Science.gov

Sample records for adult human skull

  1. Metric analysis of basal sphenoid angle in adult human skulls

    PubMed Central

    Netto, Dante Simionato; Nascimento, Sergio Ricardo Rios; Ruiz, Cristiane Regina

    2014-01-01

    Objective To analyze the variations in the angle basal sphenoid skulls of adult humans and their relationship to sex, age, ethnicity and cranial index. Methods The angles were measured in 160 skulls belonging to the Museum of the Universidade Federal de São Paulo Department of Morphology. We use two flexible rules and a goniometer, having as reference points for the first rule the posterior end of the ethmoidal crest and dorsum of the sella turcica, and for the second rule the anterior margin of the foramen magnum and clivus, measuring the angle at the intersection of two. Results The average angle was 115.41°, with no statistical correlation between the value of the angle and sex or age. A statistical correlation was noted between the value of the angle and ethnicity, and between the angle and the horizontal cranial index. Conclusions The distribution of the angle basal sphenoid was the same in sex, and there was correlation between the angle and ethnicity, being the proportion of non-white individuals with an angle >125° significantly higher than that of whites with an angle >125°. There was correlation between the angle and the cranial index, because skulls with higher cranial index tend to have higher basiesfenoidal angle too. PMID:25295452

  2. Modern induced skull deformity in adults.

    PubMed

    Gump, William

    2010-12-01

    The practice of induced skull deformity has long existed in numerous disparate cultures, but for the first time in history it can be applied to adults. While extremely limited in application, some ideas have persisted in the far fringes of modern Western culture with remarkable tenacity. Practitioners of extreme body modification undergo procedures, outside the sphere of traditional medical practice, to make striking, permanent, nontraditional esthetic tissue distortions with the goal of transgressing societal norms. The International Trepanation Advocacy Group represents another example of a fringe cultural movement, whose goal, rather than being purely aesthetic in nature, is to promote elective trepanation as a method for achieving a heightened level of consciousness. Both movements have relatively short and well-defined histories. Despite their tiny numbers of adherents, neurosurgeons may be called on to address relevant patient concerns preprocedurally, or complications postprocedurally, and would benefit from awareness of these peculiar subcultures.

  3. Correlation between structure and resistivity variations of the live human skull.

    PubMed

    Tang, Chi; You, Fusheng; Cheng, Guang; Gao, Dakuan; Fu, Feng; Yang, Guosheng; Dong, Xiuzhen

    2008-09-01

    A study on correlation between structure and resistivity variations was performed for live adult human skull. The resistivities of 388 skull samples, excised from 48 skull flaps of patients undergoing surgery, were measured at body temperature (36.5 degrees C) using the well-known four-electrode method in the frequency range of 1-4 MHz. According to different structures of the skull samples, all the 388 samples were classified into six categories and measured their resistivities: standard trilayer skull (7943 +/- 1752 ohm x cm, 58 samples), quasi-trilayer skull (14,471 +/- 3061 ohm x cm, 110 samples), standard compact skull (26,546 +/- 5374 ohm x cm, 62 samples), quasi-compact skull (19,824 +/- 3232 ohm x cm, 53 samples), dentate suture skull (5782 +/- 1778 ohm x cm, 41 samples), and squamous suture skull (12747 +/- 4120 ohm x cm, 64 samples). The results showed that the skull resistivities were not homogenous and were significantly influenced by local structural variations. The presence of sutures appeared to decrease the overall resistivity of particular regions largely and dentate suture decreased the resistivity more than squamous suture. The absence of diploe appeared to increase skull resistivity. The percentage on thickness of diploe would be the primary factor in determining the resistivity of the skull sample without suture. From resistivity spectra results, an inverse relationship between skull resistivity and signal frequency was found.

  4. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ.

  5. Human skull translucency: post mortem studies

    PubMed Central

    Sawosz, P.; Wojtkiewicz, S.; Kacprzak, M.; Weigl, W.; Borowska-Solonynko, A.; Krajewski, P.; Bejm, K.; Milej, D.; Ciszek, B.; Maniewski, R.; Liebert, A.

    2016-01-01

    Measurements of optical translucency of human skulls were carried out. An incandescent light source and a CCD camera were used to measure the distribution of light transmitted through the skull in 10 subjects post-mortem. We noticed that intra-individual differences in optical translucency may be up to 100 times but inter-individual translucency differences across the skull reach 105 times. Based on the measurement results, a “theoretical” experiment was simulated. Monte-Carlo calculations were used in order to evaluate the influence of the differences in optical translucency of the skull on results of NIRS measurements. In these calculations a functional stimulation was done, in which the oxyhemoglobin and deoxyhemoglobin concentrations in the brain cortex change by 5μM and −5μM respectively. The maximal discrepancies between assumed hemoglobin concentration changes and hemoglobin concentration changes estimated with Monte-Carlo simulation may reach 50% depending of the translucency of the skull. PMID:28018721

  6. Forensic and anthropological analysis of human skulls

    NASA Astrophysics Data System (ADS)

    Kinzl, Hans-Peter; Schreiber, Holger

    1990-11-01

    In biology and medicine there are many problems concrninq in vestigations of the human skeleton Beside the long bones the skull is the most important part of the skeleton for m.surement and iden tifiction The fc:e part9 the brain part and the mandibular part of the skul I are qenetical ly determined sectors with high percritage of individual characteristics

  7. Morphometric analysis of untreated adult skulls in syndromic and nonsyndromic craniosynostosis.

    PubMed

    Weber, J; Collmann, H; Czarnetzki, A; Spring, A; Pusch, C M

    2008-04-01

    The aim of this study was to perform a morphometric analysis of untreated adult skulls displaying syndromic and nonsyndromic craniosynostosis. We analyzed, in detail, 42 adult craniosynostoses (18 scaphocephaly, 11 anterior plagiocephaly, 2 trigonocephaly, 9 oxycephaly, and 2 brachycephaly) from archeological (three skulls) and pathoanatomical samples (39 skulls). The univariate and bivariate measurements from the pathological skulls were compared with 40 anatomical skulls with normal cranial vault morphology. Bony signs of chronic elevated intracranial pressure (ICP) are (1) diffuse beaten copper pattern, (2) dorsum sellae erosion, (3) suture diastasis, and (4) abnormalities of venous drainage that particularly affect the sigmoid-jugular sinus complex. The mean cranial length was significantly greater in scaphocephaly than in anatomical skulls (20.3 vs 18.0 cm), and the sagittal suture was also longer (14.3 vs 11.8 cm). There were three types of suture course in the bregma region in scaphocephaly: anterior spur (28%), normal configuration (61%), and posterior spur (11%). The plagiocephaly measurements showed nonsignificant differences, and there was no correlation between the length of the anterior and middle skull base (ipsilateral anterior-posterior shortening of the skull) and incomplete or complete suture synostosis. Bony signs of chronic elevated ICP were found in 82% of cases of oxycephaly and brachycephaly. In three such cases of oxycephaly, we found a marked (1.8-2.1 cm) elevation of bregma region. One skull (Saethre-Chotzen syndrome) yielded human DNA sufficient for polymerase chain reaction (PCR)-based amplification procedures. Mutation analyses in the FGFR3 gene revealed nucleotide alterations located in the mutational hot spot at amino acid residue 250 (g.C749). The mean cranial length in adult scaphocephaly was 12% greater than anatomical skulls. A unilateral complete or incomplete coronal synostosis can be found with or without plagiocephalic

  8. The fluctuating asymmetry of medieval and modern human skulls.

    PubMed

    Gawlikowska, A; Szczurowski, J; Czerwiński, F; Miklaszewska, D; Adamiec, E; Dzieciołowska, E

    2007-01-01

    The analysis of fluctuating asymmetry (FA) allows for estimating the influence of stress factors on human development and allows to evaluate resistance to stress. FA is often used as a marker of prenatal stress. The aim of this work is to estimate the symmetry of skulls from selected historic human populations and to analyse changes in their morphology which have taken place over centuries. The studied material consisted of two skull samples - a modern sample containing 82 skulls and a medieval sample of 77 skulls from Gródek on the Bug River. Radiographs were taken in postero-anterior (P-A) and base projections. Images were scanned and calibrated by means of MicroStation 95 Academic Edition software. Measurements of the skull images were used to estimate FA. All data were analysed statistically. The skulls in both samples showed asymmetry. The levels of FA varied in different skull regions. A high level of FA in the calvaria and a low asymmetry for the facial part of skull is characteristic of modern skulls. In medieval skulls these relations are inverted. The higher value of FA in modern skulls is an evidence of a higher level of developmental stress in the modern population as well as of its lesser abilities to resist stress.

  9. Skulls and Human Evolution: The Use of Casts of Anthropoid Skulls in Teaching Concepts of Human Evolution.

    ERIC Educational Resources Information Center

    Gipps, John

    1991-01-01

    Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)

  10. Modeling of the human skull in EEG source analysis.

    PubMed

    Dannhauer, Moritz; Lanfer, Benjamin; Wolters, Carsten H; Knösche, Thomas R

    2011-09-01

    We used computer simulations to investigate finite element models of the layered structure of the human skull in EEG source analysis. Local models, where each skull location was modeled differently, and global models, where the skull was assumed to be homogeneous, were compared to a reference model, in which spongy and compact bone were explicitly accounted for. In both cases, isotropic and anisotropic conductivity assumptions were taken into account. We considered sources in the entire brain and determined errors both in the forward calculation and the reconstructed dipole position. Our results show that accounting for the local variations over the skull surface is important, whereas assuming isotropic or anisotropic skull conductivity has little influence. Moreover, we showed that, if using an isotropic and homogeneous skull model, the ratio between skin/brain and skull conductivities should be considerably lower than the commonly used 80:1. For skull modeling, we recommend (1) Local models: if compact and spongy bone can be identified with sufficient accuracy (e.g., from MRI) and their conductivities can be assumed to be known (e.g., from measurements), one should model these explicitly by assigning each voxel to one of the two conductivities, (2) Global models: if the conditions of (1) are not met, one should model the skull as either homogeneous and isotropic, but with considerably higher skull conductivity than the usual 0.0042 S/m, or as homogeneous and anisotropic, but with higher radial skull conductivity than the usual 0.0042 S/m and a considerably lower radial:tangential conductivity anisotropy than the usual 1:10.

  11. Pervasive genetic integration directs the evolution of human skull shape.

    PubMed

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others.

  12. Earliest Directly-Dated Human Skull-Cups

    PubMed Central

    Bello, Silvia M.; Parfitt, Simon A.; Stringer, Chris B.

    2011-01-01

    Background The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP) and skull-cup preparation is an element of this tradition. Principal Findings Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England) and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow), accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also ‘retouched’, possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. Conclusions Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles. PMID:21359211

  13. Unusual foramen in the middle cranial fossae of adult black South African skull specimens.

    PubMed

    Mazengenya, Pedzisai; Ekpo, Okobi

    2016-11-11

    Variations of the skull base foramina are quite common and often cause surgical confusion during surgical intervention of the region. The unusual foramen was observed in five (0.98%) adult skulls of black South Africans obtained from the Raymond A Dart collection of human specimens housed in the School of Anatomical Sciences at the University of the Witwatersrand. Three of the five specimens were females while the remaining two were males. In four of the five skulls, the unusual foramen was located anterolateral to the foramen rotundum both on the left and right sides. In the fifth specimen, the foramen was located posterolateral to the foramen rotundum on the left half of the middle cranial fossa. On radiographs, two specimens with unusual foramen on the right showed that the foramen opened into a canal directed inferomedially towards the pterygopalatine fossa. In the remaining three specimens, the canals were blind and shallow. This information is vital during interpretation of CT scans at the base of the skull, as any less well-known foramen may be mistaken for abnormalities leading to surgical complications.

  14. [Human skull development and voice disorders].

    PubMed

    Piron, A; Roch, J B

    2006-01-01

    The hominisation of the skull comes with the bipedic posture, due to a network of muscular and aponevrotic forces applied to the cranio-facial skeleton. A brief sight of the morphogenetic origine and issues of these forces help to understand more clearly the postural statement of the larynx, his functions, and his many extrinsic biomechanical bounds; then further his most frequently dysfunctions. The larynx is surrounded by several effective systems of protection: active, activo-passive, passive. The architectural features of the components of the laryngeal system allows us to consider the laryngeal function as an auto-balanced system. All the forces engaged are auto-balanced in a continuum of tension. This lead us to the concept of tensegrity system, neologism coming from tensional integrity described by Buckminster Fuller. The laryngeal employement by extrinsic system is pathological in case of chronicity. Any osteopathic treatment, which aims to restore the losses of laryngeal mobility, has to release first the peripherical structures involved in the laryngeal defense, before normalising the larynx itself Finally, the larynx recovers his functions in a tensegrity system.

  15. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2015-07-20

    Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.

  16. An evaluation of auditory exostoses in 621 prehistoric human skulls from coastal Brazil.

    PubMed

    Okumura, Maria Mercedes M; Boyadjian, Célia Helena C; Eggers, Sabine

    2007-08-01

    Auditory exostoses are bone anomalies located on the floor of the external auditory canal. They frequently develop in individuals who participate in water sports and other aquatic activities. Their etiology is probably multifactorial; development seems to be triggered by regular exposure to cold water as well as to low air temperatures and/or cold winds. The presence ofauditory exostoses has been recorded in human skull fossils that date back approximately 250,000 years. We conducted a study of auditory exostoses in 621 skulls of adult humans who had been part of a marine-dependent population that lived on the Brazilian coast between 5400 and 800 years ago. The overall frequency of exostoses was 22%, but there was a great variance among different subgroups (0 to 56%). In this article, we propose some possible explanations for this variance. We also hope that our study will stimulate multidisciplinary research aimed at deciphering the intricate bony messages contained in cryptic archaeologic remains.

  17. How We Got Here: Evolutionary Changes in Skull Shape in Humans & Their Ancestors

    ERIC Educational Resources Information Center

    Price, Rebecca M.

    2012-01-01

    This activity uses inquiry to investigate how large changes in shape can evolve from small changes in the timing of development. Students measure skull shape in fetal, infant, juvenile, and adult chimpanzees and compare them to adult skulls of "Homo sapiens," "Homo erectus," and "Australopithecus afarensis." They conclude by re-interpreting their…

  18. Variability of the Upper Palaeolithic skulls from Predmostí near Prerov (Czech Republic): craniometric comparison with recent human standards.

    PubMed

    Velemínská, J; Brůzek, J; Velemínský, P; Bigoni, L; Sefcáková, A; Katina, S

    2008-01-01

    One of the largest skeletal series of the Upper Palaeolithic period from Predmostí was destroyed during the Second World War, but the study of this material continues up to the present. The discovery of Matiegka's original photographic documentation on glass plates [Velemínská et al., 2004. The use of recently re-discovered glass plate photo-documentation of those human fossil finds from Predmostí u Prerova destroyed during World War II. J. Nat. Mus. Nat. Hist. Ser. 173, 129-132] gives an opportunity to perform a new and detailed craniometric analysis of five adult skulls in their lateral projection. The craniometric data were analysed using specialised Craniometrics software, and the analysis included morphological and dimensional comparisons with current Central European norms. The aim of the study was not only to monitor the skull shape as a whole, but predominantly, to evaluate the size and shape of various parts of the splanchnocranium. The Upper Palaeolithic skulls are significantly longer, and male skulls are also higher than the current norms. The crania of anatomically modern humans are characterised by two general structural features: mid-lower facial retraction and neurocranial globularity. The height of the face of the Palaeolithic skulls corresponds to that of the current Central European population. The face has a markedly longer mandibular body (3-4 SD), while female mandibular rami are shorter. The skulls are further characterised by a smaller gonial angle, the increased steepness of the mandibular ramus, and the greater angle of the chin. These changes in the size and shape associated with anterior rotation of the face produce a strong protrusion of both jaws, but the sagittal inter-maxillary relationships remain unchanged. The observed facial morphology is similar to the Czech Upper Palaeolithic skulls from Dolní Vestonice. This study confirms the main diachronic changes between skulls of Upper Palaeolithic and present-day human populations.

  19. Internal morphology of the nonsyndromic prematurely fused sagittal suture in the human skull--A preliminary micro-CT study.

    PubMed

    Nowaczewska, W; Ziółkowski, G; Dybała, B

    2015-10-01

    Although nonsyndromic craniosynostosis (NSC) of the sagittal suture is a well-known type of craniosynostosis, little is currently known about the internal morphology of this prematurely fused suture in modern humans. Recently, micro-computed tomography (micro-CT) has been applied as a new tool for the quantitative evaluation of cranial suture morphology. However, so far there are only a small number of reports concerning studies of the internal morphology of prematurely fused sagittal suture in humans using micro-CT. The primary aim of this study was to examine the internal morphology of a completely obliterated sagittal suture in NSC. Two modern human skulls were used in this study: a skull of a child (aged 10 ± 2.5 years) displaying NSC of the sagittal suture and a skull of an adult showing non-prematurely completely obliterated sagittal suture. Quantitative variables of the sagittal sutures were assessed using method proposed by the authors. Porosity, and relative thickness of three bone layers in two examined skulls (inner cortical, diploë and outer cortical) were analysed using micro-CT in three equal sections of the sagittal suture. In the case of the prematurely fused suture, there were statistically significant differences mainly in the mean values of the porosity, thickness and relative thickness of the diploë between the anterior part and the two other parts (central and posterior) of this suture. Significant differences were also observed in some of the analysed variables between the sections of the sagittal suture of the skull with NSC and the normal skull.

  20. Morphological and Morphometric Analysis of Supraorbital Foramen and Supraorbital Notch: A Study on Dry Human Skulls

    PubMed Central

    Saran, Sharmila

    2012-01-01

    Objectives A clear knowledge of the location of the maxillo-facial foramina is essential for clinicians while performing endoscopic surgeries and regional nerve blocks. In the present study, a detailed analysis of the supraorbital foramen (SOF) and supraorbital notch (SON) of South Indian skulls is reported and the data are compared with those from other races and regions. Methods Anatomical variation of SOF/SON was studied in 83 adult human skulls bilaterally, using "travelling Vernier’s microscope". The skulls belonged to the cadavers of South Indian origin. The parameters used were distanced between the SON/SOF and the nasal midline; distance between the SON/SOF and the frontozygomatic suture (FZS); shape and height of the SOF; transverse diameter of the SON; the presence of accessory foramina (ACF) and their number; as well as the location and distance from the main SON/SOF. Results SON was more frequently found than the SOF. The mean distance of SON/SOF to the nasal midline was 22.24 mm on the right side and 22.2 mm on the left side. The mean distance of SON/SOF to the frontozygomatic suture was 29.34 mm on the right side and 28.7 mm on the left side. While the mean height of SOF was 3.5 mm on the right side and 3.04 mm on the left side. Also, the mean transverse diameter of SON was 5.17 mm on the right side and 5.58 mm on the left side. The accessory supraorbital foramina were observed in 66.25% of cases. Conclusion There is a difference in the position and dimensions of SOF /SON between different races and people of different regions. Anatomical knowledge of SON /SOF is important in facilitating local anesthetic, forehead lifting, blepharoplasty and other craniofacial surgical procedures. PMID:22496938

  1. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies.

    PubMed

    Cooper, W James; Wirgau, Rachel M; Sweet, Elly M; Albertson, R Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema (dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with "whole-mount in situ hybridization" labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and vertebrate evolution.

  2. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies

    PubMed Central

    Cooper, W. James; Wirgau, Rachel M.; Sweet, Elly M.; Albertson, R. Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema(dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with whole-mount in situ hybridization labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and evolution. PMID:24261444

  3. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull

    NASA Astrophysics Data System (ADS)

    Hayner, Mark; Hynynen, Kullervo

    2001-12-01

    Ultrasonic transmission and absorption of oblique plane waves through the human skull are analyzed numerically for frequencies ranging from 1/2 to 1 MHz. These frequencies are optimum for noninvasive ultrasound therapy of brain disorders where numerical predictions of skull transmission are used to set the phase and amplitude of source elements in the phased array focusing system. The idealized model of the skull is a three-layer solid with ivory outer and inner layers and a middle marrow layer. Each layer is modeled as a flat, homogeneous, isotropic, linear solid with effective complex wave speeds to account for focused energy losses due to material damping and scattering. The model is used to predict the amplitude and phase of the transmitted wave and volumetric absorption. Results are reported for three different skull thicknesses: 3 mm, 6 mm, and 9 mm. Thickness resonances are observed in the transmitted wave for 3 mm skulls at all frequencies and for the 6 mm skulls below 0.75 MHz. Otherwise, the transmission is dominated by the direct wave. Skull phase errors due to shear waves are shown to minimally degrade the power at the focus for angles of incidence up to 20° from normal even for low material damping. The location of the peak volumetric absorption occurs either in the outer ivory or middle marrow layer and shown to vary due to wave interference.

  4. Modeling the frequency dependence of the electrical properties of the live human skull.

    PubMed

    Tang, Chi; You, Fusheng; Cheng, Guang; Gao, Dakuan; Fu, Feng; Dong, Xiuzhen

    2009-12-01

    An accurate impedance model of a skull plays an important role in the simulation research on source localization of EEG and brain EIT (electrical impedance tomography), etc. On the basis of the large number of impedance and resistivity data obtained from our previous measurement on the live human skull, in this study we established the equivalent circuit models of six types of skull samples in the 30 Hz-3 MHz frequency range and analyzed the fitting performance of the models. The six types of skull samples are standard tri-layer, quasi-tri-layer, standard compact, quasi-compact, dentate suture and squamous suture. The results showed that the difference of the real part between the CPE (constant phase model) model and the measured data was less than 1% for all skull tissue types when the optimized characteristic parameters (rho(0), rho(infinity), alpha and f(c)) were adopted in the model. It is the first time studying the impedance model of different types of skulls, and it may provide accurate modeling of the skull to improve the accuracy of the related research on bioelectricity of the head and the biological effects of the electromagnetic field.

  5. Basilar impression of the skull in patients with adult coeliac disease and after gastric surgery.

    PubMed

    Hurwitz, L J; Banerji, N K

    1972-02-01

    Chamberlain's, McGregor's and Bull's angle measurements for basilar impression of the skull were made on 22 adult patients with idiopathic steatorrhoea (probable gluten enteropathy), 24 patients who had had previous gastric surgery, and 48 control subjects. For each of the three measurements a value greater than the mean plus two standard deviations was taken as the upper limit of normal. In seven patients with adult steatorrhoea all three measurements were abnormal suggesting basilar impression, while basilar impression was probable in only one patient who had gastric surgery. The trend towards abnormal measurements was significant in the steatorrhoea patients but not in those who had gastric surgery. Basilar impression also was present in patients who did not have rickets or present evidence of osteomalacia. It was argued that this study could support a hypothesis that some cases of primary basilar impression of the skull are secondary to bone softening associated with malabsorption in early life, the evidence of which may have disappeared in adult life.

  6. Statistical analysis of biomechanical properties of the adult skull and age-related structural changes by sex in a Japanese forensic sample.

    PubMed

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Koizumi, Yoshinori; Makino, Yohsuke; Yajima, Daisuke; Hayakawa, Mutsumi; Inokuchi, Go; Motomura, Ayumi; Chiba, Fumiko; Otsuka, Katsura; Kobayashi, Kazuhiro; Odo, Yuriko; Iwase, Hirotaro

    2014-01-01

    The purpose of this research was to investigate the biomechanical properties of the adult human skull and the structural changes that occur with age in both sexes. The heads of 94 Japanese cadavers (54 male cadavers, 40 female cadavers) autopsied in our department were used in this research. A total of 376 cranial samples, four from each skull, were collected. Sample fracture load was measured by a bending test. A statistically significant negative correlation between the sample fracture load and cadaver age was found. This indicates that the stiffness of cranial bones in Japanese individuals decreases with age, and the risk of skull fracture thus probably increases with age. Prior to the bending test, the sample mass, the sample thickness, the ratio of the sample thickness to cadaver stature (ST/CS), and the sample density were measured and calculated. Significant negative correlations between cadaver age and sample thickness, ST/CS, and the sample density were observed only among the female samples. Computerized tomographic (CT) images of 358 cranial samples were available. The computed tomography value (CT value) of cancellous bone which refers to a quantitative scale for describing radiodensity, cancellous bone thickness and cortical bone thickness were measured and calculated. Significant negative correlation between cadaver age and the CT value or cortical bone thickness was observed only among the female samples. These findings suggest that the skull is substantially affected by decreased bone metabolism resulting from osteoporosis. Therefore, osteoporosis prevention and treatment may increase cranial stiffness and reinforce the skull structure, leading to a decrease in the risk of skull fractures.

  7. Study of the location and morphology of the pterion in adult nigerian skulls.

    PubMed

    Adejuwon, Sunday A; Olopade, Funmilayo E; Bolaji, Modupe

    2013-01-01

    The pterion which marks the union of 4 bones of the cranium is located superior to the zygomatic arch and posterior to the frontozygomatic suture. It is an important neurosurgical landmark for the lateral/pterional approach and has racial differences in both its location and pattern of union of the bones. This study aims to analyze the location and types of pterion in adult Nigerian skulls. Bilateral sides of 37 adult dry skulls were studied. The pterion types were classified; linear distances from the centre of the pterion to the midpoint of the zygomatic arch and to the frontozygomatic suture were measured; these were analyzed for side and gender differences. Sphenoparietal was the most common pterion type (86.1%) followed by frontotemporal (8.3%), stellate (5.6%), and epipteric types (0%). The mean distances from the pterion to the midpoint of zygomatic arch were 39.74 ± 0.505 mm and 37.95 ± 0.657 mm in males and females, respectively, while the distances to the frontozygomatic suture were 31.87 ± 0.642 mm and 30.35 ± 0.836 mm. The vertical position of the pterion was significantly higher in males than females. Bilateral occurrence is statistically insignificant. This information will be of neurosurgical and anthropological importance.

  8. Study of the Location and Morphology of the Pterion in Adult Nigerian Skulls

    PubMed Central

    Adejuwon, Sunday A.; Olopade, Funmilayo E.; Bolaji, Modupe

    2013-01-01

    The pterion which marks the union of 4 bones of the cranium is located superior to the zygomatic arch and posterior to the frontozygomatic suture. It is an important neurosurgical landmark for the lateral/pterional approach and has racial differences in both its location and pattern of union of the bones. This study aims to analyze the location and types of pterion in adult Nigerian skulls. Bilateral sides of 37 adult dry skulls were studied. The pterion types were classified; linear distances from the centre of the pterion to the midpoint of the zygomatic arch and to the frontozygomatic suture were measured; these were analyzed for side and gender differences. Sphenoparietal was the most common pterion type (86.1%) followed by frontotemporal (8.3%), stellate (5.6%), and epipteric types (0%). The mean distances from the pterion to the midpoint of zygomatic arch were 39.74 ± 0.505 mm and 37.95 ± 0.657 mm in males and females, respectively, while the distances to the frontozygomatic suture were 31.87 ± 0.642 mm and 30.35 ± 0.836 mm. The vertical position of the pterion was significantly higher in males than females. Bilateral occurrence is statistically insignificant. This information will be of neurosurgical and anthropological importance. PMID:25938098

  9. Effects of the freezing and thawing process on biomechanical properties of the human skull.

    PubMed

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Koizumi, Yoshinori; Hayakawa, Mutsumi; Yajima, Daisuke; Inokuchi, Go; Makino, Yohsuke; Motomura, Ayumi; Chiba, Fumiko; Iwase, Hirotaro

    2014-03-01

    The aim of this study was to determine if biomechanical investigations of skull samples are reliable after skulls have been subjected to a freezing and thawing process. The skulls were obtained from 105 Japanese cadavers (66 males, 39 females) of known age that were autopsied in our department between October 2012 and June 2013. We obtained bone specimens from eight sites (four bilaterally symmetrical pairs) of each skull and measured the mass of each specimen. They were then classified into three groups (A, B, C) based on the duration of freezing of the experimental samples. The left-side samples were subjected to frozen storage (experimental group). The corresponding right-side samples were their controls. Bending tests were performed on the controls immediately after they were obtained. The experimental samples were preserved by refrigeration at -20 °C for 1 day (group A), 1 month (group B), or 3 months (group C). Following refrigeration, these samples were placed at 37 °C to thaw for 1 h and then were subjected to bending tests using a three-point-bending apparatus attached to a Handy force gauge. The device recorded the fracture load automatically when the specimen fractured. Statistical analyses revealed that there were no significant differences in sample fracture loads between the frozen preserved/thawed samples and the unfrozen controls for each of the cryopreservation intervals. We eliminated any possible sample mass bias by using controls from the same skull in each case. The results suggest that the freezing/thawing process has little effect on the mechanical properties of human skulls. Thus, frozen storage for up to 3 months is a good method for preserving human skulls.

  10. The localization and morphology of pterion in adult West Anatolian skulls.

    PubMed

    Aksu, Funda; Akyer, Sahika Pınar; Kale, Ayşin; Geylan, Serdar; Gayretli, Ozcan

    2014-07-01

    The pterion is an important skull landmark because it is located where the frontal, the great wing of sphenoid, parietal, and squamous parts of the temporal bone junction. The objectives of this study were to determine the localization and the shape of pterion on skulls and to find out the distances between the pterion and some certain anatomic landmarks on neighboring structures. The study was performed on the skulls of 128 (256 sides) adult West Anatolian people. All of the morphometric measurements of the distances between the pterion and the anatomic landmarks were performed using a Vernier caliper with an accuracy of 0.1 mm. The pterion was classified into 4 types: the sphenoparietal, frontotemporal, stellate, or epipteric types. The incidences of types of pterion in the skulls were also found as the sphenoparietal type (85.2%), the epipteric type (8.2%), the stellate type (5.5%), and the frontotemporal type (1.1%). The mean (SD) distances from the center of the pterion to the zygomatic arch were measured as 40.02 (4.06) mm and 39.88 (4.01) mm; to the frontozygomatic suture, 31.80 (4.51) mm and 31.44 (4.73) mm; to the zygomatic angle, 41.54 (4.95) mm and 41.35 (5.14) mm; to the mastoid process, 82.48 (5.45) mm and 81.81 (5.50) mm; and to the external acoustic meatus, 53.29 (4.55) mm and 56.22 (4.60) mm, on the right and left sides, respectively. The mean (SD) distances between the foremost point of pterion and the anterior edge of the lateral wall of the orbit were 31.02 (5.78) mm and 32.31 (5.79) mm on the right and left sides, respectively. The localization and the shape of pterion are of importance because it is an anatomic landmark and should be of use in surgical approaches and interventions via the pterion.

  11. A case of adult Langerhans cell histiocytosis showing successfully regenerated osseous tissue of the skull after chemotherapy.

    PubMed

    Suzuki, Takahiro; Izutsu, Koji; Kako, Shinichi; Ohta, Satoshi; Hangaishi, Akira; Kanda, Yoshinobu; Motokura, Toru; Chiba, Shigeru; Kurokawa, Mineo

    2008-04-01

    Langerhans cell histiocytosis (LCH) is a proliferative disorder of Langerhans cells and extremely rare in adults. Adult LCH is often associated with osteolytic bone lesions, but large bone-defective lesions have been rarely reported. We report an adult case of LCH accompanied by large osteolytic lesions in the skull that successfully responded to chemotherapy. A 47-year-old woman with LCH who had multiple, large osteolytic areas of more than 3 cm in diameter in the skull was admitted to our hospital. She was treated with systemic chemotherapy consisting of prednisolone, vinblastine, and 6-mercaptopurine. Twelve months later, when she completed the treatment, osteolytic areas were covered with hard osseous tissue, and X-ray examination confirmed regeneration of the bone. This case indicates that chemotherapy can be effective even for the treatment of large osteolytic lesions in adult LCH patients.

  12. Intercavernous Venous Communications in the Human Skull Base

    PubMed Central

    Aquini, Mauro Guidotti; Marrone, Antonio Carlos Huf; Schneider, Felipe Luis

    1994-01-01

    The intercavernous communications of the skull base were studied in 32 sphenoid blocks using electrolytic decalcification techniques, vascular filling, x-rays, and serial anatomical sections. In this study four intercavernous connections were found: anterior intercavernous sinus (AIS), posterior intercavernous sinus (PIS), inferior intercavernous sinus (IIS), and basilar plexus (BP). The AIS was present in 100% of the cases, with diameters ranging from 0.57 mm to 5.43 mm; in 17 cases (53.12%) it took up the whole anterior wall of the hypophyseal fossa. The PIS was also detected in 100% of the cases, and its diameters ranged from 0.71 mm to 4.14 mm. The IIS was identified in 31 cases (96.9%), assuming three different forms: plexuslike, venous lake, and mixed. The BP was found in 100% of the material analyzed; in 23 cases (71.9%) it proved to be the widest intercavernous communication. In 12 cases of this series the hypophysis was completely enveloped by venous structures, except at the level of the sellar diaphragm. ImagesFigure 1Figure 2Figure 3 PMID:17171164

  13. A Three-Dimensional Finite-Element Model of a Human Dry Skull for Bone-Conduction Hearing

    PubMed Central

    2014-01-01

    A three-dimensional finite-element (FE) model of a human dry skull was devised for simulation of human bone-conduction (BC) hearing. Although a dry skull is a simplification of the real complex human skull, such model is valuable for understanding basic BC hearing processes. For validation of the model, the mechanical point impedance of the skull as well as the acceleration of the ipsilateral and contralateral cochlear bone was computed and compared to experimental results. Simulation results showed reasonable consistency between the mechanical point impedance and the experimental measurements when Young's modulus for skull and polyurethane was set to be 7.3 GPa and 1 MPa with 0.01 and 0.1 loss factors at 1 kHz, respectively. Moreover, the acceleration in the medial-lateral direction showed the best correspondence with the published experimental data, whereas the acceleration in the inferior-superior direction showed the largest discrepancy. However, the results were reasonable considering that different geometries were used for the 3D FE skull and the skull used in the published experimental study. The dry skull model is a first step for understanding BC hearing mechanism in a human head and simulation results can be used to predict vibration pattern of the bone surrounding the middle and inner ear during BC stimulation. PMID:25243148

  14. A three-dimensional finite-element model of a human dry skull for bone-conduction hearing.

    PubMed

    Kim, Namkeun; Chang, You; Stenfelt, Stefan

    2014-01-01

    A three-dimensional finite-element (FE) model of a human dry skull was devised for simulation of human bone-conduction (BC) hearing. Although a dry skull is a simplification of the real complex human skull, such model is valuable for understanding basic BC hearing processes. For validation of the model, the mechanical point impedance of the skull as well as the acceleration of the ipsilateral and contralateral cochlear bone was computed and compared to experimental results. Simulation results showed reasonable consistency between the mechanical point impedance and the experimental measurements when Young's modulus for skull and polyurethane was set to be 7.3 GPa and 1 MPa with 0.01 and 0.1 loss factors at 1 kHz, respectively. Moreover, the acceleration in the medial-lateral direction showed the best correspondence with the published experimental data, whereas the acceleration in the inferior-superior direction showed the largest discrepancy. However, the results were reasonable considering that different geometries were used for the 3D FE skull and the skull used in the published experimental study. The dry skull model is a first step for understanding BC hearing mechanism in a human head and simulation results can be used to predict vibration pattern of the bone surrounding the middle and inner ear during BC stimulation.

  15. An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull.

    PubMed

    Wang, Zuojun; Komatsu, Teppei; Mitsumura, Hidetaka; Nakata, Norio; Ogawa, Takeki; Iguchi, Yasuyuki; Yokoyama, Masayuki

    2017-02-16

    Sonothrombolysis is one of the most feasible methods for enhancing clot lysis with a recombinant tissue plasminogen activator (rt-PA) in cases of acute ischemic strokes. For safe and efficient clinical practices of sonothrombolysis, accurate estimation of ultrasound transmittance through the human skull is critical. Previously, we reported substantial and periodic fluctuation of ultrasound transmittance through a bone-phantom plate following changes to ultrasound frequency, the thickness of the bone-phantom plate, and the distance between a transducer and the bone-phantom plate. In the present study, we clarify the transmittance behavior of medium-frequency ultrasound (from 400kHz to 600kHz) through the human skull, and examine reduction of the transmittance fluctuation. For the study, we measured transmittance of sinusoidal ultrasound waves at 400kHz, 500kHz, and 600kHz at 13 temple spots on 3 human skulls by changing the distance between a transducer and the skull bone, and found substantial and periodic fluctuation in the transmittance behaviors for these sinusoidal voltage excitations. Degrees of the fluctuation varied depending on the measurement spots. A fluctuation ratio between the maximum transmittance and the minimum transmittance reached 3 in some spots. This large transmittance fluctuation is considered to be a risk factor for sonothrombolysis therapies. We examined a modulated ultrasound wave to reduce the fluctuation, and succeeded in obtaining considerable reduction. The average fluctuation ratios for 400-kHz, 500-kHz, and 600-kHz waves were 2.38, 2.38, and 2.07, respectively. We successfully reduced the ratio to 1.72 by using a periodic selection of random frequency (PSRF)-type of modulation wave. The thus obtained results indicate that attention to the fluctuation in ultrasound transmittance through the skull is necessary for safe and effective sonothrombolysis therapies, and that modulated ultrasound waves constitute a powerful method for reducing

  16. Investigation of the osteometry of the skull of the one-humped camels. Part II: sex dimorphism and geographical variations in adults.

    PubMed

    Yahaya, Ahmed; Olopade, James O; Kwari, Hyelduku D; Wiam, Ibrahim M

    2012-01-01

    Sexual dimorphism in the skull of different species has been of importance in archaeological, forensic and anatomical studies; also, a variation in phenotypic and genetic traits across geographic space is a recurring phenomenon in biological species. This study investigated 10 adult camels from each of three geographical locations in northern Nigeria, for sex- and location-based variations in the skulls. In one location, male skulls had greater absolute osteometric values but there were no significance differences in relative proportions between sexes. Moreover, all index values (skull, cranial and facial) indicate no sexual dimorphism in all locations. There were some variations in the osteometry of the frontal region, and neurocranial volume between the locations. In addition it was observed that the skull index of Nigerian camels was similar to the Malha type documented in literature but wide variations exist in many other craniometric dimensions of the skull. This suggests a definite difference in phenotype and probable origin.

  17. The Relationship of 3D Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-03-07

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic Resonance Elastography (MRE) is an imaging technique developed for non-invasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations; however skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom", displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  18. The validation and application of a finite element human head model for frontal skull fracture analysis.

    PubMed

    Asgharpour, Z; Baumgartner, D; Willinger, R; Graw, M; Peldschus, S

    2014-05-01

    Traumatic head injuries can result from vehicular accidents, sports, falls or assaults. The current advances in computational methods and the detailed finite element models of the human head provide a significant opportunity for biomechanical study of human head injuries. The biomechanical characteristics of the human head through head impact scenarios can be studied in detail by using the finite element models. Skull fracture is one of the most frequent occurring types of head injuries. The purpose of this study is to analyse the experimental head impacts on cadavers by means of the Strasbourg University Finite Element Head Model (SUFEHM). The results of the numerical model and experimental data are compared for validation purpose. The finite element model has also been applied to predict the skull bone fracture in frontal impacts. The head model includes the scalp, the facial bone, the skull, the cerebral spinal fluid, the meninges, the cerebrum and the cerebellum. The model is used to simulate the experimental frontal head impact tests using a cylindrical padded impactor. Results of the computational simulation shows that the model correlated well with a number of experimental data and a global fracture pattern has been predicted well by the model. Therefore the presented numerical model could be used for reconstruction of head impacts in different impact conditions also the forensic application of the head model would provide a tool for investigation of the causes and mechanism of head injuries.

  19. Knowledge of skull base anatomy and surgical implications of human sacrifice among pre-Columbian Mesoamerican cultures.

    PubMed

    Lopez-Serna, Raul; Gomez-Amador, Juan Luis; Barges-Coll, Juan; Arriada-Mendicoa, Nicasio; Romero-Vargas, Samuel; Ramos-Peek, Miguel; Celis-Lopez, Miguel Angel; Revuelta-Gutierrez, Rogelio; Portocarrero-Ortiz, Lesly

    2012-08-01

    Human sacrifice became a common cultural trait during the advanced phases of Mesoamerican civilizations. This phenomenon, influenced by complex religious beliefs, included several practices such as decapitation, cranial deformation, and the use of human cranial bones for skull mask manufacturing. Archaeological evidence suggests that all of these practices required specialized knowledge of skull base and upper cervical anatomy. The authors conducted a systematic search for information on skull base anatomical and surgical knowledge among Mesoamerican civilizations. A detailed exposition of these results is presented, along with some interesting information extracted from historical documents and pictorial codices to provide a better understanding of skull base surgical practices among these cultures. Paleoforensic evidence from the Great Temple of Tenochtitlan indicates that Aztec priests used a specialized decapitation technique, based on a deep anatomical knowledge. Trophy skulls were submitted through a stepwise technique for skull mask fabrication, based on skull base anatomical landmarks. Understanding pre-Columbian Mesoamerican religions can only be realized by considering them in their own time and according to their own perspective. Several contributions to medical practice might have arisen from anatomical knowledge emerging from human sacrifice and decapitation techniques.

  20. Beak and skull shapes of human commensal and non-commensal house sparrows Passer domesticus

    PubMed Central

    2013-01-01

    Background The granivorous house sparrow Passer domesticus is thought to have developed its commensal relationship with humans with the rise of agriculture in the Middle East some 10,000 years ago, and to have expanded with the spread of agriculture in Eurasia during the last few thousand years. One subspecies, P. d. bactrianus, residing in Central Asia, has apparently maintained the ancestral ecology, however. This subspecies is not associated with human settlements; it is migratory and lives in natural grass- and wetland habitats feeding on wild grass seeds. It is well documented that the agricultural revolution was associated with an increase in grain size and changes in seed structure in cultivated cereals, the preferred food source of commensal house sparrow. Accordingly, we hypothesize that correlated changes may have occurred in beak and skull morphology as adaptive responses to the change in diet. Here, we test this hypothesis by comparing the skull shapes of 101 house sparrows from Iran, belonging to five different subspecies, including the non-commensal P. d. bactrianus, using geometric morphometrics. Results The various commensal house sparrow subspecies share subtle but consistent skeletal features that differ significantly from those of the non-commensal P. d. bactrianus. Although there is a marked overall size allometry in the data set, the shape difference between the ecologically differentiated sparrows cannot be explained by differences in size alone. Relative to the size allometry commensal house sparrows exhibit a skull shape consistent with accelerated development (heterochrony), resulting in a more robust facial cranium and a larger, more pointed beak. Conclusion The difference in skull shape and robustness of the beak between commensal and non-commensal house sparrows is consistent with adaptations to process the larger and rachis encapsulated seeds of domesticated cereals among human associated populations. PMID:24044497

  1. Direct measurement of the wavelength of sound waves in the human skull.

    PubMed

    McKnight, Carmen L; Doman, Darrel A; Brown, Jeremy A; Bance, Manohar; Adamson, Robert B A

    2013-01-01

    The results of a study of the three-dimensional vibration of two dry human skulls in response to harmonic excitation are presented. The vibratory response exhibits three distinct types of motion across the range of audible frequencies. At low frequencies below 1000 Hz, whole-head quasi-rigid motion is seen. At the middle frequencies between 1000 and 6000 Hz, the motion exhibits a series of increasingly complex modal patterns. Above 6000 Hz, the response is wavelike and clear wavefronts can be distinguished in the vibration data. In this regime the relationship between wavelength and frequency is calculated and compared to a number of theories of skull vibration that have been proposed.

  2. Symmetry of external auditive meatus. A pilot study on human skulls.

    PubMed

    Mizgiryte, Simona; Vaitelis, Julius; Barkus, Arunas; Zaleckas, Linas; Pletkus, Rolandas; Auskalnis, Adomas

    2014-01-01

    OBJECTIVES. To evaluate the perpendicularity of the line connecting external auditive meatus to the midsagital plane and the palatal suture as a midsagittal symmetry reference line. Setting and Sample Population - 62 randomly chosen human skulls from osteological collection (Vilnius University). MATERIAL AND METHODS. The skulls were photographed (Nikon 40 D, Nikkor lens 50 mm) from basal, frontobasal and frontal views. Photos were analysed with Adobe Photoshop CS5 (Adobe). The first line connected frontal points of external auditive meatus and the angle to the midsagittal plane was measured. The second line (the palatal suture) was compared to the median sagittal plane. Data was analysed with SPSS 17 (IBM). RESULTS. The mean value for the angles of the line between the external auditive meatus and the midsagittal plane in basal views was 90.12° (SD=1.48°) and in frontobasal 90.36° (SD=2.25°). No statistically significant differences were found between groups of age and sex. The inter-rater agreement for evaluation of the adequacy of palatal suture with the midsagital plane was high (Cohen's Kappa 0.702 (p<0.05)) as well as the coincidence of both lines in basal and frontobasal views (90.3% and 85.5% respectively). CONCLUSION. Considering the limits of this study the angle between external auditive meatus and midsagital skull plane has a characteristic fluctuating asymmetry. The congruence of palatal suture and midsagital plane is debatable.

  3. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations

    PubMed Central

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-01-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579

  4. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton.

  5. The identification of a human skull recovered from an eBay sale.

    PubMed

    Seidemann, Ryan M; Stojanowski, Christopher M; Rich, Fredrick J

    2009-11-01

    A human skull seized by the State of Louisiana from an eBay sale is analyzed. Bioarchaeological analyses of age-at-death, sex, and population affinity suggest the individual represented by the skull was a middle-aged Native American female. The presence of intentional cranial modification independently supports the population affinity assessment while confounding the metric analyses. However, no further specificity as to population affinity could be inferred using existing methods and comparative databases. Sedimentological and palynological analyses were attempted to redress this impasse. The presence of fine-grained charcoal, abundant fungal remains, and small angular quartz grains suggestive of burial in loess, as well as the lack of pollen, pteridophyte spores, and microscopic algae, suggest a likely upland burial location from somewhere in the lower Mississippi Valley. The sedimentological and palynological analyses, while not conclusive, show promise for use in future affiliation analyses of human remains recovered during the course of forensic investigations. The results are reviewed within the broader context of the legal debate over the repatriation of human remains.

  6. Grist for Riedl's mill: a network model perspective on the integration and modularity of the human skull.

    PubMed

    Esteve-Altava, Borja; Marugán-Lobón, Jesús; Botella, Héctor; Bastir, Markus; Rasskin-Gutman, Diego

    2013-12-01

    Riedl's concept of burden neatly links development and evolution by ascertaining that structures that show a high degree of developmental co-dependencies with other structures are more constrained in evolution. The human skull can be precisely modeled as an articulated complex system of bones connected by sutures, forming a network of structural co-dependencies. We present a quantitative analysis of the morphological integration, modularity, and hierarchical organization of this human skull network model. Our overall results show that the human skull is a small-world network, with two well-delimited connectivity modules: one facial organized around the ethmoid bone, and one cranial organized around the sphenoid bone. Geometric morphometrics further support this two-module division, stressing the direct relationship between the developmental information enclosed in connectivity patterns and skull shape. Whereas the facial module shows a hierarchy of clustered blocks of bones, the bones of the cranial modules show a regular pattern of connections. We analyze the significance of these arrangements by hypothesizing specific structural roles for the most important bones involved in the formation of both modules, in the context of Riedl's burden. We conclude that it is the morphological integration of each group of bones that defines the semi-hierarchical organization of the human skull, reflecting fundamental differences in the ontogenetic patterns of growth and the structural constraints that generate each module. Our study also demonstrates the adequacy of network analysis as an innovative tool to understand the morphological complexity of anatomical systems.

  7. The relative role of drift and selection in shaping the human skull.

    PubMed

    Betti, Lia; Balloux, François; Hanihara, Tsunehiko; Manica, Andrea

    2010-01-01

    Human populations across the world vary greatly in cranial morphology. It is highly debated to what extent this variability has accumulated through neutral processes (genetic drift) or through natural selection driven by climate. By taking advantage of recent work showing that geographic distance along landmasses is an excellent proxy for neutral genetic differentiation, we quantify the relative role of drift versus selection in an exceptionally large dataset of human skulls. We show that neutral processes have been much more important than climate in shaping the human cranium. We further demonstrate that a large proportion of the signal for natural selection comes from populations from extremely cold regions. More generally, we show that, if drift is not explicitly accounted for, the effect of natural selection can be greatly overestimated.

  8. Skull (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  9. Skull Practice.

    ERIC Educational Resources Information Center

    Slesnick, Irwin L.

    1988-01-01

    Disguises a lesson about skulls with some fun to cause less fear among students. Outlines strategies, questions, and answers for use. Includes a skull mask which can be photocopied and distributed to students as a learning tool and a fun Halloween treat. Also shown is a picture of skull parts. (RT)

  10. Simulation of bone-conducted sound transmission in a three-dimensional finite-element model of a human skull

    NASA Astrophysics Data System (ADS)

    Chang, You; Kim, Namkeun; Stenfelt, Stefan

    2015-12-01

    Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.

  11. Cranial morphology of Australopithecus afarensis: a comparative study based on a composite reconstruction of the adult skull.

    PubMed

    Kimbel, W H; White, T D; Johanson, D C

    1984-08-01

    The Pliocene hominid species Australopithecus afarensis is represented by cranial, dental, and mandibular remains from Hadar, Ethiopia, and Laetoli, Tanzania. These fossils provide important information about the cranial anatomy of the earliest known hominids. Because complete crania or skulls are not known, we produced a composite reconstruction of an adult male skull based on 13 specimens from the Hadar Formation. The reconstruction serves as a testable hypothesis regarding functional relationships in the A. afarensis skull and is the basis for the comparative study presented here. We examine six major aspects of cranial and mandibular anatomy. We combine our results with those of White et al. (1981) in a discussion of alternate hypotheses of early hominid phylogeny. In the cranium, jaws, and teeth A. afarensis exhibits a morphological pattern that we interpret as primitive for the Hominidae. Homo habilis retains a number of these primitive features for which A. africanus, A. robustus, and A. boisei share derived character states, particularly in the masticatory apparatus. Homo and "robust" species of Australopithecus share a suite of derived cranial base features. These shared traits may relate to upper facial orthognathium which is also common to these taxa and are probably indicative of parallelism rather than a close phylogenetic relationship. The cranial base characteristics of A.L. 333-45 do not, contrary to Olson's (1981) claims, provide evidence for an A. afarensis--"robust" Australopithecus sister group. When the range of mastoid variation in extant African pongids and A. afarensis is examined thoroughly, the Pliocene hominid appears to retain a primitive, rather than derived, morphology.

  12. A biomechanical evaluation of skull-brain surrogates to blunt high-rate impacts to postmortem human subjects.

    PubMed

    Raymond, David E; Bir, Cynthia A

    2015-03-01

    The field of forensic injury biomechanics is an emerging field. Biomechanically validated tools may assist interdisciplinary teams of investigators in assessing mechanisms of blunt head trauma resulting in skull fractures. The objective of this study is to assess the biofidelity of spherical, frangible skull-brain (SB) surrogates. Blunt impacts were conducted at 20 m/s, using an instrumented 103 g rigid impactor, to the temporo-parietal region of four defleshed cephalic postmortem human subjects (PMHS). Force-deformation response, fracture tolerance, and fracture patterns were recorded for comparison to spherical skull-brain surrogates. Three brain substitutes were assessed: 10% gelatin, lead shot with Styrofoam and water. Force-deformation response of the skull-brain surrogates was similar to defleshed PMHS up to the point of fracture; however, none of the surrogates fractured at tolerance levels comparable to the PMHS. Fracture patterns of the skull-brain surrogates were linear and radiating, while PMHS fractures were all depressed, comminuted.

  13. Phase-shifting real-time holographic interferometry applied to load transmission evaluation in dried human skull.

    PubMed

    Gesualdi, Marcos R R; Mori, Matsuyoshi; Muramatsu, Mikiya; Liberti, Edson A; Munin, Egberto

    2007-08-01

    Phase-shifting real-time holography with photorefractive Bi(12)SiO(20) crystal as holographic recording medium applied to load transmission evaluation and tension dissipation on a dried human skull under loading is presented. The applied loading stands as a simulation of isolated contraction (SIC) of some masticatories muscles. The four-frames phase-shifting technique and the unwrapping branch-cut technique were used to obtain the phase map. The quantitative results show the feasibility of the employed system in the study of microdisplacements in the skull structure provided by SIC.

  14. Tip of an Iceberg: Skull Fracture as an Adult Presentation of Encephalocraniocutaneous Lipomatosis

    PubMed Central

    Barras, Christen D.; Looby, Seamus; Brennan, Paul; Kok, Hong Kuan

    2016-01-01

    The severity of seizures presenting to the emergency department ranges from benign to life threatening. There are also a wide number of possible etiologies. Computed tomography (CT) emergency imaging may be required at presentation to elucidate a possible cause and assess signs of intracranial trauma. This case describes a serious seizure episode in a young man while on holiday. A CT brain showed a skull fracture as a consequence of seizure-related head trauma but unexpectedly there were image findings consistent with encephalocraniocutaneous lipomatosis. The important radiological features of encephalocraniocutaneous lipomatosis and a differential diagnosis are presented. PMID:27882255

  15. Lymphatic drainage of the skull base: comparative anatomic and advanced imaging studies in the rabbit and human with implications for spread of nasopharyngeal carcinoma.

    PubMed

    Qiuhang, Z; Zhenlin, W; Yan, Q; Jun, H; Yongfeng, S; Bo, H

    2010-09-01

    This preliminary study investigated the lymphatic drainage and distribution of lymphatic structures in the skull base. Characteristics of the rabbit skull base were analyzed and compared correspondingly with those of the human skull. The lymphatic circulation in the rabbit cranial base was detected by digital subtraction angiography (DSA), and lymph drainage in the human skull base was illustrated by interstitial magnetic resonance lymphography (MRL). Lymphatic structures and their distribution in MRL were identified by comparing with contrast-enhanced MRI and clinical data on basilar metastasis of nasopharyngeal carcinoma (NPC) in the human skull base. Anatomic similarity was found between the rabbit and human basilar regions. Well-visualized lymphatic pathways were found in the rabbit cranial base, and human lymphatic structures showed high signal intensity in enhanced T1-weighted MRL images. Lymphatic tissues in the human basilar region were found mainly distributed in the areas of the jugular foramen, foramen lacerum, and petrosal section of the internal carotid artery (ICA). Their distribution in the human basilar region was similar to the distribution in the rabbit basilar region and consistent with our clinical findings of the predilection sites of NPC metastasis in the skull base. Our studies show that bilateral symmetrical lymphatic structures were distributed along the ICA, internal jugular vein, and dura of cranial base in the central part of the middle and posterior skull base.

  16. Influence of stiffness and shape of contact surface on skull fractures and biomechanical metrics of the human head of different population underlateral impacts.

    PubMed

    Shaoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2015-07-01

    The objective of this study was to determine the responses of 5th-percentile female, and 50th- and 95th-percentile male human heads during lateral impacts at different velocities and determine the role of the stiffness and shape of the impacting surface on peak forces and derived skull fracture metrics. A state-of-the-art validated finite element (FE) head model was used to study the influence of different population human heads on skull fracture for lateral impacts. The mass of the FE head model was altered to match the adult size dummies. Numerical simulations of lateral head impacts for 45 cases (15 experiments×3 different population human heads) were performed at velocities ranging from 2.4 to 6.5m/s and three impacting conditions (flat and cylindrical 90D; and flat 40D padding). The entire force-time signals from simulations were compared with experimental mean and upper/lower corridors at each velocity, stiffness (40 and 90 durometer) and shapes (flat and cylindrical) of the impacting surfaces. Average deviation of peak force from the 50th male to 95th male and 5th female were 6.4% and 10.6% considering impacts on the three impactors. These results indicate hierarchy of variables which can be used in injury mitigation efforts.

  17. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    SciTech Connect

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-07-15

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  18. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  19. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  20. Multi-frequency characterization of speed of sound for longitudinal transmission on freshly excised human skulls

    NASA Astrophysics Data System (ADS)

    Pichardo, Samuel; Hynynen, Kullervo

    2010-03-01

    The results of measurements of longitudinal speed of sound are presented for seven specimens of human calvaria. The study was done for frequencies between 0.27 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The specimens were mounted in polycarbonate frames that were marked for stereoscopic positioning. CT scans of the skulls mounted on their frames were performed and a three-dimensional reconstruction of the skull surface was done. A positioning system ensured normal sound incidence of an acoustic signal produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Speed of sound estimation was done with measurements of time-of-flight using a needle hydrophone (diameter of 0.5 mm) and a sound propagation model through layers that takes into account change of speed of sound in function of density. For six of seven specimens, measurements were done on five locations on the calvaria and for the other specimen three measurements were done. In total, measurements were done on thirty-three locations. Results showed that the average (±s.d.) of the speed of sound was 2265(±202), 2360(±207), 2317(±283), 2309(±248) and 2080(±148) mṡs-1 for frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz, respectively. Dispersion effects were observed at individual basis per specimen, which were detected for the six of specimens as in increase in the speed sound when frequency went from 0.27 to 0.836 MHz. However, this increase was only statistically significant (p-value⩽0.05) for two specimens, with a maximal increase of +152 mṡs-1. A decrease in the speed of sound was also observed for four specimens when the frequency reached the highest values but it was statistically significant only for one of them (p = 0.03), with a decrease of -229 mṡs-1.

  1. Human skull shape and masticatory induced stress: Objective comparison through the use of non-rigid registration.

    PubMed

    Jansen van Rensburg, Gerhardus J; Wilke, Daniel N; Kok, Schalk

    2012-01-01

    Variation in masticatory induced stress, caused by shape changes in the human skull, is quantified in this article. A comparison on masticatory induced stress is presented subject to a variation in human skull shape. Non-rigid registration is employed to obtain appropriate computational domain representations. This procedure allows the isolation of shape from other variations that could affect the results. An added benefit, revealed through the use of non-rigid registration to acquire appropriate domain representation, is the possibility of direct and objective comparison and manipulation. The effect of mapping uncertainty on the direct comparison is also quantified. As shown in this study, exact difference values are not necessarily obtained, but a non-rigid map between subject shapes and numerical results gives an objective indication on the location of differences.

  2. Possible functional links among brain- and skull-related genes selected in modern humans

    PubMed Central

    Benítez-Burraco, Antonio; Boeckx, Cedric

    2015-01-01

    The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language. PMID:26136701

  3. Human metapneumovirus in adults.

    PubMed

    Haas, Lenneke E M; Thijsen, Steven F T; van Elden, Leontine; Heemstra, Karen A

    2013-01-08

    Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination.

  4. Human Metapneumovirus in Adults

    PubMed Central

    Haas, Lenneke E. M.; Thijsen, Steven F. T.; van Elden, Leontine; Heemstra, Karen A.

    2013-01-01

    Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination. PMID:23299785

  5. Skull fracture

    MedlinePlus

    ... compress the underlying brain tissue (subdural or epidural hematoma). A simple fracture is a break in the bone without damage ... Causes of skull fracture can include: Head trauma Falls, automobile accidents, physical assault, and sports

  6. Variations in size and in symmetry of foramina of the human skull.

    PubMed

    Berge, J K; Bergman, R A

    2001-11-01

    The goal of this report is to define an average size and size range for many of the skull's foramina and to determine in which paired foramina asymmetry is commonly found so that researchers and clinicians examining foramina may have an anatomical reference. The incidence of foraminal variations is also discussed. Information on skull foraminal size and symmetry is increasingly important because of the advancements in radiologic techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). These methods are making difficult diagnoses of pathologic conditions of skull foramina possible. The foramina of 100 randomly selected dry skulls were measured and the symmetry of paired foramina was noted. The average, largest, and smallest sizes for 29 different foramina and the length of one canal are listed. Information regarding the symmetry of 27 paired foramina and the length symmetry of the infraorbital canal was also gathered. Specific data collected for paired foramina include the percent of skulls in which (1) neither foramen of the pair was present, (2) both foramina of a pair were present, (3) both foramina of the pair are present and were both the same size within 0.5 mm, and (4) both foramina of a pair are present but there was greater than 0.5 mm difference in size between them.

  7. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  8. [Human frontal inclination of the skull as a trait of sexual dimorphism--terminology and quantification].

    PubMed

    Kölzer, Sarah C; Kümmell, Ines V; Kölzer, Jan T; Ramsthaler, Frank; Plenzig, Stefanie; Gehl, Axel; Verhoff, Marcel A

    2015-01-01

    The skull presents a variety of morphological traits suitable for sex discrimination due to the degree of their development. The vertical frontal inclination has been established. as another marker of sex discrimination, as a steep forehead is considered as a female and a receding frontal inclination as a male attribute. In the literature, there are many different ways to define the morphognostic term "frontal inclination" and "forehead profile" respectively. As part of the project "Digital Forensic Osteology" definitions of the frontal inclination commonly found in the literature have been tested with regard to their applicability to virtual skulls based on post-mortem CT data. The actual angle measurements were carried out automatically using software developed by the authors of this article. For the investigations, profile images of skulls generated from volume-rendered CT data were used in which anthropometric measuring points had been set manually. With the help of discriminant analysis it was tested whether sex discrimination on virtual skulls based on defined variables can be carried out with sufficient sensitivity. The measurement accuracy of the defined variables on the volume-rendered images turned out to be good. No significant sex differences regarding the tested variables were found. Using all the four selected variables the sensitivity for female skulls was only about 66%, whereas for male skulls it was not much higher than the rate of coincidence (53%). The results of this pilot study suggest that apart from extending the sample size the inclusion of additional variables based on strict consideration of validity and reliability criteria should be critically tested.

  9. The transmission of masticatory forces and nasal septum: structural comparison of the human skull and Gothic cathedral.

    PubMed

    Hilloowala, Rumy; Kanth, Hrishi

    2007-07-01

    This study extrapolates the transmission of masticatory forces to the cranium based on the architectural principles of Gothic cathedrals. The most significant finding of the study, obtained by analysis of coronal CT scans, is the role of the hard palate, and especially the vomer and the perpendicular plate of the ethmoid in masticatory force transmission. The study also confirms, experimentally, the paths of masticatory forces, cited in literature but based purely on morphological observations. Human skulls and Gothic cathedrals have similar morphological and functional characteristics. The load exerted by the roof of the cathedral is transmitted to the ground by piers and buttresses. These structures also resist the shearing forces exerted by high winds. Similarly, the mid-facial bones of the skull transmit the vertical as well as the lateral masticatory forces from the maxillary dentition to the skull base. The nonload bearing walls and stained glass windows of the cathedral correspond to the translucent wall of the maxilla. The passageway between the aisle and the nave of the cathedral is equivalent to the meatal openings in the lateral wall of the nasal cavity.

  10. Topography of the mental foramen in human skulls originating from different time periods.

    PubMed

    Gawlikowska-Sroka, A; Stocki, Ł; Dąbrowski, P; Kwiatkowska, B; Szczurowski, J; Czerwiński, F

    2013-08-01

    The location of the mental foramen is used in a number of maxillofacial surgical procedures and in anthropological examinations. The position of the mental foramen has been reported to vary in different ethnic groups and in different historical populations. The aim of this work was to analyse the topography of the mental foramen in mandibles from selected historical populations from the Pomeranian region in Poland. The material consisted of three groups: 92 skulls from the beginning of the 20th century from Szczecin (earlier name Stettin), and two Mediaeval groups -31 skulls from Rurka (historic Rörchen), 18th-19th centuries, and 50 skulls from Sypniewo (historic Zyppnow), 11th-13th centuries. Distances of the mental foramen in relation to the midline, and to the second corresponding point were measured. Additionally, non-metric traits of the mental foramen were recorded. No significant differences in average diameters of the mental foramina measured on the right and the left sides were observed between historical populations. On both sides, in all groups, the foramen was mainly located between positions of the lower first and lower second premolars. In all three groups the direction of the opening of the mental foramen was superoposterior. The similar level of epigenetic variation was observed in all groups. The position and the direction of the exit were similar to other previously studied European populations.

  11. A Santería/Palo Mayombe ritual cauldron containing a human skull and multiple artifacts recovered in western Massachusetts, U.S.A.

    PubMed

    Pokines, James T

    2015-03-01

    Santería and Palo Mayombe are West African-derived religions/sects with components of Catholicism, and both involve the ritual use of nonhuman skeletal remains which make them an increasing object of forensic interest. Palo Mayombe specifically involves also the use of human skeletal remains placed within ritual cauldrons or ngangas along with multiple ritual artifacts. A case of a nganga recovered from a periodically drained canal in Western Massachusetts, U.S.A. is presented. This nganga contained multiple items indicating its origin, including railroad spikes, coins, other metal objects, a stone, a glass bead, and multiple labeled and unlabeled sticks and was associated with a knife. It also contained skeletal remains of a bird and a snake as well as a nearly intact human skull of an adult male. The origin of the human remains is likely from a cemetery or as a former anatomical specimen. The find of this nganga is atypical in that it is away from the usual urban centers of Palo Mayombe in the U.S.A., and forensic practitioners should be aware that such sources of human remains may occur in their jurisdictions.

  12. An assessment of the usefulness of a coconut as a model of the human skull for forensic identification of a homicide weapon.

    PubMed

    Pękala, P; Kiełbasa, G; Bogucka, K; Cempa, A; Olszewska, M; Konopka, T

    2014-01-01

    The authors made an attempt to verify if a coconut can be used as a model of human skull to determine the homicide weapon. During our experiment 27 strike attempts were performed with the use of 9 different tools. Among them there were authentic murder weapons and instruments which had been used in similar experiments conducted on human skulls in 1955. Depending on the size of an area in contact with a coconut, weapons caused dents corresponding to the shape of a weapon, irregular fractures or long linear cracks. Our results have shown that coconut can be used as an inexpensive screening model of human skull, but only to determine fractures made by tools with small striking surface.

  13. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    PubMed Central

    Bosiocic, Vanya

    2016-01-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate. PMID:27853608

  14. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    NASA Astrophysics Data System (ADS)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  15. Pilot study to establish a nasal tip prediction method from unknown human skeletal remains for facial reconstruction and skull photo superimposition as applied to a Japanese male populations.

    PubMed

    Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Kibayashi, Kazuhiko; Sakurada, Koichi; Uemura, Koichi

    2016-02-01

    Skull-photo superimposition is a technique used to identify the relationship between the skull and a photograph of a target person: and facial reconstruction reproduces antemortem facial features from an unknown human skull, or identifies the facial features of unknown human skeletal remains. These techniques are based on soft tissue thickness and the relationships between soft tissue and the skull, i.e., the position of the ear and external acoustic meatus, pupil and orbit, nose and nasal aperture, and lips and teeth. However, the ear and nose region are relatively difficult to identify because of their structure, as the soft tissues of these regions are lined with cartilage. We attempted to establish a more accurate method to determine the position of the nasal tip from the skull. We measured the height of the maxilla and mid-lower facial region in 55 Japanese men and generated a regression equation from the collected data. We obtained a result that was 2.0±0.99mm (mean±SD) distant from the true nasal tip, when applied to a validation set consisting of another 12 Japanese men.

  16. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab

    PubMed Central

    Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab’s learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab’s scientific process. Third, the lab’s exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom’s taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects. PMID:27513927

  17. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    PubMed

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  18. Arts & Humanities in Adult Education.

    ERIC Educational Resources Information Center

    Word's Worth: A Quarterly Newsletter of the Lifelong Learning Network, 1998

    1998-01-01

    This issue of a quarterly newsletter on lifelong learning focuses on the theme of the arts and humanities in adult literacy education. The following articles are included: (1) "In Defense of a Practical Education" (Earl Shorris); (2) "From the Program Director" (Elizabeth Bryant McCrary); (3) "Vermont Council on the Humanities: Book Discussion…

  19. Dynamic morphological changes in the skulls of mice mimicking human Apert syndrome resulting from gain-of-function mutation of FGFR2 (P253R).

    PubMed

    Du, Xiaolan; Weng, Tujun; Sun, Qidi; Su, Nan; Chen, Zhi; Qi, Huabing; Jin, Ming; Yin, Liangjun; He, Qifen; Chen, Lin

    2010-08-01

    Apert syndrome is caused mainly by gain-of-function mutations of fibroblast growth factor receptor 2. We have generated a mouse model (Fgfr2(+/P253R)) mimicking human Apert syndrome resulting from fibroblast growth factor receptor 2 Pro253Arg mutation using the knock-in approach. This mouse model in general has the characteristic skull morphology similar to that in humans with Apert syndrome. To characterize the detailed changes of form in the overall skull and its major anatomic structures, euclidean distance matrix analysis was used to quantitatively compare the form and growth difference between the skulls of mutants and their wild-type controls. There were substantial morphological differences between the skulls of mutants and their controls at 4 and 8 weeks of age (P < 0.01). The mutants showed shortened skull dimensions along the rostrocaudal axis, especially in their face. The width of the frontal bone and the distance between the two orbits were broadened mediolaterally. The neurocrania were significantly increased along the dorsoventral axis and slightly increased along the mediolateral axis, and also had anteriorly displayed opisthion along the rostrocaudal axis. Compared with wild-type, the mutant mandible had an anteriorly displaced coronoid process and mandibular condyle along the rostrocaudal axis. We further found that there was catch-up growth in the nasal bone, maxilla, zygomatic bone and some regions of the mandible of the mutant skulls during the 4-8-week interval. The above-mentioned findings further validate the Fgfr2(+/P253R) mouse strain as a good model for human Apert syndrome. The changes in form characterized in this study will help to elucidate the mechanisms through which the Pro253Arg mutation in fibroblast growth factor receptor 2 affects craniofacial development and causes Apert syndrome.

  20. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.

    PubMed

    Pichardo, Samuel; Sin, Vivian W; Hynynen, Kullervo

    2011-01-07

    For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 µg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization

  1. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls

    NASA Astrophysics Data System (ADS)

    Pichardo, Samuel; Sin, Vivian W.; Hynynen, Kullervo

    2011-01-01

    For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 µg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization

  2. Evaluation of three-dimensional temperature distributions produced by a low-frequency transcranial focused ultrasound system within ex vivo human skulls.

    PubMed

    McDannold, Nathan; Park, Eun-Joo; Mei, Chang-Sheng; Zadicario, Eyal; Jolesz, Ferenc

    2010-09-01

    Transcranial MR-guided focused ultrasound (TcMRgFUS) provides a potential noninvasive alternative to surgical resection and for other treatments for brain disorders. Use of low-frequency ultrasound provides several advantages for TcMRgFUS, but is potentially limited by reflection and standing wave effects that may cause secondary hotspots within the skull cavity. The purpose of this work was to use volumetric magnetic resonance temperature imaging (MRTI) and ex vivo human skulls filled with tissue-mimicking phantom material to search for heating distant from the focal point that may occur during sonication with a TcMRgFUS system as a result of reflections or standing wave effects. Heating during 120-s sonications was monitored within the entire skull volume for 12 different locations in two different skulls. The setup used a hemispheric array operating at 220 kHz. Multiple sonications were delivered at each location while varying the MRTI slice positions to provide full coverage of the skull cavity. An automated routine was used evaluate the MRTI to detect voxel regions that appeared to be heated by ultrasound. No secondary hotspots with a temperature rise of 15% or more of the focal heating were found. The MRTI noise level prevented the identification of possible hotspots with a lower temperature rise. These results suggest that significant secondary heating by this TcMRgFUS system at points distant from the focal point are not common.

  3. Infant skull fracture (image)

    MedlinePlus

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  4. 3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy.

    PubMed

    Lozano, Maria Teresa Ugidos; Haro, Fernando Blaya; Diaz, Carlos Molino; Manzoor, Sadia; Ugidos, Gonzalo Ferrer; Mendez, Juan Antonio Juanes

    2017-05-01

    The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.

  5. Interactive navigation-guided ophthalmic plastic surgery: assessment of optical versus electromagnetic modes and role of dynamic reference frame location using navigation-enabled human skulls

    PubMed Central

    Ali, Mohammad Javed; Naik, Milind N; Girish, Chetan Mallikarjuniah; Ali, Mohammad Hasnat; Kaliki, Swathi; Dave, Tarjani Vivek; Dendukuri, Gautam

    2016-01-01

    Aim The aim of this study was to assess the anatomical accuracy of navigation technology in localizing defined anatomic landmarks within the orbit with respect to type of technology (optical versus electromagnetic systems) and position of the dynamic reference marker on the skull (vertex, temporal, parietal, and mastoid) using in vitro navigation-enabled human skulls. The role of this model as a possible learning tool for anatomicoradiological correlations was also assessed. Methods Computed tomography (CT) scans were performed on three cadaveric human skulls using the standard image-guidance acquisition protocols. Thirty-five anatomical landmarks were identified for stereotactic navigation using the image-guided StealthStation S7™ in both electromagnetic and optical modes. Three outcome measures studied were accuracy of anatomical localization and its repeatability, comparisons between the electromagnetic and optical modes in assessing radiological accuracy, and the efficacy of dynamic reference frame (DRF) at different locations on the skull. Results The geometric localization of all the identified anatomical landmarks could be achieved accurately. The Cohen’s kappa agreements between the surgeons were found to be perfect (kappa =0.941) at all predetermined points. There was no difference in anatomical localization between the optical and electromagnetic modes (P≤0.001). Precision for radiological identification did not differ with various positions of the DRF. Skulls with intact anatomical details and careful CT image acquisitions were found to be stereotactically useful. Conclusion Accuracy of anatomic localization within the orbit with navigation technology is equal with optical and electromagnetic system. The location of DRF does not affect the accuracy. Navigation-enabled skull models can be potentially useful as teaching tools for achieving the accurate radiological orientation of orbital and periorbital structures. PMID:27932861

  6. Assessment of craniometric traits in South Indian dry skulls for sex determination.

    PubMed

    Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi

    2016-01-01

    The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people.

  7. Development of a practical ultrasonic approach for simultaneous measurement of the thickness and the sound speed in human skull bones: a laboratory phantom study.

    PubMed

    Wydra, A; Malyarenko, E; Shapoori, K; Maev, R Gr

    2013-02-21

    The availability of a non-invasive express method for the in vivo measurement of both sound velocity and thickness of the human skull bone would be of great benefit to various transcranial ultrasonic imaging and treatment applications. This paper investigates two ultrasonic methods that measure both parameters and are based on the variable focus technique. All the experiments described in this paper were conducted on specially prepared custom skull bone phantoms, including flat and deformed samples, designed and developed in our laboratory. The first method uses a single immersion 2.25 MHz ultrasonic transducer consecutively focused on the front and back surfaces of the sample. The accuracy and precision of this method are demonstrated via single point measurements on flat samples with and without porosity. The measurement results from a specimen with the randomly curved back surface show the possibility of obtaining the inner profile of the skull bone. The second presented method is a practical modification of the variable focus technique for the linear phased array case. The method was tested on flat and curved skull bone phantoms with and without inner porosity showing higher measurement accuracy and simpler practical realization than its scanning counterpart.

  8. Birds have paedomorphic dinosaur skulls.

    PubMed

    Bhullar, Bhart-Anjan S; Marugán-Lobón, Jesús; Racimo, Fernando; Bever, Gabe S; Rowe, Timothy B; Norell, Mark A; Abzhanov, Arhat

    2012-07-12

    The interplay of evolution and development has been at the heart of evolutionary theory for more than a century. Heterochrony—change in the timing or rate of developmental events—has been implicated in the evolution of major vertebrate lineages such as mammals, including humans. Birds are the most speciose land vertebrates, with more than 10,000 living species representing a bewildering array of ecologies. Their anatomy is radically different from that of other vertebrates. The unique bird skull houses two highly specialized systems: the sophisticated visual and neuromuscular coordination system allows flight coordination and exploitation of diverse visual landscapes, and the astonishing variations of the beak enable a wide range of avian lifestyles. Here we use a geometric morphometric approach integrating developmental, neontological and palaeontological data to show that the heterochronic process of paedomorphosis, by which descendants resemble the juveniles of their ancestors, is responsible for several major evolutionary transitions in the origin of birds. We analysed the variability of a series of landmarks on all known theropod dinosaur skull ontogenies as well as outgroups and birds. The first dimension of variability captured ontogeny, indicating a conserved ontogenetic trajectory. The second dimension accounted for phylogenetic change towards more bird-like dinosaurs. Basally branching eumaniraptorans and avialans clustered with embryos of other archosaurs, indicating paedomorphosis. Our results reveal at least four paedomorphic episodes in the history of birds combined with localized peramorphosis (development beyond the adult state of ancestors) in the beak. Paedomorphic enlargement of the eyes and associated brain regions parallels the enlargement of the nasal cavity and olfactory brain in mammals. This study can be a model for investigations of heterochrony in evolutionary transitions, illuminating the origin of adaptive features and inspiring

  9. They Sell Skulls Online?! A Review of Internet Sales of Human Skulls on eBay and the Laws in Place to Restrict Sales.

    PubMed

    Halling, Christine L; Seidemann, Ryan M

    2016-09-01

    Internet sales of human remains occur despite the existence of laws prohibiting such action in most jurisdictions. The most popular public platform for online sales, eBay, allows users to postskeletal material for sale, largely anonymously and without much fear of legal repercussions. This survey of skeletal sales was conducted 10 years after the first article published about online human remains sales. A review of current laws reveals that, while many states have laws that restrict any sale of human remains, those laws have questionable deterrent effect. Assessing the skeletal material posted for sale provides law enforcement agencies with a necessary starting point to curtail the sale of human remains through enforcement of existing laws. Ultimately, the goal is to stem the commodification of such items and to recover skeletal material, especially that which may be of archaeological or forensic significance, and provide the proper final disposition for such material.

  10. Anatomical Analysis on the Lateral Bone Window of the Sella Turcica: A Study on 530 Adult Dry Skull Base Specimens

    PubMed Central

    WANG, Jianxin; WANG, Renzhi; LU, Yuntao; YAO, Yong; QI, Songtao

    2014-01-01

    Objective: To investigate the morphometric characteristics of the lateral bone window (LBW) of the sella turica. Methods: A descriptive anatomical study of LBW was performed in 530 cases of dry skull base specimens with relatively complete sella turcica. Detailed morphometric characteristics such as dimensions and calssification of the LBW was studied. All data analysis was performed using SPSS 17.0 statistical software. Results: LBW is located in the lateral bony structures of sella turcica. The mean area sizes of the LBW were 75.99 ± 25.81 mm2 (left) and 76.00 ± 25.53 mm2 (right). There was no significant difference and there was a ​​good positive correlation between bilateral areas of the LBWs. The area size of the LBWs is graded as follows: Grade A (< 60 mm2), B (60~90 mm2) and C (> 90 mm2). LBW morphology was typed as follows: Type I, II, III, IV. And Tpye III includes Type IIIa and IIIb; Type IV includes Type IVa, IVb, IVc, IVd. Conclusions: The lateral bone window of sella turcica is an important structure located between pituiary fossa and parasellar region. The morphological measurements and variations of LBW in this study will provide preliminary data for further anatomical study of sella turcica. Moreover, knowing detailed anatomy of this region is essential for neurosurgeons who make surgery on cranial base or for teaching about the sella turcica in the neuroanatomy lab. PMID:24465158

  11. Skull anatomy (image)

    MedlinePlus

    The skull is anterior to the spinal column and is the bony structure that encases the brain. Its purpose ... the facial muscles. The two regions of the skull are the cranial and facial region. The cranial ...

  12. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject.

    PubMed

    Hillam, Richard A; Goodship, Allen E; Skerry, Tim M

    2015-09-18

    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones.

  13. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject

    PubMed Central

    Hillam, Richard A; Goodship, Allen E; Skerry, Tim M

    2015-01-01

    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones. PMID:26232812

  14. Real time contact-free and non-invasive tracking of the human skull: first light and initial validation

    NASA Astrophysics Data System (ADS)

    Ernst, Floris; Bruder, Ralf; Wissel, Tobias; Stüber, Patrick; Wagner, Benjamin; Schweikard, Achim

    2013-09-01

    In an increasing number of fields in medicine, precise and fast localisation of bony targets inside the body is essential. Up to now, exact localisation in the operation room can either be done with invasive methods like X-ray imaging and electromagnetic tracking systems, with volumetric ultrasound or by fixing the target in place. In this work, we present a new technology to directly track the position of the human skull through tissue in real time using infrared lasers. To achieve this, an experimental setup has been developed to precisely target a position on a subject's skin with an 850nm laser. The primary reflection on the skin is triangulated using a high-speed camera. Additionally, the reflections as well as in-tissue scattering are recorded with an in-beam setup of a NIR sensitive high-speed and high-resolution camera. Consequently, it is possible to record the scattering patterns specific to the composition of the tissue at the target. We have recorded MRI data of two test subjects (voxel size 0.15 x 0.15 x 1mm3) and extracted the soft tissue thickness with a semi-automatic segmentation approach. The MRI data was validated using force-controlled 2D ultrasound (tracked by an optical tracking system), from which soft tissue thickness was segmented manually. Optical measurements and MRI data were registered to determine soft tissue thickness for each measured laser target and finally used to train a support vector regression machine. Using the optical setup, we succeeded in computing the soft tissue thickness on the subjects' foreheads with sub-millimetre accuracy.

  15. Bone tumors in pre-modern skulls from human skeletal series of Joseon Dynasty

    PubMed Central

    Shin, Dong Hoon; Oh, Chang Seok; Kim, Yi-Suk; Kim, Yusu; Oh, Seung Whan; Park, Jun Bum; Lee, In Sun

    2015-01-01

    To date, there are still very few reports on benign-tumor cases based on East Asian skeletal series, even though other regions and continents have been well represented. In our study on the Joseon Human Skeletal Series, we identified benign bone tumors in two skeletons (cases Nos. 75 and 96). Our radiological analyses showed both cases to be homogeneous sclerotic bone masses aligned with the cranial vault suture. In a subsequent series of differential diagnoses, we determined both cases to be osteoma, the most common bone-tumor type reported for archaeological samples. Our study is the osteoarchaeological basis for this, the first-ever report on benign bone neoplasm in a pre-modern East Asian population. PMID:26417482

  16. The Predictability from Skull Morphology of Temporalis and Masseter Muscle Cross-Sectional Areas in Humans.

    PubMed

    Toro-Ibacache, Viviana; Zapata MuÑoz, Victor; O'higgins, Paul

    2015-07-01

    To carry out functional simulations of the masticatory system that aim to predict strain magnitudes it is important to apply appropriate jaw-elevator muscle forces. Force magnitude estimation from directly measured muscle physiological cross-sectional area or anatomical cross-sectional area (CSA) is not possible for fossils and skeletal material from museum collections. In these cases, muscle CSAs are often estimated from bony features. This approach has been shown to be inaccurate in a prior study based on direct measurements from cadavers. Postmortem alterations as well as age changes in muscle form might explain this discrepancy. As such, the present study uses CT images from 20 living individuals to directly measure temporalis and masseter muscle CSAs and estimated cross-sectional areas (ECSAs) from bony features. The relationships between CSAs and ECSAs were assessed by comparing mean values and by examining correlations. ECSAs are up to 100% greater than CSA and the means of these variables for each muscle differ significantly. Further, ECSA is significantly correlated with CSA for temporalis but not masseter. Cranial centroid size is only significantly associated with CSA for temporalis. These findings indicate that ECSAs should be employed with caution in simulations of human masticatory system functioning; they do not reflect CSAs and it is plausible that this also applies to studies of closely related living and fossil taxa. When ECSAs are used, sensitivity analyses are required to determine the impact of potential errors.

  17. The Skull of Phyllomedusa sauvagii (Anura, Hylidae).

    PubMed

    Ruiz-Monachesi, Mario R; Lavilla, Esteban O; Montero, Ricardo

    2016-05-01

    The hylid genus Phyllomedusa comprises charismatic frogs commonly known as monkey, leaf or green frogs, and is the most diverse genus of the subfamily Phyllomedusinae, including about 31 species. Although there is some information about the anatomy of these frogs, little is known about the osteology. Here the adult skull of Phyllomedusa sauvagii, both articulated and disarticulated, is described and the intraspecific variation is reported. Additionally, cartilage associated with the adult skull, such as the nasal capsules, auditory apparatus, and hyobranchial apparatus, are included in the analysis. Further examination of disarticulated bones reveals their remarkable complexity, specifically in the sphenethmoid and of the oocipital region. The description of disarticulated bones is useful for the identification of fossil remains as well as providing morphological characteristics that are phylogenetically informative. When comparing the skull morphology with the available information of other species of the genus, Phyllomesusa sauvagii skull resembles more that of P. vaillantii and P. venusta than P. atelopoides.

  18. Influences of skull segmentation inaccuracies on EEG source analysis.

    PubMed

    Lanfer, B; Scherg, M; Dannhauer, M; Knösche, T R; Burger, M; Wolters, C H

    2012-08-01

    The low-conducting human skull is known to have an especially large influence on electroencephalography (EEG) source analysis. Because of difficulties segmenting the complex skull geometry out of magnetic resonance images, volume conductor models for EEG source analysis might contain inaccuracies and simplifications regarding the geometry of the skull. The computer simulation study presented here investigated the influences of a variety of skull geometry deficiencies on EEG forward simulations and source reconstruction from EEG data. Reference EEG data was simulated in a detailed and anatomically plausible reference model. Test models were derived from the reference model representing a variety of skull geometry inaccuracies and simplifications. These included erroneous skull holes, local errors in skull thickness, modeling cavities as bone, downward extension of the model and simplifying the inferior skull or the inferior skull and scalp as layers of constant thickness. The reference EEG data was compared to forward simulations in the test models, and source reconstruction in the test models was performed on the simulated reference data. The finite element method with high-resolution meshes was employed for all forward simulations. It was found that large skull geometry inaccuracies close to the source space, for example, when cutting the model directly below the skull, led to errors of 20mm and more for extended source space regions. Local defects, for example, erroneous skull holes, caused non-negligible errors only in the vicinity of the defect. The study design allowed a comparison of influence size, and guidelines for modeling the skull geometry were concluded.

  19. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome

    PubMed Central

    Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan

    2017-01-01

    Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS. PMID:28123344

  20. Skull sutures: Changing morphology during preadolescent growth and its implications in forensic identification.

    PubMed

    Jayaprakash, Paul T; Srinivasan, G J

    2013-06-10

    Forensic identification of juvenile skulls is a problem area. Although the skull suture patterns have been suggested for use in individualizing human remains by comparing antemortem and postmortem radiographs, the age at which such patterns stabilize and can be useful for identification had been indicated as 7 years. Subsequent researchers have also concurred that antemortem and postmortem radiographs taken after the 7th year would be sufficient to meet the Daubert standard criteria for identifying skulls using radiographs. The suggestions regarding the lower age limit for stabilization of suture patterns have not been verified so far. In this research, the patterns of the sutures in the ectocranial and endocranial surfaces of the lambdoid region in 22 juvenile skulls (age range 1-10 years) and 100 adult skulls (age range 17-70 years) were studied for the relative incidence of different types of suture patterns. The radiographic recordings of the suture patterns in the juvenile skulls were also compared with the patterns seen in the ectocranial and endocranial surfaces. The findings of this study support the proposition that the suture patterns are plastic during the juvenile stage and that they undergo significant remodeling during growth into adulthood. Indicating the possibility of growth related alterations in the sutural morphology, the onset of adulthood is suggested as the age for stabilization of suture patterns in the context of prescribing standards for such criteria as those relating to Daubert.

  1. Blood-Brain Barrier Opening by MR-Guided Focused Ultrasound: Preclinical Testing on a Trans-Human Skull Porcine Model

    PubMed Central

    Huang, Yuexi; Alkins, Ryan; Schwartz, Michael L.; Hynynen, Kullervo

    2016-01-01

    Purpose To develop and test a protocol in preparation for a clinical trial on blood-brain-barrier opening (BBBO) by magnetic resonance-guided focused ultrasound (MRgFUS) for chemo-drug delivery to brian tumors. Materials and Methods The procedures were approved by the Institutional Animal Care Committee. A trans-human skull porcine model was designed for the preclinical testing. Wide craniotomies were applied on 11 porcine subjects (~15 kg). A partial human skull was positioned over the animal’s brain. A modified clinical MRgFUS brain system (ExAblate 4000, 230 kHz) was used with a 3T MR scanner (Signa MR750, GE Healthcare). The ultrasound beam was steered during sonications over a 3×3 grid at 3 mm spacing. Acoustic power levels from 3 to 20 W were tested. Bolus injections of Definity microbubble at 4 ul/kg were tested for each sonication. Levels of BBB opening, hemorrhage and cavitation signal were measured by MR imaging, histology and cavitation receivers, respectively. A cavitation safety algorithm was developed based on logistic regression of the measurements and tested to minimize risks of hemorrhage. Results BBBO of approximately 1 cm3 in volume were visualized by Gd-enhanced MR imaging post sonication at ~5 W acoustic powers. Gross examination of histology confirmed Evans blue (bound to macromolecule albumin) extravasation, and H&E staining detected only scattered extravasation of red blood cells. In cases where cavitation signals were above thresholds, sonications were terminated immediately without causing hemorrhage. Conclusion With a trans-human skull porcine model, this study demonstrated BBBO with the 230 kHz ExAblate system in preparation for a clinical trial. PMID:27420647

  2. Broadband acoustic properties of a murine skull.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  3. Broadband acoustic properties of a murine skull

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  4. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

    PubMed

    Strangman, Gary E; Zhang, Quan; Li, Zhi

    2014-01-15

    Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors.

  5. A review of the literature on the aging adult skull and face: implications for forensic science research and applications.

    PubMed

    Albert, A Midori; Ricanek, Karl; Patterson, Eric

    2007-10-02

    This paper is a summary of findings of adult age-related craniofacial morphological changes. Our aims are two-fold: (1) through a review of the literature we address the factors influencing craniofacial aging, and (2) the general ways in which a head and face age in adulthood. We present findings on environmental and innate influences on face aging, facial soft tissue age changes, and bony changes in the craniofacial and dentoalveolar skeleton. We then briefly address the relevance of this information to forensic science research and applications, such as the development of computer facial age-progression and face recognition technologies, and contributions to forensic sketch artistry.

  6. Three new human skulls from the Sima de los Huesos Middle Pleistocene site in Sierra de Atapuerca, Spain.

    PubMed

    Arsuaga, J L; Martínez, I; Gracia, A; Carretero, J M; Carbonell, E

    1993-04-08

    Three important fossil hominids were found in July 1992 in the Middle Pleistocene cave site called Sima de los Huesos (Sierra de Atapuerca, Burgos, Northern Spain). One is a complete calvaria (cranium 4), the second a virtually complete cranium (cranium 5), the third represents a more fragmentary cranium of an immature individual (cranium 6). There is a large difference in size between the two adult specimens (for example endocranial volume 1,125 cm3 versus 1,390 cm3). The Atapuerca human remains are dated to > 300,000 years. The Atapuerca cranial sample fits within the 'archaic Homo sapiens' group, but is well differentiated from the Asian Homo erectus group. The extensive Atapuerca human collection is the most complete sample of Middle Pleistocene humans yet discovered from one site, and appears to document an early stage in Neanderthal evolution.

  7. Reverse engineering techniques applied to a human skull, for CAD 3D reconstruction and physical replication by rapid prototyping.

    PubMed

    Galantucci, L M; Percoco, G; Angelelli, G; Lopez, C; Introna, F; Liuzzi, C; De Donno, A

    2006-01-01

    The production of a copy of an existing object of complex shape is one of the typical applications of the integration between two modern computer-based technologies, reverse engineering (RE) and rapid prototyping (RP). The method is extremely versatile and can be used in various applicative domains (e.g. replacement of anatomical parts with artificial prostheses, replication of skeletal remains). Two different acquisition techniques of images of a skull, by laser and by CT scan, were compared to ascertain which enabled more accurate reproduction of the original specimen. The skull was chosen due to it being the body part most often used in medico-legal investigations (for personal identification, skull-photo superimposition techniques, forensic art, etc). Comparison between the copy and the original yielded satisfactory results for both techniques. However, CT scanning demonstrated some advantages over the laser technique, as it provided a cleaner point cloud, enabling shorter pre-reproduction processing times, as well as data on the internal parts, which resulted in the reproduction of a more faithful copy.

  8. Matching simulated antemortem and post-mortem dental radiographs from human skulls by dental students and experts: testing skills for pattern recognition.

    PubMed

    Wenzel, A; Richards, A; Heidmann, J

    2010-12-01

    The aim of this study was to evaluate the ability of undergraduate dental students to match simulated ante- and post-mortem radiographs in human skulls with experts as controls for the 1)number of post-mortem images needed for a match, 2)accuracy of the matches, and 3)time spent for a match. A film bitewing was recorded in each side of 51 dentate dry human skulls (a.m.-images) and digital images of the teeth were recorded using a sensor (p.m.-images). 102 correctly matching and 102 non-matching image pairs were constructed. Ten students and three experts scored the image pairs as: certain match, certain non-match, or uncertain. None of the experts but half of the students made false positive scores. Half of the students performed just as accurately as the experts. All students (except one who made 8 FPs) asked for more p.m.-images than did the experts before deciding on a match, however, all students, but one, also spent less time per image pair than did the experts before deciding on a match (P<0.001). This simulated test sample may identify dental students and dentists with abilities for pattern recognition and thus help in the decision on who might be included as part of a forensic dental team when extra help is needed.

  9. Skull Base Anatomy.

    PubMed

    Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W

    2016-02-01

    The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base.

  10. Morphological Variations in the Transverse Venous Sinus Anatomy of Dogs and its Relationship to Skull Landmarks.

    PubMed

    Carreira, L Miguel; Ferreira, A

    2016-08-01

    We characterized the anatomical morphology of the transverse venous sinus (TVS) of 69 canine adult cadavers belonging to three groups: brachycephalic (B), dolichocephalic (D) and mesaticephalic (M). In addition, we outlined its path over the skull using five classic human craniometric points (CPs): the asterion (ast), the bregma (b), the glabella (g), the stephanion (st) and the pterion (pt). The study aimed to establish anatomical differences in the TVS between groups and in the relationship between the TVS and skull. We found that TVS anatomy and its relationships to skull landmarks vary markedly between the groups, with similar anatomical arrangements in B and M. The TVS length can be ranked as M < B < D (with D being the biggest), whereas the width can be ranked as M < D < B (with B being the widest) with the right side being smaller than the left. In the B and M groups, the TVS assumes a craniocaudal trajectory that is closer to the lateral skull wall than in D, where the TVS presents a caudocranial direction. By documenting the morphological characteristics of the TVS, we can create a set of anatomical references allowing construction of a basic framework to greatly decrease the probability of TVS injury during neuronavigation procedures when supported by a good knowledge of the skull, brain anatomies and their relationships.

  11. Stories, skulls, and colonial collections.

    PubMed

    Roque, Ricardo

    2011-01-01

    The essay explores the hypothesis of colonial collecting processes involving the active addition of the colonial context and historical past to museum objects through the production of short stories. It examines the emergent historicity of collections through a focus on the "histories" that museum workers and colonial agents have been attaching to scientific collections of human skulls. Drawing on the notions of collection trajectory and historiographical work, it offers an alternative perspective from which to approach the creation of singular histories and individual archives for objects in collections.

  12. Keyhole Fracture of the Skull

    DTIC Science & Technology

    2008-12-01

    gunshot wounds to the skull and direction of fire. J Forensic Sci 1982;27:555-66. 3. Berryman HE, Gunther WM. Keyhole defect production in tubular bone.J...Keyhole Fracture of the Skull Radiology Corner Keyhole Fracture of the Skull Guarantor...abbreviated answer in the December 2008 issue. 1 The authors present the case of a soldier wounded in Iraq with a gunshot wound to the skull

  13. Skull Base Tumors

    NASA Astrophysics Data System (ADS)

    Schulz-Ertner, Daniela

    In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.

  14. Scalp Reconstruction: A Review of the Literature and a Unique Case of Total Craniectomy in an Adult With Osteomyelitis of the Skull

    PubMed Central

    Banta, Jonathan C.; Boyd, Travis G.; Kelishadi, Sean S.; Chowdhry, Saeed; Little, Jarrod A.

    2014-01-01

    Objective: Osteomyelitis of the skull is a rare condition that can lead to systemic illness, bone loss, intracranial complications, and mortality. Osteomyelitis of the skull typically presents as the boney invasion of an overlying infection of the scalp or sinuses, and it is typically treated with antibiotics and proper wound care. Surgical debridement of the affected bone in the form of a craniectomy may be initiated to stop the progression of the infection when antibiotics fail and the underlying bone becomes grossly eroded. Method: The authors present the case of a 54-year-old woman who required a total craniectomy after developing full-thickness osteomyelitis. A free omental flap along with dermal grafts and split-thickness skin grafts were utilized for soft tissue coverage. A semi-rigid helmet was used to provide durable protection to the brain. Results: Omental free flap with skin graft coverage provided this patient with durable and long-term soft tissue coverage for a total craniectomy defect, as well as the ability to regain mental status. Conclusions: Many factors must be analyzed when approaching composite defects of the scalp. Modality of treatment must be customized to the individual, and the decisions should be based on whether the defect is composed of soft tissue, bone or both, its size, etiology, and presence of a cerebral spinal fluid leak. The goals of treatment are restoration of durable soft tissue coverage, protection of vital underlying structures and control of cerebral spinal fluid leaks. PMID:25165496

  15. Angiogenic properties of adult human thymus fat.

    PubMed

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  16. Effects of the murine skull in optoacoustic brain microscopy.

    PubMed

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments.

  17. Skeletal height reconstruction from measurements of the skull in indigenous South Africans.

    PubMed

    Ryan, I; Bidmos, M A

    2007-03-22

    Stature reconstruction is important as it provides a forensic anthropological estimate of the height of a person in the living state; playing a vital role in the identification of individuals from their skeletal remains. Regression formulae for stature estimation have been generated for indigenous South Africans based on measurements of long bones of upper and lower extremities and the calcaneus. Since these bones are not always available for forensic analysis, it became necessary to use other bones such as the skull for stature estimation. The aim of the present study was to investigate the usefulness of certain measurements of the skull of indigenous South Africans in the estimation of adult stature. Ninety-nine complete skeletons obtained from the Raymond A. Dart Collection, School of Anatomical Sciences of the University of the Witwatersrand, were used. Total skeletal height (TSH) was calculated for each skeleton using the Fully's (anatomical) method. Furthermore, six variables were measured on each skull. TSH was regressed onto these cranial measurements in order to obtain regression formulae. The correlation coefficients obtained ranged between 0.40 and 0.54. The range of the standard errors of estimate from the current study (4.37 and 6.24) is high in comparison to that obtained for stature estimation based on intact long bones and the calcaneus. Therefore, the equations presented in this study should be used with caution in forensic cases when only the skull is available for human identification.

  18. Evaluation of intrusive mechanics of the type "segmented arch" on a macerated human skull using the laser reflection technique and holographic interferometry.

    PubMed

    Dermaut, L R; Vanden Bulcke, M M

    1986-03-01

    Twelve different systems of intrusion, based on the principle of the "segmented arch," were evaluated on a macerated human skull. The number of teeth involved in the anterior unit and the location of the application points of intrusive force were considered to be variables. Initial displacements of the anterior teeth after loading were registered by means of the laser reflection technique and double exposure holographic recordings. An attempt was made to define "this" intrusive system, achieving the most genuine intrusion (for definition, see text) without flaring of the teeth. When two central incisors were incorporated in the sectional wire, strong torque forces appeared, especially when the intrusive forces seized more distally. When four or six anterior teeth were pinned in the sectional wire, tooth movement seemed to be under better control. When the six front teeth were incorporated in the sectional wire, the center of resistance (for definition, see text) was located more to the distal side of the canines. It seemed more difficult, however, to define the center of resistance of the four incisors; it was situated approximately distal to the lateral incisors. In some of the intrusive systems, the teeth underwent independent mesial or distal rotations. This was easily observed with the laser measuring techniques used.

  19. Osteomyelitis of the skull.

    PubMed

    Bullitt, E; Lehman, R A

    1979-03-01

    This retrospective study includes 18 patients who underwent 28 admissions for treatment of osteomyelitis of the skull. Each admission was reviewed separately. Systemic symptoms were rare and signalled the presence of an associated collection of pus. Films of the skull, polytomography and bone scans were all useful in establishing the diagnosis, whereas white blood cell count, erythrocyte sedimentation rate and brain scans were of little value. Complete surgical debridement was found to be of significantly greater value than limited surgical debridement. The surgical results appeared to be improved when surgery was followed by long courses of antibiotics. Each patient who received complete surgical debridement followed by at least six weeks of antibiotic therapy was cured.

  20. Uniquely hominid features of adult human astrocytes.

    PubMed

    Oberheim, Nancy Ann; Takano, Takahiro; Han, Xiaoning; He, Wei; Lin, Jane H C; Wang, Fushun; Xu, Qiwu; Wyatt, Jeffrey D; Pilcher, Webster; Ojemann, Jeffrey G; Ransom, Bruce R; Goldman, Steven A; Nedergaard, Maiken

    2009-03-11

    Defining the microanatomic differences between the human brain and that of other mammals is key to understanding its unique computational power. Although much effort has been devoted to comparative studies of neurons, astrocytes have received far less attention. We report here that protoplasmic astrocytes in human neocortex are 2.6-fold larger in diameter and extend 10-fold more GFAP (glial fibrillary acidic protein)-positive primary processes than their rodent counterparts. In cortical slices prepared from acutely resected surgical tissue, protoplasmic astrocytes propagate Ca(2+) waves with a speed of 36 microm/s, approximately fourfold faster than rodent. Human astrocytes also transiently increase cystosolic Ca(2+) in response to glutamatergic and purinergic receptor agonists. The human neocortex also harbors several anatomically defined subclasses of astrocytes not represented in rodents. These include a population of astrocytes that reside in layers 5-6 and extend long fibers characterized by regularly spaced varicosities. Another specialized type of astrocyte, the interlaminar astrocyte, abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers 3 and 4. Human fibrous astrocytes resemble their rodent counterpart but are larger in diameter. Thus, human cortical astrocytes are both larger, and structurally both more complex and more diverse, than those of rodents. On this basis, we posit that this astrocytic complexity has permitted the increased functional competence of the adult human brain.

  1. A Perfusion-based Human Cadaveric Model for Management of Carotid Artery Injury during Endoscopic Endonasal Skull Base Surgery

    PubMed Central

    Pham, Martin; Kale, Aydemir; Marquez, Yvette; Winer, Jesse; Lee, Brian; Harris, Brianna; Minnetti, Michael; Carey, Joseph; Giannotta, Steven; Zada, Gabriel

    2014-01-01

    Objective To create and develop a reproducible and realistic training environment to prepare residents and trainees for arterial catastrophes during endoscopic endonasal surgery. Design An artificial blood substitute was perfused at systolic blood pressures in eight fresh human cadavers to mimic intraoperative scenarios. Setting The USC Keck School of Medicine Fresh Tissue Dissection Laboratory was used as the training site. Participants Trainees were USC neurosurgery residents and junior faculty. Main Outcome A 5-point questionnaire was used to assess pre- and posttraining confidence scores. Results High-pressure extravasation at normal arterial blood pressure mimicked real intraoperative internal carotid artery (ICA) injury. Residents developed psychomotor skills required to achieve hemostasis using suction, cottonoids, and muscle grafts. Questionnaire responses from all trainees reported a realistic experience enhanced by the addition of the perfusion model. Conclusions The addition of an arterial perfusion system to fresh tissue cadavers is among the most realistic training models available. This enables the simulation of rare intraoperative scenarios such as ICA injury. Strategies for rapid hemostasis and implementation of techniques including endoscope manipulation, suction, and packing can all be rehearsed via this novel paradigm. PMID:25301092

  2. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    PubMed

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  3. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  4. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  5. Latent inhibition in human adults without masking.

    PubMed

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  6. [The skull of Combe Capelle].

    PubMed

    Hoffmann, Almut; Wegner, Dietrich

    2002-12-01

    Since the end of World War II two of the most important anthropological artefacts of the Museum für Vor- und Frühgeschichte in Berlin, the skulls and skeletons of Le Moustier and Combe Capelle, were believed to be missing or destroyed, respectively. The postcrania were severely damaged during a fire after the museum was bombed in February 1945, while the skulls were brought to the Soviet Union in 1945. In 1965, the skull of the Neanderthal man from Le Moustier and the chain of the grave of Combe Capelle were found amongst the art objects returned by the Soviet Union into the German Democratic Republic in 1958. However, the Combe Capelle skull was still missing. In the end of 2001 this skull could be found and identified in a store-house of the museum. Now, one the oldest known representatives of Homo sapiens sapiens is again available for scientific research and public exhibitions.

  7. The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans.

    PubMed

    Bruner, Emiliano; Amano, Hideki; de la Cuétara, José Manuel; Ogihara, Naomichi

    2015-09-01

    The spatial relationships between brain and braincase represent a major topic in surgery and evolutionary neuroanatomy. In paleoneurology, neurocranial landmarks are often used as references for brain areas. In this study, we analyze the variation and covariation of midsagittal brain and skull coordinates in a sample of adult modern humans in order to demonstrate spatial associations between hard and soft tissues. The correlation between parietal lobe size and parietal bone size is very low, and there is a marked individual variation. The distances between lobes and bones are partially influenced by the dimensions of the parietal lobes. The main pattern of morphological variability among individuals, associated with the size of the precuneus, apparently does not influence the position of the neurocranial sutures. Therefore, variations in precuneal size modify the distance between the paracentral lobule and bregma, and between the parietal lobe and lambda. Hence, the relative position of the cranial and cerebral landmarks can change as a function of the parietal dimensions. The slight correlation and covariation among these elements suggests a limited degree of spatial integration between soft and hard tissues. Therefore, although the brain influences the cranial size and shape during morphogenesis, the specific position of the cerebral components is sensitive to multiple effects and local factors, without a strict correspondence with the bone landmarks. This absence of correspondent change between brain and skull boundaries suggests caution when making inferences about the brain areas from the position of the cranial sutures. The fact that spatial relationships between cranial and brain areas may vary according to brain proportions must be considered in paleoneurology, when brain anatomy is inferred from cranial evidence.

  8. Influence of skull modeling approaches on EEG source localization.

    PubMed

    Montes-Restrepo, Victoria; van Mierlo, Pieter; Strobbe, Gregor; Staelens, Steven; Vandenberghe, Stefaan; Hallez, Hans

    2014-01-01

    Electroencephalographic source localization (ESL) relies on an accurate model representing the human head for the computation of the forward solution. In this head model, the skull is of utmost importance due to its complex geometry and low conductivity compared to the other tissues inside the head. We investigated the influence of using different skull modeling approaches on ESL. These approaches, consisting in skull conductivity and geometry modeling simplifications, make use of X-ray computed tomography (CT) and magnetic resonance (MR) images to generate seven different head models. A head model with an accurately segmented skull from CT images, including spongy and compact bone compartments as well as some air-filled cavities, was used as the reference model. EEG simulations were performed for a configuration of 32 and 128 electrodes, and for both noiseless and noisy data. The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling. This suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment. We recommend the following guidelines to be taken into account for skull modeling in the generation of subject-specific head models: (i) If CT images are available, i.e., if the geometry of the skull and its different tissue types can be accurately segmented, the conductivity should be modeled as isotropic heterogeneous. The spongy bone might be segmented as an erosion of the compact bone; (ii) when only MR images are available, the skull base should be represented as accurately as possible and the conductivity can be modeled as isotropic heterogeneous, segmenting the spongy bone directly from the MR image; (iii) a large number of EEG electrodes should be used to obtain high spatial sampling, which reduces the localization errors at realistic noise levels.

  9. Astrocitary niches in human adult medulla oblongata.

    PubMed

    Rusu, Mugurel Constantin; Dermengiu, Dan; Loreto, Carla; Motoc, Andrei Gheorghe Marius; Pop, Elena

    2013-04-01

    Astrocytes are considered as neuromodulators of the CNS. Whereas experimental studies on astrocitary functions are gaining importance, the anatomy of the astrocitary niches in the human CNS has been overlooked. The study was performed on the brainstem of 10 adult cadavers. We aimed to determine astrocitary niches in the human medulla oblongata using immunohistochemical labeling with vimentin and also CD34 immunostaining to accurately diagnose associated microvessels. Niches rich in astrocytes were identified as follows: (a) the superficial layer of astrocytes, ventral and ventrolateral, in the rostral medulla oblongata; (b) the median raphe; (c) medullary nuclei: arcuate nucleus, area postrema, nucleus of the solitary tract; (d) the subependymal zone (SEZ, caudal medulla) and subventricular zone (SVZ, rostral medulla). Astrocytes were scarce in the ventrolateral medulla, and mostly present within the pyramidal tract and the olivary nucleus. Apart from the SEZ and SVZ, the brainstem niches of astrocytes mostly overlap those regions known to perform roles as central respiratory chemoreceptors. The astrocytes of the SEZ and SVZ, which are known as stem cell niches, are related to an increased microvascular density.

  10. Have you got any cholesterol? Adults' views of human nutrition

    NASA Astrophysics Data System (ADS)

    Schibeci, Renato; Wong, Khoon Yoong

    1994-12-01

    The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper.

  11. Encephalitis-Associated Human Metapneumovirus Pneumonia in Adult, Australia.

    PubMed

    Fok, Anthony; Mateevici, Cristina; Lin, Belinda; Chandra, Ronil V; Chong, Victor H T

    2015-11-01

    Human metapneumovirus pneumonia, most commonly found in children, was diagnosed in an adult with encephalitis. This case suggests that testing for human metapneumovirus RNA in nasopharyngeal aspirate and cerebrospinal fluid samples should be considered in adults with encephalitis who have a preceding respiratory infection.

  12. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    ERIC Educational Resources Information Center

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  13. Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.

    PubMed

    Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina

    2016-01-01

    Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion.

  14. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  15. A novel skull registration based on global and local deformations for craniofacial reconstruction.

    PubMed

    Deng, Qingqiong; Zhou, Mingquan; Shui, Wuyang; Wu, Zhongke; Ji, Yuan; Bai, Ruyi

    2011-05-20

    Craniofacial reconstruction is important in forensic identification. It aims to estimate a facial appearance for human skeletal remains using the relationship between the soft tissue and the underlying bone structure. Various computerized methods have been developed in recent decades. An effective way is to deform a reference skull to the discovered skull, and then apply the same deformation to the skin associated with the reference skull to provide an approximate face for the discovered skull. For this method, the better the two skulls match each other, the more face-like the reconstructed skin surface will be. In this paper, we present a novel skull registration method that can match the two skulls closely, so as to improve the accuracy of the reconstruction. It combines both global and local deformations. A generic thin-plate spline (TPS)-based deformation, which is global, is applied first to roughly align the two skulls based on two groups of manually defined landmarks. Afterwards, the two skulls are largely matched, except some regions, on which some new landmarks are automatically marked. A compact support radial basis functions (CSRBF)-based deformation, which is local, will then be performed on these regions to adjust the initial alignment of the two skulls. Such adjustment can be repeatedly implemented until the two skulls have optimal alignment. In addition, all the skulls and face involved in the registration are represented by their single outer surfaces to facilitate the reconstruction procedure. The experiments demonstrate that our method can create a plausible face even when the reference skull is very different from the discovered skull. As a result, we can make full use of our database to provide multiple estimates for a principle components analysis (PCA) for the final reconstruction.

  16. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates...

  17. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates...

  18. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates...

  19. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates...

  20. 21 CFR 882.4750 - Skull punch.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates...

  1. The dynamics of adult neurogenesis in human hippocampus

    PubMed Central

    Ihunwo, Amadi O.; Tembo, Lackson H.; Dzamalala, Charles

    2016-01-01

    The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans. At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data. PMID:28197172

  2. Detecting occlusion inside a ventricular catheter using photoacoustic imaging through skull

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Guo, Xiaoyu; Taylor, Russell H.; Kang, Jin U.; Boctor, Emad M.

    2014-03-01

    Ventricular catheters are used to treat hydrocephalus by diverting the excess of the cerebrospinal fluid (CSF) to the reabsorption site so as to regulate the intracranial pressure. The failure rate of these shunts is extremely high due to the ingrown tissue that blocks the CSF flow. We have studied a method to image the occlusion inside the shunt through the skull. In this approach the pulsed laser light coupled to the optical fiber illuminate the occluding tissue inside the catheter and an external ultrasound transducer is applied to detect the generated photoacoustic signal. The feasibility of this method is investigated using a phantom made of ovis aries brain tissue and adult human skull. We were able to image the target inside the shunt located 20mm deep inside the brain through about 4mm thick skull bone. This study could lead to the development of a simple, safe and non-invasive device for percutaneous restoration of patency to occluded shunts. This will eliminate the need of the surgical replacement of the occluded catheters which expose the patients to risks including hemorrhage and brain injury.

  3. Automatic skull-stripping of rat MRI/DTI scans and atlas building

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Lee, Joohwi; Budin, Francois; Rumple, Ashley; McMurray, Matthew; Ehlers, Cindy; Crews, Fulton; Johns, Josephine; Styner, Martin

    2011-03-01

    3D Magnetic Resonance (MR) and Diffusion Tensor Imaging (DTI) have become important noninvasive tools for the study of animal models of brain development and neuropathologies. Fully automated analysis methods adapted to rodent scale for these images will allow highthroughput studies. A fundamental first step for most quantitative analysis algorithms is skullstripping, which refers to the segmentation of the image into two tissue categories, brain and non-brain. In this manuscript, we present a fully automatic skull-stripping algorithm in an atlasbased manner. We also demonstrate how to either modify an external atlas or to build an atlas from the population itself to present a self-contained approach. We applied our method to three datasets of rat brain scans, at different ages (PND5, PND14 and adult), different study groups (control, ethanol exposed, intrauterine cocaine exposed), as well as different image acquisition parameters. We validated our method by comparing the automated skull-strip results to manual delineations performed by our expert, which showed a discrepancy of less than a single voxel on average. We thus demonstrate that our algorithm can robustly and accurately perform the skull-stripping within one voxel of the manual delineation, and in a fraction of the time it takes a human expert.

  4. Solitary plasmocytoma of the skull.

    PubMed

    Gürbüz, Mehmet Sabri; Akmil, Mehmet Ufuk; Akar, Ezgi; Aker, Fügen Vardar

    2013-08-08

    A 63-year-old man presented with a 4-month history of a slowly growing soft mass at his right parieto-occipital region. Neuroradiological examinations revealed an osteolytic extradural tumour of the skull vault. The outer and inner tables of the skull were partially destroyed by the tumour, but the dura was not involved. The tumour and the invaded bone were totally removed and the skull defect was reconstructed using the outer table of the adjacent intact skull. Histopathological examination confirmed plasmocytoma. Laboratory investigations revealed no systemic myelomatosis. It is very important to differentiate solitary plasmocytoma from systemic myelomatosis since their treatment and prognosis are different. Although the prognosis of solitary plasmocytoma is good, regular follow-up examinations are required for any possibility to progress to systemic myelomatosis.

  5. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul

    2017-04-01

    Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens.

  6. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  7. Adult human neurogenesis: from microscopy to magnetic resonance imaging.

    PubMed

    Sierra, Amanda; Encinas, Juan M; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.

  8. Definition of topographic organization of skull profile in normal population and its implications on the role of sutures in skull morphology.

    PubMed

    Pirouzmand, Farhad; Muhajarine, Nazeem

    2008-01-01

    The geometric configuration of the skull is complex and unique to each individual. This study provides a new technique to define the outline of skull profile and attempt to find the common factors defining the ultimate skull configuration in adult population. Ninety-three lateral skull x-ray from the computed tomographic scan films were selected and digitized. The lateral skull surface was divided into 3 regions based on the presumed location of the coronal and lambdoid sutures. Three main curvatures (frontal, parietal, occipital) were consistently identified to overlap the skull periphery. The radius, cord length, and inclination of each curvature were measured. The average values for 3 defined curvatures of the skull profile were recorded. Factor analysis of the measured values produced 3 factors explaining the skull profile. The first factor explained 32% of total variance and was related to the overall size of the head as represented by total length and the radius of the curvature in the vertex and back of the head. The second factor covered 26% of the variance representing the inverse correlation between the angle of the frontal and parietal curves. The third factor revealed the direct correlation of the occipital and parietal angle. In all of these factors, the frontal zone variation was independent or opposite of the parieto-occipital zone. A strong association between the total length of the skull, occipital curve radius, and length with the sex was shown. In conclusion, the skull profile topography has large variation and can be defined mathematically by 2 distinct territories: frontal and parieto-occipital zones. These territories hinge on the coronal suture. Therefore, the coronal suture may play a dominant role in final skull configuration.

  9. Development of the cetacean nasal skull.

    PubMed

    Klima, M

    1999-01-01

    The adaptation of cetaceans to aquatic life habits is reflected, in their nasal region, in three marked changes from the original relations found in land mammals. These changes include (1) the loss of the sense of smell, (2) translocation of the nostrils from the tip of the rostrum to the vertex of the head, and (3) elongation of the anterior head to form a rostrum protruding far towards anterior. The morphogenetic processes taking place during embryogenesis of the nasal skull play a decisive part in the development of all these changes. The lateral parts of the embryonic nasal capsule, encompassing the nasal passages, change their position from horizontal to vertical. At the same time, the structures of the original nasal floor (the solum nasi) are shifted in front of the nasal passages towards the rostrum. The structures of the original nasal roof (the tectum nasi) and of the nasal side wall (the paries nasi) are translocated behind the nasal passages towards the neurocranium. The medial nasal septum (the septum nasi) mostly loses its connection to the nasal passages and is produced into a point protruding far towards anterior. The transformed embryonic nasal skull of the Cetacea can be divided into three sections: 1. The median structures. These include the cartilaginous structures, viz., the rostrum nasi, the septum interorbitale and the spina mesethmoidalis, which are accompanied by the dermal bones, the vomer and the praemaxillare. In adult cetaceans the rostrum nasi is mostly preserved as a robust cartilage of the skull, which may possibly serve as a sound transmitting structure of the sonar system, or it may be responsible for the sensing of water streams and vibrations. 2. The posterior side wall structures. These include the following cartilaginous structures that are mostly heavily reduced or mutually fused: the cupula nasi anterior, the tectum nasi, the lamina cribrosa, the paries nasi, the commissura orbitonasalis, the cupula nasi posterior, the

  10. A rapid and reversible skull optical clearing method for monitoring cortical blood flow

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhao, Yanjie; Shi, Rui; Zhu, Dan

    2016-03-01

    In vivo cortex optical imaging is of great important for revealing both structural and functional architecture of brain with high temporal-spatial resolution. To reduce the limitation of turbid skull, researchers had to establish various skull windows or directly expose cortex through craniotomy. Here we developed a skull optical clearing method to make skull transparent. Laser speckle contrast imaging technique was used to monitor the cortical blood flow after topical treatment with the optical clearing agents. The results indicated that the image contrast increased gradually, and then maintained at a high level after 15 min for adult mice, which made the image quality and resolution of micro-vessels nearly approximate to those of exposed cortex. Both the cortical blood flow velocity almost kept constant after skull became transparent. Besides, the treatment of physiological saline on the skull could make skull return to the initial state again and the skull could become transparent again when SOCS retreated it. Thus, we could conclude that the skull optical clearing method was rapid, valid, reversible and safe, which provided us available approach for performing the cortical structural and functional imaging at high temporal-spatial resolution.

  11. Contributions to the functional morphology of caudate skulls: kinetic and akinetic forms

    PubMed Central

    Handschuh, Stephan; Lukanov, Simeon; Naumov, Borislav

    2016-01-01

    A strongly ossified and rigid skull roof, which prevents parietal kinesis, has been reported for the adults of all amphibian clades. Our μ-CT investigations revealed that the Buresch’s newt (Triturus ivanbureschi) possess a peculiar cranial construction. In addition to the typical amphibian pleurokinetic articulation between skull roof and palatoquadrate associated structures, we found flexible connections between nasals and frontals (prokinesis), vomer and parasphenoid (palatokinesis), and between frontals and parietals (mesokinesis). This is the first description of mesokinesis in urodelans. The construction of the skull in the Buresch’s newts also indicates the presence of an articulation between parietals and the exocipitals, discussed as a possible kind of metakinesis. The specific combination of pleuro-, pro-, meso-, palato-, and metakinetic skull articulations indicate to a new kind of kinetic systems unknown for urodelans to this date. We discuss the possible neotenic origin of the skull kinesis and pose the hypothesis that the kinesis in T. ivanbureschi increases the efficiency of fast jaw closure. For that, we compared the construction of the skull in T. ivanbureschi to the akinetic skull of the Common fire salamander Salamandra salamandra. We hypothesize that the design of the skull in the purely terrestrial living salamander shows a similar degree of intracranial mobility. However, this mobility is permitted by elasticity of some bones and not by true articulation between them. We comment on the possible relation between the skull construction and the form of prey shaking mechanism that the species apply to immobilize their victims. PMID:27688958

  12. Developing Resourceful Humans. Adult Education within the Economic Context.

    ERIC Educational Resources Information Center

    Burton, Lynn Elen, Ed.

    This book, which explores the shifting paradigm from human resource development to developing resourceful humans, establishes the historical position of adult education within the economic context, discusses human capital propositions, and examines the learning dimensions of economic and educational change. The following chapters are included:…

  13. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.

    PubMed

    Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T

    2014-08-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development.

  14. Adult Literacy Education and Human Rights: A View from Afghanistan

    ERIC Educational Resources Information Center

    Andersen, Susan M.; Kooij, Christina S.

    2007-01-01

    In this article, we argue that adult literacy as part of international development is an issue of both human rights and women's rights. We explore this by presenting a case study of the effects of one innovative adult literacy program in Afghanistan that places men and women, as well as various ethnicities, together in the same classroom as…

  15. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here.

  16. A comparative study of bifidobacteria in human babies and adults

    PubMed Central

    KHONSARI, Shadi; SUGANTHY, Mayuran; BURCZYNSKA, Beata; DANG, Vu; CHOUDHURY, Manika; PACHENARI, Azra

    2015-01-01

    The composition and diversity of the gut microbiota are known to be different between babies and adults. The aim of this project was to compare the level of bifidobacteria between babies and adults and to investigate the influence of lifestyle factors on the level of this bacterium in the gut. During this study, the levels of bifidobacteria in 10 human babies below 2 years of age were compared with that of 10 human adults above 40 years. The level of bifidobacteria proved to be significantly higher in babies in comparison with adults. This investigation concluded that a combination of several factors, such as age, diet, and BMI, has an important effect on the level of bifidobacteria in adults, while in babies, a combination of diet and age may influence the level of intestinal bifidobacteria. PMID:27200263

  17. Skull base approaches in neurosurgery

    PubMed Central

    2010-01-01

    The skull base surgery is one of the most demanding surgeries. There are different structures that can be injured easily, by operating in the skull base. It is very important for the neurosurgeon to choose the right approach in order to reach the lesion without harming the other intact structures. Due to the pioneering work of Cushing, Hirsch, Yasargil, Krause, Dandy and other dedicated neurosurgeons, it is possible to address the tumor and other lesions in the anterior, the mid-line and the posterior cranial base. With the transsphenoidal, the frontolateral, the pterional and the lateral suboccipital approach nearly every region of the skull base is exposable. In the current state many different skull base approaches are described for various neurosurgical diseases during the last 20 years. The selection of an approach may differ from country to country, e.g., in the United States orbitozygomaticotomy for special lesions of the anterior skull base or petrosectomy for clivus meningiomas, are found more frequently than in Europe. The reason for writing the review was the question: Are there keyhole approaches with which someone can deal with a vast variety of lesions in the neurosurgical field? In my opinion the different surgical approaches mentioned above cover almost 95% of all skull base tumors and lesions. In the following text these approaches will be described. These approaches are: 1) pterional approach 2) frontolateral approach 3) transsphenoidal approach 4) suboccipital lateral approach These approaches can be extended and combined with each other. In the following we want to enhance this philosophy. PMID:20602753

  18. [Iatrogenic evolutive skull fracture (author's transl)].

    PubMed

    Villarejo, F; Pascual Castroviejo, I; Dabdoub, C; Bordes, M; Jover, P

    1977-03-01

    A case of growing skull fracture secondary to a maxilofacial operation is reported. Frequency, clinical symptoms, phisiopathology and treatment of growing skull fractures are reviewed and the rarity of the iatrogenic mechanism is stressed.

  19. Normal anatomy of the skull base.

    PubMed

    Lustrin, E S; Robertson, R L; Tilak, S

    1994-08-01

    CT and MR imaging increasingly are being used for the evaluation of the skull base. New innovative techniques have revolutionized radiologic understanding of normal skull base anatomy. Thus, normal anatomic relationships with radiographic correlation are vital for accurate pathologic assessment.

  20. Growing skull fracture in a red-tailed hawk (Buteo jamaicensis).

    PubMed

    Rush, E Marie; Shores, Andrew; Meintel, Sarah; Hathcock, John T

    2014-09-01

    Growing skull fractures have been reported in humans for many years, usually resulting from injury to the soft skull during the rapid growth period of an infant's life. Nestling raptors have thin, fragile skulls, a rapid growth rate, and compete aggressively for food items. Skull trauma may occur, which may lead to the development of a growing skull fracture. Growing skull fractures may be under-diagnosed in raptor rehabilitation facilities that do not have access to advanced technologic equipment. Three-dimensional (3-D) computed tomography was used to diagnose a growing skull fracture in a red-tailed hawk (Buteo jamaicensis). The lesion was surgically repaired and the animal was eventually returned to the wild. This is the first report of a growing skull fracture in an animal. In this case, 3-D computed topographic imaging was utilized to diagnose a growing skull fracture in a red-tailed hawk, surgical repair was performed, and the bird recovered completely and was ultimately released.

  1. Humanities and the Adult Learner in an Information Society.

    ERIC Educational Resources Information Center

    Myers, Dale; Kamholtz, Jonathan

    Humanities courses have often been given little attention in continuing education for adults, possibly because they have been viewed as not "practical" or not "job-oriented" enough in our career-oriented, technologically advanced society. However, the humanities should be an integral part of our culture and of the lives of…

  2. Evaluation of discriminant functions for sexing skulls from visually assessed traits applied in the Rainer Osteological Collection (Bucharest, Romania).

    PubMed

    Soficaru, A; Constantinescu, M; Culea, M; Ionică, C

    2014-12-01

    The sexing of human skeletal remains based on visual scoring of descriptive traits on the skull is useful for both forensic and bioarchaeological studies, given that many such features preserve well in the field and can be assessed quickly. The goal of our work is to evaluate the accuracy of this method on an age-balanced, known sex, random sample of 360 modern adult crania in the Rainer Osteological Collection. Consistent with Walker (2008), we scored glabella area (G), the mastoid process (Ma), the mental eminence (M), the orbital edge (O) and the nuchal crest (N), on a five-point scale. We generated sex discriminant functions (logistic), selected the most accurate of them, and subsequently applied them to archaeological samples from Romania. Each skull feature showed significant score differences by sex. Eight out of 31 discriminant functions passed criteria of high accuracy (∼90%), sex bias (±2%), and ease of use (direct calculation of sex). The best estimates were obtained for the 30-60 age groups. Further testing these functions on six archaeological samples showed high percentages of agreement with the sex assessed on the coxal bone. The study also indicated that, although easy to learn by novices, the method of visually scoring the skull traits depends on prior experience with human osteology. The accuracy of the method may be influenced by geographical and historical differences which are bound to exist between populations.

  3. Imaging of the Posterior Skull Base.

    PubMed

    Job, Joici; Branstetter, Barton F

    2017-01-01

    The posterior skull base can be involved by a variety of pathologic processes. They can be broadly classified as: traumatic, neoplastic, vascular, and inflammatory. Pathology in the posterior skull base usually involves the lower cranial nerves, either as a source of pathology or a secondary source of symptoms. This review will categorize pathology arising in the posterior skull base and describe how it affects the skull base itself and surrounding structures.

  4. Skull-photo superimposition and border deaths: identification through exclusion and the failure to exclude.

    PubMed

    Fenton, Todd W; Heard, Amber N; Sauer, Norman J

    2008-01-01

    We report on the application of video skull-photo superimposition as an identification method in a case from Ajo, Arizona in which five individuals died after crossing into southern Arizona from Mexico. Initial analyses at the Pima County Forensic Science Center in Tucson, Arizona determined that the disarticulated skeletal remains represented two adult Hispanic males and three adult Hispanic females. Based on biological profiles, both the males and one of the females were tentatively identified and assigned names. The other two females were too similar in age and height, making skeletal separation and identification difficult. As a result, the Michigan State University Forensic Anthropology Laboratory assisted in the identification efforts by performing video skull-photo superimposition on the two unknown females. The skulls were compared to a photograph reported to be one of the missing females. By evaluating facial proportionality and by comparing a number of morphological features of the face and skulls, one skull was excluded as a possible match and one skull was not excluded as a match to the antemortem photo. Because this case was presumed to be a closed disaster, the exclusion of one skull and the failure to exclude the other represented circumstantial identifications.

  5. The ontogenetic origins of skull shape disparity in the Triturus cristatus group.

    PubMed

    Cvijanović, Milena; Ivanović, Ana; Kalezić, Miloš L; Zelditch, Miriam L

    2014-09-01

    Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur.

  6. Derivation of the mammalian skull vault

    PubMed Central

    MORRISS-KAY, GILLIAN M.

    2001-01-01

    This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816

  7. Multifocal Eosinophilic Granuloma of Jaws and Skull with Classical and Unusual Radiographic/Imaging Findings

    PubMed Central

    Venkata, Suman; Shaik, Sameulla; Kodadala, Amrutha; Kakarla, Prashanti

    2017-01-01

    Eosinophilic granuloma is basically a disorder of reticuloendothelial system and is one of the variants of langerhans cell histiocytosis. Multifocal eosinophilic granuloma affecting jaws and skull is relatively a rare disorder. We hereby report a case of multifocal eosinophilic granuloma involving mandible, maxilla and several skull bones. The present case has mixture of classical floating teeth appearance and an unusual radiographic/imaging finding of periosteal remodeling, which is rarely seen in adult patients of eosinophilic granuloma and pseudo-multilocular appearance in anterior mandibular region in coronal sections and moth-eaten appearance of skull was appreciated in axial slices of Computed Tomography (CT). PMID:28274065

  8. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  9. An MR-compatible phantom for evaluating the propagation of high intensity focused ultrasound through the skull

    NASA Astrophysics Data System (ADS)

    Hadjisavvas, V.; Mylonas, N.; Ioannides, K.; Damianou, C.

    2012-10-01

    BACKGROUND: In this paper an MR-compatible phantom for evaluating the propagation of high intensity focused ultrasound through the skull is presented. METHODS: The phantom was constructed using the thermoplastic material of ABS. The attenuation of ABS was measured using the transmission-reception method. Knowing the attenuation of human skull, the thickness of the phantom was chosen appropriately so as to achieve the same attenuation effect as in the case of human skull. The phantom was designed using CAD software and then manufactured in a rapid prototyping machine. In order to test the phantom a single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was used. Brain tissue was mimicked either using gel phantoms or freshly excised tissue. RESULTS: The measured temperature due to an ultrasonic exposure with the presence of skull and without the skull was measured. It was found that the propagation of ultrasound through the skull was much better with the 0.5 MHz transducer. The skull phantom was tested also inside an MRI scanner, and we were able to detect temperature using the MRI technique of FSPGR indicating that with low frequency ultrasound propagation through the skull is possible. CONCLUSIONS: The skull phantom is a very successful tool for evaluating the propagation of ultrasound during the presence of skull.

  10. A Meningoencephalocele Caused by a Chronic Growing Skull Fracture in a 76-Year-Old Patient.

    PubMed

    Moudrous, Walid; Boogaarts, Hieronymus D; Grotenhuis, J André

    2016-12-01

    We present a case of a growing skull fracture in adult male, with an interval of 43 years after initial trauma. This finding is extremely rare, especially because growing skull fractures are mostly seen as an uncommon complication of pediatric head trauma with calvarial fracture. In our patient, this finding was incidental, existed for many years, and had no clinical consequences. Therefore, we advised a conservative treatment for our patient.

  11. Relevance of Whitnall's tubercle and auditory meatus in diagnosing exclusions during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd

    2015-08-01

    Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images.

  12. Blunt force trauma to skull with various instruments.

    PubMed

    Sulaiman, Nur Amirah; Osman, Khairul; Hamzah, Noor Hazfalinda; Amir, Sri Pawita Albakri

    2014-04-01

    Deaths due to blunt force trauma to the head as a result of assault are some of the most common cases encountered by the practicing forensic pathologist. Previous studies have shown inflicting injury to the head region is one of the most effective methods of murder. The important factors that determine severity of trauma include the type of weapon used, type and site of skull fracture, intracranial haemorrhage and severity of brain injury. The aim of this study was to determine the characteristics of blunt force trauma to the skull produced by different instruments. Nine adult monkeys (Macaca fascicularis) skulls were used as models. Commonly found blunt objects comprising of Warrington hammer, hockey stick and open face helmet were used in this study. A machine calibrated force generator was used to hold the blunt object in place and to hit the skulls at forces of 12.5N and 25N. Resultant traumatic effects and fractures (linear, depressed, basilar, comminuted, and distastic) were analyzed according to type of blunt object used; surface area of contact and absolute force (N/cm(2)) delivered. Results showed that all investigated instruments were capable of producing similar injuries. The severity of trauma was not related to the surface area of contact with the blunt objects. However, only high absolute forces produced comminuted fractures. These findings were observational, as the samples were too small for statistical conclusions.

  13. Late Pleistocene adult mortality patterns and modern human establishment

    PubMed Central

    Trinkaus, Erik

    2011-01-01

    The establishment of modern humans in the Late Pleistocene, subsequent to their emergence in eastern Africa, is likely to have involved substantial population increases, during their initial dispersal across southern Asia and their subsequent expansions throughout Africa and into more northern Eurasia. An assessment of younger (20–40 y) versus older (>40 y) adult mortality distributions for late archaic humans (principally Neandertals) and two samples of early modern humans (Middle Paleolithic and earlier Upper Paleolithic) provides little difference across the samples. All three Late Pleistocene samples have a dearth of older individuals compared with Holocene ethnographic/historical samples. They also lack older adults compared with Holocene paleodemographic profiles that have been critiqued for having too few older individuals for subsistence, social, and demographic viability. Although biased, probably through a combination of preservation, age assessment, and especially Pleistocene mobility requirements, these adult mortality distributions suggest low life expectancy and demographic instability across these Late Pleistocene human groups. They indicate only subtle and paleontologically invisible changes in human paleodemographics with the establishment of modern humans; they provide no support for a life history advantage among early modern humans. PMID:21220336

  14. Estimation of the skull insertion loss using an optoacoustic point source

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Kneipp, Moritz; Shoham, Shy; Razansky, Daniel

    2016-03-01

    The acoustically-mismatched skull bone poses significant challenges for the application of ultrasonic and optical techniques in neuroimaging, still typically requiring invasive approaches using craniotomy or skull thinning. Optoacoustic imaging partially circumvents the acoustic distortions due to the skull because the induced wave is transmitted only once as opposed to the round trip in pulse-echo ultrasonography. To this end, the mouse brain has been successfully imaged transcranially by optoacoustic scanning microscopy. Yet, the skull may adversely affect the lateral and axial resolution of transcranial brain images. In order to accurately characterize the complex behavior of the optoacoustic signal as it traverses through the skull, one needs to consider the ultrawideband nature of the optoacoustic signals. Here the insertion loss of murine skull has been measured by means of a hybrid optoacoustic-ultrasound scanning microscope having a spherically focused PVDF transducer and pulsed laser excitation at 532 nm of a 20 μm diameter absorbing microsphere acting as an optoacoustic point source. Accurate modeling of the acoustic transmission through the skull is further performed using a Fourier-domain expansion of a solid-plate model, based on the simultaneously acquired pulse-echo ultrasound image providing precise information about the skull's position and its orientation relative to the optoacoustic source. Good qualitative agreement has been found between the a solid-plate model and experimental measurements. The presented strategy might pave the way for modeling skull effects and deriving efficient correction schemes to account for acoustic distortions introduced by an adult murine skull, thus improving the spatial resolution, effective penetration depth and overall image quality of transcranial optoacoustic brain microscopy.

  15. Linking adult hippocampal neurogenesis with human physiology and disease.

    PubMed

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc.

  16. Biomaterials in skull base surgery

    PubMed Central

    Maier, Wolfgang

    2011-01-01

    Reconstruction materials and techniques for the base of the skull have undergone rapid developments and differentiation in recent years. While mostly autotransplants, collagens or resorbable alloplastic materials are preferred for duraplasties, pronounced organ-specific differences can be observed in the reconstruction of hard tissues. The use of polymethylmethacryl bone cement, once wide-spread, has decreased greatly due to the release of toxic monomers. Bony autotransplants are still used primarily for smaller skull-base defects, intraoperatively formable titanium nets may be also used for larger fronto- or laterobasal reconstructions of bony defects. Defects in visible areas are increasingly closed with preformed titanium or ceramic implants, which are planned and fitted to the individual patient using preoperative CT imaging. At the skull base, this applies especially to reconstructions of the frontal sinus. For extensive reconstructions of the orbita, titanium nets and non-resorbable plastics have proven valuable; in closing smaller defects especially of the orbital floor, resorbable implants based on Polyglactin 901 are also used. PMID:22073100

  17. [The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].

    PubMed

    Seemann, Sophie

    2016-01-01

    Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.

  18. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  19. Maps of the adult human hypothalamus

    PubMed Central

    Lemaire, Jean-Jacques; Nezzar, Hachemi; Sakka, Laurent; Boirie, Yves; Fontaine, Denys; Coste, Aurélien; Coll, Guillaume; Sontheimer, Anna; Sarret, Catherine; Gabrillargues, Jean; De Salles, Antonio

    2013-01-01

    The human hypothalamus is a small deeply located region placed at the crossroad of neurovegetative, neuroendocrine, limbic, and optic systems. Although deep brain stimulation techniques have proven that it could be feasible to modulate these systems, targeting the hypothalamus and in particular specific nuclei and white bundles, is still challenging. Our goal was to make a synthesis of relevant topographical data of the human hypothalamus, under the form of magnetic resonance imaging maps useful for mastering its elaborated structure as well as its neighborhood. As from 1.5 Tesla, Inversion-Recovery sequence allows locating the hypothalamus and most of its components. Spotting hypothalamic compartments is possible according to specific landmarks: the anterior commissure, the mammillary bodies, the preoptic recess, the infundibular recess, the crest between the preoptic and the infundibular recesses, the optical tract, the fornix, and the mammillo-thalamic bundle. The identification of hypothalamus and most of its components could be useful to allow the quantification of local pathological processes and to target specific circuitry to alleviate severe symptoms, using physical or biological agents. PMID:23682342

  20. Development of skull fracture criterion based on real-world head trauma simulations using finite element head model.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2016-04-01

    The objective of this study was to enhance an existing finite element (FE) head model with composite modeling and a new constitutive law for the skull. The response of the state-of-the-art FE head model was validated in the time domain using data from 15 temporo-parietal impact experiments, conducted with postmortem human surrogates. The new model predicted skull fractures observed in these tests. Further, 70 well-documented head trauma cases were reconstructed. The 15 experiments and 70 real-world head trauma cases were combined to derive skull fracture injury risk curves. The skull internal energy was found to be the best candidate to predict skull failure based on an in depth statistical analysis of different mechanical parameters (force, skull internal energy), head kinematic-based parameter, the head injury criterion (HIC), and skull fracture correlate (SFC). The proposed tolerance limit for 50% risk of skull fracture was associated with 453mJ of internal energy. Statistical analyses were extended for individual impact locations (frontal, occipital and temporo-parietal) and separate injury risk curves were obtained. The 50% risk of skull fracture for each location: frontal: 481mJ, occipital: 457mJ, temporo-parietal: 456mJ of skull internal energy.

  1. An historical skull collection and its use in forensic odontology and anthropology.

    PubMed

    Sejrsen, B; Lynnerup, N; Hejmadi, M

    2005-12-01

    The Institute of Forensic Medicine, Copenhagen, houses a collection of historical skulls of unclear origin, marked with a general geographic or "racial descriptor". Would these historical skulls be of any value for the forensic odontologist and anthropologist concerned with teaching and casework? We tried to clarify this question by recording non-metric dental traits and by performing craniometric analyses. A morphological and morphometric investigation of anatomical/dental traits in 80 adult skulls was performed. For each skull four non-metric dental traits using the ASU-System and three non-metric cranial traits were recorded. Nineteen cranial measures were also taken following the FORDISC programme manual. The non-metrical data were tabulated as frequencies, and the metric data were entered in the FORDISC programme. Observed non-metric trait frequencies were compared with published data. The FORDISC programme computed a discriminatory analysis for each skull and thereby assigned the skull to the most probable ethnic category. The results for the non-metric traits showed that the traits generally followed the expected frequencies in 80% of the cases. The FORDISC programme correctly assigned ethnicity based on skull measurements in overall 70% of the cases. It was found that this historical collection does show expected dental non-metric and craniometric traits and the collection may be of value in forensic casework in terms of comparison and for teaching purposes.

  2. An accessory skull suture mimicking a skull fracture.

    PubMed

    Wiedijk, J E F; Soerdjbalie-Maikoe, V; Maat, G J R; Maes, A; van Rijn, R R; de Boer, H H

    2016-03-01

    This paper describes an investigation of the sudden and unexpected death of a five-and-a-half-month-old boy. As in every Dutch case of sudden unexpected death in infancy (SUDI), a multidisciplinary diagnostic approach was used. This included post-mortem radiography, showing a linear discontinuity of the parietal bone. Originally this was interpreted as a skull fracture, but autopsy indicated no signs of mechanical trauma. Instead the defect was defined as a unilateral accessory suture of the parietal bone. The initial erroneous diagnosis had severe adverse consequences and thus every health care professional or forensic specialist dealing with paediatric mechanical traumas should be cautious of this rare anomaly.

  3. An investigation into the accuracy and reliability of skull-photo superimposition in a South African sample.

    PubMed

    Gordon, G M; Steyn, M

    2012-03-10

    One of the aims of forensic science is to determine the identities of victims of crime. In some cases the investigators may have ideas as to the identities of the victims and in these situations, ante mortem photographs of the victims could be used in order to try and establish identity through skull-photo superimposition. The aim of this study was to evaluate the accuracy of a newly developed digital photographic superimposition technique on a South African sample of cadaver photographs and skulls. Forty facial photographs were selected and for each photo, 10 skulls (including the skull corresponding to the photo) were used for superimposition. The investigator did not know which of the 10 skulls corresponded to the photograph in question. The skulls were scanned 3-dimensionally, using a Cyberware™ Model 3030 Colour-3D Scanhead scanner. The photos were also scanned. Superimposition was done in 3D Studio Max and involved a morphological superimposition, whereby a skull is superimposed over the photo and assessed for a morphological match. Superimposition using selected anatomical landmarks was also performed to assess the match. A total of 400 skull-photo superimpositions were carried out using the morphological assessment and another 400 using the anatomical landmarks. In 85% of cases the correct skull was included in the possible matches for a particular photo using morphological assessment. However, in all of these cases, between zero and three other skulls out of 10 possibilities could also match a specific photo. In the landmark based assessment, the correct skull was included in 80% of cases. Once again, however, between one and seven other skulls out of 10 possibilities also matched the photo. This indicates that skull-photo superimposition has limited use in the identification of human skeletal remains, but may be useful as an initial screening tool. Corroborative techniques should also be used in the identification process.

  4. Typical external skull beveling wound unlinked with a gunshot.

    PubMed

    Delannoy, Y; Colard, T; Becart, A; Tournel, G; Gosset, D; Hedouin, V

    2013-03-10

    Lesions of the cranial vault resulting from firearms are traditionally described in forensic medical literature with many reports illustrating atypical bone lesions carried out to the skull by gunshot wounds. The authors present this report which illustrates an external beveled skull wound, associated with internal beveling damage, caused by a stabbing injury. A partially buried human skeleton was found in a forest. The examining of the skull revealed a hole resembling the exit wound caused by a bullet and two other smaller stab wounds. No typical entering bullet wound and no other bone lesions were found. During the course of the investigation, one of the perpetrators admitted to hitting the victim, using a sickle, and to hiding the body. For this purpose, he dragged the corpse with the sickle still implanted in the skull, using it as a hook. Upon retrieving the sickle, a piece of cranial vault was removed, thus creating an external beveled wound. In order to identify the mechanism which brought about this kind of lesion, experimental work was carried out on a human skull. In this particular case, the tip of the sickle penetrated into the bone, creating a lesion that would typically be produced with a stabbing instrument when applied with vertical force. When the body was dragged, using the sickle as a hook, this was a hand-produced vertical force, which was applied in the opposite direction. It caused the tearing of a piece of bone and the creation of an outer bevel. This atypical lesion should be made known to medical examiners and pathologists in order to help investigating and understanding of the circumstances of injuries.

  5. The Ardipithecus ramidus skull and its implications for hominid origins.

    PubMed

    Suwa, Gen; Asfaw, Berhane; Kono, Reiko T; Kubo, Daisuke; Lovejoy, C Owen; White, Tim D

    2009-10-02

    The highly fragmented and distorted skull of the adult skeleton ARA-VP-6/500 includes most of the dentition and preserves substantial parts of the face, vault, and base. Anatomical comparisons and micro-computed tomography-based analysis of this and other remains reveal pre-Australopithecus hominid craniofacial morphology and structure. The Ardipithecus ramidus skull exhibits a small endocranial capacity (300 to 350 cubic centimeters), small cranial size relative to body size, considerable midfacial projection, and a lack of modern African ape-like extreme lower facial prognathism. Its short posterior cranial base differs from that of both Pan troglodytes and P. paniscus. Ar. ramidus lacks the broad, anteriorly situated zygomaxillary facial skeleton developed in later Australopithecus. This combination of features is apparently shared by Sahelanthropus, showing that the Mio-Pliocene hominid cranium differed substantially from those of both extant apes and Australopithecus.

  6. Aspergillus Osteomyelitis of the Skull.

    PubMed

    Nicholson, Simon; King, Richard; Chumas, Paul; Russell, John; Liddington, Mark

    2016-07-01

    Osteomyelitis of the craniofacial skeleton is rare, with fungal pathogens least commonly implicated. The authors present 2 patients of osteomyelitis of the skull caused by Aspergillus spp. and discuss the diagnosis, clinicopathological course, and management strategies.Late recurrence seen in this type of infection warrants long-term follow-up and a high index of suspicion for the clinical signs associated with recurrence.Such patients would benefit from their surgical debridement being planned and managed via a specialist craniofacial unit, so as to utilize the most aesthetically sensitive approach and the experience of specialists from several surgical disciplines.

  7. Differences between direct (anthropometric) and indirect (cephalometric) measurements of the skull.

    PubMed

    Farkas, Leslie G; Tompson, Bryan D; Katic, Marko J; Forrest, Christopher R

    2002-01-01

    This study sought to determine the relative reliability of indirect cephalometric measurements and direct anthropometric ones taken in norma frontalis of 25 dry adult human skulls. Six of the 11 linear projective measurements were singular and located in the orbital, middle, and lower parts of the face, with two from each part. Two of the five paired measurements were taken in the orbital region on both sides, and the other three were taken in the middle to lower face between the midpoint of the facial axis and the landmarks lateral to it. Both singular and paired cephalometric distances were significantly shorter than the anthropometric distances. Mean numerical differences were much greater in paired measurements than in singular ones. The differences between these two sets of findings are a result of the uneven position of the landmarks used for measurement, located, as they are, on different planes of the face. These differences are undetectable by two-dimensional cephalograms.

  8. Quality-of-Life after Anterior Skull Base Surgery: A Systematic Review

    PubMed Central

    Kirkman, Matthew A.; Borg, Anouk; Al-Mousa, Alaa; Haliasos, Nikolaos; Choi, David

    2013-01-01

    Background Improved treatment and survival of patients with skull base tumors has made the assessment of quality-of-life (QoL) in this population increasingly important. This article provides a comprehensive systematic review pertaining to QoL assessment in adults undergoing anterior skull base surgery. Methods We performed a literature search using the electronic databases of Ovid Medline and Embase. Additional articles were identified through a search using the phrase anterior skull base. Further articles were sought through hand-searching relevant journals and reference lists of identified articles. Results Our search strategy identified 29 articles for inclusion in our systematic review, with considerable variation between studies in population characteristics, methodological design and quality, follow-up length, and outcome assessment. The most commonly used QoL tools were the Karnofsky Performance Status and the Anterior Skull Base Questionnaire. QoL following anterior skull base surgery appears to improve beyond preoperative levels in the months after surgery. For patients undergoing endoscopic skull base surgery, the gain in QoL appears to be greater and may manifest earlier, with no clear long-term deleterious effect on sinonasal outcomes compared with open surgery. Conclusions QoL after anterior skull base surgery in adults appears to improve within several months of surgery, but earlier and to a larger extent if the endoscopic approach is used. Given the relative paucity and heterogeneity of anterior skull base tumors, large-scale prospective multicentre studies utilizing valid and reliable multidimensional QoL tools are required. This may result in improved patient care, by understanding patients' needs better and facilitating the provision of reliable outcome data for clinical trials. PMID:24719794

  9. Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta).

    PubMed

    Tanner, Jaime B; Zelditch, Miriam L; Lundrigan, Barbara L; Holekamp, Kay E

    2010-03-01

    Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas (Crocuta crocuta) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual "role-reversed" pattern of

  10. Bacteriology of moderate (chronic) periodontitis in mature adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Cato, E P; Smibert, R M; Burmeister, J A; Ranney, R R

    1983-01-01

    A total of 171 taxa was represented among 1,900 bacterial isolates from 60 samples of sites affected with moderate periodontitis in 22 mature adult humans. The composition of the subgingival sulcus flora was statistically significantly different from that of the adjacent supragingival flora and the subgingival flora of 14 people with healthy gingiva, but was not significantly different from that of sulci affected with severe periodontitis in 21 young human adults. The sulcus floras of moderate periodontitis and severe periodontitis shared many of their predominant bacterial species, but there were differences in the relative proportions of some of these species. Similar relationships were found for seven taxa of treponemes that were cultured from the samples. PMID:6642641

  11. Skull base tumours Part II. Central skull base tumours and intrinsic tumours of the bony skull base.

    PubMed

    Borges, Alexandra

    2008-06-01

    With the advances of cross-sectional imaging radiologists gained an increasing responsibility in the management of patients with skull base pathology. As this anatomic area is hidden to clinical exam, surgeons and radiation oncologists have to rely on imaging studies to plan the most adequate treatment. To fulfil these endeavour radiologists need to be knowledgeable about skull base anatomy, about the main treatment options available, their indications and contra-indications and needs to be aware of the wide gamut of pathologies seen in this anatomic region. This article will provide a radiologists' friendly approach to the central skull base and will review the most common central skull base tumours and tumours intrinsic to the bony skull base.

  12. Lymphatic Stomata in the Adult Human Pulmonary Ligament

    PubMed Central

    Miura, Masahiro; Iobe, Hiroaki; Kudo, Tomoo; Shimazu, Yoshihito; Aoba, Takaaki; Okudela, Koji; Nagahama, Kiyotaka; Sakamaki, Kentaro; Yoshida, Maki; Nagao, Toshitaka; Nakaya, Takeo; Kurata, Atsushi; Ohtani, Osamu

    2015-01-01

    Abstract Background: Lymphatic stomata are small lymphatic openings in the serosal membrane that communicate with the serosal cavity. Although these stomata have primarily been studied in experimental mammals, little is known concerning the presence and properties of lymphatic stomata in the adult human pleura. Thus, adult human pleurae were examined for the presence or absence of lymphatic stomata. Methods and Results: A total of 26 pulmonary ligaments (13 left and 13 right) were obtained from 15 adult human autopsy cases and examined using electron and light microscopy. The microscopic studies revealed the presence of apertures fringed with D2-40-positive, CD31-positive, and cytokeratin-negative endothelial cells directly communicating with submesothelial lymphatics in all of the pulmonary ligaments. The apertures' sizes and densities varied from case to case according to the serial tissue section. The medians of these aperture sizes ranged from 2.25 to 8.75 μm in the left pulmonary ligaments and from 2.50 to 12.50 μm in the right pulmonary ligaments. The densities of the apertures ranged from 2 to 9 per mm2 in the left pulmonary ligaments and from 2 to 18 per mm2 in the right pulmonary ligaments. However, no significant differences were found regarding the aperture size (p=0.359) and density (p=0.438) between the left and the right pulmonary ligaments. Conclusions: Our study revealed that apertures exhibit structural adequacy as lymphatic stomata on the surface of the pulmonary ligament, thereby providing evidence that lymphatic stomata are present in the adult human pleura. PMID:25526320

  13. Heritability of human cranial dimensions: comparing the evolvability of different cranial regions

    PubMed Central

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel

    2009-01-01

    Quantitative craniometrical traits have been successfully incorporated into population genetic methods to provide insight into human population structure. However, little is known about the degree of genetic and non-genetic influences on the phenotypic expression of functionally based traits. Many studies have assessed the heritability of craniofacial traits, but complex patterns of correlation among traits have been disregarded. This is a pitfall as the human skull is strongly integrated. Here we reconsider the evolutionary potential of craniometric traits by assessing their heritability values as well as their patterns of genetic and phenotypic correlation using a large pedigree-structured skull series from Hallstatt (Austria). The sample includes 355 complete adult skulls that have been analysed using 3D geometric morphometric techniques. Heritability estimates for 58 cranial linear distances were computed using maximum likelihood methods. These distances were assigned to the main functional and developmental regions of the skull. Results showed that the human skull has substantial amounts of genetic variation, and a t-test showed that there are no statistically significant differences among the heritabilities of facial, neurocranial and basal dimensions. However, skull evolvability is limited by complex patterns of genetic correlation. Phenotypic and genetic patterns of correlation are consistent but do not support traditional hypotheses of integration of the human shape, showing that the classification between brachy- and dolicephalic skulls is not grounded on the genetic level. Here we support previous findings in the mouse cranium and provide empirical evidence that covariation between the maximum widths of the main developmental regions of the skull is the dominant factor of integration in the human skull. PMID:19166470

  14. Doublecortin expression in the normal and epileptic adult human brain.

    PubMed

    Liu, Y W J; Curtis, M A; Gibbons, H M; Mee, E W; Bergin, P S; Teoh, H H; Connor, B; Dragunow, M; Faull, R L M

    2008-12-01

    Mesial temporal lobe epilepsy (MTLE) is a neurological disorder associated with spontaneous recurrent complex partial seizures and hippocampal sclerosis. Although increased hippocampal neurogenesis has been reported in animal models of MTLE, increased neurogenesis has not been reported in the hippocampus of adult human MTLE cases. Here we showed that cells expressing doublecortin (Dcx), a microtubule-associated protein expressed in migrating neuroblasts, were present in the hippocampus and temporal cortex of the normal and MTLE adult human brain. In particular, increased numbers of Dcx-positive cells were observed in the epileptic compared with the normal temporal cortex. Importantly, 56% of Dcx-expressing cells in the epileptic temporal cortex coexpressed both the proliferative cell marker, proliferating cell nuclear antigen and early neuronal marker, TuJ1, suggesting that they may be newly generated neurons. A subpopulation of Dcx-positive cells in the epileptic temporal cortex also coexpressed the mature neuronal marker, NeuN, suggesting that epilepsy may promote the generation of new neurons in the temporal cortex. This study has identified, for the first time, a novel population of Dcx-positive cells in the adult human temporal cortex that can be upregulated by epilepsy and thus, raises the possibility that these cells may have functional significance in the pathophysiology of epilepsy.

  15. Covert spatial attention is functionally intact in amblyopic human adults

    PubMed Central

    Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-01-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433

  16. The nutrition intervention improved adult human capital and economic productivity.

    PubMed

    Martorell, Reynaldo; Melgar, Paul; Maluccio, John A; Stein, Aryeh D; Rivera, Juan A

    2010-02-01

    This article reviews key findings about the long-term impact of a nutrition intervention carried out by the Institute of Nutrition of Central America and Panama from 1969 to 1977. Results from follow-up studies in 1988-89 and 2002-04 show substantial impact on adult human capital and economic productivity. The 1988-89 study showed that adult body size and work capacity increased for those provided improved nutrition through age 3 y, whereas the 2002-04 follow-up showed that schooling was increased for women and reading comprehension and intelligence increased in both men and women. Participants were 26-42 y of age at the time of the 2002-04 follow-up, facilitating the assessment of economic productivity. Wages of men increased by 46% in those provided with improved nutrition through age 2 y. Findings for cardiovascular disease risk factors were heterogeneous; however, they suggest that improved nutrition in early life is unlikely to increase cardiovascular disease risk later in life and may indeed lower risk. In conclusion, the substantial improvement in adult human capital and economic productivity resulting from the nutrition intervention provides a powerful argument for promoting improvements in nutrition in pregnant women and young children.

  17. CCM2 expression during prenatal development and adult human neocortex.

    PubMed

    Tanriover, Gamze; Sozen, Berna; Gunel, Murat; Demir, Necdet

    2011-08-01

    Cerebral cavernous malformation (CCM) is one of the most common types of vascular malformations of the central nervous system, affecting nearly one in 200 people. CCM lesions are characterized by grossly dilated vascular channels lined by a single layer of endothelium. Genetic linkage analyses have mapped three CCM loci to CCM1, CCM2 and CCM3. All three causative genes have now been identified allowing new insights into CCM pathophysiology. We focused on the CCM2 protein that might take place in blood vessel formation; we report here the expression patterns of CCM2 in prenatal development and adult human neocortex by means of immunohistochemistry and Western blot analysis. CCM2 was obviously detected in vascular endothelium and neuroglial precursor cells during development and also observed in arterial endothelium, neurons, some of the glial cells in adult neocortex. The expression patterns suggest that it could be one of the arterial markers whether this is a cause or a consequence of an altered vascular identity. CCM2 might play a role during vasculogenesis and angiogenesis during human brain development. Furthermore, with this study, CCM2 have been described for the first time in developing human neocortex.

  18. A Comparative Taphonomic Analysis of 24 Trophy Skulls from Modern Forensic Cases().

    PubMed

    Yucha, Josephine M; Pokines, James T; Bartelink, Eric J

    2017-02-01

    Cranial remains retained from fallen enemies are commonly referred to as "trophy skulls," and many such crania were acquired as souvenirs by U.S. servicemembers during WWII and the Vietnam conflict. These remains increasingly have become the subject of forensic anthropological analysis as their possessors, typically veterans or their relatives, try to discard or repatriate them. The present research uses a qualitative analytical approach to review 24 cases of reported trophy skulls (14 previously unpublished cases and 10 from the literature) to determine which perimortem and postmortem characteristics are most useful for generating a taphonomic profile. Overall, the taphonomic signature of trophy remains includes traits relating to acquisition and preparation, ornamental display, and subsequent curation. Contextual evidence and the biological profile also are considered when determining the possible origin of human cranial remains as a trophy skull. Thorough taphonomic analysis will aid in identifying these types of remains as trophy skulls.

  19. A new skull of early Homo from Dmanisi, Georgia.

    PubMed

    Vekua, Abesalom; Lordkipanidze, David; Rightmire, G Philip; Agusti, Jordi; Ferring, Reid; Maisuradze, Givi; Mouskhelishvili, Alexander; Nioradze, Medea; De Leon, Marcia Ponce; Tappen, Martha; Tvalchrelidze, Merab; Zollikofer, Christoph

    2002-07-05

    Another hominid skull has been recovered at Dmanisi (Republic of Georgia) from the same strata in which hominid remains have been reported previously. The Dmanisi site dated to approximately 1.75 million years ago has now produced craniofacial portions of several hominid individuals, along with many well-preserved animal fossils and quantities of stone artifacts. Although there are certain anatomical differences among the Dmanisi specimens, the hominids do not clearly represent more than one taxon. We assign the new skull provisionally to Homo erectus (=ergaster). The Dmanisi specimens are the most primitive and small-brained fossils to be grouped with this species or any taxon linked unequivocally with genus Homo and also the ones most similar to the presumed habilis-like stem. We suggest that the ancestors of the Dmanisi population dispersed from Africa before the emergence of humans identified broadly with the H. erectus grade.

  20. Primary Intraosseous Cavernous Hemangioma in the Skull

    PubMed Central

    Yang, Yi; Guan, Jian; Ma, Wenbin; Li, Yongning; Xing, Bing; Ren, Zuyuan; Su, Changbao; Wang, Renzhi

    2016-01-01

    Abstract Primary intraosseous cavernous hemangiomas (PICHs) are benign vascular tumors that may involve any part of the body. PICH occurs more frequently in the spine and less commonly in skull. The earliest description in the English literature was in 1845 by Toynbee, who reported a vascular tumor arising in the confines of the parietal bone. Skull PICHs do not always have typical radiologic features and should always be considered in the differential diagnosis of malignant skull lesions. We now reviewed and analyzed related literatures in detail with reporting a rare case of PICH in the left front bone that was surgically resected. PMID:26986133

  1. Identification of skulls by video superimposition.

    PubMed

    Iten, P X

    1987-01-01

    A method of matching skulls with photographic portraits or impressions of the face in clay by video superimposition is described. Two different practical cases are presented. The first one deals with the identification of a skull of a six-year-old girl, the second with the identification of the skull of the famous Swiss Pedagogue Johann Heinrich Pestalozzi, who died about 160 years ago. The advantages and versatility of this method are shown; also the setup of the equipment and the working technique.

  2. PET Imaging of Skull Base Neoplasms.

    PubMed

    Mittra, Erik S; Iagaru, Andrei; Quon, Andrew; Fischbein, Nancy

    2007-10-01

    The utility of 18-F-fluorodeoxyglucose-positron emission tomography (PET) and PET/CT for the evaluation of skull base tumors is incompletely investigated, as a limited number of studies specifically focus on this region with regard to PET imaging. Several patterns can be ascertained, however, by synthesizing the data from various published reports and cases of primary skull base malignancies, as well as head and neck malignancies that extend secondarily to the skull base, including nasopharyngeal carcinoma, nasal cavity and paranasal sinus tumors, parotid cancers, and orbital tumors.

  3. A small skull from Flores dated to the 20th century.

    PubMed

    Villa, C; Persson, L; Alexandersen, V; Lynnerup, N

    2012-02-01

    A human skull with mandible from the Ngada District on the island of Flores, Indonesia, is described in order to contribute to the knowledge of variation in cranial architecture, which is important in interpretations of evolutionary cerebralisation. The skull was excavated in 1924 and sent to the National Museum in Copenhagen. The "Copenhagen Flores" (CF) male skull is radiocarbon-dated and of modern age. The cranium is small, but larger than e.g. Liang Bua skull (LB1) in every measurement. The (CT-scan based) cranial capacity of 1258 ml is normal for modern humans, but somewhat lower than values from the middle or upper Palaeolithics. The metric cranial data analysed in FORDISC, characterize the skull as a male Vietnamese rather than a Chinese or White individual. Tooth morphology shows the sundadont pattern and tooth size corresponds to that of teeth from Bali, Java and Malayan Orang Asli. Remarkable are the marked asymmetries in the dentition with rotation of an upper premolar and congenital absence of a third molar. In these respects the CF skull is similar to dentitions belonging to the pygmoid villagers of Rampasasa, a village not far from the Liang Bua cave, and to LB1.

  4. Skull base tumours part I: imaging technique, anatomy and anterior skull base tumours.

    PubMed

    Borges, Alexandra

    2008-06-01

    Advances in cross-sectional imaging, surgical technique and adjuvant treatment have largely contributed to ameliorate the prognosis, lessen the morbidity and mortality of patients with skull base tumours and to the growing medical investment in the management of these patients. Because clinical assessment of the skull base is limited, cross-sectional imaging became indispensable in the diagnosis, treatment planning and follow-up of patients with suspected skull base pathology and the radiologist is increasingly responsible for the fate of these patients. This review will focus on the advances in imaging technique; contribution to patient's management and on the imaging features of the most common tumours affecting the anterior skull base. Emphasis is given to a systematic approach to skull base pathology based upon an anatomic division taking into account the major tissue constituents in each skull base compartment. The most relevant information that should be conveyed to surgeons and radiation oncologists involved in patient's management will be discussed.

  5. Ontogeny of morningness-eveningness across the adult human lifespan

    NASA Astrophysics Data System (ADS)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  6. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to...

  7. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  8. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to...

  9. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  10. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to...

  11. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  12. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to...

  13. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  14. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  15. 21 CFR 882.4030 - Skull plate anvil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to...

  16. Distribution of Tight Junction Proteins in Adult Human Salivary Glands

    PubMed Central

    Maria, Ola M.; Kim, Jung-Wan Martin; Gerstenhaber, Jonathan A.; Baum, Bruce J.; Tran, Simon D.

    2008-01-01

    Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and ∼25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland. (J Histochem Cytochem 56:1093–1098, 2008) PMID:18765838

  17. The skull of Homo naledi.

    PubMed

    Laird, Myra F; Schroeder, Lauren; Garvin, Heather M; Scott, Jill E; Dembo, Mana; Radovčić, Davorka; Musiba, Charles M; Ackermann, Rebecca R; Schmid, Peter; Hawks, John; Berger, Lee R; de Ruiter, Darryl J

    2017-03-01

    The species Homo naledi was recently named from specimens recovered from the Dinaledi Chamber of the Rising Star cave system in South Africa. This large skeletal sample lacks associated faunal material and currently does not have a known chronological context. In this paper, we present comprehensive descriptions and metric comparisons of the recovered cranial and mandibular material. We describe 41 elements attributed to Dinaledi Hominin (DH1-DH5) individuals and paratype U.W. 101-377, and 32 additional cranial fragments. The H. naledi material was compared to Plio-Pleistocene fossil hominins using qualitative and quantitative analyses including over 100 linear measurements and ratios. We find that the Dinaledi cranial sample represents an anatomically homogeneous population that expands the range of morphological variation attributable to the genus Homo. Despite a relatively small cranial capacity that is within the range of australopiths and a few specimens of early Homo, H. naledi shares cranial characters with species across the genus Homo, including Homo habilis, Homo rudolfensis, Homo erectus, and Middle Pleistocene Homo. These include aspects of cranial form, facial morphology, and mandibular anatomy. However, the skull of H. naledi is readily distinguishable from existing species of Homo in both qualitative and quantitative assessments. Since H. naledi is currently undated, we discuss the evolutionary implications of its cranial morphology in a range of chronological frameworks. Finally, we designate a sixth Dinaledi Hominin (DH6) individual based on a juvenile mandible.

  18. First nimravid skull from Asia

    PubMed Central

    Averianov, Alexander; Obraztsova, Ekaterina; Danilov, Igor; Skutschas, Pavel; Jin, Jianhua

    2016-01-01

    Maofelis cantonensis gen. and sp. nov. is described based on a complete cranium from the middle-upper Eocene Youganwo Formation of Maoming Basin, Guangdong Province, China. The new taxon has characters diagnostic for Nimravidae such as a short cat-like skull, short palate, ventral surface of petrosal dorsal to that of basioccipital, serrations on the distal carina of canine, reduced anterior premolars, and absence of posterior molars (M2-3). It is plesiomorphic nimravid taxon similar to Nimravidae indet. from Quercy (France) in having the glenoid pedicle and mastoid process without ventral projections, a planar basicranium in which the lateral rim is not ventrally buttressed, and P1 present. The upper canine is less flattened than in other Nimravidae. Maofelis cantonensis gen. and sp. nov. exemplifies the earliest stage of development of sabertooth specialization characteristic of Nimravidae. This taxon, together with other middle-late Eocene nimravid records in South Asia, suggests origin and initial diversification of Nimravidae in Asia. We propose that this group dispersed to North America in the late Eocene and to Europe in the early Oligocene. The subsequent Oligocene diversification of Nimravidae took place in North America and Europe, while in Asia this group declined in the Oligocene, likely because of the earlier development of open habitats on that continent. PMID:27161785

  19. Gender differences in D-aspartic acid content in skull bone.

    PubMed

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  20. Variations in leopard cat (Prionailurus bengalensis) skull morphology and body size: sexual and geographic influences

    PubMed Central

    Oliveira, Luiz Flamarion B.

    2015-01-01

    The leopard cat, Prionailurus bengalensis (Kerr, 1792), is one of the most widespread Asian cats, occurring in continental eastern and southeastern Asia. Since 1929, several studies have focused on the morphology, ecology, and taxonomy of leopard cats. Nevertheless, hitherto there has been no agreement on basic aspects of leopard cat biology, such as the presence or absence of sexual dimorphism, morphological skull and body differences between the eleven recognized subspecies, and the biogeography of the different morphotypes. Twenty measurements on 25 adult leopard cat skulls from different Asian localities were analyzed through univariate and multivariate statistical approaches. Skull and external body measurements from studies over the last 77 years were assembled and organized in two categories: full data and summary data. Most of this database comprises small samples, which have never been statistically tested and compared with each other. Full data sets were tested with univariate and multivariate statistical analyses; summary data sets (i.e., means, SDs, and ranges) were analyzed through suitable univariate approaches. The independent analyses of the data from these works confirmed our original results and improved the overview of sexual dimorphism and geographical morphological variation among subspecies. Continental leopard cats have larger skulls and body dimensions. Skulls of Indochinese morphotypes have broader and higher features than those of continental morphotypes, while individuals from the Sunda Islands have skulls with comparatively narrow and low profiles. Cranial sexual dimorphism is present in different degrees among subspecies. Most display subtle sex-related variations in a few skull features. However, in some cases, sexual dimorphism in skull morphology is absent, such as in P. b. sumatranus and P. b. borneoensis. External body measurement comparisons also indicate the low degree of sexual dimorphism. Apart from the gonads, the longer hind

  1. Neuropeptide Y in the adult and fetal human pineal gland.

    PubMed

    Møller, Morten; Phansuwan-Pujito, Pansiri; Badiu, Corin

    2014-01-01

    Neuropeptide Y was isolated from the porcine brain in 1982 and shown to be colocalized with noradrenaline in sympathetic nerve terminals. The peptide has been demonstrated to be present in sympathetic nerve fibers innervating the pineal gland in many mammalian species. In this investigation, we show by use of immunohistochemistry that neuropeptide Y is present in nerve fibers of the adult human pineal gland. The fibers are classical neuropeptidergic fibers endowed with large boutons en passage and primarily located in a perifollicular position with some fibers entering the pineal parenchyma inside the follicle. The distance from the immunoreactive terminals to the pinealocytes indicates a modulatory function of neuropeptide Y for pineal physiology. Some of the immunoreactive fibers might originate from neurons located in the brain and be a part of the central innervation of the pineal gland. In a series of human fetuses, neuropeptide Y-containing nerve fibers was present and could be detected as early as in the pineal of four- to five-month-old fetuses. This early innervation of the human pineal is different from most rodents, where the innervation starts postnatally.

  2. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs.

    PubMed

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano; Alves da Silva, Ricardo Henrique

    2016-09-01

    The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects.

  3. The adult human pubic symphysis: a systematic review

    PubMed Central

    Becker, Ines; Woodley, Stephanie J; Stringer, Mark D

    2010-01-01

    The pubic symphysis is a unique joint consisting of a fibrocartilaginous disc sandwiched between the articular surfaces of the pubic bones. It resists tensile, shearing and compressive forces and is capable of a small amount of movement under physiological conditions in most adults (up to 2 mm shift and 1° rotation). During pregnancy, circulating hormones such as relaxin induce resorption of the symphyseal margins and structural changes in the fibrocartilaginous disc, increasing symphyseal width and mobility. This systematic review of the English, German and French literature focuses on the normal anatomy of the adult human pubic symphysis. Although scientific studies of the joint have yielded useful descriptive data, comparison of results is hampered by imprecise methodology and/or poorly controlled studies. Several aspects of the anatomy of the pubic symphysis remain unknown or unclear: the precise attachments of surrounding ligaments and muscles; the arrangement of connective tissue fibres within the interpubic disc and the origin, structure and function of its associated interpubic cleft; the biomechanical consequences of sexual dimorphism; potential ethnic variations in morphology; and its precise innervation and blood supply. These deficiencies hinder our understanding of the normal form and function of the joint, which is particularly relevant when attempting to understand the mechanisms underlying pregnancy-related pubic symphyseal pain, a neglected and relatively common cause of pubic pain. A better understanding of the normal anatomy of the human pubic symphysis should improve our understanding of such problems and contribute to better treatments for patients suffering from symphyseal pain and dysfunction. PMID:20840351

  4. Sex Determination of Adult Human Maxillary Sinuses on Panoramic Radiographs

    PubMed Central

    Leao de Queiroz, Cristhiane; Terada, Andrea Sayuri Silveira Dias; Dezem, Thais Uenoyama; Gomes de Araújo, Lais; Galo, Rodrigo; Oliveira-Santos, Christiano

    2016-01-01

    Absract The purpose of this study was to evaluate dimensions of adult human maxillary sinuses on panoramic radiographs and their possible application on the sex determination for forensic purposes. The sample comprised 64 database panoramic radiographs from individuals aged 20 years or older (32 male and 32 female subjects), with complete permanent dentition (or absence of third molars). One examiner measured the width and height of the right and left maxillary sinuses using the software Image J 1.47v (National Institutes of Health, Bethesda, USA). Measurements were repeated to calculate intra-observer agreement. Chi-Square test, Kappa, ANOVA and T-Student were used for results analysis for p≤ 0.05. Intra-observer agreement with correlation Kappa ranged between 0.38 and 0.96. For female subjects, the mean height and width of the left maxillary sinus were 28.7856mm and 44.6178mm, respectively. And right maxillary sinus was 27.7163mm for height and 45.1850mm for width. Male subjects were found to have the mean height and width of the left maxillary sinus 30.9981mm and 48.7753mm, respectively. And right maxillary sinus was 30.7403mm for height and 48.5753mm for width. There was a statistically significant difference in the height and width of maxillary sinuses between males and females. It can be concluded that maxillary sinuses height and width on panoramic radiographs can be used to determine the gender of adult human subjects. PMID:27847394

  5. Emergency skull radiography: the effect of restrictive criteria on skull radiography and CT use

    SciTech Connect

    Baker, S.R.; Gaylord, G.M.; Lantos, G.; Tabaddor, K.; Gallagher, E.J.

    1985-08-01

    A prospective study was performed to determine the effect of restrictive criteria on the use of emergency skull radiography and computed tomography (CT) of the head. Emergency skull radiography required the completion of a special requisition form. Emergency CT of the head was done at the request of senior consultants and was available on a full-time basis. Over 1 year, 2758 skull studies were performed, a decrease of 39.1% when compared with the year before restrictive criteria were instituted, during which 4587 skull examinations were done. In the same period, the number of emergency CT scans of the head increased by 45.7%, from 471 in the control year to 686 in the experimental year. With the use of restrictive criteria, a net savings of $164,000 was achieved. Our results suggest that the use of restrictive criteria is a cost-effective means of limiting skull radiography when CT of the head is readily available.

  6. [Effect of artificial skull deformation in vitro on sensory performance in the human. Morphologic and tomographic study based on the calvarium E2 of Tell es Sultan/Jericho (7th millenium b.c.)].

    PubMed

    Röhrer-Ertl, O; Frey, K W

    1984-01-01

    The question of an influence of artificial skull deformations on sensory performances in man has been discussed since Torquemada (1615). It was inquired into by means of the individual E2 of the Tell es Sultan/Jericho (7th millenium B.C.). At first a morphological expert evidence and then an ear tomography (Mündnich and Frey's method) were carried out. Hereby abnormal displacements of all head organs or their parts could be seen. Evaluable pathological findings, however, did not result. Thus an influence of artificial skull deformation on sensory performance in man has to be refused in the same way as the connection of the same with infant mortality invented by Torquemada (in this case political reasons were probably responsible for it). The functional thesis of Toldt for the formation of Arcus superciliares etc. was confirmed.

  7. Functional Relationship between Skull Form and Feeding Mechanics in Sphenodon, and Implications for Diapsid Skull Development

    PubMed Central

    Curtis, Neil; Jones, Marc E. H.; Shi, Junfen; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2011-01-01

    The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. PMID:22216358

  8. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.

    PubMed

    Toro-Ibacache, Viviana; Zapata Muñoz, Víctor; O'Higgins, Paul

    2016-01-01

    The human skull is gracile when compared to many Middle Pleistocene hominins. It has been argued that it is less able to generate and withstand high masticatory forces, and that the morphology of the lower portion of the modern human face correlates most strongly with dietary characteristics. This study uses geometric morphometrics and finite element analysis (FEA) to assess the relationship between skull morphology, muscle force and cranial deformations arising from biting, which is relevant in understanding how skull morphology relates to mastication. The three-dimensional skull anatomies of 20 individuals were reconstructed from medical computed tomograms. Maximal contractile muscle forces were estimated from muscular anatomical cross-sectional areas (CSAs). Fifty-nine landmarks were used to represent skull morphology. A partial least squares analysis was performed to assess the association between skull shape and muscle force, and FEA was used to compare the deformation (strains) generated during incisor and molar bites in two individuals representing extremes of morphological variation in the sample. The results showed that only the proportion of total muscle CSA accounted for by the temporalis appears associated with skull morphology, albeit weekly. However, individuals with a large temporalis tend to possess a relatively wider face, a narrower, more vertically oriented maxilla and a lower positioning of the coronoid process. The FEAs showed that, despite differences in morphology, biting results in similar modes of deformation for both crania, but with localised lower magnitudes of strains arising in the individual with the narrowest, most vertically oriented maxilla. Our results suggest that the morphology of the maxilla modulates the transmission of forces generated during mastication to the rest of the cranium by deforming less in individuals with the ability to generate proportionately larger temporalis muscle forces.

  9. Posttraumatic skull films: who needs them

    SciTech Connect

    Freed, H.A.

    1986-03-01

    An effort has been under way for years to make the ordering of skull films in trauma more medically rational. Because the vast majority of skull films have no significant impact on patient management, effort had centered on increasing the yield by limiting radiographs to those who have one or more ''high-yield criteria.'' The publically promulgated high-yield criteria, however, were insufficiently sensitive to pick up some rare occult injuries. Emphasis recently has shifted to low-yield findings (scalp laceration, scalp hematoma, dizziness, headache, and asymptomatic). Although by common practice the presence of one or more of these low-yield findings often results in a skull film, omitting them appears to be extremely safe provided that the patient has no other clinically suspicious findings. Additionally, skull films are no longer the procedure of choice in patients with a neurosurgical emergency. A patient management strategy reflecting recent research is soon to be released with the FDA Skull Panel's final report.

  10. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    PubMed

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-02-23

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation.

  11. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  12. Ossified Ligamentum Longitudinale Anterius in Adult Human Dry Vertebrae

    PubMed Central

    Venumadhav, Nelluri; KS, Siddaraju

    2014-01-01

    Background: The ligamentum longitudinale anterius is a broad and strong band of fibrous tissue that runs along the anterior surfaces of the bodies of the vertebrae. Aim: The study was undertaken to evaluate the incidence of ossified ligamentum longitudinale anterius in adult dry human vertebra. Materials and Methods: This study was carried out on 95 sets of dry human vertebral columns irrespective of age and sex at Mayo Institute of Medical Sciences- Barabanki,-UP, Melaka Manipal Medical College-Manipal University and Department of Anatomy, KMCT Medical College, Manassery- Calicut, India. All the sets of vertebral columns were macroscopically inspected for the ossified ligamentum longitudinale anterius. Results: It was observed that out of 95 sets of vertebral columns, 27 (28.42%) vertebral columns showed ossification. Out of 27 vertebral columns, 17 (17.89%) vertebral columns showed segmental type of ossification, 2 (2.11%) vertebral columns showed continuous type of ossification and 8 (8.42%) vertebral columns showed mixed type of ossification at different vertebral level. Conclusion: Such type of ossification will affect the biomechanics of the spine and may result in stiff neck, low back pain, dysphagia, odynophagia, compression of the brachial plexus, aphonia, immobility or mucosal thickening of larynx. Hence, knowledge of such abnormalities should be kept in mind to minimise serious complications in any surgical intervention or investigative procedures in the region. PMID:25302180

  13. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  14. A biokinetic model for systemic technetium in adult humans

    DOE PAGES

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  15. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  16. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  17. [Injury by skull osteolytic secundary syphilis].

    PubMed

    Alessandro, Lucas; Camporro, Julieta Piar; Arakaki, Naomi; Orellana, Nora; Mora, Claudia Andrea

    2016-04-01

    Bone involvement of syphilis can be observed in tertiary and congenital syphilis. It is infrequent during the secondary stage. The skull is the most affected bone in secondary syphilis, and its most frequent form of presentation is proliferative osteitis. If the skull is affected, headache is usual and can be as intense as in meningitis. Osteolyitic lesions may be seen in complimentary imaging studies, with a moth eaten aspect. These lesions raise concern over a number of differential diagnoses, among which are infectious, inflammatory and neoplastic diseases. The definitive diagnosis is made by bone biopsy of the compromised bone. Molecular techniques in the affected tissues increases diagnostic performance. There is no standardized treatment protocol for syphilis since there are no guidelines available. We report a case of a 19 year old female, presenting with a unique osteolytic lesion in the skull due to secondary syphilis.

  18. A skull-based multiple dipole phantom for EEG and MEG studies

    SciTech Connect

    Spencer, M.E.; Leahy, R.M.; Mosher, J.C.

    1996-07-01

    A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.

  19. Augmented reality-assisted skull base surgery.

    PubMed

    Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K

    2014-12-01

    Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance.

  20. The cranial base of Australopithecus afarensis: new insights from the female skull.

    PubMed

    Kimbel, William H; Rak, Yoel

    2010-10-27

    Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7-3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4-3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen's forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama--all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base.

  1. The cranial base of Australopithecus afarensis: new insights from the female skull

    PubMed Central

    Kimbel, William H.; Rak, Yoel

    2010-01-01

    Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen's forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base. PMID:20855310

  2. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    PubMed

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition.

  3. Estimation of skull table thickness with clinical CT and validation with microCT.

    PubMed

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies.

  4. Estimation of skull table thickness with clinical CT and validation with microCT

    PubMed Central

    Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D

    2015-01-01

    Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. PMID:25441171

  5. The oldest anatomical handmade skull of the world c. 1508: 'the ugliness of growing old' attributed to Leonardo da Vinci.

    PubMed

    Missinne, Stefaan J

    2014-06-01

    The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.

  6. Features of hand-foot crawling behavior in human adults.

    PubMed

    Maclellan, M J; Ivanenko, Y P; Cappellini, G; Sylos Labini, F; Lacquaniti, F

    2012-01-01

    Interlimb coordination of crawling kinematics in humans shares features with other primates and nonprimate quadrupeds, and it has been suggested that this is due to a similar organization of the locomotor pattern generators (CPGs). To extend the previous findings and to further explore the neural control of bipedal vs. quadrupedal locomotion, we used a crawling paradigm in which healthy adults crawled on their hands and feet at different speeds and at different surface inclinations (13°, 27°, and 35°). Ground reaction forces, limb kinematics, and electromyographic (EMG) activity from 26 upper and lower limb muscles on the right side of the body were collected. The EMG activity was mapped onto the spinal cord in approximate rostrocaudal locations of the motoneuron pools to characterize the general features of cervical and lumbosacral spinal cord activation. The spatiotemporal pattern of spinal cord activity significantly differed between quadrupedal and bipedal gaits. In addition, participants exhibited a large range of kinematic coordination styles (diagonal vs. lateral patterns), which is in contrast to the stereotypical kinematics of upright bipedal walking, suggesting flexible coupling of cervical and lumbosacral pattern generators. Results showed strikingly dissimilar directional horizontal forces for the arms and legs, considerably retracted average leg orientation, and substantially smaller sacral vs. lumbar motoneuron activity compared with quadrupedal gait in animals. A gradual transition to a more vertical body orientation (increasing the inclination of the treadmill) led to the appearance of more prominent sacral activity (related to activation of ankle plantar flexors), typical of bipedal walking. The findings highlight the reorganization and adaptation of CPG networks involved in the control of quadrupedal human locomotion and a high specialization of the musculoskeletal apparatus to specific gaits.

  7. Three-dimensional model of the skull and the cranial bones reconstructed from CT scans designed for rapid prototyping process.

    PubMed

    Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy

    2016-01-01

    This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.

  8. Molding of top skull in the treatment of Apert syndrome.

    PubMed

    Shen, Weimin; Cui, Jie; Chen, Jianbin; Weiping, Shen

    2015-03-01

    Patients with Apert syndrome have bilateral coronal craniosynostosis, along with a distinguishing feature of their many deformity, called tower skull. Surgical correction of this deformity is the mainstay of treatment. We describe 3 patients molded top skull after front bone osteotomy orbital bar advancement. This successfully restricted growth of their top skull while allowing growth in other dimensions. Utilization of top-skull molding after cranial surgery shows promise of satisfaction in this setting.

  9. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with...

  10. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with...

  11. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with...

  12. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with...

  13. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with...

  14. Radiopathological evaluation of primary malignant skull tumors: a review.

    PubMed

    Gangadhar, Kiran; Santhosh, Deepa

    2012-09-01

    Skull tumors comprise a wide variety of entities, ranging from chronic inflammatory disease to primary and secondary neoplasms. There is no valid incidence or data about the incidence of skull tumors in general. Primary malignant skull tumors are rare, with most articles reporting single cases. We would discuss some of the frequent tumors in this group and review of the literature for the same.

  15. Lipoma involving the skull. Case report.

    PubMed

    Tomabechi, M; Sako, K; Daita, G; Yonemasu, Y

    1992-02-01

    The case of an intraosseous lipoma involving the left frontal bone is reported. Lipomas of the bone are rare; only three cases of lipomas involving the skull have previously been reported. The differential diagnosis includes a healing bone infarction or fracture, meningioma, hemangioma, and fibrous dysplasia. Diagnosis prior to surgery is difficult.

  16. Gliosarcoma with Primary Skull Base Invasion

    PubMed Central

    Perry, Avital; Graffeo, Christopher S.; Nesvick, Cody L.; Raghunathan, Aditya; Jentoft, Mark E.; O'Neill, Brian P.; Morris, Padraig P.; Morris, Jonathan M.

    2016-01-01

    Gliosarcoma is an uncommon variant of glioblastoma, which commonly demonstrates dural attachment. However, skull base invasion is rarely seen with this entity. Herein, we report a 44-year-old female patient diagnosed with primary intracranial gliosarcoma extensively invading the skull base and muscles of mastication. She presented to our institution with a three-month history of difficult right jaw opening and retro-orbital pressure and one week of severe right-sided postauricular headache. Head CT demonstrated a 6 cm mass with marked bony erosion. Brain MRI at a one-week interval more clearly characterized tumor extension through the right orbit and muscles of mastication, with overall growth to 7 cm and worsening midline shift. The patient underwent a right frontotemporal craniotomy for gross total resection. Pathology confirmed the diagnosis of gliosarcoma, IDH-wildtype (WHO grade IV). Her postoperative course was uneventful and she was discharged at preoperative neurologic baseline. To our knowledge, this is the third reported case of a primary intracranial gliosarcoma with direct invasion of skull base, brain parenchyma, and extracranial compartment. However, this is the first report case of primary GS invading the surrounding musculature and orbit. This case report highlights the rapid aggressiveness of gliosarcomas and further a prior undescribed radiographic and anatomic finding of skull base invasion with this entity. PMID:28053799

  17. Surgical Resectability of Skull Base Meningiomas

    PubMed Central

    GOTO, Takeo; OHATA, Kenji

    2016-01-01

    With recent advances in surgical technology such as preoperative imaging, neuro-monitoring, and surgical instruments, the surgical resectability of intracranial meningiomas has increased over the last two decades. This study reviewed clinical articles regarding the surgical treatment of meningiomas to clarify the role of surgical excision, with a focus on skull base meningiomas. We sub-classified clinical articles about skull base meningiomas into two categories (anterior and middle fossa meningiomas; and posterior fossa meningiomas) and reviewed papers in each category. In cases with anterior and middle fossa meningiomas, surgical resectability has reached a sufficient level to maximize functional preservation. In cases of posterior fossa meningioma, however, surgical respectability remains insufficient even with full use of recent surgical modalities. Continuous refining of operative procedures is required to obtain more satisfactory outcomes, especially for posterior fossa meningioma. In addition, recent long-term outcomes of stereotactic radiosurgery (SRS) were acceptable for controlling the skull base meningiomas. Therefore, combination with surgical excision and SRS should be considered in complicated skull base meningiomas. PMID:27076382

  18. Malignant PEComa of the skull base.

    PubMed

    Lehman, Norman L

    2004-09-01

    Perivascular epithelioid cell tumors (PEComas) are rare, usually benign lesions comprising a family of neoplasms including angiomyolipoma, lymphangioleiomyomatosis, clear cell "sugar" tumors, and clear cell myomelanocytic tumors. This report describes an apparent case of a malignant PEComa of the skull base in a 49-year-old woman, a previously undescribed location for this lesion.

  19. Porotic hyperostosis and the Gelligaer skull

    PubMed Central

    Cule, John; Evans, I. Lynn

    1968-01-01

    The differential diagnosis of the bony lesions known as porotic hyperostosis found on a Bronze Age child's skull is discussed. Keith and Shattock gave an opinion in 1923 that the cause was rickets. A firm conclusion is not reached in this paper, but it is suggested that it was more likely to have been an iron-deficiency anaemia. Images PMID:5717547

  20. Adenoid Cystic Carcinoma of the Skull Base

    PubMed Central

    Issing, Peter R.; Hemmanouil, Ilias; Stöver, Timo; Kempf, Hans-Georg; Wilkens, L.; Heermann, R.; Lenarz, Thomas

    1999-01-01

    Adenoid cystic carcinoma (ACC) is a slowly growing tumor with a particular tendency to infiltrate the surrounding tissue by perineural spread. The clinical diagnosis may prove difficult due to the submucons extension of the tumor, especially at the skull base. This article outlines the clinical characteristics, diagnostics, and treatment modalities in a series of 56 patients with an ACC in the head and neck diagnosed between 1970 and 1998 in 32 females and 24 males. The youngest patient was aged 24 years, the oldest 77 years. The average age was 54 years. In 16 patients the tumor originated in the paranasal sinuses or the nasopharynx and involved the skull base. As a rule, several months passed between the manifestation of the first symptoms such as pain, blocked nose, epistaxis, or diplopia and the initial clinical diagnosis. All patients received surgical treatment, however, complete microscopical resection could only be achieved in approximately one third of the cases. Therefore, nine patients were postoperatively treated with radiotherapy. The average survival rates of the patients with an ACC of the skull base were only 99 months as compared to 144 months in the patients without skull base involvement. ImagesFigure 1 PMID:17171116

  1. Skull metastasis from rectal gastrointestinal stromal tumours.

    PubMed

    Gil-Arnaiz, Irene; Martínez-Trufero, Javier; Pazo-Cid, Roberto Antonio; Felipo, Francesc; Lecumberri, María José; Calderero, Verónica

    2009-09-01

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal neoplasm of the gastrointestinal tract. Rectum localisation is infrequent for these neoplasms, accounting for about 5% of all cases. Distant metastases of GIST are also rare. We present a patient with special features: the tumour is localised in rectum and it has an uncommon metastatic site, the skull, implying a complex differential diagnosis approach.

  2. Ultrasonic imaging of foreign inclusions and blood vessels through thick skull bones.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Ahmed, Zaki; Wydra, Adrian; Maeva, Elena; Malyarenko, Eugene; Maev, Roman

    2015-03-01

    We report a new progress in the development of a portable ultrasonic transcranial imaging system, which is expected to significantly improve the clinical utility of transcranial diagnostic ultrasound. When conventional ultrasonic phased array and Doppler techniques are applied through thick skull bones, the ultrasound field is attenuated, deflected, and defocused, leading to image distortion. To address these deficiencies, the ultrasonic transcranial imaging system implements two alternative ultrasonic methods. The first method improves detection of small foreign objects, such as bone fragments, pieces of shrapnel, or bullets, lodged in the brain tissue. Using adaptive beamforming, the method compensates for phase aberration induced by the skull and refocuses the distorted ultrasonic field at the desired location. The second method visualizes the blood flow through intact human skull using ultrasonic speckle reflections from the blood cells, platelets, or contrast agents. By analyzing these random temporal changes, it is possible to obtain 2D or 3D blood flow images, despite the adverse influence of the skull. Both methods were implemented on an advanced open platform phased array controller driving linear and matrix array probes. They were tested on realistic skull bone and head phantoms with foreign inclusions and blood vessel models.

  3. An Account of the Inaugural Tessier Skull Exhibition at the University of Paris Descartes.

    PubMed

    Dusseldorp, Joseph Richard; Firmin, Françoise

    2015-10-01

    Paul Tessier is widely regarded as the father of modern craniofacial surgery. Upon his passing in 2008, his private collection of human skulls was purchased by the French Association of Facial Surgeons to ensure the collection would remain in France. The first public exhibition of the skulls was held in the medical museum of the University of Paris Descartes in April 2014. From this collection of skulls and the imagination of Tessier an entirely new specialty was created. Modern craniofacial surgery, now is an integral part of any pediatric plastic surgery department. Cranial and facial osteotomies have also become commonplace in both traumatic and aesthetic surgery. The goals for craniofacial deformity are now a return to completely normal appearance and function, as Tessier always believed they should be.

  4. Immunoreactivity of thymosin beta 4 in human foetal and adult genitourinary tract

    PubMed Central

    Nemolato, S.; Cabras, T.; Fanari, M.U.; Cau, F.; Fanni, D.; Gerosa, C.; Manconi, B.; Messana, I.; Castagnola, M.; Faa, G.

    2010-01-01

    Thymosin beta 4 (Tβ4) is a member of the beta-thymosins family, a family of peptides playing essential roles in many cellular functions. Our recent studies suggested Tβ4 plays a key role in the development of human salivary glands and the gastrointestinal tract. The aim of this study was to analyse the presence of Tβ4 in the human adult and foetal genitourinary tract. Immunolocalization of Tβ4 was studied in autoptic samples of kidney, bladder, uterus, ovary, testicle and prostate obtained from four human foetuses and four adults. Presence of the peptide was observed in cells of different origin: in surface epithelium, in gland epithelial cells and in the interstitial cells. Tβ4 was mainly found in adult and foetal bladder in the transitional epithelial cells; in the adult endometrium, glands and stromal cells were immunoreactive for the peptide; Tβ4 was mainly localized in the glands of foetal prostate while, in the adults a weak Tβ4 reactivity was restricted to the stroma. In adult and foetal kidney, Tβ4 reactivity was restricted to ducts and tubules with completely spared glomeruli; a weak positivity was observed in adult and foetal oocytes; immunoreactivity was mainly localized in the interstitial cells of foetal and adult testis. In this study, we confirm that Tβ4 could play a relevant role during human development, even in the genitourinary tract, and reveal that immunoreactivity for this peptide may change during postnatal and adult life. PMID:21263742

  5. The journey of discovering skull base anatomy in ancient Egypt and the special influence of Alexandria.

    PubMed

    Elhadi, Ali M; Kalb, Samuel; Perez-Orribo, Luis; Little, Andrew S; Spetzler, Robert F; Preul, Mark C

    2012-08-01

    The field of anatomy, one of the most ancient sciences, first evolved in Egypt. From the Early Dynastic Period (3100 BC) until the time of Galen at the end of the 2nd century ad, Egypt was the center of anatomical knowledge, including neuroanatomy. Knowledge of neuroanatomy first became important so that sacred rituals could be performed by ancient Egyptian embalmers during mummification procedures. Later, neuroanatomy became a science to be studied by wise men at the ancient temple of Memphis. As religious conflicts developed, the study of the human body became restricted. Myths started to replace scientific research, squelching further exploration of the human body until Alexander the Great founded the city of Alexandria. This period witnessed a revolution in the study of anatomy and functional anatomy. Herophilus of Chalcedon, Erasistratus of Chios, Rufus of Ephesus, and Galen of Pergamon were prominent physicians who studied at the medical school of Alexandria and contributed greatly to knowledge about the anatomy of the skull base. After the Royal Library of Alexandria was burned and laws were passed prohibiting human dissections based on religious and cultural factors, knowledge of human skull base anatomy plateaued for almost 1500 years. In this article the authors consider the beginning of this journey, from the earliest descriptions of skull base anatomy to the establishment of basic skull base anatomy in ancient Egypt.

  6. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  7. Hyperoxia Induces Inflammation and Cytotoxicity in Human Adult Cardiac Myocytes.

    PubMed

    Hafner, Christina; Wu, Jing; Tiboldi, Akos; Hess, Moritz; Mitulovic, Goran; Kaun, Christoph; Krychtiuk, Konstantin Alexander; Wojta, Johann; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2017-04-01

    Supplemental oxygen (O2) is used as adjunct therapy in anesthesia, emergency, and intensive care medicine. We hypothesized that excessive O2 levels (hyperoxia) can directly injure human adult cardiac myocytes (HACMs). HACMs obtained from the explanted hearts of transplantation patients were exposed to constant hyperoxia (95% O2), intermittent hyperoxia (alternating 10 min exposures to 5% and 95% O2), constant normoxia (21% O2), or constant mild hypoxia (5% O2) using a bioreactor. Changes in cell morphology, viability as assessed by lactate dehydrogenase (LDH) release and trypan blue (TB) staining, and secretion of vascular endothelial growth factor (VEGF), macrophage migration inhibitory factor (MIF), and various pro-inflammatory cytokines (interleukin, IL; chemokine C-X-C motif ligand, CXC; granulocyte-colony stimulating factor, G-CSF; intercellular adhesion molecule, ICAM; chemokine C-C motif ligand, CCL) were compared among treatment groups at baseline (0 h) and after 8, 24, and 72 h of treatment. Changes in HACM protein expression were determined by quantitative proteomic analysis after 48 h of exposure. Compared with constant normoxia and mild hypoxia, constant hyperoxia resulted in a higher TB-positive cell count, greater release of LDH, and elevated secretion of VEGF, MIF, IL-1β, IL-6, IL-8, CXCL-1, CXCL-10, G-CSF, ICAM-1, CCL-3, and CCL-5. Cellular inflammation and cytotoxicity gradually increased and was highest after 72 h of constant and intermittent hyperoxia. Quantitative proteomic analysis revealed that hypoxic and hyperoxic O2 exposure differently altered the expression levels of proteins involved in cell-cycle regulation, energy metabolism, and cell signaling. In conclusion, constant and intermittent hyperoxia induced inflammation and cytotoxicity in HACMs. Cell injury occurred earliest and was greatest after constant hyperoxia, but even relatively brief repeating hyperoxic episodes induced a substantial inflammatory response.

  8. Skull defect reconstruction based on a new hybrid level set.

    PubMed

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  9. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  10. Adult Continuing Education and Human Resource Development: Present Competitors, Potential Partners

    ERIC Educational Resources Information Center

    Smith, Douglas H.

    2006-01-01

    Adult Continuing Education (ACE) and Human Resource Development (HRD) have grown tremendously in the last quarter century. ACE experienced tremendous growth in the 60s and 70s, with over 17 million attending colleges and universities, and local school and community adult education programs by the end of the 1970s. More ACE programs were started…

  11. Cranial Suture Closure in Domestic Dog Breeds and Its Relationships to Skull Morphology.

    PubMed

    Geiger, Madeleine; Haussman, Sinah

    2016-04-01

    Bulldog-type brachycephalic domestic dog breeds are characterized by a relatively short and broad skull with a dorsally rotated rostrum (airorhynchy). Not much is known about the association between a bulldog-type skull conformation and peculiar patterns of suture and synchondrosis closure in domestic dogs. In this study, we aim to explore breed-specific patterns of cranial suture and synchondrosis closure in relation to the prebasial angle (proxy for airorhynchy and thus bulldog-type skull conformation) in domestic dogs. For this purpose, we coded closure of 18 sutures and synchondroses in 26 wolves, that is, the wild ancestor of all domestic dogs, and 134 domestic dogs comprising 11 breeds. Comparisons of the relative amount of closing and closed sutures and synchondroses (closure scores) in adult individuals showed that bulldog-type breeds have significantly higher closure scores than non-bulldog-type breeds and that domestic dogs have significantly higher closure scores than the wolf. We further found that the prebasial angle is significantly positively correlated with the amount of closure of the basispheno-presphenoid synchondrosis and sutures of the nose (premaxillo-nasal and maxillo-nasal) and the palate (premaxillo-maxillary and interpalatine). Our results show that there is a correlation between patterns of suture and synchondrosis closure and skull shape in domestic dogs, although the causal relationships remain elusive.

  12. Skuller: A volumetric shape registration algorithm for modeling skull deformities.

    PubMed

    Sahillioğlu, Yusuf; Kavan, Ladislav

    2015-07-01

    We present an algorithm for volumetric registration of 3D solid shapes. In comparison to previous work on image based registration, our technique achieves higher efficiency by leveraging a template tetrahedral mesh. In contrast to point- and surface-based registration techniques, our method better captures volumetric nature of the data, such as bone thickness. We apply our algorithm to study pathological skull deformities caused by a particular condition, i.e., craniosynostosis. The input to our system is a pair of volumetric 3D shapes: a tetrahedral mesh and a voxelized object represented by a set of voxel cells segmented from computed tomography (CT) scans. Our general framework first performs a global registration and then launches a novel elastic registration process that uses as much volumetric information as possible while deforming the generic template tetrahedral mesh of a healthy human skull towards the underlying geometry of the voxel cells. Both data are high-resolution and differ by large non-rigid deformations. Our fully-automatic solution is fast and accurate, as compared with the state of the arts from the reconstruction and medical image registration fields. We use the resulting registration to match the ground-truth surfaces extracted from the medical data as well as to quantify the severity of the anatomical deformity.

  13. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain

    PubMed Central

    Ramachandran, V. S.

    1993-01-01

    Recent behavioral and physiological evidence suggests that even brief sensory deprivation can lead to the rapid emergence of new and functionally effective neural connections in the adult human brain. Images Fig. 2 PMID:8248123

  14. Osteoradionecrosis of the maxilla and skull base

    SciTech Connect

    Komisar, A.; Silver, C.; Kalnicki, S.

    1985-01-01

    Osteoradionecrosis of the maxilla and base of skull are rare phenomena, usually seen after combined therapy for malignancies of the maxillary sinus. While the mandible is most commonly affected by osteoradionecrosis, the maxilla and skull base may also be affected when preoperative or postoperative radiotherapy is combined with surgery. Contributing factors may be: high radiation dosage delivered to the treatment volume (greater than 6000 rads), loss of tissue protective effects due to surgery, decreased vascularity caused by surgery and radiation, and proximity of a contaminated field. Onset of symptoms may vary. One patient presented 25 years after postoperative radiotherapy. Major symptoms were pain, trismus, and purulent discharge. The best diagnostic modality remains the history and physical exam, as the area is readily accessible. CT scans may be helpful in diagnosis and treatment planning. Therapy should follow time honored principles of local wound care. Home irrigations and hyperbaric therapy have been helpful in encouraging early sequestration and rapid healing.

  15. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-11-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  16. Imaging of the central skull base.

    PubMed

    Borges, Alexandra

    2009-08-01

    The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.

  17. [Orbitozygomatic approaches to the skull base].

    PubMed

    Cherekaev, V A; Gol'bin, D A; Belov, A I; Radchenkov, N S; Lasunin, N V; Vinokurov, A G

    2015-01-01

    The paper is written in the lecture format and dedicated to one of the main basal approaches, the orbitozygomatic approach, that has been widely used by neurosurgeons for several decades. The authors describe the historical background of the approach development and the surgical technique features and also analyze the published data about application of the orbitozygomatic approach in surgery for skull base tumors and cerebral aneurysms.

  18. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  19. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2013-07-21

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  20. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  1. Anatomical network analysis shows decoupling of modular lability and complexity in the evolution of the primate skull.

    PubMed

    Esteve-Altava, Borja; Boughner, Julia C; Diogo, Rui; Villmoare, Brian A; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon's general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates.

  2. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  3. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  4. Non-invasive examination of a skull fragment recovered from a World War Two aircraft crash site.

    PubMed

    Gapert, René; Rieder, Kurt

    2013-09-01

    The discovery of human remains dating to the time of the Second World War is a common occurrence in Europe and the Pacific regions. This case report demonstrates the analysis of a bone fragment recovered from a Luftwaffe crash site in Austria during the summer of 2007. Eye-witness statements and official reports were used to reconstruct the historical background of the case. A recovered German military identity tag helped to identify the pilot. Aircraft parts, also discovered at the crash site in 2007, aided the identification of the aircraft type and corroborated the eye-witness reports of the final moments before and during the crash. The bone was analyzed chiefly to establish its human or non-human origin and to identify from which anatomic region the fragment could have arisen. It was identified as part of a human adult skull which exhibited peri-mortem fractures and heat damage as well as post-mortem vegetation staining. The historical background information in connection with the morphological analysis led to the presumptive identification of the cranial fragment as belonging to a downed German pilot.

  5. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  6. "Adult Education Is about Human Being in All Its Aspects"

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2011-01-01

    Derek Legge, who celebrated his 95th birthday at the end of last month, is one of the most dedicated and influential of the largely unsung heroes of the adult education movement in Britain. As modesty is one of the many qualities with which his friends and colleagues credit him, he is certain to shrink from the description, but there is little…

  7. The Human Function Compunction: Teleological Explanation in Adults

    ERIC Educational Resources Information Center

    Kelemen, Deborah; Rosset, Evelyn

    2009-01-01

    Research has found that children possess a broad bias in favor of teleological--or purpose-based--explanations of natural phenomena. The current two experiments explored whether adults implicitly possess a similar bias. In Study 1, undergraduates judged a series of statements as "good" (i.e., correct) or "bad" (i.e., incorrect) explanations for…

  8. Human Capital Development: Reforms for Adult and Community Education

    ERIC Educational Resources Information Center

    Choy, Sarojni; Haukka, Sandra

    2007-01-01

    The adult and community education (ACE) sector is consistently responsive to changing community needs and government priorities. It is this particular function that has drawn ACE into the lifelong learning debate as one model for sustaining communities. The responsiveness of ACE means that the sector and its programs continue to make valuable…

  9. Comparative Skull Analysis Suggests Species-Specific Captivity-Related Malformation in Lions (Panthera leo)

    PubMed Central

    Saragusty, Joseph; Shavit-Meyrav, Anat; Yamaguchi, Nobuyuki; Nadler, Rona; Bdolah-Abram, Tali; Gibeon, Laura; Hildebrandt, Thomas B.; Shamir, Merav H.

    2014-01-01

    Lion (Panthera leo) populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM) stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512) and captive (N = 63) origin. Tiger skulls (N = 276; 56 captive, 220 wild) were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH), FMH of captive lions (17.36±3.20 mm) was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm). There was no difference between wild (18.47±1.26 mm) and captive (18.56±1.64 mm) tigers in FMH. Birth origin (wild vs. captive) as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2%) had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm), this was evident in 40.4% (23/57) of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions. PMID:24718586

  10. Dog behavior co-varies with height, bodyweight and skull shape.

    PubMed

    McGreevy, Paul D; Georgevsky, Dana; Carrasco, Johanna; Valenzuela, Michael; Duffy, Deborah L; Serpell, James A

    2013-01-01

    Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (p<0.001) with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape

  11. Comparative skull analysis suggests species-specific captivity-related malformation in lions (Panthera leo).

    PubMed

    Saragusty, Joseph; Shavit-Meyrav, Anat; Yamaguchi, Nobuyuki; Nadler, Rona; Bdolah-Abram, Tali; Gibeon, Laura; Hildebrandt, Thomas B; Shamir, Merav H

    2014-01-01

    Lion (Panthera leo) populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM) stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512) and captive (N = 63) origin. Tiger skulls (N = 276; 56 captive, 220 wild) were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH), FMH of captive lions (17.36±3.20 mm) was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm). There was no difference between wild (18.47±1.26 mm) and captive (18.56±1.64 mm) tigers in FMH. Birth origin (wild vs. captive) as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2%) had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm), this was evident in 40.4% (23/57) of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions.

  12. 'Do not touch' lesions of the skull base.

    PubMed

    Dobre, Mircea C; Fischbein, Nancy

    2014-08-01

    Imaging of the skull base presents many challenges due to its anatomical complexity, numerous normal variants and lack of familiarity to many radiologists. As the skull base is a region which is not amenable to physical examination and as lesions of the skull base are generally difficult to biopsy and even more difficult to operate on, the radiologist plays a major role in directing patient management via accurate image interpretation. Knowledge of the skull base should not be limited to neuroradiologists and head and neck radiologists, however, as the central skull base is routinely included in the field of view when imaging the brain, cervical spine, or head and neck with computed tomography or magnetic resonance imaging, and hence, its nuances should be familiar to general radiologists as well. We herein review the imaging findings of a subcategory of lesions of the central skull base, the 'do not touch' lesions.

  13. An Inventory of Skills and Attitudes Necessary for a Career in Human Services/Adult Care.

    ERIC Educational Resources Information Center

    Broadbent, William

    This document is an inventory of skills identified as necessary by professionals in the human services field specializing in adult care. It is intended as a mechanism whereby educators can compare that which they teach against what the human services industry feels is relevant. Introductory material discusses the process of the occupational…

  14. Imaging of the skull base: anatomy and pathology.

    PubMed

    Policeni, Bruno A; Smoker, Wendy R K

    2015-01-01

    The skull base is a critical landmark, separating intracranial from extracranial structures. This intricate anatomic structure has several foramina and crossing structures, which can be a challenge for novices. Comprehensive anatomic knowledge is critical for narrowing the differential diagnosis of lesions that may affect the skull base. These lesions can be divided into major categories to help in a systematic approach for skull base pathology evaluation.

  15. Device and method for skull-melting depth measurement

    DOEpatents

    Lauf, Robert J.; Heestand, Richard L.

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  16. [A rare case of lacunar skull deformity associated with craniosynostosis].

    PubMed

    Vaesen, F; Thimmesch, M; Born, J; Misson, J-P

    2016-03-01

    The lacunar skull is a radiologic description characterised by the presence of lacunae in the cranial vault. Its physiopathology remains up to now poorly understood; it is mostly associated with neural tube defects. The association of a lacunar skull with a craniosynostosis has rarely been described in the literature. The case of a 9-month-old patient presenting a multisutural craniosynostosis with a lacunar skull is reported in this article. The surgical treatment allowed to remodel the skull and to hope for a spontaneous regression of the lacunae.

  17. Device and method for skull-melting depth measurement

    SciTech Connect

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  18. Outer contour extraction of skull from CT scan images

    NASA Astrophysics Data System (ADS)

    Ulinuha, M. A.; Yuniarno, E. M.; Nugroho, S. M. S.; Hariadi, M.

    2017-03-01

    Extraction of the outer contour of the skull is an important step in craniofacial reconstruction. The outer contour is required for surface reconstruction of the skull. In this paper, we propose a method to extract the outer contour of the skull. The extraction process consists of four stages: defining the region of interest, segmentation of the bone, noise removal and extraction of the outer contour based on scanning from the four sides of the image. The proposed method successfully extracts the outermost contour of the skull and avoids redundant data.

  19. Postnatal and adult neurogenesis in the development of human disease.

    PubMed

    Danzer, Steve C

    2008-10-01

    The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.

  20. Aspects of achondroplasia in the skulls of dwarf transgenic mice: a cephalometric study.

    PubMed

    Bloom, Melissa Wadler; Murakami, Shunichi; Cody, Dianna; Montufar-Solis, Dina; Duke, Pauline Jackie

    2006-03-01

    Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development.

  1. The Plastered Skulls from the Pre-Pottery Neolithic B Site of Yiftahel (Israel) – A Computed Tomography-Based Analysis

    PubMed Central

    Slon, Viviane; Sarig, Rachel; Hershkovitz, Israel; Khalaily, Hamoudi; Milevski, Ianir

    2014-01-01

    Three plastered skulls, dating to the Pre-Pottery Neolithic B, were found at the site of Yiftahel, in the Lower Galilee (Israel). The skulls underwent refitting and restoration processes, details of which are described herein. All three belong to adults, of which two appear to be males and one appears to be a female. Virtual cross-sections were studied and a density analysis of the plaster was performed using computed tomography scans. These were utilized to yield information regarding the modeling process. Similarities and differences between the Yiftahel and other plastered skulls from the Levant are examined. The possible role of skull plastering within a society undergoing a shift from a hunting-gathering way of life to a food producing strategy is discussed. PMID:24586625

  2. The plastered skulls from the Pre-Pottery Neolithic B site of Yiftahel (Israel)--a computed tomography-based analysis.

    PubMed

    Slon, Viviane; Sarig, Rachel; Hershkovitz, Israel; Khalaily, Hamoudi; Milevski, Ianir

    2014-01-01

    Three plastered skulls, dating to the Pre-Pottery Neolithic B, were found at the site of Yiftahel, in the Lower Galilee (Israel). The skulls underwent refitting and restoration processes, details of which are described herein. All three belong to adults, of which two appear to be males and one appears to be a female. Virtual cross-sections were studied and a density analysis of the plaster was performed using computed tomography scans. These were utilized to yield information regarding the modeling process. Similarities and differences between the Yiftahel and other plastered skulls from the Levant are examined. The possible role of skull plastering within a society undergoing a shift from a hunting-gathering way of life to a food producing strategy is discussed.

  3. Influence of the lateral ventricles and irregular skull base on brain kinematics due to sagittal plane head rotation.

    PubMed

    Ivarsson, J; Viano, D C; Lövsund, P

    2002-08-01

    Two-dimensional physical models of the human head were used to investigate how the lateral ventricles and irregular skull base influence kinematics in the medial brain during sagittal angular head dynamics. Silicone gel simulated the brain and was separatedfrom the surrounding skull vessel by paraffin that provided a slip interface between the gel and vessel. A humanlike skull base model (HSB) included a surrogate skull base mimicking the irregular geometry of the human. An HSBV model added an elliptical inclusion filled with liquid paraffin simulating the lateral ventricles to the HSB model. A simplified skull base model (SSBV) included ventricle substitute but approximated the anterior and middle cranial fossae by a flat and slightly angled surface. The models were exposed to 7600 rad/s2 peak angular acceleration with 6 ms pulse duration and 5 deg forced rotation. After 90 deg free rotation, the models were decelerated during 30 ms. Rigid body displacement, shear strain and principal strains were determined from high-speed video recorded trajectories of grid markers in the surrogate brains. Peak values of inferior brain surface displacement and strains were up to 10.9X (times) and 3.3X higher in SSBV than in HSBV. Peak strain was up to 2.7X higher in HSB than in HSBV. The results indicate that the irregular skull base protects nerves and vessels passing through the cranial floor by reducing brain displacement and that the intraventricular cerebrospinal fluid relieves strain in regions inferior and superior to the ventricles. The ventricles and irregular skull base are necessary in modeling head impact and understanding brain injury mechanisms.

  4. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  5. The application of finite element analysis in the skull biomechanics and dentistry.

    PubMed

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  6. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  7. Evolutionary origin of the turtle skull.

    PubMed

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  8. Evolutionary morphology of the rabbit skull

    PubMed Central

    Sherratt, Emma

    2016-01-01

    The skull of leporids (rabbits and hares) is highly transformed, typified by pronounced arching of the dorsal skull and ventral flexion of the facial region (i.e., facial tilt). Previous studies show that locomotor behavior influences aspects of cranial shape in leporids, and here we use an extensive 3D geometric morphometrics dataset to further explore what influences leporid cranial diversity. Facial tilt angle, a trait that strongly correlates with locomotor mode, significantly predicts the cranial shape variation captured by the primary axis of cranial shape space, and describes a small proportion (13.2%) of overall cranial shape variation in the clade. However, locomotor mode does not correlate with overall cranial shape variation in the clade, because there are two district morphologies of generalist species, and saltators and cursorial species have similar morphologies. Cranial shape changes due to phyletic size change (evolutionary allometry) also describes a small proportion (12.5%) of cranial shape variation in the clade, but this is largely driven by the smallest living leporid, the pygmy rabbit (Brachylagus idahoensis). By integrating phylogenetic history with our geometric morphometric data, we show that the leporid cranium exhibits weak phylogenetic signal and substantial homoplasy. Though these results make it difficult to reconstruct what the ‘ancestral’ leporid skull looked like, the fossil records suggest that dorsal arching and facial tilt could have occurred before the origin of the crown group. Lastly, our study highlights the diversity of cranial variation in crown leporids, and highlights a need for additional phylogenetic work that includes stem (fossil) leporids and includes morphological data that captures the transformed morphology of rabbits and hares. PMID:27688967

  9. Development of the skull of the pantropical spotted dolphin (Stenella attenuata).

    PubMed

    Moran, Meghan M; Nummela, Sirpa; Thewissen, J G M

    2011-10-01

    We describe the bony and cartilaginous structures of five fetal skulls of Stenella attenuata (pantropical spotted dolphin) specimens. The specimens represent early fetal life as suggested by the presence of rostral tactile hairs and the beginnings of skin pigmentation. These specimens exhibit the developmental order of ossification of the intramembranous and endochondral elements of the cranium as well as the functional and morphological development of specific cetacean anatomical adaptations. Detailed observations are presented on telescoping, nasal anatomy, and middle ear anatomy. The development of the middle ear ossicles, ectotympanic bone, and median nasal cartilage is of interest because in the adult these structures are morphologically different from those in land mammals. We follow specific cetacean morphological characteristics through fetal development to provide insight into the form and function of the cetacean body plan. Combining these data with fossil evidence, it is possible to overlie ontogenetic patterns and discern evolutionary patterns of the cetacean skull.

  10. Fine-needle aspiration cytology of isolated skull nodule: Unfolding the clinical spectrum.

    PubMed

    Gupta, Prajwala; Bhardwaj, Minakshi

    2016-01-01

    Follicular thyroid carcinoma (FTC) has been classified as either minimally invasive or widely invasive carcinoma and shows a propensity for blood-borne metastasis. Most common sites of metastasis are lung and bone followed by brain, liver, and skin. Minimally invasive FTC (MIFTC) is characterized by limited capsular and/or vascular invasion with good long-term outcomes, some cases of which show a poor prognosis because of severe distant metastasis. Skull metastasis in adults commonly arises from the lung, breast, and prostate and uncommonly from the thyroid. In our case, fine-needle aspiration cytology of isolated skull nodule was a reliable tool in the diagnosis of metastasis and suggesting the primary in thyroid thereby prompting early workup of a patient. The case is unique since it represents the rare disseminated metastasis from MIFTC with incomplete capsular penetration alone without angioinvasion that can behave as aggressively as a widely invasive FTC.

  11. Facial nerve rerouting in skull base surgery.

    PubMed

    Parhizkar, Nooshin; Hiltzik, David H; Selesnick, Samuel H

    2005-08-01

    Facial nerve rerouting techniques were developed to facilitate re-section of extensive tumors occupying the skull base. Facial nerve rerouting has its own limitations and risks, requiring microsurgical expertise, additional surgical time, and often some degree of facial nerve paresis. This article presents different degrees of anterior and posterior facial nerve rerouting, techniques of facial nerve rerouting, and a comprehensive review of outcomes. It then reviews anatomic and functional preservation of the facial nerve in acoustic neuroma resection, technical aspects of facial nerve dissection, intracranial facial nerve repair options, and outcomes for successful acoustic neuroma surgery.

  12. Parametric mapping and quantitative analysis of the human calvarium.

    PubMed

    Voie, Arne; Dirnbacher, Maximilian; Fisher, David; Hölscher, Thilo

    2014-12-01

    In this paper we report how thickness and density vary over the calvarium region of a collection of human skulls. Most previous reports involved a limited number of skulls, with a limited number of measurement sites per skull, so data in the literature are sparse. We collected computer tomography (CT) scans of 51 ex vivo human calvaria, and analyzed these in silico using over 2000 measurement sites per skull. Thickness and density were calculated at these sites, for the three skull layers separately and combined, and were mapped parametrically onto the skull surfaces to examine the spatial variations per skull. These were found to be highly variable, and unique descriptors of the individual skulls. Of the three skull layers, the thickness of the inner cortical layer was found to be the most variable, while the least variable was the outer cortical density.

  13. Nasopharyngeal carriage of Streptococcus pneumoniae in adults infected with human immunodeficiency virus in Jakarta, Indonesia.

    PubMed

    Harimurti, Kuntjoro; Saldi, Siti R F; Dewiasty, Esthika; Khoeri, Miftahuddin M; Yunihastuti, Evi; Putri, Tiara; Tafroji, Wisnu; Safari, Dodi

    2016-01-01

    This study investigated the distribution of serotype and antimicrobial susceptibility of Streptococcus pneumoniae carried by adults infected with human immunodeficiency virus (HIV) in Jakarta, Indonesia. Specimens of nasopharyngeal swab were collected from 200 HIV infected adults aged 21 to 63 years. Identification of S. pneumoniae was done by optochin susceptibility test and PCR for the presence of psaA and lytA genes. Serotyping was performed with sequential multiplex PCR and antibiotic susceptibility with the disk diffusion method. S. pneumoniae strains were carried by 10% adults with serotype 6A/B 20% was common serotype among cultured strains in 20 adults. Most of isolates were susceptible to chloramphenicol (80%) followed by clindamycin (75%), erythromycin (75%), penicillin (55%), and tetracycline (50%). This study found resistance to sulphamethoxazole/trimethoprim was most common with only 15% of strains being susceptible. High non-susceptibility to sulphamethoxazole/trimethoprim was observed in S. pneumoniae strains carried by HIV infected adults in Jakarta, Indonesia.

  14. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  15. [Dietary phytoestrogen and its potential benefits in adult human health].

    PubMed

    Garrido, Argelia; de la Maza, María Pía; Valladares, Luis

    2003-11-01

    Human diet contains a series of bioactive vegetal compounds that can improve human health. Among these, there has been a special interest for phytoestrogens. This article reviews the evidence about the potential benefits of phytoestrogens for human health. Forty eight manuscripts were selected for their study design and relevance to human health. The cell growth inhibitory effects of phytoestrogens and their implication in breast cancer are reviewed. Also the effects of these compounds on serum lipid levels and the effectiveness of a phytoestrogen derivate, ipriflavone, on the prevention of osteoporosis are analyzed. Although these compounds have a great potential for improving health, there is still not enough evidence to recommend the routine use of phytoestrogens.

  16. A century of trends in adult human height.

    PubMed

    2016-07-26

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

  17. A century of trends in adult human height

    PubMed Central

    2016-01-01

    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries. DOI: http://dx.doi.org/10.7554/eLife.13410.001 PMID:27458798

  18. Skull Base Inverted Papilloma: A Comprehensive Review

    PubMed Central

    Wassef, Shafik N.; Batra, Pete S.; Barnett, Samuel

    2012-01-01

    Skull base inverted papilloma (IP) is an unusual entity for many neurosurgeons. IP is renowned for its high rate of recurrence, its ability to cause local destruction, and its association with malignancy. This paper is a comprehensive review of the reports, studies, and reviews published in the current biomedical literature from 1947 to September 2010 and synthesize this information to focus on its potential invasion to the base of the skull and possible intradural extension. The objective is to familiarize the clinician with the different aspects of this unusual disease. The role of modern diagnostic tools in medical imaging in order to assess clearly the limits of the tumors and to enhance the efficiency and the safety in the choice of a surgical approach is pointed out. The treatment guidelines for IP have undergone a complex evolution that continues today. Radical excision of the tumour is technically difficult and often incomplete. Successful management of IP requires resection of the affected mucosa which could be achieved with open surgery, endoscopic, or combined approach. Radio and chemotherapy were used for certain indications. More optimally research would be a multicenter randomized trials with large size cohorts. PMID:23346418

  19. [Clinical Study of Skull Base Osteomyelitis].

    PubMed

    Ueki, Yushi; Matsuyama, Hiroshi; Morita, Yuka; Takahashi, Kuniyuki; Yamamoto, Yutaka; Takahashi, Sugata

    2015-01-01

    Typical osteomyelitis is reportedly caused by Pseudomonous aeruginosa in elderly diabetic patients after malignant external otitis. Recently, complications have arisen due to the emergence of atypical osteomyelitis. We have experiensed 5 cases of skull base osteomyelitis at our hospital. All patients were male with a mean age of 75.2 years. Four patients had diabetes. Regarding the clinical and radiographic findings, patients 1, 2, and 3 had typical osteomyelitis after malignant external otitis, whereas patients 4 and 5 had atypical osteomyelitis without temporal bone findings. Sample culturing revealed Pseudomonas aeruginosa in 4 cases and Aspergillus in one. Intravenous antibiotics were administered to all patients. Two patients responded positively and survived, while 3 died. Typical osteomyelitis is reportedly caused by P. aeruginosa in elderly diabetic patients after malignant external otitis. Recently, complications have arisen due to the emergence of atypical osteomyelitis. The prognosis of skull base osteomyelitis is still poor in Japan. Early diagnosis and long-term antibiotic administration is required to improve outcome.

  20. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  1. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin.

  2. Comparison of proliferating cells between human adult and fetal eccrine sweat glands.

    PubMed

    Li, Hai-Hong; Fu, Xiao-Bing; Zhang, Lei; Zhou, Gang

    2008-04-01

    Studies of sweat glands had demonstrated that there were degenerating cells and proliferating cells in the eccrine sweat glands. To compare the differences in the proliferating cells between human adult and fetal eccrine sweat glands, immunostaining of proliferating-associated proliferating cell nuclear antigen (PCNA) and Ki67 nuclear antigen (Ki67) was performed, and the location and the percentage of the positive staining cells were analyzed. The results showed that a few cells of the secretory and ductal portion in both the adult and fetal eccrine sweat glands stained positive with Ki67 and PCNA. The labeling index of PCNA in adult eccrine sweat glands was 34.71 +/- 8.37%, while that in the fetal was 62.72 +/- 6.54%. The labeling index of PCNA in fetal eccrine sweat glands was higher than that in adult. Myoepithelial cells were negative staining with anti-PCNA antibody in adult eccrine sweat glands, while in the fetal a few myoepithelial cells were positive staining. Labeling index of Ki67 in adult eccrine sweat glands was similar to that in the fetal, ranging from 0.5 to 4.3%. Myoepithelial cells of the adult and fetal eccrine sweat glands both were negative staining with anti-Ki67 antibody. We concluded that the myoepithelial cells had proliferating ability only in fetal eccrine sweat glands, and that the proliferating ability of fetal eccrine sweat glands was stronger than that of the adult.

  3. Glottic and skull indices in canine brachycephalic airway obstructive syndrome

    PubMed Central

    2014-01-01

    Background Forty dogs presented for brachycephalic airway obstructive syndrome with laryngeal collapse not over 1st degree (saccule eversion) underwent glottis endoscopic and radiographic skull measurements before surgery. Fifteen Pugs, fifteen French and ten English Bulldogs were included. The goals were prospectively to compare three common brachycephalic breeds for anatomical differences regarding glottis and skull measurements, and to assess if any correlation between glottis and skull measurements was present. Linear measurements were used to obtain glottis and skull indices. Correlations between glottis and skull indices and glottic measurements were evaluated. Finally, glottis indices were compared among the three breeds. Results No correlation was found for glottis and skull indices. The glottic index differed among the three breeds (smaller in Pugs and higher in English Bulldogs), ultimately representing a morphologic indicator of the different larynx shape in the three breeds (more rounded in English Bulldogs, more elliptical in Pugs and in-between in French Bulldogs). Conclusions The lack of correlation between skull/glottic indices does not support skull morphology as predictor of glottic morphology. As Pugs had the lowest glottic index, it may be speculated that Pugs’ original narrow glottic width may predispose to further progressive respiratory deterioration more easily than in the other two breeds. PMID:24410902

  4. Biomechanical assessment of evolutionary changes in the lepidosaurian skull.

    PubMed

    Moazen, Mehran; Curtis, Neil; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J

    2009-05-19

    The lepidosaurian skull has long been of interest to functional morphologists and evolutionary biologists. Patterns of bone loss and gain, particularly in relation to bars and fenestrae, have led to a variety of hypotheses concerning skull use and kinesis. Of these, one of the most enduring relates to the absence of the lower temporal bar in squamates and the acquisition of streptostyly. We performed a series of computer modeling studies on the skull of Uromastyx hardwickii, an akinetic herbivorous lizard. Multibody dynamic analysis (MDA) was conducted to predict the forces acting on the skull, and the results were transferred to a finite element analysis (FEA) to estimate the pattern of stress distribution. In the FEA, we applied the MDA result to a series of models based on the Uromastyx skull to represent different skull configurations within past and present members of the Lepidosauria. In this comparative study, we found that streptostyly can reduce the joint forces acting on the skull, but loss of the bony attachment between the quadrate and pterygoid decreases skull robusticity. Development of a lower temporal bar apparently provided additional support for an immobile quadrate that could become highly stressed during forceful biting.

  5. Paleoneurosurgical aspects of Proto-Bulgarian artificial skull deformations.

    PubMed

    Enchev, Yavor; Nedelkov, Grigoriy; Atanassova-Timeva, Nadezhda; Jordanov, Jordan

    2010-12-01

    Paleoneurosurgery represents a comparatively new developing direction of neurosurgery dealing with archaeological skull and spine finds and studying their neurosurgical aspects. Artificial skull deformation, as a bone artifact, naturally has been one of the main paleoneurosurgical research topics. Traditionally, the relevant neurosurgical literature has analyzed in detail the intentional skull deformations in South America's tribes. However, little is known about the artificial skull deformations of the Proto-Bulgarians, and what information exists is mostly due to anthropological studies. The Proto-Bulgarians originated from Central Asia, and distributed their skull deformation ritual on the Balkan Peninsula by their migration and domination. Proto-Bulgarian artificial skull deformation was an erect or oblique form of the anular type, and was achieved by 1 or 2 pressure bandages that were tightened around a newborn's head for a sufficiently long period. The intentional skull deformation in Proto-Bulgarians was not associated with neurological deficits and/or mental retardation. No indirect signs of chronic elevated intracranial pressure were found on the 3D CT reconstruction of the artificially deformed skulls.

  6. Brain-skull boundary conditions in a computational deformation model

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Liu, Fenghong; Roberts, David; Hartov, Alex; Paulsen, Keith

    2007-03-01

    Brain shift poses a significant challenge to accurate image-guided neurosurgery. To this end, finite element (FE) brain models have been developed to estimate brain motion during these procedures. The significance of the brain-skull boundary conditions (BCs) for accurate predictions in these models has been explored in dynamic impact and inertial rotation injury computational simulations where the results have shown that the brain mechanical response is sensitive to the type of BCs applied. We extend the study of brain-skull BCs to quasi-static brain motion simulations which prevail in neurosurgery. Specifically, a frictionless brain-skull BC using a contact penalty method master-slave paradigm is incorporated into our existing deformation forward model (forced displacement method). The initial brain-skull gap (CSF thickness) is assumed to be 2mm for demonstration purposes. The brain surface nodes are assigned as either fixed (at bottom along the gravity direction), free (at brainstem), with prescribed displacement (at craniotomy) or as slave nodes potentially in contact with the skull (all the remaining). Each slave node is assigned a penalty parameter (β=5) such that when the node penetrates the rigid body skull inner-surface (master surface), a contact force is introduced proportionally to the penetration. Effectively, brain surface nodes are allowed to move towards or away from the cranium wall, but are ultimately restricted from penetrating the skull. We show that this scheme improves the model's ability to represent the brain-skull interface.

  7. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18.

    PubMed

    Bello, D; Webber, M M; Kleinman, H K; Wartinger, D D; Rhim, J S

    1997-06-01

    Prostate cancer and benign tumors of the prostate are the two most common neoplastic diseases in men in the United States, however, research on their causes and treatment has been slow because of the difficulty in obtaining fresh samples of human tissue and a lack of well characterized cell lines which exhibit growth and differentiation characteristics of normal prostatic epithelium. Non-neoplastic adult human prostatic epithelial cells from a white male donor were immortalized with human papillomavirus 18 which resulted in the establishment of the RWPE-1 cell line. Cells from the RWPE-1 cell line were further transformed by v-Ki-ras to establish the RWPE-2 cell line. The objectives of this study were to: (1) establish the prostatic epithelial origin and androgen responsiveness of RWPE-1 and RWPE-2 cell lines; (2) examine their response to growth factors; and (3) establish the malignant characteristics of the RWPE-2 cell line. Immunoperoxidase staining showed that both RWPE-1 and RWPE-2 cells express cytokeratins 8 and 18, which are characteristic of luminal prostatic epithelial cells, but they also coexpress basal cell cytokeratins. These cell lines show growth stimulation and prostate specific antigen (PSA) and androgen receptor (AR) expression in response to the synthetic androgen mibolerone, which establishes their prostatic epithelial origin. Both cell lines also show a dose-dependent growth stimulation by EGF and bFGF and growth inhibition when exposed to TGF-beta, however, the transformed RWPE-2 cells are less responsive. RWPE-1 cells neither grow in agar nor form tumors when injected into nude mice with or without Matrigel. However, RWPE-2 cells form colonies in agar and tumors in nude mice. In the in vitro invasion assay, RWPE-1 cells are not invasive whereas RWPE-2 cells are invasive. Nuclear expression of p53 and Rb proteins was heterogeneous but detectable by immunostaining in both cell lines. The RWPE-1 cells, which show many normal cell

  8. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    PubMed

    Martínez-Abadías, Neus; Heuzé, Yann; Wang, Yingli; Jabs, Ethylin Wang; Aldridge, Kristina; Richtsmeier, Joan T

    2011-01-01

    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W) and Fgfr2(+/P253R) and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W) mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  9. Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus).

    PubMed

    Neiworth, Julie J; Gleichman, Amy J; Olinick, Anne S; Lamp, Kristen E

    2006-11-01

    This study compared adults (Homo sapiens), young children (Homo sapiens), and adult tamarins (Saguinus oedipus) while they discriminated global and local properties of stimuli. Subjects were trained to discriminate a circle made of circle elements from a square made of square elements and were tested with circles made of squares and squares made of circles. Adult humans showed a global bias in testing that was unaffected by the density of the elements in the stimuli. Children showed a global bias with dense displays but discriminated by both local and global properties with sparse displays. Adult tamarins' biases matched those of the children. The striking similarity between the perceptual processing of adult monkeys and humans diagnosed with autism and the difference between this and normatively developing human perception is discussed.

  10. Role of Bone Graft in Reconstruction of Skull Base Defect

    PubMed Central

    Yamamoto, Yuhei; Minakawa, Hidehiko; Yoshida, Tetsunori; Igawa, Hiroharu; Sugihara, Tsuneki; Ohura, Takehiko; Nohira, Kunihiko

    1993-01-01

    Ten patients underwent reconstruction of skull base defects between 1989 and 1992. In this series, the maximum size of the skull base defect was 6 × 5 cm. Three patients underwent bone grafts to reinforce the skull base. The postoperative course of seven patients without bone grafts was uneventful. There was no cerebrospinal fluid leakage, meningitis, extradural abscess, on brain herniation. On the other hand, two of the three patients with bone grafts developed extradural abseesses requiring the bone grafts to be removed. Although the number of patients in this series is not large, this study demonstrates that the use of bone grafts in reconstruction of skull base detects could be one of the factors in increasing the chances of infectious complications. We think that a bone graft is not necessary to reconstruct moderate-sized skull base defects. ImagesFigure 1Figure 2Figure 2Figure 3Figure 3Figure 4p228-aFigure 4Figure 4 PMID:17170915

  11. Skull base chordomas: a management challenge.

    PubMed

    al-Mefty, O; Borba, L A

    1997-02-01

    Because of their critical location, invasive nature, and aggressive recurrence, skull base chordomas are challenging and, at times, frustrating tumors to treat. Both radical surgical removal and high-dose radiation therapy, particularly proton beam therapy, reportedly are effective in tumor control and improve survival rates. The authors posit that these tumors are best treated with radical surgery and proton-photon beam therapy. During the last 5 years, they treated 25 patients (15 females and 10 males) who harbored pathologically diagnosed skull base chordomas. The mean age of the patients was 38.4 years (range 8-61 years). Previous surgery or radiation therapy was performed at other institutions in seven and two patients, respectively. The authors performed 33 surgical procedures on 23 patients. Radical removal (defined as absence of residual tumor on operative inspection and postoperative imaging) was achieved in 10 patients; subtotal resection (defined as resection of > 90% of the tumor) was achieved in 11 patients; and partial resection (defined as resection of < 90% of the tumor) was achieved in two patients. Radical surgical removal included not only the excision of soft-tumor tissue, but also extensive drilling of the adjacent bone. Adjuvant therapy consisted of postoperative combined proton-photon beam therapy (given to 17 patients and planned for one patient) and conventional radiation therapy (two patients); three patients received no adjunct therapy. To date, four patients have died. One patient who had undergone previous surgery and sacrifice of the internal carotid artery died postoperatively from a massive stroke; one patient died from adenocarcinoma of the pancreas without evidence of recurrence; and two patients died at 25 and 39 months of recurrent tumor. Permanent neurological complications included third cranial nerve palsy (one patient) and hemianopsia (one patient); radiation necrosis occurred in three patients. Of the 21 patients followed

  12. African elephants show high levels of interest in the skulls and ivory of their own species.

    PubMed

    McComb, Karen; Baker, Lucy; Moss, Cynthia

    2006-03-22

    An important area of biology involves investigating the origins in animals of traits that are thought of as uniquely human. One way that humans appear unique is in the importance they attach to the dead bodies of other humans, particularly those of their close kin, and the rituals that they have developed for burying them. In contrast, most animals appear to show only limited interest in the carcasses or associated remains of dead individuals of their own species. African elephants (Loxodonta africana) are unusual in that they not only give dramatic reactions to the dead bodies of other elephants, but are also reported to systematically investigate elephant bones and tusks that they encounter, and it has sometimes been suggested that they visit the bones of relatives. Here, we use systematic presentations of object arrays to demonstrate that African elephants show higher levels of interest in elephant skulls and ivory than in natural objects or the skulls of other large terrestrial mammals. However, they do not appear to specifically select the skulls of their own relatives for investigation so that visits to dead relatives probably result from a more general attraction to elephant remains.

  13. Impact of growth hormone hypersecretion on the adult human kidney.

    PubMed

    Grunenwald, Solange; Tack, Ivan; Chauveau, Dominique; Bennet, Antoine; Caron, Philippe

    2011-12-01

    Acromegaly is most often secondary to a GH-secreting pituitary adenoma with increased Insulin-like Growth Factor type 1 (IGF-1) level. The consequences of GH/IGF-1 hypersecretion reflect the diversity of action of these hormones. The genes of the GH receptor (GHR), IGF-1, IGF-1 receptor (IGF-1R) and IGF-binding proteins (IGF-BP) are physiologically expressed in the adult kidney, suggesting a potential role of the somatotropic axis on renal structure and functions. The expression of these proteins is highly organized and differs according to the anatomical and functional segments of the nephron suggesting different roles of GH and IGF-1 in these segments. In animals, chronic exposure to high doses of GH induces glomerulosclerosis and increases albuminuria. Studies in patients with GH hypersecretion have identified numerous targets of GH/IGF-1 axis on the kidney: 1) an impact on renal filtration with increased glomerular filtration rate (GFR), 2) a structural impact with an increase in kidney weight and glomerular hypertrophy, and 3) a tubular impact leading to hyperphosphatemia, hypercalciuria and antinatriuretic effects. Despite the increased glomerular filtration rate observed in patients with GH hypersecretion, GH is an inefficient treatment for chronic renal failure. GH and IGF-1 seem to be involved in the physiopathology of diabetic nephropathy; this finding offers the possibility of targeting the GH/IGF-1 axis for the prevention and the treatment of diabetic nephropathy.

  14. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  15. Bacteriology of severe periodontitis in young adult humans.

    PubMed Central

    Moore, W E; Holdeman, L V; Smibert, R M; Hash, D E; Burmeister, J A; Ranney, R R

    1982-01-01

    A total of 78 bacteriological samples were taken from the supragingival tooth surface after superficial cleaning with toothpicks or from the periodontal sulci of 42 affected sites in 21 adolescents or young adults with severe generalized periodontitis. Of 190 bacterial species, subspecies, or serotypes detected among 2,723 isolates, 11 species exceeded 1% of the subgingival flora and were most closely associated with the diseased sulci. Eleven others were also sufficiently frequent to be suspect agents of tissue destruction. Many of these species are known pathogens of other body sites. In addition, 10 species of Treponema were isolated. One of these and the "large treponeme" were also more closely associated with severe periodontitis than they were with healthy sites or gingivitis. There were highly significant differences between the composition of the flora of the affected sulci and the flora of (i) the adjacent supragingival tooth surface, (ii) the gingival crevice of periodontally healthy people, and (iii) sites with a gingival index score of 0 or 2 in experimental gingivitis studies. The floras of different individuals were also significantly different. There was no statistically detectable effect of sampling per se upon the composition of the flora of subsequent samples from the same sites. The composition of the supragingival flora of the patients with severe generalized periodontitis that had serum antibody to Actinobacillus actinomycetemcomitans was significantly different from the supragingival flora of patients without this serum antibody. However, there was no statistically significant difference in the composition of their subgingival floras. PMID:7152665

  16. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  17. Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models.

    PubMed

    Odabaee, Maryam; Tokariev, Anton; Layeghy, Siamak; Mesbah, Mostefa; Colditz, Paul B; Ramon, Ceon; Vanhatalo, Sampsa

    2014-08-01

    The potential improvements in spatial resolution of neonatal EEG used in source localization have been challenged by the insufficiencies in realistic neonatal head models. Our present study aimed at using empirical methods to indirectly estimate skull conductivity; the model parameter that is known to significantly affect the behavior of newborn scalp EEG and cause it to be markedly different from that of an adult. To this end, we used 64 channel EEG recordings to study the spatial specificity of scalp EEG by assessing the spatial decays in focal transients using both amplitudes and between-c'hannels linear correlations. The findings showed that these amplitudes and correlations decay within few centimeters from the reference channel/electrode, and that the nature of the decay is independent of the scalp area. This decay in newborn infants was found to be approximately three times faster than the corresponding decay in adult EEG analyzed from a set of 256 channel recordings. We then generated realistic head models using both finite and boundary element methods along with a manually segmented magnetic resonance images to study the spatial decays of scalp potentials produced by single dipole in the cortex. By comparing the spatial decays due to real and simulated EEG for different skull conductivities (from 0.003 to 0.3S/m), we showed that a close match between the empirical and simulated decays was obtained when the selected skull conductivity for newborn was around 0.06-0.2S/m. This is over an order of magnitude higher than the currently used values in adult head modeling. The results also showed that the neonatal scalp EEG is less smeared than that of an adult and this characteristic is the same across the entire scalp, including the fontanel region. These results indicate that a focal cortical activity is generally only registered by electrodes within few centimeters from the source. Hence, the conventional 10 to 20 channel neonatal EEG acquisition systems give a

  18. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    PubMed

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  19. A simple depressed skull fracture in an old man with Paget disease: forensic implications in a rare case.

    PubMed

    Gitto, Lorenzo; Arunkumar, Ponni; Maiese, Aniello; Bolino, Giorgio

    2015-01-01

    Skull fractures occur when forces striking the head exceed the mechanical integrity of the calvarium. A depressed skull fracture is a break in a cranial bone with depression of the bone into the brain. A depressed fracture may be open (compound), with a skin laceration over the fracture, or closed (simple), when the overlying tissue is not disrupted. The association between simple depressed fracture of the skull and elderly is rare. Paget disease of the bone is a chronic disease characterized by the deposition of abnormal bone tissue, more fragile than normal bone. We report a case of a 92-year-old man who was found supine on the floor in his residence, showing multiple signs of trauma. X-rays and computed tomography scans were performed, showing a simple depressed skull fracture on the right occipital-temporal area and even the characteristics of Paget disease of the skull. The first hypothesis was death due to voluntary homicide. A detailed study of clinical reports, laboratory tests, radiograph scans, and post mortem examination data allowed us to reconstruct the event. Death was finally ruled due to a mild passive trauma, suggesting the unlawful killing of a human without criminal intent, meaning involuntary manslaughter.

  20. Dry skull positioning device for extra-oral radiology and cone-beam CT.

    PubMed

    Beaini, Thiago Leite; Dias, Paulo Eduardo Miamoto; Melani, Rodolfo Francisco Haltenhoff

    2014-01-01

    Extra-oral radiographs of dry skulls on scientific or forensic context have head position as a critical procedure. The aims of this article are to present a multi-purposed head-positioning device, and to describe the new method of image acquirement using the device to adequately keep the head in a correct and safe position during radiological or tomographic exam. The design was created from an average-sized skull and then tested in 20 others with different morphologies, sizes, weights, and structural state of preservation. A series of digital and analog orthopantomographies followed by a cone-beam computer tomography were obtained to assure that the correct positioning standards and anatomical visualization were achievable. The developed device properly kept adult skulls in position for all extra-oral radiographic exams, providing to operators a secure and facilitated way to achieve the proper position standards. The device did not impair the visualization of the anatomical structures neither on radiographs nor in cone-beam computer tomography.

  1. High-resolution in vivo imaging of mouse brain through the intact skull

    PubMed Central

    Park, Jung-Hoon; Sun, Wei; Cui, Meng

    2015-01-01

    Multiphoton microscopy is the current method of choice for in vivo deep-tissue imaging. The long laser wavelength suffers less scattering, and the 3D-confined excitation permits the use of scattered signal light. However, the imaging depth is still limited because of the complex refractive index distribution of biological tissue, which scrambles the incident light and destroys the optical focus needed for high resolution imaging. Here, we demonstrate a wavefront-shaping scheme that allows clear imaging through extremely turbid biological tissue, such as the skull, over an extended corrected field of view (FOV). The complex wavefront correction is obtained and directly conjugated to the turbid layer in a noninvasive manner. Using this technique, we demonstrate in vivo submicron-resolution imaging of neural dendrites and microglia dynamics through the intact skulls of adult mice. This is the first observation, to our knowledge, of dynamic morphological changes of microglia through the intact skull, allowing truly noninvasive studies of microglial immune activities free from external perturbations. PMID:26170286

  2. Does the adult human ciliary body epithelium contain "true" retinal stem cells?

    PubMed

    Frøen, Rebecca; Johnsen, Erik O; Nicolaissen, Bjørn; Facskó, Andrea; Petrovski, Goran; Moe, Morten C

    2013-01-01

    Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.

  3. Anterior Skull Base Glomangioma-Induced Osteomalacia

    PubMed Central

    Gresham, Malia S.; Shen, Steven; Zhang, Yi J.; Gallagher, Kelly

    2017-01-01

    Oncogenic osteomalacia (OO) is an uncommon but treatable cause of osteomalacia related to tumor production of FGF23, usually caused by benign mesenchymal neoplasms. Paranasal sinus glomangiomas are a rare cause of OO, with only one previously reported case. Here we describe a second case (first reported in English) of paranasal sinus glomangioma-induced osteomalacia in a 42-year-old man. He presented with weakness and multiple spontaneous fractures, and was found to have an ethmoid sinus glomangioma with intracranial extension. The tumor was removed via endoscopic endonasal approach to the anterior skull base, which resulted in complete resolution of symptoms and no further evidence of disease 1 year postoperatively. PMID:28180054

  4. Osteomyelitis of the base of the skull

    SciTech Connect

    Chandler, J.R.; Grobman, L.; Quencer, R.; Serafini, A.

    1986-03-01

    Infection in the marrow of the temporal, occipital, and sphenoid bones is an uncommon, but increasing occurrence. It is usually secondary to infections beginning in the external auditory canal and is caused almost uniformly by the gram negative Pseudomonas aeruginosa bacteria. Technetium and gallium scintigraphy help in the early detection of such infections while CT scans demonstrate dissolution of bone in well-developed cases. Headache is the predominant symptom. Dysphagia, hoarseness, and aspiration herald the inevitable march of cranial nerves. We have diagnosed and treated 17 cases of osteomyelitis of the skull base. Although the total mortality rate is 53%, it is now a curable disease. Six of our last 8 patients remain alive, although 1 is still under treatment. Treatment is medical and requires the long-term concomitant intravenous administration of an aminoglycoside and a broad spectrum semisynthetic penicillin effective against the causative organism.

  5. Microvascular free flaps in skull base reconstruction.

    PubMed

    Herr, Marc W; Lin, Derrick T

    2013-01-01

    The anatomical challenges of skull base surgery are well known. Furthermore, ablative and traumatic defects in this region produce complex reconstructive problems with a high risk of significant postoperative morbidity and mortality. Over the past two decades, microvascular free tissue reconstruction following open resection has been shown to improve outcomes and reduce complication rates when compared to the traditional use of pedicled flaps. The increasing use of free tissue transfer has been further strengthened by improved technical expertise and high flap success rates. Since the size and type of free tissue to be utilized must be individualized to each defect, the accomplished reconstructive surgeon should be extremely versatile and, by extension, facile with a several types of free flaps. Thus, four of the most commonly used flaps--the rectus abdominis, radial forearm, latissimus dorsi and anterolateral thigh flaps--are discussed.

  6. Skull of Catopithecus browni, an early tertiary catarrhine.

    PubMed

    Simons, E L; Rasmussen, D T

    1996-06-01

    Fossil crania from quarry L-41, Fayum, Egypt, representing Catopithecus browni, a primate similar in size to callitrichids but with a catarrhine dental formula, provide the geologically earliest record of an anthropoidean skull. Catopithecus had postorbital closure developed to the stage seen in extant anthropoideans, with direct contact between zygomatic plate and maxillary tuber, isolating an anterior orbital fissure from the inferior orbital fissure. The auditory region also resembles that of later anthropoideans: The posterior carotid foramen is placed adjacent to the jugular fossa; a large promontory canal crosses the promontorium; and the annular ectotympanic is fused ventrally to the bulla. The incisors and canines show an assemblage of features found only among modern anthropoideans and adapoids. The face is characterized by a relatively deep maxilla, broad ascending wing of the premaxilla, and long nasal bones, yielding a moderate muzzle similar to that of Aegyptopithecus. The small braincase bears an anteriorly broad frontal trigon and a posteriorly developed sagittal crest. The mandibular symphysis is unfused even in mature adults. The encephalization quotient (EQ) probably falls within the range of Eocene prosimians, much lower than the EQs of Neogene anthropoideans.

  7. The cranial analysis of eight skulls from collective grave of the Early Bronze Age Vucedol site (East Slavonia, Croatia).

    PubMed

    Hincak, Zdravka; Cavalli, Fabio; Durman, Aleksandar

    2013-03-01

    The collective grave of the Vucedol culture signed as "grave 3/1985" with skeletons of eight persons, represents the most important burial of this culture on the eponimic site in East Croatia, with several indications of human sacrifice. Anthropological and radiological analysis were performed on crania remains of the individuals, specifically on the skulls of one male and seven females. Nondestructive methods embraced craniometrical analysis, analysis of cranial non-metric traits and multivariate distance analysis, with a help of radiological methods, to detect every distinct anatomical characteristic of the skulls. All methods used in this work tried to present similarities and a possible homogeneity of the analysed individuals.

  8. History of endonasal skull base surgery.

    PubMed

    Wang, Amy J; Zaidi, Hasan A; Laws, Edward D

    2016-12-01

    While the endonasal approach to the skull base continues to advance, this paper invokes its long history. The centuries of medieval neuroanatomy and early neurosurgery enabled the conception of the first transfacial approaches in the late 1800s; Henry Schloffer performed the first transsphenoidal surgery in 1907. Although the procedure was initially met with much interest, Harvey Cushing eventually led the field of neurosurgery to abandon the transsphenoidal approach in the 1920s. The following three generations of neurosurgeons contained several key figures including Norman Dott, Gerard Guiot, and Jules Hardy who were steadfast in preserving the technique as well as in addressing its shortcomings. The endoscopic approach developed simultaneously, and advances in magnifying and fiberoptics further resolved limitations previously inherent to the transsphenoidal approach. At last, in the 1960s, the transsphenoidal approach entered its renaissance. Today, the momentum of its development persists in the endoscopic endonasal approach, which has recently expanded the indications for transsphenoidal surgery across the skull base, far beyond its original jurisdiction of the sella. Continued progress must not take for granted the rich history of the transsphenoidal approach, which was developed over centuries by surgeons around the world. The authors present the evolution of modern endonasal surgery as a dynamic interplay between technology, medicine, and surgery over the past 100 years. Progress can be attributed to courageous surgeons who affirmed their contemporary practices despite gaps in technology or medicine, and to visionary individuals who produced and incorporated new elements into transsphenoidal surgery. And so while the new endoscopic technique brings forth new challenges, its development reaffirms the principles laid down by the pioneers of transsphenoidal surgery.

  9. Genetic and functional characterization of clonally derived adult human brown adipocytes

    PubMed Central

    Shinoda, Kosaku; Luijten, Ineke H N; Hasegawa, Yutaka; Hong, Haemin; Sonne, Si B; Kim, Miae; Xue, Ruidan; Chondronikola, Maria; Cypess, Aaron M; Tseng, Yu-Hua; Nedergaard, Jan; Sidossis, Labros S; Kajimura, Shingo

    2015-01-01

    Brown adipose tissue (BAT) acts in mammals as a natural defense system against hypothermia, and its activation to a state of increased energy expenditure is believed to protect against the development of obesity. Even though the existence of BAT in adult humans has been widely appreciated1–8, its cellular origin and molecular identity remain elusive largely because of high cellular heterogeneity within various adipose tissue depots. To understand the nature of adult human brown adipocytes at single cell resolution, we isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures. We used RNA sequencing followed by unbiased genome-wide expression analyses and found that a population of uncoupling protein 1 (UCP1)-positive human adipocytes possessed molecular signatures resembling those of a recruitable form of thermogenic adipocytes (that is, beige adipocytes). In addition, we identified molecular markers that were highly enriched in UCP1-positive human adipocytes, a set that included potassium channel K3 (KCNK3) and mitochondrial tumor suppressor 1 (MTUS1). Further, we functionally characterized these two markers using a loss-of-function approach and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function. The results of this study present new opportunities for human BAT research, such as facilitating cell-based disease modeling and unbiased screens for thermogenic regulators. PMID:25774848

  10. Characterization of colony-forming cells in adult human articular cartilage.

    PubMed

    Ozbey, Ozlem; Sahin, Zeliha; Acar, Nuray; Ozcelik, Filiz Tepekoy; Ozenci, Alpay Merter; Koksoy, Sadi; Ustunel, Ismail

    2014-06-01

    Recent studies have shown that adult human articular cartilage contains stem-like cells within the native structure. In this study, we aimed to determine the localization of putative stem cell markers such as CD90, STRO-1, OCT-3/4, CD105 and CD166 in adult human articular cartilage tissue sections and demonstrate the expression of these markers within the expanded surface zone colony-forming (CF) cells and evaluate their differentiation potential. Biopsy samples were either fixed immediately for immunohistochemical analyses or processed for in vitro cell culture. Immunohistochemical and flow cytometry analyses were performed by using CD90, STRO-1, OCT-3/4, CD105 and CD166 antibodies. Isolated colony-forming (CF) cells were further stimulated, by using the appropriate growth factors in their pellet culture, to obtain cartilage, bone and adipose lineages. We observed that the expression of the stem cell markers were in various zones of the human adult cartilage. Flow cytometry results showed that in CF cells the expression of CD90 and CD166 was high, while OCT-3/4 was low. We also determined that CF cells could be stimulated towards cartilage, bone and adipose lineages. The results of this research support the idea that the resident stem-like cells in adult human articular cartilage express these putative stem cell markers, but further experimental investigations are needed to determine the precise localization of these cells.

  11. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2006-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  12. Treatment of Human-Caused Trauma: Attrition in the Adult Outcomes Research

    ERIC Educational Resources Information Center

    Matthieu, Monica; Ivanoff, Andre

    2006-01-01

    Attrition or dropout is the failure of a participant to complete, comply, or the prematurely discontinuation or discharge from treatment, resulting in lost data and affecting outcomes. This review of 10 years of adult posttraumatic stress disorder (PTSD) treatment outcome literature specific to Criterion A events of human origin examines how…

  13. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  14. Emotions and Human Concern: Adult Education and the Philosophical Thought of Martha Nussbaum

    ERIC Educational Resources Information Center

    Plumb, Donovan

    2014-01-01

    This article argues that philosopher Martha Nussbaum's reflections on the role of the emotions in human flourishing can contribute in important ways to our understanding of the emotions in adult education contexts. The article summarises Nussbaum's exploration of the contributions of classical philosophers like Socrates, Aristotle, and…

  15. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2006-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  16. NIRS Measurement of Venous Oxygen Saturation in the Adult Human Head

    NASA Astrophysics Data System (ADS)

    Brown, Derek W.; Haensse, Daniel; Bauschatz, Andrea; Wolf, Martin

    Provided that both the breathing frequency remains constant and that the temporal resolution of the instrument is sufficiently high, NIRS spiroximetry enables measurement of cerebral SvO2 in healthy human adults. Furthermore, simultaneous measurements of StO2, SaO2, and SvO2 enable calculation of both OEF and the compartmental distribution of cerebral blood volume.

  17. Complete Genome Sequence of Human Adenovirus 7 Associated with Fatal Adult Pneumonia.

    PubMed

    Yatsyshina, Svetlana B; Ageeva, Margarita R; Deviatkin, Andrey A; Pimkina, Ekaterina V; Markelov, Mikhail L; Dedkov, Vladimir G; Safonova, Marina V; Shumilina, Elena Y; Lukashev, Alexander N; Shipulin, German A

    2016-10-27

    Human adenovirus 7 (hAdv7) 19BOVLB/Volgograd/Rus/2014 was isolated from the autopsy material from an adult with fatal pneumonia in Volgograd, Russia, in March 2014. Whole-genome sequencing of the virus isolate was performed.

  18. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  19. Bridging the Gap between Human Resource Development and Adult Education: Part Two, the Critical Turn

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2014-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995). The…

  20. Bridging the Gap between Human Resource Development and Adult Education: Part One, Assumptions, Definitions, and Critiques

    ERIC Educational Resources Information Center

    Hatcher, Tim; Bowles, Tuere

    2013-01-01

    Human resource development (HRD) as a scholarly endeavor and as a practice is often criticized in the adult education (AE) literature and by AE scholars as manipulative and oppressive and, through training and other interventions, controlling workers for strictly economic ends (Baptiste, 2001; Cunningham, 2004; Schied, 2001; Welton, 1995).…

  1. Concept Maps: Practice Applications in Adult Education and Human Resource Development

    ERIC Educational Resources Information Center

    Daley, Barbara J.

    2010-01-01

    Concept maps can be used as both a cognitive and constructivist learning strategy in teaching and learning in adult education and human resource development. The maps can be used to understand course readings, analyze case studies, develop reflective thinking and enhance research skills. The creation of concept maps can also be supported by the…

  2. Equality and Human Capital: Conflicting Concepts within State-Funded Adult Education in Ireland

    ERIC Educational Resources Information Center

    Hurley, Kevin

    2015-01-01

    This article offers a critique of the concept of equality as it informs the White Paper on Adult Education: Learning for Life (2000). It also outlines the extent to which human capital theory can be seen to have effectively colonised lifelong learning from the outset of its adoption by the European Union with highly constraining implications for…

  3. The transnasal approach to the skull base. From sinus surgery to skull base surgery

    PubMed Central

    Wagenmann, Martin; Schipper, Jörg

    2012-01-01

    The indications for endonasal endoscopic approaches to diseases of the skull base and its adjacent structures have expanded considerably during the last decades. This is not only due to improved technical possibilities such as intraoperative navigation, the development of specialized instruments, and the compilation of anatomical studies from the endoscopic perspective but also related to the accumulating experience with endoscopic procedures of the skull base by multidisciplinary centers. Endoscopic endonasal operations permit new approaches to deeply seated lesions and are characterized by a reduced manipulation of neurovascular structures and brain parenchyma while at the same time providing improved visualization. They reduce the trauma caused by the approach, avoid skin incisions and minimize the surgical morbidity. Transnasal endoscopic procedures for the closure of small and large skull base defects have proven to be reliable and more successful than operations with craniotomies. The development of new local and regional vascularized flaps like the Hadad-flap have contributed to this. These reconstructive techniques are furthermore effectively utilized in tumor surgery in this region. This review delineates the classification of expanded endonasal approaches in detail. They provide access to lesions of the anterior, middle and partly also to the posterior cranial fossa. Successful management of these complex procedures requires a close interdisciplinary collaboration as well as continuous education and training of all team members. PMID:22558058

  4. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  5. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  6. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  7. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated...

  8. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  9. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  10. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  11. 40 CFR 26.1705 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated after April 7, 2006. 26.1705 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults initiated...

  12. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted before April 7, 2006. 26.1704 Section 26... Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults conducted...

  13. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    ERIC Educational Resources Information Center

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  14. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  15. Skull invaders: when surgical pathology and neuropathology worlds collide.

    PubMed

    Serracino, Hilary S; Kleinschmidt-Demasters, B K

    2013-07-01

    Skull and dura serve as effective barriers to penetration by most tumors, often preventing masses originating intracranially from extending into the contiguous bone and soft tissues, or those arising in head and neck regions from extending into the dura and brain tissue. We review our 15-year experience with extracranial tumors that had sufficiently invaded adjacent skull, dura, or brain from the "outside-in" to require a neurosurgeon to participate in the surgical resection and discuss our 40 cases in context with the literature. Sinonasal-origin tumors (n = 17) and cutaneous tumors (n = 10) were the most frequent skull-invaders. Most of the cutaneous tumor types were squamous cellcarcinomas (n = 9); diverse sinonasal-origin types included 4 squamous cell carcinomas, 4 adenoid cystic carcinomas, 2 sinonasal undifferentiated carcinomas, 2 sinonasal adenocarcinomas, and single examples each of sinonasal-origin hemangiopericytoma, solitary fibrous tumor, melanoma, mucocele, and teratocarcinoma. There were 9olfactory neuroblastomas, and middle ear-origin basal cell carcinoma,recurrent glomus jugulare, and orbital malignant hidradenoma were also seen. Unique tumors included a cutaneous cylindroma invasive of skull convexity occurring in familial cylindromatosis and a ganglioneuroma of the middle ear with massive bilateral skull base extension. Convexity dural spread, a seldom-reported pattern of dissemination, was seen in 1 olfactory neuroblastoma and 1 adenoid cystic carcinoma. The ability to show skull/dural invasion did not correlate with specific histopathologic features; even benign tumor types can show skull/dural penetration.

  16. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  17. Rehabilitation in adults with human immunodeficiency virus-related diseases.

    PubMed

    O'Dell, M W; Dillon, M E

    1992-06-01

    The acquired immunodeficiency syndrome is a fatal disorder of cell-mediated immunity caused by the human immunodeficiency virus (HIV). As many as one million Americans infected with HIV can expect improved survival with more advanced treatment approaches. Complications of HIV infection occur in the brain, spinal cord, muscle, nerve, joints and other organ systems, which lead to extensive impairments. As survival increases, rehabilitation professionals can anticipate a greater number of referrals for the assessment and management of physical disability in persons with HIV infection. This article reviews HIV-related disease, impairment, disability and handicap pertinent to rehabilitation medicine. An agenda for future research is also proposed. Current knowledge and models or rehabilitation care can be applied to HIV-related physical disability in an effort to improve overall quality of life.

  18. Characterization of human foetal intestinal alkaline phosphatase. Comparison with the isoenzymes from the adult intestine and human tumour cell lines.

    PubMed Central

    Behrens, C M; Enns, C A; Sussman, H H

    1983-01-01

    The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line. Images Fig. 1. PMID:6882358

  19. New insights into the skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea).

    PubMed

    Witton, Mark P

    2012-01-01

    The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20(th) century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds.

  20. Development of a neonatal skull phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Todd, Rhiannon; Kosik, Ivan; Chamson-Reig, Astrid; Vasefi, Fartash; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) has been proposed as a non-invasive technique for the diagnosis and monitoring of disorders in the neonatal brain. However, PAI of the brain through the intact skull is challenging due to reflection and attenuation of photoacoustic pressure waves by the skull bone. The objective of this work was to develop a phantom for testing the potential limits the skull bone places on PAI of the neonatal brain. Our approach was to make acoustic measurements on materials designed to mimic the neonatal skull bone and construct a semi-realistic phantom. A water tank and two ultrasound transducers were utilized to measure the ultrasound insertion loss (100 kHz to 5MHz) of several materials. Cured mixtures of epoxy and titanium dioxide powder provided the closest acoustic match to neonatal skull bone. Specifically, a 1.4-mm thick sample composed of 50% (by mass) titanium dioxide powder and 50% epoxy was closest to neonatal skull bone in terms of acoustic insertion loss. A hemispherical skull phantom (1.4 mm skull thickness) was made by curing the epoxy/titanium dioxide powder mixture inside a mold. The mold was constructed using 3D prototyping techniques and was based on the hairless head of a realistic infant doll. The head was scanned to generate a 3D model, which in turn was used to build a 3D CAD version of the mold. The mold was CNC machined from two solid blocks of Teflon®. The neonatal skull phantom will enable the study of the propagation of photoacoustic pressure waves under a variety of experimental conditions.

  1. Hand in glove: brain and skull in development and dysmorphogenesis.

    PubMed

    Richtsmeier, Joan T; Flaherty, Kevin

    2013-04-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  2. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  3. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.

    PubMed

    Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W

    2015-11-01

    The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms.

  4. The first skull and other new discoveries of Australopithecus afarensis at Hadar, Ethiopia.

    PubMed

    Kimbel, W H; Johanson, D C; Rak, Y

    1994-03-31

    The Hadar Formation in Ethiopia is a prolific source of Pliocene Hominidae attributed to the species Australopithecus afarensis. Since 1990, three seasons of field work have contributed 53 new specimens to the hominid inventory from Hadar, including the first fairly complete adult skull. Ranging from 3.0 to 3.4 million years in age (Fig. 1), the new specimens bear on key debates in hominid palaeontology, including the taxonomic implications of sample variation and the reconstruction of locomotor behaviour. They confirm the taxonomic unity of A. afarensis and constitute the largest body of evidence for about 0.9 million years of stasis in the earliest known hominid species.

  5. The mechanical properties of human ribs in young adult.

    PubMed

    Pezowicz, Celina; Głowacki, Maciej

    2012-01-01

    A good understanding of thoracic biomechanics is important for complete examination and control of chest behaviour under conditions of physiological and pathological work, and under the impact of external forces leading to traumatic loading of the chest. The purpose of the study was to analyse the mechanical properties of human ribs obtained from individuals under the age of 25 with scoliosis deformation and to correlate them with geometric properties of ribs. Thirty three fragments of ribs (9th to 12th) were tested in three-point bending. Rib fragments were collected intraoperatively from female patients treated for scoliosis in the thoracic, thoracolumbar, and lumbar spine. The results were used to determine the maximum failure force, stiffness, and Young's modulus. A significant relationship was found between the age and elastic modulus of the ribs. The analysis was carried out for two age groups, i.e., between the ages of 10 and 15 and between the ages of 16 and 22, and statistically significant differences were obtained for Young's modulus (p = 0.0001) amounting to, respectively, 2.79 ± 1.34 GPa for the first group and 7.44 ± 2.85 GPa for the second group. The results show a significant impact of age on the mechanical properties of ribs.

  6. Neural-competent cells of adult human dermis belong to the Schwann lineage.

    PubMed

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-11-11

    Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR(+) precursors of human foreskin can be ascribed to the Schwann (CD56(+)) and perivascular (CD56(-)) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR(+)CD56(+) Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread.

  7. Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    PubMed Central

    Etxaniz, Usue; Pérez-San Vicente, Adrián; Gago-López, Nuria; García-Dominguez, Mario; Iribar, Haizea; Aduriz, Ariane; Pérez-López, Virginia; Burgoa, Izaskun; Irizar, Haritz; Muñoz-Culla, Maider; Vallejo-Illarramendi, Ainara; Leis, Olatz; Matheu, Ander; Martín, Angel G.; Otaegui, David; López-Mato, María Paz; Gutiérrez-Rivera, Araika; MacLellan, Robb; Izeta, Ander

    2014-01-01

    Summary Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread. PMID:25418723

  8. Biomechanical analysis of skull fractures after uncontrolled hanging release.

    PubMed

    Thollon, Lionel; Llari, Maxime; André, Lucile; Adalian, Pascal; Leonetti, Georges; Piercecchi-Marti, Marie-Dominique

    2013-12-10

    In forensic research, biomechanical analyses of falls are widely reported. However, no study on falls consecutive to uncontrolled hanging release, when a hanging body is cut down, has ever been published. In such cases, the presence of cranial trauma can raise interpretation issues, and there may be doubt as to whether the fall was an accident or a crime disguised as suicide. The problem remains as to whether or not a fall after a free hanging release can lead to a skull fracture. To address this question, numerical simulations, post-mortem human subject tests and parametric studies were performed. We first recreated the kinematics and velocity of this atypical fall with post-mortem human subject tests and multibody simulations. We then tested the influence of biological variability on fracture production using a finite element model of the head. Our results show that fall severity depends largely on the direction of the fall. The risk of fracture is highest in the occipital region and with a backward fall. Our study also highlights the frequent occurrence of lower limb trauma in a free hanging release. Most importantly, we show that a fracture is produced in only 3.4% of falls that occur in a 10-90 cm height range. The overall findings of this study provide tools for pathologists and magistrates to decide on the most likely scenario and to justify further forensic investigations if required.

  9. Biomechanical analysis of injury criterion for child and adult dummies.

    PubMed

    Sances, A

    2000-01-01

    The development of human injury tolerance is difficult because of the physical differences between humans and animals, the available dummies, and tissue of the cadaver. Furthermore, human volunteer testing can clearly only be done at subinjurious levels. While considerable biomechanical injury evidence exists for the adult human based on cadaveric studies, little information is available for the pediatric population. However, some material is available from skull bone modulus studies and from the fetal tendon strength and early pediatric studies of the newborn. A review of living human, animal, and human cadaveric studies, which forms the basis for head-neck injury criterion are given. Examples of the use of the Hybrid III dummy for injury prediction such as in the Malibu rollover tests and air bag mechanisms show neck injury levels are considerably above the proposed Malibu 2000 N level.

  10. The response of the anterior striatum during adult human vocal learning.

    PubMed

    Simmonds, Anna J; Leech, Robert; Iverson, Paul; Wise, Richard J S

    2014-08-15

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia "loops," which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts.

  11. HMGA2 Moderately Increases Fetal Hemoglobin Expression in Human Adult Erythroblasts

    PubMed Central

    de Vasconcellos, Jaira F.; Lee, Y. Terry; Byrnes, Colleen; Tumburu, Laxminath; Rabel, Antoinette; Miller, Jeffery L.

    2016-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with beta-hemoglobin disorders. Previous studies showed that let-7 microRNAs (miRNAs) are highly regulated in erythroid cells during the fetal-to-adult developmental transition, and that targeting let-7 mediated the up-regulation of HbF to greater than 30% of the total globin levels in human adult cultured erythroblasts. HMGA2 is a member of the high-mobility group A family of proteins and a validated target of the let-7 family of miRNAs. Here we investigate whether expression of HMGA2 directly regulates fetal hemoglobin in adult erythroblasts. Let-7 resistant HMGA2 expression was studied after lentiviral transduction of CD34(+) cells. The transgene was regulated by the erythroid-specific gene promoter region of the human SPTA1 gene (HMGA2-OE). HMGA2-OE caused significant increases in gamma-globin mRNA expression and HbF to around 16% of the total hemoglobin levels compared to matched control transductions. Interestingly, no significant changes in KLF1, SOX6, GATA1, ZBTB7A and BCL11A mRNA levels were observed. Overall, our data suggest that expression of HMGA2, a downstream target of let-7 miRNAs, causes moderately increased gamma-globin gene and protein expression in adult human erythroblasts. PMID:27861570

  12. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  13. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C. )

    1989-01-01

    Although children are an important human population, dosimetry models for gases have been used to predict absorption mainly in laboratory animals and adult humans. To correct this omission, we have used several sources of data on age-dependent lower respiratory tract (LRT) volumes, age-dependent airway dimensions, a model of the adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adulthood. An ozone (O3) dosimetry model was then used to estimate the regional and local uptake of O3 in the (theoretical) LRT of children and adults. For sedentary or quiet breathing, the LRT distribution of absorbed O3, the percent uptake (84 to 88%) and the centriacinar O3 tissue dose are not very sensitive to age. For maximal work during exercise, predicted LRT uptakes range from 87 to 93%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, the total quantity of O3 absorbed per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O3 is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage from O3.

  14. Neuroscience of human social interactions and adult attachment style

    PubMed Central

    Vrtička, Pascal; Vuilleumier, Patrik

    2012-01-01

    attachment insecurity and particularly anxiety. Emotion regulation strategies such as reappraisal or suppression of social emotions are also differentially modulated by attachment style. This research does not only help better understand the neural underpinnings of human social behavior, but also provides important insights on psychopathological conditions where attachment dysregulation is likely to play an important (causal) role. PMID:22822396

  15. Human Centred Design Considerations for Connected Health Devices for the Older Adult

    PubMed Central

    Harte, Richard P.; Glynn, Liam G.; Broderick, Barry J.; Rodriguez-Molinero, Alejandro; Baker, Paul M. A.; McGuiness, Bernadette; O’Sullivan, Leonard; Diaz, Marta; Quinlan, Leo R.; ÓLaighin, Gearóid

    2014-01-01

    Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications. PMID:25563225

  16. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres.

    PubMed

    Barile, Lucio; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Moccetti, Tiziano; Vassalli, Giuseppe

    2012-01-01

    The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34⁺ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  17. Binding of furosemide to albumin isolated from human fetal and adult serum.

    PubMed

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M

    1991-01-01

    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  18. Endoscopic Resection of Skull Base Teratoma in Klippel-Feil Syndrome through Use of Combined Ultrasonic and Bipolar Diathermy Platforms.

    PubMed

    Edward, Justin A; Psaltis, Alkis J; Williams, Ryan A; Charville, Gregory W; Dodd, Robert L; Nayak, Jayakar V

    2017-01-01

    Klippel-Feil syndrome (KFS) is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline palatal and cerebral defects, most notably pituitary and vertebrobasilar arteriolar duplications. A multidisciplinary workup and a complete endoscopic, transnasal surgical approach between otolaryngology and neurosurgery were undertaken. Out of concern for vascular control of the fibrofatty dense tumor stalk at the skull base and need for complete teratoma resection, we successfully employed a tissue resection tool with combined ultrasonic and bipolar diathermy to the tumor pedicle at the sphenoid/clivus junction. No CSF leak or major hemorrhage was noted using this endonasal approach, and no concerning postoperative sequelae were encountered. The patient continues to do well now 3 years after tumor extirpation, with resolution of all preoperative symptoms and absence of teratoma recurrence. KFS, teratoma biology, endocrine gland duplication, and the complex considerations required for successfully addressing this type of advanced skull base pathology are all reviewed herein.

  19. Endoscopic Resection of Skull Base Teratoma in Klippel-Feil Syndrome through Use of Combined Ultrasonic and Bipolar Diathermy Platforms

    PubMed Central

    Psaltis, Alkis J.; Williams, Ryan A.; Charville, Gregory W.; Dodd, Robert L.

    2017-01-01

    Klippel-Feil syndrome (KFS) is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline palatal and cerebral defects, most notably pituitary and vertebrobasilar arteriolar duplications. A multidisciplinary workup and a complete endoscopic, transnasal surgical approach between otolaryngology and neurosurgery were undertaken. Out of concern for vascular control of the fibrofatty dense tumor stalk at the skull base and need for complete teratoma resection, we successfully employed a tissue resection tool with combined ultrasonic and bipolar diathermy to the tumor pedicle at the sphenoid/clivus junction. No CSF leak or major hemorrhage was noted using this endonasal approach, and no concerning postoperative sequelae were encountered. The patient continues to do well now 3 years after tumor extirpation, with resolution of all preoperative symptoms and absence of teratoma recurrence. KFS, teratoma biology, endocrine gland duplication, and the complex considerations required for successfully addressing this type of advanced skull base pathology are all reviewed herein. PMID:28133560

  20. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    PubMed

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation.

  1. Eosinophilic granuloma - x-ray of the skull (image)

    MedlinePlus

    ... x-ray of the skull shows an eosinophilic granuloma (a lesion made-up of a type of ... This condition can range from a single eosinophilic granuloma to massive infiltration of skin, bone, and body ...

  2. Minimally invasive surgery of the anterior skull base: transorbital approaches

    PubMed Central

    Gassner, Holger G.; Schwan, Franziska; Schebesch, Karl-Michael

    2016-01-01

    Minimally invasive approaches are becoming increasingly popular to access the anterior skull base. With interdisciplinary cooperation, in particular endonasal endoscopic approaches have seen an impressive expansion of indications over the past decades. The more recently described transorbital approaches represent minimally invasive alternatives with a differing spectrum of access corridors. The purpose of the present paper is to discuss transorbital approaches to the anterior skull base in the light of the current literature. The transorbital approaches allow excellent exposure of areas that are difficult to reach like the anterior and posterior wall of the frontal sinus; working angles may be more favorable and the paranasal sinus system can be preserved while exposing the skull base. Because of their minimal morbidity and the cosmetically excellent results, the transorbital approaches represent an important addition to established endonasal endoscopic and open approaches to the anterior skull base. Their execution requires an interdisciplinary team approach. PMID:27453759

  3. Treatment of dysphagia and dysphonia following skull base surgery.

    PubMed

    Peterson, K Linnea; Fenn, Joanne

    2005-08-01

    This article provides an overview of considerations in the evaluation and treatment of lower cranial nerve deficits, specifically in cranial nerves IX, X, and XII, in the context of skull base tumors and their treatment.

  4. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  5. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  6. Historical evidence of the 1936 Mojokerto skull discovery, East Java.

    PubMed

    Huffman, O Frank; Shipman, Pat; Hertler, Christine; de Vos, John; Aziz, Fachroel

    2005-04-01

    To resolve ambiguities in the literature, we detail the discovery history of the Mojokerto child's skull (Perning 1), employing letters, maps, photographs, reports, and newspaper accounts not previously used for this purpose. Andoyo, an experienced vertebrate-fossil collector with the Geological Survey of the Netherlands Indies, found the skull on February 13, 1936, while collecting for Johan Duyfjes, who had mapped the field area geologically. On February 18-19 Andoyo sent the fossil and a 1:25,000-topographic map showing the discovery point to Survey headquarters. The locality lies between Perning and Sumbertengu villages, approximately 10km northeast of Mojokerto city, East Java. G.H. Ralph von Koenigswald, Survey paleontologist, identified the specimen as Pithecanthropus and then named it Homo modjokertensis (it is now accepted as Homo erectus). Unfortunately he confused the discovery record in a March 28 newspaper article by characterizing the skull as a "surface find" [Dutch: oppervlaktevondst] while also attributing it to ancient beds. von Koenigswald probably had insufficient basis for either assertion, having not yet talked to Andoyo or Duyfjes. Eugene Dubois challenged von Koenigswald on the "surface-find" issue, Andoyo was consulted, and Duyfjes went to the site. Duyfjes and von Koenigswald then published scientific papers stating that the skull was unearthed 1m deep from a hill-slope outcrop of conglomeratic sandstone in Duyfjes' Pucangan formation. A cross section by Andoyo, which may show the Mojokerto site, also indicates a skull at 1m depth in conglomeratic sandstone. Photographs taken in 1936-1938 show a shallow pit at a single field location that fits Duyfjes' site description and is identified as the Mojokerto-skull site in 1940-1943 publications. By WWII the scientific community accepted the skull as an early hominid. Although von Koenigswald's "surface-find" comment remains a source of doubt in the record, we consider in situ discovery for the

  7. Un nouveau crâne humain fossile dans le dôme de Sangiran (Java, Indonésie)A recently discovered fossil human skull from the Sangiran dome (Java, Indonesia).

    NASA Astrophysics Data System (ADS)

    Widianto, Harry; Grimaud-Hervé, Dominique

    2000-06-01

    The study of new human remains discovered at the Grogol Wetan hamlet, in the Kabuh layers of the Sangiran stratigraphy dated between 0.8 and 0.25 million years, allows us to show morphological characters very similar to those observed on the other hominids of the same stratigraphical layers of this site. So, we can attribute this human fossil to this very homogeneous population of asiatic Homo erectus.

  8. Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone.

    PubMed

    Wang, Congmin; You, Yan; Qi, Dashi; Zhou, Xing; Wang, Lei; Wei, Song; Zhang, Zhuangzhi; Huang, Weixi; Liu, Zhidong; Liu, Fang; Ma, Lan; Yang, Zhengang

    2014-08-13

    In adult rodent and monkey brains, newly born neurons in the subventricular zone (SVZ) in the wall of the lateral ventricle migrate into the olfactory bulb (OB) via the rostral migratory stream (RMS). A recent study reported that interneurons are constantly generating in the adult human striatum from the SVZ. In contrast, by taking advantage of the continuous expression of Sp8 from the neuroblast stage through differentiation into mature interneurons, we found that the adult human SVZ does not generate new interneurons for the striatum. In the adult human SVZ and RMS, very few neuroblasts were observed, and most of them expressed the transcription factor Sp8. Neuroblasts in the adult rhesus monkey SVZ-RMS-OB pathway also expressed Sp8. In addition, we observed that Sp8 was expressed by most adult human and monkey OB interneurons. However, very few Sp8+ cells were in the adult human striatum. This suggests that neuroblasts in the adult human SVZ and RMS are likely destined for the OB, but not for the striatum. BrdU-labeling results also revealed few if any newly born neurons in the adult rhesus monkey striatum. Finally, on the basis of transcription factor expression, we provide strong evidence that the vast majority of interneurons in the human and monkey striatum are generated from the medial ganglionic eminence during embryonic developmental stages, as they are in rodents. We conclude that, although a small number of neuroblasts exist in the adult human SVZ, they do not migrate into the striatum and become mature striatal interneurons.

  9. Peramorphic traits in the tokay gecko skull.

    PubMed

    Daza, Juan D; Mapps, Aurelia A; Lewis, Patrick J; Thies, Monte L; Bauer, Aaron M

    2015-08-01

    Traditionally, geckos have been conceived to exhibit paedomorphic features relative to other lizards (e.g., large eyes, less extensively ossified skulls, and amphicoelous and notochordal vertebrae). In contrast, peramorphosis has not been considered an important process in shaping their morphology. Here, we studied different sized specimens of Gekko gecko to document ontogenetic changes in cranial anatomy, especially near maturity. Comparison of this species with available descriptions of other geckos resulted in the identification of 14 cranial characteristics that are expressed more strongly with size increase. These characteristics become move evident in later stages of post-hatching development, especially near maturation, and are, therefore, attributed to peramorphosis (hyperossification). ACCTRAN and DELTRAN character optimizations were applied to these characters using a tree of 11 genera derived from a gekkotan molecular phylogeny. This analysis revealed that G. gecko expresses the majority of these putative peramorphic features near maturity, and that some of these features are also expressed in species closely related to G. gecko. The characters studied have the potential to be applied in future phylogenetic and taxonomic studies of this group of lizards.

  10. "Bochdalek's" skull: morphology report and reconstruction of face.

    PubMed

    Klepáček, Ivo; Malá, Pavla Zedníková

    2012-12-01

    The objective of this study was to create a real model of a face using the well preserved "Bochdalek's skull" (from an eighteenth Century female aged 18 years) kept in the museum of anatomy (Institute of Anatomy, 1st Medical Faculty, Charles University in Prague). The skull had previously been appraised as a deformed skull with an adhesion present on both sides of the jaw, most likely of post-traumatic origin (bilateral syngnathia). In an attempt to find the best description for it, and to identify the spatial relationships between the surface of the facial bones which had changed in shape, as well as the formation of soft tissue on the face, we decided to perform a 3D reconstruction of the face. Due to the necessity of preserving the unique original undamaged skull, we created an exact digital "casting" of the facial bone structure on a computer first, which we then converted into a three-dimensional model using a 3D RepRap printer. We needed to take into consideration the fact that we had no portrait of the girl, just the skull. For this reason, we opted for a selected combination of anthropologic steps (the modified Manchester technique), which in our view, allows for optimum creation of the topography of the face in keeping with the deformed skull. The resulting reconstructed face was old in appearance with an overhanging lower lip and flattened surfaces in the areas of the temporalis and masseter muscles.

  11. Photogrammetric 3D skull/photo superimposition: A pilot study.

    PubMed

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-04-01

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis.

  12. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    PubMed

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  13. Origin of germ cells and formation of new primary follicles in adult human ovaries

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Upadhyaya, Nirmala B

    2004-01-01

    Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most

  14. A seroprevalence survey for human immunodeficiency virus antibody in mentally retarded adults.

    PubMed

    Pincus, S H; Schoenbaum, E E; Webber, M

    1990-03-01

    The prevalence of human immunodeficiency virus (HIV) infection among adults who are mentally retarded is not known. Policies for those in residential settings are being established despite incomplete information. Knowledge regarding HIV seroprevalence would enable administrators to make more effective policy decisions concerning testing and HIV prevention. Discarded sera from mentally retarded adults were anonymously tested for HIV antibody. Sera were collected from a health facility in Westchester County, NY, that provides care to developmentally disabled adults. After identifications were removed, sera were coded and linked to demographic and clinical variables from hospital and laboratory records. Sera came from individuals living in both institutional and less restrictive community settings in metropolitan New York City and more distant locations in New York State, all of whom were seen by the above facility. No HIV antibody was detected in sera from 241 mentally retarded adults. This study suggests that the prevalence of HIV antibody in mentally retarded adults is not high. Mandatory screening programs may not be appropriate for these individuals. Monies might be better spent on educational programs directed at AIDS prevention, and further development of ethical and safe policies for those who are mentally retarded.

  15. A Comparison of Pure Tone Auditory Thresholds in Human Infants and Adults.

    PubMed

    Sinnott, Joan M; Pisoni, David B; Aslin, Richard N

    1983-01-01

    Pure tone auditory thresholds for frequencies from .250 to 8.0 kHz were obtained from 277-to-11-month-old human infants and nine adults using a go-no-go operant head-turning technique combined with an adaptive staircase (tracking) discrimination procedure. New methods were devised for maintaining infants under stimulus control during threshold testing through the use of randomly interleaved "probe" and "catch" trials. Reliable threshold data were obtained from every infant studied, and identical threshold criteria were applied to infants and adults alike. Although infant thresholds were 17-27 dB higher than those of adults, infant inter-subject variability was no greater than that of adults. Adult audiograms were nearly flat between frequencies of .500 and 8.0 kHz with sensitivity ranging between 7 and 14 dB SPL. Infant audiograms were flat between frequencies of .500 and 4.0 kHz, with sensitivity ranging between 30 and 36 dB SPL. The most sensitive frequency for infants was 8.0 kHz (25 dB SPL).

  16. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    PubMed Central

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes. PMID:25105146

  17. Influence of head mass on temporo-parietal skull impact using finite element modeling.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2015-09-01

    The effect of head mass on its biomechanical response during lateral impact to the head is investigated in this computational study. The mass of the head of a state-of-the-art validated finite element head model is altered by ± 10 % from the base value of 4.7 kg. Numerical simulations of lateral head impacts for 30 cases (representing 15 human cadaver experiments × 2 mass configurations) are performed using the LS-DYNA solver at different velocities ranging from 2.4 to 6.5 m/s and three impacting conditions representing different stiffness and shapes of the contact/impact surfaces. Results are compared with the original model using the baseline head mass, thus resulting in a total of 45 simulations. Present findings show that the head mass has greater influence for peak interaction forces and the force has a greater dependency on stiffness of contact surface than the shape. Mass variations have also influence on skull strain energy. Regardless of increase/decrease in skull strain energy influenced by head mass variations used in the computational study, the 50 % fracture tolerance limit was unaltered, which was 544 mJ. The present study gives a better understanding of the mechanism of temporo-parietal skull impact.

  18. Validation of a new method for building a three-dimensional physical model of the skull and dentition.

    PubMed

    O'Neil, M; Khambay, B; Bowman, A; Moos, K F; Barbenel, J; Walker, F; Ayoub, A

    2012-01-01

    We present a new method for replicating the skull and occlusal surface with an accurate physical model that could be used for planning orthognathic surgery. The investigation was made on 6 human skulls, and a polyvinyl splint was fabricated on the dental cast of the maxillary dentition in each case. A cone beam computed tomogram (CBCT) was taken of each skull and a three-dimensional replica produced. The distorted dentition (as a result of magnification errors and streak artefacts) was removed from the three-dimensional model and replaced by new plaster dentition that was fabricated using the polyvinyl splint and a transfer jig replication technique. To verify the accuracy of the method the human skulls and the three dimensional replica model, with the new plaster dentition in situ, were scanned using a laser scanner. The three-dimensional images produced were superimposed to identify the errors associated with the replacement of the distorted occlusal surface with the new plaster dentition. The overall mean error was 0.72 and SD was (0.26)mm. The accuracy of the method encouraged us to use it clinically in a case of pronounced facial asymmetry.

  19. Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla

    PubMed Central

    Santana, Magda M.; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Karl; Bastos, Carlos A.; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R.; Cavadas, Cláudia

    2012-01-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10–12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)+/β-3-tubulin+ cells and TH−/β-3-tubulin+ cells, and into chromaffin cells (TH+/PNMT+). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases. PMID:23197690

  20. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla.

    PubMed

    Santana, Magda M; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Klaus; Bastos, Carlos A; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R; Cavadas, Cláudia; Ehrhart-Bornstein, Monika

    2012-11-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10-12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)(+)/β-3-tubulin(+) cells and TH(-)/β-3-tubulin(+) cells, and into chromaffin cells (TH(+)/PNMT(+)). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases.

  1. Normalizing the environment recapitulates adult human immune traits in laboratory mice.

    PubMed

    Beura, Lalit K; Hamilton, Sara E; Bi, Kevin; Schenkel, Jason M; Odumade, Oludare A; Casey, Kerry A; Thompson, Emily A; Fraser, Kathryn A; Rosato, Pamela C; Filali-Mouhim, Ali; Sekaly, Rafick P; Jenkins, Marc K; Vezys, Vaiva; Haining, W Nicholas; Jameson, Stephen C; Masopust, David

    2016-04-28

    Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice--like newborn, but not adult, humans--lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.

  2. Recapitulating adult human immune traits in laboratory mice by normalizing environment

    PubMed Central

    Beura, Lalit K.; Hamilton, Sara E.; Bi, Kevin; Schenkel, Jason M.; Odumade, Oludare A.; Casey, Kerry A.; Thompson, Emily A.; Fraser, Kathryn A.; Rosato, Pamela C.; Filali-Mouhim, Ali; Sekaly, Rafick P.; Jenkins, Marc K.; Vezys, Vaiva; Haining, W. Nicholas; Jameson, Stephen C.; Masopust, David

    2016-01-01

    Our current understanding of immunology was largely defined in laboratory mice because of experimental advantages including inbred homogeneity, tools for genetic manipulation, the ability to perform kinetic tissue analyses starting with the onset of disease, and tractable models. Comparably reductionist experiments are neither technically nor ethically possible in humans. Despite revealing many fundamental principals of immunology, there is growing concern that mice fail to capture relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside1–8. Laboratory mice live in abnormally hygienic “specific pathogen free” (SPF) barrier facilities. Here we show that the standard practice of laboratory mouse husbandry has profound effects on the immune system and that environmental changes result in better recapitulation of features of adult humans. Laboratory mice lack effector-differentiated and mucosally distributed memory T cells, which more closely resembles neonatal than adult humans. These cell populations were present in free-living barn populations of feral mice, pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting a role for environment. Consequences of altering mouse housing profoundly impacted the cellular composition of the innate and adaptive immune system and resulted in global changes in blood cell gene expression patterns that more closely aligned with immune signatures of adult humans rather than neonates, altered the mouse’s resistance to infection, and impacted T cell differentiation to a de novo viral infection. These data highlight the impact of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modeling immunological events in free-living organisms, including humans. PMID

  3. Adult human gingival epithelial cells as a source for whole-tooth bioengineering.

    PubMed

    Angelova Volponi, A; Kawasaki, M; Sharpe, P T

    2013-04-01

    Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin.

  4. FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts

    PubMed Central

    2013-01-01

    Background Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury – by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. Results We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion molecules, matrix remodelling, cytoskeleton, and cytokines were determined to be affected by FGF2 treatment. Conclusions Transcriptome analysis comparing control adult human fibroblasts with FGF2-treated fibroblasts identified functional groups of genes that reflect transcriptional changes potentially contributing to their regeneration competence. This comparative transcriptome analysis should contribute new insights into genes that characterize cells with greater regenerative potential. PMID:24066673

  5. Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness.

    PubMed

    Maslin, M R D; Lloyd, S K; Rutherford, S; Freeman, S; King, A; Moore, D R; Munro, K J

    2015-10-01

    Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.

  6. Long-term culture and functional characterization of follicular cells from adult normal human thyroids.

    PubMed Central

    Curcio, F; Ambesi-Impiombato, F S; Perrella, G; Coon, H G

    1994-01-01

    We have obtained long-term cultures of differentiated proliferating follicular cells from normal adult human thyroid glands. In vitro growth of such human cells has been sustained by a modified F-12 medium, supplemented with bovine hypothalamus and pituitary extracts and no added thyrotropin. Cultures have been expanded, cloned, frozen, successfully retrieved, and characterized. Functional characterization of these cells shows constitutive thyroglobulin production and release and thyrotropin-dependent adenosine 3',5'-cyclic monophosphate production, the latter apparently not associated with significant increases in DNA synthesis or cell proliferation. Genetic characterization of these cells by chromosome counting showed the normal diploid chromosome number. The ability to cultivate differentiated human thyroid follicular cells in long-term culture opens possibilities for investigating the transduction pathways of thyrotropin stimulation in normal and pathological human tissues, developing clinically relevant in vitro assays, and considering cellular and molecular therapies. Images PMID:8090760

  7. Leonardo da Vinci's "A skull sectioned": skull and dental formula revisited.

    PubMed

    Gerrits, Peter O; Veening, Jan G

    2013-05-01

    What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned paranasal sinuses and ductus nasolacrimalis. A dissected lateral wall of the maxilla is also present. Furthermore, at the level of the foramen mentale, the drawing displays compact and spongious bony components, together with a cross-section through the foramen mentale and its connection with the canalis mandibulae. Leonardo was the first to describe a correct dental formula (6424) and made efforts to place this formula above the related dental elements. However, taking into account, the morphological features of the individual elements of the maxilla, it can be suggested that Leonardo sketched a "peculiar dental element" on the position of the right maxillary premolar in the dental sketch. The fact that the author did not make any comment on that special element is remarkable. Leonardo could have had sufficient knowledge of the precise morphology of maxillary and mandibular premolars, since the author depicted these elements in the dissected skull. The fact that the author also had access to premolars in situ corroborates our suggestion that "something went wrong" in this part of the drawing. The present study shows that historical anatomical drawings are very useful for interactive learning of detailed anatomy for students in medicine and dentistry.

  8. New information about the skull and dentary of the Miocene platypus Obdurodon dicksoni, and a discussion of ornithorhynchid relationships.

    PubMed Central

    Musser, A M; Archer, M

    1998-01-01

    A reconstruction of the skull, dentary and dentition of the middle Miocene ornithorhynchid Obdurodon dicksoni has been made possible by acquisition of nearly complete cranial and dental material. Access to new anatomical work on the living platypus, Ornithorhynchus anatinus, and the present comparative study of the cranial foramina of Ob. dicksoni and Or. anatinus have provided new insights into the evolution of the ornithorhynchid skull. The hypertrophied bill in Ob. dicksoni is seen here as possibly apomorphic, although evidence from ontogenetic studies of Or. anatinus suggests that the basic form of the bill in Ob. dicksoni (where the rostral crura meet at the midline) may be ancestral to the form of the bill in Or. anatinus (where the rostral crura meet at the midline in the embryonic platypus but diverge in the adult). Differences in the relative positions of cranial structures, and in the relationships of certain cranial foramina, indicate that the cranium may have become secondarily shortened in Or. anatinus, possibly evolving from a more elongate skull type such as that of Ob. dicksoni. The plesiomorphic dentary of Ob. dicksoni, with well-developed coronoid and angular processes, contrasts with the dentary of Or. anatinus, in which the processes are almost vestigial, as well as with the dentary of the late Oligocene, congeneric Ob. insignis, in which the angular process appears to be reduced (the coronoid process is missing). In this regard the dentary of Ob. insignis seems to be morphologically closer to Or. anatinus than is the dentary of the younger Ob. dicksoni. Phylogenetic conclusions differ from previous analyses in viewing the northern Australian Ob. dicksoni as possibly derived in possessing a hypertrophied bill and dorsoventrally flattened skull and dentary, perhaps being a specialized branch of the Obdurodon line rather than ancestral to species of Ornithorhynchus. The presence of functional teeth and the robust, flattened skull and dentary in Ob

  9. Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models.

    PubMed

    Verma, Meenakshi; Pathak, Manisha; Shahab, Mohd; Singh, Kavita; Mitra, Kalyan; Misra-Bhattacharya, Shailja

    2014-12-01

    Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 μM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 μM, for male worm 0.186 μM and for microfilaria IC50 was 0.813 μM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi.

  10. Urinary concentrations of parabens in Chinese young adults: implications for human exposure.

    PubMed

    Ma, Wan-Li; Wang, Lei; Guo, Ying; Liu, Li-Yan; Qi, Hong; Zhu, Ning-Zheng; Gao, Chong-Jing; Li, Yi-Fan; Kannan, Kurunthachalam

    2013-10-01

    Parabens are widely used as preservatives in foods, cosmetics, and pharmaceuticals. However, recent studies have indicated that high and systemic exposure to parabens can be harmful to human health. Although a few studies have reported urinary paraben levels in western countries, studies on paraben exposure in the Chinese population are limited. China is currently a major producer of parabens in the world. In this study, 109 urine samples collected from Chinese young adults (approximately 20 years old) were analyzed for five parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl-parabens) by high-performance liquid chromatography-tandem mass spectrometry. Methyl-, propyl-, and ethyl-parabens were the three major paraben analogues found in all (100%) samples. The concentration of the sum of the five parabens ranged from 0.82 to 728 ng/mL with a geometric mean value of 17.4 ng/mL. Urinary concentration of parabens was 2-fold greater in females than in males. Based on the measured urinary concentrations, daily intake of parabens by the Chinese young adults was estimated and compared with those reported for United States adults. The estimated daily intakes (EDIurine) of parabens were 18.4 and 40.8 μg/kg bw/day for Chinese males and females, respectively, values that were lower than those reported for United States adults (74.7 μg/kg bw/day). Based on the reported concentrations of parabens in foods from China and the United States, the contribution of dietary intake to EDIurine was estimated to be 5.5, 2.6, and 0.42% for Chinese males, Chinese females, and United States adults, respectively, which indicates the significance of nondietary sources of parabens to human exposures.

  11. Epidemiologic, clinical, and virologic characteristics of human rhinovirus infection among otherwise healthy children and adults

    PubMed Central

    Chen, Wei-Ju; Arnold, John C.; Fairchok, Mary P.; Danaher, Patrick J.; McDonough, Erin A.; Blair, Patrick J.; Garcia, Josefina; Halsey, Eric S.; Schofield, Christina; Ottolini, Martin; Mor, Deepika; Ridoré, Michelande; Burgess, Timothy H.; Millar, Eugene V.

    2015-01-01

    Background Human rhinovirus (HRV) is a major cause of influenza-like illness (ILI) in adults and children. Differences in disease severity by HRV species have been described among hospitalized patients with underlying illness. Less is known about the clinical and virologic characteristics of HRV infection among otherwise healthy populations, particularly adults. Objectives To characterize molecular epidemiology of HRV and association between HRV species and clinical presentation and viral shedding. Study design Observational, prospective, facility-based study of ILI was conducted from February 2010 to April 2012. Collection of nasopharyngeal specimens, patient symptoms, and clinical information occurred on days 0, 3, 7, and 28. Patients recorded symptom severity daily for the first 7 days of illness in a symptom diary. HRV was identified by RT-PCR and genotyped for species determination. Cases who were co-infected with other viral respiratory pathogens were excluded from the analysis. We evaluated the associations between HRV species, clinical severity, and patterns of viral shedding. Results Eighty-four HRV cases were identified and their isolates genotyped. Of these, 62 (74%) were >18y. Fifty-four were HRV-A, 11 HRV-B, and 19 HRV-C. HRV-C infection was more common among children than adults (59% vs. 10%, P<0.001). Among adults, HRV-A was associated with higher severity of upper respiratory symptoms compared to HRV-B (P=0.02), but no such association was found in children. In addition, adults shed HRV-A significantly longer than HRV-C (Ptrend=0.01). Conclusions Among otherwise healthy adults with HRV infection, we observed species-specific differences in respiratory symptom severity and duration of viral shedding. PMID:25728083

  12. Comparison of human growth hormone products' cost in pediatric and adult patients. A budgetary impact model.

    PubMed

    Bazalo, Gary R; Joshi, Ashish V; Germak, John

    2007-09-01

    We assessed the economic impact to the United States payer of recombinant human growth hormone (rhGH) utilization, comparing the relative dosage efficiency of marketed pen-based and vial-based products in a pediatric and in an adult population. A budgetary impact model calculated drug costs based on product waste and cost. Waste was the difference between prescribed dose, based on patient weight, and actual delivered dose, based on dosing increments and maximum deliverable dose for pens and a fixed-percent waste as derived from the literature for vials. Annual wholesale acquisition costs were calculated based upon total milligrams delivered, using a daily dose of 0.03 mg/kg for pediatric patients and 0.016 mg/kg for adults. Total annual drug costs were compared for two scenarios: 1) a product mix based on national market share and 2) restricting use to the product with lowest waste. Based on the literature, waste for each vial product was 23 percent. Among individual pens, waste was highest for Humatrope 24 mg (19.5 percent pediatric, 14.3 percent adult) and lowest for Norditropin Nordi-Flex 5 mg (1.1 percent pediatric, 1 percent adult). Restricting use to the brand with least waste (Norditropin), compared to national product share mix, resulted in a 10.2 percent reduction in annual pediatric patient cost from $19,026 to $17,089 and an 8 percent reduction in annual adult patient cost from $24,099 to $22,161. We concluded that pen delivery systems result in less waste than vial and syringe. Considering all approved delivery systems, Norditropin resulted in the least product waste and lower annual patient cost for both pediatric and adult populations.

  13. Morphological evolution of the lizard skull: a geometric morphometrics survey.

    PubMed

    Stayton, C Tristan

    2005-01-01

    Patterns of diversity among lizard skulls were studied from a morphological, phylogenetic, and functional perspective. A sample of 1,030 lizard skulls from 441 species in 17 families was used to create a lizard skull morphospace. This morphospace was combined with a phylogeny of lizard families to summarize general trends in the evolution of the lizard skull. A basal morphological split between the Iguania and Scleroglossa was observed. Iguanians are characterized by a short, high skull, with large areas of attachment for the external adductor musculature, relative to their sister group. The families of the Iguania appear to possess more intrafamilial morphological diversity than families of the Scleroglossa, but rarefaction of the data reveals this to be an artifact caused by the greater number of species represented in Iguanian families. Iguanian families also appear more dissimilar to one another than families of the Scleroglossa. Permutation tests indicate that this pattern is real and not due to the smaller number of families in the Iguanidae. Parallel and convergent evolution is observed among lizards with similar diets: ant and termite specialists, carnivores, and herbivores. However, these patterns are superimposed over the more general phylogenetic pattern of lizard skull diversity. This study has three central conclusions. Different clades of lizards show different patterns of disparity and divergence in patterns of morphospace occupation. Phylogeny imposes a primary signal upon which a secondary ecological signal is imprinted. Evolutionary patterns in skull metrics, taken with functional landmarks, allow testing of trends and the development of new hypotheses concerning both shape and biomechanics.

  14. The mental representation of the human gait in young and older adults

    PubMed Central

    Stöckel, Tino; Jacksteit, Robert; Behrens, Martin; Skripitz, Ralf; Bader, Rainer; Mau-Moeller, Anett

    2015-01-01

    The link between mental representation (MREP) structures and motor performance has been evidenced for a great variety of movement skills, but not for the human gait. Therefore the present study sought to investigate the cognitive memory structures underlying the human gait in young and older adults. In a first experiment, gait parameters at comfortable gait speed (OptoGait) were compared with gait-specific MREPs (structural dimensional analysis of MREP; SDA-M) in 36 young adults. Participants were divided into a slow- and fast-walking group. The proven relationship between gait speed and executive functions such as working memory led to the hypothesis that gait pattern and MREP differ between slow- and fast-walking adults. In a second experiment, gait performance and MREPs were compared between 24 young (27.9 years) and 24 elderly (60.1 years) participants. As age-related declines in gait performance occur from the seventh decade of life onward, we hypothesized that gait parameters would not be affected until the age of 60 years accompanied by unchanged MREP. Data of experiment one revealed that gait parameters and MREPs differed significantly between slow and fast walkers. Notably, eleven previously incurred musculoskeletal injuries were documented for the slow walkers but only two injuries and one disorder for fast walkers. Experiment two revealed no age-related differences in gait parameters or MREPs between healthy young and older adults. In conclusion, the differences in gait parameters associated with lower comfortable gait speeds are reflected by differences in MREPs, whereby SDA-M data indicate that the single limb support phase may serve as a critical functional period. These differences probably resulted from previously incurred musculoskeletal injuries. Our data further indicate that the human gait and its MREP are stable until the age of 60. SDA-M may be considered as a valuable clinical tool for diagnosis of gait abnormalities and monitoring of

  15. Silver Editions II: Advancing the Concept of Library-Centered Humanities Programs for Older Adults. An Evaluation.

    ERIC Educational Resources Information Center

    Van Fleet, Connie; And Others

    This report is an evaluation of the Silver Edition II Project, a program to offer library-centered humanities programming to older adults. In the program local scholars in seven geographically dispersed library systems led discussion groups made up of 20 to 25 participating older adults. This evaluation focuses on the stated goals of the project:…

  16. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to...

  17. 40 CFR 26.1704 - Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Prohibition of reliance on unethical human research with non-pregnant, non-nursing adults. 26.1704 Section 26.1704 Protection of Environment... research with non-pregnant, non-nursing adults. (a) This section applies to research subject to...

  18. Application of superimposition-based personal identification using skull computed tomography images.

    PubMed

    Ishii, Masuko; Yayama, Kazuhiro; Motani, Hisako; Sakuma, Ayaka; Yasjima, Daisuke; Hayakawa, Mutumi; Yamamoto, Seiji; Iwase, Hirotaro

    2011-07-01

    Superimposition has been applied to skulls of unidentified skeletonized corpses as a personal identification method. The current method involves layering of a skull and a facial image of a suspected person and thus requires a real skeletonized skull. In this study, we scanned skulls of skeletonized corpses by computed tomography (CT), reconstructed three-dimensional (3D) images of skulls from the CT images, and superimposed the 3D images with facial images of the corresponding persons taken in their lives. Superimposition using 3D-reconstructed skull images demonstrated, as did superimposition using real skulls, an adequate degree of morphological consistency between the 3D-reconstructed skulls and persons in the facial images. Three-dimensional skull images reconstructed from CT images can be saved as data files and the use of these images in superimposition is effective for personal identification of unidentified bodies.

  19. Adult human heart slices are a multicellular system suitable for electrophysiological and pharmacological studies.

    PubMed

    Camelliti, Patrizia; Al-Saud, Sara Abou; Smolenski, Ryszard T; Al-Ayoubi, Samha; Bussek, Alexandra; Wettwer, Erich; Banner, Nicholas R; Bowles, Christopher T; Yacoub, Magdi H; Terracciano, Cesare M

    2011-09-01

    Electrophysiological and pharmacological data from the human heart are limited due to the absence of simple but representative experimental model systems of human myocardium. The aim of this study was to establish and characterise adult human myocardial slices from small patients' heart biopsies as a simple, reproducible and relevant preparation suitable for the study of human cardiac tissue at the multicellular level. Vibratome-cut myocardial slices were prepared from left ventricular biopsies obtained from end-stage heart failure patients undergoing heart transplant or ventricular assist device implantation, and from hearts of normal dogs. Multiple slices were prepared from each biopsy. Regular contractility was observed at a range of stimulation frequencies (0.1-2 Hz), and stable electrical activity, monitored using multi-electrode arrays (MEA), was maintained for at least 8 h from slice preparation. ATP/ADP and phosphocreatine/creatine ratios were comparable to intact organ values, and morphology and gap junction distribution were representative of native myocardium. MEA recordings showed that field potential duration (FPD) and conduction velocity (CV) in human and dog slices were similar to the values previously reported for papillary muscles, ventricular wedges and whole hearts. Longitudinal CV was significantly faster than transversal CV, with an anisotropic ratio of 3:1 for human and 2.3:1 for dog slices. Importantly, slices responded to the application of E-4031, chromanol and 4-aminopyridine, three potassium channel blockers known to affect action potential duration, with an increase in FPD. We conclude that viable myocardial slices with preserved structural, biochemical and electrophysiological properties can be prepared from adult human and canine heart biopsies and offer a novel preparation suitable for the study of heart failure and drug screening.

  20. Maternal and child undernutrition: consequences for adult health and human capital.

    PubMed

    Victora, Cesar G; Adair, Linda; Fall, Caroline; Hallal, Pedro C; Martorell, Reynaldo; Richter, Linda; Sachdev, Harshpal Singh

    2008-01-26

    In this paper we review the associations between maternal and child undernutrition with human capital and risk of adult diseases in low-income and middle-income countries. We analysed data from five long-standing prospective cohort studies from Brazil, Guatemala, India, the Philippines, and South Africa and noted that indices of maternal and child undernutrition (maternal height, birthweight, intrauterine growth restriction, and weight, height, and body-mass index at 2 years according to the new WHO growth standards) were related to adult outcomes (height, schooling, income or assets, offspring birthweight, body-mass index, glucose concentrations, blood pressure). We undertook systematic reviews of studies from low-income and middle-income countries for these outcomes and for indicators related to blood lipids, cardiovascular disease, lung and immune function, cancers, osteoporosis, and mental illness. Undernutrition was strongly associated, both in the review of published work and in new analyses, with shorter adult height, less schooling, reduced economic productivity, and--for women--lower offspring birthweight. Associations with adult disease indicators were not so clear-cut. Increased size at birth and in childhood were positively associated with adult body-mass index and to a lesser extent with blood pressure values, but not with blood glucose concentrations. In our new analyses and in published work, lower birthweight and undernutrition in childhood were risk factors for high glucose concentrations, blood pressure, and harmful lipid profiles once adult body-mass index and height were adjusted for, suggesting that rapid postnatal weight gain--especially after infancy--is linked to these conditions. The review of published works indicates that there is insufficient information about long-term changes in immune function, blood lipids, or osteoporosis indicators. Birthweight is positively associated with lung function and with the incidence of some cancers, and

  1. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms.

    PubMed

    Pereira, Adriana S A; Cavalcanti, Marília G S; Zingali, Russolina B; Lima-Filho, José L; Chaves, Maria E C

    2015-03-01

    Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.

  2. Distribution of constitutively expressed MEF-2A in adult rat and human nervous systems.

    PubMed

    Ruffle, Rebecca A; Mapley, Andrew C; Malik, Manmeet K; Labruzzo, Salvatore V; Chabla, Janet M; Jose, Riya; Hallas, Brian H; Yu, Han-Gang; Horowitz, Judith M; Torres, German

    2006-06-15

    Myocyte enhancer factor 2A (MEF-2A) is a calcium-regulated transcription factor that promotes cell survival during nervous system development. To define and further characterize the distribution pattern of MEF-2A in the adult mammalian brain, we used a specific polyclonal antiserum against human MEF-2A to identify nuclear-localized MEF-2A protein in hippocampal and frontal cortical regions. Western blot and immunocytochemical analyses showed that MEF-2A was expressed not only in laminar structures but also in blood vessels of rat and human brains. MEF-2A was colocalized with doublecortin (DCX), a microtubule-associated protein expressed by migrating neuroblasts, in CA1 and CA2 boundaries of the hippocampus. MEF-2A was expressed heterogeneously in additional structures of the rat brain, including the striatum, thalamus, and cerebellum. Furthermore, we found a strong nuclear and diffuse MEF-2A labeling pattern in spinal cord cells of rat and human material. Finally, the neurovasculature of adult rats and humans not only showed a strong expression of MEF-2A but also labeled positive for hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels. This study further characterizes the distribution pattern of MEF-2A in the mammalian nervous system, demonstrates that MEF-2A colocalizes with DCX in selected neurons, and finds MEF-2A and HCN1 proteins in the neurovasculature network.

  3. Uptake of dietary milk miRNAs by adult humans: a validation study

    PubMed Central

    Auerbach, Amanda; Vyas, Gopi; Li, Anne; Halushka, Marc; Witwer, Kenneth

    2016-01-01

    Breast milk is replete with nutritional content as well as nucleic acids including microRNAs (miRNAs). In a recent report, adult humans who drank bovine milk appeared to have increased circulating levels of miRNAs miR-29b-3p and miR-200c-3p. Since these miRNAs are homologous between human and cow, these results could be explained by xeno-miRNA influx, endogenous miRNA regulation, or both. More data were needed to validate the results and explore for additional milk-related alterations in circulating miRNAs. Samples from the published study were obtained, and 223 small RNA features were profiled with a custom OpenArray, followed by individual quantitative PCR assays for selected miRNAs. Additionally, small RNA sequencing (RNA-seq) data obtained from plasma samples of the same project were analyzed to find human and uniquely bovine miRNAs. OpenArray revealed no significantly altered miRNA signals after milk ingestion, and this was confirmed by qPCR. Plasma sequencing data contained no miR-29b or miR-200c reads and no intake-consistent mapping of uniquely bovine miRNAs. In conclusion, the results do not support transfer of dietary xenomiRs into the circulation of adult humans. PMID:27158459

  4. Adult education as a human right: The Latin American context and the ecopedagogic perspective

    NASA Astrophysics Data System (ADS)

    Gadotti, Moacir

    2011-08-01

    This article presents the concept and practice of adult education as a key issue for Brazil and other Latin American countries, both for formal and non-formal education in the public and private sectors. It includes citizen education focused on democratisation of society and sustainable development. The concept is pluralist and ideological as well as technical. All along the history of contemporary education it is essential to highlight the importance of the CONFINTEA conferences for the construction of an expanded vision of this concept. Adult education is understood as a human right. The right to education does not end when a person has reached the so-called "proper" age; it continues to be a right for the duration of everyone's entire life. This article explores Paulo Freire's contribution, particularly the methodology of MOVA (Youth and Adult Literacy Movement). It also presents the ecopedagogic perspective, which was inspired by Paulo Freire's legacy. Finally, this article stresses the need to support a long-term policy for adult education, following the recommendations of the Civil Society International Forum (FISC) and CONFINTEA VI, both held in Belém, Brazil, in 2009.

  5. Craniometric measurements of artificial cranial deformations in Eastern European skulls.

    PubMed

    Arnold, Wolfgang H; Fedorischeva, Victoria A; Naumova, Ella A; Yabluchansky, Nikolay I

    2008-06-01

    Standardized lateral cephalograms of eleven skulls with artificial cranial deformations from Eastern Europe and twenty normal skulls from the same population were made, digitized and imported into the AutoCAD 2005 computer program. The x- and y-coordinates of defined measuring points were determined and angle measurements were made. The form difference of the skulls was tested with the Euclidean Distance Matrix Analysis (EDMA) and the difference of the angle measurements were compared statistically using the non-parametric Mann-Whitney test. All deformed skulls belonged to the tabular fronto-occipital type of deformation. The results of the EDMA and the angle measurements indicated significant differences for the neurocranium and the facial cranium in height between the normal and the deformed skulls, but not in the cranial length. It can be concluded that in Eastern Europe one method of cranial molding was used. The deformation of the neurocranium also affected the development of the facial cranium regarding facial height. This may indicate a dependency of the developmental fields of the neurocranium and facial cranium.

  6. Quality of Life Following Endoscopic Resection of Skull Base Tumors

    PubMed Central

    Cavel, Oren; Abergel, Avraham; Margalit, Nevo; Fliss, Dan M.; Gil, Ziv

    2012-01-01

    The objective of the study is to evaluate patients' quality of life (QOL) after endoscopic resection of skull base tumors. We estimated the QOL of 41 patients who underwent surgery for removal of skull base tumors via the expanded endonasal approach (EEA). The Anterior Skull Base Surgery Questionnaire (ASBS-Q), a multidimensional, disease-specific instrument containing 36 items was used. The rate of meningitis and cerebrospinal fluid leak was 1.4 and 0%, respectively. There was one case of uniocular visual impairment. The internal consistency of the instrument had a correlation coefficient (α-Cronbach score) of 0.8 to 0.92. Of 41 patients, 30 (75%) reported improvement or no change in overall QOL. Improved scores were reported in the physical function domain and worse scores in the specific symptoms domain. The most significant predictor of poor QOL was female gender, which led to a significant decrease in scores of all domains. Site of surgery, histology, age and comorbidity were not significant predictors of outcome. This paper further validates the use of the ASBS-Q for patients undergoing endoscopic skull base resection. The overall QOL of patients following endoscopic extirpation of skull base tumors is good. Female patients experience a significant decline in QOL compared with males. PMID:23542557

  7. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    SciTech Connect

    O'Malley, Bert W. Weinstein, Gregory S.

    2007-10-01

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach was investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.

  8. The need for skull radiography in patients presenting for CT

    SciTech Connect

    Tress, B.M.

    1983-01-01

    One thousand patients had both CT of the head and a conventional skull series of radiographs. Radiographic findings were abnormal in 250 patients (25%), but only 64 patients (6.4%) had diagnostically significant abnormalities at radiography that were not detected by CT. If the 163 patients who presented after acute trauma were excluded from the series, only 39 (4.7%) of the remaining patients had radiographically significant abnormal findings that were not seen at CT, and only two (0.2%) of these abnormalities could not be diagnosed by a lateral skull radiograph alone. In only five patients (0.5%) was the management actively changed because an abnormaltiy that was detected at skull radiography was not detected at CT. Thus, in nontrauma patients who have stroke, epilepsy, dementia, or non-specific symptoms without focal signs, or have recently undergone craniotomy, and who have been referred for CT, skull radiographs are not justified. In the patient with a history and findings that are strongly suggestive of a pathological disorder anywhere other than in the sella turcica, cerebello-pontine angle, and paranasal sinuses, only the lateral skull radiograph should be obtained after CT, and only if CT is equivocal.

  9. Limits on efficient human mindreading: convergence across Chinese adults and Semai children.

    PubMed

    Wang, Bo; Hadi, Nur Shafiqah Abdul; Low, Jason

    2015-11-01

    We tested Apperly and Butterfill's (2009, Psychological Review, 116, 753) theory that humans have two mindreading systems whereby the efficient-system guiding anticipatory glances displays signature limits that do not apply to the flexible system guiding verbal predictions. Experiments 1 and 2 tested urban Mainland-Chinese adults (n = 64) and Experiment 3 tested Semai children living in the rainforests of Peninsular Malaysia (3- to 4-year-olds, n = 60). Participants - across different ages, groups and methods - anticipated others' false-beliefs about object-location but not object-identity. Convergence in signature limits signalled that the early-developing efficient system involved minimal theory-of-mind. Chinese adults and older Semai children showed flexibility in their direct predictions. The flexible mindreading system in ascribing others' beliefs as such was task-sensitive and implicated maturational and cultural contributions.

  10. Health and population effects of rare gene knockouts in adult humans with related parents.

    PubMed

    Narasimhan, Vagheesh M; Hunt, Karen A; Mason, Dan; Baker, Christopher L; Karczewski, Konrad J; Barnes, Michael R; Barnett, Anthony H; Bates, Chris; Bellary, Srikanth; Bockett, Nicholas A; Giorda, Kristina; Griffiths, Christopher J; Hemingway, Harry; Jia, Zhilong; Kelly, M Ann; Khawaja, Hajrah A; Lek, Monkol; McCarthy, Shane; McEachan, Rosie; O'Donnell-Luria, Anne; Paigen, Kenneth; Parisinos, Constantinos A; Sheridan, Eamonn; Southgate, Laura; Tee, Louise; Thomas, Mark; Xue, Yali; Schnall-Levin, Michael; Petkov, Petko M; Tyler-Smith, Chris; Maher, Eamonn R; Trembath, Richard C; MacArthur, Daniel G; Wright, John; Durbin, Richard; van Heel, David A

    2016-04-22

    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.

  11. Health and population effects of rare gene knockouts in adult humans with related parents

    PubMed Central

    Narasimhan, Vagheesh M.; Hunt, Karen A.; Mason, Dan; Baker, Christopher L.; Karczewski, Konrad J.; Barnes, Michael R.; Barnett, Anthony H.; Bates, Chris; Bellary, Srikanth; Bockett, Nicholas A.; Giorda, Kristina; Griffiths, Christopher J.; Hemingway, Harry; Jia, Zhilong; Kelly, M. Ann; Khawaja, Hajrah A.; Lek, Monkol; McCarthy, Shane; McEachan, Rosie; O’Donnell-Luria, Anne; Paigen, Kenneth; Parisinos, Constantinos A.; Sheridan, Eamonn; Southgate, Laura; Tee, Louise; Thomas, Mark; Xue, Yali; Schnall-Levin, Michael; Petkov, Petko M.; Tyler-Smith, Chris; Maher, Eamonn R.; Trembath, Richard C.; MacArthur, Daniel G.; Wright, John; Durbin, Richard; van Heel, David A.

    2016-01-01

    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3,222 British Pakistani-heritage adults with high parental relatedness, discovering 1,111 rare-variant homozygous genotypes with predicted loss of gene function (knockouts) in 781 genes. We observed 13.7% fewer than expected homozygous knockout genotypes, implying an average load of 1.6 recessive-lethal-equivalent LOF variants per adult. Linking genetic data to lifelong health records, knockouts were not associated with clinical consultation or prescription rate. In this dataset we identified a healthy PRDM9 knockout mother, and performed phased genome sequencing on her, her child and controls, which showed meiotic recombination sites localised away from PRDM9-dependent hotspots. Thus, natural LOF variants inform upon essential genetic loci, and demonstrate PRDM9 redundancy in humans. PMID:26940866

  12. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    NASA Astrophysics Data System (ADS)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  13. Incidence of pterygospinous and pterygoalar bridges in dried skulls of Koreans

    PubMed Central

    Ryu, Sol-Ji; Park, Min-Kyu; Lee, U-Young

    2016-01-01

    Understanding of morphological structures such as the sphenoid spine and pterygoid processes is important during lateral transzygomatic infratemporal fossa approach. In addition, osseous variations such as pterygospinous and pterygoalar bridges are significant in clinical practice because they can produce various neurological disturbances or block the passage of a needle into the trigeminal ganglion through the foramen ovale. Two hundred and eighty-four sides of Korean adult dry skulls were observed to carry out morphometric analysis of the lateral plate of the pterygoid process, to investigate, for the first time among Koreans, the incidence of the pterygospinous and pterygoalar bony bridges, to compare the results with those available for other regional populations, and to discuss their clinical relevance as described on literatures. The mean of maximum widths of the left and right lateral plates of the pterygoid process were 15.99 mm and 16.27 mm, respectively. Also, the mean of maximum heights of the left and right lateral plates were 31.02 mm and 31.01 mm, respectively. The ossified pterygospinous ligament was observed in 51 sides of the skulls (28.0%). Ossification of the pterygospinous ligament was complete in four sides (1.4%). In 47 sides (16.6%), the pterygospinous bridge was incomplete. The ossified pterygoalar ligament was observed in 24 sides of the skulls (8.4%). Ossification was complete in eight sides (2.8%) and incomplete in 16 sides (5.6%). This detailed analysis of the lateral plate of the pterygoid process and related ossification of ligaments can improve the understanding of complex clinical neuralgias associated with this region. PMID:27382517

  14. Three-dimensional dental arch curvature in human adolescents and adults.

    PubMed

    Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G; Colombo, A

    1999-04-01

    The three-dimensional arrangement of dental cusps and incisal edges in human dentitions has been reported to fit the surface of a sphere (the curve of Monson), with a radius of about 4 inches in adults. The objective of the current study was to compare the three-dimensional curvature of the mandibular dental arch in healthy permanent dentitions of young adults and adolescents. The mandibular casts of 50 adults (aged 19 to 22 years) and 20 adolescents (aged 12 to 14 years) with highly selected sound dentitions that were free from temporomandibular joint problems were obtained. The three coordinates of cusp tips excluding the third molars were digitized with a three-dimensional digitizer, and used to derive a spherical model of the curvature of the occlusal surfaces. From the best interpolating sphere, the radii of the left and right curves of Spee (quasi-sagittal plane) and of molar curve of Wilson (frontal plane) were computed. Mandibular arch size (interdental distances) was also calculated. The occlusal curvature of the mandibular arch was not significantly influenced by sex, although a significant effect of age was found (Student t, P <.005). The radii of the overall sphere, right and left curves of Spee, and curve of Wilson in the molar area were about 101 mm in adults, and about 80 mm in adolescents. Arch size was not influenced by either sex or age. The different curvatures of the occlusal plane in adolescents and adults may be explained by a progressive rotation of the major axis of the teeth moving the occlusal plane toward a more buccal position. These dental movements should be performed in a frontal plane on an anteroposterior axis located next to the dental crown.

  15. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy.

    PubMed

    Komuro, Yutaro; Xu, Guixiang; Bhaskar, Kiran; Lamb, Bruce T

    2015-06-01

    Accumulation of hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) is a central feature of a class of neurodegenerative diseases termed tauopathies. Notably, there is increasing evidence that tauopathies, including Alzheimer's disease, are also characterized by a reduction in neurogenesis, the birth of adult neurons. However, the exact relationship between hyperphosphorylation and aggregation of MAPT and neurogenic deficits remains unclear, including whether this is an early- or late-stage disease marker. In the present study, we used the genomic-based hTau mouse model of tauopathy to examine the temporal and spatial regulation of adult neurogenesis during the course of the disease. Surprisingly, hTau mice exhibited reductions in adult neurogenesis in 2 different brain regions by as early as 2 months of age, before the development of robust MAPT pathology in this model. This reduction was found to be due to reduced proliferation and not because of enhanced apoptosis in the hippocampus. At these same time points, hTau mice also exhibited altered MAPT phosphorylation with neurogenic precursors. To examine whether the effects of MAPT on neurogenesis were cell autonomous, neurospheres prepared from hTau animals were examined in vitro, revealing a growth deficit when compared with non-transgenic neurosphere cultures. Taken together, these studies provide evidence that altered adult neurogenesis is a robust and early marker of altered, cell-autonomous function of MAPT in the hTau mouse mode of tauopathy and that altered adult neurogenesis should be examined as a potential marker and therapeutic target for human tauopathies.

  16. Inventory of Research on Adult Human Resource Development in Canada. Inventaire de la Recherche sur le Developpement des Ressources Humaines Adultes au Canada.

    ERIC Educational Resources Information Center

    Page, Garnet T.; Caldwell, George

    This bilingual directory of research (1963-68) in the development of adult human resources in Canada indicates types of projects undertaken, principal objectives, institutions involved, amounts and sources of funding. It also shows which areas of research have been well covered, those with little or no coverage, and those which might be given a…

  17. Isolation and culture of adult human microglia within mixed glial cultures for functional experimentation and high-content analysis.

    PubMed

    Smith, Amy M; Gibbons, Hannah M; Lill, Claire; Faull, Richard L M; Dragunow, Mike

    2013-01-01

    Microglia are thought to be involved in diseases of the adult human brain as well as normal aging processes. While neonatal and rodent microglia are often used in studies investigating microglial function, there are important differences between rodent microglia and their adult human counterparts. Human brain tissue provides a unique and valuable tool for microglial cell and molecular biology. Routine protocols can now enable use of this culture method in many laboratories. Detailed protocols and advice for culture of human brain microglia are provided here. We demonstrate the protocol for culturing human adult microglia within a mixed glial culture and use a phagocytosis assay as an example of the functional studies possible with these cells as well as a high-content analysis method of quantification.

  18. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers.

    PubMed

    Amalric, Marie; Wang, Liping; Pica, Pierre; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a "geometrical language" with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.

  19. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    PubMed

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  20. Plasticity of Adult Human Pancreatic Duct Cells by Neurogenin3-Mediated Reprogramming

    PubMed Central

    Bonné, Stefan; Heremans, Yves; Borup, Rehannah; Van de Casteele, Mark; Ling, Zhidong; Pipeleers, Daniel; Ravassard, Philippe; Nielsen, Finn; Ferrer, Jorge; Heimberg, Harry

    2012-01-01

    Aims/Hypothesis Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. Methods The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. Results Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. Conclusions/Interpretation The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes. PMID:22606327

  1. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

    PubMed Central

    Amalric, Marie; Wang, Liping; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. PMID:28125595

  2. Sex estimation in forensic anthropology: skull versus postcranial elements.

    PubMed

    Spradley, M Katherine; Jantz, Richard L

    2011-03-01

    When the pelvis is unavailable, the skull is widely considered the second best indicator of sex. The goals of this research are to provide an objective hierarchy of sexing effectiveness of cranial and postcranial elements and to test the widespread notion that the skull is superior to postcranial bones. We constructed both univariate and multivariate discriminant models using data from the Forensic Anthropology Data Bank. Discriminating effectiveness was assessed by cross-validated classification, and in the case of multivariate models, Mahalanobis D(2). The results clearly indicate that most postcranial elements outperform the skull in estimating sex. It is possible to correctly sex 88-90% of individuals with joint size, up to 94% with multivariate models of the postcranial bones. The best models for the cranium do not exceed 90%. We conclude that postcranial elements are to be preferred to the cranium for estimating sex when the pelvis is unavailable.

  3. Morphological analysis of the skull shape in craniosynostosis.

    PubMed

    Tejszerska, Dagmara; Wolański, Wojciech; Larysz, Dawid; Gzik, Marek; Sacha, Edyta

    2011-01-01

    Craniosynostosis represents premature suture fusion of the fetal and neonatal skull. Pathogenesis of craniosynostosis is complex and probably multifactorial. Growth of skull bones is strictly connected with the expanding growth of the brain and cranial malformations or prematurely fused sutures cause abnormal head shape. In order to diagnose the craniosynostosis, physical examination, plain radiography, and computed tomography with 3D reconstructions are indispensable. Engineering software such as Mimics v.13.1 and 3-matic v.5.0 enables a 3-dimensional model of head to be generated, based on the pictures obtained from CT. It is also possible to indicate the distances between the characteristic anatomical points. These measures are helpful during planning the neurosurgical correction of the skull, because the possibility of strictly specifing incisions before surgery, which is very important to provide the maximal safety of a child.

  4. Properties and architecture of the sperm whale skull amphitheatre.

    PubMed

    Alam, Parvez; Amini, Shahrouz; Tadayon, Maryam; Miserez, Ali; Chinsamy, Anusuya

    2016-02-01

    The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space. We contend that the amphitheatre will flex elastically to equilibrate forces transmitted via the spermaceti organ that arise through diving. We find that collisions from sperm whale aggression do not cause the amphitheatre to bend, but rather localise stress to the base of the amphitheatre on its anterior face. We consider, therefore, that the uniquely thin and extended construction of the amphitheatre, has relevance as an energy absorptive structure in diving.

  5. Genomic and transcriptomic characterization of skull base chordoma

    PubMed Central

    Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun

    2017-01-01

    Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492

  6. Skull roentgenography in the evaluation of head injury

    SciTech Connect

    North, S.; Pollak, E.W.

    1983-04-01

    The role of skull roentgenograms in determining choice of therapy, hospital admission, and length of hospitalization was evaluated in 106 consecutive patients with head injury. Thirty patients were discharged from the emergency room after initial evaluation and had uneventful recovery. Seventy-six were admitted and discharged without operative treatment one to ten days later. Only five had pathologic skull findings roentgenographicaly. Of these, one was discharged from the emergency department; the remaining four were admitted because of abnormal neurologic findings. All five recovered uneventfully. Another patient who had a normal roentgenographic evaluation required subsequent admission for craniotomy. Skull roentgenograms were an unimportant factor in the management of head injury patients and did not eliminate the need for complete and serial neurologic evaluation.

  7. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals.

    PubMed

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B; Cook, Mark J; Wolters, Carsten H; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery.

  8. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  9. Expression pattern of thymosin beta 4 in the adult human liver

    PubMed Central

    Nemolato, S.; Van Eyken, P.; Cabras, T.; Cau, F.; Fanari, M.U.; Locci, A.; Fanni, D.; Gerosa, C.; Messana, I.; Castagnola, M.; Faa, G.

    2011-01-01

    Thymosin beta-4 (Tβ4) is a member of beta-thymosins, a family of small peptides involved in polymerization of G-actin, and in many critical biological processes including apoptosis, cell migration, angiogenesis, and fibrosis. Previous studies in the newborn liver did not reveal any significant reactivity for Tβ4 during the intrauterine life. The aim of the present study was to investigate by immunohistochemistry Tβ4 expression in the adult normal liver. Thirty-five human liver samples, including 11 needle liver biopsies and 24 liver specimens obtained at autopsy, in which no pathological change was detected at the histological examination, were immunostained utilizing an anti-Tβ4 commercial antibody. Tβ4 was detected in the hepatocytes of all adult normal livers examined. A zonation of Tβ4 expression was evident in the vast majority of cases. Immunostaining was preferentially detected in zone 3, while a minor degree of reactivity was detected in periportal hepatocytes (zone 1). At higher power, Tβ4-reactive granules appeared mainly localized at the biliary pole of hepatocytes. In cases with a strong immunostaining, even perinuclear areas and the sinusoidal pole of hepatocytes appeared interested by immunoreactivity for Tβ4. The current work first evidences a strong diffuse expression of Tβ4 in the adult human liver, and adds hepatocytes to the list of human cells able to synthesize large amounts of Tβ4 in adulthood. Moreover, Tβ4 should be added to the liver proteins characterized by a zonate expression pattern, in a descending gradient from the terminal vein to the periportal areas of the liver acinus. Identifying the intimate role played by this peptide intracellularly and extracellularly, in physiology and in different liver diseases, is a major challenge for future research focusing on Tβ4. PMID:22073372

  10. Understanding and Managing Learning Disabilities in Adults. Professional Practices in Adult Education and Human Resource Development Series.

    ERIC Educational Resources Information Center

    Jordan, Dale R.

    This book reviews learning disabilities (LD) in adults and makes suggestions for helping adults cope with these disabilities. Each chapter covers a type of learning disability or related syndrome or explains characteristics of the brain. Chapter 1 explains several types of specific learning disabilities that make classroom performance difficult…

  11. Gastrointestinal absorption of plutonium, uranium and neptunium in fed and fasted adult baboons: Application to humans

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Moretti, E.S.; Cohen, N.; Ralston, L.G.; Ayres, L.

    1992-03-01

    Gastrointestinal (GI) absorption values of plutonium, uranium, and neptunium were determined in fed and fasted adult baboons. A dual isotope method of determining GI absorption, which does not require animal sacrifice, was validated and shown to compare well with the sacrifice method (summation of oral isotope in urine with that in tissues at sacrifice). For all three elements, mean GI absorption values were significantly high (5- to 50-fold) in 24-hour (h)-fasted animals than in fed animals, and GI absorption values for baboons agreed well with those for humans.

  12. Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes.

    PubMed

    Doshi, Manali; Marcus, Craig; Bejjani, Bassem A; Edward, Deepak P

    2006-01-01

    CYP1B1 is a cytochrome P450 enzyme implicated in autosomal recessive primary congenital glaucoma (PCG). The mechanism and function of CYP1B1 in the development of the PCG phenotype is unknown. Previously, investigators have reported detection of Cyp1b1 mRNA in the ciliary body and epithelium and neuroepithelium in the developing mouse eye, employing in situ hybridization techniques. Similarly, additional investigators have detected CYP1B1 mRNA in the iris, ciliary body, non-pigmented ciliary epithelial line, cornea, retinal-pigment epithelium, and retina in the human adult eye, using Northern blotting. This study was designed to immunolocalize CYP1B1 protein in the various ocular structures of normal, human fetal and adult eyes. Normal fetal and adult eyes were immunolabeled with a polyclonal antibody against human CYP1B1 using indirect immunofluorescence, and then compared with appropriate controls. The intensity of immunolabeling of the various ocular structures was assessed by qualitative and semi-quantitative techniques. In the anterior segment anti-CYP1B1 immunoreactivity (IR) was detected early in fetal development in the primitive ciliary epithelium. As well, the most intense CYP1B1 IR was in the non-pigmented ciliary epithelium. In addition, CYP1B1 IR was also present in the corneal epithelium and keratocytes, both layers of the iris pigmented epithelium, and retina. However, CYP1B1 IR was absent in the trabecular meshwork in all of the samples. In general, CYP1B1 immunolabeling in the human fetal eyes was more intense when compared to adult eyes. CYP1B1 IR was primarily immunolocalized to the non-pigmented ciliary epithelium and early in fetal development. In addition, CYP1B1 IR was not detected in the trabecular meshwork. These findings suggest that the abnormalities in the development of the trabecular meshwork in PCG may result from diminished or absent metabolism of important endogenous substrates in the ciliary epithelium due to non-functional CYP1B1

  13. Main tributaries of the coronary sinus in the adult human heart.

    PubMed

    Duda, B; Grzybiak, M

    1998-01-01

    The coronary sinus collects blood from the heart walls. It is a structure which presently plays a very important clinical role in invasive cardology. In this study, the occurrence of the main tributaries of the coronary sinus was examined as wall as the topography of their outlet portions. Material consistied of 150 adult human hearts of both sexes from aged 18 to 85 years. In the examined material, the graet and middle cardiac veins as well as the posterior vein of the left ventricle were always obserwed. The remaining tributaries of the coronary sinus were less stable. The outlet portions of the main veins of the heart were characterized by significant variability.

  14. Analysis of the traction forces in different skull traction systems.

    PubMed

    Nyström, B; Allard, H; Karlsson, H

    1988-03-01

    During transportation of patients under skull traction, swinging of the weights produces acceleration forces that not only can cause pain and discomfort for the patient, but also can cause worsening of the cervical fracture or dislocation. Skull traction systems also involve friction forces. In a system with one pulley, the friction forces were 10 to 21.5% of the weight applied but, in a system with three pulleys (Stryker SurgiBed 965), they were as much as 65%. A new spring traction device that permits traction during transportation showed better physical characteristics than the hanging weight systems.

  15. Endoscopic Skull Base Reconstruction: An Evolution of Materials and Methods.

    PubMed

    Sigler, Aaron C; D'Anza, Brian; Lobo, Brian C; Woodard, Troy; Recinos, Pablo F; Sindwani, Raj

    2017-03-31

    Endoscopic skull base surgery has developed rapidly over the last decade, in large part because of the expanding armamentarium of endoscopic repair techniques. This article reviews the available technologies and techniques, including vascularized and nonvascularized flaps, synthetic grafts, sealants and glues, and multilayer reconstruction. Understanding which of these repair methods is appropriate and under what circumstances is paramount to achieving success in this challenging but rewarding field. A graduated approach to skull base reconstruction is presented to provide a systematic framework to guide selection of repair technique to ensure a successful outcome while minimizing morbidity for the patient.

  16. Recurrent mandibular ameloblastoma with anterior skull base invasion: Case report.

    PubMed

    Santini, L; Varoquaux, A; Giovanni, A; Dessi, P; Michel, J

    2015-01-01

    Recurrent ameloblastoma with skull base invasion is a rare clinical entity with poor prognosis. We report a case of a mandibular ameloblastoma recurrence involving the anterior skull base. The diagnostic and therapeutic processes are presented with emphasis on the radiologic features of ameloblastoma. Another aim of this case report is to underline the importance of close and long-term follow-up after resection. Ameloblastoma recurrences are frequent and mainly occur after incomplete surgical resection. These recurrences may be diagnosed late because of lack of symptoms in the mandibular area.

  17. Skull lichens: a curious chapter in the history of phytotherapy.

    PubMed

    Modenesi, P

    2009-04-01

    Lichens growing on skulls were known in late medieval times as usnea or moss of a dead man's skull and were recommended as highly beneficial in various diseases. They were, in addition, the main ingredient of Unguentum armariun, a liniment used in a curious medical practice: the magnetic cure of wounds. We can place this chapter of the history of phytotherapy within the wider cultural context of the period, which saw the definition of nature become increasingly more fluid and open to a variety of novel interpretations.

  18. Skull base osteomyelitis presenting with an isolated hypoglossal nerve palsy

    PubMed Central

    Kasfiki, Eirini Vasileiou; Kelly, Ciaran; Smith, John; Nicolaides, Andreas

    2013-01-01

    This is the first case of skull base osteomyelitis presenting with isolated bilateral hypoglossal nerve palsy reported in the literature. A 75-year-old man presented with tongue paralysis without any other cranial nerve palsy. He was otherwise well apart from recently having a high prostate-specific antigen level recorded. Investigations for malignancy or cerebrovascular insult were negative with the diagnosis of skull base osteomyelitis confirmed using CT. Following treatment with intravenous antibiotics for 6 weeks, symptoms resolved. PMID:23853016

  19. Proton therapy for tumors of the base of the skull.

    PubMed

    Noel, Georges; Gondi, Vinai

    2016-08-01

    Relative to conventional photon irradiation, proton therapy has distinct advantages in its ability to more precisely target tumor while shielding adjacent normal tissues. In the setting of skull base tumors, proton therapy plays a critical role in the dose-escalation required for optimal tumor control of chordomas, chondrosarcomas, and malignancies of the paranasal sinuses and nasal cavity. For benign tumors such as craniopharyngiomas, pituitary adenomas and meningiomas, proton therapy can limit long-term adverse effects, such as secondary malignancies. This review summarizes published literature to date regarding the role of proton therapy in skull base tumors and introduces emerging proton therapy approaches such as pencil-beam scanning (PBS).

  20. [Primary lymphoma of the skull: Case report and literature review].

    PubMed

    Issara, K; Yossi, S; Caraivan, I

    2016-12-01

    Primitive lymphomas of the bone are exceptional tumors, representing 4% of all non-Hodgkin lymphomas. The location at the skull remains the rarest. We report the case of a 56 year old patient with lytic lesions in the skull of a small cell lymphoma B, treated with primary chemotherapy and intensity-modulated radiotherapy in arctherapy with a dose of 30Gy in 15 fractions. With a follow-up time of 18 months after the end of treatment, the patient has no sign of disease evolution.

  1. The skull and humerus in the determination of sex: reliability of discriminant function equations.

    PubMed

    Robinson, Meredith Stacy; Bidmos, Mubarak Ariyo

    2009-04-15

    Sex determination plays a crucial role in the identification of human remains as it narrows the possibility for identification by 50%. The purpose of this study is to test the validity of five discriminant function equations, with accuracies of 80% and higher, that have been derived by Steyn and Işcan [M. Steyn, M.Y. Işcan, Sexual dimorphism in the crania and mandibles of South African Whites, Forensic Sci. Int. 98 (1998) 9-16; M. Steyn, M.Y. Işcan, Osteometric variation in the humerus: sexual dimorphism in South Africans, Forensic Sci. Int. 106 (1999) 77-85] for the skull and humerus of South Africans of European Descent (SAED). These equations were tested on different regional populations of SAED within South Africa. While the validity of some of the discriminant functions has been assessed by the authors who derived them, no other previous independent study has been carried out to assess the reliability of these equations. In addition, these equations have not been tested on skeletons located outside the Gauteng province. The study sample consisted of 230 skulls and 264 humeri of SAED obtained from four South African skeletal collections: Raymond A. Dart Collection of Human Skeletons (Johannesburg); Pretoria Bone Collection; Cape Town Skeletal Collection; and the Osteology Archive Student Collection (Stellenbosch). A total of 14 measurements (12 cranial and 2 humeral) were taken on these skeletal elements. The observed accuracies from the present study (72.0-95.5%), with the exception of one sample's accuracy, compared well with the original classification rates (80.2-92.5%) for most of the functions thereby confirming the validity of the discriminant function equations for sex determination for the skull and humerus of SAED, for SAED in all regions of South Africa.

  2. Long-term outcome of extensive skull reconstruction using demineralized perforated bone in Siamese twins joined at the skull vertex.

    PubMed

    Salyer, K E; Gendler, E; Squier, C A

    1997-05-01

    The successful use of cortical demineralized perforated bone in the treatment of extensive skeletal defects in children is exemplified by this case involving Siamese twins joined at the skull vertex. Four years following extensive skull reconstruction using demineralized perforated bone, an examination revealed successful calvarial reconstruction in one twin. The other twin required additional implants of demineralized perforated bone to fill in defects. However, a histologic examination taken following this additional procedure revealed that these implants neither caused tissue reaction over a 4-year period, nor showed signs of resorption. Bony remodeling and new bone formation were in progress. Compared with other bone substitutes, demineralized perforated bone has proven to be effective in the treatment of large skull defects in children.

  3. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  4. Differential DNA Methylation Regions in Adult Human Sperm following Adolescent Chemotherapy: Potential for Epigenetic Inheritance

    PubMed Central

    Shnorhavorian, Margarett; Schwartz, Stephen M.; Stansfeld, Barbara; Sadler-Riggleman, Ingrid; Beck, Daniel

    2017-01-01

    Background The potential that adolescent chemotherapy can impact the epigenetic programming of the germ line to influence later life adult fertility and promote epigenetic inheritance was investigated. Previous studies have demonstrated a number of environmental exposures such as abnormal nutrition and toxicants can promote sperm epigenetic changes that impact offspring. Methods Adult males approximately ten years after pubertal exposure to chemotherapy were compared to adult males with no previous exposure. Sperm were collected to examine differential DNA methylation regions (DMRs) between the exposed and control populations. Gene associations and correlations to genetic mutations (copy number variation) were also investigated. Methods and Findings A signature of statistically significant DMRs was identified in the chemotherapy exposed male sperm. The DMRs, termed epimutations, were found in CpG desert regions of primarily 1 kilobase size. Observations indicate adolescent chemotherapy exposure can promote epigenetic alterations that persist in later life. Conclusions This is the first observation in humans that an early life chemical exposure can permanently reprogram the spermatogenic stem cell epigenome. The germline (i.e., sperm) epimutations identified suggest chemotherapy has the potential to promote epigenetic inheritance to the next generation. PMID:28146567

  5. Differential expression of HLA class II antigens on human fetal and adult lymphocytes and macrophages.

    PubMed Central

    Edwards, J A; Jones, D B; Evans, P R; Smith, J L

    1985-01-01

    A panel of monoclonal antibodies to monomorphic determinants of the MHC class II subregion locus products: DP, DR and DQ, was used to investigate the expression of these antigens on early lymphocytes and macrophages from human fetal liver (13-20 weeks), placenta (16 weeks and term) and cord blood, in relation to the class II phenotype of cells from adult tonsil and peripheral blood. Fetal liver sections and cell suspensions showed differential expression of class II antigens. DP was expressed at a higher frequency (11.0% of nucleated cells) than DR on lymphoid cells and macrophages from fetal liver, and DQ was either absent or expressed on less than 0.3% of nucleated cells. Consistent with this finding, DP but not DR or DQ antigens were observed on vascular elements and macrophages in the villi of 16-week placenta. At term, all three subregion locus products were expressed. Adult tonsil and peripheral blood B lymphocytes expressed DP, DR and DQ antigens with similar frequency; however, DQ was expressed at a lower frequency than DP and DR on cord blood B lymphocytes. In contrast, 30-50% macrophages from cord blood and adult peripheral blood expressed DP and DR, but fewer (5% and 18%, respectively) expressed DQ. These data suggest that class II antigens are expressed in the sequence DP, DR, DQ on developing lymphocytes. A similar sequence is suggested for macrophages. Images Figure 1 Figure 2 Figure 3 PMID:3894221

  6. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects.

    PubMed Central

    Takagi, K; Urist, M R

    1982-01-01

    Trephine defects in the adult rat skull 0.8 cm in diameter, which do not spontaneously heal, were filled with a bovine bone morphogenetic protein (BMP) fraction. The defects healed not only by bony ingrowth from the trephine rim, but also by proliferation of pervascular mesenchymal-type cells (pericytes) of the dura mater. Under the influence of BMP, dural pericytes differentiated into chondroid and woven bone. Between three and four weeks postimplantation, sinusoids formed and the woven bone remodelled into lamellar bone. Concurrently, blood-borne bone marrow cells colonized the bone deposits, and the diploe were restored. Demonstrating that it is soluble in interstitial fluid, and diffusible across a nucleopore membrane (which isolated the bony margins of the skull), BMP induced new bone formation in the underlying dura and complete repair of the defect. The response of the dura to the BMP fraction produced more new bone than the response to allogeneic bone matrix. The BMP-induced repair was dose dependent; the quantity of new bone was proportional to the dose of the implanted BMP. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:7092346

  7. Size variation, growth strategies, and the evolution of modularity in the mammalian skull.

    PubMed

    Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel

    2013-11-01

    Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection.

  8. CT of Normal Developmental and Variant Anatomy of the Pediatric Skull: Distinguishing Trauma from Normality.

    PubMed

    Idriz, Sanjin; Patel, Jaymin H; Ameli Renani, Seyed; Allan, Rosemary; Vlahos, Ioannis

    2015-01-01

    The use of computed tomography (CT) in clinical practice has been increasing rapidly, with the number of CT examinations performed in adults and children rising by 10% per year in England. Because the radiology community strives to reduce the radiation dose associated with pediatric examinations, external factors, including guidelines for pediatric head injury, are raising expectations for use of cranial CT in the pediatric population. Thus, radiologists are increasingly likely to encounter pediatric head CT examinations in daily practice. The variable appearance of cranial sutures at different ages can be confusing for inexperienced readers of radiologic images. The evolution of multidetector CT with thin-section acquisition increases the clarity of some of these sutures, which may be misinterpreted as fractures. Familiarity with the normal anatomy of the pediatric skull, how it changes with age, and normal variants can assist in translating the increased resolution of multidetector CT into more accurate detection of fractures and confident determination of normality, thereby reducing prolonged hospitalization of children with normal developmental structures that have been misinterpreted as fractures. More important, the potential morbidity and mortality related to false-negative interpretation of fractures as normal sutures may be avoided. The authors describe the normal anatomy of all standard pediatric sutures, common variants, and sutural mimics, thereby providing an accurate and safe framework for CT evaluation of skull trauma in pediatric patients.

  9. Skull Anatomy and Ontogeny of Legless Lizard Pseudopus apodus (Pallas, 1775): Heterochronic Influences on Form.

    PubMed

    Klembara, Jozef; Dobiašová, Karolína; Hain, Miroslav; Yaryhin, Oleksandr

    2017-03-01

    Pseudopus apodus (Pallas, 1775) is the largest extant legless species of the subfamily Anguinae (Anguimorpha, Anguidae) living mostly in the sub-arid territories ranging from the Balkan area in Europe to Kazakhstan in Asia. The species of other two genera live in North America, South-East Asia and North Africa (Ophisaurus) and Europe and South-West Asia (Anguis). The interrelationships of Anguinae are unresolved; this is in part the consequence of the insufficient knowledge of the cranial, postcranial and integumentary anatomy of the individual anguine species. The aim of this article is to fulfill this gap in our knowledge of the anguine anatomy. Now, in the first part of the project, the individual bones of the exocranium and visceral endocranium of the anguine legless lizard P. apodus are described in detail. In the present study, P. apodus is revealed to have autoapomorphic features of the skull which clearly distinguish it from Anguis and Ophisaurus. In addition, the study of posthatchling ontogeny of exocranium of P. apodus revealed some features, such as a nasal process of premaxilla being slightly widened in about its mid-length, that are also typical for adults of the Ophisaurus and Anguis species as well as extinct species of Pseudopus. This strongly indicates that peramorphic heterochronic process played role in the evolution of the P. apodus skull. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:460-502, 2017. © 2016 Wiley Periodicals, Inc.

  10. Large-scale identification of coregulated enhancer networks in the adult human brain.

    PubMed

    Vermunt, Marit W; Reinink, Peter; Korving, Jeroen; de Bruijn, Ewart; Creyghton, Paul M; Basak, Onur; Geeven, Geert; Toonen, Pim W; Lansu, Nico; Meunier, Charles; van Heesch, Sebastiaan; Clevers, Hans; de Laat, Wouter; Cuppen, Edwin; Creyghton, Menno P

    2014-10-23

    Understanding the complexity of the human brain and its functional diversity remain a major challenge. Distinct anatomical regions are involved in an array of processes, including organismal homeostasis, cognitive functions, and susceptibility to neurological pathologies, many of which define our species. Distal enhancers have emerged as key regulatory elements that acquire histone modifications in a cell- and species-specific manner, thus enforcing specific gene expression programs. Here, we survey the epigenomic landscape of promoters and cis-regulatory elements in 136 regions of the adult human brain. We identify a total of 83,553 promoter-distal H3K27ac-enriched regions showing global characteristics of brain enhancers. We use coregulation of enhancer elements across many distinct regions of the brain to uncover functionally distinct networks at high resolution and link these networks to specific neuroglial functions. Furthermore, we use these data to understand the relevance of noncoding genomic variations previously linked to Parkinson's disease incidence.

  11. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse.

    PubMed

    Nieman, Brian J; Blank, Marissa C; Roman, Brian B; Henkelman, R Mark; Millen, Kathleen J

    2012-10-17

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences.

  12. The Hoshino wooden skeleton, the first wooden model of a human skeleton, made during the Edo era in Japan.

    PubMed

    Kataoka, Katsuko; Suzaki, Etsuko; Ajima, Noriaki

    2007-03-01

    The wooden model of the human skeleton, called the wooden skeleton, is a distinguished original craft object from the Edo era, in Japan, when medical doctors were unable to keep a human skeleton for study and teaching purposes. There are three types of wooden skeletons: (i) Hoshino made in 1792; (ii) Kagami made by 1810; and (iii) Okuda made around 1820. The former two are of adult males and the latter is of a female. The wooden skeletons were made with surprising accuracy compared with figures that appeared in the medical books available in Japan at that time, which suggests a scientific readiness of the doctors and the skill of the craftsmen. In the cases of the Hoshino and Kagami wooden skeletons, it is hard to consider that all wooden bones were assembled to show the entire body. Conversely, the Okuda wooden skeletons were made for showing in the sitting position. The skull of the Hoshino wooden skeleton is of special interest: the skull cap was not cut, yet the internal structures of the skull, such as the sella turcica, foramina for nerves and vessels, and the sulci for venous sinuses, were made with considerable accuracy. The skull caps of the Kagami and Okuda wooden skeletons were cut, as those used in modern medical education.

  13. Lipid-mediated transfection of normal adult human hepatocytes in primary culture.

    PubMed

    Ourlin, J C; Vilarem, M J; Daujat, M; Harricane, M C; Domergue, J; Joyeux, H; Baulieux, J; Maurel, P

    1997-04-05

    The aim of this work was to develop a procedure for the lipid-mediated transfection of DNA into normal adult human hepatocytes in culture. Cells were plated in a serum-free culture medium at various cell densities, on plastic or collagen-coated dishes, both in the absence and in the presence of epidermal growth factor (EGF). The cells were incubated for various periods of time with mixtures of DNA-lipofectin or DNA-3 beta[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-chol) liposomes, and the efficiency of transfection was assessed by measuring the activity of reporter genes, beta-galactosidase or chloramphenicol acetyl-transferase (CAT). For comparison, similar experiments were carried out with human cell lines including HepG2, Caco-2, and WRL68. The efficiency of transfection (in percentage of cells) was not significantly different after transfection with lipofectin or DC-chol and comprised between 0.04 and 1.7% (extreme values) for different cultures. The efficiency of transfection decreased as the age or density of the culture increased and increased in cultures treated with EGF. Direct measurement of the rate of DNA synthesis suggested that the efficiency of transfection was related to the number of cells entering the S phase. Under the same conditions, the efficiency of transfection was one to two orders of magnitude greater in the three cell lines. A plasmid harboring 660 bp of the 5'-flanking region of CYP1A1 (containing two xenobiotic enhancer elements) fused upstream of the promoter of thymidine kinase and the CAT reporter gene was constructed. When this plasmid was transfected in human hepatocytes, CAT activity was induced as expected. We conclude that normal adult human hepatocytes can be transfected with exogenous DNA and that the transfected construct is regulated in the manner expected from in vivo studies.

  14. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains

    PubMed Central

    Weimann, James M.; Charlton, Carol A.; Brazelton, Timothy R.; Hackman, Robert C.; Blau, Helen M.

    2003-01-01

    We show here that cells within human adult bone marrow can contribute to cells in the adult human brain. Cerebellar tissues from female patients with hematologic malignancies, who had received chemotherapy, radiation, and a bone marrow transplant, were analyzed. Brain samples were obtained at autopsy from female patients who received male (sex-mismatched) or female (sex-matched, control) bone marrow transplants. Cerebella were evaluated in 10-μm-thick, formaldehyde-fixed, paraffin-embedded sections that encompassed up to ≈50% of a human Purkinje nucleus. A total of 5,860 Purkinje cells from sex-mismatched females and 3,202 Purkinje cells from sex-matched females were screened for Y chromosomes by epifluorescence. Confocal laser scanning microscopy allowed definitive identification of the sex chromosomes within the morphologically distinct Purkinje cells. In the brains of females who received male bone marrow, four Purkinje neurons were found that contained an X and a Y chromosome and two other Purkinje neurons contained more than a diploid number of sex chromosomes. No Y chromosomes were detected in the brains of sex-matched controls. The total frequency of male bone marrow contribution to female Purkinje cells approximated 0.1%. This study demonstrates that although during human development Purkinje neurons are no longer generated after birth, cells within the bone marrow can contribute to these CNS neurons even in adulthood. The underlying mechanism may be caused either by generation de novo of Purkinje neurons from bone marrow-derived cells or by fusion of marrow-derived cells with existing recipient Purkinje neurons. PMID:12576546

  15. Growing skull fracture in a 5-month old child: a case report.

    PubMed

    Yu, Michael; Schmidt, John H; Trenton, Brooke A; Sheets, Nicholas W

    2010-01-01

    Growing skull fractures are a rare complication of linear skull fractures in children. The authors report a case of a growing skull fracture in a 5-month-old patient with a review of the literature. CT and MRI scans revealed a growing skull fracture with complication of leptomeningeal cyst formation. Surgical removal of the cyst, duraplasty and cranial reconstruction were performed. Follow up showed that the patient was stable neurologically and had improving left upper extremity weakness.

  16. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing.

    PubMed

    Ghosh, Kaustabh; Ren, Xiang-Dong; Shu, Xiao Zheng; Prestwich, Glenn D; Clark, Richard A F

    2006-03-01

    Fibronectin (FN) facilitates dermal fibroblast migration during normal wound healing. Proteolytic degradation of FN in chronic wounds hampers healing. Previously, three FN functional domains (FNfd) have been shown to be sufficient for optimal adult human dermal fibroblast migration. Here we report the development of an acellular hydrogel matrix comprised of the FNfds coupled to a hyaluronan (HA) backbone to stimulate wound repair. Employing Michael-type addition, the cysteine- tagged FNfds were first coupled to a homobifunctional PEG derivative. Thereafter, these PEG derivative FNfd solutions, containing bifunctional PEG-derivative crosslinker were coupled to thiol-modified HA (HA-DTPH) to obtain a crosslinked hydrogel matrix. When evaluated in vitro, these acellular hydrogels were completely cytocompatible. While spreading and proliferation of adult human dermal fibroblasts plateaued at higher FNfd bulk densities, their rapid and robust migration followed a typical bell-shaped response. When implanted in porcine cutaneous wounds, these acellular matrices, besides being completely biocompatible, induced rapid and en masse recruitment of stromal fibroblasts that was not observed with RGD-tethered or unmodified hydrogels. Such constructs might be of great benefit in clinical settings where rapid formation of new tissue is needed.

  17. Psychometric testing of the Revised Humane Caring Scale for adult patients in Singapore.

    PubMed

    Goh, Mien Li; Ang, Emily N K; Chan, Yiong-Huak; He, Hong-Gu; Vehviläinen-Julkunen, Katri

    2015-09-01

    In this study, we examined the validity and reliability of the Revised Humane Caring Scale as used by adult patients in a tertiary hospital in Singapore. A three-phase descriptive quantitative study was conducted. In phase I, an expert panel of nurses and inpatients examined the content validity of the scale; phase II comprised a pilot study on 20 patients; and in phase III, a large-scale study on 235 patients was implemented to test the internal consistency of the scale. The results revealed that the content validity index of the scale ranged from 0.856 to 1, and the scale had a high inter-rater agreement kappa value of 0.940. Cronbach's alpha ranged from 0.798 to 0.877 in phase II, and from 0.579 to 0.760 in phase III, respectively. The Revised Humane Caring Scale revealed good content validity and an acceptable level of internal consistency. The scale is an acceptable measurement tool for evaluating adult patients' satisfaction during hospitalization.

  18. Essential Microenvironment for Thymopoiesis is Preserved in Human Adult and Aged Thymus

    PubMed Central

    Shiraishi, J.; Utsuyama, M.; Seki, S.; Akamatsu, H.; Sunamori, M.; Kasai, M.; Hirokawa, K.

    2003-01-01

    Normal human thymuses at various ages were immunohistologically examined in order to determine whether adult or aged thymus maintained the microenvironment for the T cell development and thymopoiesis was really ongoing. To analyze the thymic microenvironment, two monoclonal antibodies (MoAb) were employed. One is MoAb to IL-1 receptor (IL-1R) recognizing medullary and subcapsular cortical epithelial cells of normal infant human thymus. The other is UH-1 MoAb recognizing thymic epithelial cells within the cortex, which are negative with IL-1R-MoAb. Thymus of subjects over 20 years of age was split into many fragments and dispersed in the fatty tissue. However, the microenvironment of each fragment was composed of both IL-1R positive and UH-1 positive epithelial cells, and the UH-1 positive portion was populated with lymphocytes showing a follicle-like appearance. Lymphocytes in these follicle-like portions were mostly CD4+CD8+ double positive cells and contained many proliferating cells as well as apoptotic cells. Thus these follicle-like portions in adult and aged thymus were considered to be functioning as cortex as in infant thymus. Proliferative activity of thymocytes in the thymic cortex and the follicle-like portions definitely declined with advance of age, while incidence of apoptotic thymocytes increased with aging. PMID:14575158

  19. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls

    NASA Astrophysics Data System (ADS)

    Carrete, Martina; Tella, José L.

    2013-12-01

    Human-induced rapid environmental changes challenge individuals by creating evolutionarily novel scenarios, where species encounter novel enemies, the new species sometimes being humans themselves. However, little is known about how individuals react to human presence, specifically whether they are able to habituate to human presence, as frequently assumed, or are selected based on their fear of humans. We tested whether fear of humans (measured as flight initiation distance in a diurnal owl) is reduced through habituation to human presence (plasticity) or whether it remains unchanged throughout the individuals' life. Results show an unusually high level of individual consistency in fear of humans throughout the adult lifespan of both rural (r = 0.96) and urban (r = 0.90) birds, lending no support to habituation. Further research should assess the role of inter-individual variability in fear of humans in shaping the distribution of individuals and species in an increasingly humanized world.

  20. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls.

    PubMed

    Carrete, Martina; Tella, José L

    2013-12-17

    Human-induced rapid environmental changes challenge individuals by creating evolutionarily novel scenarios, where species encounter novel enemies, the new species sometimes being humans themselves. However, little is known about how individuals react to human presence, specifically whether they are able to habituate to human presence, as frequently assumed, or are selected based on their fear of humans. We tested whether fear of humans (measured as flight initiation distance in a diurnal owl) is reduced through habituation to human presence (plasticity) or whether it remains unchanged throughout the individuals' life. Results show an unusually high level of individual consistency in fear of humans throughout the adult lifespan of both rural (r = 0.96) and urban (r = 0.90) birds, lending no support to habituation. Further research should assess the role of inter-individual variability in fear of humans in shaping the distribution of individuals and species in an increasingly humanized world.