Sample records for adult inbred mhc-defined

  1. MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler.

    PubMed

    Richardson, David S; Westerdahl, Helena

    2003-12-01

    The Great reed warbler (GRW) and the Seychelles warbler (SW) are congeners with markedly different demographic histories. The GRW is a normal outbred bird species while the SW population remains isolated and inbred after undergoing a severe population bottleneck. We examined variation at Major Histocompatibility Complex (MHC) class I exon 3 using restriction fragment length polymorphism, denaturing gradient gel electrophoresis and DNA sequencing. Although genetic variation was higher in the GRW, considerable variation has been maintained in the SW. The ten exon 3 sequences found in the SW were as diverged from each other as were a random sub-sample of the 67 sequences from the GRW. There was evidence for balancing selection in both species, and the phylogenetic analysis showing that the exon 3 sequences did not separate according to species, was consistent with transspecies evolution of the MHC.

  2. MHC variability in heritage breeds of chickens.

    PubMed

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. © 2016 Poultry Science Association Inc.

  3. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    PubMed

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  4. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories

    PubMed Central

    Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-01-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491

  5. Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity.

    PubMed

    Grueber, Catherine E; Sutton, Jolene T; Heber, Sol; Briskie, James V; Jamieson, Ian G; Robertson, Bruce C

    2017-05-01

    Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred. © 2017 John Wiley & Sons Ltd.

  6. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data.

    PubMed

    Jappe, Emma Christine; Kringelum, Jens; Trolle, Thomas; Nielsen, Morten

    2018-02-15

    Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots. © 2018 John Wiley & Sons Ltd.

  7. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  8. Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations.

    PubMed

    Schut, Elske; Aguilar, Juan Rivero-de; Merino, Santiago; Magrath, Michael J L; Komdeur, Jan; Westerdahl, Helena

    2011-08-01

    The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.

  9. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    PubMed Central

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  10. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies.

    PubMed

    Rodríguez Cruz, Pedro M; Luo, Yue-Bei; Miller, James; Junckerstorff, Reimar C; Mastaglia, Frank L; Fabian, Victoria

    2014-12-01

    Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analysis of MHC class I genes across horse MHC haplotypes

    PubMed Central

    Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.

    2010-01-01

    The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063

  12. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection

    PubMed Central

    Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.

    2015-01-01

    The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419

  13. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla.

    PubMed

    Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M

    2009-11-01

    Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.

  14. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    PubMed

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  15. A Novel HURRAH Protocol Reveals High Numbers of Monomorphic MHC Class II Loci and Two Asymmetric Multi-Locus Haplotypes in the Père David's Deer

    PubMed Central

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-01

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075

  16. BXSB/long-lived is a recombinant inbred strain containing powerful disease suppressor loci.

    PubMed

    Haywood, Michelle E K; Gabriel, Luisa; Rose, S Jane; Rogers, Nicola J; Izui, Shozo; Morley, Bernard J

    2007-08-15

    The BXSB strain of recombinant inbred mice develops a spontaneous pathology that closely resembles the human disease systemic lupus erythematosus. Six non-MHC loci, Yaa, Bxs1-4, and Bxs6, have been linked to the development of aspects of the disease while a further locus, Bxs5, may be a BXSB-derived disease suppressor. Disease development is delayed in a substrain of BXSB, BXSB/MpJScr-long-lived (BXSB/ll). We compared the genetic derivation of BXSB/ll mice to the original strain, BXSB/MpJ, using microsatellite markers and single nucleotide polymorphisms across the genome. These differences were clustered and included two regions known to be important in the disease-susceptibility of these mice, Bxs5 and 6, as well as regions on chromosomes 5, 6, 9, 11, 12, and 13. We compared BXSB/ll to >20 strains including the BXSB parental SB/Le and C57BL/6 strains. This revealed that BXSB/ll is a separate recombinant inbred line derived from SB/Le and C57BL/6, but distinctly different from BXSB, that most likely arose due to residual heterozygosity in the BXSB stock. Despite the continued presence of the powerful disease-susceptibility locus Bxs3, BXSB/ll mice do not develop disease. We propose that the disappearance of the disease phenotype in the BXSB/ll mice is due to the inheritance of one or more suppressor loci in the differentially inherited intervals between the BXSB/ll and BXSB strains.

  17. In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts

    PubMed Central

    Yamamoto, Hiroyuki; Ishii, Hiroshi; Matsuoka, Saori; Mizuta, Kazuta; Sakawaki, Hiromi; Miura, Tomoyuki; Naruse, Taeko K.; Kimura, Akinori

    2017-01-01

    CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. PMID:28931083

  18. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  19. HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling

    PubMed Central

    Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.

    2016-01-01

    A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315

  20. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.

    PubMed

    Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K

    2012-02-28

    The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.

  1. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    PubMed

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  2. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.

    PubMed

    Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng

    2009-05-01

    Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.

  3. MHC class II expression in lung cancer.

    PubMed

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  4. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. HLA-F and MHC-I Open Conformers Cooperate in a MHC-I Antigen Cross-Presentation Pathway

    PubMed Central

    Goodridge, Jodie P.; Lee, Ni; Burian, Aura; Pyo, Chul-Woo; Tykodi, Scott S.; Warren, Edus H.; Yee, Cassian; Riddell, Stanley R.

    2013-01-01

    Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense. PMID:23851683

  6. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  7. MHC II-β chain gene expression studies define the regional organization of the thymus in the developing bony fish Dicentrarchus labrax (L.).

    PubMed

    Picchietti, S; Abelli, L; Guerra, L; Randelli, E; Proietti Serafini, F; Belardinelli, M C; Buonocore, F; Bernini, C; Fausto, A M; Scapigliati, G

    2015-02-01

    MHC II-β chain gene transcripts were quantified by real-time PCR and localised by in situ hybridization in the developing thymus of the teleost Dicentrarchus labrax, regarding the specialization of the thymic compartments. MHC II-β expression significantly rose when the first lymphoid colonization of the thymus occurred, thereafter increased further when the organ progressively developed cortex and medulla regions. The evolving patterns of MHC II-β expression provided anatomical insights into some mechanisms of thymocyte selection. Among the stromal cells transcribing MHC II-β, scattered cortical epithelial cells appeared likely involved in the positive selection, while those abundant in the cortico-medullary border and medulla in the negative selection. These latter most represent dendritic cells, based on typical localization and phenotype. These findings provide further proofs that efficient mechanisms leading to maturation of naïve T cells are operative in teleosts, strongly reminiscent of the models conserved in more evolved gnathostomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    PubMed Central

    Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John

    2008-01-01

    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213

  9. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail

    PubMed Central

    Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.

    2004-01-01

    To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716

  10. The SysteMHC Atlas project

    PubMed Central

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal

    2018-01-01

    Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418

  11. Characterization of 47 MHC class I sequences in Filipino cynomolgus macaques

    PubMed Central

    Campbell, Kevin J.; Detmer, Ann M.; Karl, Julie A.; Wiseman, Roger W.; Blasky, Alex J.; Hughes, Austin L.; Bimber, Benjamin N.; O’Connor, Shelby L.; O’Connor, David H.

    2009-01-01

    Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. PMID:19107381

  12. Innate lymphoid cells and the MHC.

    PubMed

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The SysteMHC Atlas project.

    PubMed

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne

    2018-01-04

    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Defining Optimal Brain Health in Adults

    PubMed Central

    Gorelick, Philip B.; Furie, Karen L.; Iadecola, Costantino; Smith, Eric E.; Waddy, Salina P.; Lloyd-Jones, Donald M.; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W.; Girgus, Meighan; Howard, Virginia J.; Lazar, Ronald M.; Seshadri, Sudha; Testai, Fernando D.; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-01-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA’s Life’s Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index <25 kg/m2) and 3 ideal health factors (untreated blood pressure <120/<80 mm Hg, untreated total cholesterol <200 mg/dL, and fasting blood glucose <100 mg/dL). In addition, in relation to maintenance of cognitive health, we recommend following previously published guidance from the AHA/American Stroke Association, Institute of Medicine, and Alzheimer’s Association that incorporates control of cardiovascular risks and suggest social engagement and other related strategies. We define optimal brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA’s Life’s Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to

  15. [Systematically induced effects of Tetranychus cinnabarinus infestation on chemical defense in Zea mays inbred lines].

    PubMed

    Zhu, Yu-xi; Yang, Qun-fang; Huang, Yu-bi; Li, Qing

    2015-09-01

    In the present study, we investigated the systematically induced production of defense-related compounds, including DIMBOA, total phenol, trypsin inhibitors (TI) and chymotrypsin inhibitor (CI), by Tetranychus cinnabarinus infestation in Zea mays. The first leaves of two corn in-bred line seedlings, the mite-tolerant line ' H1014168' and the mite-sensitive line 'H1014591', were sucked by T. cinnabarinus adult female for seven days, and then the contents of DIMBOA, total phenol, TI and CI were measured in the second leaf and in the roots, respectively. Results showed that as compared to the unsucked control, all contents of DIMBOA, total phenol, TI and CI induced by T. cinnabarinus sucking were significantly higher in the second leaf of both inbred lines as well as in the roots of the mite-tolerant 'H1014168'. However, in the roots of 'H1014591', these defense compounds had different trends, where there was a higher induction of TI and a lower level of total phenol than that of the healthy control, while had almost no difference in DIMBOA and CI. These findings suggested that the infestation of T. cinnabarinus could systematically induce accumulation of defense-related compounds, and this effect was stronger in the mite-tolerant inbred line than in the mite-sensitive inbred line.

  16. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization.

  17. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions

    PubMed Central

    Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2014-01-01

    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003

  18. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica).

    PubMed

    Angelone, Samer; Jowers, Michael J; Molinar Min, Anna Rita; Fandos, Paulino; Prieto, Paloma; Pasquetti, Mario; Cano-Manuel, Francisco Javier; Mentaberre, Gregorio; Olvera, Jorge Ramón López; Ráez-Bravo, Arián; Espinosa, José; Pérez, Jesús M; Soriguer, Ramón C; Rossi, Luca; Granados, José Enrique

    2018-05-08

    Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele

  19. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  20. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies.

    PubMed Central

    Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P

    1994-01-01

    We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7507012

  1. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    USGS Publications Warehouse

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  2. Allogeneic lymphocytes persist and traffic in feral MHC-matched mauritian cynomolgus macaques.

    PubMed

    Greene, Justin M; Burwitz, Benjamin J; Blasky, Alex J; Mattila, Teresa L; Hong, Jung Joo; Rakasz, Eva G; Wiseman, Roger W; Hasenkrug, Kim J; Skinner, Pamela J; O'Connor, Shelby L; O'Connor, David H

    2008-06-11

    Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer. Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer. MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naïve animals may define the immune mechanisms responsible for protection and guide future vaccine development.

  3. Sensitivity of inbred and selectively bred mice to ethanol.

    PubMed

    Smolen, A; Smolen, T N; van de Kamp, J L

    1987-01-01

    The Long-Sleep (LS) and Short-Sleep (SS) mice were bred for differences in sensitivity to ethanol as measured by duration of loss of the righting response (sleep time). The foundation population was a heterogeneous stock (HS) which was derived from a cross of eight inbred strains. Ethanol-induced sleep time and waking blood and brain ethanol levels were measured in the eight inbred strains, LS, SS and HS mice. The C3H and ISBI strains were quite resistant to ethanol as measured by sleep time, and only one, RIII, was very sensitive. Waking ethanol concentrations were similar for all of the inbreds, implying a narrow range of central nervous system sensitivity to ethanol. The HS mice had relatively short sleep times and blood ethanol levels equal to most of the inbred. The LS mice were significantly more, and the SS mice significantly less sensitive to ethanol than any of the inbreds or HS mice. These studies suggest that the extremes of CNS sensitivities to ethanol manifested by the LS and SS mice cannot be traced to any of the inbred strains, and must have arisen through the selection process by changes in allelic frequencies of those genes conferring ethanol sensitivity and resistance.

  4. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression

    PubMed Central

    Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.

    2013-01-01

    Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain. PMID:23959708

  5. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    NASA Astrophysics Data System (ADS)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  6. Recombinant inbred lines derived from potato interspecific hybrids

    USDA-ARS?s Scientific Manuscript database

    Recombinant inbred lines (RILs) offer new opportunities for mapping traits of interest to potato breeders. We are developing a set of six RILs, which will comprise a nested association mapping population. The common parent is M6, an inbred line of the diploid wild relative Solanum chacoense. Other g...

  7. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells.

    PubMed

    Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R

    2009-07-22

    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.

  8. The MHC big bang.

    PubMed

    Abi Rached, L; McDermott, M F; Pontarotti, P

    1999-02-01

    The human Major Histocompatibility Complex (MHC) shares similarities with three other chromosome regions in human. This could be the vestige of ancestral large scale duplications. We discuss here the possibility i) that these duplications occurred during two rounds of tetraploidization supposed to have taken place during chordate evolution before the jawed vertebrate radiation, and ii) that one of the quadruplicate regions, relaxed of functional constraints, gave rise to the vertebrate MHC by a quick round of gene cis-duplication and cis-exon shuffling. These different rounds of cis-duplications and exon shufflings allowed the emergence of new genes participating in novel biological functions i.e. adaptive immune responses. Cis-duplications and cis-exon shufflings are ongoing processes in the evolution of some of these genes in this region as they have occurred and were fixed at different times and in different lineages during vertebrate evolution. In contrast, other genes within the MHC have remained stable since the emergence of jawed vertebrates.

  9. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  10. Predicting MHC-II binding affinity using multiple instance regression

    PubMed Central

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2011-01-01

    Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923

  11. Primordial linkage of β2-microglobulin to the MHC.

    PubMed

    Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F

    2011-03-15

    β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.

  12. Colonizing the world in spite of reduced MHC variation

    USGS Publications Warehouse

    Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.

    2012-01-01

    Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.

  13. MHC, mate choice and heterozygote advantage in a wild social primate.

    PubMed

    Huchard, Elise; Knapp, Leslie A; Wang, Jinliang; Raymond, Michel; Cowlishaw, Guy

    2010-06-01

    Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.

  14. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  15. Open conformers: the hidden face of MHC-I molecules.

    PubMed

    Arosa, Fernando A; Santos, Susana G; Powis, Simon J

    2007-03-01

    A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.

  16. Use of Electronic Nicotine Delivery Systems among Adults with Mental Health Conditions, 2015

    PubMed Central

    Spears, Claire Adams; Jones, Dina M.; Weaver, Scott R.; Pechacek, Terry F.; Eriksen, Michael P.

    2016-01-01

    Adults with mental health conditions (MHC) are especially likely to smoke and experience tobacco-related health disparities. Individuals with MHC may also use electronic nicotine delivery devices (ENDS) at disproportionately high rates. However, there is a relative dearth of knowledge regarding ENDS use among individuals with MHC. In a large representative sample of U.S. adults (n = 6051), associations between self-reported MHC diagnoses and ENDS use and susceptibility were examined, stratified by smoking status. Participants with MHC were approximately 1.5 times more likely to have used ENDS in their lifetime and almost twice as likely to currently use ENDS as those without MHC. MHC status was most strongly linked to higher ENDS use among former smokers, and former smokers with MHC were more likely to report using ENDS during past smoking quit attempts than those without MHC. Among participants who had not tried ENDS, former smokers with MHC were especially susceptible to future ENDS use. The potential advantage of ENDS for cessation purposes should be balanced with the risk of attracting former smokers with MHC to ENDS. PMID:28025560

  17. Use of Electronic Nicotine Delivery Systems among Adults with Mental Health Conditions, 2015.

    PubMed

    Spears, Claire Adams; Jones, Dina M; Weaver, Scott R; Pechacek, Terry F; Eriksen, Michael P

    2016-12-23

    Adults with mental health conditions (MHC) are especially likely to smoke and experience tobacco-related health disparities. Individuals with MHC may also use electronic nicotine delivery devices (ENDS) at disproportionately high rates. However, there is a relative dearth of knowledge regarding ENDS use among individuals with MHC. In a large representative sample of U.S. adults ( n = 6051), associations between self-reported MHC diagnoses and ENDS use and susceptibility were examined, stratified by smoking status. Participants with MHC were approximately 1.5 times more likely to have used ENDS in their lifetime and almost twice as likely to currently use ENDS as those without MHC. MHC status was most strongly linked to higher ENDS use among former smokers, and former smokers with MHC were more likely to report using ENDS during past smoking quit attempts than those without MHC. Among participants who had not tried ENDS, former smokers with MHC were especially susceptible to future ENDS use. The potential advantage of ENDS for cessation purposes should be balanced with the risk of attracting former smokers with MHC to ENDS.

  18. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  19. Young Alu insertions within the MHC class I region in native American populations: insights into the origin of the MHC-Alu repeats.

    PubMed

    Gómez-Pérez, Luis; Alfonso-Sánchez, Miguel A; Dipierri, José E; Sánchez, Dora; Espinosa, Ibone; De Pancorbo, Marian M; Peña, José A

    2013-01-01

    Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa. Copyright © 2013 Wiley Periodicals, Inc.

  20. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    NASA Technical Reports Server (NTRS)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  1. MHC class I diversity in chimpanzees and bonobos.

    PubMed

    Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda

    2017-10-01

    Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.

  2. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, J.; Malchiodi, E; Cho, S

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less

  3. Methods for MHC genotyping in non-model vertebrates.

    PubMed

    Babik, W

    2010-03-01

    Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.

  4. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    PubMed Central

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  5. MHC-correlated mate choice in humans: a review.

    PubMed

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  6. Human MHC architecture and evolution: implications for disease association studies

    PubMed Central

    Traherne, J A

    2008-01-01

    Major histocompatibility complex (MHC) variation is a key determinant of susceptibility and resistance to a large number of infectious, autoimmune and other diseases. Identification of the MHC variants conferring susceptibility to disease is problematic, due to high levels of variation and linkage disequilibrium. Recent cataloguing and analysis of variation over the complete MHC has facilitated localization of susceptibility loci for autoimmune diseases, and provided insight into the MHC's evolution. This review considers how the unusual genetic characteristics of the MHC impact on strategies to identify variants causing, or contributing to, disease phenotypes. It also considers the MHC in relation to novel mechanisms influencing gene function and regulation, such as epistasis, epigenetics and microRNAs. These developments, along with recent technological advances, shed light on genetic association in complex disease. PMID:18397301

  7. BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken.

    PubMed

    Goto, Ronald M; Wang, Yujun; Taylor, Robert L; Wakenell, Patricia S; Hosomichi, Kazuyoshi; Shiina, Takashi; Blackmore, Craig S; Briles, W Elwood; Miller, Marcia M

    2009-09-29

    Pathogen selection is postulated to drive MHC allelic diversity at loci for antigen presentation. However, readily apparent MHC infectious disease associations are rare in most species. The strong link between MHC-B haplotype and the occurrence of virally induced tumors in the chicken provides a means for defining the relationship between pathogen selection and MHC polymorphism. Here, we verified a significant difference in resistance to gallid herpesvirus-2 (GaHV-2)-induced lymphomas (Marek's disease) conferred by two closely-related recombinant MHC-B haplotypes. We mapped the crossover breakpoints that distinguish these haplotypes to the highly polymorphic BG1 locus. BG1 encodes an Ig-superfamily type I transmembrane receptor-like protein that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), which undergoes phosphorylation and is recognized by Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2). The recombinant haplotypes are identical, except for differences within the BG1 3'-untranslated region (3'-UTR). The 3'-UTR of the BG1 allele associated with increased lymphoma contains a 225-bp insert of retroviral origin and showed greater inhibition of luciferase reporter gene translation compared to the other allele. These findings suggest that BG1 could affect the outcome of GaHV-2 infection through modulation of the lymphoid cell responsiveness to infection, a condition that is critical for GaHV-2 replication and in which the MHC-B haplotype has been previously implicated. This work provides a mechanism by which MHC-B region genetics contributes to the incidence of GaHV-2-induced malignant lymphoma in the chicken and invites consideration of the possibility that similar mechanisms might affect the incidence of lymphomas associated with other oncogenic viral infections.

  8. T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions

    PubMed Central

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658

  9. T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.

    PubMed

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.

  10. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    PubMed Central

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  11. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    PubMed

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  12. Complex Mhc-based mate choice in a wild passerine

    PubMed Central

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-01-01

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes. PMID:16600889

  13. Complex Mhc-based mate choice in a wild passerine.

    PubMed

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-05-07

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes.

  14. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding.

    PubMed

    Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G

    2005-05-01

    Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).

  15. High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.

    PubMed

    Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A

    2006-08-01

    The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.

  16. An Integrated Tool to Study MHC Region: Accurate SNV Detection and HLA Genes Typing in Human MHC Region Using Targeted High-Throughput Sequencing

    PubMed Central

    Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui

    2013-01-01

    The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464

  17. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  18. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  19. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  20. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors.

    PubMed

    Stewart, C Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A; Moretta, Alessandro; Sun, Peter D; Ugolini, Sophie; Vivier, Eric

    2005-09-13

    Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.

  1. NLRC5: a key regulator of MHC class I-dependent immune responses.

    PubMed

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  2. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    PubMed

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci. © 2015 John Wiley & Sons Ltd.

  3. Insights into MHC class I peptide loading from the structure of the tapasin/ERp57 heterodimer

    PubMed Central

    Dong, Gang; Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter; Reinisch, Karin M.

    2009-01-01

    SUMMARY Tapasin is a glycoprotein critical for loading Major Histocompatibility Complex (MHC) class I molecules with high affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here we present the 2.6 Å resolution structure of the tapasin/ERp57 core of the PLC. The structure reveals the basis for the stable dimerization of tapasin and ERp57 and provides the first example of a protein disulfide isomerase family member interacting with a substrate. Mutational analysis identified a conserved surface on tapasin that interacts with MHC class I molecules and is critical for the peptide loading and editing function of the tapasin-ERp57 heterodimer. By combining the tapasin/ERp57 structure with those of other defined PLC components we present a molecular model that illuminates the processes involved in MHC class I peptide loading. PMID:19119025

  4. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  5. MHC class I, beta2 microglobulin, and the INF-gamma receptor are upregulated in aged motoneurons.

    PubMed

    Edström, Erik; Kullberg, Susanna; Ming, Yu; Zheng, Huaiyu; Ulfhake, Brun

    2004-12-15

    During aging, spinal cord motoneurons show characteristic changes including the loss of afferent boutons, a selective process that associates with gliosis and behavioral motor impairment. Evidence suggests that the major histocompatibility complex Class I (MHC I) system may be involved in synaptic plasticity of neurons during development and regeneration. In search of a mechanism governing senescent changes in synaptic connectivity, we report evidence for increased expression of MHC I and beta2 microglobulin (beta2M) in motoneurons and glial-like profiles of 30-month-old rats. The regulatory signal(s) for MHC I expression in normal neurons remains unresolved but among tentative molecules are cytokines such as interferon-gamma (INF-gamma) and tumor necrosis factor alpha (TNF-alpha). Interestingly, aged motoneurons, overlapping with those showing increased levels of MHC I, contained increased levels of INF-gamma receptor message. INF-gamma mRNA was detected at low levels in most (8/9) of the aged spinal cords but only infrequently (2/9) in young adult spinal cords; however, the cellular localization of INF-gamma mRNA could not be determined. Our data also indicates that TNF-alpha is upregulated in the senescent spinal cord but that TNF-alpha immunoreactive protein does not associate with motoneurons. We report evidence for an increased expression of MHC I and beta2M in senescent spinal motoneurons and discuss the possibility that this regulation associates with INF-gamma or changes in neurotrophin signaling and neuron activity in senescence. (c) 2004 Wiley-Liss, Inc.

  6. The C-Terminal Amino Acid of the MHC-I Heavy Chain Is Critical for Binding to Derlin-1 in Human Cytomegalovirus US11-Induced MHC-I Degradation

    PubMed Central

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315

  7. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation.

    PubMed

    Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo

    2013-01-01

    Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.

  8. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange

    PubMed Central

    Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.

    2017-01-01

    The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766

  9. Haematopoietic depletion in vaccine-induced neonatal pancytopenia depends on both the titre and specificity of alloantibody and levels of MHC I expression.

    PubMed

    Bell, Charlotte R; MacHugh, Niall D; Connelley, Timothy K; Degnan, Kathryn; Morrison, W Ivan

    2015-07-09

    Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels. A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells. The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells

  10. MHC class I loci of the Bar-Headed goose (Anser indicus)

    PubMed Central

    2010-01-01

    MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade. PMID:21637434

  11. Population genetic segmentation of MHC-correlated perfume preferences.

    PubMed

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Recognition of peptide–MHC class I complexes by activating killer immunoglobulin-like receptors

    PubMed Central

    Stewart, C. Andrew; Laugier-Anfossi, Fanny; Vély, Frédéric; Saulquin, Xavier; Riedmuller, Jenifer; Tisserant, Agnès; Gauthier, Laurent; Romagné, François; Ferracci, Géraldine; Arosa, Fernando A.; Moretta, Alessandro; Sun, Peter D.; Ugolini, Sophie; Vivier, Eric

    2005-01-01

    Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein–Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide–MHC class I complexes on Epstein–Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders. PMID:16141329

  13. Fine-mapping analysis of the MHC region for vitiligo based on a new Han-MHC reference panel.

    PubMed

    Yang, Chao; Wu, Juan; Zhang, Xuelei; Wen, Leilei; Sun, Jingying; Cheng, Yuyan; Tang, Xianfa; Liang, Bo; Chen, Gang; Zhou, Fusheng; Cui, Yong; Zhang, Anping; Zhang, Xuejun; Zheng, Xiaodong; Yang, Sen; Sun, Liangdan

    2018-03-30

    Vitiligo is an immune-related disease with patchy depigmentation of skin and hair caused by selective destruction of melanocytes. In recent decades, many studies have shown the association between vitiligo and HLA genes; however, the results of Han Chinese are scarce. In this study, we performed a fine-mapping analysis of the MHC region in 2818 Han Chinese subjects through a widely used HLA imputation method with a newly built large-scale Han-MHC reference panel. Three new four-digit HLA alleles (HLA-DQB1 ∗ 02:02, HLA-DQA1 ∗ 02:01 and HLA-DPB1 ∗ 17:01) were identified to be associated with the risk of vitiligo, and four previously reported alleles were confirmed. Further conditional analysis revealed that two important variants, HLA-DQβ1 amino acid position 135 (OR = 1.79, P = 1.87 × 10 -11 ) and HLA-B amino acid positions 45-46 (OR = 1.44, P = 5.61 × 10 -11 ), conferred most of the MHC associations. Three-dimension ribbon models showed that the former is located within the β2 domain of the HLA-DQβ1 molecule, and the latter lies in the α1 domain of the HLA-B molecule, while both are involved in specific antigen presenting process. Finally, we summarized all significant signals in the MHC region to clarify their complex relationships, and 8.60% of phenotypic variance could be explained based on all reported variants in Han Chinese so far. Our findings highlight the complex genetic architecture of the MHC region for vitiligo in Han Chinese population and expand our understanding of the roles of HLA coding variants in the etiology of vitiligo. Copyright © 2018. Published by Elsevier B.V.

  14. γδ T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion.

    PubMed

    Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J

    2012-02-17

    The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.

  15. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    PubMed

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  16. Impacts of using inbred animals in studies for detection of quantitative trait loci.

    PubMed

    Freyer, G; Vukasinovic, N; Cassell, B

    2009-02-01

    Effects of utilizing inbred and noninbred family structures in experiments for detection of quantitative trait loci (QTL) were compared in this simulation study. Simulations were based on a general pedigree design originating from 2 unrelated sires. A variance component approach of mapping QTL was applied to simulated data that reflected common family structures from dairy populations. Five different family structures were considered: FS0 without inbreeding, FS1 with an inbred sire from an aunt-nephew mating, FS2 with an inbred sire originating from a half-sib mating, FS3 and FS4 based on FS2 but containing an increased number of offspring of the inbred sire (FS3), and another extremely inbred sire with its final offspring (FS4). Sixty replicates each of the 5 family structures in 2 simulation scenarios each were analyzed to provide a praxis-like situation of QTL analysis. The largest proportion of QTL position estimates within the correct interval of 3 cM, best test statistic profiles and the smallest average bias were obtained from the pedigrees described by FS4 and FS2. The approach does not depend on the kind and number of genetic markers. Inbreeding is not a recommended practice for commercial dairy production because of possible inbreeding depression, but inbred animals and their offspring that already exist could be advantageous for QTL mapping, because of reduced genetic variance in inbred parents.

  17. Immunochip Analyses of Epistasis in Rheumatoid Arthritis Confirm Multiple Interactions within MHC and Suggest Novel Non-MHC Epistatic Signals.

    PubMed

    Wei, Wen-Hua; Loh, Chia-Yin; Worthington, Jane; Eyre, Stephen

    2016-05-01

    Studying statistical gene-gene interactions (epistasis) has been limited by the difficulties in performance, both statistically and computationally, in large enough sample numbers to gain sufficient power. Three large Immunochip datasets from cohort samples recruited in the United Kingdom, United States, and Sweden with European ancestry were used to examine epistasis in rheumatoid arthritis (RA). A full pairwise search was conducted in the UK cohort using a high-throughput tool and the resultant significant epistatic signals were tested for replication in the United States and Swedish cohorts. A forward selection approach was applied to remove redundant signals, while conditioning on the preidentified additive effects. We detected abundant genome-wide significant (p < 1.0e-13) epistatic signals, all within the MHC region. These signals were reduced substantially, but a proportion remained significant (p < 1.0e-03) in conditional tests. We identified 11 independent epistatic interactions across the entire MHC, each explaining on average 0.12% of the phenotypic variance, nearly all replicated in both replication cohorts. We also identified non-MHC epistatic interactions between RA susceptible loci LOC100506023 and IRF5 with Immunochip-wide significance (p < 1.1e-08) and between 2 neighboring single-nucleotide polymorphism near PTPN22 that were in low linkage disequilibrium with independent interaction (p < 1.0e-05). Both non-MHC epistatic interactions were statistically replicated with a similar interaction pattern in the US cohort only. There are multiple but relatively weak interactions independent of the additive effects in RA and a larger sample number is required to confidently assign additional non-MHC epistasis.

  18. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    PubMed Central

    Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten

    2010-01-01

    Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0441-4) contains supplementary material, which is available to authorized users. PMID

  19. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  20. Limited MHC class I intron 2 repertoire variation in bonobos.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; Helsen, Philippe; Otting, Nel; Pereboom, Zjef; Stevens, Jeroen M G; Bontrop, Ronald E

    2017-10-01

    Common chimpanzees (Pan troglodytes) experienced a selective sweep, probably caused by a SIV-like virus, which targeted their MHC class I repertoire. Based on MHC class I intron 2 data analyses, this selective sweep took place about 2-3 million years ago. As a consequence, common chimpanzees have a skewed MHC class I repertoire that is enriched for allotypes that are able to recognise conserved regions of the SIV proteome. The bonobo (Pan paniscus) shared an ancestor with common chimpanzees approximately 1.5 to 2 million years ago. To investigate whether the signature of this selective sweep is also detectable in bonobos, the MHC class I gene repertoire of two bonobo panels comprising in total 29 animals was investigated by Sanger sequencing. We identified 14 Papa-A, 20 Papa-B and 11 Papa-C alleles, of which eight, five and eight alleles, respectively, have not been reported previously. Within this pool of MHC class I variation, we recovered only 2 Papa-A, 3 Papa-B and 6 Papa-C intron 2 sequences. As compared to humans, bonobos appear to have an even more diminished MHC class I intron 2 lineage repertoire than common chimpanzees. This supports the notion that the selective sweep may have predated the speciation of common chimpanzees and bonobos. The further reduction of the MHC class I intron 2 lineage repertoire observed in bonobos as compared to the common chimpanzee may be explained by a founding effect or other subsequent selective processes.

  1. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  2. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  3. Characterization of a Nonclassical Class I MHC Gene in a Reptile, the Galápagos Marine Iguana (Amblyrhynchus cristatus)

    PubMed Central

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-01-01

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845

  4. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  5. MHC class II+ (HLA-DP-like) cells in the cow reproductive tract: II. Immunolocalization of MHC class II+ cells in oviduct and vagina.

    PubMed

    Eren, U; Kum, S; Sandikçi, M; Eren, V; Ilhan, F

    2009-08-01

    The aim of this study was to determine and examine the distribution of major frequency MHC II+ cells in the oviduct and vagina of cows during the oestrous and dioestrus phases. Right oviduct (ampulla, isthmus) and vaginal samples taken from a total of twenty seven multiparous cows were used. Tissue samples were processed to obtain both cryostat and paraffin sections. Sections were stained immunocytochemically using StreptABC method using a specific monoclonal antibody to MHC II+ cell population. Intra-epithelial and subepithelial areas along with lamina propria, muscularis mucosae and serosa of both ampulla and isthmus and intra-epithelial/subepithelial areas and mucosae of vagina were examined for the presence of MHC II+ cells. The density of immune positive cells was determined using a subjective scoring system. MHC II+ cells were demonstrated in all areas examined in both oestrus and dioestrus. In oestrus, the density of MHC II+ cells decreased in subepithelial areas (in between the epithelial cells and the basal membrane) of isthmus, whereas the density of immune positive cells was increased in muscularis mucosae of isthmus (P < 0.05), lamina propria and muscularis mucosae of ampulla (P < 0.05) as well as in the mucosae of vagina (P MHC II+ cells observed in the oviduct and vagina increases in the majority of areas examined due to the effect of oestrogen.

  6. How Do Deaf Adults Define Quality of Life?

    ERIC Educational Resources Information Center

    McAbee, Emilee R.; Drasgow, Erik; Lowrey, K. Alisa

    2017-01-01

    Six deaf adults defined quality of life (QOL) in personal interviews. Questions were based on an eight-domain QOL framework: physical well-being, emotional well-being, interpersonal relations, social inclusion, personal development, material well-being, self-determination, and rights (Schalock & Alonso, 2002). The interview process had three…

  7. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  8. Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes

    PubMed Central

    Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.

    2016-01-01

    The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800

  9. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.

    PubMed

    Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M

    2013-08-01

    Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.

  10. Condition, innate immunity and disease mortality of inbred crows

    PubMed Central

    Townsend, Andrea K.; Clark, Anne B.; McGowan, Kevin J.; Miller, Andrew D.; Buckles, Elizabeth L.

    2010-01-01

    Cooperatively breeding American crows (Corvus brachyrhynchos) suffer a severe disease-mediated survival cost from inbreeding, but the proximate mechanisms linking inbreeding to disease are unknown. Here, we examine indices of nestling body condition and innate immunocompetence in relationship to inbreeding and disease mortality. Using an estimate of microsatellite heterozygosity that predicts inbreeding in this population, we show that inbred crows were in relatively poor condition as nestlings, and that body condition index measured in the first 2–33 days after hatching, in addition to inbreeding index, predicted disease probability in the first 34 months of life. Inbred nestlings also mounted a weaker response along one axis of innate immunity: the proportion of bacteria killed in a microbiocidal assay increased as heterozygosity index increased. Relatively poor body condition and low innate immunocompetence are two mechanisms that might predispose inbred crows to ultimate disease mortality. A better understanding of condition-mediated inbreeding depression can guide efforts to minimize disease costs of inbreeding in small populations. PMID:20444716

  11. MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao

    2017-07-01

    The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.

  12. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  13. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    DOE PAGES

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...

    2016-02-11

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less

  14. Motives and perceptions regarding electronic nicotine delivery systems (ENDS) use among adults with mental health conditions.

    PubMed

    Spears, Claire Adams; Jones, Dina M; Weaver, Scott R; Pechacek, Terry F; Eriksen, Michael P

    2018-05-01

    Smoking rates are disproportionately high among adults with mental health conditions (MHC), and recent research suggests that among former smokers, those with MHC are more likely to use electronic nicotine delivery systems (ENDS). This study investigated reasons for ENDS use and related risk perceptions among individuals with versus without MHC. Among adult current ENDS users (n=550), associations between self-reported MHC diagnoses and motives for ENDS use and ENDS risk perceptions were examined, stratified by smoking status. There were no significant associations between MHC status and ENDS motives or perceptions in the overall sample. However, current smokers with MHC indicated thinking more about how ENDS might improve their health, and former smokers with MHC reported thinking less about how ENDS might harm their health, compared to their counterparts without MHC. Former smokers with MHC rated several reasons for ENDS use (e.g., less harmful than regular cigarettes; to quit smoking; appealing flavors) as more important than did those without MHC. Current and former smokers with MHC may be especially optimistic about health benefits of ENDS. However, they might also be prone to health risks of continued ENDS use or concurrent use with traditional cigarettes. It will be important for public health messaging to provide this population with accurate information about benefits and risks of ENDS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.

    PubMed

    Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos

    2006-10-01

    LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.

  16. Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.

    PubMed

    Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun

    2017-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.

  17. Scrutinizing human MHC polymorphism: Supertype analysis using Poisson-Boltzmann electrostatics and clustering.

    PubMed

    Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R

    2017-10-01

    Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions.

    PubMed

    Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J

    2002-03-01

    Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.

  19. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

    PubMed Central

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-01-01

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880

  20. Associations between malaria and MHC genes in a migratory songbird

    PubMed Central

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-01-01

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections. PMID:16011927

  1. Associations between malaria and MHC genes in a migratory songbird.

    PubMed

    Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan

    2005-07-22

    Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.

  2. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. MHC-mediated sexual selection on birdsong: Generic polymorphism, particular alleles and acoustic signals.

    PubMed

    Garamszegi, László Zsolt; Zagalska-Neubauer, Magdalena; Canal, David; Blázi, György; Laczi, Miklós; Nagy, Gergely; Szöllősi, Eszter; Vaskuti, Éva; Török, János; Zsebők, Sándor

    2018-06-01

    Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC-based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4-15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null-hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice. © 2018 John Wiley & Sons Ltd.

  5. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.

    PubMed

    Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z

    2017-01-01

    Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.

  6. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  7. Comparative performance of hybrid and elite inbred rice varieties with respect to their source-sink relationship.

    PubMed

    Haque, Md Moinul; Pramanik, Habibur Rahman; Biswas, Jiban Krishna; Iftekharuddaula, K M; Hasanuzzaman, Mirza

    2015-01-01

    Hybrid rice varieties have higher yield potential over inbred varieties. This improvement is not always translated to the grain yield and its physiological causes are still unclear. In order to clarify it, two field experiments were conducted including two popular indica hybrids (BRRI hybrid dhan2 and Heera2) and one elite inbred (BRRI dhan45) rice varieties. Leaf area index, chlorophyll status, and photosynthetic rate of flag leaf, postheading crop growth rate, shoot reserve translocation, source-sink relation and yield, and its attributes of each variety were comprehensively analyzed. Both hybrid varieties outyielded the inbred. However, the hybrids and inbred varieties exhibited statistically identical yield in late planting. Both hybrids accumulated higher amount of biomass before heading and exhibited greater remobilization of assimilates to the grain in early plantings compared to the inbred variety. Filled grain (%) declined significantly at delayed planting in the hybrids compared to elite inbred due to increased temperature impaired-inefficient transport of assimilates. Flag leaf photosynthesis parameters were higher in the hybrid varieties than those of the inbred variety. Results suggest that greater remobilization of shoot reserves to the grain rendered higher yield of hybrid rice varieties.

  8. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    PubMed

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  9. Cattle NK Cell Heterogeneity and the Influence of MHC Class I

    PubMed Central

    Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.

    2015-01-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890

  10. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    PubMed

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2018-02-01

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  11. Inbred guinea pig model of intrauterine infection with cytomegalovirus.

    PubMed

    Griffith, B P; McCormick, S R; Booss, J; Hsiung, G D

    1986-01-01

    Outbred guinea pigs have previously been utilized in an experimental model for the study of congenital infection with cytomegalovirus (CMV). Development of an inbred model of intrauterine CMV infection would allow analysis of the cells involved in CMV immunity, studies of transplacental CMV transfer, and investigation of the cellular immune factors that participate in intrauterine CMV infections. This study was therefore designed to assess the inbred guinea pig as a model for the study of congenital CMV infection. Intrauterine fetal and placental infection with CMV was demonstrated in inbred Strain 2 guinea pigs, and the maternal factors influencing transplacental transmission of CMV were evaluated. Infectious virus was recovered from placentas and offspring of mothers that experienced primary CMV infection during pregnancy, but not from placentas and offspring of mothers that were inoculated with CMV prior to pregnancy. However, histologic lesions consisting of focal necrosis and inflammation were seen in tissues of offspring from both groups of mothers. Inoculation of seronegative pregnant Strain 2 animals with low doses of virus (2.5 to 3.5 log10 TCID50) resulted in both placental and fetal CMV infection without significant maternal death. Infection of placentas and offspring occurred in utero regardless of the stage of pregnancy. In addition, infectious virus was detectable in fetal tissues at the time of maternal viremia but also later during the course of maternal infection, ie, 4 weeks after inoculation. These findings indicate that the inbred guinea pig model can be used to investigate the pathogenesis of intrauterine CMV infections.

  12. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  13. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age.

    PubMed

    Wright, David J; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler ( Acrocephalus sechellensis ), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.

  14. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age

    PubMed Central

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973

  15. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    PubMed

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  17. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  18. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings

    PubMed Central

    Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655

  19. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings.

    PubMed

    Ayres, Cory M; Corcelli, Steven A; Baker, Brian M

    2017-01-01

    Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.

  20. Self-rated driving habits among older adults with clinically-defined mild cognitive impairment, clinically-defined dementia, and normal cognition.

    PubMed

    O'Connor, Melissa L; Edwards, Jerri D; Bannon, Yvonne

    2013-12-01

    Older adults with clinically-defined dementia may report reducing their driving more than cognitively normal controls. However, it is unclear how these groups compare to individuals with clinically-defined mild cognitive impairment (MCI) in terms of driving behaviors. The current study investigated self-reported driving habits among adults age 60 and older with clinical MCI (n=41), clinical mild dementia (n=40), and normal cognition (n=43). Participants reported their driving status, driving frequency (days per week), and how often they avoided accessing the community, making left turns, driving at night, driving in unfamiliar areas, driving on high-traffic roads, and driving in bad weather. After adjusting for education, a MANCOVA revealed that participants with MCI and dementia avoided unfamiliar areas and high-traffic roads significantly more than normal participants. Participants with dementia also avoided left turns and accessing the community more than those with normal cognition and MCI (p<0.05 for all). The other driving variables did not significantly differ between groups. Thus, older adults with clinically-defined MCI, as well as those with dementia, avoided some complex driving situations more than cognitively intact adults. However, all diagnostic groups had similar rates of driving cessation and frequency. Future research should examine the safety implications of such findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Analysis of MHC class I folding: novel insights into intermediate forms

    PubMed Central

    Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.

    2012-01-01

    Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842

  2. Immunization with SV40-transformed cells yields mainly MHC-restricted monoclonal antibodies

    PubMed Central

    1986-01-01

    Recognition of antigens on cell surfaces only in the context of the MHC- encoded alloantigens of the presenting cell (self + X) has classically been considered the province of T cells. However, evidence from several sources has indicated that B cells and antibodies can exhibit self + X- restricted recognition as well. This report concerns the mAb response to SV40-transformed H-2b fibroblast cell lines. The specificities of the antibodies obtained have been analyzed for binding to a panel of SV40-transformed H-2-syngeneic, H-2-allogeneic, and H-2b mutant fibroblast cell lines, as well as cell lines not bearing cell surface SV40 transformation-associated antigens. A large proportion of primary C57BL/6 (71%) and BALB/c (68%) splenic B cells responding to in vitro stimulation with SV40-transformed H-2b cells recognize cell surface antigens associated with SV40 transformation only when coexpressed with MHC antigens of the immunizing cell, particularly the Kb molecule, on transformed cells. To extensively define the nature of antigen recognition by these antibodies, we have generated and characterized nine hybridoma antibodies specific for SV40-transformed H-2-syngeneic cell lines. Seven of these hybridoma antibodies recognize SV40- associated transformation antigens in the context of H-2b molecules. Six of these are restricted by the Kb molecule and discriminate among a panel of SV40-transformed Kb mutant cell lines, thus confirming the participation of class I MHC-encoded molecules in the recognition by B cells of cell surface antigens. PMID:3014034

  3. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit.

    PubMed

    Pardal, Sara; Drews, Anna; Alves, José A; Ramos, Jaime A; Westerdahl, Helena

    2017-07-01

    The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.

  4. Defining recovery in adult bulimia nervosa.

    PubMed

    Yu, Jessica; Agras, W Stewart; Bryson, Susan

    2013-01-01

    To examine how different definitions of recovery lead to varying rates of recovery, maintenance of recovery, and relapse in bulimia nervosa (BN), end-of-treatment (EOT) and follow-up data were obtained from 96 adults with BN. Combining behavioral, physical, and psychological criteria led to recovery rates between 15.5% and 34.4% at EOT, though relapse was approximately 50%. Combining these criteria and requiring abstinence from binge eating and purging when defining recovery may lead to lower recovery rates than those found in previous studies; however, a strength of this definition is that individuals who meet this criteria have no remaining disordered behaviors or symptoms.

  5. Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical research.

    PubMed

    Festing, Michael F W

    2014-01-01

    Inbred strains of mice such as C57BL and BALB/c are more widely used in published work than outbred stocks of mice such as ICR and CD-1. In contrast, outbred stocks of rats such as Wistar and Sprague-Dawley are more widely used than inbred strains such as F344 and LEW. The properties of inbred and outbred mice and rats are briefly reviewed, and it is concluded that, with some exceptions, there is a strong case for using inbred strains in most controlled experiments. This is because they are usually more uniform, so that fewer animals are usually needed to detect a specified response and they are more repeatable, because they are genetically defined (i.e., the strain can be identified using genetic markers) and less liable to genetic change. Yet many scientists continue to use outbred animals. In Daniel Kahneman's book "Thinking Fast and Slow" he explains that we can answer questions in 2 ways: "fast" by intuition or "slow" by analytical reasoning. The former method is instantaneous, requires no thought but is not evidence based. Analytical reasoning is evidence based but requires hard work, which we all avoid. He has found that "… when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution." The target question of whether to choose outbred or inbred strains in controlled experiments is a difficult one requiring knowledge of the characteristics of these strains and the principles of experimental design. A substitute question, "are humans and outbred stocks both genetically heterogeneous," is easily answered in the affirmative. It is likely that many scientists are intuitively answering the substitute question and are assuming that they have answered the target question. If so they may be using the wrong animals in their research. Nor is the fact that humans and outbred stocks are alike in being genetically heterogeneous a reason for using them. The whole concept of a "model" is that it is similar to the

  6. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents

    PubMed Central

    Goldberg, Burt; Bona, Constantin

    2011-01-01

    Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177

  7. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less

  8. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.

    PubMed

    Kaufman, Jim

    2018-04-26

    The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.

  9. The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire

    PubMed Central

    Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.

    2011-01-01

    The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607

  10. Inbred decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals.

    PubMed

    Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K

    2010-09-01

    Inbreeding is assumed to have negative effects on fitness, including the reduced ability to withstand immune challenges. We examined the immunological consequences of inbreeding in decorated crickets, Gryllodes sigillatus, by comparing lytic activity, phenoloxidase (PO) activity, and encapsulation ability of crickets from eight inbred lines with that of crickets from the outbred founder population. Surprisingly, crickets from inbred lines had a greater encapsulation ability compared with crickets from the outbred population. We suggest that because inbred crickets have reduced reproductive effort, they may, therefore, have the option of devoting more resources to this form of immunity than outbred individuals. We also found that both inbred and outbred females had higher immunity than males in PO activity and implant darkness. This result supports the hypothesis that females should devote more effort to somatic maintenance and immunity than males. PO activity and implant darkness were heritable in both males and females, but lytic activity was only heritable in females. Males and females differed in the heritability of, and genetic correlations among, immune traits, suggesting that differences in selective pressures on males and females may have resulted in a sexual conflict over optimal immune trait values.

  11. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)

    PubMed Central

    Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele

    2011-01-01

    Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698

  12. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    PubMed

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  13. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    PubMed

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  14. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  15. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  16. MHC odours are not required or sufficient for recognition of individual scent owners

    PubMed Central

    Hurst, Jane L; Thom, Michael D; Nevison, Charlotte M; Humphries, Richard E; Beynon, Robert J

    2005-01-01

    To provide information about specific depositors, scent marks need to encode a stable signal of individual ownership. The highly polymorphic major histocompatibility complex (MHC) influences scents and contributes to the recognition of close kin and avoidance of inbreeding when MHC haplotypes are shared. MHC diversity between individuals has also been proposed as a primary source of scents used in individual recognition. We tested this in the context of scent owner recognition among male mice, which scent mark their territories and countermark scents from other males. We examined responses towards urine scent according to the scent owner's genetic difference to the territory owner (MHC, genetic background, both and neither) or genetic match to a familiar neighbour. While urine of a different genetic background from the subject always stimulated greater scent marking than own, regardless of familiarity, MHC-associated odours were neither necessary nor sufficient for scent owner recognition and failed to stimulate countermarking. Urine of a different MHC type to the subject stimulated increased investigation only when this matched both the MHC and genetic background of a familiar neighbour. We propose an associative model of scent owner recognition in which volatile scent profiles, contributed by both fixed genetic and varying non-genetic factors, are learnt in association with a stable involatile ownership signal provided by other highly polymorphic urine components. PMID:15906464

  17. Scrutinizing MHC-I binding peptides and their limits of variation.

    PubMed

    Koch, Christian P; Perna, Anna M; Pillong, Max; Todoroff, Nickolay K; Wrede, Paul; Folkers, Gerd; Hiss, Jan A; Schneider, Gisbert

    2013-01-01

    Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b) is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b) in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).

  18. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.

    PubMed

    Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne

    2016-06-21

    Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.

  19. Registration of maize inbred line GT603

    USDA-ARS?s Scientific Manuscript database

    GT603 (Reg. No. xxxx, PI xxxxxx) is a yellow dent maize (Zea mays L.) inbred line developed and released by the USDA-ARS Crop Protection and Management Research Unit in cooperation with the University of Georgia Coastal Plain Experiment Station in 2010. GT603 was developed through seven generations ...

  20. The major histocompatibility complex and the chemosensory signalling of individuality in humans.

    PubMed

    Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R

    The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.

  1. No evidence of an MHC-based female mating preference in great reed warblers.

    PubMed

    Westerdahl, Helena

    2004-08-01

    Female mate-choice based on genetic compatibility is an area of growing interest. The major histocompatibility complex (MHC) genes are likely candidates for such mate-choice since these highly polymorphic genes may both increase offspring viability and also provide direct cues for mate-choice. In great reed warblers, females actively choose a breeding partner out of a handful of males that they visit and evaluate; thus, female preference for compatible or heterozygous MHC genes could have evolved. Here, I investigate whether great reed warbler females preferentially mate with males with dissimilar MHC class I alleles or with males that are heterozygous at MHC class I. Despite favourable conditions, a thorough screening method and a large sample size, there was no evidence of an MHC-based female mating preference based on either genetic compatibility or heterozygosity in this population. Power analyses of the data sets revealed that relatively small differences (15% and 8%, respectively) between true and random pairs should have been detected. Copyright 2004 Blackwell Publishing Ltd

  2. Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred Brassica rapa L. ssp. pekinensis.

    PubMed

    Liu, Yan; Xu, Cui; Tang, Xuebing; Pei, Surui; Jin, Di; Guo, Minghao; Yang, Meng; Zhang, Yaowei

    2018-07-30

    Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Characteristics of Sleep and Wakefulness inWild-Derived Inbred Mice

    PubMed Central

    HIYOSHI, Hideyuki; TERAO, Akira; OKAMATSU-OGURA, Yuko; KIMURA, Kazuhiro

    2014-01-01

    Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness. PMID:24770646

  5. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of

  6. ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.

    PubMed

    Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J

    2007-05-15

    The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.

  7. Cardiac stem cell genetic engineering using the alphaMHC promoter.

    PubMed

    Bailey, Brandi; Izarra, Alberto; Alvarez, Roberto; Fischer, Kimberlee M; Cottage, Christopher T; Quijada, Pearl; Díez-Juan, Antonio; Sussman, Mark A

    2009-11-01

    Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. Normal CSCs engineered with fluorescent reporter protein constructs under control of the alphaMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the alphaMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. Therapeutic genes controlled by the alphaMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy.

  8. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.

  9. MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes, and is influenced by melanosomes1

    PubMed Central

    Robila, Valentina; Ostankovitch, Marina; Altrich-VanLith, Michelle L.; Theos, Alexander C.; Drover, Sheila; Marks, Michael S.; Restifo, Nicholas; Engelhard, Victor H.

    2009-01-01

    Many human solid tumors express MHC II molecules, and proteins normally localized to melanosomes give rise to MHC II restricted epitopes in melanoma. However, the pathways by which this occurs have not been defined. We analyzed the processing of one such epitope, gp10044-59, derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1hi/MHC II+ late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp10044-59 presentation. By depletion of the AP2 adaptor protein using siRNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp10044-59 epitope production. Gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC II molecules. Gp10044-59 presentation is dramatically reduced, and processing occurs entirely in early endosomes / stage I melanosomes. This suggests that melanosomes are inefficient antigen processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition. PMID:19017974

  10. Tumor immunology viewed from alternative animal models—the Xenopus story

    PubMed Central

    Banach, Maureen; Robert, Jacques

    2017-01-01

    a) Purpose of review Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. b) Recent findings Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. c) Summary Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies. PMID:28944105

  11. Bonobos maintain immune-system diversity with three functional types of MHC-B1

    PubMed Central

    Wroblewski, Emily E.; Guethlein, Lisbeth A.; Norman, Paul J.; Li, Yingying; Shaw, Christiana M.; Han, Alex S.; Ndjango, Jean-Bosco N.; Ahuka-Mundeke, Steve; Georgiev, Alexander V.; Peeters, Martine; Hahn, Beatrice H.; Parham, Peter

    2017-01-01

    Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. As only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspective on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a clade of MHC-B, defined by residues 45–74 of the α1 domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3–14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell immunoglobulin-like receptors (KIR) of NK cells, allotypes having the C1 epitope also recognized by KIR, and allotypes having neither epitope. For population ML these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean p-distance) of Papa-B in ML is greater than in the other populations, and also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks. PMID:28348269

  12. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    PubMed

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. MHC class II B diversity in blue tits: a preliminary study.

    PubMed

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-07-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.

  14. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  15. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  16. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population

    PubMed Central

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.

    2013-01-01

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242

  17. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  18. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds.

    PubMed

    Beckett, Travis J; Morales, A Jason; Koehler, Klaus L; Rocheford, Torbert R

    2017-01-01

    The emergence of high-throughput, high-density genotyping methods combined with increasingly powerful computing systems has created opportunities to further discover and exploit the genes controlling agronomic performance in elite maize breeding populations. Understanding the genetic basis of population structure in an elite set of materials is an essential step in this genetic discovery process. This paper presents a genotype-based population analysis of all maize inbreds whose Plant Variety Protection certificates had expired as of the end of 2013 (283 inbreds) as well as 66 public founder inbreds. The results provide accurate population structure information and allow for important inferences in context of the historical development of North American elite commercial maize germplasm. Genotypic data was obtained via genotyping-by-sequencing on 349 inbreds. After filtering for missing data, 77,314 high-quality markers remained. The remaining missing data (average per individual was 6.22 percent) was fully imputed at an accuracy of 83 percent. Calculation of linkage disequilibrium revealed that the average r2 of 0.20 occurs at approximately 1.1 Kb. Results of population genetics analyses agree with previously published studies that divide North American maize germplasm into three heterotic groups: Stiff Stalk, Non-Stiff Stalk, and Iodent. Principal component analysis shows that population differentiation is indeed very complex and present at many levels, yet confirms that division into three main sub-groups is optimal for population description. Clustering based on Nei's genetic distance provides an additional empirical representation of the three main heterotic groups. Overall fixation index (FST), indicating the degree of genetic divergence between the three main heterotic groups, was 0.1361. Understanding the genetic relationships and population differentiation of elite germplasm may help breeders to maintain and potentially increase the rate of genetic gain

  19. Evaluation of the major histocompatibility complex (Mhc) in cranes: applications to conservation efforts

    USGS Publications Warehouse

    Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.

    2001-01-01

    Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

  20. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less

  1. Genomic Porosity between Invasive Chondrostoma nasus and Endangered Endemic Parachondrostoma toxostoma (Cyprinidae): The Evolution of MHC IIB Genes

    PubMed Central

    Šimková, Andrea; Civáňová, Kristína; Gettová, Lenka; Gilles, André

    2013-01-01

    Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic

  2. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  3. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  4. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  5. No evidence for the effect of MHC on male mating success in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.

  6. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    PubMed Central

    Xia, Zhen; Chen, Huabiao; Kang, Seung-gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-01-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function. PMID:24522437

  7. The complex and specific pMHC interactions with diverse HIV-1 TCR clonotypes reveal a structural basis for alterations in CTL function

    NASA Astrophysics Data System (ADS)

    Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong

    2014-02-01

    Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.

  8. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris)

    PubMed Central

    Oliver, M.K.; Telfer, S.; Piertney, S.B.

    2008-01-01

    The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. PMID:19129114

  9. 75 FR 28685 - Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision [AC-41: OTS Nos. 04983, H-3879, and H-4714] Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application Notice is hereby given that on May 14, 2010, the Office of Thrift Supervision approved the application of Colonial Bankshares, MHC...

  10. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  11. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    PubMed Central

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  12. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNAmore » and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.« less

  13. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal

    PubMed Central

    Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.

    2004-01-01

    The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802

  14. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.

    PubMed

    Landais, Elise; Romagnoli, Pablo A; Corper, Adam L; Shires, John; Altman, John D; Wilson, Ian A; Garcia, K Christopher; Teyton, Luc

    2009-12-15

    Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.

  15. MHC class II B diversity in blue tits: a preliminary study

    PubMed Central

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136

  16. Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition

    PubMed Central

    Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.

    2009-01-01

    T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124

  17. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  18. MHC standing genetic variation and pathogen resistance in wild Atlantic salmon

    PubMed Central

    Dionne, Mélanie; Miller, Kristina M.; Dodson, Julian J.; Bernatchez, Louis

    2009-01-01

    Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment. PMID:19414470

  19. Evolution of Mhc-DRB introns: implications for the origin of primates.

    PubMed

    Kupfermann, H; Satta, Y; Takahata, N; Tichy, H; Klein, J

    1999-06-01

    Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders-Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera.

  20. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment.

    PubMed

    VanGuilder, Heather D; Bixler, Georgina V; Brucklacher, Robert M; Farley, Julie A; Yan, Han; Warrington, Junie P; Sonntag, William E; Freeman, Willard M

    2011-10-11

    Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. These data demonstrate a novel, coordinated age-related induction of the MHC II immune

  1. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  2. Reinventing potato as a diploid inbred line-based crop

    USDA-ARS?s Scientific Manuscript database

    The third most important food crop worldwide, potato, is a tetraploid outcrossing species propagated from tubers. Breeders have long been challenged by polyploidy, heterozygosity, and asexual reproduction. It has been assumed that tetraploidy is essential for high yield, the creation of inbred potat...

  3. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    PubMed

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-07-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  4. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy.

    PubMed

    Sugarman, Jordan; Tsai, Sue; Santamaria, Pere; Khadra, Anmar

    2013-05-01

    Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.

  5. MHC class I-associated peptides derive from selective regions of the human genome.

    PubMed

    Pearson, Hillary; Daouda, Tariq; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Mader, Sylvie; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude

    2016-12-01

    MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.

  6. MHC class I–associated peptides derive from selective regions of the human genome

    PubMed Central

    Pearson, Hillary; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Thibault, Pierre

    2016-01-01

    MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology. PMID:27841757

  7. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  8. MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing.

    PubMed

    van der Wiel, Marit K H; Doxiadis, Gaby G M; de Groot, N; Otting, N; de Groot, N G; Poirier, N; Blancho, G; Bontrop, R E

    2018-02-24

    The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.

  9. Defining Success in Adult Basic Education Settings: Multiple Stakeholders, Multiple Perspectives

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Barnes, Adrienne E.; Connor, Carol M.; Steadman, Sharilyn C.

    2013-01-01

    This study employed quantitative and qualitative research approaches to investigate what constitutes success in adult basic education (ABE) programs from the perspectives of multiple educational stakeholders: the state funding agency, the teachers, and the students. Success was defined in multiple ways. In the quantitative section of the study, we…

  10. No evidence for MHC class II-based non-random mating at the gametic haplotype in Atlantic salmon.

    PubMed

    Promerová, M; Alavioon, G; Tusso, S; Burri, R; Immler, S

    2017-06-01

    Genes of the major histocompatibility complex (MHC) are a likely target of mate choice because of their role in inbreeding avoidance and potential benefits for offspring immunocompetence. Evidence for female choice for complementary MHC alleles among competing males exists both for the pre- and the postmating stages. However, it remains unclear whether the latter may involve non-random fusion of gametes depending on gametic haplotypes resulting in transmission ratio distortion or non-random sequence divergence among fused gametes. We tested whether non-random gametic fusion of MHC-II haplotypes occurs in Atlantic salmon Salmo salar. We performed in vitro fertilizations that excluded interindividual sperm competition using a split family design with large clutch sample sizes to test for a possible role of the gametic haplotype in mate choice. We sequenced two MHC-II loci in 50 embryos per clutch to assess allelic frequencies and sequence divergence. We found no evidence for transmission ratio distortion at two linked MHC-II loci, nor for non-random gamete fusion with respect to MHC-II alleles. Our findings suggest that the gametic MHC-II haplotypes play no role in gamete association in Atlantic salmon and that earlier findings of MHC-based mate choice most likely reflect choice among diploid genotypes. We discuss possible explanations for these findings and how they differ from findings in mammals.

  11. Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon

    PubMed Central

    Gharbi, Karim; Glover, Kevin A; Stone, Louise C; MacDonald, Elizabeth S; Matthews, Louise; Grimholt, Unni; Stear, Michael J

    2009-01-01

    Background Genetic variation has been shown to play a significant role in determining susceptibility to the salmon louse, Lepeophtheirus salmonis. However, the mechanisms involved in differential response to infection remain poorly understood. Recent findings in Atlantic salmon (Salmo salar) have provided evidence for a potential link between marker variation at the major histocompatibility complex (MHC) and differences in lice abundance among infected siblings, suggesting that MHC genes can modulate susceptibility to the parasite. In this study, we used quantitative trait locus (QTL) analysis to test the effect of genomic regions linked to MHC class I and II on linkage groups (LG) 15 and 6, respectively. Results Significant QTL effects were detected on both LG 6 and LG 15 in sire-based analysis but the QTL regions remained unresolved due to a lack of recombination between markers. In dam-based analysis, a significant QTL was identified on LG 6, which accounted for 12.9% of within-family variance in lice abundance. However, the QTL was located at the opposite end of DAA, with no significant overlap with the MHC class II region. Interestingly, QTL modelling also revealed evidence of sex-linked differences in lice abundance, indicating that males and females may have different susceptibility to infection. Conclusion Overall, QTL analysis provided relatively weak support for a proximal effect of classical MHC regions on lice abundance, which can partly be explained by linkage to other genes controlling susceptibility to L. salmonis on the same chromosome. PMID:19397823

  12. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  13. Enzyme markers in inbred rat strains: genetics of new markers and strain profiles.

    PubMed

    Adams, M; Baverstock, P R; Watts, C H; Gutman, G A

    1984-08-01

    Twenty-six inbred strains of the laboratory rat (Rattus norvegicus) were examined for electrophoretic variation at an estimated 97 genetic loci. In addition to previously documented markers, variation was observed for the enzymes aconitase, aldehyde dehydrogenase, and alkaline phosphatase. The genetic basis of these markers (Acon-1, Ahd-2, and Akp-1) was confirmed. Linkage analysis between 35 pairwise comparisons revealed that the markers Fh-1 and Pep-3 are linked. The strain profiles of the 25 inbred strains at 11 electrophoretic markers are given.

  14. Characterization of conditionally expressed mutants affecting age-specific survival in inbred lines of Drosophila melanogaster: lethal conditions and temperature-sensitive periods.

    PubMed Central

    Vermeulen, C J; Bijlsma, R

    2004-01-01

    The specific genetic basis of inbreeding depression is poorly understood. To address this question, two conditionally expressed lethal effects that were found to cause line-specific life span reductions in two separate inbred lines of Drosophila melanogaster were characterized phenotypically and genetically in terms of whether the accelerated mortality effects are dominant or recessive. The mortality effect in one line (I4) is potentially a temperature-sensitive semilethal that expresses in adult males only and is partially dominant. The other line (I10) responds as one would expect for a recessive lethal. It requires a cold shock for expression and is cold sensitive. Flies exhibiting this lethal condition responded as pupae and freshly eclosed imagoes. The effect is recessive in both males and females. The expression of the lethal effects in both lines is highly dependent upon environmental conditions. These results will serve as a basis for more detailed and mechanistic genetic research on inbreeding depression and are relevant to sex- and environment-specific effects on life span observed in quantitative trait loci studies using inbred lines. PMID:15280238

  15. Genotype Modulates Age-Related Alterations in Sensitivity to the Aversive Effects of Ethanol: An 8 Inbred Strain Analysis of Conditioned Taste Aversion

    PubMed Central

    Moore, Eileen M.; Forrest, Robert D.; Boehm, Stephen L.

    2012-01-01

    Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age-group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Thus far there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in 8 inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1h. Immediately following access mice were administered ethanol (0, 1.5, 2.25, 3g/kg, ip). This procedure was repeated in 72h intervals for a total of 5 CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain. PMID:23171343

  16. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  17. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less

  18. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  19. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  20. Association Analysis of the Extended MHC Region in Celiac Disease Implicates Multiple Independent Susceptibility Loci

    PubMed Central

    Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad

    2012-01-01

    Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847

  1. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2018-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  2. Refinement of the MHC Risk Map in a Scandinavian Primary Sclerosing Cholangitis Population

    PubMed Central

    Næss, Sigrid; Lie, Benedicte A.; Melum, Espen; Olsson, Marita; Hov, Johannes R.; Croucher, Peter J. P.; Hampe, Jochen; Thorsby, Erik; Bergquist, Annika; Traherne, James A.; Schrumpf, Erik; Boberg, Kirsten Muri; Schreiber, Stefan; Franke, Andre; Karlsen, Tom H.

    2014-01-01

    Background Genetic variants within the major histocompatibility complex (MHC) represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC). Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel. Methodology/Principal Findings A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1) and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed) alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10−11). Conclusions/Significance Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region. PMID:25521205

  3. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    PubMed Central

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  4. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  5. Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function

    PubMed Central

    Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.

    2014-01-01

    Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508

  6. De Facto Language Policy in Legislation Defining Adult Basic Education in the United States

    ERIC Educational Resources Information Center

    Vanek, Jenifer

    2016-01-01

    This paper investigates the impact of differing interpretation of federal education policy in three different states. The policy, the Workforce Investment Act Title II, has defined the services provided for adult English language learners (ELLs) enrolled in Adult Basic Education programs in the United States since it was passed in 1998. At the…

  7. TLR4-HMGB1 signaling pathway affects the inflammatory reaction of autoimmune myositis by regulating MHC-I.

    PubMed

    Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu

    2016-12-01

    To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity?

    PubMed Central

    Wedekind, C; Füri, S

    1997-01-01

    The major histocompatibility complex (MHC) is an immunologically important group of genes that appears to be under natural as well as sexual selection. Several hypotheses suggest that certain MHC-allele combinations (usually heterozygous ones) are superior under selective pressure by pathogens. This could influence mate choice in a way that preferences function to create MHC-heterozygous offspring, or that they function to create specific allele combinations that are beneficial under the current environmental conditions through their complementary or epistatic effects. To test these hypotheses, we asked 121 men and women to score the odours of six T-shirts, worn by two women and four men. Their scorings of pleasantness correlated negatively with the degree of MHC similarity between smeller and T-shirt-wearer in men and women who were not using the contraceptive pill (but not in Pill-users). Depending on the T-shirt-wearer, the amount of variance in the scorings of odour pleasantness that was explained by the degree of MHC similarity (r2) varied between nearly 0 and 23%. There was no apparent effect of gender in this correlation: the highest r2 was actually reached with one of the male odours sniffed by male smellers. Men and women who were reminded of their own mate/ex-mate when sniffing a T-shirt had significantly fewer MHC-alleles in common with this T-shirt-wearer than expected by chance. This suggests that the MHC or linked genes influence human mate choice. We found no significant effect when we tested for an influence of the MHC on odour preferences after the degree of similarity between T-shirt-wearer and smeller was statistically controlled for. This suggests that in our study populations the MHC influences body odour preferences mainly, if not exclusively, by the degree of similarity or dissimilarity. The observed preferences would increase heterozygosity in the progeny. They do not seem to aim for more specific MHC combinations. PMID:9364787

  9. INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.

    PubMed

    Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor

    2002-01-18

    Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.

  10. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  11. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  12. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

  13. NetMHCstab – predicting stability of peptide–MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery

    PubMed Central

    Jørgensen, Kasper W; Rasmussen, Michael; Buus, Søren; Nielsen, Morten

    2014-01-01

    Major histocompatibility complex class I (MHC-I) molecules play an essential role in the cellular immune response, presenting peptides to cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize ongoing intracellular production of proteins. In the early 1990s, immunogenicity and stability of the peptide–MHC-I (pMHC-I) complex were shown to be correlated. At that time, measuring stability was cumbersome and time consuming and only small data sets were analysed. Here, we investigate this fairly unexplored area on a large scale compared with earlier studies. A recent small-scale study demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide–MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct stability predictors capable of predicting the half-life of the pMHC-I complex. These predictors were shown to predict T-cell epitopes and MHC ligands from SYFPEITHI and IEDB to form significantly more stable MHC-I complexes compared with affinity-matched non-epitopes. Combining the stability predictions with a state-of-the-art affinity predictions NetMHCcons significantly improved the performance for identification of T-cell epitopes and ligands. For the HLA alleles included in the study, we could identify distinct sub-motifs that differentiate between stable and unstable peptide binders and demonstrate that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at http://www.cbs.dtu.dk/services/NetMHCstab. PMID:23927693

  14. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  15. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man.

    PubMed

    Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi

    2002-12-01

    The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.

  16. Population genetic evidence for sex-specific dispersal in an inbred social spider.

    PubMed

    Smith, Deborah R; Su, Yong-Chao; Berger-Tal, Reut; Lubin, Yael

    2016-08-01

    Dispersal in most group-living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex-specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex-specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium- to long-distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long-distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.

  17. Sites of ozone sensitivity in diverse maize inbred lines

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone (O3) is an air pollutant that costs ~$14-26 billion in global crop losses and is projected to worsen in the future. Potential sites of O3 sensitivity in maize were tested by growing 200 inbred lines, including the nested association mapping population founder lines, under ambient...

  18. Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs.

    PubMed

    Alaoui, Lamine; Palomino, Gustavo; Zurawski, Sandy; Zurawski, Gerard; Coindre, Sixtine; Dereuddre-Bosquet, Nathalie; Lecuroux, Camille; Goujard, Cecile; Vaslin, Bruno; Bourgeois, Christine; Roques, Pierre; Le Grand, Roger; Lambotte, Olivier; Favier, Benoit

    2018-05-01

    Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.

  19. Automated benchmarking of peptide-MHC class I binding predictions.

    PubMed

    Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-07-01

    Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Automated benchmarking of peptide-MHC class I binding predictions

    PubMed Central

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  1. A sarcoidosis clinician's perspective of MHC functional elements outside the antigen binding site.

    PubMed

    Judson, Marc A

    2018-05-30

    Sarcoidosis is a multisystem granulomatous disease of unknown cause. Evidence supports an integral role for interactions at the MHC binding site in the development of sarcoidosis. However, despite this evidence, there are clinical data that suggest that additional mechanisms are involved in the immunopathogenesis of this disease. This manuscript provides a brief clinical description of sarcoidosis, and a clinician's perspective of the immunopathogenesis of sarcoidosis in terms of the MHC binding site, MHC functional elements beyond the binding site, and other possible alternative mechanisms. Input from clinicians will be essential in establishing the immunologic cause of sarcoidosis as a detailed phenotypic characterization of disease will be required. Copyright © 2018. Published by Elsevier Inc.

  2. HIV-1 epitopes presented by MHC class I types associated with superior immune containment of viremia have highly constrained fitness landscapes.

    PubMed

    Gorin, Aleksandr M; Du, Yushen; Liu, Franklin Y; Zhang, Tian-Hao; Ng, Hwee L; Hofmann, Christian; Cumberland, William G; Sun, Ren; Yang, Otto O

    2017-08-01

    Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27) and one non-protective (A*02) MHC-I types. Libraries of HIV-1 with saturation mutagenesis of CTL epitopes are propagated with and without CTL selective pressure to define the fitness landscapes for epitope mutation and escape from CTLs via deep sequencing. Immunodominant B*57- and B*27- present epitopes are highly limited in options for fit mutations, with most viable variants recognizable by CTLs, whereas an immunodominant A*02 epitope-presented is highly permissive for mutation, with many options for CTL evasion without loss of viability. Generally, options for evasion overlap considerably between CTL clones despite highly distinct T cell receptors. Finally, patterns of variant recognition suggest population-wide CTL selection for the A*02-presented epitope. Overall, these findings indicate that these protective MHC-I types yield CTL targeting of highly constrained epitopes, and underscore the importance of blocking public escape pathways for CTL-based interventions against HIV-1.

  3. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro

    PubMed Central

    2014-01-01

    Introduction The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. Methods MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. Results MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of

  4. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    PubMed Central

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  5. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus.

    PubMed

    Yasukochi, Yoshiki; Kurosaki, Toshifumi; Yoneda, Masaaki; Koike, Hiroko; Satta, Yoko

    2012-11-29

    The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that

  6. Horse cDNA clones encoding two MHC class I genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbis, D.P.; Maher, J.K.; Stanek, J.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  7. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma.

    PubMed

    Madariaga, M L; Michel, S G; La Muraglia, G M; Sekijima, M; Villani, V; Leonard, D A; Powell, H J; Kurtz, J M; Farkash, E A; Colvin, R B; Allan, J S; Cetrulo, C L; Huang, C A; Sachs, D H; Yamada, K; Madsen, J C

    2015-06-01

    Kidney allografts possess the ability to enable a short course of immunosuppression to induce tolerance of themselves and of cardiac allografts across a full-MHC barrier in miniature swine. However, the renal element(s) responsible for kidney-induced cardiac allograft tolerance (KICAT) are unknown. Here we investigated whether MHC disparities between parenchyma versus hematopoietic-derived "passenger" cells of the heart and kidney allografts affected KICAT. Heart and kidney allografts were co-transplanted into MHC-mismatched recipients treated with high-dose tacrolimus for 12 days. Group 1 animals (n = 3) received kidney and heart allografts fully MHC-mismatched to each other and to the recipient. Group 2 animals (n = 3) received kidney and heart allografts MHC-matched to each other but MHC-mismatched to the recipient. Group 3 animals (n = 3) received chimeric kidney allografts whose parenchyma was MHC-mismatched to the donor heart. Group 4 animals (n = 3) received chimeric kidney allografts whose passenger leukocytes were MHC-mismatched to the donor heart. Five of six heart allografts in Groups 1 and 3 rejected <40 days. In contrast, heart allografts in Groups 2 and 4 survived >150 days without rejection (p < 0.05). These data demonstrate that KICAT requires MHC-matching between kidney allograft parenchyma and heart allografts, suggesting that cells intrinsic to the kidney enable cardiac allograft tolerance. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  9. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  10. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    PubMed

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for

  11. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador.

    PubMed

    Rosenbloom, A L; Guevara Aguirre, J; Rosenfeld, R G; Fielder, P J

    1990-11-15

    Laron-type dwarfism, which is characterized by the clinical appearance of isolated growth hormone deficiency with elevated serum levels of growth hormone and decreased serum levels of insulin-like growth factor I (IGF-I), has been described in approximately 50 patients. This condition is caused by a deficiency of the cellular receptor for growth hormone, and it is transmitted as an autosomal recessive trait, as indicated by an equal sex distribution and a high rate of consanguinity in affected families. We studied 20 patients (19 females and 1 male, 2 to 49 years of age), from an inbred Spanish population in southern Ecuador, who had the clinical features of Laron-type dwarfism. Seventeen patients were members of two large pedigrees. Among the 13 affected sibships, there were 19 affected and 24 unaffected female siblings and 1 affected and 21 unaffected male siblings. The patients' heights ranged from 10.0 to 6.7 SD below the normal mean height for age in the United States. In addition to the previously described features, 15 patients had limited elbow extensibility, all had blue scleras, affected adults had relatively short extremities, and all four affected women over 30 years of age had hip degeneration. Basal serum concentrations of growth hormone were elevated in all affected children (30 to 160 micrograms per liter) and normal to moderately elevated in the adults. The serum level of growth hormone-binding protein ranged from 1 to 30 percent of normal; IGF-I concentrations were low--less than or equal to 7 micrograms per liter in the children and less than or equal to 66 micrograms per liter in the adults (normal for Ecuadorean women, 98 to 238). Serum levels of IGF-II and growth hormone-dependent IGF-binding protein-3 were also low. We describe an inbred population with a high incidence of growth hormone-receptor deficiency resulting in a clinical picture resembling Laron-type dwarfism but differing principally in showing a marked predominance of affected

  12. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  13. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformationalmore » changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.« less

  15. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Genetic variation and selection of MHC class I loci differ in two congeneric frogs.

    PubMed

    Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R

    2018-04-01

    Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.

  17. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment

    PubMed Central

    2011-01-01

    Background Age-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline. Methods Three independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1. Results We report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance. Conclusions These data demonstrate a novel, coordinated age

  18. Genotype modulates age-related alterations in sensitivity to the aversive effects of ethanol: an eight inbred strain analysis of conditioned taste aversion.

    PubMed

    Moore, E M; Forrest, R D; Boehm, S L

    2013-02-01

    Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age-group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Currently there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in eight inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T(+) tf/J, C3H/HeJ and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1 h. Immediately following access mice were administered ethanol (0, 1.5, 2.25 and 3 g/kg, ip). This procedure was repeated in 72 h intervals for a total of five CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain. © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  19. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules

    PubMed Central

    Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.

    2002-01-01

    The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078

  20. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  1. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    PubMed Central

    2010-01-01

    Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173

  2. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.

    PubMed

    Xin, Jige; Yang, Huaqiang; Fan, Nana; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Zhao, Yu; Li, Xiaoping; Song, Jun; Yang, Yi; Zou, Qingjian; Yan, Quanmei; Zeng, Yangzhi; Lai, Liangxue

    2013-01-01

    Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.

  3. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis.

    PubMed

    Ombrello, Michael J; Remmers, Elaine F; Tachmazidou, Ioanna; Grom, Alexei; Foell, Dirk; Haas, Johannes-Peter; Martini, Alberto; Gattorno, Marco; Özen, Seza; Prahalad, Sampath; Zeft, Andrew S; Bohnsack, John F; Mellins, Elizabeth D; Ilowite, Norman T; Russo, Ricardo; Len, Claudio; Hilario, Maria Odete E; Oliveira, Sheila; Yeung, Rae S M; Rosenberg, Alan; Wedderburn, Lucy R; Anton, Jordi; Schwarz, Tobias; Hinks, Anne; Bilginer, Yelda; Park, Jane; Cobb, Joanna; Satorius, Colleen L; Han, Buhm; Baskin, Elizabeth; Signa, Sara; Duerr, Richard H; Achkar, J P; Kamboh, M Ilyas; Kaufman, Kenneth M; Kottyan, Leah C; Pinto, Dalila; Scherer, Stephen W; Alarcón-Riquelme, Marta E; Docampo, Elisa; Estivill, Xavier; Gül, Ahmet; de Bakker, Paul I W; Raychaudhuri, Soumya; Langefeld, Carl D; Thompson, Susan; Zeggini, Eleftheria; Thomson, Wendy; Kastner, Daniel L; Woo, Patricia

    2015-12-29

    Systemic juvenile idiopathic arthritis (sJIA) is an often severe, potentially life-threatening childhood inflammatory disease, the pathophysiology of which is poorly understood. To determine whether genetic variation within the MHC locus on chromosome 6 influences sJIA susceptibility, we performed an association study of 982 children with sJIA and 8,010 healthy control subjects from nine countries. Using meta-analysis of directly observed and imputed SNP genotypes and imputed classic HLA types, we identified the MHC locus as a bona fide susceptibility locus with effects on sJIA risk that transcended geographically defined strata. The strongest sJIA-associated SNP, rs151043342 [P = 2.8 × 10(-17), odds ratio (OR) 2.6 (2.1, 3.3)], was part of a cluster of 482 sJIA-associated SNPs that spanned a 400-kb region and included the class II HLA region. Conditional analysis controlling for the effect of rs151043342 found that rs12722051 independently influenced sJIA risk [P = 1.0 × 10(-5), OR 0.7 (0.6, 0.8)]. Meta-analysis of imputed classic HLA-type associations in six study populations of Western European ancestry revealed that HLA-DRB1*11 and its defining amino acid residue, glutamate 58, were strongly associated with sJIA [P = 2.7 × 10(-16), OR 2.3 (1.9, 2.8)], as was the HLA-DRB1*11-HLA-DQA1*05-HLA-DQB1*03 haplotype [6.4 × 10(-17), OR 2.3 (1.9, 2.9)]. By examining the MHC locus in the largest collection of sJIA patients assembled to date, this study solidifies the relationship between the class II HLA region and sJIA, implicating adaptive immune molecules in the pathogenesis of sJIA.

  4. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  5. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    PubMed

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc

  6. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  7. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    PubMed

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  8. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex

    PubMed Central

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A.; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G.; Flicek, Paul; Bontrop, Ronald E.; Hammond, John A.; Marsh, Steven G. E.

    2017-01-01

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. PMID:27899604

  9. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.

    PubMed

    Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane

    2016-05-21

    The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC

  10. Designing of interferon-gamma inducing MHC class-II binders

    PubMed Central

    2013-01-01

    Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt

  11. Impact of the INBRE summer student mentored research program on undergraduate students in Arkansas.

    PubMed

    McSweeney, Jean C; Hudson, Teresa J; Prince, Latrina; Beneš, Helen; Tackett, Alan J; Miller Robinson, Caroline; Koeppe, Roger; Cornett, Lawrence E

    2018-03-01

    The Institutional Development Award (IDeA) program, housed within the National Institute for General Medical Sciences, administers the Networks of Biomedical Research Excellence (INBRE) as a strategic mission to broaden the geographic distribution of National Institutes of Health (NIH) funding within the United States. Undergraduate summer student mentored research programs (SSMRP) are a common feature of INBRE programs and are designed to increase undergraduate student interest in research careers in the biomedical sciences. Little information is available about student perspectives on how these programs impact their choices relative to education and careers. Therefore, we conducted qualitative interviews with 20 participants from the Arkansas INBRE SSMRP in the years 2002-2012. Each telephone interview lasted 30-45 min. An interview guide with a broad "grand tour" question was used to elicit student perspectives on SSMRP participation. Interviews were digitally recorded, then transcribed verbatim, and the transcript checked for accuracy. Content analysis and constant comparison were used to identify nine themes that were grouped into three temporal categories: before, during, and after the SSMRP experience. Students viewed the experience as positive and felt it impacted their career choices. They emphasized the value of mentoring in the program, and some reported maintaining a relationship with the mentor after the summer experience ended. Students also valued learning new laboratory and presentation skills and felt their research experience was enhanced by meeting students and scientists with a wide range of career interests. These data suggest that the Arkansas INBRE and the NIH IDeA program are successfully meeting the goal of increasing interest in research among undergraduates.

  12. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice

    PubMed Central

    Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu

    2018-01-01

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744

  13. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism

    PubMed Central

    Townsend, Andrea K.; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  14. Strong selection at MHC in Mexicans since admixture

    USDA-ARS?s Scientific Manuscript database

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the major histocompatibility complex (MHC) region Mexicans have excessive African ance...

  15. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  16. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations.

    PubMed

    Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K

    2018-04-01

    Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.

  17. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells

    PubMed Central

    Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.

    2017-01-01

    Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844

  18. Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon.

    PubMed

    Lukacs, Morten F; Harstad, Håvard; Bakke, Hege G; Beetz-Sargent, Marianne; McKinnel, Linda; Lubieniecki, Krzysztof P; Koop, Ben F; Grimholt, Unni

    2010-03-05

    We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene Sasa-UBA in addition to a soluble MHC class I molecule, Sasa-ULA. A pseudolocus for Sasa-UCA was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region. The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, ZAA. The IB region was extended with 350 kb including three new Z-lineage loci, ZBA, ZCA and ZDA in addition to a UGA locus. An allelic version of the IB region contained a functional UDA locus in addition to the UCA pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus SAA (previously known as UAA) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of UBA being dominantly expressed in gut, spleen and gills, and ZAA with high expression in blood. Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (UBA), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.

  19. Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daubas, P.; Pham-Dinh, D.; Dautigny, A.

    1994-09-01

    The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerasemore » chain reaction method.« less

  20. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

    PubMed

    Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H

    2015-11-27

    As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A novel Minimalist Cell-Free MHC Class II Antigen Processing System Identifies Immunodominant Epitopes

    PubMed Central

    Hartman, Isamu Z.; Kim, AeRyon; Cotter, Robert J.; Walter, Kimberly; Dalai, Sarat K.; Boronina, Tatiana; Griffith, Wendell; Schwenk, Robert; Lanar, David E.; Krzych, Urszula; Cole, Robert N.; Sadegh-Nasseri, Scheherazade

    2010-01-01

    Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4+ T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: MHC class II, cathepsins, and HLA-DM. Our minimalist system successfully identified the physiologically selected immunodominant epitopes of model antigens, HA1 from influenza virus (A/Texas/1/77) and type II collagen. When applied for de novo epitope identification to a malaria antigen, or HA1 from H5N1 virus (Avian Flu), the system selected a single epitope from each protein that were confirmed to be immunodominant by their capacity to activate CD4+ T cells in HLA-DR1 positive human volunteers or transgenic mice immunized with the corresponding proteins. Thus, we provide a powerful new tool for the identification of physiologically relevant helper T cell epitopes from antigens. PMID:21037588

  2. Characterization of full-length MHC class II sequences in Indonesian and Vietnamese cynomolgus macaques.

    PubMed

    Creager, Hannah M; Becker, Ericka A; Sandman, Kelly K; Karl, Julie A; Lank, Simon M; Bimber, Benjamin N; Wiseman, Roger W; Hughes, Austin L; O'Connor, Shelby L; O'Connor, David H

    2011-09-01

    In recent years, the use of cynomolgus macaques in biomedical research has increased greatly. However, with the exception of the Mauritian population, knowledge of the MHC class II genetics of the species remains limited. Here, using cDNA cloning and Sanger sequencing, we identified 127 full-length MHC class II alleles in a group of 12 Indonesian and 12 Vietnamese cynomolgus macaques. Forty two of these were completely novel to cynomolgus macaques while 61 extended the sequence of previously identified alleles from partial to full length. This more than doubles the number of full-length cynomolgus macaque MHC class II alleles available in GenBank, significantly expanding the allele library for the species and laying the groundwork for future evolutionary and functional studies.

  3. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex.

    PubMed

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G; Flicek, Paul; Bontrop, Ronald E; Hammond, John A; Marsh, Steven G E

    2017-01-04

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Global distribution of malaria-resistant MHC-HLA alleles: the number and frequencies of alleles and malaria risk.

    PubMed

    Garamszegi, László Zsolt

    2014-09-03

    The major histocompatibility complex (MHC) is the most polymorphic genetic region in vertebrates, but the origin of such genetic diversity remains unresolved. Several studies have demonstrated at the within-population level that individuals harbouring particular alleles can be less or more susceptible to malaria, but these do not allow strong generalization. Here worldwide data on the frequencies of several hundred MHC alleles of the human leucocyte antigen (HLA) system in relation to malaria risk at the between-population level were analysed in a phylogenetic framework, and results for different alleles were quantitatively summarized in a meta-analysis. There was an overall positive relationship between malaria pressure and the frequency of several HLA alleles indicating that allele frequencies increase in countries with strong malaria pressure. Nevertheless, considerable heterogeneity was observed across alleles, and some alleles showed a remarkable negative relationship with malaria risk. When heterogeneities were partitioned into different organization groups of the MHC, the strongest positive relationships were detected for alleles of the HLA-A and HLA-B loci, but there were also differences between MHC supertypes that constitute functionally distinct nucleotide sequences. Finally, the number of MHC alleles that are maintained within countries was also related to malaria risk. Therefore, malaria represents a key selection pressure for the human MHC and has left clear evolutionary footprints on both the frequencies and the number of alleles observed in different countries.

  5. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection

    PubMed Central

    Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.

    2018-01-01

    Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515

  6. Polymorphisms of the FOXF1 and MHC locus genes in individuals undergoing esophageal acid reflux assessments.

    PubMed

    Lam, C; Liu, W F; Bel, R D; Chan, K; Miller, L; Brown, M C; Chen, Z; Cheng, D; Patel, D; Xu, W; Darling, G E; Liu, G

    2017-02-01

    Gastroesophageal reflux disease (GERD) may lead to Barrett's esophagus (BE). Previously, a large genome-wide association study found two germline markers to be associated with BE, FOXF1 rs9936833 (C allele) and MHC rs9257809 (A allele). This study evaluated whether these two polymorphisms are associated with gastroesphageal acid reflux as measured by 24-hour pH testing. Patients with acid reflux symptoms referred for esophageal manometry and 24-hour pH monitoring at University Health Network (Toronto, ON) were enrolled. DNA extracted from blood was genotyped using a Taqman Polymerase Chain Reaction (PCR) assay. DeMeester scores of ≥14.7 or prior evidence of reflux esophagitis on endoscopy defined individuals with esophageal acid reflux. Logistic regression analysis, adjusted for clinical risk factors, was used to calculate odds ratios with 95% confidence intervals for each polymorphism in relation to the presence of acid reflux. Of 182 patients, the median age was 50 years and 62% were female; 95 (52%) met the definition of GERD. In the multivariable analysis, both FOXF1 rs9936833 (OR = 1.82; 95%CI: 1.12-2.96; P = 0.02) and MHC rs9257809 (OR = 9.36; 95%CI: 2.92-29.99; P < 0.001) remained significantly associated with presence of acid reflux. When both polymorphisms were placed in the same model, the adjusted ORs were 2.10 (95%CI: 1.24-3.53; P = 0.005) and 10.95 (95%CI: 3.32-36.09; P < 0.001), respectively. The association for risk allele C in FOXF1 rs9936833 and risk allele A in MHC rs9257809 with the presence of acid reflux suggests a potential pathophysiologic mechanism for the role of genetic influences in BE development. © 2016 International Society for Diseases of the Esophagus.

  7. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy

    PubMed Central

    Johnson, Douglas B.; Estrada, Monica V.; Salgado, Roberto; Sanchez, Violeta; Doxie, Deon B.; Opalenik, Susan R.; Vilgelm, Anna E.; Feld, Emily; Johnson, Adam S.; Greenplate, Allison R.; Sanders, Melinda E.; Lovly, Christine M.; Frederick, Dennie T.; Kelley, Mark C.; Richmond, Ann; Irish, Jonathan M.; Shyr, Yu; Sullivan, Ryan J.; Puzanov, Igor; Sosman, Jeffrey A.; Balko, Justin M.

    2016-01-01

    Anti-PD-1 therapy yields objective clinical responses in 30–40% of advanced melanoma patients. Since most patients do not respond, predictive biomarkers to guide treatment selection are needed. We hypothesize that MHC-I/II expression is required for tumour antigen presentation and may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using pathway analysis, we show that MHC-II(+) cell lines demonstrate signatures of ‘PD-1 signalling', ‘allograft rejection' and ‘T-cell receptor signalling', among others. In two independent cohorts of anti-PD-1-treated melanoma patients, MHC-II positivity on tumour cells is associated with therapeutic response, progression-free and overall survival, as well as CD4+ and CD8+ tumour infiltrate. MHC-II+ tumours can be identified by melanoma-specific immunohistochemistry using commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection. PMID:26822383

  8. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    PubMed

    Tollenaere, Charlotte; Ivanova, Svilena; Duplantier, Jean-Marc; Loiseau, Anne; Rahalison, Lila; Rahelinirina, Soanandrasana; Brouat, Carine

    2012-01-01

    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  9. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets.

    PubMed

    Nielsen, Morten; Andreatta, Massimo

    2016-03-30

    Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells. Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space. We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0 .

  10. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  11. Antibody-Mediated Rejection of Single Class I MHC-Disparate Cardiac Allografts

    PubMed Central

    Hattori, Yusuke; Bucy, R. Pat; Kubota, Yoshinobu; Baldwin, William M.; Fairchild, Robert L.

    2012-01-01

    Murine CCR5−/− recipients produce high titers of antibody to complete MHC-mismatched heart and renal allografts. To study mechanisms of class I MHC antibody-mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild-type C57BL/6 (H-2b) and B6.CCR5−/− recipients. Donor-specific antibody titers in CCR5−/− recipients were 30-fold higher than in wild-type recipients. B6.Kd allografts survived longer than 60 days in wild-type recipients whereas CCR5−/− recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils, and macrophages and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8−/−/CCR5−/−, but not μMT−/−/CCR5−/−, recipients indicating the need for antibody but not CD8 T cells. Grafts retrieved at day 10 from CCR5−/− and CD8−/−/CCR5−/− recipients and from RAG-1−/− allograft recipients injected with anti-Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of anti-donor class I MHC antibody can mediate allograft rejection, that donor-reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity. PMID:22578247

  12. Expression and phylogenetic analyses reveal paralogous lineages of putatively classical and non-classical MHC-I genes in three sparrow species (Passer).

    PubMed

    Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena

    2017-06-26

    The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non

  13. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility

    PubMed Central

    Borbulevych, Oleg Y.; Piepenbrink, Kurt H.; Gloor, Brian E.; Scott, Daniel R.; Sommese, Ruth F.; Cole, David K.; Sewell, Andrew K.; Baker, Brian M.

    2011-01-01

    Summary Tell mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The αβ TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential “tuning” of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system. PMID:20064447

  14. MHC variability supports dog domestication from a large number of wolves: high diversity in Asia.

    PubMed

    Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P

    2013-01-01

    The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA-DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA-DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place.

  15. MHC variability supports dog domestication from a large number of wolves: high diversity in Asia

    PubMed Central

    Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P

    2013-01-01

    The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA–DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA–DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place. PMID:23073392

  16. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    PubMed

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  17. MHC-I Affects Infection Intensity but Not Infection Status with a Frequent Avian Malaria Parasite in Blue Tits

    PubMed Central

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts. PMID:24023631

  18. A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC Class IIa and IIb

    PubMed Central

    2012-01-01

    Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC

  19. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    PubMed

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the

  20. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II

    PubMed Central

    Norman, Paul J.; Norberg, Steven J.; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Royce, Thomas; Wroblewski, Emily E.; Dunn, Tamsen; Mann, Tobias; Alicata, Claudia; Hollenbach, Jill A.; Chang, Weihua; Shults Won, Melissa; Gunderson, Kevin L.; Abi-Rached, Laurent; Ronaghi, Mostafa; Parham, Peter

    2017-01-01

    The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome. PMID:28360230

  1. KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif

    PubMed Central

    Colantonio, Arnaud D.; Bimber, Benjamin N.; Neidermyer, William J.; Reeves, R. Keith; Alter, Galit; Altfeld, Marcus; Johnson, R. Paul; Carrington, Mary; O'Connor, David H.; Evans, David T.

    2011-01-01

    Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets. PMID:21423672

  2. Both positive and negative effects on immune responses by expression of a second class II MHC molecule.

    PubMed

    Ni, Peggy P; Wang, Yaming; Allen, Paul M

    2014-11-01

    It is perplexing why vertebrates express a limited number of major histocompatibility complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A(+)) and B6.E(+) mice (I-A(+), I-E(+)), the latter expressing a second class II MHC molecule, I-E(b), due to a monomorphic Eα(k) transgene that pairs with the endogenous I-Eβ(b) chain. First, the naive T cell Vβ repertoire was altered in B6.E(+) thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E(+) responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E(+) CD4(+) T cells. In alloreactivity, the B6.E(+) T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E(+) mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins

    USDA-ARS?s Scientific Manuscript database

    Decades of intensive tomato breeding using wild germplasm has resulted in genomes of domesticated accessions (Solanum lycopersicum) to be intertwined with introgressions from their wild relatives. Here we present the first whole genome sequences of two tomato inbreds Gh13 and BTI87, both carrying a ...

  4. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird.

    PubMed

    Hawley, Dana M; Fleischer, Robert C

    2012-01-01

    The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.

  5. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole

    2004-06-12

    Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of

  6. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected.

  7. Characterizing the Specificity and Co-operation of Aminopeptidases in the Cytosol and ER During MHC Class I antigen Presentation1

    PubMed Central

    Hearn, Arron; York, Ian A.; Bishop, Courtney; Rock, Kenneth L.

    2010-01-01

    Many MHC class I binding peptides are generated as N-extended precursors during protein degradation by the proteasome. These peptides can be subsequently trimmed by aminopeptidases in the cytosol and/or the ER to produce mature epitope. However, the contribution and specificity of each of these subcellular compartments in removing N-terminal amino acids for antigen presentation is not well defined. Here we investigate this issue for antigenic precursors that are expressed in the cytosol. By systematically varying the N-terminal flanking sequences of peptides we show that the amino acids upstream of an epitope precursor are a major determinant of the amount of antigen presentation. In many cases MHC class I binding peptides are produced through sequential trimming in both the cytosol and ER. Trimming of flanking residues in the cytosol contributes most to sequences that are poorly trimmed in the ER. Since N-terminal trimming has different specificity in the cytosol and ER, the cleavage of peptides in both of these compartments serves to broaden the repertoire of sequences that are presented. PMID:20351195

  8. Genome-wide association study identifies SNPs in the MHC class II loci that are associated with self-reported history of whooping cough.

    PubMed

    McMahon, George; Ring, Susan M; Davey-Smith, George; Timpson, Nicholas J

    2015-10-15

    Whooping cough is currently seeing resurgence in countries despite high vaccine coverage. There is considerable variation in subject-specific response to infection and vaccine efficacy, but little is known about the role of human genetics. We carried out a case-control genome-wide association study of adult or parent-reported history of whooping cough in two cohorts from the UK: the ALSPAC cohort and the 1958 British Birth Cohort (815/758 cases and 6341/4308 controls, respectively). We also imputed HLA alleles using dense SNP data in the MHC region and carried out gene-based and gene-set tests of association and estimated the amount of additive genetic variation explained by common SNPs. We observed a novel association at SNPs in the MHC class II region in both cohorts [lead SNP rs9271768 after meta-analysis, odds ratio [95% confidence intervals (CIs)] 1.47 (1.35, 1.6), P-value 1.21E - 18]. Multiple strong associations were also observed at alleles at the HLA class II loci. The majority of these associations were explained by the lead SNP rs9271768. Gene-based and gene-set tests and estimates of explainable common genetic variation could not establish the presence of additional associations in our sample. Genetic variation at the MHC class II region plays a role in susceptibility to whooping cough. These findings provide additional perspective on mechanisms of whooping cough infection and vaccine efficacy. © The Author 2015. Published by Oxford University Press.

  9. Genome-wide association study identifies SNPs in the MHC class II loci that are associated with self-reported history of whooping cough

    PubMed Central

    McMahon, George; Ring, Susan M.; Davey-Smith, George; Timpson, Nicholas J.

    2015-01-01

    Whooping cough is currently seeing resurgence in countries despite high vaccine coverage. There is considerable variation in subject-specific response to infection and vaccine efficacy, but little is known about the role of human genetics. We carried out a case–control genome-wide association study of adult or parent-reported history of whooping cough in two cohorts from the UK: the ALSPAC cohort and the 1958 British Birth Cohort (815/758 cases and 6341/4308 controls, respectively). We also imputed HLA alleles using dense SNP data in the MHC region and carried out gene-based and gene-set tests of association and estimated the amount of additive genetic variation explained by common SNPs. We observed a novel association at SNPs in the MHC class II region in both cohorts [lead SNP rs9271768 after meta-analysis, odds ratio [95% confidence intervals (CIs)] 1.47 (1.35, 1.6), P-value 1.21E − 18]. Multiple strong associations were also observed at alleles at the HLA class II loci. The majority of these associations were explained by the lead SNP rs9271768. Gene-based and gene-set tests and estimates of explainable common genetic variation could not establish the presence of additional associations in our sample. Genetic variation at the MHC class II region plays a role in susceptibility to whooping cough. These findings provide additional perspective on mechanisms of whooping cough infection and vaccine efficacy. PMID:26231221

  10. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II.

    PubMed

    Saul, F A; Rovira, P; Boulot, G; Damme, E J; Peumans, W J; Truffa-Bachi, P; Bentley, G A

    2000-06-15

    Urtica dioica agglutinin (UDA), a monomeric lectin extracted from stinging nettle rhizomes, is specific for saccharides containing N-acetylglucosamine (GlcNAc). The lectin behaves as a superantigen for murine T cells, inducing the exclusive proliferation of Vbeta8.3(+) lymphocytes. UDA is unique among known T cell superantigens because it can be presented by major histocompatibility complex (MHC) molecules of both class I and II. The crystal structure of UDA has been determined in the ligand-free state, and in complex with tri-acetylchitotriose and tetra-acetylchitotetraose at 1.66 A, 1.90 A and 1.40 A resolution, respectively. UDA comprises two hevein-like domains, each with a saccharide-binding site. A serine and three aromatic residues at each site form the principal contacts with the ligand. The N-terminal domain binding site can centre on any residue of a chito-oligosaccharide, whereas that of the C-terminal domain is specific for residues at the nonreducing terminus of the ligand. We have shown previously that oligomers of GlcNAc inhibit the superantigenic activity of UDA and that the lectin binds to glycans on the MHC molecule. We show that UDA also binds to glycans on the T cell receptor (TCR). The presence of two saccharide-binding sites observed in the structure of UDA suggests that its superantigenic properties arise from the simultaneous fixation of glycans on the TCR and MHC molecules of the T cell and antigen-presenting cell, respectively. The well defined spacing between the two binding sites of UDA is probably a key factor in determining the specificity for Vbeta8.3(+) lymphocytes.

  11. Properties of MHC Class I Presented Peptides That Enhance Immunogenicity

    PubMed Central

    Calis, Jorg J. A.; Maybeno, Matt; Greenbaum, Jason A.; Weiskopf, Daniela; De Silva, Aruna D.; Sette, Alessandro; Keşmir, Can; Peters, Bjoern

    2013-01-01

    T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses. PMID:24204222

  12. Immunohistochemical detection and correlation between MHC antigen and cell-mediated immune system in recurrent glioma by APAAP method.

    PubMed

    Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H

    1990-09-01

    As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.

  13. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    PubMed

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  14. Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC I in the endoplasmic reticulum

    PubMed Central

    Kropp, Laura E.; Garg, Manish; Binder, Robert J.

    2010-01-01

    Cellular peptides generated by proteasomal degradation of proteins in the cytosol and destined for presentation by MHC I are associated with several chaperones. Hsp70, hsp90 and the TCP1-ring complex have been implicated as important cytosolic players for chaperoning these peptides. In this study we report that gp96 and calreticulin are essential for chaperoning peptides in the endoplasmic reticulum. Importantly we demonstrate that cellular peptides are transferred sequentially from gp96 to calreticulin and then to MHC I forming a relay line. Disruption of this relay line by removal of gp96 or calreticulin prevents the binding of peptides by MHC I and hence presentation of the MHC I-peptide complex on the cell surface. Our results are important for understanding how peptides are processed and trafficked within the endoplasmic reticulum before exiting in association with MHC I heavy chains and β2-microglobulin as a trimolecular complex. PMID:20410492

  15. Interactions within the MHC contribute to the genetic architecture of celiac disease.

    PubMed

    Goudey, Benjamin; Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda; Kowalczyk, Adam; Inouye, Michael

    2017-01-01

    Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets.

  16. RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus

    PubMed Central

    Lenz, Tobias L; Eizaguirre, Christophe; Becker, Sven; Reusch, Thorsten BH

    2009-01-01

    Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism. PMID:19291291

  17. Comparative Evaluation of Two Vaccine Candidates against Experimental Leishmaniasis Due to Leishmania major Infection in Four Inbred Mouse Strains▿

    PubMed Central

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-01-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials. PMID:19726616

  18. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  19. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  20. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    PubMed

    Das, Krishna; Eisel, David; Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram; Eichmüller, Stefan B

    2017-01-01

    In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  1. Detection of a ventricular-specific myosin heavy chain in adult and developing chicken heart

    PubMed Central

    1986-01-01

    In the present study, a monoclonal antibody (McAb), ALD19, generated against myosin of slow tonic muscle, was shown to react with the heavy chain of ventricular myosin in the adult chicken heart. With this antibody, it was possible to detect a ventricular-specific myosin during myocardial differentiation and to show that the epitope recognized by ALD19 was present from the earliest stages of ventricular differentiation and maintained throughout development only in the ventricle. A second McAb, specific for atrial myosin heavy chain (MHC) (Gonzalez-Sanchez, A., and D. Bader, 1984, Dev. Biol., 103:151-158), was used as a control to detect an atrial-specific myosin in the caudal portion of the developing heart at Hamburger-Hamilton stage 15. It was found that the appearance of ventricular MHC predated the expression of atrial MHC by approximately 1 d in ovo and that specific MHCs were always differentially distributed. While a common primordial MHC may be present in the early heart, this study showed the tissue-specific expression of a ventricular MHC during the initial stages of heart development and its differential accumulation throughout development. PMID:3514633

  2. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC I molecules

    PubMed Central

    Cruz, Freidrich M.; Colbert, Jeff D.; Merino, Elena; Kriegsman, Barry A.; Rock, Kenneth L.

    2017-01-01

    To monitor the health of cells, the immune system tasks antigen presenting cells with gathering antigens from other cells and reporting them to CD8 T cells in the form of peptides bound to MHC I molecules. Most cells would be unable to perform this function because they use their MHC I molecules to exclusively present peptides derived from the cell’s own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC I through a process called cross-presentation (XPT). How this important task is accomplished, its role in health and disease and its potential for exploitation are the subject of this review. PMID:28125356

  3. Genome-Wide Patterns of Polymorphism in an Inbred Line of the African Malaria Mosquito Anopheles gambiae

    PubMed Central

    Turissini, David A.; Gamez, Stephanie; White, Bradley J.

    2014-01-01

    Anopheles gambiae is a major mosquito vector of malaria in Africa. Although increased use of insecticide-based vector control tools has decreased malaria transmission, elimination is likely to require novel genetic control strategies. It can be argued that the absence of an A. gambiae inbred line has slowed progress toward genetic vector control. In order to empower genetic studies and enable precise and reproducible experimentation, we set out to create an inbred line of this species. We found that amenability to inbreeding varied between populations of A. gambiae. After full-sib inbreeding for ten generations, we genotyped 112 individuals—56 saved prior to inbreeding and 56 collected after inbreeding—at a genome-wide panel of single nucleotide polymorphisms (SNPs). Although inbreeding dramatically reduced diversity across much of the genome, we discovered numerous, discrete genomic blocks that maintained high heterozygosity. For one large genomic region, we were able to definitively show that high diversity is due to the persistent polymorphism of a chromosomal inversion. Inbred lines in other eukaryotes often exhibit a qualitatively similar retention of polymorphism when typed at a small number of markers. Our whole-genome SNP data provide the first strong, empirical evidence supporting associative overdominance as the mechanism maintaining higher than expected diversity in inbred lines. Although creation of A. gambiae lines devoid of nearly all polymorphism may not be feasible, our results provide critical insights into how more fully isogenic lines can be created. PMID:25377942

  4. Hydrophobicity as a driver of MHC class I antigen processing

    PubMed Central

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-01-01

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design. PMID:21378750

  5. Hydrophobicity as a driver of MHC class I antigen processing.

    PubMed

    Huang, Lan; Kuhls, Matthew C; Eisenlohr, Laurence C

    2011-04-20

    The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.

  6. Characteristics of MHC class I genes in house sparrows Passer domesticus as revealed by long cDNA transcripts and amplicon sequencing.

    PubMed

    Karlsson, Maria; Westerdahl, Helena

    2013-08-01

    In birds the major histocompatibility complex (MHC) organization differs both among and within orders; chickens Gallus gallus of the order Galliformes have a simple arrangement, while many songbirds of the order Passeriformes have a more complex arrangement with larger numbers of MHC class I and II genes. Chicken MHC genes are found at two independent loci, classical MHC-B and non-classical MHC-Y, whereas non-classical MHC genes are yet to be verified in passerines. Here we characterize MHC class I transcripts (α1 to α3 domain) and perform amplicon sequencing using a next-generation sequencing technique on exon 3 from house sparrow Passer domesticus (a passerine) families. Then we use phylogenetic, selection, and segregation analyses to gain a better understanding of the MHC class I organization. Trees based on the α1 and α2 domain revealed a distinct cluster with short terminal branches for transcripts with a 6-bp deletion. Interestingly, this cluster was not seen in the tree based on the α3 domain. 21 exon 3 sequences were verified in a single individual and the average numbers within an individual were nine and five for sequences with and without a 6-bp deletion, respectively. All individuals had exon 3 sequences with and without a 6-bp deletion. The sequences with a 6-bp deletion have many characteristics in common with non-classical MHC, e.g., highly conserved amino acid positions were substituted compared with the other alleles, low nucleotide diversity and just a single site was subject to positive selection. However, these alleles also have characteristics that suggest they could be classical, e.g., complete linkage and absence of a distinct cluster in a tree based on the α3 domain. Thus, we cannot determine for certain whether or not the alleles with a 6-bp deletion are non-classical based on our present data. Further analyses on segregation patterns of these alleles in combination with dating the 6-bp deletion through MHC characterization across the

  7. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  8. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE PAGES

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.; ...

    2016-11-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  9. Two traditional maize inbred lines of contrasting technological abilities are discriminated by the seed flour proteome.

    PubMed

    Pinheiro, Carla; Sergeant, Kjell; Machado, Cátia M; Renaut, Jenny; Ricardo, Cândido P

    2013-07-05

    The seed proteome of two traditional maize inbred lines (pb269 and pb369) contrasting in grain hardness and in preferable use for bread-making was evaluated. The pb269 seeds, of flint type (i.e., hard endosperm), are preferably used by manufacturers, while pb369 (dent, soft endosperm) is rejected. The hypothesis that the content and relative amounts of specific proteins in the maize flour are relevant for such discrimination of the inbred lines was tested. The flour proteins were sequentially extracted following the Osborne fractionation (selective solubilization), and the four Osborne fractions were submitted to two-dimensional electrophoresis (2DE). The total amount of protein extracted from the seeds was not significantly different, but pb369 flour exhibited significantly higher proportions of salt-extracted proteins (globulins) and ethanol-extracted proteins (alcohol-soluble prolamins). The proteome analysis allowed discrimination between the two inbred lines, with pb269 demonstrating higher heterogeneity than pb369. From the 967 spots (358 common to both lines, 208 specific to pb269, and 401 specific to pb369), 588 were submitted to mass spectrometry (MS). Through the combined use of trypsin and chymotrypsin it was possible to identify proteins in 436 spots. The functional categorization in combination with multivariate analysis highlighted the most discriminant biological processes (carbohydrate metabolic process, response to stress, chitin catabolic process, oxidation-reduction process) and molecular function (nutrient reservoir activity). The inbred lines exhibited quantitative and qualitative differences in these categories. Differences were also revealed in the amounts, proportions, and distribution of several groups of storage proteins, which can have an impact on the organization of the protein body and endosperm hardness. For some proteins (granule-bound starch synthase-1, cyclophilin, zeamatin), a change in the protein solubility rather than in the

  10. Design of Peptide Immunotherapies for MHC Class-II-Associated Autoimmune Disorders

    PubMed Central

    2013-01-01

    Autoimmune disorders, that occur when autoreactive immune cells are induced to activate their responses against self-tissues, affect one percent of the world population and represent one of the top 10 leading causes of death. The major histocompatibility complex (MHC) is a principal susceptibility locus for many human autoimmune diseases, in which self-tissue antigens providing targets for pathogenic lymphocytes are bound to HLA molecules encoded by disease-associated alleles. In spite of the attempts to design strategies for inhibition of antigen presentation targeting the MHC-peptide/TCR complex via generation of blocking antibodies, altered peptide ligands (APL), or inhibitors of costimulatory molecules, potent therapies with minimal side effects have yet to be developed. Copaxone (glatiramer acetate, GA) is a random synthetic amino acid copolymer that reduces the relapse rate by about 30% in relapsing-remitting multiple sclerosis (MS) patients. Based on the elucidated binding motifs of Copaxone and of the anchor residues of the immunogenic myelin basic protein (MBP) peptide to HLA-DR molecules, novel copolymers have been designed and proved to be more effective in suppressing MS-like disease in mice. In this report, we describe the rationale for design of second-generation synthetic random copolymers as candidate drugs for a number of MHC class-II-associated autoimmune disorders. PMID:24324511

  11. MHC class II genes in European wolves: a comparison with dogs.

    PubMed

    Seddon, Jennifer M; Ellegren, Hans

    2002-10-01

    The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.

  12. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize[OPEN

    PubMed Central

    Soifer, Ilya; Barad, Omer; Shem-Tov, Doron; Baruch, Kobi; Lu, Fei; Hernandez, Alvaro G.; Wright, Chris L.; Koehler, Klaus; Buell, C. Robin; de Leon, Natalia

    2016-01-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools. PMID:27803309

  13. Non-weight bearing-induced muscle weakness: the role of myosin quantity and quality in MHC type II fibers.

    PubMed

    Kim, Jong-Hee; Thompson, LaDora V

    2014-07-15

    We tested the hypothesis that non-weight bearing-induced muscle weakness (i.e., specific force) results from decreases in myosin protein quantity (i.e., myosin content per half-sarcomere and the ratio of myosin to actin) and quality (i.e., force per half-sarcomere and population of myosin heads in the strong-binding state during muscle contraction) in single myosin heavy chain (MHC) type II fibers. Fisher-344 rats were assigned to weight-bearing control (Con) or non-weight bearing (NWB). The NWB rats were hindlimb unloaded for 2 wk. Diameter, force, and MHC content were determined in permeabilized single fibers from the semimembranosus muscle. MHC isoform and the ratio of MHC to actin in each fiber were determined by gel electrophoresis and silver staining techniques. The structural distribution of myosin from spin-labeled fiber bundles during maximal isometric contraction was evaluated using electron paramagnetic resonance spectroscopy. Specific force (peak force per cross-sectional area) in MHC type IIB and IIXB fibers from NWB was significantly reduced by 38% and 18%, respectively. MHC content per half-sarcomere was significantly reduced by 21%. Two weeks of hindlimb unloading resulted in a reduced force per half-sarcomere of 52% and fraction of myosin strong-binding during contraction of 34%. The results suggest that reduced myosin and actin content (quantity) and myosin quality concomitantly contribute to non-weight bearing-related muscle weakness. Copyright © 2014 the American Physiological Society.

  14. Strong genetic influences on measures of behavioral-regulation among inbred rat strains

    PubMed Central

    Richards, Jerry B.; Lloyd, David R.; Kuehlewind, Brandon; Militello, Leah; Paredez, Marita; Solberg -Woods, Leah; Palmer, Abraham A.

    2013-01-01

    A fundamental challenge for any complex nervous system is to regulate behavior in response to environmental challenges. Three measures of behavioral regulation were tested in a panel of 8 inbred rat strains. These measures were; 1) sensation seeking as assessed by locomotor response to novelty and the sensory reinforcing effects of light onset, 2) attention and impulsivity, as measured by a choice reaction time task, and 3) impulsivity as measured by a delay discounting task. Deficient behavioral regulation has been linked to a number of psychopathologies, including ADHD, Schizophrenia, Autism, drug abuse and eating disorders. Eight inbred rat strains (August Copenhagen Irish, Brown Norway, Buffalo, Fischer 344, Wistar Kyoto, Spontaneous Hypertensive Rat, Lewis, Dahl Salt Sensitive) were tested. With n=9 for each strain, we observed robust strain differences for all tasks; heritability was estimated between 0.43 and 0.66. Performance of the 8 inbred rat strains on the choice reaction time task was compared to the performance of out bred Sprague Dawley (n=28) and Heterogeneous strain rats (n=48). The results indicate a strong genetic influence on complex tasks related to behavioral regulation and indicate that some of measures tap common genetically-driven processes. Furthermore, our results establish the potential for future studies aimed at identifying specific alleles that influence variability for these traits. Identification of such alleles could contribute to our understanding of the molecular genetic basis of behavioral regulation, which is of fundamental importance and likely contributes to multiple psychiatric disorders. PMID:23710681

  15. The major histocompatibility complex and mate choice: inbreeding avoidance and selection of good genes.

    PubMed

    Grob, B; Knapp, L A; Martin, R D; Anzenberger, G

    1998-01-01

    It has been known for decades that MHC genes play a critical role in the cellular immune response, but only recent research has provided a better understanding of how these molecules might affect mate choice. Original studies in inbred mouse strains revealed that mate choice was influenced by MHC dissimilarity. Detection of MHC differences between individuals in these experiments was related to olfactory cues, primarily in urine. Recent studies in humans have shown an analogous picture of MHC-based mating. Taken together, these findings could support either the hypothesis of MHC-based inbreeding avoidance or the hypothesis of MHC-related avoidance of reproductive failure, since studies in mice, humans and pigtailed macaques have shown that parental sharing of certain MHC alleles correlates with frequent spontaneous abortion or prolonged intergestational intervals. Data from many mammalian species clearly demonstrate that reproductive failure occurs as a result of inbreeding. Therefore, MHC similarity might serve as an indicator of genome-wide relatedness. In contrast, increased fitness due to the presence of individual MHC alleles in a pathogenic environment could explain MHC-based selection of currently good genes. Specifically, the physical condition of long-living animals depends on the ability to respond to immunological challenge and an individual's MHC alleles determine the response, since, unlike the T cell receptors, MHC alleles are not somatically recombined. Therefore, sexual selection of condition-dependent traits during mate choice could be used to select successful MHC alleles, thereby providing offspring with a higher relative immunity in their pathogenic environment.

  16. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, Lizabeth; Aldridge, B.M.; Miles, A. Keith; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide‐binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.

  17. Psychometric evaluation of the Mental Health Continuum-Short Form (MHC-SF) in Chinese adolescents - a methodological study.

    PubMed

    Guo, Cheng; Tomson, Göran; Guo, Jizhi; Li, Xiangyun; Keller, Christina; Söderqvist, Fredrik

    2015-12-10

    In epidemiological surveillance of mental health there is good reason to also include scales that measure the presence of well-being rather than merely symptoms of ill health. The Mental Health Continuum-Short Form (MHC-SF) is a self-reported scale to measure emotional, psychological and social well-being and conduct categorical diagnosis of positive mental health. This particular instrument includes the three core components of the World Health Organization's definition of mental health and had previously not been psychometrically evaluated on adolescents in China. In total 5,399 students (51.1% female) from schools in the urban areas of Weifang in China were included in the study (mean age = 15.13, SD = 1.56). Participants completed a comprehensive questionnaire with several scales, among them the MHC-SF. Statistical analyses to evaluate reliability, structural validity, measurement invariance, presence of floor and ceiling effects and to some extent external validity of the MHC-SF were carried out. The Cronbach's α coefficients for sub-scales as well as the total scale were all above 0.80 indicating good reliability. Confirmative factor analysis confirmed the three-dimensional structure of the Chinese version of MHC-SF and supported the configural and metric invariance across gender and age. Noteworthy ceiling effects were observed for single items and sub-scales although not for the total scale. More importantly, observed floor effects were negligible. The stronger correlation found between MHC-SF and Minneapolis-Manchester Quality of Life Instrument (as measure of positive mental health) than between MHC-SF and Hospital Anxiety Depression Scale (as measure of mental illness and distress) yielded support for external validity. In conclusion, the main findings of this study are in line with studies from other countries that evaluated the psychometric properties of the MHC-SF and show that this instrument, that includes the three core components of the

  18. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    PubMed Central

    Chakrabarti, Saikat; Roy, Syamal

    2016-01-01

    Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of

  19. MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants.

    PubMed

    Houston, Evan G; Fink, Pamela J

    2009-12-01

    After developing in the thymus, recent thymic emigrants (RTEs) enter the lymphoid periphery and undergo a maturation process as they transition into the mature naive (MN) T cell compartment. This maturation presumably shapes RTEs into a pool of T cells best fit to function robustly in the periphery without causing autoimmunity; however, the mechanism and consequences of this maturation process remain unknown. Using a transgenic mouse system that specifically labels RTEs, we tested the influence of MHC molecules, key drivers of intrathymic T cell selection and naive peripheral T cell homeostasis, in shaping the RTE pool in the lymphoid periphery. We found that the TCRs expressed by RTEs are skewed to longer CDR3 regions compared with those of MN T cells, suggesting that MHC does streamline the TCR repertoire of T cells as they transition from the RTE to the MN T cell stage. This conclusion is borne out in studies in which the representation of individual TCRs was followed as a function of time since thymic egress. Surprisingly, we found that MHC is dispensable for the phenotypic and functional maturation of RTEs.

  20. MHC class I D(k) expression in hematopoietic and nonhematopoietic cells confers natural killer cell resistance to murine cytomegalovirus.

    PubMed

    Xie, Xuefang; Stadnisky, Michael D; Coats, Ebony R; Ahmed Rahim, Mir Munir; Lundgren, Alyssa; Xu, Wenhao; Makrigiannis, Andrew P; Brown, Michael G

    2010-05-11

    NK cell-mediated murine cytomegalovirus (MCMV) resistance (Cmv(r)) is under H-2(k) control in MA/My mice, but the underlying gene(s) is unclear. Prior genetic analysis mapped Cmv(r) to the MHC class I (MHC-I) D(k) gene interval. Because NK cell receptors are licensed by and responsive to MHC class I molecules, D(k) itself is a candidate gene. A 10-kb genomic D(k) fragment was subcloned and microinjected into MCMV-susceptible (Cmv(s)) (MA/My.L-H2(b) x C57L)F(1) or (B6 x DBA/2)F(2) embryos. Transgenic founders, which are competent for D(k) expression and germline transgene transmission, were identified and further backcrossed to MA/My.L-H2(b) or C57L mice. Remarkably, D(k) expression delivered NK-mediated resistance in either genetic background. Further, NK cells with cognate inhibitory Ly49G receptors for self-MHC-I D(k) were licensed and critical in protection against MCMV infection. In radiation bone marrow chimeras, NK resistance was significantly diminished when MHC-I D(k) expression was restricted to only hematopoietic or nonhematopoietic cells. Thus, MHC-I D(k) is the H-2(k)-linked Cmv(r) locus; these findings suggest a role for NK cell interaction with D(k)-bearing hematopoietic and nonhematopoietic cells to shape NK-mediated virus immunity.

  1. Reprogramming of the MHC-I and its regulation by NFκB in human-induced pluripotent stem cells.

    PubMed

    Pick, Marjorie; Ronen, Daniel; Yanuka, Ofra; Benvenisty, Nissim

    2012-12-01

    The immunogenicity of human pluripotent stem cells plays a major role in their potential use in the clinic. We show that, during their reprogramming, human-induced pluripotent stem (iPS) cells downregulate expression of human leukocyte antigen (HLA)-A/B/C and β2 microglobulin (β2M), the two components of major histocompatibility complex-I (MHC-I). MHC-I expression in iPS cells can be restored by differentiation or treatment with interferon-gamma (IFNγ). To analyze the molecular mechanisms that regulate the expression of the MHC-I molecules in human iPS cells, we searched for correlation between the expression of HLA-A/B/C and β2M and the expression of transcription factors that bind to the promoter of these genes. Our results show a significant positive correlation between MHC-I expression and expression of the nuclear factors, nuclear factor kappa B 1 (NFκB1) and RelA, at the levels of RNA, protein and was confirmed by chromatin binding. Concordantly, we detected robust levels of NFκB1 and RelA proteins in the nucleus of somatic cells but not in the iPS cell derived from them. Overexpression of NFκB1 and RelA in undifferentiated pluripotent stem cells led to induction in expression of MHC-I, whereas silencing NFκB1 and RelA by small hairpin RNA decreased the expression of β2M after IFNγ treatment. Our data point to the critical role of NFκB proteins in regulating the MHC-I expression in human pluripotent stem cells. Copyright © 2012 AlphaMed Press.

  2. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.

    PubMed

    Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi

    2015-12-01

    The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    PubMed Central

    2012-01-01

    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285

  4. Olfactory cues associated with the major histocompatibility complex.

    PubMed

    Eggert, F; Müller-Ruchholtz, W; Ferstl, R

    Besides its immunological function of self/non-self discrimination the major histocompatibility complex (MHC) has been recognized as a possible source of individual specific body odors. Dating back to speculations on the role of the extraordinary polymorphism of the MHC as background of an individual chemosensory identity and to early observations of MHC-dependent mate choice in inbred strains of mice, systematic experimental studies revealed a first evidence for H-2 related body odors in this species. Meanwhile a large number of animal studies with rodents and a series of field studies and experiments with humans have extended our knowledge of MHC-related odor signals and substantiated the hypothesis of immunogenetic associated odor types. These results suggest that the most prominent feature of the MHC, its extraordinary genetic diversity, seems in part to be selectively maintained by behavioral mechanisms which operate in contemporary natural populations. The high degree of heterozygosity found in natural populations of most species seems to be promoted by non-disease-based selection such as mating preferences and selective block of pregnancy.

  5. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines

    USDA-ARS?s Scientific Manuscript database

    Natural variation provides a powerful opportunity to study the genetic basis of biological traits. Brachypodium distachyon is a broadly distributed diploid model grass with a small genome and a large collection of diverse inbred lines. As a step towards understanding the genetic basis of the natura...

  6. Genetic mapping with an inbred line-derived F2 population in potato

    USDA-ARS?s Scientific Manuscript database

    Potato (Solanum tuberosum L.) is an important global food crop, for which tetrasomic inheritance and self-incompatibility have limited both genetic discovery and breeding gains. We report here on the creation of the first diploid inbred line-derived F2 population in potato, and demonstrate its utili...

  7. Signature Patterns of MHC Diversity in Three Gombe Communities of Wild Chimpanzees Reflect Fitness in Reproduction and Immune Defense against SIVcpz.

    PubMed

    Wroblewski, Emily E; Norman, Paul J; Guethlein, Lisbeth A; Rudicell, Rebecca S; Ramirez, Miguel A; Li, Yingying; Hahn, Beatrice H; Pusey, Anne E; Parham, Peter

    2015-05-01

    Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe's three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA

  8. Adult plant leaf rust resistance derived from the soft red winter wheat cultivar Caldwell maps to chromosome 3BS

    USDA-ARS?s Scientific Manuscript database

    'Caldwell' is a U.S. soft red winter wheat that has partial, adult plant resistance to the leaf rust pathogen Puccinia triticina. A line of 'Thatcher*2/Caldwell' with adult plant resistance derived from Caldwell was crossed with 'Thatcher' to develop a population of recombinant inbred lines (RILs). ...

  9. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status

    PubMed Central

    Zarling, Angela L.; Willcox, Carrie R.; Shabanowitz, Jeffrey; Cummings, Kara L.; Hunt, Donald F.; Cobbold, Mark; Engelhard, Victor H.; Willcox, Benjamin E.

    2017-01-01

    Dysregulated post-translational modification provides a source of altered self-antigens that can stimulate immune responses in autoimmunity, inflammation, and cancer. In recent years, phosphorylated peptides have emerged as a group of tumour-associated antigens presented by MHC molecules and recognised by T cells, and represent promising candidates for cancer immunotherapy. However, the impact of phosphorylation on the antigenic identity of phosphopeptide epitopes is unclear. Here we examined this by determining structures of MHC-bound phosphopeptides bearing canonical position 4-phosphorylations in the presence and absence of their phosphate moiety, and examining phosphopeptide recognition by the T cell receptor (TCR). Strikingly, two peptides exhibited major conformational changes upon phosphorylation, involving a similar molecular mechanism, which focussed changes on the central peptide region most critical for T cell recognition. In contrast, a third epitope displayed little conformational alteration upon phosphorylation. In addition, binding studies demonstrated TCR interaction with an MHC-bound phosphopeptide was both epitope-specific and absolutely dependent upon phosphorylation status. These results highlight the critical influence of phosphorylation on the antigenic identity of naturally processed class I MHC epitopes. In doing so they provide a molecular framework for understanding phosphopeptide-specific immune responses, and have implications for the development of phosphopeptide antigen-specific cancer immunotherapy approaches. PMID:28903331

  10. Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides

    PubMed Central

    Granados, Diana Paola; Sriranganadane, Dev; Daouda, Tariq; Zieger, Antoine; Laumont, Céline M.; Caron-Lizotte, Olivier; Boucher, Geneviève; Hardy, Marie-Pierre; Gendron, Patrick; Côté, Caroline; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude

    2014-01-01

    For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). PMID:24714562

  11. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    PubMed Central

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  12. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    PubMed

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  13. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus)

    PubMed Central

    Ploshnitsa, Anna I; Goltsman, Mikhail E; Macdonald, David W; Kennedy, Lorna J; Sommer, Simone

    2012-01-01

    Populations of Arctic foxes (Vulpes lagopus) have been isolated on two of the Commander Islands (Bering and Mednyi) from the circumpolar distributed mainland population since the Pleistocene. In 1970–1980, an epizootic outbreak of mange caused a severe population decline on Mednyi Island. Genes of the major histocompatibility complex (MHC) play a primary role in infectious disease resistance. The main objectives of our study were to compare contemporary variation of MHC class II in mainland and island Arctic foxes, and to document the effects of the isolation and the recent bottleneck on MHC polymorphism by analyzing samples from historical and contemporary Arctic foxes. In 184 individuals, we found 25 unique MHC class II DRB and DQB alleles, and identified evidence of balancing selection maintaining allelic lineages over time at both loci. Twenty different MHC alleles were observed in mainland foxes and eight in Bering Island foxes. The historical Mednyi population contained five alleles and all contemporary individuals were monomorphic at both DRB and DQB. Our data indicate that despite positive and diversifying selection leading to elevated rates of amino acid replacement in functionally important antigen-binding sites, below a certain population size, balancing selection may not be strong enough to maintain genetic diversity in functionally important genes. This may have important fitness consequences and might explain the high pathogen susceptibility in some island populations. This is the first study that compares MHC diversity before and after a bottleneck in a wild canid population using DNA from museum samples. PMID:22408734

  14. Brief Report: Self-Defining and Everyday Autobiographical Memories in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Crane, Laura; Goddard, Lorna; Pring, Linda

    2010-01-01

    Autobiographical memory impairments in autism spectrum disorders (ASD) have been attributed to a failure in using the self as an effective memory organisational system. To explore this hypothesis, we compared self-defining and everyday memories in adults with and without ASD. Results demonstrated that both groups were able to distinguish between…

  15. A caspase-2-RFXANK interaction and its implication for MHC class II expression.

    PubMed

    Forsberg, Jeremy; Li, Xinge; Akpinar, Birce; Salvatori, Roger; Ott, Martin; Zhivotovsky, Boris; Olsson, Magnus

    2018-01-23

    Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2 -/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.

  16. Identification of resistance to Maize rayado fino virus in maize inbred lines

    USDA-ARS?s Scientific Manuscript database

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  17. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE PAGES

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; ...

    2016-05-26

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing

  18. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas

    Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing

  19. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    PubMed

    Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro

    2006-06-09

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.

  20. Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion

    PubMed Central

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199

  1. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    PubMed

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein

    PubMed Central

    1992-01-01

    The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-specific neutralizing epitope 71VAGLEK76. Mice immunized with peptide A8-VDI produced high-titered polyclonal IgG antibodies which recognized the VAGLEK-neutralizing epitope. Peptide A8-VDI primed A/J mice to produce high-titered serum-neutralizing antibodies in response to a secondary immunization with intact chlamydial elementary bodies (EBs). Peptide A8-VDI, but not peptide VDI alone, was immunogenic in six different inbred strains of mice disparate at H-2, indicating that the Th cell epitope(s) contained in the A8 portion of the chimera was recognized in the context of multiple major histocompatibility complex (MHC) haplotypes. An unexpected finding of this work was that different inbred strains of mice immunized with the chimeric peptide produced antibodies of differing fine specificities to the VDI portion of the chimera. Some mouse strains produced anti-VDI antibodies that did not recognize the VAGLEK-neutralizing epitope. The ability of mice to respond to the VAGLEK-neutralizing site was not dependent on MHC haplotype since mouse strains of the same H-2 haplotype produced anti-VDI antibodies of differing fine specificity. PMID:1370528

  3. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  4. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin.

    PubMed

    Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E

    2008-08-01

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.

  5. Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class I MHC ligand generation

    PubMed Central

    Groll, Michael; Larionov, Oleg V.; Huber, Robert; de Meijere, Armin

    2006-01-01

    Most class I MHC ligands are generated from the vast majority of cellular proteins by proteolysis within the ubiquitin–proteasome pathway and are presented on the cell surface by MHC class I molecules. Here, we present the crystallographic analysis of yeast 20S proteasome in complex with the inhibitor homobelactosin C. The structure reveals a unique inhibitor-binding mode and provides information about the composition of proteasomal primed substrate-binding sites. IFN-γ inducible substitution of proteasomal constitutive subunits by immunosubunits modulates characteristics of generated peptides, thus producing fragments with higher preference for binding to MHC class I molecules. The structural data for the proteasome:homobelactosin C complex provide an explanation for involvement of immunosubunits in antigen generation and open perspectives for rational design of ligands, inhibiting exclusively constitutive proteasomes or immunoproteasomes. PMID:16537370

  6. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.

    PubMed

    Raji, Jennifer A; Frame, Bronwyn; Little, Daniel; Santoso, Tri Joko; Wang, Kan

    2018-01-01

    Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T 0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.

  7. MHC2TA mRNA levels and human herpesvirus 6 in multiple sclerosis patients treated with interferon beta along two-year follow-up

    PubMed Central

    2012-01-01

    Background In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients. Methods Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay. Results We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs. Conclusions MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment. PMID:23009575

  8. Myelin-reactive “type B” T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice

    PubMed Central

    Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991

  9. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.

    PubMed

    Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-10-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index <25 kg/m 2 ) and 3 ideal health factors (untreated blood pressure <120/<80 mm Hg, untreated total cholesterol <200 mg/dL, and fasting blood glucose <100 mg/dL). In addition, in relation to maintenance of cognitive health, we recommend following previously published guidance from the AHA/American Stroke Association, Institute of Medicine, and Alzheimer's Association that incorporates control of cardiovascular risks and suggest social engagement and other related strategies. We define optimal brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to

  10. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing

    USGS Publications Warehouse

    Mulder, Kevin P.; Cortazar-Chinarro, Maria; Harris, D. James; Crottini, Angelica; Grant, Evan H. Campbell; Fleischer, Robert C.; Savage, Anna E.

    2017-01-01

    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.

  11. Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    PubMed Central

    Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.

    2008-01-01

    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944

  12. Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer

    PubMed Central

    Siddle, Hannah V.; Kreiss, Alexandre; Tovar, Cesar; Yuen, Chun Kit; Cheng, Yuanyuan; Belov, Katherine; Swift, Kate; Pearse, Anne-Maree; Hamede, Rodrigo; Jones, Menna E.; Skjødt, Karsten; Woods, Gregory M.; Kaufman, Jim

    2013-01-01

    Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host–immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as β2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD. PMID:23479617

  13. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  14. Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers

    PubMed Central

    Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810

  15. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations.

    PubMed

    Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B

    2015-10-01

    Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less

  17. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    PubMed Central

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  18. IFNγ producing CD8+ T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas

    PubMed Central

    Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2015-01-01

    Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8+ T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8+ T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8+ T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8+ T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8+ T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients. PMID:25949872

  19. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds in the fruits of two diploid strawberries (Fragaria vesca f. semperflorens) inbred lines-Ruegen F7-4 (a red fruited genotype) and YW5AF7 (a yellow fruited genotype) were characterized using ultra high-performance liquid chromatography in tandem with high resolution mass spectromet...

  20. High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis

    PubMed Central

    Goyette, Philippe; Boucher, Gabrielle; Mallon, Dermot; Ellinghaus, Eva; Jostins, Luke; Huang, Hailiang; Ripke, Stephan; Gusareva, Elena S; Annese, Vito; Hauser, Stephen L; Oksenberg, Jorge R; Thomsen, Ingo; Leslie, Stephen; Daly, Mark J; Van Steen, Kristel; Duerr, Richard H; Barrett, Jeffrey C; McGovern, Dermot PB; Schumm, L Philip; Traherne, James A; Carrington, Mary N; Kosmoliaptsis, Vasilis; Karlsen, Tom H; Franke, Andre; Rioux, John D

    2014-01-01

    Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn’s disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical HLA molecules1. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but lacked the statistical power to define the architecture of association and causal alleles2,3. To address this, we performed high-density SNP typing of the MHC in >32,000 patients with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn’s disease and ulcerative colitis. Significant differences were observed between these diseases, including a predominant role of class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response to the colonic environment in the pathogenesis of IBD. PMID:25559196

  1. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.

    PubMed

    Goyette, Philippe; Boucher, Gabrielle; Mallon, Dermot; Ellinghaus, Eva; Jostins, Luke; Huang, Hailiang; Ripke, Stephan; Gusareva, Elena S; Annese, Vito; Hauser, Stephen L; Oksenberg, Jorge R; Thomsen, Ingo; Leslie, Stephen; Daly, Mark J; Van Steen, Kristel; Duerr, Richard H; Barrett, Jeffrey C; McGovern, Dermot P B; Schumm, L Philip; Traherne, James A; Carrington, Mary N; Kosmoliaptsis, Vasilis; Karlsen, Tom H; Franke, Andre; Rioux, John D

    2015-02-01

    Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.

  2. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    PubMed

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    PubMed

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  4. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn

    PubMed Central

    Sun, Jianghao; Liu, Xianjin; Yang, Tianbao; Slovin, Janet; Chen, Pei

    2013-01-01

    Phenolic compounds in the fruits of two diploid strawberries (Fragaria vesca f. semperflorens) inbred lines-Ruegen F7-4 (a red-fruited genotype) and YW5AF7 (a yellow-fruited genotype) were characterised using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry (UHPLC-HRMSn). The changes of anthocyanin composition during fruit development and between Ruegen F7-4 and YW5AF7 were studied. About 67 phenolic compounds, including taxifolin 3-O-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols were identified in these two inbred lines. Compared to the regular octoploid strawberry, unique phenolic compounds were found in F. vesca fruits, such as taxifolin 3-O-arabinoside (both) and peonidin 3-O-malonylglucoside (Ruegen F7-4). The results provide the basis for comparative analysis of polyphenolic compounds in yellow and red diploid strawberries, as well as with the cultivated octoploid strawberries. PMID:24176345

  5. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Youjun; Graduate School, Chinese Academy of Sciences, Beijing; Qi, Jianxun

    2006-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffractsmore » X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.« less

  6. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    PubMed Central

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  7. A Novel Therapeutic Vaccine for Metastatic Mammary Carcinoma: Focusing MHC/Peptide Complexes to Lipid Rafts

    DTIC Science & Technology

    2006-11-01

    reportable outcomes). Briefly, the T cell lymphoma EL4 and the immortalized fibroblast cell line DAP (both expressing ova) were used to measure...and Use Committee. Cells, transfections, and antibodies B16.BL6 8.2, A20, EL4 and EL4 /ova were cultured as described (20-22). NIH3T3 cells were...types can donate MHC class I molecules to DC. To determine if the levels of MHC class I on the donor cell affected the efficiency of transfer, EL4 /ova

  8. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    PubMed Central

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  9. Impaired capacity for upregulation of MHC class II in tumor-associated microglia.

    PubMed

    Schartner, Jill M; Hagar, Aaron R; Van Handel, Michelle; Zhang, Leying; Nadkarni, Nivedita; Badie, Behnam

    2005-09-01

    Immunotherapy for malignant gliomas is being studied as a possible adjunctive therapy for this highly fatal disease. Thus far, inadequate understanding of brain tumor immunology has hindered the design of such therapies. For instance, the role of microglia and macrophages, which comprise a significant proportion of tumor-infiltrating inflammatory cells, in the regulation of the local anti-tumor immune response is poorly understood. To study the response of microglia and macrophages to known activators in brain tumors, we injected CpG oligodeoxynucleotide (ODN), interferon-gamma (IFN-gamma), and IFN-gamma/LPS into normal and intracranial RG2 glioma-bearing rodents. Microglia/macrophage infiltration and their surface expression of MHC class II B7.1 and B7.2 was examined by flow cytometry. Each agent evaluated yielded a distinct microglia/macrophage response: CpG ODN was the most potent inducer of microglia/macrophage infiltration and B7.1 expression, while IFN-gamma resulted in the highest MHC-II expression in both normal and tumors. Regardless of the agent injected, however, MHC-II induction was significantly muted in tumor microglia/macrophage as compared with normal brain. These data suggest that microglia/macrophage responsiveness to activators can vary in brain tumors when compared with normal brain. Understanding the mechanism of these differences may be critical in the development of novel immunotherapies for malignant glioma. (c) 2005 Wiley-Liss, Inc.

  10. Genetic Analysis of Recombinant Inbred Lines For Sorghum Bicolor x Perennial S. Propinquum.

    USDA-ARS?s Scientific Manuscript database

    From an annual S. bicolor x perennial S. propinquum F2 population used in early-generation genetic analysis, we have produced and describe here a recombinant inbred line (RIL) population of 161 F5 genotypes that segregates for rhizomatousness and many other traits. The genetic map of the recombinant...

  11. Defining Success in Adult Basic Education Settings: Multiple Stakeholders, Multiple Perspectives

    PubMed Central

    Tighe, Elizabeth L.; Barnes, Adrienne E.; Connor, Carol M.; Steadman, Sharilyn C.

    2015-01-01

    This study employed quantitative and qualitative research approaches to investigate what constitutes “success” in Adult Basic Education (ABE) programs from the perspectives of multiple educational stakeholders: the state funding agency, the teachers, and the students. Success was defined in multiple ways. In the quantitative section of the study, we computed classroom value-added scores (used as a metric of the state’s definition of success) to identify more and less effective ABE classrooms in two Florida counties. In the qualitative section of the study, we observed and conducted interviews with teachers and students in the selected classrooms to investigate how these stakeholders defined success in ABE. Iterative consideration of the qualitative data revealed three principal markers of success: (a) instructional strategies and teacher-student interactions; (b) views on standardized testing; and (c) student motivational factors. In general, classrooms with higher value-added scores were characterized by multiple instructional approaches, positive and collaborative teacher-student interactions, and students engaging in goal setting and citing motivational factors such as family and personal fulfillment. The implications for ABE programs are discussed. PMID:26279590

  12. Effect of immunodepletion of MHC class II-positive cells from pancreatic islets on generation of cytotoxic T-lymphocytes in mixed islet-lymphocyte coculture.

    PubMed

    Stock, P G; Ascher, N L; Platt, J L; Kaufman, D B; Chen, S; Field, M J; Sutherland, D E

    1989-01-01

    In vitro manipulation of pancreatic islets to decrease islet immunogenicity before transplantation has largely been directed at eliminating the major histocompatibility complex (MHC) class II-positive passenger leukocytes from the islets. The mixed islet-lymphocyte coculture (MILC) system was used to quantitate the efficacy of immunodepletion of MHC class II-positive cells from pancreatic islets in terms of reducing immunogenicity. With these experiments we compared the in vitro immunogenicity of MHC class II-depleted islets with untreated islets. B10.BR (H-2k) islets were treated with anti-Iak alloserum followed by complement. This treatment successfully eliminated MHC class II-positive cells from the islets, as demonstrated by indirect immunofluorescence techniques. Depleted islets generated slightly lower amounts of allospecific cytotoxic T-lymphocyte (CTL) activity when exposed to C57BL/6 (H-2b) splenocytes in the MILC than untreated control islets. Although the amount of CTL generated by the depleted islets was slightly less than that generated by untreated islets, there was significant stimulation of CTL by the MHC class II-depleted islets. Therefore, the presence or absence of MHC class II cells within the islet is unlikely to be the decisive factor contributing to islet immunogenicity.

  13. Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice

    PubMed Central

    Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.

    2010-01-01

    Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone. PMID:20033775

  14. Note: implementation of a cold spot setup for controlled variation of vapor pressures and its application to an InBr containing discharge lamp.

    PubMed

    Briefi, S

    2013-02-01

    In order to allow for a systematic investigation of the plasma properties of discharges containing indium halides, which are proposed as an efficient alternative for mercury based low pressure discharge lamps, a controlled variation of the indium halide density is mandatory. This can be achieved by applying a newly designed setup in which a well-defined cold spot location is implemented and the cold spot temperature can be adjusted between 50 and 350 °C without influencing the gas temperature. The performance of the setup has been proved by comparing the calculated evaporated InBr density (using the vapor pressure curve) with the one measured via white light absorption spectroscopy.

  15. Acute Pharmacologic Degradation of a Stable Antigen Enhances Its Direct Presentation on MHC Class I Molecules

    PubMed Central

    Moser, Sarah C.; Voerman, Jane S. A.; Buckley, Dennis L.; Winter, Georg E.; Schliehe, Christopher

    2018-01-01

    Bifunctional degraders, also referred to as proteolysis-targeting chimeras (PROTACs), are a recently developed class of small molecules. They were designed to specifically target endogenous proteins for ubiquitin/proteasome-dependent degradation and to thereby interfere with pathological mechanisms of diseases, including cancer. In this study, we hypothesized that this process of acute pharmacologic protein degradation might increase the direct MHC class I presentation of degraded targets. By studying this question, we contribute to an ongoing discussion about the origin of peptides feeding the MHC class I presentation pathway. Two scenarios have been postulated: peptides can either be derived from homeostatic turnover of mature proteins and/or from short-lived defective ribosomal products (DRiPs), but currently, it is still unclear to what ratio and efficiency both pathways contribute to the overall MHC class I presentation. We therefore generated the intrinsically stable model antigen GFP-S8L-F12 that was susceptible to acute pharmacologic degradation via the previously described degradation tag (dTAG) system. Using different murine cell lines, we show here that the bifunctional molecule dTAG-7 induced rapid proteasome-dependent degradation of GFP-S8L-F12 and simultaneously increased its direct presentation on MHC class I molecules. Using the same model in a doxycycline-inducible setting, we could further show that stable, mature antigen was the major source of peptides presented, thereby excluding a dominant role of DRiPs in our system. This study is, to our knowledge, the first to investigate targeted pharmacologic protein degradation in the context of antigen presentation and our data point toward future applications by strategically combining therapies using bifunctional degraders with their stimulating effect on direct MHC class I presentation. PMID:29358938

  16. MHC region and risk of systemic lupus erythematosus in African American women.

    PubMed

    Ruiz-Narvaez, Edward A; Fraser, Patricia A; Palmer, Julie R; Cupples, L Adrienne; Reich, David; Wang, Ying A; Rioux, John D; Rosenberg, Lynn

    2011-12-01

    The major histocompatibility complex (MHC) on chromosome 6p21 is a key contributor to the genetic basis of systemic lupus erythematosus (SLE). Although SLE affects African Americans disproportionately compared to European Americans, there has been no comprehensive analysis of the MHC region in relationship to SLE in African Americans. We conducted a screening of the MHC region for 1,536 single nucleotide polymorphisms (SNPs) and the deletion of the C4A gene in a SLE case-control study (380 cases, 765 age-matched controls) nested within the prospective Black Women's Health Study. We also genotyped 1,509 ancestral informative markers throughout the genome to estimate European ancestry to control for population stratification due to population admixture. The most strongly associated SNP with SLE was the rs9271366 (odds ratio, OR = 1.70, p = 5.6 × 10(-5)) near the HLA-DRB1 gene. Conditional haplotype analysis revealed three other SNPs, rs204890 (OR = 1.86, p = 1.2 × 10(-4)), rs2071349 (OR = 1.53, p = 1.0 × 10(-3)), and rs2844580 (OR = 1.43, p = 1.3 × 10(-3)), to be associated with SLE independent of the rs9271366 SNP. In univariate analysis, the OR for the C4A deletion was 1.38, p = 0.075, but after simultaneous adjustment for the other four SNPs the odds ratio was 1.01, p = 0.98. A genotype score combining the four newly identified SNPs showed an additive risk according to the number of high-risk alleles (OR = 1.67 per high-risk allele, p < 0.0001). Our strongest signal, the rs9271366 SNP, was also associated with higher risk of SLE in a previous Chinese genome-wide association study (GWAS). In addition, two SNPs found in a GWAS of European ancestry women were confirmed in our study, indicating that African Americans share some genetic risk factors for SLE with European and Chinese subjects. In summary, we found four independent signals in the MHC region associated with risk of SLE in African American women.

  17. Haplotype specific alteration of diabetes MHC risk by olfactory receptor gene polymorphism.

    PubMed

    Jahromi, Mohamed M

    2012-12-01

    Evidence for genes associated with risk for Type 1 diabetes (T1D) in the extended region of the major histocompatibility complex (MHC) genes is accumulating. The aim of this study was to investigate the association pattern of the extended MHC region with T1D susceptibility to identify effects independent of well established DR/DQ genes. A total of 394 Europid families with T1D were genotyped for the single nucleotide polymorphism (SNP) in the olfactory receptor family 14, subfamily J, member 1 (OR14J1) gene, rs9257691, in the MHC telomeric region. The OR provides "an internal depiction of our external world" through the capture of odorant molecules in the main OR system by several large families of G-protein coupled receptors (GPCR). These receptors transduce and chemosignals into the central nervous system (CNS). This SNP was chosen to identify its association with T1D. Interestingly, OR14J1C allele was significantly associated with T1D that seems to go with DRB1*0401, Χ(2)=10.9, p=0.0003. However, by fixing both genes of DR*0401-DQB1*0302, high risk, the association of T1D with OR14J1C still existed, Χ(2)=7.4, p=0.005. The occurrence of association of the OR14J1C allele with T1D patients with DRB1*401/DQB1*0302 is an independent risk for T1D. As an accumulative report suggests the role of OR in the pathogenesis of diabetic microvascular and other diabetic complications, undoubtedly, this haplotype specific alteration of T1D risk is an independent risk for the disease and can address the promising MHC-linked gene other than DR/DQ. Moreover, there is nothing to hinder for that this might be a signal that identifies the role of OR gene in the pathogenesis of T1D in patients who are prone to diabetic complications. Copyright © 2012. Published by Elsevier B.V.

  18. The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype

    PubMed Central

    Solomon, Christopher; Southwood, Scott; Hoof, Ilka; Rudersdorf, Richard; Peters, Bjoern; Sidney, John; Pinilla, Clemencia; Marcondes, Maria Cecilia Garibaldi; Ling, Binhua; Marx, Preston; Sette, Alessandro

    2010-01-01

    Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0450-3) contains supplementary material, which is available to authorized users. PMID:20480161

  19. Preserved MHC-II antigen processing and presentation function in chronic HCV infection

    PubMed Central

    DH, Canaday; CJ, Burant; L, Jones; H, Aung; L, Woc-Colburn; DD, Anthony

    2010-01-01

    Individuals with chronic HCV infection have impaired response to vaccine, though the etiology remains to be elucidated. Dendritic cells (DC) and monocytes (MN) provide antigen uptake, processing, presentation, and costimulatory functions necessary to achieve optimal immune responses. The integrity of antigen processing and presentation function within these antigen presenting cells (APC) in the setting of HCV infection has been unclear. We used a novel T cell hybridoma system that specifically measures MHC-II antigen processing and presentation function of human APC. Results demonstrate MHC-II antigen processing and presentation function is preserved in both myeloid DC (mDC) and MN in the peripheral blood of chronically HCV-infected individuals, and indicates that an alteration in this function does not likely underlie the defective HCV-infected host response to vaccination. PMID:21055734

  20. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.

    PubMed

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten

    2015-11-01

    A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .

  1. Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases

    PubMed Central

    Hinks, A; Cobb, J; Ainsworth, H C; Marion, M C; Comeau, M E; Sudman, M; Han, B; Becker, M L; Bohnsack, J F; de Bakker, P I W; Haas, J P; Hazen, M; Lovell, D J; Nigrovic, P A; Nordal, E; Punnaro, M; Rosenberg, A M; Rygg, M; Wise, C A; Videm, V; Wedderburn, L R; Yarwood, A; Yeung, R S M; Prahalad, S; Langefeld, C D; Raychaudhuri, S; Thompson, S D; Thomson, W

    2017-01-01

    Objectives Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases, comprising seven categories. Genetic data could potentially be used to help redefine JIA categories and improve the current classification system. The human leucocyte antigen (HLA) region is strongly associated with JIA. Fine-mapping of the region was performed to look for similarities and differences in HLA associations between the JIA categories and define correspondences with adult inflammatory arthritides. Methods Dense genotype data from the HLA region, from the Immunochip array for 5043 JIA cases and 14 390 controls, were used to impute single-nucleotide polymorphisms, HLA classical alleles and amino acids. Bivariate analysis was performed to investigate genetic correlation between the JIA categories. Conditional analysis was used to identify additional effects within the region. Comparison of the findings with those in adult inflammatory arthritic diseases was performed. Results We identified category-specific associations and have demonstrated for the first time that rheumatoid factor (RF)-negative polyarticular JIA and oligoarticular JIA are genetically similar in their HLA associations. We also observe that each JIA category potentially has an adult counterpart. The RF-positive polyarthritis association at HLA-DRB1 amino acid at position 13 mirrors the association in adult seropositive rheumatoid arthritis (RA). Interestingly, the combined oligoarthritis and RF-negative polyarthritis dataset shares the same association with adult seronegative RA. Conclusions The findings suggest the value of using genetic data in helping to classify the categories of this heterogeneous disease. Mapping JIA categories to adult counterparts could enable shared knowledge of disease pathogenesis and aetiology and facilitate transition from paediatric to adult services. PMID:27998952

  2. Foreignness as a matter of degree: the relative immunogenicity of peptide/MHC ligands.

    PubMed

    van den Berg, Hugo A; Rand, David A

    2004-12-21

    The ability of T lymphocytes (T cells) to recognize and attack foreign invaders while leaving healthy cells unharmed is often analysed as a discrete self/non-self dichotomy, with each peptide/MHC ligand classified as either self or non-self. We argue that the ligand immunogenicity is more naturally treated as a continuous quantity, and show how to define and quantitate relative ligand immunogenicity. In our theory, self-tolerance is acquired through reduction of the relative immunogenicity of autoantigens, whereas xenoantigens, typically not presented during induction of deletional tolerance, retain a high degree of relative immunogenicity. Autoantigens that are not prominently presented in deletional tolerance likewise retain a high relative immunogenicity and remain essentially foreign. According to our analysis, any given autoantigen can attain a high level of relative immunogenicity, provided it is presented at sufficiently high levels. Our theory provides a quantitative tool to analyse the immunogenicity of tumour-associated neoantigens and the aetiology of autoimmune disease.

  3. Parasites and parallel divergence of the number of individual MHC alleles between sympatric three-spined stickleback Gasterosteus aculeatus morphs in Iceland.

    PubMed

    Natsopoulou, M E; Pálsson, S; Ólafsdóttir, G Á

    2012-10-01

    Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner.

    PubMed

    Yendrek, Craig R; Erice, Gorka; Montes, Christopher M; Tomaz, Tiago; Sorgini, Crystal A; Brown, Patrick J; McIntyre, Lauren M; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2017-12-01

    Exposure to elevated tropospheric ozone concentration ([O 3 ]) accelerates leaf senescence in many C 3 crops. However, the effects of elevated [O 3 ] on C 4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season-long exposure to elevated [O 3 ] (~100 nl L -1 ) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O 3 ] led to reductions in photosynthetic CO 2 assimilation of both inbred (-22%) and hybrid (-33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O 3 ], with some lines showing no change in photosynthesis at elevated [O 3 ]. Based on analysis of inbred line B73, the reduced CO 2 assimilation at elevated [O 3 ] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O 3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O 3 impacts crop performance. © 2017 John Wiley & Sons Ltd.

  5. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing.

    PubMed

    Mulder, Kevin P; Cortazar-Chinarro, Maria; Harris, D James; Crottini, Angelica; Campbell Grant, Evan H; Fleischer, Robert C; Savage, Anna E

    2017-11-01

    The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also

  7. IL-10-dependent down-regulation of MHC class II expression level on monocytes by peritoneal fluid from endometriosis patients.

    PubMed

    Lee, Kyu-Sup; Baek, Dae-Won; Kim, Ki-Hyung; Shin, Byoung-Sub; Lee, Dong-Hyung; Kim, Ja-Woong; Hong, Young-Seoub; Bae, Yoe-Sik; Kwak, Jong-Young

    2005-11-01

    Endometriosis is a gynecologic disorder characterized by the ectopic growth of misplaced endometrial cells. Moreover, immunological abnormalities of cell-mediated and humoral immunity may be associated with the pathogenesis of endometriosis. The effects of peritoneal fluid (PF) from endometriosis patients on the expression levels of MHC class II and costimulatory molecules on the cell surfaces of monocytes were investigated. Compared to the PF of controls, the addition of 10% PF (n=10) from patients with endometriosis to culture medium significantly reduced the percentage of MHC class II-positive cells in cultures of a THP-1, monocytic cell line at 48 h. The effect of endometriosis patient PF (EPF) was dose-dependent, and similar effect was observed in peripheral blood monocytes. An inverse correlation was found between MHC class II expression level and IL-10 concentration in EPF (r=-0.518; p=0.019) and in the supernatant of peripheral blood monocyte cultured in EPF (r=-0.459; p=0.042) (n=20). The expression levels of costimulatory molecules (CD80 and CD86), but not of CD54 and B7-H1, were down-regulated by EPF. The mRNA level of HLA-DR was unaffected by EPF but protein level was reduced by EPF. Neutralizing IL-10 antibody abrogated MHC class II down-regulation on monocytes, which had been induced by EPF. However, in a functional assay, monocytes treated with EPF failed to stimulate T cell in mixed leukocyte reaction, although T cell proliferation was increased with EPF-treated monocytes and Staphylococcus enterotoxin B. These results suggest that MHC class II expression level on monocytes is down-regulated by EPF, but the cell stimulatory ability of monocytes does not coincide with MHC class II expression level.

  8. Functional overload increases beta-MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site.

    PubMed

    Giger, Julia M; Haddad, Fadia; Qin, Anqi X; Baldwin, Kenneth M

    2002-03-01

    Functional overload (OL) of the rat plantaris muscle by the removal of synergistic muscles induces a shift in the myosin heavy chain (MHC) isoform expression profile from the fast isoforms toward the slow type I, or, beta-MHC isoform. Different length rat beta-MHC promoters were linked to a firefly luciferase reporter gene and injected in control and OL plantaris muscles. Reporter activities of -3,500, -914, -408, and -215 bp promoters increased in response to 1 wk of OL. The smallest -171 bp promoter was not responsive to OL. Mutation analyses of putative regulatory elements within the -171 and -408 bp region were performed. The -408 bp promoters containing mutations of the betae1, distal muscle CAT (MCAT; betae2), CACC, or A/T-rich (GATA), were still responsive to OL. Only the proximal MCAT (betae3) mutation abolished the OL response. Gel mobility shift assays revealed a significantly higher level of complex formation of the betae3 probe with nuclear protein from OL plantaris compared with control plantaris. These results suggest that the betae3 site functions as a putative OL-responsive element in the rat beta-MHC gene promoter.

  9. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth

    NASA Astrophysics Data System (ADS)

    Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-05-01

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.

  10. Up-regulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle

    PubMed Central

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T.; Li, Charles; Katz, Abram; Wedderburn, Lucy R.; Nagaraju, Kanneboyina; Lundberg, Ingrid E.; Westerblad, Håkan

    2008-01-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment; we used transgenic mice with inducible over-expression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared to control mice, however when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. PMID:19229963

  11. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    PubMed

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  12. Transpiration, and Nitrogen Uptake and Flow in Two Maize (Zea mays L.) Inbred Lines as Affected by Nitrogen Supply

    PubMed Central

    Niu, Junfang; Chen, Fanjun; Mi, Guohua; Li, Chunjian; Zhang, Fusuo

    2007-01-01

    Background and Aims The influence of two nitrogen (N) levels on growth, water relations, and N uptake and flow was investigated in two different inbred lines of maize (N-efficient Zi330 and N-inefficient Chen94-11) to analyse the differences in N uptake and cycling within a plant. Methods Xylem sap from different leaves of the inbred lines cultured in quartz sand was collected by application of pressure to the root system. Plant transpiration was measured on a daily basis by weighing five pots of each of the treatments. Key Results N-efficient Zi330 had a higher relative growth rate and water-use efficiency at both high (4 mm) and low (0·08 mm) N levels. At a high N level, the amount of N taken up was similar for the two inbred lines; the amount of N transported in the xylem and retranslocated in the phloem was slight greater in Chen94-11 than in Zi330. At a low N level, however, the total amount of N taken up, transported in the xylem and retranslocated in the phloem of Zi330 was 2·2, 2·7 and 2·7 times more, respectively, than that of Chen94-11. Independent of inbred line and N level, the amounts of N transported in the xylem and cycled in the phloem were far more than that taken up by roots at the same time. Low N supply shifted NO3−1 reduction towards the roots. The major nitrogenous compound in the xylem sap was NO3−1, when plants grew at the high N level, while amino acid-N was predominant when plants grew at the low N level. Conclusions The N-efficient maize inbred line Zi330 had a higher ability to take up N and cycle N within the plant than N-inefficient Chen94-11 when grown under N-deficiency. PMID:17088295

  13. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract.

    PubMed

    Sano, Yuto; Matsuda, Kazuya; Okamoto, Minoru; Takehana, Kazushige; Hirayama, Kazuko; Taniyama, Hiroyuki

    2016-02-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.

  14. Extensive variation at MHC DRB in the New Zealand sea lion (Phocarctos hookeri) provides evidence for balancing selection

    PubMed Central

    Osborne, A J; Zavodna, M; Chilvers, B L; Robertson, B C; Negro, S S; Kennedy, M A; Gemmell, N J

    2013-01-01

    Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds. PMID:23572124

  15. Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice.

    PubMed

    Toia, Alyssa R; Cuoco, Joshua A; Esposito, Anthony W; Ahsan, Jawad; Joshi, Alok; Herron, Bruce J; Torres, German; Bolivar, Valerie J; Ramos, Raddy L

    2017-01-18

    Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1 A/J /NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA).

    PubMed

    Ferreira-Duarte, Ana P; Pinheiro-Torres, Anelize S; Anhê, Gabriel F; Condino-Neto, Antônio; Antunes, Edson; DeSouza, Ivani A

    2017-01-01

    Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca 2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold ( P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.

  17. STRONG POSITIVE SELECTION AND HABITAT SPECIFIC AMINO ACID SUBSTITUTION PATTERNS IN A MHC FROM AN ESTUARINE FISH UNDER INTENSE POLLUTION STRESS

    EPA Science Inventory

    Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and power to detect disease association is low. A novel use of Mhc population surveys is that they map allelic substituti...

  18. Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5' deiodinase deficiency.

    PubMed

    Berry, M J; Grieco, D; Taylor, B A; Maia, A L; Kieffer, J D; Beamer, W; Glover, E; Poland, A; Larsen, P R

    1993-09-01

    Inbred mouse strains differ in their capacity to deiodinate iododioxin and iodothyronines, with strains segregating into high or low activity groups. Metabolism of iododioxin occurs via the type I iodothyronine 5'deiodinase (5'DI), one of two enzymes that metabolize thyroxine (T4) to 3,5,3'-triiodothyronine (T3). Recombinant inbred strains derived from crosses between high and low activity strains exhibit segregation characteristic of a single allele difference. Hepatic and renal 5'DI mRNA in a high (C57BL/6J) and low (C3H/HeJ) strain paralleled enzyme activity and concentration, in agreement with a recent report. 5'DI-deficient mice had twofold higher serum free T4 but normal free T3 and thyrotropin. Brown adipose tissue 5'DII was invariant between the two strains. Southern analyses using a 5'DI probe identified a restriction fragment length variant that segregated with 5'DI activity in 33 of 35 recombinant inbred strains derived from four different pairs of high and low activity parental strains. Recombination frequencies using previously mapped loci allowed assignment of the 5'DI gene to mouse chromosome 4 and identified its approximate chromosomal position. We propose the symbol Dio1 to denote the mouse 5'DI gene. Conserved linkage between this segment of mouse chromosome 4 and human HSA1p predicts this location for human Dio1.

  19. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan.

    PubMed

    Gasim, Seif; Hamad, Solafa A A; Abdelmula, Awadalla; Mohamed Ahmed, Isam A

    2015-11-01

    Faba beans (Vicia faba L.) represent an essential source of food protein for many people in Sudan, especially those who cannot afford to buy animal meat. The demand for faba bean seeds is greatly increased in recent years, and consequently its production area was extended southward where the climate is marginally suitable. Therefore, this study was aimed to evaluate seed yield and nutritional quality of five faba bean inbred lines grown under marginal environmental conditions of Sudan. The inbred lines have considerable (P ≤ 0.05) variability in yield and yield components, and seed chemical composition. The mean carbohydrate content was very high (501.1 g kg(-1)) and negatively correlated with seed yield, whereas the average protein content was relatively high (253.1 g kg(-1)) and positively correlated with seed yield. Globulin was the significant fraction (613.5 g kg(-1)protein) followed by albumin (200.2 g kg(-1)protein). Biplot analysis indicates that inbred lines Hudeiba/93-S5 and Ed-damar-S5 outscore other lines in terms of seed yield and nutritional quality. This study demonstrates that Hudeiba/93-S5 and Ed-damar-S5 are useful candidates in faba bean breeding program to terminate the protein deficiency malnutrition and provide healthy and nutritious meal for people living in subtropical areas.

  20. Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases.

    PubMed

    Hinks, A; Bowes, J; Cobb, J; Ainsworth, H C; Marion, M C; Comeau, M E; Sudman, M; Han, B; Becker, M L; Bohnsack, J F; de Bakker, P I W; Haas, J P; Hazen, M; Lovell, D J; Nigrovic, P A; Nordal, E; Punnaro, M; Rosenberg, A M; Rygg, M; Smith, S L; Wise, C A; Videm, V; Wedderburn, L R; Yarwood, A; Yeung, R S M; Prahalad, S; Langefeld, C D; Raychaudhuri, S; Thompson, S D; Thomson, W

    2017-04-01

    Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases, comprising seven categories. Genetic data could potentially be used to help redefine JIA categories and improve the current classification system. The human leucocyte antigen (HLA) region is strongly associated with JIA. Fine-mapping of the region was performed to look for similarities and differences in HLA associations between the JIA categories and define correspondences with adult inflammatory arthritides. Dense genotype data from the HLA region, from the Immunochip array for 5043 JIA cases and 14 390 controls, were used to impute single-nucleotide polymorphisms, HLA classical alleles and amino acids. Bivariate analysis was performed to investigate genetic correlation between the JIA categories. Conditional analysis was used to identify additional effects within the region. Comparison of the findings with those in adult inflammatory arthritic diseases was performed. We identified category-specific associations and have demonstrated for the first time that rheumatoid factor (RF)-negative polyarticular JIA and oligoarticular JIA are genetically similar in their HLA associations. We also observe that each JIA category potentially has an adult counterpart. The RF-positive polyarthritis association at HLA-DRB1 amino acid at position 13 mirrors the association in adult seropositive rheumatoid arthritis (RA). Interestingly, the combined oligoarthritis and RF-negative polyarthritis dataset shares the same association with adult seronegative RA. The findings suggest the value of using genetic data in helping to classify the categories of this heterogeneous disease. Mapping JIA categories to adult counterparts could enable shared knowledge of disease pathogenesis and aetiology and facilitate transition from paediatric to adult services. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Single locus typing of MHC class I and class II B loci in a population of red jungle fowl.

    PubMed

    Worley, K; Gillingham, M; Jensen, P; Kennedy, L J; Pizzari, T; Kaufman, J; Richardson, D S

    2008-05-01

    In species with duplicated major histocompatibility complex (MHC) genes, estimates of genetic variation often rely on multilocus measures of diversity. It is possible that such measures might not always detect more detailed patterns of selection at individual loci. Here, we describe a method that allows us to investigate classical MHC diversity in red jungle fowl (Gallus gallus), the wild ancestor of the domestic chicken, using a single locus approach. This is possible due to the well-characterised gene organisation of the 'minimal essential' MHC (BF/BL region) of the domestic chicken, which comprises two differentially expressed duplicated class I (BF) and two class II B (BLB) genes. Using a combination of reference strand-mediated conformation analysis, cloning and sequencing, we identify nine BF and ten BLB alleles in a captive population of jungle fowl. We show that six BF and five BLB alleles are from the more highly expressed locus of each gene, BF2 and BLB2, respectively. An excess of non-synonymous substitutions across the jungle fowl BF/BL region suggests that diversifying selection has acted on this population. Importantly, single locus screening reveals that the strength of selection is greatest on the highly expressed BF2 locus. This is the first time that a population of red jungle fowl has been typed at the MHC region, laying the basis for further research into the underlying processes acting to maintain MHC diversity in this and other species.

  2. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n.).

    PubMed

    Sun, Jianghao; Liu, Xianjin; Yang, Tianbao; Slovin, Janet; Chen, Pei

    2014-03-01

    Phenolic compounds in the fruits of two diploid strawberries (Fragaria vesca f. semperflorens) inbred lines-Ruegen F7-4 (a red-fruited genotype) and YW5AF7 (a yellow-fruited genotype) were characterised using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry (UHPLC-HRMS(n)). The changes of anthocyanin composition during fruit development and between Ruegen F7-4 and YW5AF7 were studied. About 67 phenolic compounds, including taxifolin 3-O-arabinoside, glycosides of quercetin, kaempferol, cyanidin, pelargonidin, peonidin, ellagic acid derivatives, and other flavonols were identified in these two inbred lines. Compared to the regular octoploid strawberry, unique phenolic compounds were found in F. vesca fruits, such as taxifolin 3-O-arabinoside (both) and peonidin 3-O-malonylglucoside (Ruegen F7-4). The results provide the basis for comparative analysis of polyphenolic compounds in yellow and red diploid strawberries, as well as with the cultivated octoploid strawberries. Published by Elsevier Ltd.

  3. Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Defays, Raquel; Bertoli, Carlos Ignacio

    2012-12-01

    Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection

    PubMed Central

    Sarri, Constantina A.; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country. PMID:27812212

  5. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    PubMed Central

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  6. Characterization of the Recombinant Inbred Line Population Derived from the Cross of Nipponbare/9311

    USDA-ARS?s Scientific Manuscript database

    As a part of the project entitled “Understanding the rice epigenome: From genes to genomes” funded by the National Science Foundation, a mapping population of 480 F6-8 recombinant inbred lines (RILs) derived from a cross of Nipponbare with 9311 (Nip/9311) was developed. Phenotyping important agronom...

  7. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo1

    PubMed Central

    Kawahara, Masahiro; York, Ian A.; Hearn, Arron; Farfan, Diego; Rock, Kenneth L.

    2015-01-01

    Previous experiments using enzyme inhibitors and RNAi in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I antigen presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals. In these mice, the expression level of TPPII was reduced by >90% compared to wild-type mice. Thymocytes from TPPII gene-trapped mice displayed more MHC class I on the cell surface, suggesting that TPPII normally limits antigen presentation by destroying peptides overall. TPPII gene-trapped mice responded as well as did wild-type mice to four epitopes from lymphocytic choriomeningitis virus (LCMV). The processing and presentation of peptide precursors with long N-terminal extensions in TPPII gene-trapped embryonic fibroblasts was modestly reduced, but in vivo immunization with recombinant lentiviral or vaccinia virus vectors revealed that such peptide precursors induced an equivalent CD8 T cell response in wild type and TPPII-deficient mice. These data indicate while TPPII contributes to the trimming of peptides with very long N-terminal extensions, TPPII is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several antigens in vivo. PMID:19841172

  8. Defining Success in Young Adults with Emotional Disabilities

    ERIC Educational Resources Information Center

    Carrescia, Susanne G.

    2012-01-01

    The purpose of this study is to develop a definition of success by constructing a portrait of successful young adults with emotional disabilities. Nine young adults with emotional disabilities were interviewed individually after graduating from high school. The research questions that guided the study centered on the young adults'…

  9. Divergent allele advantage at MHC-DRB through direct and maternal genotypic effects and its consequences for allele pool composition and mating

    PubMed Central

    Lenz, Tobias L.; Mueller, Birte; Trillmich, Fritz; Wolf, Jochen B. W.

    2013-01-01

    It is still debated whether main individual fitness differences in natural populations can be attributed to genome-wide effects or to particular loci of outstanding functional importance such as the major histocompatibility complex (MHC). In a long-term monitoring project on Galápagos sea lions (Zalophus wollebaeki), we collected comprehensive fitness and mating data for a total of 506 individuals. Controlling for genome-wide inbreeding, we find strong associations between the MHC locus and nearly all fitness traits. The effect was mainly attributable to MHC sequence divergence and could be decomposed into contributions of own and maternal genotypes. In consequence, the population seems to have evolved a pool of highly divergent alleles conveying near-optimal MHC divergence even by random mating. Our results demonstrate that a single locus can significantly contribute to fitness in the wild and provide conclusive evidence for the ‘divergent allele advantage’ hypothesis, a special form of balancing selection with interesting evolutionary implications. PMID:23677346

  10. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations.

    PubMed

    Zhang, Pei; Huang, Kang; Zhang, Bingyi; Dunn, Derek W; Chen, Dan; Li, Fan; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2018-03-13

    Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates.

  11. Glatiramer Acetate Treatment Increases Stability of Spinal Synapses and Down Regulates MHC I during the Course of EAE

    PubMed Central

    Scorisa, Juliana M.; Freria, Camila M.; Victorio, Sheila C.; Barbizan, Roberta; Zanon, Renata G.; Oliveira, Alexandre L. R.

    2011-01-01

    The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process. PMID:22043176

  12. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors.

    PubMed

    Heber, S; Varsani, A; Kuhn, S; Girg, A; Kempenaers, B; Briskie, J

    2013-02-07

    Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of 'genetic rescue' using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.

  13. Sensitivity of Female Inbreds of Cucumis sativus to Sex Reversion by Gibberellin.

    PubMed

    Shifriss, O; George, W L

    1964-03-27

    Two female inbred cucumbers were developed by substituting gene Acr for acr in the genetic backgrounds of the monoecious races Marketer and Tokyo, which exhibit weak and strong male tendency respectively. Marketer females are resistant and Tokyo females are sensitive to sex reversion in response to treatments with gibberellin A(3). Resistance and sensitivity of this type appear to depend upon the genetic system which controls sex tendency.

  14. Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.

    PubMed

    Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T

    1993-02-01

    An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.

  15. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    PubMed

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  16. Genomic structure and expression pattern of MHC IIα and IIβ genes reveal an unusual immune trait in lined seahorse Hippocampus erectus.

    PubMed

    Luo, Wei; Wang, Xin; Qu, Hongyue; Qin, Geng; Zhang, Huixian; Lin, Qiang

    2016-11-01

    The major histocompatibility complex (MHC) genes are crucial in the adaptive immune system, and the gene duplication of MHC in animals can generally result in immune flexibility. In this study, we found that the lined seahorse (Hippocampus erectus) has only one gene copy number (GCN) of MHC IIα and IIβ, which is different from that in other teleosts. Together with the lack of spleen and gut-associated lymphatic tissue (GALT), the seahorse may be referred to as having a partial but natural "immunodeficiency". Highly variable amino acid residues were found in the IIα and IIβ domains, especially in the α1 and β1 domains with 9.62% and 8.43% allelic variation, respectively. Site models revealed seven and ten positively selected positions in the α1 and β1 domains, respectively. Real-time PCR experiments showed high expression levels of the MHC II genes in intestine (In), gill (Gi) and trunk kidney (TK) and medium in muscle (Mu) and brood pouch (BP), and the expression levels were significantly up-regulated after bacterial infection. Specially, relative higher expression level of both MHC IIα and IIβ was found in Mu and BP when compared with other fish species, in which MHC II is expressed negligibly in Mu. These results indicate that apart from TK, Gi and In, MU and BP play an important role in the immune response against pathogens in the seahorse. In conclusion, high allelic variation and strong positive selection in PBR and relative higher expression in MU and BP are speculated to partly compensate for the immunodeficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas.

    PubMed

    Badie, Behnam; Bartley, Becky; Schartner, Jill

    2002-12-01

    To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.

  18. [Planar molecular arrangements aid the design of MHC class II binding peptides].

    PubMed

    Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L

    2017-01-01

    The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

  19. AN MHC class I immune evasion gene of Marek's disease virus

    USDA-ARS?s Scientific Manuscript database

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  20. An MHC Class I Immune Evasion Gene of Marek's Disease Virus

    USDA-ARS?s Scientific Manuscript database

    Marek’s Disease Virus (MDV) is a widespread pathogen of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to MHC class I down-regulation (Virology 282:198–205 (2001)), but the gene(s)involved have not been identified. Here we demonstrate tha...

  1. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  2. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  3. Simulation of the A-X and B-X transition emission spectra of the InBr molecule for diagnostics in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2011-04-01

    Inductively coupled low-pressure discharges containing InBr have been investigated spectroscopically. In order to obtain plasma parameters such as the vibrational and rotational temperature of the InBr molecule, the emission spectra of the A\\,^3\\!\\Pi_{0^+}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ and the B\\,^3\\! \\Pi_{1}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ transitions have been simulated. The program is based on the molecular constants and takes into account vibrational states up to v = 24. The required Franck-Condon factors and vibrationally resolved transition probabilities have been computed solving the Schrödinger equation using the Born-Oppenheimer approximation. The ground state density of the InBr molecule in the plasma has been determined from absorption spectra using effective transition probabilities for the A-X and B-X transition according to the vibrational population. The obtained densities agree well with densities derived from an Arrhenius type vapour pressure equation.

  4. Quantification of phenolic acids and antioxidant potential of inbred, hybrid and composite cultivars of maize under different nitrogen regimes.

    PubMed

    Ganie, Arshid Hussain; Yousuf, Peerzada Yasir; Ahad, Amjid; Pandey, Renu; Ahmad, Sayeed; Aref, Ibrahim M; Noor, Jewel Jameeta; Iqbal, Muhammad

    2016-11-01

    Maize (Zea mays L.) is a multipurpose crop, which is immensely used worldwide for its nutritional as well as medicinal properties. This study evaluates the effect of varying concentrations of nitrogen (N) on accumulation of phenolic acids and antioxidant activity in different maize cultivars, including inbreds, hybrids and a composite, which were grown in natural light under controlled temperature (30°C/20°C D/N) and humidity (80%), with sufficient (4.5mM) and low (0.05mM) nitrogen supply. Seeds of different cultivars were powdered and extracted in a methanol:water (80:20) mixture through reflux at 60-75°C, and the extracts obtained were subjected to high performance thin layer chromatography (HPTLC), using ethyl acetate: acetic acid: formic acid: water (109:16:12:31) solvent system for the separation of phenolic acids. Antioxidant activity of the extracts was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2-scavenging activity assays. At sufficient nitrogen condition, the contents of different phenolic acids were higher in the composite cultivar (8.7 mg g-1 d.wt. in gallic acid to 39.3 mg g-1 d.wt. in cinnamic and salicylic acids) than in inbreds and hybrids. Under low nitrogen condition, the phenolic acids contents declined significantly in inbreds and hybrids, but remained almost unaffected in the composite. The antioxidant activity was also the maximum in the composite, and declined similarly as phenolic acids under low nitrogen supply, showing a significant reduction in inbreds and hybrids only. Therefore, the maize composite has a potential for being used as a nutraceutical in human-health sector.

  5. Quantitative trait loci that control body weight in DDD/Sgn and C57BL/6J inbred mice.

    PubMed

    Suto, Jun-Ichi; Kojima, Misaki

    2017-02-01

    Inbred DDD/Sgn mice are heavier than inbred C57BL/6J mice. In the present study, we performed quantitative trait loci (QTL) mapping for body weight using R/qtl in reciprocal F 2 male populations between the two strains. We identified four significant QTL on Chrs 1, 2, 5, and 17 (proximal region). The DDD/Sgn allele was associated with increased body weight at QTL on Chrs 1 and 5, and the DDD/Sgn allele was associated with decreased body weight at QTL on Chrs 2 and 17. A multiple regression analysis indicated that the detected QTL explain 30.94 % of the body weight variation. Because DDD/Sgn male mice have extremely high levels of circulating testosterone relative to other inbred mouse strains, we performed QTL mapping for plasma testosterone level to examine the effect of testosterone levels on body weight. We identified one suggestive QTL on Chr 5, which overlapped with body weight QTL. The DDD/Sgn allele was associated with increased testosterone level. Thus, we confirmed that there was a genetic basis for the changes in body weight and testosterone levels in male mice. These findings provide insights into the genetic mechanism by which body weight is controlled in male mice.

  6. Ontogeny of con A and PHA responses of chicken blood cells in MHC-compatible lines 6(3) and 7(2).

    PubMed

    Fredericksen, T L; Gilmour, D G

    1983-06-01

    The development of T cell responsiveness to Con A and PHA was examined in two MHC-compatible inbred chicken lines, RPRL 6(3) and 7(2), at ages 2 to 118 days posthatching. These lines are respectively resistant or susceptible to Marek's disease, a naturally occurring, virally induced T cell lymphoma. Between-line comparisons were made of optimal in vitro responses of diluted serum-free blood cells to each mitogen in two groups of chicks tested over ages 2 to 63 and 41 to 118 days. Over 2 to 63 days, Con A responses increased with age at the same rate in each line, but 7(2) responses averaged 2.3 times higher than 6(3). The increase with age was dependent on blood lymphocyte counts, which also increased with age in parallel in both lines. In contrast, the between-line difference in responsiveness was dependent on intrinsic reactivity of cells as well as lymphocyte counts. Covariance analysis was used to estimate that line 7(2) was 1.4 times higher than 6(3) in intrinsic cell reactivity, after accounting for the effect of the twofold higher blood lymphocyte counts in 7(2), and that this intrinsic difference contributed almost one-half the total difference. Over 41 to 118 days Con A responses no longer increased with age, although lymphocyte counts were still increasing, and the line difference (2.6 times) was now almost entirely contributed by a 2.3-fold superiority of 7(2) blood cells in intrinsic reactivity. The line difference in PHA responses was the reverse of the above in young chicks, with 6(3) responses greater than 7(2) in spite of lower lymphocyte counts. In additional chicks tested over 5 to 26 days, intrinsic reactivity of 6(3) cells to PHA averaged 4.5 times higher than 7(2). There was an abrupt decline in intrinsic reactivity of line 6(3) blood cells between 26 and 41 days to a level equal with 7(2). After this age, line 7(2) responses were 1.8 times greater than those of 6(3), and this difference was dependent solely on lymphocyte count differences. The

  7. Registration of a rice gene mapping population of Lemont X Jasmine 85 recombinant inbred lines

    USDA-ARS?s Scientific Manuscript database

    A mapping population developed from a cross of rice (Oryza sativa L.) tropical japonica cultivar ‘Lemont’ and indica cultivar ‘Jasmine 85’ was developed to facilitate genetic studies for important agronomic traits. The indica- and japonica-based rice recombinant inbred line (RIL) mapping population ...

  8. Comprehensive genotyping of the USA national maize inbred seed bank

    PubMed Central

    2013-01-01

    Background Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world. Results The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits. Conclusions The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity. PMID:23759205

  9. Comprehensive genotyping of the USA national maize inbred seed bank.

    PubMed

    Romay, Maria C; Millard, Mark J; Glaubitz, Jeffrey C; Peiffer, Jason A; Swarts, Kelly L; Casstevens, Terry M; Elshire, Robert J; Acharya, Charlotte B; Mitchell, Sharon E; Flint-Garcia, Sherry A; McMullen, Michael D; Holland, James B; Buckler, Edward S; Gardner, Candice A

    2013-06-11

    Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world. The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits. The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.

  10. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    PubMed

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  11. Genetic regulation of cold-induced albinism in the maize inbred line A661

    PubMed Central

    Rodríguez, Víctor M.; Velasco, Pablo; Garrido, José L.; Revilla, Pedro; Ordás, Amando; Butrón, Ana

    2013-01-01

    In spite of multiple studies elucidating the regulatory pathways controlling chlorophyll biosynthesis and photosynthetic activity, little is known about the molecular mechanism regulating cold-induced chlorosis in higher plants. Herein the characterization of the maize inbred line A661 which shows a cold-induced albino phenotype is reported. The data show that exposure of seedlings to low temperatures during early leaf biogenesis led to chlorophyll losses in this inbred. A661 shows a high plasticity, recovering resting levels of photosynthesis activity when exposed to optimal temperatures. Biochemical and transcriptome data indicate that at suboptimal temperatures chlorophyll could not be fully accommodated in the photosynthetic antenna in A661, remaining free in the chloroplast. The accumulation of free chlorophyll activates the expression of an early light inducible protein (elip) gene which binds chlorophyll to avoid cross-reactions that could lead to the generation of harmful reactive oxygen species. Higher levels of the elip transcript were observed in plants showing a cold-induced albino phenotype. Forward genetic analysis reveals that a gene located on the short arm of chromosome 2 regulates this protective mechanism. PMID:23881393

  12. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties

    PubMed Central

    Rostoks, Nils; Ramsay, Luke; MacKenzie, Katrin; Cardle, Linda; Bhat, Prasanna R.; Roose, Mikeal L.; Svensson, Jan T.; Stein, Nils; Varshney, Rajeev K.; Marshall, David F.; Graner, Andreas; Close, Timothy J.; Waugh, Robbie

    2006-01-01

    Genomewide association studies depend on the extent of linkage disequilibrium (LD), the number and distribution of markers, and the underlying structure in populations under study. Outbreeding species generally exhibit limited LD, and consequently, a very large number of markers are required for effective whole-genome association genetic scans. In contrast, several of the world's major food crops are self-fertilizing inbreeding species with narrow genetic bases and theoretically extensive LD. Together these are predicted to result in a combination of low resolution and a high frequency of spurious associations in LD-based studies. However, inbred elite plant varieties represent a unique human-induced pseudooutbreeding population that has been subjected to strong selection for advantageous alleles. By assaying 1,524 genomewide SNPs we demonstrate that, after accounting for population substructure, the level of LD exhibited in elite northwest European barley, a typical inbred cereal crop, can be effectively exploited to map traits by using whole-genome association scans with several hundred to thousands of biallelic SNPs. PMID:17085595

  13. Narrow Groove and Restricted Anchors of MHC Class I Molecule BF2*0401 Plus Peptide Transporter Restriction can Explain Disease Susceptibility of B4 Chickens

    PubMed Central

    Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.

    2016-01-01

    The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567

  14. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    PubMed Central

    Neerincx, Andreas; Hermann, Clemens; Antrobus, Robin; van Hateren, Andy; Cao, Huan; Trautwein, Nico; Stevanović, Stefan; Elliott, Tim; Deane, Janet E; Boyle, Louise H

    2017-01-01

    Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex. DOI: http://dx.doi.org/10.7554/eLife.23049.001 PMID:28425917

  15. Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice

    PubMed Central

    Schoenrock, Sarah Adams; Oreper, Daniel; Young, Nancy; Ervin, Robin Betsch; Bogue, Molly A.; Valdar, William; Tarantino, Lisa M.

    2017-01-01

    Women are at an increased risk for developing affective disorders during times of hormonal flux, including menopause when the ovaries cease production of estrogen. However, while all women undergo menopause, not all develop an affective disorder. Increased vulnerability can result from genetic predisposition, environmental factors and gene by environment interactions. In order to investigate interactions between genetic background and estrogen depletion, we performed bilateral ovariectomy, a surgical procedure that results in estrogen depletion and is thought to model the post-menopausal state, in a genetically defined panel of 37 inbred mouse strains. Seventeen days post-ovariectomy, we assessed behavior in two standard rodent assays of anxiety- and depressive-like behavior, the open field and forced swim tests. We detected a significant interaction between ovariectomy and genetic background on anxiety-like behavior in the open field. No strain specific effects of ovariectomy were observed in the forced swim assay. However, we did observe significant strain effects for all behaviors in both the open field and forced swim tests. This study is the largest to date to look at the effects of ovariectomy on behavior and provides evidence that ovariectomy interacts with genetic background to alter anxiety-like behavior in an animal model of menopause. PMID:27693591

  16. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    PubMed

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  17. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, M.; Haan, K.M.; Longnecker, R.

    Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms amore » large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.« less

  18. Population-specific recombination sites within the human MHC region.

    PubMed

    Lam, T H; Shen, M; Chia, J-M; Chan, S H; Ren, E C

    2013-08-01

    Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European and African were used to generate phased HLA haplotypes. Extended haplotype homozygosity (EHH) plots constructed from the phased haplotype data revealed discreet EHH drops corresponding to recombination events and these signatures were observed to be different for each population. Surprisingly, the majority of recombination sites detected are unique to each population, rather than being common. Unique recombination sites account for 56.8% (21/37 of total sites) in the Asian cohort, 50.0% (15/30 sites) in Europeans and 63.2% (24/38 sites) in Africans. Validation carried out at a known sperm typing recombination site of 45 kb (HLA-F-telomeric) showed that EHH was an efficient method to narrow the recombination region to 826 bp, and this was further refined to 660 bp by resequencing. This approach significantly enhanced mapping of the genomic architecture within the human MHC, and will be useful in studies to identify disease risk genes.

  19. Crystallographic and Computational Studies of a Class II MHC Complex with a Nonconforming Peptide: HLA-DRA/DRB3*0101

    NASA Astrophysics Data System (ADS)

    Parry, Christian S.; Gorski, Jack; Stern, Lawrence J.

    2003-03-01

    The stable binding of processed foreign peptide to a class II major histocompatibility (MHC) molecule and subsequent presentation to a T cell receptor is a central event in immune recognition and regulation. Polymorphic residues on the floor of the peptide binding site form pockets that anchor peptide side chains. These and other residues in the helical wall of the groove determine the specificity of each allele and define a motif. Allele specific motifs allow the prediction of epitopes from the sequence of pathogens. There are, however, known epitopes that do not satisfy these motifs: anchor motifs are not adequate for predicting epitopes as there are apparently major and minor motifs. We present crystallographic studies into the nature of the interactions that govern the binding of these so called nonconforming peptides. We would like to understand the role of the P10 pocket and find out whether the peptides that do not obey the consensus anchor motif bind in the canonical conformation observed in in prior structures of class II MHC-peptide complexes. HLA-DRB3*0101 complexed with peptide crystallized in unit cell 92.10 x 92.10 x 248.30 (90, 90, 90), P41212, and the diffraction data is reliable to 2.2ÅWe are complementing our studies with dynamical long time simulations to answer these questions, particularly the interplay of the anchor motifs in peptide binding, the range of protein and ligand conformations, and water hydration structures.

  20. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis.

    PubMed

    Brooks, Suzanne E; Bonney, Stephanie A; Lee, Cindy; Publicover, Amy; Khan, Ghazala; Smits, Evelien L; Sigurdardottir, Dagmar; Arno, Matthew; Li, Demin; Mills, Ken I; Pulford, Karen; Banham, Alison H; van Tendeloo, Viggo; Mufti, Ghulam J; Rammensee, Hans-Georg; Elliott, Tim J; Orchard, Kim H; Guinn, Barbara-ann

    2015-01-01

    Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.

  1. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology.

    PubMed

    Ikenaga, Chiseko; Kubota, Akatsuki; Kadoya, Masato; Taira, Kenichiro; Uchio, Naohiro; Hida, Ayumi; Maeda, Meiko Hashimoto; Nagashima, Yu; Ishiura, Hiroyuki; Kaida, Kenichi; Goto, Jun; Tsuji, Shoji; Shimizu, Jun

    2017-09-05

    To determine the clinical features of myositis patients with the histopathologic finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class 1 (CD8-MHC-1 complex), which is shared by polymyositis (PM) and inclusion body myositis (IBM), in relation to the p62 immunostaining pattern of muscle fibers. All 93 myositis patients with CD8-MHC-1 complex who were referred to our hospital from 1993 to 2015 were classified on the basis of the European Neuromuscular Center (ENMC) diagnostic criteria for IBM (Rose, 2013) or PM (Hoogendijk, 2004) and analyzed. The 93 patients included were 17 patients with PM, 70 patients with IBM, and 6 patients who neither met the criteria for PM nor IBM in terms of muscle weakness distribution (unclassifiable group). For these PM, IBM, and unclassifiable patients, their mean ages at diagnosis were 63, 70, and 64 years; autoimmune disease was present in 7 (41%), 13 (19%), and 4 (67%); hepatitis C virus infection was detected in 0%, 13 (20%), and 2 (33%); and p62 was immunopositive in 0%, 66 (94%), and 2 (33%), respectively. Of the treated patients, 11 of 16 PM patients and 4 of 6 p62-immunonegative patients in the unclassifiable group showed responses to immunotherapy, whereas all 44 patients with IBM and 2 p62-immunopositive patients in the unclassifiable group were unresponsive to immunotherapy. CD8-MHC-1 complex is present in patients with PM, IBM, or unclassifiable group. The data may serve as an argument for a trial of immunosuppressive treatment in p62-immunonegative patients with unclassifiable myositis. © 2017 American Academy of Neurology.

  2. Adult plant leaf rust resistance derived from Toropi wheat is conditioned by Lr78 and three minor QTL

    USDA-ARS?s Scientific Manuscript database

    Brazil, was noted to have long lasting leaf rust resistance that was effective only in adult plants. The objectives of this study were to determine the chromosome location of the leaf rust resistance genes derived from Toropi in two populations of recombinant inbred lines in a partial Thatcher wheat...

  3. The Specificity of Trimming of MHC Class I-Presented Peptides in the Endoplasmic Reticulum1

    PubMed Central

    Hearn, Arron; York, Ian A.; Rock, Kenneth L.

    2010-01-01

    Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell responses. By systematically varying the N-terminal flanking sequences of peptides in a cell free biochemical system and in intact cells, we elucidated the specificity of ERAP1 and of ER trimming overall. ERAP1 can cleave after many amino acids on the N-terminus of epitope precursors but does so at markedly different rates. The specificity seen with purified ERAP1 is similar to that observed for trimming and presentation of epitopes in the ER of intact cells. We define N-terminal sequences that are favorable or unfavorable for antigen presentation in ways that are independent from the epitopes core sequence. When databases of known presented peptides were analyzed, the residues that were preferred for the trimming of model peptide precursors were found to be overrepresented in N-terminal flanking sequences of epitopes generally. These data define key determinants in the specificity of antigen processing. PMID:19828632

  4. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express

    USDA-ARS?s Scientific Manuscript database

    Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with ‘Avocet Susceptible’ (AVS). A mapping population of 146 F5 recombinant inbred lines (R...

  5. Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages.

    PubMed

    Ohta, Yuko; McKinney, E Churchill; Criscitiello, Michael F; Flajnik, Martin F

    2002-01-15

    Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.

  6. Genetic Influences on Survival Time After Severe Hemorrhage in Inbred Rat Strains

    DTIC Science & Technology

    2011-04-12

    technique (10, 41) immediately after insertion of the carotid catheter. A second incision was made in the skin in the medial aspect of the thigh to expose...rat strains. Both baseline and post hemorrhage mean arterial pres- sures (MAP) differed among inbred rat strains as did the decrease in MAP produced...measure for a given strain are different (P 0.05) between experiments for that strain. Mean arterial pressure (MAP) was recorded at 1 min prior to

  7. The roles of MHC class II genes and post-translational modification in celiac disease.

    PubMed

    Sollid, Ludvig M

    2017-08-01

    Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4 + T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies.

  8. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts.

    PubMed

    Rödström, Karin E J; Elbing, Karin; Lindkvist-Petersson, Karin

    2014-08-15

    Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage.

    PubMed

    Papenfuss, Anthony T; Feng, Zhi-Ping; Krasnec, Katina; Deakin, Janine E; Baker, Michelle L; Miller, Robert D

    2015-07-22

    Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and

  10. Mapping Stripe Rust Resistance in a BrundageXCoda Winter Wheat Recombinant Inbred Line Population

    PubMed Central

    Case, Austin J.; Naruoka, Yukiko; Chen, Xianming; Garland-Campbell, Kimberly A.; Zemetra, Robert S.; Carter, Arron H.

    2014-01-01

    A recombinant inbred line (RIL) mapping population developed from a cross between winter wheat (Triticum aestivum L.) cultivars Coda and Brundage was evaluated for reaction to stripe rust (caused by Puccinia striiformis f. sp. tritici). Two hundred and sixty eight RIL from the population were evaluated in replicated field trials in a total of nine site-year locations in the U.S. Pacific Northwest. Seedling reaction to stripe rust races PST-100, PST-114 and PST-127 was also examined. A linkage map consisting of 2,391 polymorphic DNA markers was developed covering all chromosomes of wheat with the exception of 1D. Two QTL on chromosome 1B were associated with adult plant and seedling reaction and were the most significant QTL detected. Together these QTL reduced adult plant infection type from a score of seven to a score of two reduced disease severity by an average of 25% and provided protection against race PST-100, PST-114 and PST-127 in the seedling stage. The location of these QTL and the race specificity provided by them suggest that observed effects at this locus are due to a complementation of the previously known but defeated resistances of the cultivar Tres combining with that of Madsen (the two parent cultivars of Coda). Two additional QTL on chromosome 3B and one on 5B were associated with adult plant reaction only, and a single QTL on chromosome 5D was associated with seedling reaction to PST-114. Coda has been resistant to stripe rust since its release in 2000, indicating that combining multiple resistance genes for stripe rust provides durable resistance, especially when all-stage resistance genes are combined in a fashion to maximize the number of races they protect against. Identified molecular markers will allow for an efficient transfer of these genes into other cultivars, thereby continuing to provide excellent resistance to stripe rust. PMID:24642574

  11. Development of the recombinant inbred line population of tropical japonica Lemont crossed with indica Jasmine 85

    USDA-ARS?s Scientific Manuscript database

    A recombinant inbred line (RIL) population of rice is routinely used in studying agronomically important genes, and is particularly useful for analyzing quantitative trait loci (QTL) since phenotypes can be assessed over years. Jasmine 85, a midseason aromatic long-grain indica rice cultivar develo...

  12. Effective Control of Chronic γ-Herpesvirus Infection by Unconventional MHC Class Ia–Independent CD8 T Cells

    PubMed Central

    Tibbetts, Scott A; McClellan, Kelly B

    2006-01-01

    Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. PMID:16733540

  13. Identification of Novel Avian Influenza Virus Derived CD8+ T-Cell Epitopes

    PubMed Central

    Reemers, Sylvia S. N.; van Haarlem, Daphne A.; Sijts, Alice J. A. M.; Vervelde, Lonneke; Jansen, Christine A.

    2012-01-01

    Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. PMID:22384112

  14. Strain difference in the immune response to hydralazine in inbred guinea-pigs

    PubMed Central

    Ellman, L.; Inman, J.; Green, Ira

    1971-01-01

    Guinea-pigs were immunized with hydralazine in Freund's complete adjuvant. A marked strain difference in the immune response involving both anti-hydralazine antibody and delayed hypersensitivity to hydralazine was observed in different strains of guinea-pigs: Hartley guinea-pigs and inbred strain 13 guinea-pigs were able to mount a vigorous immune response to the drug while inbred strain 2 guinea-pigs appeared to be `low or non-responders'. This difference could not be explained in terms of metabolism of the drug in that no differences in acetylation were observed. Breeding studies suggest that immune responsiveness to hydralazine is inherited in an autosomal dominant manner. The immune response to hydralazine may be controlled by a `specific immune response gene' which appears not to be linked to the major strain 13 histocompatibility gene. Anti-nuclear and anti-DNA antibodies could not be demonstrated at a time when the animals manifested a strong immune response to hydralazine. Thus, the development of auto-immune phenomena does not appear to be related to the development of an immune response to the drug in short term immunization. Hydralazine-protein conjugates were synthesized, radio-iodinated and used in a Farr technique for the measurement of anti-hydralazine antibody. These techniques for the assay of anti-hydralazine antibodies may be useful in clinical investigations. Imagesp933-a PMID:5316639

  15. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.

    PubMed

    van den Boomen, Dick J H; Timms, Richard T; Grice, Guinevere L; Stagg, Helen R; Skødt, Karsten; Dougan, Gordon; Nathan, James A; Lehner, Paul J

    2014-08-05

    The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forward genetic screen for host ERAD components hijacked by US11 in near-haploid KBM7 cells, we identified TMEM129, an uncharacterized polytopic membrane protein. TMEM129 is essential and rate-limiting for US11-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component of a novel mammalian ERAD complex.

  16. Comparison of neutrophil functions between two strains of inbred mice.

    PubMed

    Zhang, Xiaohuan; Zhao, Sainan; Sun, Luping; Li, Wenqing; Glogauer, Michael; Hu, Yan

    2016-12-01

    In this study, differences between two strains of inbred mice in aspects of neutrophil function, namely Rac1 expression, chemotaxis, nicotinamide adenine dinucleotide phosphate oxidase activity and formation of neutrophil extracellular traps (NETs), were determined. Neutrophils from CBA/CaH mice exhibited weaker Rac1 expression and a slower chemotactic gradient than BALB/c mice. Furthermore, PMA- or fMLP-stimulated neutrophils from CBA/CaH mice generated much less superoxide and NETs than similarly stimulated neutrophils from BALB/c mice. These findings suggest that neutrophils from BALB/c mice are functionally more efficient than those from CBA/CaH mice. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  17. Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions.

    PubMed

    Atassi, M Z

    2015-12-01

    Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  19. Variable Suppression of Serum Thyroxine in Female Mice of Different Inbred Strains by Triiodothyronine Administered in Drinking Water

    PubMed Central

    Hamidi, Sepehr; Aliesky, Holly; Chen, Chun-Rong; Rapoport, Basil

    2010-01-01

    Background Recombinant-inbred mouse strains differ in their susceptibility to Graves'-like hyperthyroidism induced by immunization with adenovirus expressing the human thyrotropin (TSH) receptor. Because one genetic component contributing to this susceptibility is altered thyroid sensitivity to TSH receptor agonist stimulation, we wished to quantify thyroid responsiveness to TSH. For such studies, it is necessary to suppress endogenous TSH by administering L-3,5,3′-triiodothyronine (L-T3), with the subsequent decrease in serum thyroxine (T4) reflecting endogenous TSH suppression. Our two objectives were to assess in different inbred strains of mice (i) the extent of serum T4 suppression after L-T3 administration and (ii) the magnitude of serum T4 increase induced by TSH. Methods Mice were tail-bled to establish baseline-serum T4 before L-T3 administration. We initially employed a protocol of L-T3-supplemented drinking water for 7 days. In subsequent experiments, we injected L-T3 intraperitoneally (i.p.) daily for 3 days. Mice were then injected i.p. with bovine TSH (10 mU) and euthanized 5 hours later. Serum T4 was assayed before L-T3 administration, and before and after TSH injection. In some experiments, serum T3 and estradiol were measured in pooled sera. Results Oral L-T3 (3 or 5 μg/mL) suppressed serum T4 levels by 26%–64% in female BALB/c mice but >95% in males. T4 suppression in female B6 mice ranged from 0% to 90%. In C3H mice, L-T3 at 3 μg/mL was ineffective but 5 μg/mL achieved >80% serum T4 reduction. Unlike inbred mice, in outbred CF1 mice the same protocol was more effective: 83% in females and 100% suppression in males. The degree of T4 suppression was unrelated to baseline T4, T3, or estradiol, but was related to mouse weight and postmortem T3, with greater suppression in larger mice (outbred CF1 animals and inbred males). Among females with serum T4 suppression >80%, the increase in serum T4 after TSH injection was greater for BALB

  20. Field screening of experimental corn hybrids and inbred lines for multiple ear-feeding insect resistance.

    PubMed

    Ni, Xinzhi; Xu, Wenwei; Krakowsky, Matthew D; Buntin, G David; Brown, Steve L; Lee, R Dewey; Coy, Anton E

    2007-10-01

    Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.

  1. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G

    PubMed Central

    Fernando, Michelle M A; Freudenberg, Jan; Lee, Annette; Morris, David Lester; Boteva, Lora; Rhodes, Benjamin; Gonzalez-Escribano, María Francisca; Lopez-Nevot, Miguel Angel; Navarra, Sandra V; Gregersen, Peter K; Martin, Javier; Vyse, Timothy J

    2012-01-01

    Objectives Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. Methods A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. Results Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. Conclusion These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and

  2. Evidence for a link between sphingolipid metabolism and expression of CD1d and MHC-class II: monocytes from Gaucher disease patients as a model.

    PubMed

    Balreira, Andrea; Lacerda, Lúcia; Miranda, Clara Sá; Arosa, Fernando A

    2005-06-01

    Gaucher disease (GD) is an autosomal recessive inherited defect of the lysosomal enzyme glucocerebrosidase (GluCerase) that leads to glucosylceramide (GluCer) accumulation. We previously demonstrated the existence of imbalances in certain lymphocyte populations in GD patients. We now show that GluCerase-deficient monocytes from GD patients or monocytes from healthy subjects treated with conduritol-B-epoxide (CBE), an irreversible inhibitor of GluCerase activity, display high levels of surface expression of the lipid-binding molecule CD1d. GluCerase-deficient monocytes from GD patients also showed increased surface expression of major histocompatibility complex (MHC)-class II, but not of other lysosomal trafficking molecules, such as CD63 and MHC-class I. However, CD1d and MHC-class II mRNA levels were not increased. GluCerase-deficient monocytes from GD patients undergoing enzyme replacement therapy also exhibited increased levels of CD1d and MHC-class II and imbalances in the percentage of CD4+, CD8+, and Valpha24+ T cells. Interestingly, follow-up studies revealed that enzyme replacement therapy induced a decrease in MHC-class II expression and partial correction of the CD4+ T cell imbalances. These results reveal a new link between sphingolipid accumulation in monocytes and the expression of certain MHC molecules that may result in imbalances of regulatory T cell subsets. These immunological anomalies may contribute to the clinical heterogeneity in GD patients.

  3. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    PubMed

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  4. Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite Theileria parva▿

    PubMed Central

    Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.

    2008-01-01

    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892

  5. Critical role of the tumor suppressor tuberous sclerosis complex 1 in dendritic cell activation of CD4 T cells by promoting MHC class II expression via IRF4 and CIITA.

    PubMed

    Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping

    2013-07-15

    Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.

  6. Gender differences in the self-defining activities and identity experiences of adolescents and emerging adults.

    PubMed

    Sharp, Erin Hiley; Coatsworth, J Douglas; Darling, Nancy; Cumsille, Patricio; Ranieri, Sonia

    2007-04-01

    Activity participation provides a unique context for adolescents and emerging adults to explore interests, talents, and skills and for identity work to occur. Research has found consistent gender differences in the types of activities in which males and females participate. The current study drew on Eudaimonistic identity theory to examine the subjective identity-related experiences of personal expressiveness, flow experiences, and goal-directed behaviour [Waterman, 1984; Waterman, 2004. Finding someone to be: Studies on the role of intrinsic motivation in identity formation. Identity, 4, 209-228] within a special type of activity, self-defining activities, or those activities that participants identify as being important to who they are as a person. This study also tested for gender and country differences in a sample of 572 adolescents and emerging adults from the United States, Italy, and Chile. Findings indicate gender and country differences in the types of self-defining activities for males and females, but no gender differences in the reported identity-related experiences within those activities. This finding held across the three countries. Results from Multivariate Analyses of Variance also indicate that identity-related experiences differ significantly across seven broad activity classes. Findings are discussed in the context of the growing literature on adolescent activity involvement and time use, gender, and their relations to identity exploration.

  7. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer.

    PubMed

    Zhao, Jianguo; Ross, Jason W; Hao, Yanhong; Spate, Lee D; Walters, Eric M; Samuel, Melissa S; Rieke, August; Murphy, Clifton N; Prather, Randall S

    2009-09-01

    The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.

  8. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-06-30

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  9. Trans-Species Polymorphism and Selection in the MHC Class II DRA Genes of Domestic Sheep

    PubMed Central

    Ballingall, Keith T.; Rocchi, Mara S.; McKeever, Declan J.; Wright, Frank

    2010-01-01

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  10. Reduced MHC Alloimmunization and Partial Tolerance Protection With Pathogen Reduction Of Whole Blood

    PubMed Central

    Jackman, Rachael P.; Muench, Marcus O.; Inglis, Heather; Heitman, John W.; Marschner, Susanne; Goodrich, Raymond P.; Norris, Philip J.

    2017-01-01

    BACKGROUND Allogeneic blood transfusion can result in an immune response against major histocompatibility complex (MHC) antigens, potentially complicating future transfusions or transplants. We have previously shown that pathogen reduction of platelet-rich plasma (PRP) with riboflavin and UV light (UV+R) can prevent alloimmunization in mice. A similar pathogen reduction treatment is currently under development for the treatment of whole blood using riboflavin and a higher dose of UV light. We sought to determine the effectiveness of this treatment in prevention of alloimmunization. STUDY DESIGN AND METHODS BALB/c mice were transfused with untreated or UV+R treated allogeneic C57Bl/6 whole blood with or without leukoreduction. Mice were evaluated for donor specific antibodies and ex vivo splenocyte cytokine responses, as well as for changes in the frequency of regulatory T (Treg) cells. RESULTS UV+R treatment blocked cytokine priming and reduced anti-MHC alloantibody responses to transfused whole blood. Leukoreduction reduced alloantibody levels in both the untreated and UV+R groups. Mice transfused with UV+R treated whole blood had reduced alloantibody and cytokine responses when subsequently transfused with untreated blood from the same donor type. This reduction in responses was not associated with increased Treg cells. CONCLUSIONS Pathogen reduction of whole blood with UV+R significantly reduces, but does not eliminate the alloimmune response. Exposure to UV+R treated whole blood transfusion does appear to induce tolerance to alloantigens resulting in reduced anti-MHC alloantibody and cytokine responses to subsequent exposures to the same alloantigens. This tolerance does not appear to be driven by an increase in Treg cells. PMID:27859333

  11. Generalists and Specialists: A New View of How MHC Class I Molecules Fight Infectious Pathogens.

    PubMed

    Kaufman, Jim

    2018-05-01

    In comparison with the major histocompatibility complexes (MHCs) of typical mammals, the chicken MHC is simple and compact with a single dominantly expressed class I molecule that can determine the immune response. In addition to providing useful information for the poultry industry and allowing insights into the evolution of the adaptive immune system, the simplicity of the chicken MHC has allowed the discovery of phenomena that are more difficult to discern in the more complicated mammalian systems. This review discusses the new concept that poorly expressed promiscuous class I alleles act as generalists to protect against a wide variety of infectious pathogens, while highly expressed fastidious class I alleles can act as specialists to protect against new and dangerous pathogens. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs.

    PubMed

    Mizukami, Yoshihisa; Abe, Tomoyuki; Shibata, Hiroaki; Makimura, Yukitoshi; Fujishiro, Shuh-hei; Yanase, Kimihide; Hishikawa, Shuji; Kobayashi, Eiji; Hanazono, Yutaka

    2014-01-01

    Recent studies have revealed negligible immunogenicity of induced pluripotent stem (iPS) cells in syngeneic mice and in autologous monkeys. Therefore, human iPS cells would not elicit immune responses in the autologous setting. However, given that human leukocyte antigen (HLA)-matched allogeneic iPS cells would likely be used for medical applications, a more faithful model system is needed to reflect HLA-matched allogeneic settings. Here we examined whether iPS cells induce immune responses in the swine leukocyte antigen (SLA)-matched setting. iPS cells were generated from the SLA-defined C1 strain of Clawn miniature swine, which were confirmed to develop teratomas in mice, and transplanted into the testes (n = 4) and ovary (n = 1) of C1 pigs. No teratomas were found in pigs on 47 to 125 days after transplantation. A Mixed lymphocyte reaction revealed that T-cell responses to the transplanted MHC-matched (C1) iPS cells were significantly lower compared to allogeneic cells. The humoral immune responses were also attenuated in the C1-to-C1 setting. More importantly, even MHC-matched iPS cells were susceptible to innate immunity, NK cells and serum complement. iPS cells lacked the expression of SLA class I and sialic acids. The in vitro cytotoxic assay showed that C1 iPS cells were targeted by NK cells and serum complement of C1. In vivo, the C1 iPS cells developed larger teratomas in NK-deficient NOG (T-B-NK-) mice (n = 10) than in NK-competent NOD/SCID (T-B-NK+) mice (n = 8) (p<0.01). In addition, C1 iPS cell failed to form teratomas after incubation with the porcine complement-active serum. Taken together, MHC-matched iPS cells can attenuate cellular and humoral immune responses, but still susceptible to innate immunity in pigs.

  13. Molecular mapping of four blast resistance genes using recombinant inbred lines of 93-11 and nipponbare

    USDA-ARS?s Scientific Manuscript database

    Molecular mapping of new blast resistance genes is important for developing resistant rice cultivars using marker-assisted selection. In this study, 259 recombinant inbred lines (RILs) were developed from a cross between Nipponbare and 93-11, and were used to construct a 1165.8-cM linkage map with 1...

  14. Novel approach to the behavioural characterization of inbred mice: automated home cage observations.

    PubMed

    de Visser, L; van den Bos, R; Kuurman, W W; Kas, M J H; Spruijt, B M

    2006-08-01

    Here we present a newly developed tool for continuous recordings and analysis of novelty-induced and baseline behaviour of mice in a home cage-like environment. Aim of this study was to demonstrate the strength of this method by characterizing four inbred strains of mice, C57BL/6, DBA/2, C3H and 129S2/Sv, on locomotor activity. Strains differed in circadian rhythmicity, novelty-induced activity and the time-course of specific behavioural elements. For instance, C57BL/6 and DBA/2 mice showed a much faster decrease in activity over time than C3H and 129S2/Sv mice. Principal component analysis revealed two major factors within locomotor activity, which were defined as 'level of activity' and 'velocity/stops'. These factors were able to distinguish strains. Interestingly, mice that displayed high levels of activity in the initial phase of the home cage test were also highly active during an open-field test. Velocity and the number of stops during movement correlated positively with anxiety-related behaviour in the elevated plus maze. The use of an automated home cage observation system yields temporal changes in elements of locomotor activity with an advanced level of spatial resolution. Moreover, it avoids the confounding influence of human intervention and saves time-consuming human observations.

  15. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin.

    PubMed

    Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S

    2013-03-01

    In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characteristics of step-defined physical activity categories in U.S. adults..

    PubMed

    Sisson, Susan B; Camhi, Sarah M; Tudor-Locke, Catrine; Johnson, William D; Katzmarzyk, Peter T

    2012-01-01

    Descriptive physical activity epidemiology of the U.S. population is critical for program development and resource allocation. The purpose of this project was to describe step-defined categories (as measured by accelerometer) of U.S. adults and to determine predictors of sedentary classification (<5000 steps/d). The National Health and Nutrition Examination Survey (NHANES) is an annual, nationally representative survey used to determine the health status of the U.S. populace. In-home interviews and physical examination components of NHANES. Overall, 4372 eligible adults wore accelerometers in the 2005-2006 NHANES; 628 were excluded, which yielded 3744 adults (of which 46.8% were men). Steps per day; body mass index (BMI); demographic, household and behavioral variables. Means and frequencies were calculated. Logistic regression was utilized to determine predictors of sedentary classification. Overall, 36.1% were sedentary (i.e., <5000 steps/d); 47.6% were low to somewhat active (5000-9999 steps/d); 16.3% were active to highly active (≥10,000 steps/d). Advancing age (odds ratio [OR], 1.95; confidence intervals [CIs], 1.78, 2.13), higher BMI (OR, 1.40; CIs, 1.23, 1.59), female sex (OR, 1.86; CIs, 1.46, 2.36), African-American versus European-American ethnicity (OR, 1.36; CIs, 1.13, 1.65), household income versus ≥$45,000 (<$25,000: OR, 1.94; CIs, 1.40, 2.69; $25,000-$44,000: OR, 1.51; CIs, 1.23, 1.85), and current versus never smoker (OR, 1.53; CIs, 1.26, 1.86) variables had higher odds of sedentary classification. Usual daily occupational/domestic physical activity categories of standing/walking (OR, .51; CIs, .38, .69); lifting/climbing (OR, .26; CIs, .17, .38); and heavy loads/labor (OR, .16; CIs, .10, .26) had lower odds of sedentary classification than sitting. Over one-third of the U.S. population was classified as sedentary by accelerometer-determined steps per day, and several characteristics predicted sedentary classification.

  17. A Distinctive Cytoplasmic Tail Contributes to Low Surface Expression and Intracellular Retention of the Patr-AL MHC class I molecule1

    PubMed Central

    Goyos, Ana; Guethlein, Lisbeth A.; Horowitz, Amir; Hilton, Hugo G.; Gleimer, Michael; Brodsky, Frances M.; Parham, Peter

    2015-01-01

    Chimpanzees have orthologs of the six, fixed, functional human MHC class I genes. But in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T-cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different as shown using specific monoclonal and polyclonal antibodies made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules. PMID:26371256

  18. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  19. How do older adult drivers self-regulate? Characteristics of self-regulation classes defined by latent class analysis.

    PubMed

    Bergen, Gwen; West, Bethany A; Luo, Feijun; Bird, Donna C; Freund, Katherine; Fortinsky, Richard H; Staplin, Loren

    2017-06-01

    Motor-vehicle crashes were the second leading cause of injury death for adults aged 65-84years in 2014. Some older drivers choose to self-regulate their driving to maintain mobility while reducing driving risk, yet the process remains poorly understood. Data from 729 older adults (aged ≥60years) who joined an older adult ride service program between April 1, 2010 and November 8, 2013 were analyzed to define and describe classes of driving self-regulation. Latent class analysis was employed to characterize older adult driving self-regulation classes using driving frequency and avoidance of seven driving situations. Logistic regression was used to explore associations between characteristics affecting mobility and self-regulation class. Three classes were identified (low, medium, and high self-regulation). High self-regulating participants reported the highest proportion of always avoiding seven risky driving situations and the lowest driving frequency followed by medium and low self-regulators. Those who were female, aged 80years or older, visually impaired, assistive device users, and those with special health needs were more likely to be high self-regulating compared with low self-regulating. Avoidance of certain driving situations and weekly driving frequency are valid indicators for describing driving self-regulation classes in older adults. Understanding the unique characteristics and mobility limitations of each class can guide optimal transportation strategies for older adults. Published by Elsevier Ltd.

  20. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells.

    PubMed

    Walter, Lutz; Petersen, Beatrix

    2017-02-01

    The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells. © 2016 John Wiley & Sons Ltd.