounts for the description of the organ. In this study, the voxels on the organ surface were taken into consideration of the mergence which could produce fewer cells for the organs. At the same time, an indexed based sorting algorithm was put forward for enhancing the mergence speed. Finally, the Rad-HUMAN which included a total of 46 organs and tissues was described by the cuboids into the Monte Carlo Monte Carlo Geometry for the simulation. The Monte Carlo geometry was constructed directly from the segmented images and the voxels was merged exhaustively. Each organ geometry model was constructed without ambiguity and self-crossing, its geometry information could represent the accuracy appearance and precise interior structure of the organs. The constructed geometry largely retaining the original shape of organs could easily be described into different Monte Carlo codes input file such as MCNP. Its universal property was testified and high-performance was experimentally verified

  19. [Phantom limb pain syndrome: therapeutic approach using mirror therapy in a Geriatric Department].

    PubMed

    González García, Paloma; Manzano Hernández, M Pilar; Muñoz Tomás, M Teresa; Martín Hernández, Carlos; Forcano García, Mercedes

    2013-01-01

    The clinical use of mirror visual feedback was initially introduced to alleviate phantom pain by restoring motor function through plastic changes in the human primary motor cortex. It is a promising novel technique that gives a new perspective to neurological rehabilitation. Using this therapy, the mirror neuron system is activated and decrease the activity of those systems that perceive protopathic pain, making somatosensory cortex reorganization possible. This paper reports the results of the mirror therapy in three patients with phantom limb pain after recent lower limb amputation, showing its analgesic effects and its benefits as a comprehensive rehabilitation instrument for lower limb amputee geriatric patients. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  20. Phantom motion after effects--evidence of detectors for the analysis of optic flow.

    PubMed

    Snowden, R J; Milne, A B

    1997-10-01

    Electrophysiological recording from the extrastriate cortex of non-human primates has revealed neurons that have large receptive fields and are sensitive to various components of object or self movement, such as translations, rotations and expansion/contractions. If these mechanisms exist in human vision, they might be susceptible to adaptation that generates motion aftereffects (MAEs). Indeed, it might be possible to adapt the mechanism in one part of the visual field and reveal what we term a 'phantom MAE' in another part. The existence of phantom MAEs was probed by adapting to a pattern that contained motion in only two non-adjacent 'quarter' segments and then testing using patterns that had elements in only the other two segments. We also tested for the more conventional 'concrete' MAE by testing in the same two segments that had adapted. The strength of each MAE was quantified by measuring the percentage of dots that had to be moved in the opposite direction to the MAE in order to nullify it. Four experiments tested rotational motion, expansion/contraction motion, translational motion and a 'rotation' that consisted simply of the two segments that contained only translational motions of opposing direction. Compared to a baseline measurement where no adaptation took place, all subjects in all experiments exhibited both concrete and phantom MAEs, with the size of the latter approximately half that of the former. Adaptation to two segments that contained upward and downward motion induced the perception of leftward and rightward motion in another part of the visual field. This strongly suggests there are mechanisms in human vision that are sensitive to complex motions such as rotations.

  1. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    PubMed Central

    Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  2. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    PubMed

    Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  3. Quantitative analysis of multiple biokinetic models using a dynamic water phantom: A feasibility study

    PubMed Central

    Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang

    2016-01-01

    ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096

  4. Modelling terahertz radiation absorption and reflection with computational phantoms of skin and associated appendages

    NASA Astrophysics Data System (ADS)

    Vilagosh, Zoltan; Lajevardipour, Alireza; Wood, Andrew

    2018-01-01

    Finite-difference time-domain (FDTD) computational phantoms aid the analysis of THz radiation interaction with human skin. The presented computational phantoms have accurate anatomical layering and electromagnetic properties. A novel "large sheet" simulation technique is used allowing for a realistic representation of lateral absorption and reflection of in-vivo measurements. Simulations carried out to date have indicated that hair follicles act as THz propagation channels and confirms the possible role of melanin, both in nevi and skin pigmentation, to act as a significant absorber of THz radiation. A novel freezing technique has promise in increasing the depth of skin penetration of THz radiation to aid diagnostic imaging.

  5. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy.

    PubMed

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by "mirror therapy." Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one's own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one's own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain.

  6. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S., E-mail: cslevin@stanford.edu

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom withmore » sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D

  7. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    PubMed

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to

  8. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns

    PubMed Central

    Sarkar, Saugata; Gurjarpadhye, Abhijit A.; Rylander, Christopher G.; Nichole Rylander, Marissa

    2011-01-01

    The degree by which optical properties of tumors are altered following introduction of carbon nanotubes (CNTs) of varying concentration and type is poorly understood, making it difficult to predict the impact of CNT inclusion on the photothermal response to laser therapies. Optical properties were measured of phantoms representative of breast tumor tissue incorporated with multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and single-walled carbon nanohorns (SWNHs) of varying concentration (0.01–0.1 mg/ml). Tissue phantoms were made from sodium alginate (3 g/ml) incorporated with polystyrene microbeads (3 μm diam and 1 mg/ml) and talc-France powder (40 mg/ml). Absorption (μa) and reduced scattering (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′) coefficients of phantoms containing CNTs were determined by the inverse adding-doubling algorithm for the wavelength range of 400–1300 nm. Optical properties of phantoms without CNTs were in the range of μa = 1.04–0.06 mm−1 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′ = 0.05–0.07 mm−1 at a wavelength of 900 nm, which corresponds with published data for human breast tumor tissue. Incorporating MWNTs, SWNTs, and SWNHs in phantoms with a concentration of 0.1 mg/ml increased (μa) by 20- to 30-fold, 5- to 6-fold, and 9- to 14-fold, respectively, for the wavelength range of 800–1100 nm with minimal change in \\documentclass[12pt]{minimal} \\usepackage

  9. Development of skin tissue phantom having a shape of sulcus cutis and crista cutis with lower temporal deterioration

    NASA Astrophysics Data System (ADS)

    Yuasa, Tomonori; Nagamori, Yutaro; Maeda, Takaaki; Funamizu, Hideki; Aizu, Yoshihisa

    2017-07-01

    Human skin surface has unevennesses called sulcus cutis and crista cutis. It is known that these affect the light propagation in human skin. In this study, we made a prototype of skin tissue phantom and investigated its spectral properties and problems to be solved.

  10. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  11. Signal uniformity of mammography systems and its impact on test results from contrast detail phantoms

    NASA Astrophysics Data System (ADS)

    Kaar, M.; Semturs, F.; Hummel, J.; Hoffmann, R.; Figl, M.

    2015-03-01

    Technical quality assurance (TQA) procedures for mammography systems usually include tests with a contrast-detail phantom. These phantoms contain multiple objects of varying dimensions arranged on a flat body. Exposures of the phantom are then evaluated by an observer, either human or software. One well-known issue of this method is that dose distribution is not uniform across the image area of any mammography system, mainly due to the heel effect. The purpose of this work is to investigate to what extent image quality differs across the detector plane. We analyze a total of 320 homogeneous mammography exposures from 32 radiology institutes. Systems of different models and manufacturers, both computed radiography (CR) and direct radiography (DR) are included. All images were taken from field installations operated within the nationwide Austrian mammography screening program, which includes mandatory continuous TQA. We calculate signal-to-noise ratios (SNR) for 15 regions of interest arranged to cover the area of the phantom. We define the 'signal range' of an image and compare this value categorized by technologies. We found the deviations of SNR greater in anterior-posterior than in lateral direction. SNR ranges are significantly higher for CR systems than for DR systems.

  12. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner.

    PubMed

    Watanabe, Makoto; Aoki, Shigeki; Masutani, Yoshitaka; Abe, Osamu; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Kabasawa, Hiroyuki; Ohtomo, Kuni

    2006-11-01

    The aim of this study was to develop ex vivo diffusion tensor (DT) flexible phantoms. Materials were bundles of textile threads of cotton, monofilament nylon, rayon, and polyester bunched with spiral wrapping bands and immersed in water. DT images were acquired on a 1.5-Tesla clinical magnetic resonance scanner using echo planar imaging sequences with 15 motion probing gradient directions. DT tractography with seeding and a line-tracking method was carried out by software originally developed on a PC-based workstation. We observed relatively high fractional anisotropy on the polyester phantom and were able to reconstruct tractography. Straight tracts along the bundle were displayed when it was arranged linearly. It was easy to bend arcuately or bifurcate at one end; and tracts followed the course of the bundle, whether it was curved or branched and had good agreement with direct visual observation. Tractography with the other fibers was unsuccessful. The polyester phantom revealed a diffusion anisotropic structure according to its shape and would be utilizable repeatedly under the same conditions, differently from living central neuronal system. It would be useful to validate DT sequences and to optimize an algorithm or parameters of DT tractography software. Additionally, the flexibility of the phantom would enable us to model human axonal projections.

  13. Design of a tracked ultrasound calibration phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Soehl, Marie; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    PURPOSE: Spatial calibration of tracked ultrasound systems is commonly performed using precisely fabricated phantoms. Machining or 3D printing has relatively high cost and not easily available. Moreover, the possibilities for modifying the phantoms are very limited. Our goal was to find a method to construct a calibration phantom from affordable, widely available components, which can be built in short time, can be easily modified, and provides comparable accuracy to the existing solutions. METHODS: We designed an N-wire calibration phantom made of LEGO® bricks. To affirm the phantom's reproducibility and build time, ten builds were done by first-time users. The phantoms were used for a tracked ultrasound calibration by an experienced user. The success of each user's build was determined by the lowest root mean square (RMS) wire reprojection error of three calibrations. The accuracy and variance of calibrations were evaluated for the calibrations produced for various tracked ultrasound probes. The proposed model was compared to two of the currently available phantom models for both electromagnetic and optical tracking. RESULTS: The phantom was successfully built by all ten first-time users in an average time of 18.8 minutes. It cost approximately $10 CAD for the required LEGO® bricks and averaged a 0.69mm of error in the calibration reproducibility for ultrasound calibrations. It is one third the cost of similar 3D printed phantoms and takes much less time to build. The proposed phantom's image reprojections were 0.13mm more erroneous than those of the highest performing current phantom model The average standard deviation of multiple 3D image reprojections differed by 0.05mm between the phantoms CONCLUSION: It was found that the phantom could be built in less time, was one third the cost, compared to similar 3D printed models. The proposed phantom was found to be capable of producing equivalent calibrations to 3D printed phantoms.

  14. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  15. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy

    PubMed Central

    Imaizumi, Shu; Asai, Tomohisa; Koyama, Shinichi

    2017-01-01

    Most amputees experience phantom limb, whereby they feel that the amputated limb is still present. In some cases, these experiences include pain that can be alleviated by “mirror therapy.” Mirror therapy consists of superimposing a mirrored image of the moving intact limb onto the phantom limb. This therapy provides a closed loop between the motor command to the amputated limb and its predicted visual feedback. This loop is also involved in the sense of agency, a feeling of controlling one’s own body. However, it is unclear how mirror therapy is related to the sense of agency over a phantom limb. Using mirror therapy, we investigated phantom limb pain and the senses of agency and ownership (i.e., a feeling of having one’s own body) of the phantom limb. Nine upper-limb amputees, five of whom reported recent phantom limb pain, underwent a single 15-min trial of mirror therapy. Before and after the trial, the participants completed a questionnaire regarding agency, ownership, and pain related to their phantom limb. They reported that the sense of agency over the phantom limb increased following the mirror therapy trial, while the ownership slightly increased but not as much as did the agency. The reported pain did not change; that is, it was comparably mild before and after the trial. These results suggest that short-term mirror therapy can, at least transiently, selectively enhance the sense of agency over a phantom limb, but may not alleviate phantom limb pain. PMID:29046630

  16. Dose estimation for astronauts using dose conversion coefficients calculated with the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji

    2011-03-01

    Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010

  17. Estimation of Radiation Dose for a Sitting Phantom Using PIMAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, Hatice; Eckerman, Keith F

    2007-01-01

    To assess the radiation dose in different configurations when needed (e.g., occupational exposure or public exposure in a radiologically significant event), the mathematical phantom has recently been revised to enable freely moving abilities for arms and legs. The revised phantom is called PIMAL: Phantom with Moving Arms and Legs. Additionally, a graphical user interface has been developed to assist the analyst with input preparation and output manipulation. To investigate the impact of the phantom configuration on the estimated organ doses, PIMAL has been used in a different posture than the standard vertical-upright position. In this paper, the estimated organ andmore » effective dose values for a representative posture, the phantom in a sitting position, compared with those for the phantom in standing position, are presented.« less

  18. Magnetoencephalography Phantom Comparison and Validation: Hospital Universiti Sains Malaysia (HUSM) Requisite.

    PubMed

    Omar, Hazim; Ahmad, Alwani Liyan; Hayashi, Noburo; Idris, Zamzuri; Abdullah, Jafri Malin

    2015-12-01

    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability. A simple method of phantom testing was used twice in addition to a measurement taken with a calibrated reference phantom (RefPhantom) obtained from Elekta Oy of Helsinki, Finland. The comparisons of two main aspects were made in terms of the dipole moment (Qpp) and the difference in the dipole distance from the origin (d) after the tests of statistically equal means and variance were confirmed. The result of Qpp measurements for the LocalPhantom and RefPhantom were 978 (SD24) nAm and 988 (SD32) nAm, respectively, and were still optimally within the accepted range of 900 to 1100 nAm. Moreover, the shifted d results for the LocalPhantom and RefPhantom were 1.84 mm (SD 0.53) and 2.14 mm (SD 0.78), respectively, and these values were below the maximum acceptance range of within 5.0 mm of the nominal dipole location. The Local phantom seems to outperform the reference phantom as indicated by the small standard error of the former (SE 0.094) compared with the latter (SE 0.138). The result indicated that HUSM MEG system was in excellent working condition in terms of the dipole magnitude and localisation measurements as these values passed the acceptance limits criteria of the phantom test.

  19. Phantom limb pain

    MedlinePlus

    ... v652.pdf . Accessed May 16, 2016. Dinakar P. Principles of pain management. In: Daroff RB, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 7th ed. Philadelphia, PA: Elsevier; 2015:chap 54. Nikolajsen L, Springer JS, Haroutiunian S. Phantom ...

  20. A teaching phantom for sonographers.

    PubMed

    Zagzebski, J A; Madsen, E L; Frank, G R

    1991-01-01

    An anthropomorphic torso section phantom is described that is intended for use during initial stages of ultrasonographer training. The phantom represents a section of the upper abdomen, with simulated ribs, liver, kidney with fat pad, gallbladder, aorta, and bowel gas. Positioned in the liver are ten simulated soft tissue masses, which produce a variety of typical echographic patterns. All simulated soft tissue components are formed of tissue-mimicking materials that match their corresponding tissue counterparts in terms of speed of sound, ultrasonic attenuation, and density. Construction details are presented and examples of images are shown.

  1. Building and assessing anatomically relevant phantoms for neonatal transcranial ultrasound

    NASA Astrophysics Data System (ADS)

    Memoli, G.; Gatto, M.; Sadhoo, N.; Gélat, P.; Harris, R. A.; Shaw, A.

    2011-02-01

    This study describes the design and construction of a clinically relevant phantom to survey the temperature increase caused by ultrasound equipment, as currently used in neonatal head-scanning in the UK. The phantom is an ellipsoid of bone-mimic material, filled with brain-mimic; a circular hole in the external surface mimicks the fontanel, through which most clinically relevant scans are made. Finite-element simulations were used to identify possible hot spots and decide the most effective thermocouple positions within the phantom to investigate temperature rise during a typical scan. Novel materials were purposively designed to simulate key acoustic and thermal properties. Three Dimensional Printing (3DP) was employed for the fabrication of the skull phantom, and a specific strategy was successfully pursued to embed a thermocouple within the 3DP skull phantom during the manufacturing process. An in-process Non-Destructive Analysis (NDA) was used to assess the correct position of the deposited thermocouple inside the fabricated skull phantom. The temperature increase in the phantom for a typical trans-fontanellar scan is also presented here. The current phantom will be used in a hospital survey in the UK and, in its final design, will allow for a more reliable evaluation of ultrasound heating than is currently possible.

  2. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  3. COMPARTMENTALIZED PHANTOMS FOR THE STANDARD MAN, ADOLESCENT AND CHILD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, R.L.; Brucer, M.

    A compartmentalized phantom for the standard man was designed and built of readily available and inexpensive materials. Similar phantoms were also designed for an adolescent and a child. The basic emphasis in the designs is on general utility so that a variety of different dosemeasurement techniques could be used on the same phantom. The designs are, however, in reasonable agreement with authropometric data reported in the literature. The phantoms proved to be extremely useful in depth-dose and energy-absorption measurements for total-body irradiation therapy. Dose measurements with beam teletherapy, brachytherapy devices, and internally distributed radioisotopes were also made. (auth)

  4. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  5. Performance assessment of an opto-fluidic phantom mimicking porcine liver parenchyma

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; King, Travis J.; Long, Ruiqi; McShane, Michael J.; Nance Ericson, M.; Wilson, Mark A.; Coté, Gerard L.

    2012-07-01

    An implantable, optical oxygenation and perfusion sensor to monitor liver transplants during the two-week period following the transplant procedure is currently being developed. In order to minimize the number of animal experiments required for this research, a phantom that mimics the optical, anatomical, and physiologic flow properties of liver parenchyma is being developed as well. In this work, the suitability of this phantom for liver parenchyma perfusion research was evaluated by direct comparison of phantom perfusion data with data collected from in vivo porcine studies, both using the same prototype perfusion sensor. In vitro perfusion and occlusion experiments were performed on a single-layer and on a three-layer phantom perfused with a dye solution possessing the absorption properties of oxygenated hemoglobin. While both phantoms exhibited response patterns similar to the liver parenchyma, the signal measured from the multilayer phantom was three times higher than the single layer phantom and approximately 21 percent more sensitive to in vitro changes in perfusion. Although the multilayer phantom replicated the in vivo flow patterns more closely, the data suggests that both phantoms can be used in vitro to facilitate sensor design.

  6. Saturation measurement accuracy in clinical near-infrared cerebral oximeters with a 3D-printed channel array phantom

    NASA Astrophysics Data System (ADS)

    Afshari, Ali; Ghassemi, Pejhman; Halprin, Molly; Lin, Jonathan; Weininger, Sandy; Gandjbakhche, Amir H.; Wang, Jianting; Pfefer, Joshua

    2018-02-01

    Clinical cerebral oximeters based on near-infrared spectroscopy (NIRS) are a commonly used, non-invasive tool for intraoperative monitoring of hemoglobin saturation. Research to verify performance of cerebral oximeters in human subject trials has shown differences between commercially available devices. Test methods based on tissue-simulating phantoms have been proposed to augment clinical findings. While prior studies have focused on liquid phantoms, this work is aimed at developing methods based on solid polymer phantoms that are stable. Specifically, we have designed and fabricated a neonatal/pediatric head mimicking layered phantoms based on a 3D-printed cerebral matrix incorporating an array of vessel-simulating linear channels. Superficial layers incorporating homogeneous molded polydimethylsiloxane (PDMS) slabs were fabricated to represent CSF, scalp and skull regions. The cerebral matrix was filled with bovine blood desaturated with sodium dithionite to achieve oxygenation levels across the 40-90% range. Measurements were performed with a commercially available cerebral oximeter using two probes with different illumination-collection geometries, as designed for neonatal and pediatric patients. Reference measurements of samples were performed with a CO-oximeter before injection and after extraction. Results from applied cerebral oximeters indicate a strong sensitivity to the thickness of the superficial layer of the phantom. Better correlation with the reference CO-oximeter results were obtained in the superficial layer thickness of 0.8-2.5 mm range. Channel array phantoms with modular superficial layers represent a promising approach for performance testing of NIRS-based cerebral oximeters.

  7. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  8. Operating characteristics of tube-current-modulation techniques when scanning simple-shaped phantoms

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Koshida, Kichiro; Lin, Pei-Jan Paul; Fukuda, Atsushi

    2015-07-01

    Our objective was to investigate the operating characteristics of tube current modulation (TCM) in computed tomography (CT) when scanning two types of simple-shaped phantoms. A tissueequivalent elliptical phantom and a homogeneous cylindrical step phantom comprising 16-, 24-, and 32-cm-diameter polymethyl methacrylate (PMMA) phantoms were scanned by using an automatic exposure control system with longitudinal (z-) and angular-longitudinal (xyz-) TCM and with a fixed tube current. The axial dose distribution throughout the elliptical phantom and the longitudinal dose distribution at the center of the cylindrical step phantom were measured by using a solid-state detector. Image noise was quantitatively measured at eight regions in the elliptical phantom and at 90 central regions in contiguous images over the full z extent of the cylindrical step phantom. The mean absorbed doses and the standard deviations in the elliptical phantom with z- and xyz-TCM were 12.3' 3.7 and 11.3' 3.5 mGy, respectively. When TCM was activated, some differences were observed in the absorbed doses of the left and the right measurement points. The average image noises in Hounsfield units (HU) and the standard deviations were 15.2' 2.4 and 15.9' 2.4 HU when using z- and xyz-TCM, respectively. With respect to the cylindrical step phantom under z-TCM, there were sudden decreases followed by increases in image noise at the interfaces with the 24- and 16-cm-diameter phantoms. The image noise of the 24-cm-diameter phantom was, relatively speaking, higher than those of the 16- and 32-cm-diameter phantoms. The simple-shaped phantoms used in this study can be employed to investigate the operating characteristics of automatic exposure control systems when specialized phantoms designed for that purpose are not available.

  9. Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning

    NASA Technical Reports Server (NTRS)

    VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward

    2011-01-01

    The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models

  10. Design optimization for accurate flow simulations in 3D printed vascular phantoms derived from computed tomography angiography

    NASA Astrophysics Data System (ADS)

    Sommer, Kelsey; Izzo, Rick L.; Shepard, Lauren; Podgorsak, Alexander R.; Rudin, Stephen; Siddiqui, Adnan H.; Wilson, Michael F.; Angel, Erin; Said, Zaid; Springer, Michael; Ionita, Ciprian N.

    2017-03-01

    3D printing has been used to create complex arterial phantoms to advance device testing and physiological condition evaluation. Stereolithographic (STL) files of patient-specific cardiovascular anatomy are acquired to build cardiac vasculature through advanced mesh-manipulation techniques. Management of distal branches in the arterial tree is important to make such phantoms practicable. We investigated methods to manage the distal arterial flow resistance and pressure thus creating physiologically and geometrically accurate phantoms that can be used for simulations of image-guided interventional procedures with new devices. Patient specific CT data were imported into a Vital Imaging workstation, segmented, and exported as STL files. Using a mesh-manipulation program (Meshmixer) we created flow models of the coronary tree. Distal arteries were connected to a compliance chamber. The phantom was then printed using a Stratasys Connex3 multimaterial printer: the vessel in TangoPlus and the fluid flow simulation chamber in Vero. The model was connected to a programmable pump and pressure sensors measured flow characteristics through the phantoms. Physiological flow simulations for patient-specific vasculature were done for six cardiac models (three different vasculatures comparing two new designs). For the coronary phantom we obtained physiologically relevant waves which oscillated between 80 and 120 mmHg and a flow rate of 125 ml/min, within the literature reported values. The pressure wave was similar with those acquired in human patients. Thus we demonstrated that 3D printed phantoms can be used not only to reproduce the correct patient anatomy for device testing in image-guided interventions, but also for physiological simulations. This has great potential to advance treatment assessment and diagnosis.

  11. Reflectance confocal microscopy of optical phantoms

    PubMed Central

    Jacques, Steven L.; Wang, Bo; Samatham, Ravikant

    2012-01-01

    A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065

  12. Can sleep deprivation studies explain why human adults sleep?

    PubMed

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  13. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  14. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  15. Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms

    NASA Astrophysics Data System (ADS)

    Marois, Mikael; Bravo, Jaime; Davis, Scott C.; Kanick, Stephen Chad

    2016-03-01

    Optical devices for measuring protoporphryin IX (PpIX) fluorescence in tissue are routinely validated by measurements in optical phantoms. Yet there exists limited data to form a consensus on the recipe for phantoms that both mimic the optical properties found in tissue and yield a reliable and stable relationship between PpIX concentration and the fluorescence remission intensity. This study characterizes the influence of multiple phantom components on PpIX fluorescence emission intensity, using Intralipid as the scattering source, bovine whole blood as the background absorber, and Tween as a surfactant to prevent PpIX aggregation. Optical measurements showed a linear proportionality (r>0.99) between fluorescence intensity and PpIX concentration (0.1 to 10 μg/mL) over a range of Intralipid (1 to 2%) and whole blood (0.5 to 3%) for phantoms containing low surfactant (≤0.1%), with fluorescence intensities and scattering and absorption properties stable for 5 h after mixing. The role of surfactant in PpIX phantoms was found to be complex, as aggregation was evident in aqueous nonturbid phantoms with no surfactant (0% Tween), and avoided in phantoms containing Intralipid as the scattering source with no additional or low amounts of added surfactant (≤0.1% Tween). Conversely, phantoms containing higher surfactant content (>0.1% Tween) and whole blood showed interactions that distorted the fluorescence emissions.

  16. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures

    NASA Astrophysics Data System (ADS)

    Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.

    2018-03-01

    Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient

  17. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    PubMed Central

    Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.

    2015-01-01

    A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980

  18. Contact and perspective taking improve humanness standards and perceptions of humanness of older adults and people with dementia: a cross-sectional survey study.

    PubMed

    Miron, Anca M; McFadden, Susan H; Hermus, Nathan J; Buelow, Jennifer; Nazario, Amanda S; Seelman, Katarena

    2017-10-01

    No empirical work has systematically explored perceptions of humanness of people with dementia and of older adults and the variables that could improve these perceptions. We thus investigated the role of contact and perspective taking in improving perceptions of humanness of these social groups. To do so, we developed a new concept, humanness standards, defined as the amount of evidence of ability impairment needed to conclude that elderly people and those with dementia have lost personhood. We used a cross-sectional survey design (n = 619) to assess participants' humanness standards and perceptions of uniquely human characteristics and human nature characteristics of two social groups (people with dementia and older adults). Half the participants (n = 311) completed a survey about people with dementia and half (n = 308) assessed older adults. People with dementia were perceived as possessing humanness characteristics to a lesser extent than were older adults. For both groups, contact predicted enhanced perceptions of humanness characteristics. Participants' degree of contact with individuals with dementia also predicted humanness standards, but only under low perspective-taking conditions. As predicted, for older adults, participants set the highest humanness impairment thresholds in the high contact/high perspective-taking condition. We conclude that while social programs that bring persons with dementia and other individuals in contact could change humanness standards and perceptions of humanness characteristics of people with dementia, in the case of elderly adults, the contact must be supplemented by variables that facilitate taking the perspective of the person.

  19. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting

  20. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting

  1. The phantom leaf effect: a replication, part 1.

    PubMed

    Hubacher, John

    2015-02-01

    To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.

  2. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.

    PubMed

    Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X George; Liu, Bob

    2013-08-01

    To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters "nanoDots" and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method--a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. A standard ATOM phantom has densely located holes (in 3×3 cm or 1.5×1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with

  3. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  4. Apparent motion perception in lower limb amputees with phantom sensations: "obstacle shunning" and "obstacle tolerance".

    PubMed

    Saetta, Gianluca; Grond, Ilva; Brugger, Peter; Lenggenhager, Bigna; Tsay, Anthony J; Giummarra, Melita J

    2018-03-21

    Phantom limbs are the phenomenal persistence of postural and sensorimotor features of an amputated limb. Although immaterial, their characteristics can be modulated by the presence of physical matter. For instance, the phantom may disappear when its phenomenal space is invaded by objects ("obstacle shunning"). Alternatively, "obstacle tolerance" occurs when the phantom is not limited by the law of impenetrability and co-exists with physical objects. Here we examined the link between this under-investigated aspect of phantom limbs and apparent motion perception. The illusion of apparent motion of human limbs involves the perception that a limb moves through or around an object, depending on the stimulus onset asynchrony (SOA) for the two images. Participants included 12 unilateral lower limb amputees matched for obstacle shunning (n = 6) and obstacle tolerance (n = 6) experiences, and 14 non-amputees. Using multilevel linear models, we replicated robust biases for short perceived trajectories for short SOA (moving through the object), and long trajectories (circumventing the object) for long SOAs in both groups. Importantly, however, amputees with obstacle shunning perceived leg stimuli to predominantly move through the object, whereas amputees with obstacle tolerance perceived leg stimuli to predominantly move around the object. That is, in people who experience obstacle shunning, apparent motion perception of lower limbs was not constrained to the laws of impenetrability (as the phantom disappears when invaded by objects), and legs can therefore move through physical objects. Amputees who experience obstacle tolerance, however, had stronger solidity constraints for lower limb apparent motion, perhaps because they must avoid co-location of the phantom with physical objects. Phantom limb experience does, therefore, appear to be modulated by intuitive physics, but not in the same way for everyone. This may have important implications for limb experience post

  5. Expedition 26 Crewmembers pose with European Matroshka-R Phantom Experiment

    NASA Image and Video Library

    2011-03-11

    ISS026-E-033131 (11 March 2011) --- Russian cosmonauts Alexander Kaleri (left foreground), Oleg Skripochka (right foreground), Dmitry Kondratyev (left background) and European Space Agency astronaut Paolo Nespoli, all Expedition 26 flight engineers, pose for a photo with the European Matroshka-R Phantom experiment in the Zarya Functional Cargo Block (FGB) of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  6. "Phantom" publications among plastic surgery residency applicants.

    PubMed

    Chung, Christina K; Hernandez-Boussard, Tina; Lee, Gordon K

    2012-04-01

    Previous studies in other medical specialties have shown a significant percentage of publications represented in residency applications are not actually published. A comprehensive evaluation of applicants to plastic surgery residency over an extended period has not been previously reported in the literature. The purpose of our study was to determine the incidence of misrepresented or "phantom" publications in plastic surgery residency applicants and to identify possible predisposing characteristics. We used the Electronic Residency Application Services database to our plastic surgery residency program during a 4-year period from 2006 to 2009. Applicant demographic information and listed citations were extracted. Peer-reviewed journal article citations were verified using robust methods including PubMed, Institute for Scientific Information (ISI) Web of Knowledge, and Google. Unverifiable articles were categorized as phantom publications and then evaluated with respect to applicant demographic information and characteristics. During the 4-year study period, there were 804 applications (average, 201 applicants per year). There was a total of 4725 publications listed; of which, 1975 had been categorized as peer-reviewed journal articles. Two hundred seventy-six (14%) of peer-reviewed publications could not be verified and were categorized as phantom publications. There was an overall significant positive trend in percentage of phantom publications during the 4 application years (P = 0.005). A positive predictive factor for having phantom publications was being a foreign medical graduate (P = 0.02). A negative predictive factor for phantom publications was being a female applicant (P = 0.03). There also appeared to be a positive correlation with the number of publications listed and likelihood of phantom publications. Among plastic surgery residency applicants, we found a significant percentage of unverifiable publications. There are several possible explanations for

  7. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  8. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  9. Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus).

    PubMed

    Neiworth, Julie J; Gleichman, Amy J; Olinick, Anne S; Lamp, Kristen E

    2006-11-01

    This study compared adults (Homo sapiens), young children (Homo sapiens), and adult tamarins (Saguinus oedipus) while they discriminated global and local properties of stimuli. Subjects were trained to discriminate a circle made of circle elements from a square made of square elements and were tested with circles made of squares and squares made of circles. Adult humans showed a global bias in testing that was unaffected by the density of the elements in the stimuli. Children showed a global bias with dense displays but discriminated by both local and global properties with sparse displays. Adult tamarins' biases matched those of the children. The striking similarity between the perceptual processing of adult monkeys and humans diagnosed with autism and the difference between this and normatively developing human perception is discussed.

  10. Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom

    PubMed Central

    Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.

    2017-01-01

    Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787

  11. Nuclear IHC enumeration: A digital phantom to evaluate the performance of automated algorithms in digital pathology.

    PubMed

    Niazi, Muhammad Khalid Khan; Abas, Fazly Salleh; Senaras, Caglar; Pennell, Michael; Sahiner, Berkman; Chen, Weijie; Opfer, John; Hasserjian, Robert; Louissaint, Abner; Shana'ah, Arwa; Lozanski, Gerard; Gurcan, Metin N

    2018-01-01

    Automatic and accurate detection of positive and negative nuclei from images of immunostained tissue biopsies is critical to the success of digital pathology. The evaluation of most nuclei detection algorithms relies on manually generated ground truth prepared by pathologists, which is unfortunately time-consuming and suffers from inter-pathologist variability. In this work, we developed a digital immunohistochemistry (IHC) phantom that can be used for evaluating computer algorithms for enumeration of IHC positive cells. Our phantom development consists of two main steps, 1) extraction of the individual as well as nuclei clumps of both positive and negative nuclei from real WSI images, and 2) systematic placement of the extracted nuclei clumps on an image canvas. The resulting images are visually similar to the original tissue images. We created a set of 42 images with different concentrations of positive and negative nuclei. These images were evaluated by four board certified pathologists in the task of estimating the ratio of positive to total number of nuclei. The resulting concordance correlation coefficients (CCC) between the pathologist and the true ratio range from 0.86 to 0.95 (point estimates). The same ratio was also computed by an automated computer algorithm, which yielded a CCC value of 0.99. Reading the phantom data with known ground truth, the human readers show substantial variability and lower average performance than the computer algorithm in terms of CCC. This shows the limitation of using a human reader panel to establish a reference standard for the evaluation of computer algorithms, thereby highlighting the usefulness of the phantom developed in this work. Using our phantom images, we further developed a function that can approximate the true ratio from the area of the positive and negative nuclei, hence avoiding the need to detect individual nuclei. The predicted ratios of 10 held-out images using the function (trained on 32 images) are

  12. “Pulling Telescoped Phantoms Out of the Stump”: Manipulating the Perceived Position of Phantom Limbs Using a Full-Body Illusion

    PubMed Central

    Schmalzl, Laura; Thomke, Erik; Ragnö, Christina; Nilseryd, Maria; Stockselius, Anita; Ehrsson, H. Henrik

    2011-01-01

    Most amputees experience phantom limbs, or the sensation that their amputated limb is still attached to the body. Phantom limbs can be perceived in the location previously occupied by the intact limb, or they can gradually retract inside the stump, a phenomenon referred to as “telescoping”.  Telescoping is relevant from a clinical point of view, as it tends to be related to increased levels of phantom pain. In the current study we demonstrate how a full-body illusion can be used to temporarily revoke telescoping sensations in upper limb amputees. During this illusion participants view the body of a mannequin from a first person perspective while being subjected to synchronized visuo-tactile stimulation through stroking, which makes them experience the mannequin’s body as their own. In Experiment 1 we used an intact mannequin, and showed that amputees can experience ownership of an intact body as well as referral of touch from both hands of the mannequin. In Experiment 2 and 3 we used an amputated mannequin, and demonstrated that depending on the spatial location of the strokes applied to the mannequin, participants experienced their phantom hand to either remain telescoped, or to actually be located below the stump. The effects were supported by subjective data from questionnaires, as well as verbal reports of the perceived location of the phantom hand in a visual judgment task. These findings are of particular interest, as they show that the temporary revoking of telescoping sensations does not necessarily have to involve the visualization of an intact hand or illusory movement of the phantom (as in the rubber hand illusion or mirror visual feedback therapy), but that it can also be obtained through mere referral of touch from the stump to the spatial location corresponding to that previously occupied by the intact hand. Moreover, our study also provides preliminary evidence for the fact that these manipulations can have an effect on phantom pain

  13. Mammography dosimetry using an in-house developed polymethyl methacrylate phantom.

    PubMed

    Sharma, Reena; Sharma, Sunil Dutt; Mayya, Y S; Chourasiya, G

    2012-08-01

    Phantom-based measurements in mammography are well-established for quality assurance (QA) and quality control (QC) procedures involving equipment performance and comparisons of X-ray machines. Polymethyl methacrylate (PMMA) is among the best suitable materials for simulation of the breast. For carrying out QA/QC exercises in India, a mammographic PMMA phantom with engraved slots for keeping thermoluminescence dosemeters (TLD) has been developed. The radiation transmission property of the developed phantom was compared with the commercially available phantoms for verifying its suitability for mammography dosimetry. The breast entrance exposure (BEE), mean glandular dose (MGD), percentage depth dose (PDD), percentage surface dose distribution (PSDD), calibration testing of automatic exposure control (AEC) and density control function of a mammography machine were measured using this phantom. MGD was derived from the measured BEE following two different methodologies and the results were compared. The PDD and PSDD measurements were carried out using LiF: Mg, Cu, P chips. The in-house phantom was found comparable with the commercially available phantoms. The difference in the MGD values derived using two different methods were found in the range of 17.5-32.6 %. Measured depth ranges in the phantom lie between 0.32 and 0.40 cm for 75 % depth dose, 0.73 and 0.92 cm for 50 % depth dose, and 1.54 and 1.78 cm for 25 % depth dose. Higher PSDD value was observed towards chest wall edge side of the phantom, which is due to the orientation of cathode-anode axis along the chest wall to the nipple direction. Results obtained for AEC configuration testing shows that the observed mean optical density (O.D) of the phantom image was 1.59 and O.D difference for every successive increase in thickness of the phantom was within±0.15 O.D. Under density control function testing, at -2 and -1 density settings, the variation in film image O.D was within±0.15 O.D of the normal density

  14. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.

    PubMed

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2016-06-01

    Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  15. Induction and separation of motion artifacts in EEG data using a mobile phantom head device

    NASA Astrophysics Data System (ADS)

    Oliveira, Anderson S.; Schlink, Bryan R.; Hairston, W. David; König, Peter; Ferris, Daniel P.

    2016-06-01

    Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components’ (ICs) power spectrum (˜15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  16. Phantom radiculitis effectively treated by fluoroscopically guided transforaminal epidural steroid injections.

    PubMed

    DeGregoris, Gerard; Diwan, Sudhir

    2010-01-01

    Lower back and extremity pain in the amputee patient can be challenging to classify and treat. Radicular compression in a patient with lower limb amputation may present as or be superimposed upon phantom limb pain, creating diagnostic difficulties. Both patients and physicians classically find it difficult to discern phantom sensation from phantom limb pain and stump pain; radicular compression is often not considered. Many studies have shown back pain to be a significant cause of pain in lower limb amputees, but sciatica has been rarely reported in amputees. We present a case of L4/5 radiculitis in an above-knee amputee presenting as phantom radiculitis. Our patient is a 67 year old gentleman with new onset 10/10 pain in a phantom extremity superimposed upon a 40 year history of previously stable phantom limb pain. MRI showed a central disc herniation at L4/5 with compression of the traversing left L4 nerve root. Two fluoroscopically guided left transforaminal epidural steroid injections at the level of the L4 and L5 spinal nerve roots totally alleviated his new onset pain. At one year post injection, his phantom radiculitis pain was completely gone, though his underlying phantom limb pain remained. Lumbar radiculitis in lower extremity amputee patients may be difficult to differentiate from baseline phantom limb pain. When conservative techniques fail, fluoroscopically guided spinal nerve injection may be valuable in determining the etiology of lower extremity pain. Our experience supports the notion that epidural steroid injections can effectively treat phantom lumbar radiculitis in lower extremity amputees.

  17. Influence of dentures on SAR in the visible Chinese human head voxel phantom exposed to a mobile phone at 900 and 1800 MHz.

    PubMed

    Yu, Dong; Zhang, Ruoyu; Liu, Qian

    2012-09-01

    To investigate the influence of dentures on electromagnetic energy absorption during the daily use of a mobile phone, a high-resolution head phantom based on the Visible Chinese Human dataset was reconstructed. Simulations on phantoms with various dentures were performed by using the finite-difference time-domain method with a 0.47 wavelength dipole antenna and a mobile phone model as radiation sources at 900 and 1800 MHz. The Specific energy Absorption Rate (SAR) values including 1 and 10 g average SAR values were assessed. When the metallic dental crowns with resonance lengths of approximately one-third to one-half wavelength in the tissue nearby are parallel to the radiation source, up to 121.6% relative enhancement for 1 g average SAR and 17.1% relative enhancement for 10 g average SAR are observed due to the resonance effect in energy absorption. When the radiation sources operate in the normal configuration, the 10 g average SAR values are still in compliance with the basic restrictions established by the Institute of Electrical and Electronic Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP), indicating that the safety limits will not be challenged by the usage of dentures. Copyright © 2012 Wiley Periodicals, Inc.

  18. Understanding Older Adult's Perceptions of Factors that Support Trust in Human and Robot Care Providers.

    PubMed

    Stuck, Rachel E; Rogers, Wendy A

    2017-06-01

    As the population of older adults increase so will the need for care providers, both human and robot. Trust is a key aspect to establish and maintain a successful older adult-care provider relationship. However, due to trust volatility it is essential to understand it within specific contexts. This proposed mixed methods study will explore what dimensions of trust emerge as important within the human-human and human-robot dyads in older adults and care providers. First, this study will help identify key qualities that support trust in a care provider relationship. By understanding what older adults perceive as needing to trust humans and robots for various care tasks, we can begin to provide recommendations based on user expectations for design to support trust.

  19. MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    NASA Technical Reports Server (NTRS)

    James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert

    2008-01-01

    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.

  20. Adult human metapneumonovirus (hMPV) pneumonia mimicking Legionnaire's disease.

    PubMed

    Cunha, Burke A; Irshad, Nadia; Connolly, James J

    2016-01-01

    In adults hospitalized with viral pneumonias the main differential diagnostic consideration is influenza pneumonia. The respiratory viruses causing viral influenza like illnesses (ILIs), e.g., RSV may closely resemble influenza. Rarely, extrapulmonary findings of some ILIs may resemble Legionnaire's disease (LD), e.g., adenovirus, human parainfluenza virus (HPIV-3). We present a most unusual case of human metapneumonovirus pneumonia (hMPV) with some characteristic extrapulmonary findings characteristic of LD, e.g., relative bradycardia, as well as mildly elevated serum transaminases and hyphosphatemia. We believe this is the first reported case of hMPV pneumonia in a hospitalized adult that had some features of LD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    PubMed

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  2. Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood

    PubMed Central

    Frost, Jennifer M.; Monk, Dave; Stojilkovic-Mikic, Taita; Woodfine, Kathryn; Chitty, Lyn S.; Murrell, Adele; Stanier, Philip; Moore, Gudrun E.

    2010-01-01

    Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression. PMID:21042416

  3. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Hawkes, N P; Thomas, D J; Taylor, G C

    2016-09-01

    The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.

  5. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    NASA Astrophysics Data System (ADS)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  6. Establishing daily quality control (QC) in screen-film mammography using leeds tor (max) phantom at the breast imaging unit of USTH-Benavides Cancer Institute

    NASA Astrophysics Data System (ADS)

    Acaba, K. J. C.; Cinco, L. D.; Melchor, J. N.

    2016-03-01

    Daily QC tests performed on screen film mammography (SFM) equipment are essential to ensure that both SFM unit and film processor are working in a consistent manner. The Breast Imaging Unit of USTH-Benavides Cancer Institute has been conducting QC following the test protocols in the IAEA Human Health Series No.2 manual. However, the availability of Leeds breast phantom (CRP E13039) in the facility made the task easier. Instead of carrying out separate tests on AEC constancy and light sensitometry, only one exposure of the phantom is done to accomplish the two tests. It was observed that measurements made on mAs output and optical densities (ODs) using the Leeds TOR (MAX) phantom are comparable with that obtained from the usual conduct of tests, taking into account the attenuation characteristic of the phantom. Image quality parameters such as low contrast and high contrast details were also evaluated from the phantom image. The authors recognize the usefulness of the phantom in determining technical factors that will help improve detection of smallest pathological details on breast images. The phantom is also convenient for daily QC monitoring and economical since less number of films is expended.

  7. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  8. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  9. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-07

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  10. Phantom vibration syndrome among medical staff: a cross sectional survey.

    PubMed

    Rothberg, Michael B; Arora, Ashish; Hermann, Jodie; Kleppel, Reva; St Marie, Peter; Visintainer, Paul

    2010-12-15

    To describe the prevalence of and risk factors for experiencing "phantom vibrations," the sensory hallucination sometimes experienced by people carrying pagers or cell phones when the device is not vibrating. Cross sectional survey. Academic medical centre. 176 medical staff who responded to questionnaire (76% of the 232 people invited). Measurements Electronic survey consisting of 17 questions about demographics, device use, phantom vibrations experienced, and attempts to stop them. Of the 169 participants who answered the question, 115 (68%, 95% confidence interval 61% to 75%) reported having experienced phantom vibrations. Most (68/112) who experienced phantom vibrations did so after carrying the device between 1 month and 1 year, and 13% experienced them daily. Four factors were independently associated with phantom vibrations: occupation (resident v attending physician, prevalence ratio 1.47, 95% confidence interval 1.10 to 1.97), device location (breast pocket v belt, prevalence ratio 1.66, 1.29 to 2.14), hours carried (per 6 hour increment, prevalence ratio 1.30, 1.07 to 1.58), and more frequent use in vibrate mode (per frequency category, prevalence ratio 1.18, 1.03 to 1.34). Of those who experienced phantom vibrations, 43 (39%, 30% to 48%) were able to stop them. Strategies for stopping phantom vibrations included taking the device off vibrate mode, changing the location of the device, and using a different device (success rates 75% v 63% v 50%, respectively, P=0.217). However, 39% (30% to 49%) of respondents did not attempt any strategies. Phantom vibration syndrome is common among those who use electronic devices.

  11. Phantom-based evaluation method for surgical assistance devices in minimally invasive cochlear implantation

    NASA Astrophysics Data System (ADS)

    Lexow, G. Jakob; Kluge, Marcel; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S.

    2017-03-01

    Several research groups have proposed individual solutions for surgical assistance devices to perform minimally invasive cochlear implantation. The main challenge is the drilling of a small bore hole from the surface of the skull to the inner ear at submillimetric accuracy. Each group tested the accuracy of their device in their respective test bench or in a small number of temporal bone specimens. This complicates the comparison of the different approaches. Thus, a simple and inexpensive phantom based evaluation method is proposed which resembles clinical conditions. The method is based on half-skull phantoms made of bone-substitute material - optionally equipped with an artificial skin replica to include skin incision within the evaluation procedure. Anatomical structures of the temporal bone derived from segmentations using clinical imaging data are registered into a computer tomographic scan of the skull phantom and used for the planning of the drill trajectory. Drilling is performed with the respective device under conditions close to the intraoperative setting. Evaluation of accuracy can either be performed through postoperative imaging or by means of added targets on the inside of the skull model. Two different targets are proposed: simple reference marks only for measuring the accuracy of the device and a target containing a scala tympani model for evaluation of the complete workflow including the insertion of the electrode carrier. Experiments using the presented method take place under reproducible conditions thus allowing the comparison of the different approaches. In addition, artificial phantoms are easier to obtain and handle than human specimens.

  12. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.

    PubMed

    Behrens, R

    2013-07-01

    In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.

  13. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.

    PubMed

    Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D

    2004-01-01

    Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.

  14. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  15. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  16. [Phantoms for the collection of genital secretions in stallions].

    PubMed

    Klug, E; Brinkhoff, D; Flüge, A; Scherbarth, R; Essich, G; Kienzler, M

    1977-10-05

    Practical experiences of the phantom method for collection of genital secretions from stallions are reported. Taking a phantom used in the Richard-Götze-Haus Tierärztliche Hochschule Hannover as a prototype two further models slightly modified have been constructed, baring a flat hollow in the right side of the caudal phantom body for manual inserting of the Artificial Vagina. These three models fulfill four important conditions for routine use: (1) sufficient sexual attractivity for the stallions; 80-85% successful collections of presecretions out of a total of 1050 using the dummy and 70% successful semen collections from more than 240 in total; (2) solid and resistant construction; (3) easy cleaning and desinfection of the surface of the phantom to get representative samples; (4) firm installation on a hygienic floor.

  17. Prevalent hallucinations during medical internships: phantom vibration and ringing syndromes.

    PubMed

    Lin, Yu-Hsuan; Lin, Sheng-Hsuan; Li, Peng; Huang, Wei-Lieh; Chen, Ching-Yen

    2013-01-01

    Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years) was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships.

  18. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  19. Prevalent Hallucinations during Medical Internships: Phantom Vibration and Ringing Syndromes

    PubMed Central

    Lin, Yu-Hsuan; Lin, Sheng-Hsuan; Li, Peng; Huang, Wei-Lieh; Chen, Ching-Yen

    2013-01-01

    Background Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. Methods A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years) was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. Results The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. Conclusion This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships. PMID:23762302

  20. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Spence, C. J. T.; Moore, S.; Jermy, M.

    2012-05-01

    A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young's modulus of the elastomer. Data for the dependence of Young's modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water-glycerol mixtures) are also presented.

  1. [Development of a software for 3D virtual phantom design].

    PubMed

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  2. Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.

    1995-05-01

    A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.

  3. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems.

    PubMed

    Salvati, Roberto; Hitti, Eric; Bellanger, Jean-Jacques; Saint-Jalmes, Hervé; Gambarota, Giulio

    2016-06-01

    Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    PubMed Central

    Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X. George; Liu, Bob

    2013-01-01

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord

  5. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da; Li, Xinhua; Liu, Bob

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified themore » conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord

  6. Floating worlds and their phantoms in the aftermath of social catastrophes.

    PubMed

    Kimbles, Samuel

    2017-02-01

    In this paper the author describes certain kinds of images (phantoms) that appear in the aftermath of social catastrophes. These phantoms come with an underlying narrative structure, which the author describes as phantom narratives. Phantom narratives show how the unconscious, working at the group and individual levels, provides political and social contexts within which the individual may find a different kind of containment for these catastrophes. In this way their suffering may be potentially processed psychologically and related to symbolically. © 2017, The Society of Analytical Psychology.

  7. Study of homogeneity and inhomogeneity phantom in CUDA EGS for small field dosimetry

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Rhani, Mohamad Fahdillah; Haryanto, Freddy; Arif, Idam

    2017-02-01

    CUDA EGS was CUDA implementation to simulate transport photon in a material based on Monte Carlo algorithm for X-ray imaging. The objective of this study was to investigate the effect of inhomogeneities in inhomogeneity phantom for small field dosimetry (1×1, 2×2, 3×3, 4×4 and 5×5 cm2). Two phantoms, homogeneity and inhomogeneity phantom were used. The interaction in homogeneity and inhomogeneity phantom was dominated by Compton interaction and multiple scattering. The CUDA EGS can represent the inhomogeneity effect in small field dosimetry by combining the grayscale curve between homogeneity and inhomogeneity phantom. The grayscale curve in inhomogeneity phantom is not asymmetric because of the existence of different material in phantom.

  8. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Development of a high resolution MRI intracranial atherosclerosis imaging phantom.

    PubMed

    Chueh, Ju-Yu; van der Marel, Kajo; Gounis, Matthew J; LeMatty, Todd; Brown, Truman R; Ansari, Sameer A; Carroll, Timothy J; Buck, Amanda K; Zhou, Xiaohong Joe; Chatterjee, A Rano; King, Robert M; Mao, Hui; Zheng, Shaokuan; Brooks, Olivia W; Rappleye, Jeff W; Swartz, Richard H; Feldmann, Edward; Turan, Tanya N

    2018-02-01

    Currently, there is neither a standard protocol for vessel wall MR imaging of intracranial atherosclerotic disease (ICAD) nor a gold standard phantom to compare MR sequences. In this study, a plaque phantom is developed and characterized that provides a platform for establishing a uniform imaging approach for ICAD. A patient specific injection mold was 3D printed to construct a geometrically accurate ICAD phantom. Polyvinyl alcohol hydrogel was infused into the core shell mold to form the stenotic artery. The ICAD phantom incorporated materials mimicking a stenotic vessel and plaque components, including fibrous cap and lipid core. Two phantoms were scanned using high resolution cone beam CT and compared with four different 3 T MRI systems across eight different sites over a period of 18 months. Inter-phantom variability was assessed by lumen dimensions and contrast to noise ratio (CNR). Quantitative evaluation of the minimum lumen radius in the stenosis showed that the radius was on average 0.80 mm (95% CI 0.77 to 0.82 mm) in model 1 and 0.77 mm (95% CI 0.74 to 0.81 mm) in model 2. The highest CNRs were observed for comparisons between lipid and vessel wall. To evaluate manufacturing reproducibility, the CNR variability between the two models had an average absolute difference of 4.31 (95% CI 3.82 to 5.78). Variation in CNR between the images from the same scanner separated by 7 months was 2.5-6.2, showing reproducible phantom durability. A plaque phantom composed of a stenotic vessel wall and plaque components was successfully constructed for multicenter high resolution MRI standardization. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Localization of PPAR isotypes in the adult mouse and human brain

    PubMed Central

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430

  12. Localization of PPAR isotypes in the adult mouse and human brain.

    PubMed

    Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B; Mayfield, R Dayne; Harris, R Adron

    2016-06-10

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.

  13. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging.

    PubMed

    Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H

    2015-12-01

    In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom

  14. The potential pitfalls of studying adult sex ratios at aggregate levels in humans.

    PubMed

    Pollet, Thomas V; Stoevenbelt, Andrea H; Kuppens, Toon

    2017-09-19

    Human adult sex ratios have been studied extensively across the biological and social sciences. While several studies have examined adult sex ratio effects in a multilevel perspective, many studies have focused on effects at an aggregated level only. In this paper, we review some key issues relating to such analyses. We address not only nation-level analyses, but also aggregation at lower levels, to investigate whether these issues extend to lower levels of aggregation. We illustrate these issues with novel databases covering a broad range of variables. Specifically, we discuss distributional issues with aggregated measures of adult sex ratio, significance testing, and statistical non-independence when using aggregate data. Firstly, we show that there are severe distributional issues with national adult sex ratio, such as extreme cases. Secondly, we demonstrate that many 'meaningless' variables are significantly correlated with adult sex ratio (e.g. the max. elevation level correlates with sex ratio at US state level). Finally, we re-examine associations between adult sex ratios and teenage fertility and find no robust evidence for an association at the aggregate level. Our review highlights the potential issues of using aggregate data on adult sex ratios to test hypotheses from an evolutionary perspective in humans.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).

  15. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.

    PubMed

    van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal

  16. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  17. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    PubMed

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.

  18. Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Leh, Barbara; Siebert, Rainer; Hamzeh, Hussein; Menard, Laurent; Duval, Marie-Alix; Charon, Yves; Abi Haidar, Darine

    2012-10-01

    Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues. Specific geometries of dedicated molds offer multiple-layer phantoms with variable thicknesses and monolayer phantoms with cylindrical inclusions at various depths and diameters. Organic chromophores are added to allow fluorescence spectroscopy. These phantoms are designed to be used with 405 nm as the excitation wavelength. This wavelength is then adapted to excite large endogenous molecules. The benefits of these phantoms in understanding fluorescence tissue analysis are then demonstrated. In particular, detectability aspects as a function of geometrical and optical parameters are presented and discussed.

  19. Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures.

    PubMed

    Cafarelli, A; Verbeni, A; Poliziani, A; Dario, P; Menciassi, A; Ricotti, L

    2017-02-01

    Materials with tailored acoustic properties are of great interest for both the development of tissue-mimicking phantoms for ultrasound tests and smart scaffolds for ultrasound mediated tissue engineering and regenerative medicine. In this study, we assessed the acoustic properties (speed of sound, acoustic impedance and attenuation coefficient) of three different materials (agarose, polyacrylamide and polydimethylsiloxane) at different concentrations or cross-linking levels and doped with different concentrations of barium titanate ceramic nanoparticles. The selected materials, besides different mechanical features (stiffness from few kPa to 1.6MPa), showed a wide range of acoustic properties (speed of sound from 1022 to 1555m/s, acoustic impedance from 1.02 to 1.67MRayl and attenuation coefficient from 0.2 to 36.5dB/cm), corresponding to ranges in which natural soft tissues can fall. We demonstrated that this knowledge can be used to build tissue-mimicking phantoms for ultrasound-based medical procedures and that the mentioned measurements enable to stimulate cells with a highly controlled ultrasound dose, taking into account the attenuation due to the cell-supporting scaffold. Finally, we were able to correlate for the first time the bioeffect on human fibroblasts, triggered by piezoelectric barium titanate nanoparticles activated by low-intensity pulsed ultrasound, with a precise ultrasound dose delivered. These results may open new avenues for the development of both tissue-mimicking materials for ultrasound phantoms and smart triggerable scaffolds for tissue engineering and regenerative medicine. This study reports for the first time the results of a systematic acoustic characterization of agarose, polyacrylamide and polydimethylsiloxane at different concentrations and cross-linking extents and doped with different concentrations of barium titanate nanoparticles. These results can be used to build tissue-mimicking phantoms, useful for many ultrasound

  20. Deep brain stimulation for phantom limb pain.

    PubMed

    Bittar, Richard G; Otero, Sofia; Carter, Helen; Aziz, Tipu Z

    2005-05-01

    Phantom limb pain is an often severe and debilitating phenomenon that has been reported in up to 85% of amputees. Its pathophysiology is poorly understood. Peripheral and spinal mechanisms are thought to play a role in pain modulation in affected individuals; however central mechanisms are also likely to be of importance. The neuromatrix theory postulates a genetically determined representation of body image, which is modified by sensory input to create a neurosignature. Persistence of the neurosignature may be responsible for painless phantom limb sensations, whereas phantom limb pain may be due to abnormal reorganisation within the neuromatrix. This study assessed the clinical outcome of deep brain stimulation of the periventricular grey matter and somatosensory thalamus for the relief of chronic neuropathic pain associated with phantom limb in three patients. These patients were assessed preoperatively and at 3 month intervals postoperatively. Self-rated visual analogue scale pain scores assessed pain intensity, and the McGill Pain Questionnaire assessed the quality of the pain. Quality of life was assessed using the EUROQOL EQ-5D scale. Periventricular gray stimulation alone was optimal in two patients, whilst a combination of periventricular gray and thalamic stimulation produced the greatest degree of relief in one patient. At follow-up (mean 13.3 months) the intensity of pain was reduced by 62% (range 55-70%). In all three patients, the burning component of the pain was completely alleviated. Opiate intake was reduced in the two patients requiring morphine sulphate pre-operatively. Quality of life measures indicated a statistically significant improvement. This data supports the role for deep brain stimulation in patients with phantom limb pain. The medical literature relating to the epidemiology, pathogenesis, and treatment of this clinical entity is reviewed in detail.

  1. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  2. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    PubMed Central

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  3. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  4. X-Ray Phantom Development For Observer Performance Studies

    NASA Astrophysics Data System (ADS)

    Kelsey, C. A.; Moseley, R. D.; Mettler, F. A.; Parker, T. W.

    1981-07-01

    The requirements for radiographic imaging phantoms for observer performance testing include realistic tasks which mimic at least some portion of the diagnostic examination presented in a setting which approximates clinically derived images. This study describes efforts to simulate chest and vascular diseases for evaluation of conventional and digital radiographic systems. Images of lung nodules, pulmonary infiltrates, as well as hilar and mediastinal masses are generated with a conventional chest phantom to make up chest disease test series. Vascular images are simulated by hollow tubes embedded in tissue density plastic with widening and narrowing added to mimic aneurysms and stenoses. Both sets of phantoms produce images which allow simultaneous determination of true positive and false positive rates as well as complete ROC curves.

  5. Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans

    PubMed Central

    Gabay, Shai; Nestor, Adrian; Dundas, Eva; Behrmann, Marlene

    2014-01-01

    The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical structures, and recently, some investigations in adult humans indicate subcortical correlates of face perception as well. The questions addressed here are whether low-level subcortical mechanisms for face perception (in the absence of changes in expression) are conserved in human adults, and if so, what is the nature of these subcortical representations. In a series of four experiments, we presented pairs of images to the same or different eyes. Participants’ performance demonstrated that subcortical mechanisms, indexed by monocular portions of the visual system, play a functional role in face perception. These mechanisms are sensitive to face-like configurations and afford a coarse representation of a face, comprised of primarily low spatial frequency information, which suffices for matching faces but not for more complex aspects of face perception such as sex differentiation. Importantly, these subcortical mechanisms are not implicated in the perception of other visual stimuli, such as cars or letter strings. These findings suggest a conservation of phylogenetically and ontogenetically lower-order systems in adult human face perception. The involvement of subcortical structures in face recognition provokes a reconsideration of current theories of face perception, which are reliant on cortical level processing, inasmuch as it bolsters the cross-species continuity of the biological system for face recognition. PMID:24236767

  6. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, D; Liu, Y

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes.more » The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.« less

  7. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  8. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.

    PubMed

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-06-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.

  9. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].

    PubMed

    Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A

    2010-01-01

    Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.

  10. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  11. A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Wichtmann, Barbara; Witzel, Thomas; Mekkaoui, Choukri; Schneider, Walter; Wald, Lawrence L; Huang, Susie Y

    2018-06-01

    We provide a comprehensive diffusion MRI dataset acquired with a novel biomimetic phantom mimicking human white matter. The fiber substrates in the diffusion phantom were constructed from hollow textile axons ("taxons") with an inner diameter of 11.8±1.2 µm and outer diameter of 33.5±2.3 µm. Data were acquired on the 3 T CONNECTOM MRI scanner with multiple diffusion times and multiple q-values per diffusion time, which is a dedicated acquisition for validation of microstructural imaging methods, such as compartment size and volume fraction mapping. Minimal preprocessing was performed to correct for susceptibility and eddy current distortions. Data were deposited in the XNAT Central database (project ID: dMRI_Phant_MGH).

  12. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches.

    PubMed

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-07

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  13. Numerical compliance testing of human exposure to electromagnetic radiation from smart-watches

    NASA Astrophysics Data System (ADS)

    Hong, Seon-Eui; Lee, Ae-Kyoung; Kwon, Jong-Hwa; Pack, Jeong-Ki

    2016-10-01

    In this study, we investigated the electromagnetic dosimetry for smart-watches. At present, the standard for compliance testing of body-mounted and handheld devices specifies the use of a flat phantom to provide conservative estimates of the peak spatial-averaged specific absorption rate (SAR). This means that the estimated SAR using a flat phantom should be higher than the SAR in the exposure part of an anatomical human-body model. To verify this, we numerically calculated the SAR for a flat phantom and compared it with the numerical calculation of the SAR for four anatomical human-body models of different ages. The numerical analysis was performed using the finite difference time domain method (FDTD). The smart-watch models were used in the three antennas: the shorted planar inverted-F antenna (PIFA), loop antenna, and monopole antenna. Numerical smart-watch models were implemented for cellular commutation and wireless local-area network operation at 835, 1850, and 2450 MHz. The peak spatial-averaged SARs of the smart-watch models are calculated for the flat phantom and anatomical human-body model for the wrist-worn and next to mouth positions. The results show that the flat phantom does not provide a consistent conservative SAR estimate. We concluded that the difference in the SAR results between an anatomical human-body model and a flat phantom can be attributed to the different phantom shapes and tissue structures.

  14. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    NASA Astrophysics Data System (ADS)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  15. Dose conversion coefficients for neutron exposure to the lens of the human eye.

    PubMed

    Manger, R P; Bellamy, M B; Eckerman, K F

    2012-03-01

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 × 10(-9) to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematical phantom in the MCNPX transport calculations.

  16. Dose conversion coefficients for neutron exposure to the lens of the human eye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manger, Ryan P; Bellamy, Michael B; Eckerman, Keith F

    Dose conversion coefficients for the lens of the human eye have been calculated for neutron exposure at energies from 1 x 10{sup -9} to 20 MeV and several standard orientations: anterior-to-posterior, rotational and right lateral. MCNPX version 2.6.0, a Monte Carlo-based particle transport package, was used to determine the energy deposited in the lens of the eye. The human eyeball model was updated by partitioning the lens into sensitive and insensitive volumes as the anterior portion (sensitive volume) of the lens being more radiosensitive and prone to cataract formation. The updated eye model was used with the adult UF-ORNL mathematicalmore » phantom in the MCNPX transport calculations.« less

  17. Creation of an optically tunable, solid tissue phantom for use in cancer detection

    NASA Astrophysics Data System (ADS)

    Tucker, Matthew B.; Wallace, Catherine; Mantena, Sreekar; Cornwell, Neil; Ross, Weston; Odion, Ren; Vo-Dinh, Tuan; Codd, Patrick

    2018-02-01

    An optically tunable, solid tissue phantom was developed in order to aid in the verification and validation of non-destructive cancer detection technologies based on fluorescence spectroscopy. The solid tissue phantom contained agarose, hemoglobin, Intralipid, NADH, and FAD. The redox ratio of the solid phantoms were shown to be tunable; thus, indicating that these phantoms could be used to tailor specific optical conditions that mimic cancerous and healthy tissues. Therefore, this solid tissue phantom can serve as a suitable test bed to evaluate fluorescence spectroscopy based cancer detection devices.

  18. PHANTOM: Practical Oblivious Computation in a Secure Processor

    DTIC Science & Technology

    2014-05-16

    Utilizing Multiple FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Implementation on the HC-2ex 50 6.1 Integration with a RISC -V...development of Phantom, Mohit also contributed to the code base, in particular with regard to the integration between the ORAM controller and the RISC -V...well. v Tremendous thanks is owed to the team that developed the RISC -V processor Phantom is using: among other contributors, this includes

  19. MATSIM: Development of a Voxel Model of the MATROSHKA Astronaut Dosimetric Phantom

    NASA Astrophysics Data System (ADS)

    Beck, Peter; Zechner, Andrea; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Hranitzky, Christian; Latocha, Marcin; Reitz, Günther; Stadtmann, Hannes; Vana, Norbert; Wind, Michael

    2011-08-01

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center, to perform FLUKA Monte Carlo simulations of the MATROSHKA numerical phantom irradiated under reference radiation field conditions as well as for the radiation environment at the International Space Station (ISS). MATSIM is carried out as co-investigation of the ESA ELIPS projects SORD and RADIS (commonly known as MATROSHKA), an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. During MATSIM a computer tomography scan of the MATROSHKA phantom has been converted into a high resolution 3-dimensional voxel model. The energy imparted and absorbed dose distribution inside the model is determined for various radiation fields. The major goal of the MATSIM project is the validation of the numerical model under reference radiation conditions and further investigations under the radiation environment at ISS. In this report we compare depth dose distributions inside the phantom measured with thermoluminescence detectors (TLDs) and an ionization chamber with FLUKA Monte Carlo particle transport simulations due to 60Co photon exposure. Further reference irradiations with neutrons, protons and heavy ions are planned. The fully validated numerical model MATSIM will provide a perfect tool to assess the radiation exposure to humans during current and future space missions to ISS, Moon, Mars and beyond.

  20. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  1. A resistive mesh phantom for assessing the performance of EIT systems.

    PubMed

    Gagnon, Hervé; Cousineau, Martin; Adler, Andy; Hartinger, Alzbeta E

    2010-09-01

    Assessing the performance of electrical impedance tomography (EIT) systems usually requires a phantom for validation, calibration, or comparison purposes. This paper describes a resistive mesh phantom to assess the performance of EIT systems while taking into account cabling stray effects similar to in vivo conditions. This phantom is built with 340 precision resistors on a printed circuit board representing a 2-D circular homogeneous medium. It also integrates equivalent electrical models of the Ag/AgCl electrode impedances. The parameters of the electrode models were fitted from impedance curves measured with an impedance analyzer. The technique used to build the phantom is general and applicable to phantoms of arbitrary shape and conductivity distribution. We describe three performance indicators that can be measured with our phantom for every measurement of an EIT data frame: SNR, accuracy, and modeling accuracy. These performance indicators were evaluated on our EIT system under different frame rates and applied current intensities. The performance indicators are dependent on frame rate, operating frequency, applied current intensity, measurement strategy, and intermodulation distortion when performing simultaneous measurements at several frequencies. These parameter values should, therefore, always be specified when reporting performance indicators to better appreciate their significance.

  2. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  3. Atypical Odontalgia (Phantom Tooth Pain)

    MedlinePlus

    ... atypical facial pain, phantom tooth pain, or neuropathic orofacial pain, is characterized by chronic pain in a tooth ... such as a specialist in oral medicine or orofacial pain. The information contained in this monograph is for ...

  4. Anthropomorphic breast phantoms for preclinical imaging evaluation with transmission or emission imaging

    NASA Astrophysics Data System (ADS)

    Tornai, Martin P.; McKinley, Randolph L.; Bryzmialkiewicz, Caryl N.; Cutler, Spencer J.; Crotty, Dominic J.

    2005-04-01

    With the development of several classes of dedicated emission and transmission imaging technologies utilizing ionizing radiation for improved breast cancer detection and in vivo characterization, it is extremely useful to have available anthropomorphic breast phantoms in a variety of shapes, sizes and malleability prior to clinical imaging. These anthropomorphic phantoms can be used to evaluate the implemented imaging approaches given a known quantity, the phantom, and to evaluate the variability of the measurement due to the imaging system chain. Thus, we have developed a set of fillable and incompressible breast phantoms ranging in volume from 240 to 1730mL with nipple-to-chest distances from 3.8 to 12cm. These phantoms are mountable and exchangeable on either a uniform chest plate or anthropomorphic torso phantom containing tissue equivalent bones and surface tissue. Another fillable ~700mL breast phantom with solid anterior chest plate is intentionally compressible, and can be used for direct comparisons between standard planar imaging approaches using mild-to-severe compression, partially compressed tomosynthesis, and uncompressed computed mammotomography applications. These phantoms can be filled with various fluids (water and oil based liquids) to vary the fatty tissue background composition. Shaped cellulose sponges with two cell densities are fabricated and can be added to the breasts to simulate connective tissue. Additionally, microcalcifications can be simulated by peppering slits in the sponges with oyster shell fragments. These phantoms have a utility in helping to evaluate clinical imaging paradigms with known input object parameters using basic imaging characterization, in an effort to further evaluate contemporary and next generation imaging tools. They may additionally provide a means to collect known data samples for task based optimization studies.

  5. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    NASA Astrophysics Data System (ADS)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  6. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, 8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  7. Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans.

    PubMed

    Ulrich, Ethan J; Sunderland, John J; Smith, Brian J; Mohiuddin, Imran; Parkhurst, Jessica; Plichta, Kristin A; Buatti, John M; Beichel, Reinhard R

    2018-01-01

    Quality control plays an increasingly important role in quantitative PET imaging and is typically performed using phantoms. The purpose of this work was to develop and validate a fully automated analysis method for two common PET/CT quality assurance phantoms: the NEMA NU-2 IQ and SNMMI/CTN oncology phantom. The algorithm was designed to only utilize the PET scan to enable the analysis of phantoms with thin-walled inserts. We introduce a model-based method for automated analysis of phantoms with spherical inserts. Models are first constructed for each type of phantom to be analyzed. A robust insert detection algorithm uses the model to locate all inserts inside the phantom. First, candidates for inserts are detected using a scale-space detection approach. Second, candidates are given an initial label using a score-based optimization algorithm. Third, a robust model fitting step aligns the phantom model to the initial labeling and fixes incorrect labels. Finally, the detected insert locations are refined and measurements are taken for each insert and several background regions. In addition, an approach for automated selection of NEMA and CTN phantom models is presented. The method was evaluated on a diverse set of 15 NEMA and 20 CTN phantom PET/CT scans. NEMA phantoms were filled with radioactive tracer solution at 9.7:1 activity ratio over background, and CTN phantoms were filled with 4:1 and 2:1 activity ratio over background. For quantitative evaluation, an independent reference standard was generated by two experts using PET/CT scans of the phantoms. In addition, the automated approach was compared against manual analysis, which represents the current clinical standard approach, of the PET phantom scans by four experts. The automated analysis method successfully detected and measured all inserts in all test phantom scans. It is a deterministic algorithm (zero variability), and the insert detection RMS error (i.e., bias) was 0.97, 1.12, and 1.48 mm for phantom

  8. Image Noise, CNR, and Detectability of Low-Contrast, Low-Attenuation Liver Lesions in a Phantom: Effects of Radiation Exposure, Phantom Size, Integrated Circuit Detector, and Iterative Reconstruction.

    PubMed

    Goenka, Ajit H; Herts, Brian R; Dong, Frank; Obuchowski, Nancy A; Primak, Andrew N; Karim, Wadih; Baker, Mark E

    2016-08-01

    Purpose To assess image noise, contrast-to-noise ratio (CNR) and detectability of low-contrast, low-attenuation liver lesions in a semianthropomorphic phantom by using either a discrete circuit (DC) detector and filtered back projection (FBP) or an integrated circuit (IC) detector and iterative reconstruction (IR) with changes in radiation exposure and phantom size. Materials and Methods An anthropomorphic phantom without or with a 5-cm-thick fat-mimicking ring (widths, 30 and 40 cm) containing liver inserts with four spherical lesions was scanned with five exposure settings on each of two computed tomography scanners, one equipped with a DC detector and the other with an IC detector. Images from the DC and IC detector scanners were reconstructed with FBP and IR, respectively. Image noise and lesion CNR were measured. Four radiologists evaluated lesion presence on a five-point diagnostic confidence scale. Data analyses included receiver operating characteristic (ROC) curve analysis and noninferiority analysis. Results The combination of IC and IR significantly reduced image noise (P < .001) (with the greatest reduction in the 40-cm phantom and at lower exposures) and improved lesion CNR (P < .001). There was no significant difference in area under the ROC curve between detector-reconstruction combinations at fixed exposure for either phantom. Reader accuracy with IC-IR was noninferior at 50% (100 mAs [effective]) and 25% (300 mAs [effective]) exposure reduction for the 30- and 40-cm phantoms, respectively (adjusted P < .001 and .04 respectively). IC-IR improved readers' confidence in the presence of a lesion (P = .029) independent of phantom size or exposure level. Conclusion IC-IR improved objective image quality and lesion detection confidence but did not result in superior diagnostic accuracy when compared with DC-FBP. Moderate exposure reductions maintained comparable diagnostic accuracy for both detector-reconstruction combinations. Lesion detection in the 40

  9. Phantom publications among applicants to a colorectal surgery residency program.

    PubMed

    Nasseri, Yosef; Kohanzadeh, Som; Murrell, Zuri; Berel, Dror; Melmed, Gil; Fleshner, Phillip

    2011-02-01

    Previous studies have reported that as many as one third of applicants misrepresent their publication record on residency or fellowship applications. To determine the incidence of potentially fraudulent (or "phantom") research publications among applicants to a colorectal surgery residency program. Electronic Residency Application Services applications were reviewed. All listed publications were tabulated and checked whether they were published using various search engines. Cedars-Sinai Medical Center. Applicants from 2006 to 2008. We searched for phantom publications, defined as peer review journal citations that could not be verified. Demographics and other academic factors were compared between applicants with phantom publications and applicants with verifiable publications. Of the 133 study group applicants, there were 91 (68%) males and 58 (44%) whites. Median age of the study cohort was 32 years (range, 27-48 y). Eight-seven of 130 applicants (65%) listed a total of 392 publications. Thirty-six (9%) of these 392 citations could not be verified and were considered to be phantom publications. The 36 phantom publications were identified in 21 applicants, representing 16% (21/133) of all applicants and 24% (21/87) of all applicants who cited publications. We found no significant difference in any demographic or other studied variable between applicants with phantom publications and those with verifiable publications. When comparing applicants with 3 or more phantom publications with applicants with verifiable publications, the former group had a significantly higher rate of individuals over age 35 (50% vs 24%; P = .02), foreign medical school graduates (75% vs 20%; P = .03), and individuals with 5 or more publications (100% vs 30%; P = .01). Publications may simply have been missed in our search. We specifically may have failed to find publications in foreign journals. The significance of professionalism and ethical behavior must be emphasized in surgery training

  10. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Segars, William Paul; Kapadia, Anuj J., E-mail: anuj.kapadia@duke.edu

    2014-06-15

    Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm{sup 3}). A monoenergeticmore » rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for

  11. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    NASA Astrophysics Data System (ADS)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  12. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  13. Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software.

    PubMed

    Alziar, I; Bonniaud, G; Couanet, D; Ruaud, J B; Vicente, C; Giordana, G; Ben-Harrath, O; Diaz, J C; Grandjean, P; Kafrouni, H; Chavaudra, J; Lefkopoulos, D; de Vathaire, F; Diallo, I

    2009-09-07

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  14. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality

    NASA Astrophysics Data System (ADS)

    Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah

    2017-06-01

    Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost

  15. A Unified Model of Phantom Energy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ < -1/3. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has w = p/ρ < -1. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  16. MRI Phantoms – Are There Alternatives to Agar?

    PubMed Central

    Hellerbach, Alexandra; Schuster, Verena; Jansen, Andreas; Sommer, Jens

    2013-01-01

    The suitability of different gelling agents as MRI phantoms was evaluated in terms of homogeneity, gel stability and reproducibility. Time and effort for preparation were also taken into account. The relaxation times of various gel compositions were estimated. Carbomer-980 and Carbopol-974P were determined to be promising novel phantom materials. These gelling agents are readily available, inexpensive and easy to handle given that thermal treatment is not required. Furthermore, the viscoelasticity of their polymer network is pH-dependent. With such characteristics, it was even possible to embed sensitive objects and retrieve them after testing. This was demonstrated with a fiber phantom for Diffusion Weighted MRI applications. Since Carbomer-980 and Carbopol-974P are non-hazardous, they are also suitable for multimodal setups (e.g., MRI as well as ultrasonic imaging). PMID:23940563

  17. Development of a high resolution voxelised head phantom for medical physics applications.

    PubMed

    Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W

    2017-01-01

    Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history

    PubMed Central

    Xu, X. George

    2014-01-01

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well

  19. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.

    PubMed

    Xu, X George

    2014-09-21

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most

  20. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin.

    PubMed

    Woliner-van der Weg, Wietske; Deden, Laura N; Meeuwis, Antoi P W; Koenrades, Maaike; Peeters, Laura H C; Kuipers, Henny; Laanstra, Geert Jan; Gotthardt, Martin; Slump, Cornelis H; Visser, Eric P

    2016-12-01

    Quantitative single photon emission computed tomography (SPECT) is challenging, especially for pancreatic beta cell imaging with 111 In-exendin due to high uptake in the kidneys versus much lower uptake in the nearby pancreas. Therefore, we designed a three-dimensionally (3D) printed phantom representing the pancreas and kidneys to mimic the human situation in beta cell imaging. The phantom was used to assess the effect of different reconstruction settings on the quantification of the pancreas uptake for two different, commercially available software packages. 3D-printed, hollow pancreas and kidney compartments were inserted into the National Electrical Manufacturers Association (NEMA) NU2 image quality phantom casing. These organs and the background compartment were filled with activities simulating relatively high and low pancreatic 111 In-exendin uptake for, respectively, healthy humans and type 1 diabetes patients. Images were reconstructed using Siemens Flash 3D and Hermes Hybrid Recon, with varying numbers of iterations and subsets and corrections. Images were visually assessed on homogeneity and artefacts, and quantitatively by the pancreas-to-kidney activity concentration ratio. Phantom images were similar to clinical images and showed comparable artefacts. All corrections were required to clearly visualize the pancreas. Increased numbers of subsets and iterations improved the quantitative performance but decreased homogeneity both in the pancreas and the background. Based on the phantom analyses, the Hybrid Recon reconstruction with 6 iterations and 16 subsets was found to be most suitable for clinical use. This work strongly contributed to quantification of pancreatic 111 In-exendin uptake. It showed how clinical images of 111 In-exendin can be interpreted and enabled selection of the most appropriate protocol for clinical use.

  1. Design and implementation of a MRI compatible and dynamic phantom simulating the motion of a tumor in the liver under the breathing cycle

    NASA Astrophysics Data System (ADS)

    Geelhand de Merxem, Arnould; Lechien, Vianney; Thibault, Tanguy; Dasnoy, Damien; Macq, Benoît

    2017-11-01

    In the context of cancer treatment by proton therapy, research is carried out on the use magnetic resonance imaging (MRI) to perform real-time tracking of tumors during irradiation. The purpose of this combination is to reduce the irradiation of healthy tissues surrounding the tumor, while using a non-ionizing imaging method. Therefore, it is necessary to validate the tracking algorithms on real-time MRI sequences by using physical simulators, i.e. a phantom. Our phantom is a device representing a liver with hepatocellular carcinoma, a stomach and a pancreas close to the anatomy and the magnetic properties of the human body, animated by a motion similar to the one induced by the respiration. Many anatomical or mobile phantoms already exist, but the purpose here is to combine a reliable representation of the abdominal organs with the creation and the evaluation of a programmable movement in the same device, which makes it unique. The phantom is composed of surrogate organs made of CAGN gels. These organs are placed in a transparent box filled with water and attached to an elastic membrane. A programmable electro-pneumatic system creates a movement, similarly to a human diaphragm, by inflating and deflating the membrane. The average relaxation times of the synthetic organs belongs to a range corresponding to the human organs values (T1 = [458.7-1660] ms, T2 = [39.3-89.1] ms). The displacement of the tumor is tracked in real time by a camera inside the MRI. The amplitude of the movement varies from 12.8 to 20.1 mm for a periodic and repeatable movement. Irregular breath patterns can be created with a maximum amplitude of 40 mm.

  2. Noncontact ultrasound imaging applied to cortical bone phantoms

    PubMed Central

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. Methods: A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm3 and in bone mineral density from 0 to 1.7 g/cm3. Results: Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16–20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%–2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within

  3. Differences in energy absorption between heads of adults and children in the near field of sources.

    PubMed

    Schönborn, F; Burkhardt, M; Kuster, N

    1998-02-01

    This paper was motivated by a recent article in which the levels of electromagnetic energy absorbed in the heads of mobile phone users were compared for children and adults at the frequencies of 835 MHz and 1,900 MHz. Significant differences were found, in particular substantially greater absorption in children's heads at 835 MHz. These findings contradict other studies in which no significant changes had been postulated. The clarification of this issue is crucial to the mobile communications industry since current SAR evaluations as required by the FCC are only performed with phantoms based on the heads of adults. In order to investigate the differences in absorption between adults and children due to their differing anatomies, simulations have been performed using head phantoms based on MRI scans of an adult (voxel size 2 x 2 x 1 mm3) and two children (voxel size 2 x 2 x 1.1 mm3) of the ages of 3 and 7 y. Ten different tissue types were distinguished. The differences in absorption were investigated for the frequencies of 900 MHz and 1,800 MHz using 0.45 lambda dipoles instead of actual mobile phones. These well-defined sources simplified the investigation and facilitated the comparison to previously published data obtained from several numerical and experimental studies on phantoms based on adults. All simulations were performed using a commercial code based on the finite integration technique. The results revealed no significant differences in the absorption of electromagnetic radiation in the near field of sources between adults and children. The same conclusion holds when children are approximated as scaled adults.

  4. A new, open-source, multi-modality digital breast phantom

    NASA Astrophysics Data System (ADS)

    Graff, Christian G.

    2016-03-01

    An anthropomorphic digital breast phantom has been developed with the goal of generating random voxelized breast models that capture the anatomic variability observed in vivo. This is a new phantom and is not based on existing digital breast phantoms or segmentation of patient images. It has been designed at the outset to be modality agnostic (i.e., suitable for use in modeling x-ray based imaging systems, magnetic resonance imaging, and potentially other imaging systems) and open source so that users may freely modify the phantom to suit a particular study. In this work we describe the modeling techniques that have been developed, the capabilities and novel features of this phantom, and study simulated images produced from it. Starting from a base quadric, a series of deformations are performed to create a breast with a particular volume and shape. Initial glandular compartments are generated using a Voronoi technique and a ductal tree structure with terminal duct lobular units is grown from the nipple into each compartment. An additional step involving the creation of fat and glandular lobules using a Perlin noise function is performed to create more realistic glandular/fat tissue interfaces and generate a Cooper's ligament network. A vascular tree is grown from the chest muscle into the breast tissue. Breast compression is performed using a neo-Hookean elasticity model. We show simulated mammographic and T1-weighted MRI images and study properties of these images.

  5. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas

    2017-11-01

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.

  6. A training phantom for ultrasound-guided needle insertion and suturing.

    PubMed

    Nattagh, Khashayar; Siauw, Timmy; Pouliot, Jean; Hsu, I-Chow; Cunha, J Adam

    2014-01-01

    During gynecologic brachytherapy (BT), suturing and image-guided needle insertions are highly skill-dependent tasks. Medical residents often have to practice these techniques in the operating room; this is sub-optimal for many reasons. We present a fast and low-cost method of building realistic and disposable gynecologic phantoms, which can be used to train physicians new to gynecologic BT. Phantoms comprised a rectal cavity large enough to accommodate a standard transrectal ultrasound (US) probe, a vaginal cavity, a uterus, a uterine canal, and a cervix, all embedded in a gelatin matrix. The uterus was made of gelatin and coated with rubber to mimic the texture of soft tissue and for computed tomography (CT) and US image contrast. The phantom's durability, longevity, construction times, materials costs, CT, and US image quality were recorded. The speed of sound in the gelatin was measured using pulse echo measurements. Anatomic structures were distinguishable using CT and US. For the first phantom, material costs were under $200, curing time was approximately 48 hours, and active participation time was 3 hours. Reusable parts allowed for reduction in time and cost for subsequent phantoms: under $20, 24 hours curing time, and 1 hour active participation time. The speed of sound in the gelatin ranged from 1495 to 1506 m/s. A method for constructing gelatin gynecologic phantoms was developed. It can be used for training in image-guided BT needle insertion, placing a suture on the vaginal wall, and suturing the cervical lip. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. TU-H-206-02: Novel Linearly-Filled Derenzo PET Phantom Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, S; Cox, B; Valdovinos, H

    Purpose: To design a linearly-filled Derenzo positron emission tomography (PET) phantom, eliminating the extraneous radioisotope volumes in a conventional reservoir-type design. This activity reduction combined with the elimination of bubbles in smaller phantom channels would significantly reduce personnel dose, radioisotope cost, and would improve image quality by reducing out-of-slice activity scatter. Methods: A computer-aided design (CAD) was created of a modular Derenzo phantom consisting of three phantom layers with gaskets between the layers. The central piece contains the active pattern volume and channels connecting adjacent rods in a serpentine pattern. The two end-pieces contained an inlet and an outlet formore » filling purposes. Phantom prototypes were 3D printed on a Viper Si2 stereolithography machine. The two gaskets were fabricated from silicon sheets using a PLS 6.75 laser cutter. Phantoms were held together by pass-through glass-filled nylon bolts and nuts. Phantoms were filled with {sup 52}Mn, {sup 64}Cu, {sup 74}Br, and {sup 124}I for testing, and were imaged on a Siemens Inveon MicroPET scanner. Results: Four phantom prototypes were constructed using male Leur Lock fittings for inlet/outlet ports. 3D printed layers were sanded to ensure proper coupling to the silicon gaskets. The filling volume for each prototype was approximately 2.4 mL. The filling process was found to be rapid, leak-tight, and with minimal back-pressure. PET images were reconstructed by OSEM3D, and axial slices along the phantom pattern length were averaged to provide final images. Image distortion was isotope dependent with {sup 52}Mn and {sup 64}Cu having the least distortion and {sup 124}I having the most distortion. Conclusion: These results indicate that the linearlyfilled Derenzo design improves on conventional reservoir-type designs by eliminating potential bubbles in small channels and by reducing activity level, radioisotope volume, radioisotope cost, personnel

  8. SU-F-E-10: Student-Driven Exploration of Radiographic Material Properties, Phantom Construction, and Clinical Workflows Or: The Extraordinary Life of CANDY MAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, RN; Riblett, MJ; Hugo, GD

    Purpose: To develop a hands-on learning experience that explores the radiological and structural properties of everyday items and applies this knowledge to design a simple phantom for radiotherapy exercises. Methods: Students were asked to compile a list of readily available materials thought to have radiation attenuation properties similar to tissues within the human torso. Participants scanned samples of suggested materials and regions of interest (ROIs) were used to characterize bulk attenuation properties. Properties of each material were assessed via comparison to a Gammex Tissue characterization phantom and used to construct a list of inexpensive near-tissue-equivalent materials. Critical discussions focusing onmore » samples found to differ from student expectations were used to revise and narrow the comprehensive list. From their newly acquired knowledge, students designed and constructed a simple thoracic phantom for use in a simulated clinical workflow. Students were tasked with setting up the phantom and acquiring planning CT images for use in treatment planning and dose delivery. Results: Under engineer and physicist supervision, students were trained to use a CT simulator and acquired images for approximately 60 different foodstuffs, candies, and household items. Through peer discussion, students gained valuable insights and were made to review preconceptions about radiographic material properties. From a subset of imaged materials, a simple phantom was successfully designed and constructed to represent a human thorax. Students received hands-on experience with clinical treatment workflows by learning how to perform CT simulation, create a treatment plan for an embedded tumor, align the phantom for treatment, and deliver a treatment fraction. Conclusion: In this activity, students demonstrated their ability to reason through the radiographic material selection process, construct a simple phantom to specifications, and exercise their knowledge of

  9. A new head phantom with realistic shape and spatially varying skull resistivity distribution.

    PubMed

    Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen

    2014-02-01

    Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.

  10. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  11. ANTHROPOMORPHIC PHANTOMS FOR ASSESSMENT OF STRAIN IMAGING METHODS INVOLVING SALINE-INFUSED SONOHYSTEROGRAPHY

    PubMed Central

    Hobson, Maritza A.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Shi, Hairong; Hall, Timothy J.; Varghese, Tomy

    2008-01-01

    Two anthropomorphic uterine phantoms were developed which allow assessment and comparison of strain imaging systems adapted for use with saline-infused sonohysterography (SIS). Tissue-mimicking (TM) materials consist of dispersions of safflower oil in gelatin. TM fibroids are stiffer than the TM myometrium/cervix and TM polyps are softer. The first uterine phantom has 3-mm diameter TM fibroids randomly distributed in TM myometrium. The second uterine phantom has a 5-mm and an 8-mm spherical TM fibroid in addition to a 5-mm spherical and a 12.5-mm long (medicine-capsule-shaped) TM endometrial polyp protruding into the endometrial cavity; also, a 10-mm spherical TM fibroid projects from the serosal surface. Strain images using the first phantom show the stiffer 3-mm TM fibroids in the myometrium. Results from the second uterine phantom show that, as expected, parts of inclusions projecting into the uterine cavity will appear very stiff, whether they are stiff or soft. Results from both phantoms show that even though there is a five-fold difference in the Young’s moduli values, there is not a significant difference in the strain in the transition from the TM myometrium to the TM fat. These phantoms allow for realistic comparison and evolution of SIS strain imaging techniques and can aid clinical personnel to develop skills for SIS strain imaging. PMID:18514999

  12. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-06-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection.

  13. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units.

    PubMed

    Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D

    2013-06-01

    With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Design of a dynamic optical tissue phantom to model extravasation pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jane Y.; Ergin, Aysegul; Andken, Kerry Lee; Sheng, Chao; Bigio, Irving J.

    2010-02-01

    We describe an optical tissue phantom that enables the simulation of drug extravasation from microvessels and validates computational compartmental models of drug delivery. The phantom consists of a microdialysis tubing bundle to simulate the permeable blood vessels, immersed in either an aqueous suspension of titanium dioxide (TiO2) or a TiO2 mixed agarose scattering medium. Drug administration is represented by a dye circulated through this porous microdialysis tubing bundle. Optical pharmacokinetic (OP) methods are used to measure changes in the absorption coefficient of the scattering medium due to the arrival and diffusion of the dye. We have established particle sizedependent concentration profiles over time of phantom drug delivery by intravenous (IV) and intra-arterial (IA) routes. Additionally, pharmacokinetic compartmental models are implemented in computer simulations for the conditions studied within the phantom. The simulated concentration-time profiles agree well with measurements from the phantom. The results are encouraging for future optical pharmacokinetic method development, both physical and computational, to understand drug extravasation under various physiological conditions.

  15. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

    NASA Astrophysics Data System (ADS)

    Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke

    2007-01-01

    Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more

  16. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  17. Development of a phantom to test fully automated breast density software - A work in progress.

    PubMed

    Waade, G G; Hofvind, S; Thompson, J D; Highnam, R; Hogg, P

    2017-02-01

    Mammographic density (MD) is an independent risk factor for breast cancer and may have a future role for stratified screening. Automated software can estimate MD but the relationship between breast thickness reduction and MD is not fully understood. Our aim is to develop a deformable breast phantom to assess automated density software and the impact of breast thickness reduction on MD. Several different configurations of poly vinyl alcohol (PVAL) phantoms were created. Three methods were used to estimate their density. Raw image data of mammographic images were processed using Volpara to estimate volumetric breast density (VBD%); Hounsfield units (HU) were measured on CT images; and physical density (g/cm 3 ) was calculated using a formula involving mass and volume. Phantom volume versus contact area and phantom volume versus phantom thickness was compared to values of real breasts. Volpara recognized all deformable phantoms as female breasts. However, reducing the phantom thickness caused a change in phantom density and the phantoms were not able to tolerate same level of compression and thickness reduction experienced by female breasts during mammography. Our results are promising as all phantoms resulted in valid data for automated breast density measurement. Further work should be conducted on PVAL and other materials to produce deformable phantoms that mimic female breast structure and density with the ability of being compressed to the same level as female breasts. We are the first group to have produced deformable phantoms that are recognized as breasts by Volpara software. Copyright © 2016 The College of Radiographers. All rights reserved.

  18. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo

    2011-10-01

    To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.

  19. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  20. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    NASA Technical Reports Server (NTRS)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  1. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    PubMed Central

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-01-01

    Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  2. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Z; Vijayan, S; Kilian-Meneghin, J

    Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms usingmore » a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical

  3. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  4. Location of radiosensitive organs inside pediatric anthropomorphic phantoms: Data required for dosimetry.

    PubMed

    Inkoom, Stephen; Raissaki, Maria; Perisinakis, Kostas; Maris, Thomas G; Damilakis, John

    2015-12-01

    The aim of this study was to determine the location of radiosensitive organs in the interior of four pediatric anthropomorphic phantoms for dosimetric purposes. Four pediatric anthropomorphic phantoms representing the average individual as newborn, 1-year-old, 5-year-old and 10-year-old child underwent head, thorax and abdomen CT scans. CT and MRI scans of all children aged 0-16 years performed during a 5-year-period in our hospital were reviewed, and 503 were found to be eligible for normal anatomy. Anterior-posterior and lateral dimensions of twelve of the above children closely matched that of the phantoms' head, thoracic and abdominal region in each four phantoms. The mid-sagittal and mid-coronal planes were drawn on selected matching axial images of patients and phantoms. Multiple points outlining large radiosensitive organs in patient images were identified at each slice level and their orthogonal distances from the mid-sagittal and mid-coronal planes were measured. In small organs, the coordinates of organs' centers were similarly determined. The outlines and centers of all radiosensitive organs were reproduced using the coordinates of each organ on corresponding phantoms' transverse images. The locations of the following radiosensitive organs in the interior of the four phantoms was determined: brain, eye lenses, salivary glands, thyroid, lungs, heart, thymus, esophagus, breasts, adrenals, liver, spleen, kidneys, stomach, gallbladder, small bowel, pancreas, colon, ovaries, bladder, prostate, uterus and rectum. The production of charts of radiosensitive organs inside pediatric anthropomorphic phantoms was feasible and may provide users reliable data for positioning of dosimeters during direct organ dose measurements. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Ability of calibration phantom to reduce the interscan variability in electron beam computed tomography.

    PubMed

    Budoff, Matthew J; Mao, Songshou; Lu, Bin; Takasu, Junichiro; Child, Janis; Carson, Sivi; Fisher, Hans

    2002-01-01

    To test the hypothesis that a calibration phantom would improve interpatient and interscan variability in coronary artery calcium (CAC) studies. We scanned 144 patients twice with or without the calibration phantom and then scanned 93 patients with a single calcific lesion twice and, finally, scanned a cork heart with calcific foci. There were no linear correlations in computed tomography Hounsfield unit (CT HU) and CT HU interscan variation between blood pool and phantom plugs at any slice level in patient groups (p > 0.05). The CT HU interscan variation in phantom plugs (2.11 HU) was less than that of the blood pool (3.47 HU; p < 0.05) and CAC lesion (20.39; p < 0.001). Comparing images with and without a calibration phantom, there was a significant decrease in CT HU as well as an increase in noise and peak values in patient studies and the cork phantom study. The CT HU attenuation variations of the interpatient and interscan blood pool, calibration phantom plug, and cork coronary arteries were not parallel. Therefore, the ability to adjust the CT HU variation of calcific lesions by a calibration phantom is problematic and may worsen the problem.

  6. The nutrition intervention improved adult human capital and economic productivity.

    PubMed

    Martorell, Reynaldo; Melgar, Paul; Maluccio, John A; Stein, Aryeh D; Rivera, Juan A

    2010-02-01

    This article reviews key findings about the long-term impact of a nutrition intervention carried out by the Institute of Nutrition of Central America and Panama from 1969 to 1977. Results from follow-up studies in 1988-89 and 2002-04 show substantial impact on adult human capital and economic productivity. The 1988-89 study showed that adult body size and work capacity increased for those provided improved nutrition through age 3 y, whereas the 2002-04 follow-up showed that schooling was increased for women and reading comprehension and intelligence increased in both men and women. Participants were 26-42 y of age at the time of the 2002-04 follow-up, facilitating the assessment of economic productivity. Wages of men increased by 46% in those provided with improved nutrition through age 2 y. Findings for cardiovascular disease risk factors were heterogeneous; however, they suggest that improved nutrition in early life is unlikely to increase cardiovascular disease risk later in life and may indeed lower risk. In conclusion, the substantial improvement in adult human capital and economic productivity resulting from the nutrition intervention provides a powerful argument for promoting improvements in nutrition in pregnant women and young children.

  7. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  8. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  9. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.

    2006-12-01

    3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 µm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms. This article is dedicated to Prof. Dr Guenter Drexler from the Laboratório de Ciências Radiológicas, State University of Rio de Janeiro, on the occasion of his 70th birthday.

  10. Case report: the first case of human infection by adult of SPIROMETRA ERINACEIEUROPAEI in VIETNAM.

    PubMed

    Le, Anh Tran; Do, Le-Quyen Thi; Nguyen, Huong-Binh Thi; Nguyen, Hong-Ngoc Thi; Do, Anh Ngoc

    2017-10-10

    Tapeworms of the genus Spirometra include species whose larval stages can infect humans, causing a disease called sparganosis. Cases of human infection with adult worms are very rare and have been reported in Korea and China. Here we report the first case of human infection with an adult of Spirometra erinaceieuropaei in Vietnam. A 23-year-old male was admitted to 103 Military Hospital, Hanoi, Vietnam with fever, weight loss and epigastric discomfort. Preliminary diagnosis based on discovery of parasite eggs in his faeces incorrectly determined a fluke as the agent of the infection and praziquantel was prescribed. Two days later he passed out proglottids in his stool. The tapeworm was identified as Spirometra erinaceieuropaei using morphological and molecular tools. This is the first case of human infection with adult worm of Spirometra erinaceieuropaei in Vietnam.

  11. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  12. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  13. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less

  14. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

    PubMed

    Lojewski, Xenia; Srimasorn, Sumitra; Rauh, Juliane; Francke, Silvan; Wobus, Manja; Taylor, Verdon; Araúzo-Bravo, Marcos J; Hallmeyer-Elgner, Susanne; Kirsch, Matthias; Schwarz, Sigrid; Schwarz, Johannes; Storch, Alexander; Hermann, Andreas

    2015-10-01

    Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation

  15. NOTE: Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software

    NASA Astrophysics Data System (ADS)

    Alziar, I.; Bonniaud, G.; Couanet, D.; Ruaud, J. B.; Vicente, C.; Giordana, G.; Ben-Harrath, O.; Diaz, J. C.; Grandjean, P.; Kafrouni, H.; Chavaudra, J.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2009-09-01

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  16. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    PubMed

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  17. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  18. SU-C-BRF-05: Design and Geometric Validation of An Externally and Internally Deformable, Programmable Lung Motion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Y; Sawant, A

    Purpose: Most clinically-deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating, tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are rigid-exterior+rigid-interior or rigid-exterior+deformable-interior. Neither class adequately represents the human anatomy, which is deformable internally as well as externally. We describe the construction and experimental validation of a more realistic, externally- and internally-deformable, programmable lung phantom. Methods: The outer shell of a commercially-available lung phantom (RS- 1500, RSD Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cagemore » and sternum. A 3-axis platform was programmed with sinusoidal and six patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam ‘diaphragm’ that compressed/decompressed the phantom interior. Experimental characterization comprised of mapping the superior-inferior (SI) and anterior-posterior (AP) trajectories of external and internal radioopaque markers with kV x-ray fluoroscopy and correlating these with optical surface monitoring using the in-room VisionRT system. Results: The phantom correctly reproduced the programmed motion as well as realistic effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0.4 mm RMS error for internal as well as external markers. The motion trajectories of internal and external markers as measured by fluoroscopy were found to be highly correlated (R=0.97). Furthermore, motion trajectories of arbitrary points on the deforming phantom surface, as recorded by the VisionRT system also showed a high correlation with respect to the fluoroscopically-measured trajectories of internal markers (R=0.92). Conclusion: We

  19. Monte Carlo simulations in multi-detector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult phantoms

    NASA Astrophysics Data System (ADS)

    Belinato, W.; Santos, W. S.; Paschoal, C. M. M.; Souza, D. N.

    2015-06-01

    The combination of positron emission tomography (PET) and computed tomography (CT) has been extensively used in oncology for diagnosis and staging of tumors, radiotherapy planning and follow-up of patients with cancer, as well as in cardiology and neurology. This study determines by the Monte Carlo method the internal organ dose deposition for computational phantoms created by multidetector CT (MDCT) beams of two PET/CT devices operating with different parameters. The different MDCT beam parameters were largely related to the total filtration that provides a beam energetic change inside the gantry. This parameter was determined experimentally with the Accu-Gold Radcal measurement system. The experimental values of the total filtration were included in the simulations of two MCNPX code scenarios. The absorbed organ doses obtained in MASH and FASH phantoms indicate that bowtie filter geometry and the energy of the X-ray beam have significant influence on the results, although this influence can be compensated by adjusting other variables such as the tube current-time product (mAs) and pitch during PET/CT procedures.

  20. Phantom energy: dark energy with w <--1 causes a cosmic doomsday.

    PubMed

    Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N

    2003-08-15

    We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."