Science.gov

Sample records for adult lung fibroblasts

  1. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  2. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here?

    PubMed

    Ruiz-Camp, Jordi; Morty, Rory E

    2015-10-15

    Lung fibroblasts play a key role in postnatal lung development, namely, the formation of the alveolar gas exchange units, through the process of secondary septation. Although evidence initially highlighted roles for fibroblasts in the production and remodeling of the lung extracellular matrix, more recent studies have described the presence of different fibroblast subsets in the developing lung. These subsets include myofibroblasts and lipofibroblasts and their precursors. These cells are believed to play different roles in alveologenesis and are localized to different regions of the developing septa. The precise roles played by these different fibroblast subsets remain unclear. Understanding the signaling pathways that control the discrete functions of these fibroblast subsets would help to clarify the roles and the regulation of lung fibroblasts during lung development. Here, we critically evaluate a recent report that described divergent fibroblast growth factor (FGF) signaling pathways in two different subsets of lung fibroblasts that express different levels of green fluorescent protein (GFP) driven by the platelet-derived growth factor receptor-α promoter. The GFP expression was used as a surrogate for lipofibroblasts (GFP(low)) and myofibroblasts (GFP(high)). It was suggested that Fgf10/Fgf1 and Fgf18/Fgfr3 autocrine pathways may be operative in GFP(low) and GFP(high) cells, respectively, and that these pathways might regulate the proliferation and migration of different fibroblast subsets during alveologenesis. These observations lay important groundwork for the further exploration of FGF function during normal lung development, as well as in aberrant lung development associated with bronchopulmonary dysplasia.

  3. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  4. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts.

    PubMed

    Blaauboer, Marjolein E; Smit, Theo H; Hanemaaijer, Roeland; Stoop, Reinout; Everts, Vincent

    2011-01-01

    In lung fibrosis tissue architecture and function is severely hampered by myofibroblasts due to excessive deposition of extracellular matrix and tissue contraction. Myofibroblasts differentiate from fibroblasts under the influence of transforming growth factor (TGF) β(1) but this process is also controlled mechanically by cytoskeletal tension. In healthy lungs, the cytoskeleton of fibroblasts is mechanically strained during breathing. In stiffer fibrotic lung tissue, this mechanical stimulus is reduced, which may influence fibroblast-to-myofibroblast differentiation. Therefore, we investigated the effect of cyclic mechanical stretch on fibroblast-to-myofibroblast differentiation. Primary normal human lung fibroblasts were grown on BioFlex culture plates and stimulated to undergo myofibroblast differentiation by 10 ng/ml TGFβ(1). Cells were either or not subjected to cyclic mechanical stretch (sinusoidal pattern, maximum elongation 10%, 0.2 Hz) for a period of 48 h on a Flexercell apparatus. mRNA expression was analyzed by real-time PCR. Cyclic mechanical loading reduced the mRNA expression of the myofibroblast marker α-smooth muscle actin and the extracellular matrix proteins type-I, type-III, and type-V collagen, and tenascin C. These outcomes indicate that fibroblast-to-myofibroblast differentiation is reduced. Cyclic mechanical loading did not change the expression of the fibronectin ED-A splice variant, but did decrease the paracrine expression of TGFβ(1), thereby suggesting a possible regulation mechanism for the observed effects. The data suggest that cyclic loading experienced by healthy lung cells during breathing may prevent fibroblasts from differentiating towards myofibroblasts. PMID:21094632

  5. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  6. Anti-fibrotic effects of theophylline on lung fibroblasts

    SciTech Connect

    Yano, Yukihiro; Yoshida, Mitsuhiro . E-mail: hiroinosaka@hotmail.com; Hoshino, Shigenori; Inoue, Koji; Kida, Hiroshi; Yanagita, Masahiko; Takimoto, Takayuki; Hirata, Haruhiko; Kijima, Takashi; Kumagai, Toru; Osaki, Tadashi; Tachibana, Isao; Kawase, Ichiro

    2006-03-17

    Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-{beta}-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-{beta}-induced {alpha}-SMA protein. A cAMP analog also inhibited TGF-{beta}-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-{beta}-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway.

  7. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    PubMed

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  8. Plasminogen activator inhibitor-1 suppresses profibrotic responses in fibroblasts from fibrotic lungs.

    PubMed

    Marudamuthu, Amarnath S; Shetty, Shwetha K; Bhandary, Yashodhar P; Karandashova, Sophia; Thompson, Michael; Sathish, Venkatachalem; Florova, Galina; Hogan, Taryn B; Pabelick, Christina M; Prakash, Y S; Tsukasaki, Yoshikazu; Fu, Jian; Ikebe, Mitsuo; Idell, Steven; Shetty, Sreerama

    2015-04-10

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically "normal" lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.

  9. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  10. The cytotoxicity and genotoxicity of hexavalent chromium in Steller sea lion lung fibroblasts compared to human lung fibroblasts.

    PubMed

    Wise, John Pierce; Wise, Sandra S; Holmes, Amie L; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-06-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on an administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  11. The Cytotoxicity and Genotoxicity of Hexavalent Chromium in Steller Sea Lion Lung Fibroblasts Compared to Human Lung Fibroblasts

    PubMed Central

    Wise, John Pierce; Wise, Sandra S.; Holmes, Amie L.; LaCerte, Carolyne; Shaffiey, Fariba; Aboueissa, AbouEl-Makarim

    2010-01-01

    In this study we directly compared soluble and particulate chromate cytotoxicity and genotoxicity in human (Homo sapiens) and sea lion (Eumetopias jubatus) lung fibroblasts. Our results show that hexavalent chromium induces increased cell death and chromosome damage in both human and sea lion cells with increasing intracellular chromium ion levels. The data further indicate that both sodium chromate and lead chromate are less cytotoxic and genotoxic to sea lion cells than human cells, based on administered dose. Differences in chromium ion uptake explained some but not all of the reduced amounts of sodium chromate-induced cell death. By contrast, uptake differences could explain the differences in sodium chromate-induced chromosome damage and particulate chromate-induced toxicity. Altogether they indicate that while hexavalent chromium induces similar toxic effects in sea lion and human cells, there are different mechanisms underlying the toxic outcomes. PMID:20211760

  12. Interstitial lung disease - adults - discharge

    MedlinePlus

    Diffuse parenchymal lung disease - discharge; Alveolitis - discharge; Idiopathic pulmonary pneumonitis - discharge; IPP - discharge; Chronic interstitial lung - discharge; Chronic respiratory interstitial lung - ...

  13. Lung Disease Including Asthma and Adult Vaccination

    MedlinePlus

    ... Healthcare Professionals Lung Disease including Asthma and Adult Vaccination Language: English Español (Spanish) Recommend on Facebook Tweet ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  14. Plasminogen activator inhibitor 1, fibroblast apoptosis resistance, and aging-related susceptibility to lung fibrosis.

    PubMed

    Huang, Wen-Tan; Akhter, Hasina; Jiang, Chunsun; MacEwen, Mark; Ding, Qiang; Antony, Veena; Thannickal, Victor John; Liu, Rui-Ming

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal lung disorder with unknown cause and no effective treatment. The incidence of and mortality from IPF increase with age, suggesting that advanced age is a major risk factor for IPF. The mechanism underlying the increased susceptibility of the elderly to IPF, however, is unknown. In this study, we show for the first time that the protein level of plasminogen activator inhibitor 1 (PAI-1), a protease inhibitor which plays an essential role in the control of fibrinolysis, was significantly increased with age in mouse lung homogenate and lung fibroblasts. Upon bleomycin challenge, old mice experienced augmented PAI-1 induction and lung fibrosis as compared to young mice. Most interestingly, we show that fewer (myo)fibroblasts underwent apoptosis and more (myo)fibroblasts with increased level of PAI-1 accumulated in the lung of old than in young mice after bleomycin challenge. In vitro studies further demonstrate that fibroblasts isolated from lungs of old mice were resistant to H2O2 and tumor necrosis factor alpha-induced apoptosis and had augmented fibrotic responses to TGF-β1, compared to fibroblasts isolated from young mice. Inhibition of PAI-1 activity with a PAI-1 inhibitor, on the other hand, eliminated the aging-related apoptosis resistance and TGF-β1 sensitivity in isolated fibroblasts. Moreover, we show that knocking down PAI-1 in human lung fibroblasts with PAI-1 siRNA significantly increased their sensitivity to apoptosis and inhibited their responses to TGF-β1. Together, the results suggest that increased PAI-1 expression may underlie the aging-related sensitivity to lung fibrosis in part by protecting fibroblasts from apoptosis.

  15. First cloned swamp buffalo produced from adult ear fibroblast cell.

    PubMed

    Tasripoo, K; Suthikrai, W; Sophon, S; Jintana, R; Nualchuen, W; Usawang, S; Bintvihok, A; Techakumphu, M; Srisakwattana, K

    2014-07-01

    The world's first cloned swamp buffalo (Bubalus bubalis) derived from adult ear skin fibroblast has been reported. Donor fibroblast cells were produced from biopsies taken from adult male ear skin and in vitro matured oocytes obtained from a slaughterhouse were used as cytoplasts. A total of 39 blastocysts and 19 morulae fresh embryos were transferred into 12 recipient buffaloes. Progesterone assays indicated establishment of pregnancy in 10 of the 12 buffaloes (83.3%) after 45 days, with six animals still pregnant at 3 months. One recipient maintained pregnancy to term and naturally delivered a 40 kg male calf after 326 days of gestation. DNA analysis showed that the cloned calf was genetically identical to the donor cells. Genotype analyses, using 12 buffalo microsatellite markers, confirmed that the cloned calf was derived from the donor cell lines. In conclusion, the present study reports, for the first time, the establishment of pregnancy and birth of the first cloned Thai swamp buffalo derived from adult ear skin fibroblast cells.

  16. Membrane glycoproteomics of fetal lung fibroblasts using LC/MS.

    PubMed

    Takakura, Daisuke; Tada, Minoru; Kawasaki, Nana

    2016-01-01

    Some aberrant N-glycosylations are being used as tumor markers, and glycoproteomics is expected to provide novel diagnosis markers and targets of drug developments. However, one has trouble in mass spectrometric glycoproteomics of membrane fraction because of lower intensity of glycopeptides in the existence of surfactants. Previously, we developed a glycopeptide enrichment method by acetone precipitation, and it was successfully applied to human serum glycoproteomics. In this study, we confirmed that this method is useful to remove the surfactants and applicable to membrane glycoproteomics. The glycoproteomic approach to the human fetal lung fibroblasts membrane fraction resulted in the identification of over 272 glycoforms on 63 sites of the 44 glycoproteins. According to the existing databases, the structural features on 41 sites are previously unreported. The most frequently occurring forms at N-glycosylation site were high-mannose type containing nine mannose residues (M9) and monosialo-fucosylated biantennary oligosaccharides. Several unexpected N-glycans, such as fucosylated complex-type and fucosylated high-mannose and/or fucosylated pauci-mannose types were found in ER and lysosome proteins. Our method provides new insights into transport, biosynthesis, and degradation of glycoproteins. PMID:26439794

  17. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    SciTech Connect

    Ohshimo, Shinichiro; Yokoyama, Akihito . E-mail: yokoyan@hiroshima-u.ac.jp; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-12-30

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-{beta}. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases.

  18. Characterization of Lung Fibroblasts More than Two Decades after Mustard Gas Exposure

    PubMed Central

    Pirzad Jahromi, Gila; Ghanei, Mostafa; Hosseini, Seyed Kazem; Shamsaei, Alireza; Gholipourmalekabadi, Mazaher; Koochaki, Ameneh; Karkuki Osguei, Nushin; Samadikuchaksaraei, Ali

    2015-01-01

    Purpose In patients with short-term exposure to the sulfur mustard gas, the delayed cellular effects on lungs have not been well understood yet. The lung pathology shows a dominant feature consistent with obliterative bronchiolitis, in which fibroblasts play a central role. This study aims to characterize alterations to lung fibroblasts, at the cellular level, in patients with delayed respiratory complications after short-term exposure to the sulfur mustard gas. Methods Fibroblasts were isolated from the transbronchial biopsies of patients with documented history of exposure to single high-dose sulfur mustard during 1985–7 and compared with the fibroblasts of control subjects. Results Compared with controls, patients’ fibroblasts were thinner and shorter, and showed a higher population doubling level, migration capacity and number of filopodia. Sulfur mustard decreased the in vitro viability of fibroblasts and increased their sensitivity to induction of apoptosis, but did not change the rate of spontaneous apoptosis. In addition, higher expression of alpha smooth muscle actin showed that the lung's microenvironment in these patients is permissive for myofibroblastic differentiation. Conclusions These findings suggest that in patients under the study, the delayed pulmonary complications of sulfur mustard should be considered as a unique pathology, which might need a specific management by manipulation of cellular components. PMID:26679937

  19. Fibulin's organization into the extracellular matrix of fetal lung fibroblasts is dependent on fibronectin matrix assembly.

    PubMed

    Roman, J; McDonald, J A

    1993-05-01

    Fibulin is a newly described extracellular matrix (ECM) glycoprotein whose function has not been elucidated. We have observed that cultured fetal lung fibroblasts produce fibulin and have postulated that its expression may be important during lung development. To begin to understand the potential function of fibulin in lung development, we examined its expression and distribution in cultured fetal lung fibroblasts. Immunofluorescence staining of cultured fibroblasts revealed that fibulin was distributed upon their surface in a fibrillar array resembling fibronectin (FN), another ECM glycoprotein expressed by fetal lung fibroblasts and implicated in lung and heart development. Detection of fibulin by immunofluorescence staining of nonpermeabilized cells, its immunoprecipitation from 125I-cell surface-labeled fibroblasts, pulse-chase analysis, and temperature-induced phase separation studies revealed that fibulin is an ECM peripheral membrane protein that is synthesized and secreted by cultured fetal lung fibroblasts shortly after plating and incorporated into their matrix in a divalent cation-dependent manner. Because fibulin co-distributes with both FN and the FN receptor, the integrin alpha 5 beta 1, we examined the possibility that fibulin was interacting with both components. Dissociation of FN receptors from FN fibers with anti-FN receptor antibodies did not affect fibulin's distribution, suggesting that fibulin binds FN and that this interaction is not affected by the state of FN receptor binding. Finally, inhibition of FN matrix assembly prevented the deposition of fibulin, providing further support for FN-fibulin interactions and suggesting that fibulin deposition is dependent on FN matrix assembly. PMID:8481235

  20. [Lung pneumatocele in adult patient - case report].

    PubMed

    Dzian, A; Fúčela, I; Hamžík, J; Huťka, Z; Stiegler, P

    2012-12-01

    Lung pneumatoceles are characterized by a thin-walled air-filled cavity present in lung parenchyma. Mostly they are the result of acute bronchopneumonia after spontaneous drainage of altered lung parenchyma with subsequent development and progression of cavities due to ventile mechanism. This disease is more prevalent in infants and young children, it is rather rare in adults. In the present case report, videothoracoscopy resection of lung pneumatocele of the right lower lobe was performed a 43-years old man. The operation was indicated for the presence of chronic persisting and progressing pneumatocele as a preventive measure of pneumatocele complications. PMID:23448707

  1. Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase.

    PubMed

    Xu, Xuefeng; Dai, Huaping; Geng, Jing; Wan, Xuan; Huang, Xiaoxi; Li, Fei; Jiang, Dianhua; Wang, Chen

    2015-08-01

    Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis. PMID:26192087

  2. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    PubMed Central

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  3. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    PubMed

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05). Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05). APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a dose

  4. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    PubMed

    Yao, Rong; Cao, Yu; He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05). Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05). APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a dose

  5. Adiponectin Attenuates Lung Fibroblasts Activation and Pulmonary Fibrosis Induced by Paraquat

    PubMed Central

    He, Ya-rong; Lau, Wayne Bond; Zeng, Zhi; Liang, Zong-an

    2015-01-01

    Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN) may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR). Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR) 1 small-interfering RNA (siRNA) group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8) and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05). Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05). APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a dose

  6. DNA fragmentation in developing lung fibroblasts exposed to Stachybotrys chartarum (atra) toxins.

    PubMed

    McCrae, K C; Rand, T G; Shaw, R A; Mantsch, H H; Sowa, M G; Thliveris, J A; Scott, J E

    2007-07-01

    Stachybotrys chartarum (atra) is a toxic mold that grows on water-damaged cellulose-based materials. Research has revealed also that inhalation of S. chartarum spores caused marked changes in respiratory epithelium, especially to developing lungs. We analyzed the epigenetic potential of S. chartarum spore toxins on developing rat lung fibroblasts using single cell gel electrophoresis (comet assay). Isolated fetal lung fibroblasts were exposed to S. chartarum spore toxins for 15 min, 3, 14, or 24 hr and control cells were exposed to saline under the same conditions. Cells were embedded in agarose, electrophoresed under alkaline conditions and silver stained. DNA damage was assessed in terms of fragmentation as measured by comet tail length (DNA migration) and intensity (% DNA contained within head and tail). Upon visual inspection, control fibroblasts showed no DNA fragmentation whereas S. chartarum-treated cells had definable comets of various degrees depending upon the time-course. Analyses of the comets revealed that exposure to S. chartarum spore toxins for at least 15 min to 14 hr, induced increased DNA fragmentation in a time-dependent manner. The fact that exposure to toxins for 24 hr showed less damage suggested that developing lung fibroblasts may have the capability of repairing DNA fragmentation. PMID:17534970

  7. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    SciTech Connect

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  8. The role of stromal fibroblasts in lung carcinogenesis: A target for chemoprevention?

    PubMed

    Mahale, Jagdish; Smagurauskaite, Gintare; Brown, Karen; Thomas, Anne; Howells, Lynne M

    2016-01-01

    The tumour microenvironment plays an essential role in the development and spread of cancers. Tumour cells interact with the surrounding extracellular matrix (ECM), embedded within which, are a variety of non-cancer cells including cells of the vasculature, immune system and fibroblasts. The essential role of fibroblasts in the cultivation and maintenance of an environment in which tumour cells are able to maintain their aggressive phenotypic traits is becoming increasingly well documented. Cancer-associated fibroblasts are able to secrete a vast array of ECM-modulating factors, meaning that they have potential for a functional role in every step of the carcinogenic process. In particular, they are likely to have a role in early tumour-initiating inflammatory events, and so may provide a potential target for chemopreventive intervention. This review summarises the known interactions between lung tumour cells and surrounding reactive fibroblasts, highlighting the need to further investigate cancer-associated fibroblasts as therapeutic targets in lung cancer chemoprevention strategies. PMID:25611701

  9. Primary mouse lung fibroblasts help macrophages to tackle Mycobacterium tuberculosis more efficiently and differentiate into myofibroblasts up on bacterial stimulation.

    PubMed

    Verma, Subash Chand; Agarwal, Pooja; Krishnan, Manju Y

    2016-03-01

    Keeping with their classical role in wound healing, fibroblasts of the lung take part in the resolution of tubercular granulomas. They are totally absent in nascent granulomas, but surround necrotizing granulomas, and are the majority of cells in healed granulomas. Lung fibroblasts may become infected with Mycobacterium tuberculosis (Mtb). Two previous studies suggested an immunomodulatory effect of fibroblasts on infected macrophages. In the present study, we looked at the role of primary mouse lung fibroblasts on naive or activated mouse bone marrow macrophages infected with Mtb and the effect of infection on fibroblast properties. We observed that with fibroblasts in the vicinity, infected naive macrophages restricted the bacterial growth, while activated macrophages turned more bactericidal with concomitant increase in nitrite production. Neutralizing IL-1α in fibroblast supernatant reduced the nitrite production by infected macrophages. Secretion of IL-6 and MCP-1 was down-regulated, while TNF-α was up-regulated in infected naive macrophages. In infected activated macrophages, the secretion of IL-6 was up-regulated, while that of MCP-1 and TNF-α was unaffected. The 'fibroblast effects' were enhanced when the fibroblasts too were infected. Mtb induced IL-1 secretion and pro-fibrotic responses by fibroblasts. Mtb-induced myofibroblast conversion was blocked by rapamycin suggesting cell signalling via mTOR.

  10. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice

    PubMed Central

    Godin, Lindsay M.; Sandri, Brian J.; Wagner, Darcy E.; Meyer, Carolyn M.; Price, Andrew P.; Akinnola, Ifeolu; Weiss, Daniel J.; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases. PMID:26954258

  11. Time-lapse cinematographic analysis of beryllium--lung fibroblast interactions.

    PubMed

    Absher, M; Sylwester, D; Hart, B A

    1983-02-01

    The proliferative response to beryllium chloride of cells in a population of human lung fibroblasts was quantitatively assessed using time-lapse cinematography. A dose of 0.02 microgram Be/ml, known to decrease the growth rate of fibroblasts, affects an estimated 75% of the cells in the population, increasing their interdivision time (IDT) by approximately 5 hr. The differences in mean 1n(IDT) between treated and control cells were essentially constant for comparable culture sizes ranging from 25 to 250 cells. There was no correlation between mother and daughter cell IDTs in control or treated culture at any culture size. IDTs of sister pairs were highly correlated in control cultures at selected culture sizes while sister pair IDTs of treated cultures were not. The data suggest that while beryllium alters the IDT of fibroblasts, an effect not related to culture size, any given cell affected by beryllium does not impart effects of the mineral to its progeny.

  12. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  13. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling

    PubMed Central

    Correll, Kelly; Schiel, John A.; Finigan, Jay H.; Prekeris, Rytis; Mason, Robert J.

    2014-01-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. PMID:24748602

  14. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    PubMed

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  15. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    PubMed

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  16. [Morphological changes in human embryonic lung fibroblasts caused by cytotoxins of various Clostridium species].

    PubMed

    Schallehn, G; Wolff, M H

    1988-01-01

    A total of 243 strains of 35 Clostridium species were tested for cytotoxin production in cooked meat medium or liver broth within 48-72 h at 37 degrees C, using human embryonal lung fibroblasts in tissue-culture as indicator cells. Cytotoxin could be detected in the culture-filtrates of all toxigenic strains of C. chauvoei, C. difficile, C. histolyticum, C. novyi types A and B, C. septicum and C. tetani, but not in the atoxigenic ones. The cytotoxin of C. novyi correlated with alpha-toxin in the culture filtrate. All strains of C. perfringens and C. novyi D tested were not cytotoxic for lung fibroblasts despite their pathogenicity for guinea-pigs. Further cytotoxigenic strains were found among C. hastiforme, C. limosum, C. oceanicum, C. putrificum, C. ramosum, C. sordellii, C. sporogenes, and C. subterminale. The morphological changes in lung fibroblasts caused by the culture filtrates were characteristic and species-specific and corresponded with pathogenicity for guinea-pigs and/or mice. No cytotoxin was produced by C. absonum, C. barati, C. bifermentans, C. botulinum (atoxic), C. butyricum, C. cadaveris, C. carnis, C. clostridioforme, C. cochlearium, C. glycolicum, C. innocuum, C. malenominatum, C. mangenotii, C. paraputrificum, C. putrefaciens, C. rectum, C. tertium, and C. tyrobutyricum.

  17. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  18. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts

    PubMed Central

    Scaffidi, Amelia K; Mutsaers, Steven E; Moodley, Yuben P; McAnulty, Robin J; Laurent, Geoffrey J; Thompson, Philip J; Knight, Darryl A

    2002-01-01

    Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation.We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 – 100 ng ml−1) were assessed using a MTS assay as well as [3H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining.OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml−1 OSM (P<0.05).Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05).In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E2 (PGE2) release or by IL-6.OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05).OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h.These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis. PMID:12086989

  19. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  20. Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta(1) and interferon-gamma.

    PubMed

    Venkatesan, Narayanan; Roughley, Peter J; Ludwig, Mara S

    2002-10-01

    Bleomycin (BM)-induced pulmonary fibrosis involves excess production of proteoglycans (PGs). Because transforming growth factor-beta(1) (TGF-beta(1)) promotes fibrosis, and interferon-gamma (IFN-gamma) inhibits it, we hypothesized that TGF-beta(1) treatment would upregulate PG production in fibrotic lung fibroblasts, and IFN-gamma would abrogate this effect. Primary lung fibroblast cultures were established from rats 14 days after intratracheal instillation of saline (control) or BM (1.5 units). PGs were extracted and subjected to Western blot analysis. Bleomycin-exposed lung fibroblasts (BLF) exhibited increased production of versican (VS), heparan sulfate proteoglycan (HSPG), and biglycan (BG) compared with normal lung fibroblasts (NLF). Compared with NLF, BLF released significantly increased amounts of TGF-beta(1). TGF-beta(1) (5 ng/ml for 48 h) upregulated PG expression in both BLF and NLF. Incubation of BLF with anti-TGF-beta antibody (1, 5, and 10 microg/ml) inhibited PG expression in a dose-dependent manner. Treatment of BLF with IFN-gamma (500 U. ml(-1) x 48 h) reduced VS, HSPG, and BG expression. Furthermore, IFN-gamma inhibited TGF-beta(1)-induced increases in PG expression by these fibroblasts. Activation of fibroblasts by TGF-beta(1) promotes abnormal deposition of PGs in fibrotic lungs; downregulation of TGF-beta(1) by IFN-gamma may have potential therapeutic benefits in this disease. PMID:12225958

  1. Conditioned medium from irradiated bovine pulmonary artery endothelial cells stimulates increased protein synthesis by irradiated bovine lung fibroblasts in vitro

    SciTech Connect

    Flavin, M.P.; Parton, L.A.; Bowman, C.M. )

    1990-09-01

    Pulmonary fibrosis, a potentially fatal consequence of radiation exposure, occurs by unknown mechanisms. The hypothesis that endothelial cells, injured by radiation, could alter the biochemical function of lung fibroblasts, was tested by exposing cultures of bovine pulmonary artery endothelial cells to 0 or 5 Gy radiation and then incubating them in fresh medium for 48 h. This endothelial cell conditioned medium (ECCM) was then applied to irradiated or nonirradiated cultures of bovine lung fibroblasts. Forty-eight hours later the fibroblasts were analyzed for their ability to synthesize DNA and protein. The ECCM from injured cells stimulated fibroblast protein synthesis twofold to threefold in irradiated fibroblasts without increasing DNA synthesis. It also stimulated a significant but less marked increase in protein synthesis in nonirradiated fibroblasts. Two-dimensional gel electrophoresis revealed this increased synthesis to be expressed in less than 10% of the 1100 separable fibroblast proteins. This study shows that endothelial cells injured by radiation produce factors that stimulate injured fibroblasts to markedly increase their synthesis of certain intracellular proteins, while not stimulating fibroblast replication.

  2. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis.

    PubMed

    Shimbori, Chiko; Bellaye, Pierre-Simon; Xia, Jiaji; Gauldie, Jack; Ask, Kjetil; Ramos, Carlos; Becerril, Carina; Pardo, Annie; Selman, Moises; Kolb, Martin

    2016-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Fibroblast growth factor-1 (FGF-1) belongs to the FGF family and has been shown to inhibit fibroblast collagen production and differentiation into myofibroblasts, and revert epithelial-mesenchymal transition by inhibiting TGF-β1 signalling pathways. However, the precise role of FGF-1 in pulmonary fibrosis has not yet been elucidated. In this study, we explore the mechanisms underlying the anti-fibrogenic effect of FGF-1 in pulmonary fibrosis in vitro and in vivo by prolonged transient overexpression of FGF-1 (AdFGF-1) and TGF-β1 (AdTGF-β1) using adenoviral vectors. In vivo, FGF-1 overexpression markedly attenuated TGF-β1-induced pulmonary fibrosis in rat lungs when given both concomitantly, or delayed, by enhancing proliferation and hyperplasia of alveolar epithelial cells (AECs). AdFGF-1 also attenuated the TGF-β1 signalling pathway and induced FGFR1 expression in AECs. In vitro, AdFGF-1 prevented the increase in α-SMA and the decrease in E-cadherin induced by AdTGF-β1 in normal human lung fibroblasts, primary human pulmonary AECs, and A549 cells. Concomitantly, AdTGF-β1-induced Smad2 phosphorylation was significantly reduced by AdFGF-1 in both cell types. AdFGF-1 also attenuated the increase in TGFβR1 protein and mRNA levels in fibroblasts. In AECs, AdFGF-1 decreased TGFβR1 protein by favouring TGFβR1 degradation through the caveolin-1/proteasome pathway. Furthermore, FGFR1 expression was increased in AECs, whereas it was decreased in fibroblasts. In serum of IPF patients, FGF-1 levels were increased compared to controls. Interestingly, FGF-1 expression was restricted to areas of AEC hyperplasia, but not α-SMA-positive areas in IPF lung tissue. Our results demonstrate that FGF-1 may have preventative and therapeutic effects on TGF-β1-driven pulmonary fibrosis via inhibiting

  3. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis.

    PubMed

    Shimbori, Chiko; Bellaye, Pierre-Simon; Xia, Jiaji; Gauldie, Jack; Ask, Kjetil; Ramos, Carlos; Becerril, Carina; Pardo, Annie; Selman, Moises; Kolb, Martin

    2016-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Fibroblast growth factor-1 (FGF-1) belongs to the FGF family and has been shown to inhibit fibroblast collagen production and differentiation into myofibroblasts, and revert epithelial-mesenchymal transition by inhibiting TGF-β1 signalling pathways. However, the precise role of FGF-1 in pulmonary fibrosis has not yet been elucidated. In this study, we explore the mechanisms underlying the anti-fibrogenic effect of FGF-1 in pulmonary fibrosis in vitro and in vivo by prolonged transient overexpression of FGF-1 (AdFGF-1) and TGF-β1 (AdTGF-β1) using adenoviral vectors. In vivo, FGF-1 overexpression markedly attenuated TGF-β1-induced pulmonary fibrosis in rat lungs when given both concomitantly, or delayed, by enhancing proliferation and hyperplasia of alveolar epithelial cells (AECs). AdFGF-1 also attenuated the TGF-β1 signalling pathway and induced FGFR1 expression in AECs. In vitro, AdFGF-1 prevented the increase in α-SMA and the decrease in E-cadherin induced by AdTGF-β1 in normal human lung fibroblasts, primary human pulmonary AECs, and A549 cells. Concomitantly, AdTGF-β1-induced Smad2 phosphorylation was significantly reduced by AdFGF-1 in both cell types. AdFGF-1 also attenuated the increase in TGFβR1 protein and mRNA levels in fibroblasts. In AECs, AdFGF-1 decreased TGFβR1 protein by favouring TGFβR1 degradation through the caveolin-1/proteasome pathway. Furthermore, FGFR1 expression was increased in AECs, whereas it was decreased in fibroblasts. In serum of IPF patients, FGF-1 levels were increased compared to controls. Interestingly, FGF-1 expression was restricted to areas of AEC hyperplasia, but not α-SMA-positive areas in IPF lung tissue. Our results demonstrate that FGF-1 may have preventative and therapeutic effects on TGF-β1-driven pulmonary fibrosis via inhibiting

  4. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    NASA Technical Reports Server (NTRS)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  5. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.

  6. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay

    PubMed Central

    2013-01-01

    Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets

  7. Human lung fibroblasts express interleukin-6 in response to signaling after mast cell contact.

    PubMed

    Fitzgerald, S Matthew; Lee, Steven A; Hall, H Kenton; Chi, David S; Krishnaswamy, Guha

    2004-04-01

    Asthma is a chronic inflammatory disease of the airways. Mast cell-derived cytokines may mediate both airway inflammation and remodeling. It has also been shown that fibroblasts can be the source of proinflammatory cytokines. In the human airways, mast cell-fibroblast interactions may have pivotal effects on modulating inflammation. To study this further, we cocultured normal human lung fibroblasts (NHLF) with a human mast cell line (HMC-1) and assayed for production of interleukin (IL)-6, an important proinflammatory cytokine. When cultured together, NHLF/HMC-1 contact induced IL-6 secretion. Separation of HMC-1 and NHLF cells by a porous membrane inhibited this induction. HMC-1-derived cellular membranes caused an increase in IL-6 production in NHLF. Activation of p38 MAPK was also seen in cocultures by Western blot, whereas IL-6 production in cocultures was significantly inhibited by the p38 inhibitor SB203580. IL-6 production in cocultures was minimally inhibited by a chemical inhibitor of nuclear factor-kappaB (Bay11), indicating that nuclear factor-kappaB may have a minimal role in signaling IL-6 production in mast cell/fibroblasts cocultures. Blockade of inter-cellular adhesion molecule-1, tumor necrosis factor-RI, and surface IL-1beta with neutralizing antibodies failed to significantly decrease IL-6 production in our coculture, indicating that other receptor-ligand associations may be responsible for this activation. These novel studies reveal the importance of cell-cell interactions in the complex milieu of airway inflammation.

  8. Chronic suppurative lung disease in adults

    PubMed Central

    Mangardich, Antranik

    2016-01-01

    Chronic suppurative lung disease (CSLD), characterized by a bronchiectasis-like syndrome in the absence of bronchial dilatation, is well described in the pediatric literature. In some patients, it may be a precursor of bronchiectasis. In adults, this syndrome has not been well described. We present four adult patients without obvious causative exposures who presented with prolonged cough and purulent sputum. Sputum cultures revealed a variety of Gram negative bacteria, fungi and mycobacteria. High resolution CT scanning did not reveal bronchiectasis. Evaluation revealed underlying causes including immunodeficiency in two, and Mycobacterium avium infection. One patient subsequently developed bronchiectasis. All patients improved with therapy. CSLD occurs in adults and has characteristics that distinguish it from typical chronic bronchitis. These include the lack of causative environmental exposures and infection with unusual pathogens. Evaluation and treatment of these patients similar to bronchiectasis patients may lead to clinical improvement. PMID:27747039

  9. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin.

    PubMed Central

    Elias, J A; Krol, R C; Freundlich, B; Sampson, P M

    1988-01-01

    Mononuclear cells may be important regulators of fibroblast glycosaminoglycan (GAG) biosynthesis. However, the soluble factors mediating these effects, the importance of intercytokine interactions in this regulation and the mechanisms of these alterations remain poorly understood. We analyzed the effect of recombinant (r) tumor necrosis factor (TNF), lymphotoxin (LT), and gamma, alpha, and beta 1 interferons (INF-gamma, -alpha and -beta 1), alone and in combination, on GAG production by normal human lung fibroblasts. rTNF, rLT, and rINF-gamma each stimulated fibroblast GAG production. In addition, rIFN-gamma synergized with rTNF and rLT to further augment GAG biosynthesis. In contrast, IFN-alpha A, -alpha D, and -beta 1 neither stimulated fibroblast GAG production nor interacted with rTNF or rLT to regulate GAG biosynthesis. The effects of the stimulatory cytokines and cytokine combinations were dose dependent and were abrogated by the respective monoclonal antibodies. In addition, these cytokines did not cause an alteration in the distribution of GAG between the fibroblast cell layer and supernatant. However, the stimulation was at least partially specific for particular GAG moieties with hyaluronic acid biosynthesis being markedly augmented without a comparable increase in the production of sulfated GAGs. Fibroblast prostaglandin production did not mediate these alterations since indomethacin did not decrease the stimulatory effects of the cytokines. In contrast, protein and mRNA synthesis appeared to play a role since the stimulatory effects of the cytokines were abrogated by cyclohexamide and actinomycin D, respectively. In addition, the cytokines and cytokine combinations increased cellular hyaluronate synthetase activity in proportion to their effects on hyaluronic acid suggesting that induction of this enzyme(s) is important in this stimulatory process. These studies demonstrate that IFN-gamma, TNF, and LT are important stimulators of fibroblast GAG

  10. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis.

    PubMed

    O'Dwyer, David N; Ashley, Shanna L; Moore, Bethany B

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by accumulation of extracellular matrix (ECM) and impaired gas exchange. The pathobiological mechanisms that account for disease progression are poorly understood but likely involve alterations in innate inflammatory cells, epithelial cells, and fibroblasts. Thus we seek to review the most recent literature highlighting the complex roles of neutrophils and macrophages as both promoters of fibrosis and defenders against infection. With respect to epithelial cells and fibroblasts, we review the data suggesting that defective autophagy promotes the fibrogenic potential of both cell types and discuss new evidence related to matrix metalloproteinases, growth factors, and cellular metabolism in the form of lactic acid generation that may have consequences for promoting fibrogenesis. We discuss potential cross talk between innate and structural cell types and also highlight literature that may help explain the limitations of current IPF therapies. PMID:27474089

  11. Epigenetic contributions to the developmental origins of adult lung disease.

    PubMed

    Joss-Moore, Lisa A; Lane, Robert H; Albertine, Kurt H

    2015-04-01

    Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.

  12. Sulfate transport in human lung fibroblasts (IMR-90): effect of pH and anions

    SciTech Connect

    Elgavish, A.; Meezan, E.

    1989-03-01

    We previously reported the presence of a carrier-mediated sulfate transport system in human lung fibroblasts (IMR-90). Kinetic studies carried out in the lung fibroblasts show that Cl- inhibits SO4(2-) uptake in a competitive manner. Taken together with the fact that high extracellular Cl- stimulates SO4(2-) efflux, these results suggest that SO4(2-) uptake into lung fibroblasts occurs via a SO4(2-)-Cl- exchange mechanism. Extracellular HCO3- inhibits sulfate influx in a competitive manner (pH 7.5) but has no marked effect on sulfate efflux. SO4(2-) and HCO3- may therefore have the ability to bind to a common extracellular anion binding site, but they do not appear to exchange for one another. Lowering extracellular pH has a stimulatory effect on the initial rate of sulfate uptake. The pK of the extracellular pH effect is around pH 7.0, indicating that small changes in the extracellular pH around the ambient levels encountered under physiological conditions will markedly affect sulfate influx into the cell. Kinetic studies suggest that lowering extracellular pH increases the initial rate of sulfate influx by increasing the affinity of the carrier for sulfate twofold. Lowering intracellular pH inhibits the initial rate of sulfate influx into the cell. The pK of this intracellular pH effect is also around pH 7.0, indicating that physiological levels of intracellular protons are necessary for the normal activity of the anion exchanger.

  13. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.

  14. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    PubMed

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. PMID:24823294

  15. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis

    PubMed Central

    Chen, Huaping; Qu, Jing; Huang, Xiangwei; Kurundkar, Ashish; Zhu, Lanyan; Yang, Naiheng; Venado, Aida; Ding, Qiang; Liu, Gang; Antony, Veena B.; Thannickal, Victor J.; Zhou, Yong

    2016-01-01

    Matrix stiffening is a prominent feature of pulmonary fibrosis. In this study, we demonstrate that matrix stiffness regulates the ability of fibrotic lung myofibroblasts to invade the basement membrane (BM). We identify α6-integrin as a mechanosensing integrin subunit that mediates matrix stiffness-regulated myofibroblast invasion. Increasing α6-expression, specifically the B isoform (α6B), couples β1-integrin to mediate MMP-2-dependent pericellular proteolysis of BM collagen IV, leading to myofibroblast invasion. Human idiopathic pulmonary fibrosis lung myofibroblasts express high levels of α6-integrin in vitro and in vivo. Genetic ablation of α6 in collagen-expressing mesenchymal cells or pharmacological blockade of matrix stiffness-regulated α6-expression protects mice against bleomycin injury-induced experimental lung fibrosis. These findings suggest that α6-integrin is a matrix stiffness-regulated mechanosensitive molecule which confers an invasive fibroblast phenotype and mediates experimental lung fibrosis. Targeting this mechanosensing α6(β1)-integrin offers a novel anti-fibrotic strategy against lung fibrosis. PMID:27535718

  16. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients.

    PubMed

    Yanai, Hagai; Shteinberg, Albert; Porat, Ziv; Budovsky, Arie; Braiman, Alex; Ziesche, Rolf; Zeische, Rolf; Fraifeld, Vadim E

    2015-09-01

    Idiopathic pulmonary fibrosis (IPF) is an age-related fatal disease with unknown etiology and no effective treatment. In this study, we show that primary cultures of fibroblasts derived from lung biopsies of IPF patients exhibited (i) accelerated replicative cellular senescence (CS); (ii) high resistance to oxidative-stress-induced cytotoxicity or CS; (iii) a CS-like morphology (even at the proliferative phase); and (iv) rapid accumulation of senescent cells expressing the myofibroblast marker α-SMA. Our findings suggest that CS could serve as a bridge connecting lung aging and its quite frequent outcome -- pulmonary fibrosis, and be an important player in the disease progression. Consequently, targeting senescent cells offers the potential of being a promising therapeutic approach.

  17. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts.

    PubMed

    Vizoso, Miguel; Puig, Marta; Carmona, F Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-12-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  18. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  19. Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair

    NASA Astrophysics Data System (ADS)

    Micera, Alessandra; Vigneti, Eliana; Pickholtz, Dalia; Reich, Reuven; Pappo, Orit; Bonini, Sergio; Maquart, François Xavier; Aloe, Luigi; Levi-Schaffer, Francesca

    2001-05-01

    Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.

  20. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells.

    PubMed

    Fang, Mingming; Xia, Jun; Wu, Xiaoyan; Kong, Hui; Wang, Hong; Xie, Weiping; Xu, Yong

    2013-08-01

    Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.

  1. WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts

    PubMed Central

    Klee, S.; Lehmann, M.; Wagner, D. E.; Baarsma, H. A.; Königshoff, M.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα. PMID:26867691

  2. Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts.

    PubMed

    Capistrano, Sarah J; Zakarya, Razia; Chen, Hui; Oliver, Brian G

    2016-01-01

    Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases

  3. Biomass Smoke Exposure Enhances Rhinovirus-Induced Inflammation in Primary Lung Fibroblasts

    PubMed Central

    Capistrano, Sarah J.; Zakarya, Razia; Chen, Hui; Oliver, Brian G.

    2016-01-01

    Biomass smoke is one of the major air pollutants and contributors of household air pollution worldwide. More than 3 billion people use biomass fuels for cooking and heating, while other sources of exposure are from the occurrence of bushfires and occupational conditions. Persistent biomass smoke exposure has been associated with acute lower respiratory infection (ALRI) as a major environmental risk factor. Children under the age of five years are the most susceptible in developing severe ALRI, which accounts for 940,000 deaths globally. Around 90% of cases are attributed to viral infections, such as influenza, adenovirus, and rhinovirus. Although several epidemiological studies have generated substantial evidence of the association of biomass smoke and respiratory infections, the underlying mechanism is still unknown. Using an in vitro model, primary human lung fibroblasts were stimulated with biomass smoke extract (BME), specifically investigating hardwood and softwood types, and human rhinovirus-16 for 24 h. Production of pro-inflammatory mediators, such as IL-6 and IL-8, were measured via ELISA. Firstly, we found that hardwood and softwood smoke extract (1%) up-regulate IL-6 and IL-8 release (p ≤ 0.05). In addition, human rhinovirus-16 further increased biomass smoke-induced IL-8 in fibroblasts, in comparison to the two stimulatory agents alone. We also investigated the effect of biomass smoke on viral susceptibility by measuring viral load, and found no significant changes between BME exposed and non-exposed infected fibroblasts. Activated signaling pathways for IL-6 and IL-8 production by BME stimulation were examined using signaling pathway inhibitors. p38 MAPK inhibitor SB239063 significantly attenuated IL-6 and IL-8 release the most (p ≤ 0.05). This study demonstrated that biomass smoke can modulate rhinovirus-induced inflammation during infection, which can alter the severity of the disease. The mechanism by which biomass smoke exposure increases

  4. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts.

    PubMed

    Fang, Li-Ping; Lin, Qing; Tang, Chao-Shu; Liu, Xin-Min

    2009-12-01

    We previously reported that hydrogen sulfide (H(2)S) was implicated in the pathogenesis of bleomycin-induced pulmonary fibrosis in rat, but the cellular mechanisms underlying the role it played were not well characterized. The present study was undertaken to investigate the role of the exogenous H(2)S in human lung fibroblast (MRC5) migration, proliferation and myofibroblast transdifferentiation induced by fetal bovine serum (FBS) and growth factors in vitro, to elucidate the mechanisms by which H(2)S inhibits pathogenesis of pulmonary fibrosis. We found that H(2)S incubation significantly decreased the MRC5 cell migration distance stimulated by FBS and basic fibroblast growth factor (bFGF), inhibited MRC5 cell proliferation induced by FBS and platelet-derived growth factor-BB (PDGF-BB), and also inhibited transforming growth factor-beta1 (TGF-beta1) induced MRC5 cell transdifferentiation into myofibroblasts. Moreover, preincubation with H(2)S decreased extracellular signal-regulated kinase (ERK1/2) phosphorylation in MRC5 cells induced by FBS, PDGF-BB, TGF-beta1, and bFGF. However, the inhibition effects of H(2)S on MRC5 cell migration, proliferation and myofibroblast transdifferentiation were not attenuated by glibenclamide, an ATP-sensitive K(+) channel (K(ATP)) blocker. Thus, H(2)S directly suppressed fibroblast migration, proliferation and phenotype transform stimulated by FBS and growth factors in vitro, which suggests that it could be an important mechanism of H(2)S-suppressed pulmonary fibrosis. These effects of H(2)S on pulmonary fibroblasts were, at least in part, mediated by decreased ERK phosphorylation and were not dependent on K(ATP) channel opening.

  5. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    SciTech Connect

    Smith, Leah J.; Holmes, Amie L.; Kandpal, Sanjeev Kumar; Mason, Michael D.; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  6. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  7. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  8. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration

    PubMed Central

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries. PMID:24992450

  9. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration.

    PubMed

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-07-03

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries.

  10. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts.

    PubMed

    Ershova, E S; Sergeeva, V A; Chausheva, A I; Zheglo, D G; Nikitina, V A; Smirnova, T D; Kameneva, L V; Porokhovnik, L N; Kutsev, S I; Troshin, P A; Voronov, I I; Khakina, E A; Veiko, N N; Kostyuk, S V

    2016-07-01

    Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo. PMID:27402482

  11. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  12. Role of in vitro factors in ozone toxicity for cultured rat lung fibroblasts

    SciTech Connect

    Wenzel, D.G.; Morgan, D.L.

    1982-01-01

    Ozone toxicity for cultured rat lung fibroblasts was concentration dependent and was affected by the manner in which ozone was delivered to the cells, i.e. cultures were either rotated with a thin moving overlay of medium or were stationary with a fixed layer of medium between the cells and the gas phase. The influence of culture medium components and culture dish composition on the toxicity of ozone were also investigated. Cell viability, used to measure ozone toxicity, was quantified by the chromium-51 release assay, and by a viability index calculated from the percentage of cells stained with a vital dye combined with the decrease in cell number as determined by DNA measurements. During stationary ozone exposure, toxicity appeared to be mediated primarily by hydrogen peroxide and could be inhibited by catalase or fetal bovine serum when measured by the viability index. During rotated exposure, catalase and fetal bovine serum provided no protection when measured by the viability index, however, when measured by the chromium-51 release assay, fetal bovine serum was partially protective. The effect of ozone on the fibroblasts was not influenced by whether culture dishes were glass or plastic, or whether the culture medium was balanced salt solution or complete chemically-defined medium.

  13. Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts.

    PubMed

    Zhang, Xiangyu; Liu, Hui; Hock, Thomas; Thannickal, Victor J; Sanders, Yan Y

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi) can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA), are US FDA approved for cancer treatment. In this study, we investigated SAHA's effects on the expression of collagen III alpha 1 (COL3A1) in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP) experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression. PMID:24084714

  14. Role of in vitro factors in ozone toxicity for cultured rat lung fibroblasts.

    PubMed

    Wenzel, D G; Morgan, D L

    1982-01-01

    Ozone toxicity for cultured rat lung fibroblasts was concentration dependent and was affected by the manner in which ozone was delivered to the cells, i.e. cultures were either rotated with a thin moving overlay of medium or were stationary with a fixed layer of medium between the cells and the gas phase. The influence of culture medium components and culture dish composition on the toxicity of ozone were also investigated. Cell viability, used to measure ozone toxicity, was quantified by the chromium-51 release assay, and by a viability index calculated from the percentage of cells stained with a vital dye combined with the decrease in cell number as determined by DNA measurements. During stationary ozone exposure, toxicity appeared to be mediated primarily by hydrogen peroxide and could be inhibited by catalase or fetal bovine serum when measured by the viability index. During rotated exposure, catalase and fetal bovine serum provided no protection when measured by the viability index, however, when measured by the chromium-51 release assay, fetal bovine serum was partially protective. The effect of ozone on the fibroblasts was not influenced by whether culture dishes were glass or plastic, or whether the culture medium was balanced salt solution or complete chemically-defined medium.

  15. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts.

    PubMed

    Gong, M; Liu, J; Sakurai, R; Corre, A; Anthony, S; Rehan, V K

    2015-04-01

    Due to the active inhibition of the adipogenic programming, the default destiny of the developing lung mesenchyme is to acquire a myogenic phenotype. We have previously shown that perinatal nicotine exposure, by down-regulating PPARγ expression, accentuates this property, culminating in myogenic pulmonary phenotype, though the underlying mechanisms remained incompletely understood. We hypothesized that nicotine-induced PPARγ down-regulation is mediated by PPARγ promoter methylation, controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG binding protein 2 (MeCP2), two known key regulators of DNA methylation. Using cultured alveolar interstitial fibroblasts and an in vivo perinatal nicotine exposure rat model, we found that PPARγ promoter methylation is strongly correlated with inhibition of PPARγ expression in the presence of nicotine. Methylation inhibitor 5-aza-2'-deoxycytidine restored the nicotine-induced down-regulation of PPARγ expression and the activation of its downstream myogenic marker fibronectin. With nicotine exposure, a specific region of PPARγ promoter was significantly enriched with antibodies against chromatin repressive markers H3K9me3 and H3K27me3, dose-dependently. Similar data were observed with antibodies against DNA methylation regulatory factors DNMT1 and MeCP2. The knock down of DNMT1 and MeCP2 abolished nicotine-mediated increases in DNMT1 and MeCP2 protein levels, and PPARγ promoter methylation, restoring nicotine-induced down regulation of PPARγ and upregulation of the myogenic protein, fibronectin. The nicotine-induced alterations in DNA methylation modulators DNMT1 and MeCP2, PPARγ promoter methylation, and its down-stream targets, were also validated in perinatally nicotine exposed rat lung tissue. These data provide novel mechanistic insights into nicotine-induced epigenetic silencing of PPARγ that could be exploited to design novel targeted molecular interventions against the smoke exposed lung injury in general and

  16. Proliferative and inductive effects of Cyclosporine a on gingival fibroblast of child and adult

    PubMed Central

    Salman, Bahareh Nazemi; Vahabi, Surena; Movaghar, Sepideh Ebrahimi; Mahjour, Faranak

    2013-01-01

    Background: Gingival overgrowth is a serious side-effect that accompanies the use of Cyclosporin A (CsA). Up to 97% of the transplant recipient children, who were submitted to CsA therapy, have been reported to suffer from this side-effect. Several conflicting theories have been proposed to explain the fibroblast's function in CsA-induced gingival overgrowth. The aim of this study is to assess the proliferation of gingival fibroblasts and levels of released cytokines after being exposed to CsA, in both adults and pediatric groups, and to make a comparison between the results of the two groups. Materials and Methods: The adult fibroblast samples were derived from four healthy adults, aged 35 to 42 years and pediatric samples were obtained from four healthy children, age between four and eleven years. Tissue samples were plated in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS), Streptomycin and Penicillin. The samples were cultured in 25 cm2 plates containing 5% CO2, and incubated at 37°C. The cells used for all the experiments were at the fourth passage. The concentration of PGE2, IL-1β, IL-6, IL-8, TNF-α, and TGF-β1 was determined by the enzyme-linked immunosorbent assay (ELISA) and the proliferation rate was assessed by the MTT assay. Alpha error levels were set as 0.05. Results: CsA stimulated significantly higher levels of IL-6, IL-8 and TGF-β1 in adult gingival fibroblasts than it did in the control group; whereas, the expression of IL-1β and PGE2 in the fibroblasts exposed to CsA was significantly weaker (P < 0.05). The fibroblasts in the two groups did not reveal any noticeable difference in the production of TNF-α. Furthermore, cell proliferation in the CsA group was not significantly higher than that in the control group. No significant differences in cytokines TNF-α and IL-1β were noted between the two groups. The results indicated that CsA stimulated cell proliferation in the pediatric fibroblast cell line

  17. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  18. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    SciTech Connect

    Horie, Masafumi; Saito, Akira; Mikami, Yu; Ohshima, Mitsuhiro; Morishita, Yasuyuki; Nakajima, Jun; Kohyama, Tadashi; Nagase, Takahide

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We established three patient-paired sets of CAFs and NFs. Black-Right-Pointing-Pointer CAFs and NFs were analyzed using three-dimensional co-culture experiments. Black-Right-Pointing-Pointer CAFs clearly enhanced collagen gel contraction. Black-Right-Pointing-Pointer CAFs showed higher {alpha}-SMA expression than NFs. Black-Right-Pointing-Pointer CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher {alpha}-smooth muscle actin ({alpha}-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  19. Inflammatory response to isocyanates and onset of genomic instability in cultured human lung fibroblasts.

    PubMed

    Mishra, P K; Bhargava, A; Raghuram, G V; Gupta, S; Tiwari, S; Upadhyaya, R; Jain, S K; Maudar, K K

    2009-02-10

    Lungs comprise the primary organ exposed to environmental toxic chemicals, resulting in diverse respiratory ailments and other disorders, including carcinogenesis. Carcinogenesis is a multi-stage phenomenon, which involves a series of genetic alterations that begin with genomic instability provoked by certain factors such as inflammation and DNA damage and end with the development of cancer. Isocyanates such as methyl isocyanate are the chief metabolic intermediates in many industrial settings with diverse applications; exposure to them can lead to severe hypersensitive, mutagenic and genotoxic alterations. We examined the molecular mechanisms underlying isocyanate-mediated inflammatory responses and their probable role in the onset of genomic instability in cultured IMR-90 human lung fibroblasts. The isocyanates induced inflammation, resulting in extensive DNA damage, evidenced by increases in ATM, ATR, gammaH2AX, and p53 expression levels. The apoptotic index also increased. Chromosomal anomalies in treated cells included over-expression of centrosome protein and variable amplification of inter-simple sequence repeats, further demonstrating isocyanate-induced genomic instability. This information could be useful in the design of new approaches for risk assessment of potential industrial disasters.

  20. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  1. The "baby lung" became an adult.

    PubMed

    Gattinoni, Luciano; Marini, John J; Pesenti, Antonio; Quintel, Michael; Mancebo, Jordi; Brochard, Laurent

    2016-05-01

    The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. While the specific compliance suggests the intrinsic mechanical characteristics to be nearly normal, evidence from positron emission tomography suggests that at least a part of the well-aerated baby lung is inflamed. The baby lung is more a functional concept than an anatomical one; in fact, in the prone position, the baby lung "shifts" from the ventral lung regions toward the dorsal lung regions while usually increasing its size. This change is associated with better gas exchange, more homogeneously distributed trans-pulmonary forces, and a survival advantage. Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions. PMID:26781952

  2. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli.

    PubMed

    Maciel-Barón, L A; Morales-Rosales, S L; Aquino-Cruz, A A; Triana-Martínez, F; Galván-Arzate, S; Luna-López, A; González-Puertos, V Y; López-Díazguerrero, N E; Torres, C; Königsberg, Mina

    2016-02-01

    Cellular senescence is a multifactorial phenomenon of growth arrest and distorted function, which has been recognized as an important feature during tumor suppression mechanisms and a contributor to aging. Senescent cells have an altered secretion pattern called Senescence-Associated Secretory Phenotype (SASP) that comprises a complex mix of factors including cytokines, growth factors, chemokines, and matrix metalloproteinases. SASP has been related with local inflammation that leads to cellular transformation and neurodegenerative diseases. Various pathways for senescence induction have been proposed; the most studied is replicative senescence due to telomere attrition called replicative senescence (RS). However, senescence can be prematurely achieved when cells are exposed to diverse stimuli such as oxidative stress (stress-induced premature senescence, SIPS) or proteasome inhibition (proteasome inhibition-induced premature senescence, PIIPS). SASP has been characterized in RS and SIPS but not in PIIPS. Hence, our aim was to determine SASP components in primary lung fibroblasts obtained from CD-1 mice induced to senescence by PIIPS and compare them to RS and SIPS. Our results showed important variations in the 62 cytokines analyzed, while SIPS and RS showed an increase in the secretion of most cytokines, and in PIIPS only 13 were incremented. Variations in glutathione-redox balance were also observed in SIPS and RS, and not in PIIPS. All senescence types SASP displayed a pro-inflammatory profile and increased proliferation in L929 mice fibroblasts exposed to SASP. However, the behavior observed was not exactly the same, suggesting that the senescence induction pathway might encompass dissimilar responses in adjacent cells and promote different outcomes.

  3. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    SciTech Connect

    Dai, Jiawen; Itahana, Koji; Baskar, Rajamanickam

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  4. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    SciTech Connect

    Karlinsky, J.B.; Goldstein, R.H. )

    1989-08-01

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core.

  5. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    SciTech Connect

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  6. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  7. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  8. Micronuclei induced by radon and its progeny in deep-lung fibroblasts of rats in vivo and in vitro

    SciTech Connect

    Khan, M.A.; Cross, F.T.; Jostes, R.; Hui, E.; Morris, J.E.; Brooks, A.L.

    1994-07-01

    Genotoxic damage induced by radon and its progeny was investigated using the micronucleus assay in deep-lung fibroblasts to compare the response induced in vitro with that induced from inhalation of radon and its progeny in vivo. Male Wistar rats were exposed to 0, 115, 213, and 323 working-level months (WLM) of radon and it progeny by inhalation. After sacrifice, the cells were isolated and grown in culture, and the frequency of micronuclei was determined. A linear increase in the frequency of micronuclei was measured as a function of exposure [micronuclei/1000 binucleated cells = (29 {+-} 9) + (0.47 {+-} 0.04) WLM]. To compare exposure in WLM to dose in mGy, and to study how cell proliferation influences the way inhalation of radon and its progeny induces micronuclei, lung fibroblasts were isolated and exposed in vitro to graded doses from radon and its progeny after either 16 or 96 h in tissue culture. Cell cycle stage at the time of exposure was determined using flow cytometry. Primary lung fibroblasts exposed as either nondividing or dividing cells showed dose-dependent increases in micronuclei [micronuclei/1000 binucleated cells = (33 {+-} 40) + (593 {+-} 68)D and micronuclei/1000 binucleated cells = (27 {+-} 69) + (757 {+-} 88)D, respectively, where D is dose in Gy]. Results showed no significant influence (P = 0.20) of cell proliferation at the time of exposure on the frequency of micronuclei induced by radon and its progeny. Comparing dose-response relationships for nondividing cells to the exposure response for cells exposed by inhalation of radon and its progeny, it was estimated that a 1-WLM exposure in vivo caused the same amount of cytogenetic damage as produced by 0.79 mGy in vitro. In vivo/in vitro research using the micronucleus assay in lung fibroblasts serves as a powerful tool to estimate effective dos to cells in the respiratory tract after inhalation of radon and its progeny. 34 refs., 3 figs., 2 tabs.

  9. Dividing phase-dependent cytotoxicity profiling of human embryonic lung fibroblast identifies candidate anticancer reagents.

    PubMed

    Inagaki, Yoshinori; Matsumoto, Yasuhiko; Tang, Wei; Sekimizu, Kazuhisa

    2016-01-01

    Human Embryonic Lung fibroblasts (HEL cells) are widely used as a normal cell in studies of cell biology and can be easily maintained in the resting phase. Here we aimed to discover compounds that exhibit cytotoxicity against HEL cells in the dividing phase, but not in the resting phase. The cytotoxicity of each compound against HEL cells either in the resting phase or in the dividing phase was determined by MTT assay. Ratios of the IC50 of cells in the resting phase and that of cells in the dividing phase (RRD) for these compounds were compared. We selected 44 compounds that exhibited toxic effects on HEL cells in the dividing phase from a chemical library containing 325 anticancer drugs and enzyme inhibitors. The RRD values of those compounds were widely distributed. Paclitaxel and docetaxel, which are clinically used as anticancer drugs, had RRD values larger than 2000. On the other hand, the RRD value of dimethyl sulfoxide, an organic solvent, was 1. The cytotoxic effect of paclitaxel on HEL cells in the dividing phase was attenuated by aphidicolin, hydroxyurea, and nocodazole, confirming that the cytotoxic effects of paclitaxel are dependent on cells being in the dividing phase. Thapsigargin, whose RRD value was 800, the third highest RRD value in the library, exhibited therapeutic effects in a mouse model of FM3A ascites carcinoma. We suggest that compounds with high RRD values for HEL cells are candidate anticancer chemotherapy seeds. PMID:27594296

  10. Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-beta signaling and alpha-SMA expression.

    PubMed

    Pechkovsky, Dmitri V; Hackett, Tillie L; An, Steven S; Shaheen, Furquan; Murray, Lynne A; Knight, Darryl A

    2010-12-01

    Given the contribution various fibroblast subsets make to wound healing and tissue remodeling, the concept of lung fibroblast heterogeneity is of great interest. However, the mechanisms contributing to this heterogeneity are unknown. To this aim, we compared molecular and biophysical characteristics of fibroblasts concurrently isolated from normal human proximal bronchi (B-FBR) and distal lung parenchyma (P-FBR). Using quantitative RT-PCR, spontaneous expression of more than 30 genes related to repair and remodeling was analyzed. All P-FBR lines demonstrated significantly increased basal α-smooth muscle actin (α-SMA) mRNA and protein expression levels when compared with donor-matched B-FBR. These differences were not associated with sex, age, or disease history of lung tissue donors. In contrast to B-FBR, P-FBR displayed enhanced transforming growth factor (TGF)-β/Smad signaling at baseline, and inhibition of either ALK-5 or neutralization of endogenously produced and activated TGF-β substantially decreased basal α-SMA protein in P-FBR. Both B-FBR and P-FBR up-regulated α-SMA after stimulation with TGF-β1, and basal expression levels of TGF-β1, TGF-βRI, and TGF-βRII were not significantly different between fibroblast pairs. Blockade of metalloproteinase-dependent activation of endogenous TGF-β did not significantly modify α-SMA expression in P-FBR. However, resistance to mechanical tension of these cells was significantly higher in comparison with B-FBR, and added TGF-β1 significantly increased stiffness of both cell monolayers. Our data suggest that in contrast with human normal bronchial tissue explants, lung parenchyma produces mesenchymal cells with a myofibroblastic phenotype by intrinsic mechanisms of TGF-β activation in feed-forward manner. These results also offer a new insight into mechanisms of human fibroblast heterogeneity and their function in the airway and lung tissue repair and remodeling. PMID:20061511

  11. Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway

    PubMed Central

    Cui, Ye; Osorio, Juan C; Risquez, Cristobal; Wang, Hao; Shi, Ying; Gochuico, Bernadette R; Morse, Danielle; Rosas, Ivan O; El-Chemaly, Souheil

    2014-01-01

    Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF. PMID:24515257

  12. Antigenotoxic and antimutagenic effects of diphenyl ditelluride against several known mutagens in Chinese hamster lung fibroblasts.

    PubMed

    Trindade, Cristiano; Juchem, André L M; de Albuquerque, Nathália R M; de Oliveira, Iuri M; Rosa, Renato M; Guecheva, Temenouga N; Saffi, Jenifer; Henriques, João A P

    2015-11-01

    The present study evaluates antigenotoxic and antimutagenic properties of diphenyl ditelluride (DPDT) against several known mutagens in Chinese hamster lung fibroblasts (V79 cells). DPDT was not cytotoxic and genotoxic at concentrations ranging from 0.01 to 0.1 μM. The pre-treatment for 2h with this organotellurium compound at non-cytotoxic dose range (0.01, 0.05 and 0.1 μM) increased cell survival after challenge with hydrogen peroxide (H2O2), t-butyl hydroperoxide (t-BOOH), methylmethanesulphonate (MMS) or ultraviolet (UV)C radiation. In addition, the pre-treatment with DPDT decreased the DNA damage and Formamidopyrimidine DNA-glycosylase (Fpg)- and Endonuclease III (Endo III) sensitive sites induction by the studied genotoxic agents, as verified by comet assay and modified comet assay, respectively. The pre-treatment also reduced micronucleus frequency, revealing the protector effect of DPDT against MMS and UVC-induced mutagenesis. Our results demonstrate that DPDT-treated cells at concentration range of 0.01-0.1 μM do not change thiobarbituric acid reactive species (TBARS) levels and ROS generation. Moreover, DPDT pre-treatment at this concentration range decreases the ROS induction by H2O2 and t-BOOH treatment indicating antioxidant potential. On the other hand, concentrations higher than 0.1 μM increase TBARS formation and inhibited superoxide dismutase (SOD) activity, suggesting pro-oxidative effect of this compound at high concentrations. Our results suggest that DPDT presents antigenotoxic and antimutagenic properties at concentration range of 0.01-0.1 μM. The protection effect could be attributed to antioxidant capacity of DPDT at this concentration range in V79 cells. PMID:26001756

  13. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.

    PubMed

    Lama, Vibha N; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B; Krebsbach, Paul H; Peters-Golden, Marc; Pinsky, David J; Martinez, Fernando J; Thannickal, Victor J

    2007-04-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% +/- 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ.

  14. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  15. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    PubMed

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF.

  16. [Ultrastructural changes in the lung in acute adult respiratory distress syndrome].

    PubMed

    Szemenyei, K; Széll, K; Kádas, L

    1980-04-01

    Morphological alterations of the lung in respiratory distress syndrome of adults (ARDS) were analyzed in 10 cases with traumatic-and septic shock, laryngitis subglottica descendens and bronchopneumonia. For the better understanding of the pathomechanism of the disease in addition to the standard methods, first of all ultrastructural alterations were studied. Two phases of the morphologic alterations could be distinguished, the phase of the destruction and the phase of the repair. These two processes are not sharply distinguishable. Genesis of the characteristic histological alterations (damage to the epithelial and endothelial cells, formation of hyaline membranes, microcoagulation, proliferation of the type II pneumocytes and fibroblasts, fibrosis) is discussed, with regard to the data of the literature.

  17. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel).

    PubMed

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-03-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells.

  18. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel)

    PubMed Central

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-01-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells. PMID:26870757

  19. Effect of intestinal ischemia-reperfusion on expressions of endogenous basic fibroblast growth factor and transforming growth factor betain lung and its relation with lung repair.

    PubMed

    Fu, Xiao-Bing; Yang, Yin-Hui; Sun, Tong-Zhu; Gu, Xiao-Man; Jiang, Li-Xian; Sun, Xiao-Qing; Sheng, Zhi-Yong

    2000-06-01

    AIM:To study the changes of endogenous transforming growth factor beta(TGFbeta) and basic fibroblast growth factor (bFGF) in lung following intestinal ischemia and reperfusion injury and their effects on lung injury and repair.METHODS:Sixty Wistar rats were divided into five groups, which underwent sham-operation, ischemia (45 minutes), and reperfusion (6, 24 and 48 hours, respectively) after ischemia (45 minutes). Immunohistochemical method was used to observe the localization and amounts of both growth factors.RESULTS:Positive signals of both growth factors could be found in normal lung, mainly in alveolar cells and endothelial cells of vein. After ischemia and reperfusion insult, expressions of both growth factors were increased and their amounts at 6 hours were larger than those of normal control or of 24 and 48 hours after insult.CONCLUSION:The endogenous bFGF and TGF beta expression appears to be upregulated in the lung following intestinal ischemia and reperfusion, suggesting that both growth factors may be involved in the process of lung injury and repair. PMID:11819596

  20. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro

    PubMed Central

    Mateu, Rosana; Živicová, Veronika; Krejčí, Eliška Drobná; Grim, Miloš; Strnad, Hynek; Vlček, Čestmír; Kolář, Michal; Lacina, Lukáš; Gál, Peter; Borský, Jiří; Smetana, Karel; Dvořánková, Barbora

    2016-01-01

    Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial-mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period. PMID:27513730

  1. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  2. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G0/G1 and decreased S and G2/M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro.

  3. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    PubMed

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  4. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury

    PubMed Central

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J.; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-01-01

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs. PMID:26869337

  5. Prognostic Value of Basic Fibroblast Growth Factor (bFGF) in Lung Cancer: A Systematic Review with Meta-Analysis

    PubMed Central

    Hu, Mingming; Hu, Ying; He, Jiabei; Li, Baolan

    2016-01-01

    Background Basic fibroblast growth factor (bFGF) is known to stimulate angiogenesis and thus to influence the proliferation, migration and survival of tumor cells. Many studies examined the relationship between human bFGF overexpression and survival in lung cancer patients, but the results have been mixed. To systematically summarize the clinical prognostic function of bFGF in lung cancer, we performed this systematic review with meta-analysis. Method Studies were identified by an electronic search of PubMed, EMBASE, China National Knowledge Infrastructure and Wanfang databases, including publications prior toAugust 2014. Pooled hazard ratios (HR) for overall survival (OS) were aggregated and quantitatively analyzed by meta-analysis. Results Twenty-two studies (n = 2154) were evaluated in the meta-analysis. Combined HR suggested that bFGF overexpression had an adverse impact on survival of patients with lung cancer(HR = 1.202,95%CI, 1.022–1.382). Our subgroup analysis revealed that the combined HR evaluating bFGF expression on OS in operable non-small cell lung cancer (NSCLC) was 1.553 (95%CI, 1.120–1.986); the combined HR in small cell lung cancer (SCLC) was 1.667 (95%CI, 1.035–2.299). There was no significant impact of bFGF expression on survival in advanced NSCLC. Conclusion This meta-analysis showed that bFGF overexpression is a potential indicator of worse prognosis for patients with operable NSCLC and SCLC, but is not associated with outcome in advanced NSCLC. The data suggests that high bFGF expression is highly related to poor prognosis. Nevertheless,more high-quality studies should be performed in order to provide additional evidence for the prognostic value of bFGF in lung cancer. PMID:26824699

  6. Attenuation of bleomycin-induced lung fibrosis by oxymatrine is associated with regulation of fibroblast proliferation and collagen production in primary culture.

    PubMed

    Chen, Xiaohong; Sun, Renshan; Hu, Jianming; Mo, Ziyao; Yang, Zifeng; Liao, Dongjiang; Zhong, Nanshan

    2008-09-01

    There is no satisfactory treatment for pulmonary fibrosis, which is characterized by altered control of proliferation of mesenchymal fibroblasts and extracellular matrix production. Oxymatrine is an alkaloid extracted from the Chinese herb Sophora japonica (Sophora flavescens Ait.) with capacities of anti-inflammation, inhibition of immune reaction, antivirus, protection against acute lung injury and antihepatic fibrosis. In this study, the effect of oxymatrine on pulmonary fibrosis was investigated using a bleomycin-induced pulmonary fibrosis mouse model. The results showed that bleomycin challenge provoked severe pulmonary fibrosis with marked increase in hydroxyproline content of lung tissue and lung fibrosis fraction, which was prevented by oxymatrine in a dose-dependent manner. In addition, bleomycin injection resulted in a marked increase of myeloperoxidase activity and malondialdehyde level that was attenuated by oxymatrine. Administration of oxymatrine inhibited the proliferation of murine lung fibroblasts, arrested the cells at G(0)/G(1) phase and reduced the expression of cell cycle regulatory protein, cyclin D1 in vitro. Furthermore, the steady-state production of collagen and the expression of alpha1(I) pro-collagen and alpha2(I) pro-collagen mRNA in fibroblasts were inhibited by oxymatrine in a dose-dependent manner. These results suggested that oxymatrine may attenuate pulmonary fibrosis induced by bleomycin in mice, partly through inhibition of inflammatory response and lipid peroxidation in lung induced by bleomycin and reduction of fibroblast proliferation and collagen synthesis. PMID:18684219

  7. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  8. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1.

    PubMed

    Mia, Masum M; Boersema, Miriam; Bank, Ruud A

    2014-01-01

    One of the most potent pro-fibrotic cytokines is transforming growth factor (TGFβ). TGFβ is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1β (IL1β) can influence the severity of fibrosis, however much less is known about the direct effects on fibroblasts. Using lung and dermal fibroblasts, we have investigated the effects of IL1β, TGFβ1, and IL1β in combination with TGFβ1 on myofibroblast formation, collagen synthesis and collagen modification (including prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase), and matrix metalloproteinases (MMPs). We found that IL1β alone has no obvious pro-fibrotic effect on fibroblasts. However, IL1β is able to inhibit the TGFβ1-induced myofibroblast formation as well as collagen synthesis. Glioma-associated oncogene homolog 1 (GLI1), the Hedgehog transcription factor that is involved in the transformation of fibroblasts into myofibroblasts is upregulated by TGFβ1. The addition of IL1β reduced the expression of GLI1 and thereby also indirectly inhibits myofibroblast formation. Other potentially anti-fibrotic effects of IL1β that were observed are the increased levels of MMP1, -2, -9 and -14 produced by fibroblasts exposed to TGFβ1/IL1β in comparison with fibroblasts exposed to TGFβ1 alone. In addition, IL1β decreased the TGFβ1-induced upregulation of lysyl oxidase, an enzyme involved in collagen cross-linking. Furthermore, we found that lung and dermal fibroblasts do not always behave identically towards IL1β. Suppression of COL1A1 by IL1β in the presence of TGFβ1 is more pronounced in lung fibroblasts compared to dermal fibroblasts, whereas a higher upregulation of MMP1 is seen in dermal fibroblasts. The role of IL1β in fibrosis should be reconsidered, and the differences in phenotypical properties of fibroblasts derived from different organs should be taken into account in future anti

  9. PDGF-BB induces PRMT1 expression through ERK1/2 dependent STAT1 activation and regulates remodeling in primary human lung fibroblasts.

    PubMed

    Sun, Qingzhu; Liu, Li; Mandal, Jyotshna; Molino, Antonio; Stolz, Daiana; Tamm, Michael; Lu, Shemin; Roth, Michael

    2016-04-01

    Tissue remodeling of sub-epithelial mesenchymal cells is a major pathology occurring in chronic obstructive pulmonary disease (COPD) and asthma. Fibroblasts, as a major source of interstitial connective tissue extracellular matrix, contribute to the fibrotic and inflammatory changes in these airways diseases. Previously, we described that protein arginine methyltransferase-1 (PRMT1) participates in airway remodeling in a rat model of pulmonary inflammation. In this study we investigated the mechanism by which PDGF-BB regulates PRMT1 in primary lung fibroblasts, isolated from human lung biopsies. Fibroblasts were stimulated with PDGF-BB for up-to 48h and the regulatory and activation of signaling pathways controlling PRMT1 expression were determined. PRMT1 was localized by immuno-histochemistry in human lung tissue sections and by immunofluorescence in isolated fibroblasts. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI1. ERK1/2 mitogen activated protein kinase (MAPK) was blocked by PD98059, p38 MAPK by SB203580, and STAT1 by small interference (si) RNA treatment. The results showed that PDGF-BB significantly increased PRMT1 expression after 1h lasting over 48h, through ERK1/2 MAPK and STAT1 signaling. The inhibition of ERK1/2 MAPK or of PRMT1 activity decreased PDGF-BB induced fibroblast proliferation, COX2 production, collagen-1A1 secretion, and fibronectin production. These findings suggest that PRMT1 is a central regulator of tissue remodeling and that the signaling sequence controlling its expression in primary human lung fibroblast is PDGF-ERK-STAT1. Therefore, PRMT1 presents a novel therapeutic and diagnostic target for the control of airway wall remodeling in chronic lung diseases.

  10. Platelet-activating factor exerts mitogenic activity and stimulates expression of interleukin 6 and interleukin 8 in human lung fibroblasts via binding to its functional receptor

    PubMed Central

    1996-01-01

    Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator of the lung. In this study, we demonstrate that PAF receptor mRNA and protein is expressed by human lung fibroblasts. Interaction of PAF with its specific receptor resulted in increases of tyrosine phosphorylation of several intracellular proteins, indicating that the PAF-receptor might be functionally active. PAF-induced transcription of protooncogenes c-fos and c-jun as well as of interleukin (IL)-6 and IL-8 genes in human fibroblasts. Transcription of the interleukins was followed by secretion of the respective proteins. Moreover, PAF enhanced proliferation of fibroblasts in a concentration-dependent manner. Using signaling inhibitors, we demonstrate that PAF-induced transcription of the c-fos, IL-6, and IL-8 genes, as well as proliferation, require activation of pertussis toxin- sensitive G proteins, tyrosine kinases, and protein kinase C (PKC). In contrast, transcription of c-jun was blocked by pertussis toxin, but not by inhibitors for tyrosine kinases or PKC. These data suggest that PAF stimulates distinct signaling pathways in human lung fibroblasts. In addition, the activation of human fibroblasts by PAF leads to enhanced proliferation and to the expression of proinflammatory cytokines, which may contribute to the pathophysiological changes in pulmonary inflammation. PMID:8691134

  11. Basic fibroblast growth factor protects against excitotoxicity and chemical hypoxia in both neonatal and adult rats.

    PubMed

    Kirschner, P B; Henshaw, R; Weise, J; Trubetskoy, V; Finklestein, S; Schulz, J B; Beal, M F

    1995-07-01

    Basic fibroblast growth factor (bFGF) is a polypeptide growth factor that promotes neuronal survival. We recently found that systemic administration of bFGF protects against both excitotoxicity and hypoxia-ischemia in neonatal animals. In the present study, we examined whether systemically administered bFGF could prevent neuronal death induced by intrastriatal injection of N-methyl-D-aspartate (NMDA) or chemical hypoxia induced by intrastriatal injection of malonate in adult rats and 1-methyl-4-phenylpyridinium (MPP+) in neonatal rats. Systemic administration of bFGF (100 micrograms/kg) for three doses both before and after intrastriatal injection of either NMDA or malonate in adult rats produced a significant neuroprotective effect. In neonatal rats, bFGF produced dose-dependent significant neuroprotective effects against MPP+ neurotoxicity, with a maximal protection of approximately 50% seen with either a single dose of bFGF of 300 micrograms/kg or three doses of 100 micrograms/kg. These results show that systemic administration of bFGF is effective in preventing neuronal injury under circumstances in which the blood-brain barrier may be compromised, raising the possibility that this strategy could be effective in stroke.

  12. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices.

    PubMed

    Tatler, Amanda L; Barnes, Josephine; Habgood, Anthony; Goodwin, Amanda; McAnulty, Robin J; Jenkins, Gisli

    2016-06-01

    Caffeine is a commonly used food additive found naturally in many products. In addition to potently stimulating the central nervous system caffeine is able to affect various systems within the body including the cardiovascular and respiratory systems. Importantly, caffeine is used clinically to treat apnoea and bronchopulmonary dysplasia in premature babies. Recently, caffeine has been shown to exhibit antifibrotic effects in the liver in part through reducing collagen expression and deposition, and reducing expression of the profibrotic cytokine TGFβ. The potential antifibrotic effects of caffeine in the lung have not previously been investigated. Using a combined in vitro and ex vivo approach we have demonstrated that caffeine can act as an antifibrotic agent in the lung by acting on two distinct cell types, namely epithelial cells and fibroblasts. Caffeine inhibited TGFβ activation by lung epithelial cells in a concentration-dependent manner but had no effect on TGFβ activation in fibroblasts. Importantly, however, caffeine abrogated profibrotic responses to TGFβ in lung fibroblasts. It inhibited basal expression of the α-smooth muscle actin gene and reduced TGFβ-induced increases in profibrotic genes. Finally, caffeine reduced established bleomycin-induced fibrosis after 5 days treatment in an ex vivo precision-cut lung slice model. Together, these findings suggest that there is merit in further investigating the potential use of caffeine, or its analogues, as antifibrotic agents in the lung. PMID:26911575

  13. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Wolvetang, Ernst J

    2012-08-10

    Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.

  14. D1398G Variant of MET Is Associated with Impaired Signaling of Hepatocyte Growth Factor in Alveolar Epithelial Cells and Lung Fibroblasts.

    PubMed

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Noguchi, Atsushi; Ash, Kurt T; Misra, Suniti; Ghatak, Sibnath; Silver, Richard M; Bogatkevich, Galina S

    2016-01-01

    Pulmonary fibrosis represents the terminal stage of a diverse group of lung diseases including scleroderma associated interstitial lung disease. The molecular mechanisms underlying the pathogenesis of lung fibrosis are not well understood and there is a great need for more effective treatment for this lethal disease. We recently discovered a small fragment of hepatocyte growth factor (HGF) receptor MET as a peptide designated "M10," with strong antifibrotic properties. Furthermore, we showed that aspartic acid at position 1398 of MET is essential for M10 generation. The current study was undertaken to investigate the D1398G variant of MET in which aspartic acid at position 1398 was mutated to glycine resulting in loss of M10. We demonstrate that lung fibroblasts, A549, and primary alveolar epithelial cells (AEC) expressing D1398G MET exhibit reduced auto-phosphorylation on tyrosine residues and reduced activation of Ras and MAPK. HGF treatment of scleroderma lung fibroblasts as well as HGF treatment of TGFβ-treated normal lung fibroblasts transfected with wild type MET is associated with decreased collagen, connective tissue growth factor (CTGF, CCN2) and smooth muscle α-actin (SMA). However, HGF has no such effects in cells transfected with MET D1398G. Cisplatin- and FasL-induced apoptosis is significantly reduced in AEC transfected with MET wild type, but not in AEC transfected with MET D1398G. We conclude that the D1398G variant of MET is associated with compromised phosphorylation and impaired HGF signaling in lung fibroblasts and AEC, two cell types implicated in the pathogenesis of pulmonary fibrosis associated with scleroderma. Ongoing studies will explore the frequency of this variant and its relationship to pulmonary outcomes in scleroderma patients. PMID:27584154

  15. Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis

    PubMed Central

    Hsu, Ya-Ling; Hung, Jen-Yu; Chiang, Shin-Yi; Jian, Shu-Fang; Wu, Cheng-Ying; Lin, Yi-Shiuan; Tsai, Ying-Ming; Chou, Shah-Hwa; Tsai, Ming-Ju; Kuo, Po-Lin

    2016-01-01

    Communication between cancer cells and their microenvironment plays an important role in cancer development, but the precise mechanisms by which cancer-associated fibroblasts (CAF) impact anti-cancer immunity and cancer progression in lung cancer are poorly understood. Here, we report that lung fibroblasts when activated by lung cancer cells produce tryptophan metabolite kynurenine (Kyn) that inhibits dendritic cells' differentiation and induces cancer growth as well as migration. We identified TDO2 (tryptophan 2,3-dioxygenase) as the main enzyme expressed in fibroblasts capable of tryptophan metabolism. Mechanistically, condition medium of CAF or exogenous kynurenine stimulated AKT, with no lysine 1 (WNK1) and cAMP response element-bindingprotein (CREB) phosphorylation in lung cancer cells. Inhibition of the AKT/CREB pathway prevents cancer proliferation, while inhibition of the AKT/ WNK1 reverted epithelial-to-mesenchymal transition and cancer migration induced by kynurenine. Moreover, we also demonstrate that lung cancer-derived galectin-1 contributes to the upregulation of TDO2 in CAF through an AKT-dependent pathway. Immunohistochemical analysis of lung cancer surgical specimens revealed increased TDO2 expression in the fibroblasts adjacent to the cancer. Furthermore, in vivo studies showed that administration of TDO2 inhibitor significantly improves DCs function and T cell response, and decreases tumor metastasis in mice. Taken together, our data identify the feedback loop, consisting of cancer-derived galectin-1 and CAF-producing kynurenine, that sustains lung cancer progression. These findings suggest that targeting this pathway may be a promising therapeutic strategy. PMID:27050278

  16. D1398G Variant of MET Is Associated with Impaired Signaling of Hepatocyte Growth Factor in Alveolar Epithelial Cells and Lung Fibroblasts

    PubMed Central

    Akter, Tanjina; Noguchi, Atsushi; Ash, Kurt T.; Misra, Suniti; Ghatak, Sibnath; Silver, Richard M.; Bogatkevich, Galina S.

    2016-01-01

    Pulmonary fibrosis represents the terminal stage of a diverse group of lung diseases including scleroderma associated interstitial lung disease. The molecular mechanisms underlying the pathogenesis of lung fibrosis are not well understood and there is a great need for more effective treatment for this lethal disease. We recently discovered a small fragment of hepatocyte growth factor (HGF) receptor MET as a peptide designated “M10,” with strong antifibrotic properties. Furthermore, we showed that aspartic acid at position 1398 of MET is essential for M10 generation. The current study was undertaken to investigate the D1398G variant of MET in which aspartic acid at position 1398 was mutated to glycine resulting in loss of M10. We demonstrate that lung fibroblasts, A549, and primary alveolar epithelial cells (AEC) expressing D1398G MET exhibit reduced auto-phosphorylation on tyrosine residues and reduced activation of Ras and MAPK. HGF treatment of scleroderma lung fibroblasts as well as HGF treatment of TGFβ-treated normal lung fibroblasts transfected with wild type MET is associated with decreased collagen, connective tissue growth factor (CTGF, CCN2) and smooth muscle α-actin (SMA). However, HGF has no such effects in cells transfected with MET D1398G. Cisplatin- and FasL-induced apoptosis is significantly reduced in AEC transfected with MET wild type, but not in AEC transfected with MET D1398G. We conclude that the D1398G variant of MET is associated with compromised phosphorylation and impaired HGF signaling in lung fibroblasts and AEC, two cell types implicated in the pathogenesis of pulmonary fibrosis associated with scleroderma. Ongoing studies will explore the frequency of this variant and its relationship to pulmonary outcomes in scleroderma patients. PMID:27584154

  17. Differential Regulation of the Extracellular Cysteine/Cystine Redox State (EhCySS) by Lung Fibroblasts from Young and Old Mice.

    PubMed

    Watson, Walter H; Burke, Tom J; Zelko, Igor N; Torres-González, Edilson; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-01-01

    Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed as EhCySS. Cultured cells condition their media to reproduce physiological EhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the media EhCySS before and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellular EhCySS than young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment. PMID:27642492

  18. Differential Regulation of the Extracellular Cysteine/Cystine Redox State (EhCySS) by Lung Fibroblasts from Young and Old Mice

    PubMed Central

    Roman, Jesse

    2016-01-01

    Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed as EhCySS. Cultured cells condition their media to reproduce physiological EhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the media EhCySS before and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellular EhCySS than young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment. PMID:27642492

  19. Differential Regulation of the Extracellular Cysteine/Cystine Redox State (EhCySS) by Lung Fibroblasts from Young and Old Mice

    PubMed Central

    Roman, Jesse

    2016-01-01

    Aging is associated with progressive oxidation of plasma cysteine (Cys)/cystine (CySS) redox state, expressed as EhCySS. Cultured cells condition their media to reproduce physiological EhCySS, but it is unknown whether aged cells produce a more oxidized extracellular environment reflective of that seen in vivo. In the current study, we isolated primary lung fibroblasts from young and old female mice and measured the media EhCySS before and after challenge with Cys or CySS. We also measured expression of genes related to redox regulation and fibroblast function. These studies revealed that old fibroblasts produced a more oxidizing extracellular EhCySS than young fibroblasts and that old fibroblasts had a decreased capacity to recover from an oxidative challenge due to a slower rate of reduction of CySS to Cys. These defects were associated with 10-fold lower expression of the Slc7a11 subunit of the xCT cystine-glutamate transporter. Extracellular superoxide dismutase (Sod3) was the only antioxidant or thiol-disulfide regulating enzyme among 36 examined that was downregulated in old fibroblasts by more than 2-fold, but there were numerous changes in extracellular matrix components. Thus, aging fibroblasts not only contribute to remodeling of the extracellular matrix but also have a profound effect on the extracellular redox environment.

  20. Adherence of gram-positive and gram-negative bacterial strains to human lung fibroblasts in vitro.

    PubMed

    Martin, D; Mathieu, L G; Lecomte, J; deRepentigny, J

    1986-01-01

    The adherence to eukaryotic cells of Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and the yeast Candida albicans was studied by light microscopy with an in vitro micromethod involving different cell lines. The method is inexpensive, consumes little time and material, and is reproducible. It was used to show that the gram-positive Cowan I strain of S. aureus, which naturally forms protein A on its surface, adheres in much larger numbers to human lung fibroblasts than the protein A-free Wood 46 strain, the strain of S. epidermidis, and the encapsulated Smith strain. The presence of a capsule on the latter strain apparently prevented its attachment to the fibroblasts. Among the gram-negative species studied, a piliated clinical isolate of N. gonorrhoeae, displaying the opaque colonial phenotype, adhered in larger numbers than another isolate lacking pili and displaying the transparent phenotype. E. coli K12 attached slightly to the cell line, whereas P. aeruginosa adhered to it moderately. One strain of C. albicans tested did not attach in any detectable numbers. No clear correlation between bacterial cell surface hydrophobicity, as evaluated by the hexadecane assay, and adherence to eukaryotic cells could be demonstrated for these microorganisms. With our method, bacterial attachment proceeded best at 37 degrees C and did not require more than 1 h of contact with the cell monolayer. The method described revealed differences in the adherence to eukaryotic cells, not only among species, but also between strains of the same species.

  1. Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species

    SciTech Connect

    Shatos, M.A.; Doherty, J.M.; Marsh, J.P.; Mossman, B.T.

    1987-10-01

    The possible modulation of asbestos-related cell death using antioxidants in both target and effector cells of asbestosis was investigated. After exposure to crocidolite asbestos at a range of concentrations (2.5-25 ..mu..gcm/sup 2/ dish), the viability of a normal rat lung fibroblast line and freshly isolated alveolar macrophages (AM) was determined. In comparison to fibroblasts, AM were more resistant to the cytotoxic effects of asbestos. Cytotoxic concentrations of asbestos then were added to both cell types in combination with the antioxidants, superoxide dismutase (SOD), a scavenger of superoxide (O/sub 2//sup -./), and catalase, an enzyme scavenging H/sub 2/O/sub 2/. Dimethylthiourea (DMTU), a scavenger of the hydroxyl radical (OH/sup ./) and deferoxamine, an iron chelator, also were evaluated in similar studies. Results showed significant dosage-dependent reduction of asbestos-associated cell death with all agents. In contrast, asbestos-induced toxicity was not ameliorated after addition of chemically inactivated SOD and catalase or bovine serum albumin. Results above suggest asbestos-induced cell damage is mediated by active oxygen species. In this regard, the iron associated with the fiber andor its interaction with cell membranes might be critical in deriving a modified Haber-Weiss (Fenton-type) reaction resulting in production of OH/sup ./.

  2. Concurrent induction of micronuclei and gene mutations in rat lung fibroblasts in vivo following inhalation of radon and radon progeny

    SciTech Connect

    Khan, M.A.; Jostes, R.F.; Cross, F.T.; Brooks, A.L.

    1994-12-31

    Inhaled radon induces genotoxicity and cancer in lung cells. To determine the amount and type of genotoxic damage induced in the lung, male Wistar rates were exposed to 323 working level months (WLM) of radon and radon progeny. Primarily lung fibroblasts obtained 4 h after the end of the exposure were analyzed for (1) chromosomal damage using the micronucleus/cytochalasin B technique and (2) gene mutation using a thioguanine selection procedure. The frequency of micronuclei was determined by scoring 2000 binucleated cells for each of 2 individuals in control and 5 individuals in exposed groups. The mean frequency of micronuclei was 31/1000 binucleated cells in controls and 187/1000 binucleated cells in exposed group of animals. The frequency of gene mutations was determined by plating 10{sup 5} cells in each of 45 dishes (4.5 x 10{sup 6} cells) from controls and 40 dishes (4.0 x 10{sup 6} cells) from exposed animals, in a mixture of culture medium and 6-thioguanine. The number of mutant cell colonies was recorded after 14 days. The control and the exposed cell populations showed 4 and 34 surviving cells was 5 for controls and 83 for the exposed cell population. Thus there was a 6-fold increase in the frequency of micronuclei and an 18-fold increase in the frequency of gene mutations relative to controls. The results demonstrate that 2 major endpoints being implicated in carcinogenesis namely, gene mutations and chromosomal aberrations induced by inhaled radon can be detected and quantified concurrently in mammalian lung cells in vivo.

  3. Mycoplasma fermentans and TNF-β interact to amplify immune-modulating cytokines in human lung fibroblasts

    PubMed Central

    Fabisiak, James P.; Gao, Fei; Thomson, Robyn G.; Strieter, Robert M.; Watkins, Simon C.; Dauber, James H.

    2010-01-01

    Mycoplasma can establish latent infections and are associated with arthritis, leukemia, and chronic lung disease. We developed an experimental model in which lung cells are deliberately infected with Mycoplasma fermentans. Human lung fibroblasts (HLF) were exposed to live M. fermentans and immune-modulating cytokine release was assessed with and without known inducers of cytokine production. M. fermentans increased IL-6, IL-8/CXCL8, MCP-1/CCL2, and Gro-α/CXCL1 production. M. fermentans interacted with TNF-β to release more IL-6, CXCL8, and CXCL1 than predicted by the responses to either stimulus alone. The effects of live infection were recapitulated by exposure to M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a Toll-like receptor-2- and receptor-6-specific ligand. The synergistic effect of combined stimuli was more pronounced with prolonged incubations. Preexposure to TNF-β sensitized the cells to subsequent MALP-2 challenge, but preexposure to MALP-2 did not alter the IL-6 response to TNF-β. Exposure to M. fermentans or MALP-2 did not enhance nuclear localization, DNA binding, or transcriptional activity of NF-κB and did not modulate early NF-κB activation in response to TNF-β. Application of specific inhibitors of various MAPKs suggested that p38 and JNK/stress-activated protein kinase were involved in early IL-6 release after exposure to TNF-β and M. fermentans, respectively. The combined response to M. fermentans and TNF-β, however, was uniquely sensitive to delayed application of SP-600125, suggesting that JNK/stress-activated protein kinase contributes to the amplification of IL-6 release. Thus M. fermentans interacts with stimuli such as TNF-β to amplify lung cell production of immune-modulating cytokines. The mechanisms accounting for this interaction can now be dissected with the use of this in vitro model. PMID:16751226

  4. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury.

    PubMed

    Kurundkar, Ashish R; Kurundkar, Deepali; Rangarajan, Sunad; Locy, Morgan L; Zhou, Yong; Liu, Rui-Ming; Zmijewski, Jaroslaw; Thannickal, Victor J

    2016-06-01

    Matricellular proteins mediate pleiotropic effects during tissue injury and repair. CCN1 is a matricellular protein that has been implicated in angiogenesis, inflammation, and wound repair. In this study, we identified CCN1 as a gene that is differentially up-regulated in alveolar mesenchymal cells of human subjects with rapidly progressive idiopathic pulmonary fibrosis (IPF). Elevated levels of CCN1 mRNA were confirmed in lung tissues of IPF subjects undergoing lung transplantation, and CCN1 protein was predominantly localized to fibroblastic foci. CCN1 expression in ex vivo IPF lung fibroblasts correlated with gene expression of the extracellular matrix proteins, collagen (Col)1a1, Col1a2, and fibronectin as well as the myofibroblast marker, α-smooth muscle actin. RNA interference (RNAi)-mediated knockdown of CCN1 down-regulated the constitutive expression of these profibrotic genes in IPF fibroblasts. TGF-β1, a known mediator of tissue fibrogenesis, induces gene and protein expression of CCN1 via a mothers against decapentaplegic homolog 3 (SMAD3)-dependent mechanism. Importantly, endogenous CCN1 potentiates TGF-β1-induced SMAD3 activation and induction of profibrotic genes, supporting a positive feedback loop leading to myofibroblast activation. In vivo RNAi-mediated silencing of CCN1 attenuates fibrogenic responses to bleomycin-induced lung injury. These studies support previously unrecognized, cooperative interaction between the CCN1 matricellular protein and canonical TGF-β1/SMAD3 signaling that promotes lung fibrosis.-Kurundkar, A. R., Kurundkar, D., Rangarajan, S., Locy, M. L., Zhou, Y., Liu, R.-M., Zmijewski, J., Thannickal, V. J. The matricellular protein CCN1 enhances TGF-β1/SMAD3-dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury.

  5. CCN5 overexpression inhibits profibrotic phenotypes via the PI3K/Akt signaling pathway in lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and in an in vivo model of lung fibrosis.

    PubMed

    Zhang, Lin; Li, Yingna; Liang, Chunlian; Yang, Weilin

    2014-02-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with unknown etiology and undefined treatment modality. Fibroblasts are regarded as the major cell type that mediates the onset and progression of lung fibrosis by secreting large amounts of extracellular matrix (ECM) proteins, such as connective tissue growth factor (CTGF/CCN2). Current knowledge confers a crucial role of CCN2 in lung fibrosis. CCN5, another member of the CCN family, has been suggested to play an inhibitory role in some fibrotic diseases, such as cardiac fibrosis. However, the role of CCN5 in the process of IPF remains unknown. In the present study, using western blot analysis, we demonstrate that CCN2 is highly expressed in fibroblasts derived from IPF tissue, but is only slightly expressed in normal human lung fibroblasts. However, CCN5 was weakly expressed in all the above cells. qRT-PCR revealed that transforming growth factor (TGF)-β1 stimulation increased CCN2 expression in the IPF-derived cultures of primary human lung fibroblasts (PIFs) in a time- and concentration-dependent manner, but only slightly affected the expression of CCN5. The overexpression of CCN5 induced by the transfection of PIFs with recombinant plasmid did not affect cell viability, proliferation and apoptosis; however, it significantly suppressed the expression of CCN2, α-smooth muscle actin (α-SMA) and collagen type I. The TGF-β1-induced upregulation of the phosphorylation of Akt was reversed by CCN5 overexpression. Our results also demonstrated that adenovirus-mediated CCN5 overexpression in a mouse model of bleomycin-induced IPF significantly decreased the hydroxyproline content in the lungs, as well as TGF-β1 expression in bronchoalveolar lavage fluid. Taken together, our data demonstrate that CCN5 exerts an inhibitory effect on the fibrotic phenotypes of pulmonary fibroblasts in vitro and in vivo, and as such may be a promising target for the treatment of IPF.

  6. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    SciTech Connect

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  7. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts.

    PubMed

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.

  8. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts

    PubMed Central

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis. PMID:26751072

  9. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression.

    PubMed

    Liu, Xiao-Qing; Kiefl, Rosemarie; Roskopf, Claudia; Tian, Fei; Huber, Rudolf M

    2016-01-01

    In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues.

  10. Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow.

    PubMed

    Hofer, Erica Leonor; Labovsky, Vivian; La Russa, Vincent; Vallone, Valeria Fernández; Honegger, Alba Elizabeth; Belloc, Carlos Gabriel; Wen, Huei Chi; Bordenave, Raúl Horacio; Bullorsky, Eduardo Oscar; Feldman, Leonardo; Chasseing, Norma Alejandra

    2010-03-01

    We have shown that bone marrow (BM) from untreated advanced lung and breast cancer patients (LCP and BCP) have a reduced number of colony-forming unit fibroblasts (CFU-Fs) or mesenchymal stem cells (MSCs). Factors that regulate the proliferation and differentiation of CFU-F are produced by the patients' BM microenvironment. We have now examined whether conditioned media (CM) from patients' CFU-F-derived stromal cells also inhibits the colony-forming efficiency (CFE) of CFU-F in primary cultures from healthy volunteers (HV)-BM. Thus the number and proliferation potential of HV-CFU-F were also found to be decreased and similar to colony numbers and colony size of patients' CFU-F. Stromal cells from both of these types of colonies appeared relatively larger and lacked the characteristic spindle morphology typically seen in healthy stromal cells. We developed an arbitrary mesenchymal stromal cell maturational index by taking three measures consisting of stromal cell surface area, longitudinal and horizontal axis. All stromal indices derived from HV-CFU-F grown in patients' CM were similar to those from stromal elements derived from patients' CFU-F. These indices were markedly higher than stromal indices typical of HV-CFU-F cultured in healthy CM or standard medium [alpha-medium plus 20% heat-inactivated fetal bovine serum (FBS)]. Patients' CM had increased concentrations of the CFU-F inhibitor, GM-CSF, and low levels of bFGF and Dkk-1, strong promoters of self-renewal of MSCs, compared to the levels quantified in CM from HV-CFU-F. Moreover, the majority of patients' MSCs were unresponsive in standard medium and healthy CM to give CFU-F, indicating that the majority of mesenchymal stromal cells from patients' CFU-F are locked in maturational arrest. These results show that alterations of GM-CSF, bFGF, and Dkk-1 are associated with deficient cloning and maturation arrest of CFU-F. Defective autocrine and paracrine mechanisms may be involved in the BM microenvironments of

  11. Pharmacological Enhancement of β-Hexosaminidase Activity in Fibroblasts from Adult Tay-Sachs and Sandhoff Patients*

    PubMed Central

    Tropak, Michael B.; Reid, Stephen P.; Guiral, Marianne; Withers, Stephen G.; Mahuran, Don

    2010-01-01

    Tay-Sachs and Sandhoff diseases are lysosomal storage disorders that result from an inherited deficiency of β-hexosaminidase A (αβ). Whereas the acute forms are associated with a total absence of hexosaminidase A and early death, the chronic adult forms exist with activity and protein levels of ~5%, and unaffected individuals have been found with only 10% of normal levels. Surprisingly, almost all disease-associated missense mutations do not affect the active site of the enzyme but, rather, inhibit its ability to obtain and/or retain its native fold in the endoplasmic reticulum, resulting in its retention and accelerated degradation. By growing adult Tay-Sachs fibroblasts in culture medium containing known inhibitors of hexosaminidase we have raised the residual protein and activity levels of intralysosomal hexosaminidase A well above the critical 10% of normal levels. A similar effect was observed in fibroblasts from an adult Sandhoff patient. We propose that these hexosaminidase inhibitors function as pharmacological chaperones, enhancing the stability of the native conformation of the enzyme, increasing the amount of hexosaminidase A capable of exiting the endoplasmic reticulum for transport to the lysosome. Therefore, pharmacological chaperones could provide a novel approach to the treatment of adult Tay-Sachs and possibly Sandhoff diseases. PMID:14724290

  12. Outcomes of Adolescent and Adult Patients with Lung Metastatic Osteosarcoma and Comparison of Synchronous and Metachronous Lung Metastatic Groups.

    PubMed

    Gok Durnali, Ayse; Paksoy Turkoz, Fatma; Ardic Yukruk, Fisun; Tokluoglu, Saadet; Yazici, Omer Kamil; Demirci, Ayse; Bal, Oznur; Gundogdu Buyukbas, Selay; Esbah, Onur; Oksuzoglu, Berna; Alkis, Necati

    2016-01-01

    Osteosarcomas with lung metastases are rather heterogenous group. We aimed to evaluate the clinicopathological characteristics and outcomes of osteosarcoma patients with lung metastases and to compare the synchronous and metachronous lung metastatic groups. A total of 93 adolescent and adult patients with lung metastatic osteosarcoma, from March 1995 to July 2011, in a single center, were included. Sixty-five patients (69.9%) were male. The median age was 19 years (range, 14-74). Thirty-nine patients (41.9%) had synchronous lung metastases (Group A) and 54 patients (58.1%) had metachronous lung metastases (Group B). The 5-year and 10-year post-lung metastases overall survival (PLM-OS) was 17% and 15%, respectively. In multivariate analysis for PLM-OS, time to lung metastases (p = 0.010), number of metastatic pulmonary nodules (p = 0.020), presence of pulmonary metastasectomy (p = 0.007) and presence of chemotherapy for lung metastases (p< 0.001) were found to be independent prognostic factors. The median PLM-OS of Group A and Group B was 16 months and 9 months, respectively. In Group B, the median PLM-OS of the patients who developed lung metastases within 12 months was 6 months, whereas that of the patients who developed lung metastases later was 16 months. Time to lung metastases, number and laterality of metastatic pulmonary nodules, chemotherapy for lung metastatic disease and pulmonary metastasectomy were independent prognostic factors for patients with lung metastatic osteosarcoma. The best PLM-OS was in the subgroup of patients treated both surgery and chemotherapy. The prognosis of the patients who developed lung metastases within 12 months after diagnosis was worst.

  13. Outcomes of Adolescent and Adult Patients with Lung Metastatic Osteosarcoma and Comparison of Synchronous and Metachronous Lung Metastatic Groups

    PubMed Central

    Gok Durnali, Ayse; Paksoy Turkoz, Fatma; Ardic Yukruk, Fisun; Tokluoglu, Saadet; Yazici, Omer Kamil; Demirci, Ayse; Bal, Oznur; Gundogdu Buyukbas, Selay; Esbah, Onur; Oksuzoglu, Berna; Alkis, Necati

    2016-01-01

    Osteosarcomas with lung metastases are rather heterogenous group. We aimed to evaluate the clinicopathological characteristics and outcomes of osteosarcoma patients with lung metastases and to compare the synchronous and metachronous lung metastatic groups. A total of 93 adolescent and adult patients with lung metastatic osteosarcoma, from March 1995 to July 2011, in a single center, were included. Sixty-five patients (69.9%) were male. The median age was 19 years (range, 14–74). Thirty-nine patients (41.9%) had synchronous lung metastases (Group A) and 54 patients (58.1%) had metachronous lung metastases (Group B). The 5-year and 10-year post-lung metastases overall survival (PLM-OS) was 17% and 15%, respectively. In multivariate analysis for PLM-OS, time to lung metastases (p = 0.010), number of metastatic pulmonary nodules (p = 0.020), presence of pulmonary metastasectomy (p = 0.007) and presence of chemotherapy for lung metastases (p< 0.001) were found to be independent prognostic factors. The median PLM-OS of Group A and Group B was 16 months and 9 months, respectively. In Group B, the median PLM-OS of the patients who developed lung metastases within 12 months was 6 months, whereas that of the patients who developed lung metastases later was 16 months. Time to lung metastases, number and laterality of metastatic pulmonary nodules, chemotherapy for lung metastatic disease and pulmonary metastasectomy were independent prognostic factors for patients with lung metastatic osteosarcoma. The best PLM-OS was in the subgroup of patients treated both surgery and chemotherapy. The prognosis of the patients who developed lung metastases within 12 months after diagnosis was worst. PMID:27167624

  14. Indium chloride-induced micronuclei via reactive oxygen species in Chinese hamster lung fibroblast V79 cells.

    PubMed

    Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Chang, Hui-Min; Kuan, Yu-Hsiang

    2013-10-01

    We study the cytotoxicity of indium chloride (InCl₃) in Chinese hamster lung fibroblasts, the V79 cells, using MTT assay. The results showed that InCl₃ did not induce significant cytotoxicity at various concentrations tested. In addition, the frequency of micronuclei (MN) was assayed to evaluate the genotoxic effects of InCl₃ in V79 cells. InCl₃ at concentrations ranged 0.1-1 μM significantly increased MN frequency in a concentration-dependent manner. Both catalase and superoxide dismutase at concentrations of 75 and 150 μg/mL significantly inhibited InCl₃-induced MN. Similarly, Germanium oxide (GeO₂) and dimercaprol expressed antigenotoxic effects. From these findings, it is concluded that InCl₃ is a potent genotoxic chemical, which may be mediated partly by inducing oxidative stress. The significance of this study shows that the workers in the semiconductor factories should be cautious in exposing to the hazardous genotoxic InCl₃.

  15. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts.

    PubMed

    Rubio, Laura; El Yamani, Naouale; Kazimirova, Alena; Dusinska, Maria; Marcos, Ricard

    2016-04-01

    Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG. From the proliferation assay data we selected a dose-range of 0.12 to 12µg/cm(2) At these range we have been able to observe significant cellular uptake of MWCNT by using transmission electron microscopy (TEM), as well as a concentration-dependent induction of intracellular reactive oxygen species. In addition, a clear concentration-dependent increase in the induction of HPRT mutations was also observed. Data support a potential genotoxic/ carcinogenic risk associated with MWCNT exposure.

  16. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  17. In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

    PubMed

    Criscimanna, Angela; Zito, Giovanni; Taddeo, Annalisa; Richiusa, Pierina; Pitrone, Maria; Morreale, Daniele; Lodato, Gaetano; Pizzolanti, Giuseppe; Citarrella, Roberto; Galluzzo, Aldo; Giordano, Carla

    2012-01-01

    Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ∼98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli

  18. Specificity in the synergism between retinoic acid and EGF on the growth of adult human skin fibroblasts

    SciTech Connect

    Harper, R.A. )

    1988-10-01

    Vitamin A (retinol) and five retinoids were tested for their ability to enhance epidermal growth factor (EGF) stimulation of adult human skin fibroblast growth in vitro. The retinoids utilized in this study were RO-1-5488 (all-trans-retinoic acid), RO-4-3780 (13-cis-retinoic acid), RO-10-9359, RO-10-1670, and RO-21-6583. Retinol and each retinoid were capable of stimulating fibroblast growth alone (0-86%), while 13-cis and all-trans-retinoic acid were the most potent in potentiating the EGF promotion of fibroblast growth. Since retinoic acid might enhance the EGF stimulation of cell growth by increasing either EGF receptor number or binding affinity, the binding of {sup 125}I-labeled EGF was carried out in the presence of retinoic acid and the data were subjected to a Scatchard-type analysis. No change in EGF receptor number or affinity was seen in the presence of retinoic acid. The data indicate a specific interaction between retinoid acid and EGF which results in the potentiation of the EGF-stimulated cell growth. Furthermore, the mechanism of this interaction does not seem to involve the initial binding of EGF to its plasma membrane receptor or the available number of EGF receptors located on the cell surface.

  19. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    NASA Astrophysics Data System (ADS)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  20. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma.

    PubMed

    Arai, Daisuke; Hegab, Ahmed E; Soejima, Kenzo; Kuroda, Aoi; Ishioka, Kota; Yasuda, Hiroyuki; Naoki, Katsuhiko; Kagawa, Shizuko; Hamamoto, Junko; Yin, Yongjun; Ornitz, David M; Betsuyaku, Tomoko

    2015-03-01

    Fibroblast growth factor 9 (FGF9) is essential for lung development and is highly expressed in a subset of human lung adenocarcinomas. We recently described a mouse model in which FGF9 expression in the lung epithelium caused proliferation of the airway epithelium at the terminal bronchioles and led to rapid development of adenocarcinoma. Here, we used this model to characterize the effects of prolonged FGF9 induction on the proximal and distal lung epithelia, and examined the propagation potential of FGF9-induced lung tumours. We showed that prolonged FGF9 over-expression in the lung resulted in the development of adenocarcinomas arising from both alveolar type II and airway secretory cells in the lung parenchyma and airways, respectively. We found that tumour cells harboured tumour-propagating cells that were able to form secondary tumours in recipient mice, regardless of FGF9 expression. However, the highest degree of tumour propagation was observed when unfractionated tumour cells were co-administered with autologous, tumour-associated mesenchymal cells. Although the initiation of lung adenocarcinomas was dependent on activation of the FGF9-FGF receptor 3 (FGFR3) signalling axis, maintenance and propagation of the tumour was independent of this signalling. Activation of an alternative FGF-FGFR axis and the interaction with tumour stromal cells is likely to be responsible for the development of this independence. This study demonstrates the complex role of FGF-FGFR signalling in the initiation, growth and propagation of lung cancer. Our findings suggest that analysing the expressions of FGF-FGFRs in human lung cancer will be a useful tool for guiding customized therapy.

  1. Mitochondrial dysfunction and transactivation of p53-dependent apoptotic genes in BaP-treated human fetal lung fibroblasts.

    PubMed

    Yang, Guangtao; Jiang, Ying; Rao, Kaimin; Chen, Xi; Wang, Qian; Liu, Ailin; Xiong, Wei; Yuan, Jing

    2011-12-01

    Benzo(a)pyrene (BaP) has been shown to be an inducer of apoptosis. However, mechanisms involved in BaP-induced mitochondrial dysfunction are not well-known. In this study, human fetal lung fibroblasts cells were treated with BaP (8, 16, 32, 64 and 128 μM) for 4 and 12 h. Cell viability, intracellular level of reactive oxygen species (ROS), total antioxidant capacity (T-AOC), mitochondrial membrane potential (ΔΨ(m)) and cytochrome c release were determined. Changes in transcriptional levels of p53-dependent apoptotic genes (p53, APAF1, CASPASE3, CASPASE9, NOXA and PUMA) were measured. At time point of 4 h, BaP induced the intracellular ROS generation in 64 (p < .05) and 128 μM BaP groups (p < .01) but decreased the T-AOC activities in 32, 64 (p < .05 for both) and 128 μM BaP groups (p < .01). At time point of 12 h, ΔΨ(m) significantly decreased in ≥32 μM BaP groups (p < .05 for all). Amount of mitochondrial cytochrome c significantly increased in 128 μM BaP group (p < .01). Transcriptional levels of CASPASE3, CASPASE9, APAF1 and PUMA were up-regulated in all BaP groups (p < .05 for all) and in ≥32 μM groups for NOXA (p < .05). But only in 16 μM BaP group a relatively little expression of p53 mRNA was observed (p < .05). The results indicate that in the earlier period BaP promoted the generation of excessive ROS and subsequently the mitochondrial depolarization, whereas transactivations of the p53-dependent apoptotic genes were significantly induced at the later period.

  2. Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1.

    PubMed

    Liu, Jingjing; Song, Cheng; Xiao, Qiming; Hu, Gaoyun; Tao, Lijian; Meng, Jie

    2015-02-01

    Caveolin-1 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. We previously showed that fluorofenidone (FD), a novel pyridine agent, can attenuate bleomycin-induced experimental pulmonary fibrosis and restore the production of caveolin-1. In this study, we explore mainly whether caveolin-1 plays a critical role in the anti-pulmonary fibrosis effects of FD in vitro. The normal human lung fibroblasts (NHLFs) were cultured with transforming growth factor-β1 (TGF-β1) and then were treated with FD. Subsequently, NHLFs transfected with cav-1-siRNA were treated with TGF-β1 and/or FD. The expressions of α-smooth muscle actin (α-SMA), fibronectin, collagen I, caveolin-1, phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated P38 were measured by Western blot and/or real-time polymerase chain reaction. Fluorofenidone attenuated TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I; inhibited phosphorylation of ERK, JNK, and P38; and restored caveolin-1 protein expression but cannot increase caveolin-1 mRNA level in vitro. After caveolin-1 was silenced, FD could not downregulate TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I or phosphorylation of ERK, JNK, and P38. These studies demonstrate that FD, a potential antifibrotic agent, may attenuate TGF-β1-induced activation of NHLFs by restoring the expression of caveolin-1.

  3. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts.

    PubMed

    El-Chemaly, Souheil; Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I; Samidurai, Arun; Gochuico, Bernadette R; Moss, Joel

    2014-07-01

    Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.

  4. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts

    PubMed Central

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-01-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca2+, and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway. PMID:25663523

  5. Activation of protease-activated receptors (PARs)-1 and -2 promotes alpha-smooth muscle actin expression and release of cytokines from human lung fibroblasts.

    PubMed

    Asokananthan, Nithiananthan; Lan, Rommel S; Graham, Peter T; Bakker, Anthony J; Tokanović, Ana; Stewart, Geoffrey A

    2015-02-01

    Previous studies have shown that protease-activated receptors (PARs) play an important role in various physiological processes. In the present investigation, we determined the expression of PARs on human lung fibroblasts (HLF-1) and whether they were involved in cellular differentiation and pro-inflammatory cytokine and prostaglandin (PGE2) secretion. PAR-1, PAR-2, PAR-3, and PAR-4 were detected in fibroblasts using RT-PCR, immunocytochemistry, and flow cytometry. Increased expression of PAR-4, but not other PARs, was observed in fibroblasts stimulated with phorbol myristate acetate. The archetypical activators of PARs, namely, thrombin and trypsin, as well as PAR-1 and PAR-2 agonist peptides, stimulated transient increases in intracellular Ca(2+), and promoted increased α-smooth muscle actin expression. The proteolytic and peptidic PAR activators also stimulated the release of IL-6 and IL-8, as well as PGE2, with a rank order of potency of PAR-1 > PAR-2. The combined stimulation of PAR-1 and PAR-2 resulted in an additive release of both IL-6 and IL-8. In contrast, PAR-3 and PAR-4 agonist peptides, as well as all the PAR control peptides examined, were inactive. These results suggest an important role for PARs associated with fibroblasts in the modulation of inflammation and remodeling in the airway.

  6. Isolation and clonal assay of adult lung epithelial stem/progenitor cells.

    PubMed

    Bertoncello, Ivan; McQualter, Jonathan

    2011-01-01

    Adult mouse lung epithelial stem/progenitor cells (EpiSPC) can be defined in vitro as epithelial colony-forming units that are capable of self-renewal, and which when co-cultured with lung mesenchymal stromal cells (MSC) are able to give rise to differentiated progeny comprising mature lung epithelial cells. This unit describes a protocol for the prospective isolation and in vitro propagation and differentiation of adult mouse lung EpiSPC. The strategy used for selection of EpiSPC and MSC from adult mouse lung by enzymatic digestion and flow cytometry is based on the differential expression of CD45, CD31, Sca-1, EpCAM, and CD24. The culture conditions required for the differentiation (co-culture with MSC) and expansion (stromal-free culture with FGF-10 and HGF) of EpiSPC are described.

  7. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    SciTech Connect

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  8. Lung Volume during Swallowing: Single Bolus Swallows in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen M. Wheeler; Huber, Jessica E.; Pitts, Teresa; Sapienza, Christine M.

    2009-01-01

    Purpose: This study examined the relationship between swallowing and lung volume initiation in healthy adults during single swallows of boluses differing in volume and consistency. Differences in lung volume according to respiratory phase surrounding the swallow were also assessed. Method: Nine men and 11 women between the ages of 19 and 28 years…

  9. Mean lung pressure during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    PubMed

    Hirayama, Takahiro; Nagano, Osamu; Shiba, Naoki; Yumoto, Tetsuya; Sato, Keiji; Terado, Michihisa; Ugawa, Toyomu; Ichiba, Shingo; Ujike, Yoshihito

    2014-12-01

    In adult high-frequency oscillatory ventilation (HFOV), stroke volume (SV) and mean lung pressure (PLung) are important for lung protection. We measured the airway pressure at the Y-piece and the lung pressure during HFOV using a lung model and HFOV ventilators for adults (R100 and 3100B). The lung model was made of a 20-liter, airtight rigid plastic container (adiabatic compliance: 19.3 ml/cmH2O) with or without a resistor (20 cmH2O/l/sec). The ventilator settings were as follows: mean airway pressure (MAP), 30 cmH2O; frequency, 5-15 Hz (every 1 Hz); airway pressure amplitude (AMP), maximum;and % of inspiratory time (IT), 50% for R100, 33% or 50% for 3100B. The measurements were also performed with an AMP of 2/3 or 1/3 maximum at 5, 10 and 15 Hz. The PLung and the measured MAP were not consistently identical to the setting MAP in either ventilator, and decreasing IT decreased the PLung in 3100B. In conclusion, we must pay attention to the possible discrepancy between the PLung and the setting MAP during adult HFOV. PMID:25519026

  10. G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts.

    PubMed

    D'Souza, Karen M; Malhotra, Ricky; Philip, Jennifer L; Staron, Michelle L; Theccanat, Tiju; Jeevanandam, Valluvan; Akhter, Shahab A

    2011-04-29

    Cardiac fibroblasts (CF) make up 60-70% of the total cell number in the heart and play a critical role in regulating normal myocardial function and in adverse remodeling following myocardial infarction and the transition to heart failure. Recent studies have shown that increased intracellular cAMP can inhibit CF transformation and collagen synthesis in adult rat CF; however, mechanisms by which cAMP production is regulated in CF have not been elucidated. We investigated the potential role of G protein-coupled receptor kinase-2 (GRK2) in modulating collagen synthesis by adult human CF isolated from normal and failing left ventricles. Baseline collagen synthesis was elevated in failing CF and was not inhibited by β-agonist stimulation in contrast to normal controls. β-adrenergic receptor (β-AR) signaling was markedly uncoupled in the failing CF, and expression and activity of GRK2 were increased 3-fold. Overexpression of GRK2 in normal CF recapitulated a heart failure phenotype with minimal inhibition of collagen synthesis following β-agonist stimulation. In contrast, knockdown of GRK2 expression in normal CF enhanced cAMP production and led to greater β-agonist-mediated inhibition of basal and TGFβ-stimulated collagen synthesis versus control. Inhibition of GRK2 activity in failing CF by expression of the GRK2 inhibitor, GRK2ct, or siRNA-mediated knockdown restored β-agonist-stimulated inhibition of collagen synthesis and decreased collagen synthesis in response to TGFβ stimulation. GRK2 appears to play a significant role in regulating collagen synthesis in adult human CF, and increased activity of this kinase may be an important mechanism of maladaptive ventricular remodeling as mediated by cardiac fibroblasts.

  11. Complementary roles of microtubules and microfilaments in the lung fibroblast-mediated contraction of collagen gels: Dynamics and the influence of cell density.

    PubMed

    Redden, Robert A; Doolin, Edward J

    2006-01-01

    Fibroblasts are important cellular components in wound healing, scar formation, and fibrotic disorders; and the fibroblast-populated collagen-gel (FPCG) model allows examination of fibroblast behavior in an in vitro three-dimensional environment similar to that in vivo. Contraction of free-floating FPCGs depends on an active and dynamic cytoskeleton, and the contraction dynamics are highly influenced by cell density. We investigated mechanistic differences between high- and low-cell density FPCG contraction by evaluating contraction dynamics in detail, using specific cytoskeletal disruptors. Collagen gels were seeded with human lung fibroblasts at either high (HD) or low (LD) density, and incubated with or without cytoskeletal disruptors colchicine (microtubules) or cytochalasin D (microfilaments). Gel area was measured daily. FPCG contraction curves were essentially sigmoidal, featuring an initial period of no contraction (lag phase), followed by a period of rapid contraction (log phase). Contraction curves of HD-FPCGs were distinct from those of LD-FPCGs. For example, HD-FPCGs had a negligible lag phase (compared with 3 d for LD-FPCGs) and exhibited a higher rate of log-phase contraction. Both colchicine and cytochalasin dose-dependently inhibited contraction but specifically affected different phases of contraction in HD- and LD-FPCGs; and colchicine inhibited LD-FPCGs much more than HD-FPCGs. The data indicate that LD- and HD-FPCGs contract through different primary mechanisms. Microtubules and microfilaments are both complementarily and dynamically involved in the contraction of FPCGs, and cell density influences primary cytoskeletal mechanisms. These results provide valuable information about fibroblast behavior in healing and fibrosis, and may suggest novel treatment options. PMID:16759151

  12. Methods in laboratory investigation. Autoradiographic demonstration of the specific binding and nuclear localization of 3H-dexamethasone in adult mouse lung.

    PubMed

    Beer, D G; Cunha, G R; Malkinson, A M

    1983-12-01

    This report describes the first autoradiographic demonstration of specific nuclear localization of 3H-dexamethasone in different cell types of the lung. Adult mouse lung tissue was incubated in vitro for 90 minutes with 17 nM 3H-dexamethasone in the presence or absence of various nonradioactive steroids. After extensive washing to remove any nonspecifically bound ligand, the specimens were processed for autoradiography using the thaw-mount method. In the absence of competing steroids, silver grains were localized in the nuclei of alveolar type II cells, bronchiolar and arteriolar smooth muscle cells, fibroblasts, and endothelial cells of the pulmonary vasculature. No significant nuclear concentration of label was observed in the bronchiolar epithelium, however. The specificity of 3H-dexamethasone labeling was demonstrated by incubating 17 nM 3H-dexamethasone with a 600-fold excess of either unlabeled dexamethasone, estrogen, dihydrotestosterone, or progesterone. These autoradiographic binding and steroid competition studies were confirmed by quantifying with liquid scintillation counting the specific 3H-dexamethasone binding in nuclear and cytosolic fractions prepared from lung tissues that had undergone identical incubation and washing procedures as those for autoradiography. These results demonstrate that many cell types in adult lung are targets for glucocorticoids and may respond to physiologic concentrations of this hormone.

  13. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts.

    PubMed

    Whitworth, Deanne J; Ovchinnikov, Dmitry A; Sun, Jane; Fortuna, Patrick R J; Wolvetang, Ernst J

    2014-07-01

    In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.

  14. Ventilation-perfusion scintigraphy in an adult with congenital unilateral hyperlucent lung

    SciTech Connect

    Wegener, W.A.; Velchik, M.G. )

    1990-10-01

    A variety of congenital and acquired etiologies can give rise to the radiographic finding of a unilateral hyperlucent lung. An unusual case of congenital lobar emphysema diagnosed in a young adult following the initial discovery of a hyperexpanded, hyperlucent lung is reported. Although subsequent bronchoscopy and radiologic studies detailed extensive anatomic abnormalities, functional imaging also played an important role in arriving at this rare diagnosis. In particular, ventilation-perfusion scintigraphy identified the small contralateral lung as the functional lung and helped narrow the differential diagnosis to etiologies involving obstructive airway disorders.

  15. Cytotoxic and genotoxic effects of tambjamine D, an alkaloid isolated from the nudibranch Tambja eliora, on Chinese hamster lung fibroblasts.

    PubMed

    Cavalcanti, Bruno C; Júnior, Hélio V N; Seleghim, Mirna H R; Berlinck, Roberto G S; Cunha, Geanne M A; Moraes, Manoel O; Pessoa, Claudia

    2008-08-11

    Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 microg/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6, 1.2, 2.4 and 4.8 microg/mL). After 24h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested, assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50>100 microg/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations

  16. Neoplastic transformation of human lung fibroblast MRC-5 SV2 cells induced by benzo[a]pyrene and confluence culture.

    PubMed

    Zhu, Huijun; Gooderham, Nigel

    2002-08-15

    Benzo[a]pyrene (BaP) is potent rodent carcinogen and a reputed human carcinogen. Although much is known about its metabolic activation leading to DNA damage, the mechanisms of its actions are not as well understood at a cellular level. In addressing this, we have established an in vitro model that follows the progression toward neoplastic transformation induced by BaP. The model uses immortal nontumorigenic human lung fibroblast MRC-5 SV2 cells as effectors, cocultured with a metabolically competent human lymphoblastoid line h1A1v2 (activator cells). Treatment of the coculture with BaP for 48 h induced a dose-dependent decrease in cloning efficiency of the MRC-5 SV2 cells; nevertheless, cultures continued to progress to confluence. At prolonged confluence culture (day 11), an elevation in the proportion of G2-M phase cells was detected by flow cytometry. By day 15, the G2-M phase peak disappeared, accordant with the appearance of a population with DNA content greater than the cells in G2-M phase. These changes in DNA ploidy were coincident with changes in morphology, specifically the appearance of enlarged and irregular-shaped nuclei. Confluence culture of BaP-treated MRC-5 SV2 cells for more than 2 weeks resulted in cell death; however, a few colonies survived the crisis to reach confluence again after an additional 10-14 days. The number of death-resistant colonies was proportional to the dose of BaP, with the majority of the cells exhibiting abnormal morphology. The degree of morphological change progressively increased with successive rounds of confluence. Cells that survived three rounds of confluence adopted a vastly different morphology, becoming polygonal, spindle, or other irregular-shaped, and acquired the ability to form large dense clumps that grew in an anchorage-independent manner. In parallel experiments, treatment with the vehicle alone (DMSO) resulted in substantially less death resistance and lower numbers of high-density clumps. Our studies

  17. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  18. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90.

    PubMed

    Ahmad, Iqbal; Khan, Mohd Imran; Patil, Govil; Chauhan, L K S

    2012-02-01

    Occupational exposure of granite workers is well known to cause lung impairment and silicosis. Toxicological profiles of different size particles of granite dust, however, are not yet understood. Present evaluation of micro- and nano-particles of granite dust as on human lung fibroblast cells IMR-90, revealed that their toxic effects were dose-dependent, and nanoparticles in general were more toxic. In this study we first demonstrated that nanoparticles caused oxidative stress, inflammatory response and genotoxicity, as seen by nearly 2 fold induction of ROS and LPO, mRNA levels of TNF-α and IL-1β, and induction in micronuclei formation. All these were significantly higher when compared with the effect of micro particles. Thus, the study suggests that separate health safety standards would be required for granite particles of different sizes.

  19. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells.

    PubMed

    Brevini, T A L; Pennarossa, G; Acocella, F; Brizzola, S; Zenobi, A; Gandolfi, F

    2016-05-01

    Diabetes is among the most frequently diagnosed endocrine disorder in dogs and its prevalence continues to increase. Medical management of this pathology is lifelong and challenging because of the numerous serious complications. A therapy based on the use of autologous viable insulin-producing cells to replace the lost β cell mass would be very advantageous. A protocol to enable the epigenetic conversion of canine dermal fibroblasts, obtained from a skin biopsy, into insulin-producing cells (EpiCC) is described in the present manuscript. Cells were briefly exposed to the DNA methyltransferase inhibitor 5-azacytidine (5-aza-CR) in order to increase their plasticity. This was followed by a three-step differentiation protocol that directed the cells towards the pancreatic lineage. After 36 days, 38 ± 6.1% of the treated fibroblasts were converted into EpiCC that expressed insulin mRNA and protein. Furthermore, EpiCC were able to release insulin into the medium in response to an increased glucose concentration. This is the first evidence that generating a renewable autologous, functional source of insulin-secreting cells is possible in the dog. This procedure represents a novel and promising potential therapy for diabetes in dogs. PMID:27033591

  20. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor.

    PubMed

    Gritti, A; Parati, E A; Cova, L; Frolichsthal, P; Galli, R; Wanke, E; Faravelli, L; Morassutti, D J; Roisen, F; Nickel, D D; Vescovi, A L

    1996-02-01

    It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for proliferation remain undefined. Using basic fibroblast growth factor (bFGF), we have isolated multipotential progenitors from adult mouse striatum. These progenitors proliferate and can differentiate into cells displaying the antigenic properties of astrocytes, oligodendrocytes, and neurons. The neuron-like cells possess neuronal features, exhibit neuronal electrophysiological properties, and are immunoreactive for GABA, substance P, choline acetyl-transferase, and glutamate. Clonal analysis confirmed the multipotency of these bFGF-dependent cells. Most significantly, subcloning experiments demonstrated that they were capable of self-renewal, which led to a progressive increase in population size over serial passaging. These results demonstrate that bFGF is mitogenic for multipotential cells from adult mammalian forebrain that possess stem cell properties. PMID:8558238

  1. Lung vital capacity and oxygen saturation in adults with cerebral palsy

    PubMed Central

    Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2014-01-01

    Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID

  2. Lung Volume Measured during Sequential Swallowing in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen Wheeler; Huber, Jessica E.; Pitts, Teresa; Davenport, Paul W.; Sapienza, Christine M.

    2011-01-01

    Purpose: Outcomes from studying the coordinative relationship between respiratory and swallow subsystems are inconsistent for sequential swallows, and the lung volume at the initiation of sequential swallowing remains undefined. The first goal of this study was to quantify the lung volume at initiation of sequential swallowing ingestion cycles and…

  3. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  4. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition

    PubMed Central

    Choe, Chungyoul; Shin, Yong-Sung; Kim, Changhoon; Choi, So-Jung; Lee, Jinseon; Kim, So Young; Cho, Yong Beom; Kim, Jhingook

    2015-01-01

    Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms through which stromal cells contribute to the response to EGFR TKI in non-small cell lung cancer. This work examined the role of hedgehog signaling in cancer-associated fibroblast (CAF)-mediated resistance of lung cancer cells to the EGFR TKI erlotinib. PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR TKI erlotinib when cocultured in vitro with CAFs. Polymerase chain reaction and immunocytochemical assays showed that CAFs induced epithelial to mesenchymal transition phenotype in PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition marker proteins including vimentin. Importantly, CAFs induce upregulation of the 7-transmembrane protein smoothened, the central signal transducer of hedgehog, suggesting that the hedgehog signaling pathway is active in CAF-mediated drug resistance. Indeed, downregulation of smoothened activity with the smoothened antagonist cyclopamine induces remodeling of the actin cytoskeleton independently of Gli-mediated transcriptional activity in PC9 cells. These findings indicate that crosstalk with CAFs plays a critical role in resistance of lung cancer to EGFR TKIs through induction of the epithelial to mesenchymal transition and may be an ideal therapeutic target in lung cancer. PMID:26676152

  5. Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.

    PubMed

    Audi, Said H; Bongard, Robert D; Krenz, Gary S; Rickaby, David A; Haworth, Steven T; Eisenhauer, Jessica; Roerig, David L; Merker, Marilyn P

    2005-11-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) plays a dominant role in the reduction of the quinone compound 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) to durohydroquinone (DQH2) on passage through the rat lung. Exposure of adult rats to 85% O2 for > or =7 days stimulates adaptation to the otherwise lethal effects of >95% O2. The objective of this study was to examine whether exposure of adult rats to hyperoxia affected lung NQO1 activity as measured by the rate of DQ reduction on passage through the lung. We measured DQH2 appearance in the venous effluent during DQ infusion at different concentrations into the pulmonary artery of isolated perfused lungs from rats exposed to room air or to 85% O2. We also evaluated the effect of hyperoxia on vascular transit time distribution and measured NQO1 activity and protein in lung homogenate. The results demonstrate that exposure to 85% O2 for 21 days increases lung capacity to reduce DQ to DQH2 and that NQO1 is the dominant DQ reductase in normoxic and hyperoxic lungs. Kinetic analysis revealed that 21-day hyperoxia exposure increased the maximum rate of pulmonary DQ reduction, Vmax, and the apparent Michaelis-Menten constant for DQ reduction, Kma. The increase in Vmax suggests a hyperoxia-induced increase in NQO1 activity of lung cells accessible to DQ from the vascular region, consistent qualitatively but not quantitatively with an increase in lung homogenate NQO1 activity in 21-day hyperoxic lungs. The increase in Kma could be accounted for by approximately 40% increase in vascular transit time heterogeneity in 21-day hyperoxic lungs.

  6. Intestinal type of lung adenocarcinoma in younger adults.

    PubMed

    Stojsic, Jelena; Kontic, Milica; Subotic, Dragan; Popovic, Marko; Tomasevic, Dragana; Lukic, Jelena

    2014-01-01

    Intestinal type of lung adenocarcinoma (ILADC) was initially described by Tsao and Fraser in 1991. Morphology and immunophenotype of ILADC are the same as in colorectal adenocarcinoma. Rectocolonoscopy must be performed to exclude colorectal origin of adenocarcinoma. Colorectal adenocarcinoma claimed to be genetically similar to an ILADC. Patients. We describe 24- and 26-year-old patients of both genders who went under surgery because of a lung tumor mass detected on CT scan. ILADC was diagnosed on resected lung specimens. According to positivity of Cytokeratin20, CDX-2, and Villin, respectively, and negativity of Cytokeratin7, TTF-1, Napsin-A, SurfactantB, MUC-1, and MUC-2, respectively, ILADC was diagnosed. KRAS mutation was detected in tumor tissue of the male patient. Conclusion. Rectocolonoscopy is the only relevant method for distinguishing the intestinal type of lung adenocarcinoma from metastatic colorectal carcinoma because immunohistochemistry and detection of mutation status are frequently the same in both types of adenocarcinoma. More investigations are needed for further understanding of ILADC in purpose of personalized lung carcinoma therapy particularly introducing detection of mutation status, especially in younger patients. PMID:24782938

  7. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  8. Novel long chain fatty acid derivatives of quercetin-3-O-glucoside reduce cytotoxicity induced by cigarette smoke toxicants in human fetal lung fibroblasts.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2016-06-15

    Smoking has become a global health concern due to its association with many disease conditions, such as chronic obstructive pulmonary disease (COPD), cardiovascular diseases (CVD) and cancer. Flavonoids are plant polyphenolic compounds, studied extensively for their antioxidant, anti-inflammatory, and anti-carcinogenic properties. Quercetin-3-O-glucoside (Q3G) is a flavonoid which is widely found in plants. Six novel long chain fatty acid [stearic acid, oleic acid, linoleic acid, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] derivatives of Q3G were evaluated for their potential in protecting human lung fibroblasts against cytotoxicity induced by selected cigarette smoke toxicants: 4-(methylnitrosoamino)-1-(3-pyridinyl)-1-butanone (NNK), benzo-α-pyrene (BaP), nicotine and chromium (Cr[VI]). Nicotine and Cr[VI] induced toxicity in fibroblasts and reduced the percentage of viable cells, while BaP and NNK did not affect cell viability. The fatty acid derivatives of Q3G provided protection against nicotine- and Cr[VI]-induced cell death and membrane lipid peroxidation. Based on the evaluation of inflammatory markers of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2), the fatty acid derivatives of Q3G were found to be effective in lowering the inflammatory response. Overall, these novel fatty acid esters of Q3G warrant further investigation as potential cytoprotective agents. PMID:27071958

  9. Adding to the Mix: Fibroblast Growth Factor and Platelet-derived Growth Factor Receptor Pathways as Targets in Non–small Cell Lung Cancer

    PubMed Central

    Kono, Scott A.; Heasley, Lynn E.; Doebele, Robert C.; Camidge, D. Ross

    2012-01-01

    The treatment of advanced non–small cell lung cancer (NSCLC) increasingly involves the use of molecularly targeted therapy with activity against either the tumor directly, or indirectly, through activity against host-derived mechanisms of tumor support such as angiogenesis. The most well studied signaling pathway associated with angiogenesis is the vascular endothelial growth factor (VEGF) pathway, and the only antiangiogenic agent currently approved for the treatment of NSCLC is bevacizumab, an antibody targeted against VEGF. More recently, preclinical data supporting the role of fibroblast growth factor receptor (FGFR) and platelet-derived growth factor receptor (PDGFR) signaling in angiogenesis have been reported. The platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) pathways may also stimulate tumor growth directly through activation of downstream mitogenic signaling cascades. In addition, 1 or both of these pathways have been associated with resistance to agents targeting the epidermal growth factor receptor (EGFR) and VEGF. A number of agents that target FGF and/or PDGF signaling are now in development for the treatment of NSCLC. This review will summarize the potential molecular roles of PDGFR and FGFR in tumor growth and angiogenesis, as well as discuss the current clinical status of PDGFR and FGFR inhibitors in clinical development. PMID:22165970

  10. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    PubMed

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  11. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine.

  12. Effects of cytokines and periodontopathic bacteria on the leukocyte function-associated antigen 1/intercellular adhesion molecule 1 pathway in gingival fibroblasts in adult periodontitis.

    PubMed Central

    Hayashi, J; Saito, I; Ishikawa, I; Miyasaka, N

    1994-01-01

    We investigated the effects of inflammatory cytokines and periodontopathic bacteria on expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1, and E-selectin (endothelial leukocyte adhesion molecule 1) in cultured human gingival fibroblasts (HGF). Cell surface ICAM-1 was upregulated on HGF under transcriptional control by exposure not only to interleukin-1 beta, tumor necrosis factor alpha, and gamma interferon but also to sonic extracts prepared from Porphyromonas gingivalis and Prevotella intermedia (nigrescens) and lipopolysaccharides from Escherichia coli. However, these stimuli induced only minimal expression of vascular cell adhesion molecule 1 and E-selectin on HGF. Binding assays using HGF and Molt 4, the human T-cell leukemia cell line, showed induced ICAM-1 to be functional, and the increased binding was blocked by a combination of monoclonal antibodies against ICAM-1 and leukocyte function-associated antigen 1. Furthermore, gingival tissues from adult periodontitis patients showed increased mRNA expression of ICAM-1 compared with that in tissues from normal healthy donors. In immunohistological analysis, we also observed in vivo that the expression of ICAM-1 on fibroblasts in adult periodontitis tissues was greater than that in normal gingiva. Thus, the overexpression of ICAM-1 on gingival fibroblasts induced by cytokines and periodontopathic bacteria is speculated to be deeply involved in the accumulation and retention of leukocyte function-associated antigen 1-bearing leukocytes in adult periodontitis lesions. Images PMID:7525481

  13. Effects of cytokines and periodontopathic bacteria on the leukocyte function-associated antigen 1/intercellular adhesion molecule 1 pathway in gingival fibroblasts in adult periodontitis.

    PubMed

    Hayashi, J; Saito, I; Ishikawa, I; Miyasaka, N

    1994-12-01

    We investigated the effects of inflammatory cytokines and periodontopathic bacteria on expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1, and E-selectin (endothelial leukocyte adhesion molecule 1) in cultured human gingival fibroblasts (HGF). Cell surface ICAM-1 was upregulated on HGF under transcriptional control by exposure not only to interleukin-1 beta, tumor necrosis factor alpha, and gamma interferon but also to sonic extracts prepared from Porphyromonas gingivalis and Prevotella intermedia (nigrescens) and lipopolysaccharides from Escherichia coli. However, these stimuli induced only minimal expression of vascular cell adhesion molecule 1 and E-selectin on HGF. Binding assays using HGF and Molt 4, the human T-cell leukemia cell line, showed induced ICAM-1 to be functional, and the increased binding was blocked by a combination of monoclonal antibodies against ICAM-1 and leukocyte function-associated antigen 1. Furthermore, gingival tissues from adult periodontitis patients showed increased mRNA expression of ICAM-1 compared with that in tissues from normal healthy donors. In immunohistological analysis, we also observed in vivo that the expression of ICAM-1 on fibroblasts in adult periodontitis tissues was greater than that in normal gingiva. Thus, the overexpression of ICAM-1 on gingival fibroblasts induced by cytokines and periodontopathic bacteria is speculated to be deeply involved in the accumulation and retention of leukocyte function-associated antigen 1-bearing leukocytes in adult periodontitis lesions. PMID:7525481

  14. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient

    PubMed Central

    Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  15. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient.

    PubMed

    Pitiriga, Vassiliki; Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  16. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes

    PubMed Central

    Sun, Xiaoru; Zheng, Minghuan; Zhang, Miaomiao; Qian, Mengjia; Zheng, Yonghua; Li, Meiyi; Cretoiu, Dragos; Chen, Chengshui; Chen, Luonan; Popescu, Laurentiu M; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and CD8+ T cells from lungs (T-LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up-regulated and 70% down-regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over-expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types. PMID:24826900

  17. Microbial Stimulation by Mycoplasma fermentans Synergistically Amplifies IL-6 Release by Human Lung Fibroblasts in Response to Residual Oil Fly Ash (ROFA) and Nickel

    PubMed Central

    Gao, Fei; Barchowsky, Aaron; Nemec, Antonia A.; Fabisiak, James P.

    2015-01-01

    Mycoplasma (MP), such as the species M. fermentans, possess remarkable immunoregulatory properties and can potentially establish chronic latent infections with little signs of disease. Atmospheric particulate matter (PM) is a complex and diverse component of air pollution associated with adverse health effects. We hypothesized that MP modulate the cellular responses induced by chemical stresses such as residual oil fly ash (ROFA), a type of PM rich in transition metals. We assessed the release of interleukin-6 (IL-6), a prototypic immune-modulating cytokine, in response to PM from different sources in human lung fibroblasts (HLF) deliberately infected with M. fermentans. We found that M. fermentans and ROFA together synergistically stimulated production of IL-6 compared to either stimuli alone. Compared to several other PM, ROFA appeared most able to potentiate IL-6 release. The potentiating effect of live MP infection could be mimicked by M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a known Toll-like receptor-2 agonist. The aqueous fraction of ROFA also contained potent IL-6 inducing activity in concert with MALP-2, and exposure to several defined metal salts indicated that Ni and, to a lesser extent V, (but not Cu) could synergistically act with MALP-2 to induce IL-6. These data indicate that microorganisms like MP can interact with environmental stimuli such as PM-derived metals to synergistically activate signaling pathways that control lung cell cytokine production and, thus, can potentially modulate adverse health effects of PM exposure. PMID:15229366

  18. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways.

    PubMed

    Lin, Chien-Huang; Shih, Chung-Huang; Tseng, Chih-Chieh; Yu, Chung-Chi; Tsai, Yuan-Jhih; Bien, Mauo-Ying; Chen, Bing-Chang

    2014-01-01

    CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression. PMID:25121739

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    PubMed

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon.

  20. Lung ultrasound in adult and paediatric cardiac surgery: is it time for routine use?

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Volpicelli, Giovanni; Kutty, Shelby; Murzi, Bruno; Assanta, Nadia; Gargani, Luna

    2016-02-01

    Respiratory complications are common causes of morbidity and the need of repeated X-ray examinations after cardiac surgery. Ultrasound of the chest, including the lung parenchyma, has been recently introduced as a new tool to detect many pulmonary abnormalities. Despite this, the use of lung ultrasound (LUS) in adult and congenital cardiac surgery remains limited. In particular, lung ultrasound has been mainly used in the evaluation of pleural effusion (PLE), but no consensus exists on methods to quantify the volume of the effusion. Usefulness of LUS for the assessment of diaphragmatic motion in children has also been highlighted, but no clear recommendation exists regarding its routine use. Accuracy of LUS in detecting pulmonary congestion after adult cardiac surgery has been demonstrated, whereas studies in children are still scarce, and data on pneumothorax and lung consolidations are limited in the paediatric population. There are methodological and practicality issues regarding diagnostic protocols (i.e. image views and their sequential order) and instrumentation (transducers and their setting) used in different studies. It also remains unclear which practitioner-the cardiologist, intensivist, pulmonologist or the radiologist, should perform the examination. Cost analysis pertaining to extensive clinical application of lung ultrasound in cardiac surgery has never been performed. Guidelines and recommendations are warranted for a systematic and extensive use of this technique in cardiac surgery at different ages, as it could serve as a useful, versatile tool that could potentially decrease time, radiation exposure and costs. PMID:26586677

  1. Risk of Post-Lung Transplant Renal Dysfunction in Adults With Cystic Fibrosis

    PubMed Central

    Mayer-Hamblett, Nicole; Aitken, Moira L.; Goss, Christopher H.

    2012-01-01

    Background: Cystic fibrosis (CF) is one of the leading indications for lung transplantation. The incidence and pre-lung transplant risk factors for posttransplant renal dysfunction in the CF population remain undefined. Methods: We conducted a cohort study using adults (≥ 18 years old) in the CF Foundation Patient Registry from 2000 to 2008 to determine the incidence of post-lung transplant renal dysfunction, defined by an estimated glomerular filtration rate of < 60 mL/min/1.73 m2. Multivariable Cox proportional hazards modeling was used to identify independent pretransplant risk factors for post-lung transplant renal dysfunction. Results: The study cohort included 993 adult lung transplant recipients with CF, with a median follow-up of 2 years. During the study period, 311 individuals developed renal dysfunction, with a 2-year risk of 35% (95% CI, 32%-39%). Risk of posttransplant renal dysfunction increased substantially with increasing age (25 to < 35 years vs 18 to < 25 years: hazard ratio [HR], 1.60; 95% CI, 1.15-2.23; vs ≥ 35 years: HR, 2.45; 95% CI, 1.73-3.47) and female sex (HR, 1.56; 95% CI, 1.22-1.99). CF-related diabetes requiring insulin therapy (HR, 1.30; 95% CI, 1.02-1.67) and pretransplant renal function impairment (estimated glomerular filtration rate, 60-90 mL/min/m2 vs > 90 mL/min/m2: HR, 1.58; 95% CI, 1.19-2.12) also increased the risk of posttransplant renal dysfunction. Conclusions: Renal dysfunction is common following lung transplant in the adult CF population. Increased age, female sex, CF-related diabetes requiring insulin, and pretransplant renal impairment are significant risk factors. PMID:22222189

  2. Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults

    PubMed Central

    McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.

    2013-01-01

    Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915

  3. The impact of recurrent acute chest syndrome on the lung function of young adults with sickle cell disease.

    PubMed

    Knight-Madden, Jennifer M; Forrester, Terrence S; Lewis, Norma A; Greenough, Anne

    2010-12-01

    The aim of this study was to assess the impact of recurrent acute chest syndrome (ACS) episodes on the lung function of young adults with sickle cell disease (SCD). Our prospective study included 80 SCD adults [26 with recurrent acute chest syndrome (ACS)] and 80 ethnically matched controls aged between 18 and 28 years. Lung function (spirometry and lung volumes) was measured and the results were expressed as the percentage predicted for height. Bronchial hyperresponsiveness (BHR) was assessed by the response to either a bronchodilator or an exercise challenge. The adults with recurrent ACS (two or more ACS episodes) had lower median forced vital capacity (74 vs. 83%, p = 0.03), forced expiratory volume in 1 s (79 vs. 90%, p < 0.03), and total lung capacity (69 vs. 81%, p = 0.04) than SCD adults who had one or no ACS episodes. The greater the number of ACS episodes, the greater the reduction in lung function (p = 0.001). The adults with SCD had lower median forced vital capacity (81 vs. 106%), forced expiratory volume in 1 s (85 vs. 107%), and total lung capacity (80 vs. 87%) than the controls (p < 0.001). Similar numbers in each group had BHR (p = 0.2). The prevalence of restrictive ventilatory defect in the patients with SCD was almost double that of the controls (p = 0.004). Young adults with SCD have worse lung function than ethnically matched controls, particularly if they have suffered recurrent ACS episodes.

  4. Rare Case of Unilateral Hypoplasia of Lung with Associated Ventricular Mass in an Adult

    PubMed Central

    Alam, Azad; Iyer, Aparna; Kutty, Jayalakshmi Thelapurath

    2016-01-01

    Hypoplasia of the lung is a rare congenital condition which can be: a) primary i.e. no apparent cause is found; or b) secondary i.e. associated with other congenital anomalies that are implicated in its pathogenesis. These anomalies may involve the diaphragm, cardiovascular, central nervous, urogenital and musculoskeletal system. Patients usually present in neonatal, infancy or childhood period and very rarely in adulthood. Our patient was an adult having a unilateral hypoplastic lung associated with a ventricular mass and to our knowledge this rare combination has never been reported in the English literature; though there are reports of prenatal or newborns with hypoplastic lung and rhabdomyoma of ventricle who did not survive. PMID:27630888

  5. Rare Case of Unilateral Hypoplasia of Lung with Associated Ventricular Mass in an Adult.

    PubMed

    Mirchandani, Lavina Vishnu; Alam, Azad; Iyer, Aparna; Kutty, Jayalakshmi Thelapurath

    2016-07-01

    Hypoplasia of the lung is a rare congenital condition which can be: a) primary i.e. no apparent cause is found; or b) secondary i.e. associated with other congenital anomalies that are implicated in its pathogenesis. These anomalies may involve the diaphragm, cardiovascular, central nervous, urogenital and musculoskeletal system. Patients usually present in neonatal, infancy or childhood period and very rarely in adulthood. Our patient was an adult having a unilateral hypoplastic lung associated with a ventricular mass and to our knowledge this rare combination has never been reported in the English literature; though there are reports of prenatal or newborns with hypoplastic lung and rhabdomyoma of ventricle who did not survive. PMID:27630888

  6. Genome-wide association study of lung function decline in adults with and without asthma

    PubMed Central

    Imboden, Medea; Bouzigon, Emmanuelle; Curjuric, Ivan; Ramasamy, Adaikalavan; Kumar, Ashish; Hancock, Dana B; Wilk, Jemma B; Vonk, Judith M; Thun, Gian A; Siroux, Valerie; Nadif, Rachel; Monier, Florent; Gonzalez, Juan R; Wjst, Matthias; Heinrich, Joachim; Loehr, Laura R; Franceschini, Nora; North, Kari E; Altmüller, Janine; Koppelman, Gerard H.; Guerra, Stefano; Kronenberg, Florian; Lathrop, Mark; Moffatt, Miriam F; O’Connor, George T; Strachan, David P; Postma, Dirkje S; London, Stephanie J; Schindler, Christian; Kogevinas, Manolis; Kauffmann, Francine; Jarvis, Debbie L; Demenais, Florence; Probst-Hensch, Nicole M

    2012-01-01

    Background Genome-wide association studies (GWAS) have identified determinants of chronic obstructive pulmonary disease, asthma and lung function level, however none addressed decline in lung function. Aim We conducted the first GWAS on age-related decline in forced expiratory volume in the first second (FEV1) and in its ratio to forced vital capacity (FVC) stratified a priori by asthma status. Methods Discovery cohorts included adults of European ancestry (1441 asthmatics, 2677 non-asthmatics; Epidemiological Study on the Genetics and Environment of Asthma (EGEA); Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults (SAPALDIA); European Community Respiratory Health Survey (ECRHS)). The associations of FEV1 and FEV1/FVC decline with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed-up by in silico replication (1160 asthmatics, 10858 non-asthmatics: Atherosclerosis Risk in Communities (ARIC); Framingham Heart Study (FHS); British 1958 Birth Cohort (B58C); Dutch asthma study). Results Main signals identified differed between asthmatics and non-asthmatics. None of the SNPs reached genome-wide significance. The association between the height related gene DLEU7 and FEV1 decline suggested for non-asthmatics in the discovery phase was replicated (discovery P=4.8×10−6; replication P=0.03) and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, associated with FEV1/FVC decline in asthmatics (P=5.3×10−8) did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline. Conclusions Genetic heterogeneity of lung function may be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status. PMID:22424883

  7. Regulation of proto-oncogene expression in adult and developing lungs.

    PubMed Central

    Molinar-Rode, R; Smeyne, R J; Curran, T; Morgan, J I

    1993-01-01

    Activation of immediate-early gene expression has been associated with mitogenesis, differentiation, nerve cell depolarization, and recently, terminal differentiation processes and programmed cell death. Previous evidence also suggested that immediate-early genes play a role in the physiology of the lungs (J. I. Morgan, D. R. Cohen, J. L. Hempstead, and T. Curran, Science 237:192-197, 1987). Therefore, we analyzed c-fos expression in adult and developing lung tissues. Seizures elicited by chemoconvulsants induced expression of mRNA for c-fos, c-jun, and junB and Fos-like immunoreactivity in lung tissue. The use of pharmacological antagonists and adrenalectomy indicated that this increased expression was neurogenic. Interestingly, by using a fos-lacZ transgenic mouse, it was shown that Fos-LacZ expression in response to seizure occurred preferentially in clusters of epithelial cells at the poles of the bronchioles. This was the same location of Fos-LacZ expression detected during early lung development. These data imply that pharmacological induction of immediate-early gene expression in adult mice recapitulates an embryological program of gene expression. Images PMID:8497249

  8. Sexuality, Lung Cancer, and the Older Adult: An Unlikely Trio?

    PubMed Central

    Williams, Anna Cathy; Reckamp, Karen; Freeman, Bonnie; Sidhu, Rupinder; Grant, Marcia

    2013-01-01

    Case Study  Mrs. L. is a 60-year-old retired female teacher with stage IIIA squamous cell carcinoma of the lung, status postchemoradiation. She recently developed radiation pneumonitis, which was managed conservatively, and she did not require steroids. Mrs. L. has noted some progression of her underlying dyspnea. She is monitoring her oxygen saturation at home, and most of the time it is in the range of 94% to 96%. On one occasion only, her oxygen dropped to 88% and rapidly improved to the mid-90s. Her cough has improved for the past 4 to 6 weeks. She denies sputum production, congestion, or fever. Mrs. L. does not require a walker and uses a wheelchair only for long distances. She has occasional, slight dysphagia. A recent CT scan shows stable disease, and she is to return to the clinic in 2 months for restaging and possible further chemotherapy. Mrs. L. and her husband have been married for 33 years, and they have been very close. Until recently, they have continued to be sexually active and very intimate with each other. Since Mrs. L.’s diagnosis, and during treatment, the couple have become extremely stressed and psychologically spent. The act of sexual intercourse has ceased, yet they have attempted to remain close and maintain open communication. In addition to Mrs. L.’s increasing dyspnea, she has also suffered a great deal of fatigue and depression, along with alopecia and vaginal atrophy, due to the chemotherapy and radiation treatments. Both Mr. and Mrs. L. are very distressed over the change in their sexual lives. Mr. L. has mentioned that he now feels more like a "nursemaid" than a husband or lover. Mrs. L. has made concerted efforts to maintain intimacy with her husband, but her fatigue is profound. She has taken to sleeping in the living room, sitting up on the couch, as it relieves her dyspnea to some degree. PMID:25032012

  9. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C.

    1989-01-01

    Dosimetry models for gases mainly have been used to predict absorption in adult humans and laboratory animals. The lack of lower respiratory tract (LRT) lung models for children has discouraged the application of theoretical gaseous dosimetry to this important sub-population. To fill this gap the authors have used several sources of data on age dependent LRT volumes, age dependent airway dimensions, a model of an adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adult. An ozone (O{sub 3}) dosimetry model was then used to estimate the regional and local uptake of O{sub 3} in the (theoretical) LRTs of children and adults. For sedentary breathing, the LRT distribution of absorbed O{sub 3}, the percent uptake (76 to 85%), and the centriacinar O{sub 3} tissue dose are not very sensitive to age. For maximal work during exercise, predicted uptakes range from 83 to 91%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, total O{sub 3} absorption per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O{sub 3} is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage due to O{sub 3}.

  10. Retinyl ester synthesis by isolated adult rabbit lung type II cells.

    PubMed

    Zachman, R D; Tsao, F H

    1988-01-01

    Type II alveolar cells were isolated from adult rabbit lungs and then cultured on monolayers for 16 hours. These cells were then covered with buffered medium containing [3H]-retinol. After 30-120 minutes incubation, the cells were extracted with Hexane: Ethanol and the hexane extract analyzed by HPLC. A linear synthesis of [3H]-retinyl palmitate with time of incubation was demonstrated. PMID:3170088

  11. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts

    PubMed Central

    Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo

    2011-01-01

    BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579

  12. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    PubMed Central

    Patil, Nayana A; Gade, WN; Deobagkar, Deepti D

    2016-01-01

    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5) cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent.

  13. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    PubMed Central

    Patil, Nayana A; Gade, WN; Deobagkar, Deepti D

    2016-01-01

    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5) cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. PMID:27660443

  14. Functionalized Fullerene Increases NF-κB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts

    PubMed Central

    Ershova, E. S.; Sergeeva, V. A.; Tabakov, V. J.; Kameneva, L. A.; Voronov, I. I.; Khakina, E. A.; Troshin, P. A.; Kutsev, S. I.; Veiko, N. N.; Kostyuk, S. V.

    2016-01-01

    The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1–1 µM F-828 significantly decreases the level of free radicals, inhibits autophagy, and represses expression of NOX4 and NRF2 proteins. The activity of NF-κB substantially grows up in contrast to the suppressed NRF2 activity. In the presence of 0.2–0.25 µM F-828, the DSB rate and apoptosis level dramatically decrease. The maximum increase of proliferative activity of the HELFs and maximum activity of NF-κB are observed at these concentration values. Conclusion. Under the conditions of oxidative stress evoked by serum deprivation the water-soluble fullerene derivative F-828 used in concentrations of 0.1 to 1 µM strongly stimulates the NF-κB activity and represses the NRF2 activity in HELFs. PMID:27635190

  15. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field.

    PubMed

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  16. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  17. Functionalized Fullerene Increases NF-κB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts

    PubMed Central

    Ershova, E. S.; Sergeeva, V. A.; Tabakov, V. J.; Kameneva, L. A.; Voronov, I. I.; Khakina, E. A.; Troshin, P. A.; Kutsev, S. I.; Veiko, N. N.; Kostyuk, S. V.

    2016-01-01

    The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1–1 µM F-828 significantly decreases the level of free radicals, inhibits autophagy, and represses expression of NOX4 and NRF2 proteins. The activity of NF-κB substantially grows up in contrast to the suppressed NRF2 activity. In the presence of 0.2–0.25 µM F-828, the DSB rate and apoptosis level dramatically decrease. The maximum increase of proliferative activity of the HELFs and maximum activity of NF-κB are observed at these concentration values. Conclusion. Under the conditions of oxidative stress evoked by serum deprivation the water-soluble fullerene derivative F-828 used in concentrations of 0.1 to 1 µM strongly stimulates the NF-κB activity and represses the NRF2 activity in HELFs.

  18. Determination of chromium in human lung fibroblast cells using a large bore-direct injection high-efficiency nebulizer with inductively coupled plasma mass spectrometry

    SciTech Connect

    McLean, John A.; Acon, Billy W.; Montaser, Akbar; Singh, Jatinder; Pritchard, Daryl E.; Patierno, Steven R.

    2000-05-01

    A novel method for the determination of chromium in suspensions of human lung fibroblast cells is described by using a large bore-direct injection high efficiency nebulizer (LB-DIHEN) with microscale flow injection analysis and inductively coupled plasma mass spectrometric detection. Chromium (VI)-treated cells were first counted and then suspended in a phosphate buffer saline solution. With the use of the method of standard additions, the relative concentration of Cr in {approx}100 HLF cells/peak was determined at m/z=50. Because the cells tend to clump and can yield inhomogeneities in the total number analyzed, Mg was used as an internal standard to compensate for the total cell mass. The level of Cr in HLF cells grown in a medium of 100 {mu}M Na{sub 2}CrO{sub 4} for two hours is on the order of 180 fg Cr/cell after correction for the number of cells in each injection. (c) 2000 Society for Applied Spectroscopy.

  19. Functionalized Fullerene Increases NF-κB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts.

    PubMed

    Ershova, E S; Sergeeva, V A; Tabakov, V J; Kameneva, L A; Porokhovnik, L N; Voronov, I I; Khakina, E A; Troshin, P A; Kutsev, S I; Veiko, N N; Kostyuk, S V

    2016-01-01

    The influence of a water-soluble [60] fullerene derivative containing five residues of 3-phenylpropionic acid and a chlorine addend appended to the carbon cage (F-828) on serum-starving human embryo lung diploid fibroblasts (HELFs) was studied. Serum deprivation evokes oxidative stress in HELFs. Cultivation of serum-starving HELFs in the presence of 0.1-1 µM F-828 significantly decreases the level of free radicals, inhibits autophagy, and represses expression of NOX4 and NRF2 proteins. The activity of NF-κB substantially grows up in contrast to the suppressed NRF2 activity. In the presence of 0.2-0.25 µM F-828, the DSB rate and apoptosis level dramatically decrease. The maximum increase of proliferative activity of the HELFs and maximum activity of NF-κB are observed at these concentration values. Conclusion. Under the conditions of oxidative stress evoked by serum deprivation the water-soluble fullerene derivative F-828 used in concentrations of 0.1 to 1 µM strongly stimulates the NF-κB activity and represses the NRF2 activity in HELFs. PMID:27635190

  20. Expression of fibroblast growth factor receptor 1, fibroblast growth factor 2, phosphatidyl inositol 3 phosphate kinase and their clinical and prognostic significance in early and advanced stage of squamous cell carcinoma of the lung

    PubMed Central

    Usul Afsar, Cigdem; Sahin, Berksoy; Gunaldi, Meral; Kılıc Bagir, Emine; Gumurdulu, Derya; Burgut, Refik; Erkisi, Melek; Kara, Ismail Oguz; Paydas, Semra; Karaca, Feryal; Ercolak, Vehbi

    2015-01-01

    Aim: Non-small cell lung carcinoma is the leading cause of cancer related to death in the world. Squamous cell lung carcinoma (SqCLC) is the second most frequent histological subtype of lung carcinomas. Recently, growth factors, growth factor receptors, and signal transduction system-related gene amplifications and mutations are extensively under investigation to estimate the prognosis and to develop individualized therapies in SqCLC. In this study, besides the signal transduction molecule phosphatidyl inositol-3-phosphate kinase (IP3K) p110α, we explored the expressions of fibroblast growth factor 2 (FGF2) and receptor-1 (FGFR1) in tumor tissue and also their clinical and prognostic significance in patients with early/advanced SqCLC. Materials and methods: From 2005 to 2013, 129 patients (23 early, 106 advanced disease) with a histopathological SqCLC diagnosis were selected from the hospital files of Cukurova University Medical Faculty for this study. Two independent pathologists evaluated FGFR1, FGF2, and PI3K (p110α) expressions in both tumor and stromal tissues from 99 of the patients with sufficient tissue samples, using immunohistochemistry. Considering survival analysis separately for patients with both early and advanced stage diseases, the relationship between the clinical features of the patients and expressions were evaluated by univariate and multivariate analyses. Results: FGFR1 expression was found to be low in 59 (60%) patients and high in 40 (40%) patients. For FGF2; 12 (12%) patients had high, 87 (88%) patients had low expression and for IP3K; 31 (32%) patients had high and 66 (68%) patients had low expressions. In univariate analysis, overall survival (OS) was significantly associated with stage of the disease and the performance status of the patient (P<0.0001 and P<0.001). There was no significant difference in OS of the patients with either low or high expressions of FGFR1, FGF2, and IP3K. When the patients with early or advanced stage

  1. Age dependency of the metabolic conversion of polyamines into amino acids in IMR-90 human embryonic lung diploid fibroblasts

    SciTech Connect

    Chen, K.Y.; Chang, Z.

    1986-07-01

    When radioactive polyamines (putrescine or spermidine) were incubated with mammalian cells in tissue culture, the radioactivity was incorporated into cellular proteins via two different metabolic pathways; one is metabolic labeling of an 18,000-dalton protein via hypusine formation, and the other is general protein synthesis employing radioactive amino acids derived from biodegradation of polyamines via GABA shunt and Krebs cycle. Aminoguanidine, a potent inhibitor of diamine oxidase, blocked the metabolic conversion of polyamines to amino acids but had no effect on the metabolic labeling of the 18,000-dalton protein. The authors have investigated these two polyamine-associated biochemical events in IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL). They found that (1) the metabolic labeling of the 18,000-dalton protein was about two-fold greater in young cells (PDL = 22) than that in old cells (PDL = 48), and (2) the metabolic labeling of other cellular proteins, employing amino acids derived from putrescine via polyamine catabolic pathway, was more than six-fold greater in the old cells (PDL = 48) than in the young cells (PDL = 22). Since the rate of protein synthesis was about 1.4-fold higher in the young cells as compared to the old cells, their data indicated that the activity of catabolic conversion of putrescine (or spermidine) to amino acids in old IMR-90 cells was about eight-fold greater than that in young cells. This remarkable increase of polyamine catabolism and the slight decrease of metabolic labeling of the 18,000-dalton protein were also observed in cell strains derived from patients with premature aging disease.

  2. Could prominent airway-centered fibroblast foci in lung biopsies predict underlying chronic microaspiration in idiopathic pulmonary fibrosis patients?

    PubMed

    Bois, Melanie C; Hu, Xiaowen; Ryu, Jay H; Yi, Eunhee S

    2016-07-01

    Chronic occult aspiration of small droplets (microaspiration) due to gastroesophageal reflux disease (GERD) and/or hiatal hernia is postulated to be a contributing factor in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Usual interstitial pneumonia (UIP) is the histopathologic correlate of IPF. We hypothesized that chronic microaspiration may manifest as prominent airway-centered fibroblastic foci (FFs) in IPF. UIP cases diagnosed by wedge biopsies over a 6-year period (2006-2011) were identified and scored (1-3) for the prominence of airway-centered FFs by 2 authors blinded for clinical history. Relevant clinical information was obtained. Thirty-seven patients (22 men) were diagnosed with IPF by multidisciplinary approach. Thirteen cases (35.1%) demonstrated high airway-centered FF score (score 3). Twenty (54.1%) patients carried a clinical diagnosis of GERD, and 3 patients (8.1%) had hiatal hernia. High airway-centered FF score was significantly associated with hiatal hernia diagnosis (P=.037) but not with a diagnosis of GERD or the use of proton pump inhibitors/histamine-2 receptor antagonists. High airway-centered FF score was associated with airway-centered acute inflammation (P=.028) and peribronchiolar granulomas (P=.042). In summary, IPF cases with hiatal hernia were more likely to have a prominent airway-centered FF. Given the strong association between hiatal hernia and GERD and their risk for developing chronic microaspiration, the prominent airway-centered FF in UIP might predict the presence of chronic microaspiration, acknowledging that GERD and proton pump inhibitor/histamine-2 receptor antagonist use failed to demonstrate a significant association. Larger studies are warranted for further investigation. PMID:26980038

  3. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung.

    PubMed

    Liebler, Janice M; Marconett, Crystal N; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A; Minoo, Parviz; Zhou, Beiyun

    2016-01-15

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  4. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  5. Relationship between birth weight and adult lung function: controlling for maternal factors

    PubMed Central

    Edwards, C; Osman, L; Godden, D; Campbell, D; Douglas, J

    2003-01-01

    Methods: In 2001 the cohort was assessed for current lung function, smoking status, and respiratory symptoms. Birth details obtained from the Aberdeen Maternity and Neonatal Databank recorded birth weight, gestation, parity, and mother's age and height. Results: 381 subjects aged 45–50 years were traced and tested for lung function; 323 (85%) had birth details available. A significant linear trend (p<0.01) was observed between birth weight and current forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) values (adjusted for height, age, sex, weight, deprivation category (Depcat), childhood group, and smoking status). This trend remained significant after adjusting birth weight for gestation, parity, sex, mother's height and weight (p = 0.01). The relationship between birth weight and FEV1 and FVC remained significant when adjusted for smoking history. There was no association between birth weight and current wheezing symptoms. Conclusion: There is a positive linear trend between birth weight, adjusted for maternal factors, and lung function in adulthood. The strength of this association supports the "fetal origins hypothesis" that impairment of fetal growth is a significant influence on adult lung function. PMID:14645976

  6. Birth weight, childhood lower respiratory tract infection, and adult lung function

    PubMed Central

    Shaheen, S; Sterne, J; Tucker, J; Florey, C

    1998-01-01

    BACKGROUND—Historical cohort studies in England have found that impaired fetal growth and lower respiratory tract infections in early childhood are associated with lower levels of lung function in late adult life. These relations are investigated in a similar study in Scotland.
METHODS—In 1985-86 a follow up study was carried out of 1070 children who had been born in St Andrew's from 1921 to 1935 and followed from birth to 14 years of age by the Mackenzie Institute for Medical Research. Recorded information included birth weight and respiratory illnesses. The lung function of 239 of these individuals was measured.
RESULTS—There was no association between birth weight and lung function. Pneumonia before two years of age was associated with a difference in mean forced expiratory volume in one second (FEV1) of −0.39 litres (95% confidence interval (CI) −0.67, −0.11; p = 0.007) and in mean forced vital capacity (FVC) of −0.60 litres (95% CI −0.92, −0.28; p<0.001), after controlling for age, sex, height, smoking, type of spirometer, and other illnesses before two years. Similar reductions were seen in men and women. Bronchitis before two years was associated with smaller deficits in FEV1 and FVC. Asthma or wheeze at two years and older and cough after five years were also associated with a reduction in FEV1.
CONCLUSIONS—The relation between impaired fetal growth and lower lung function in late adult life seen in previous studies was not confirmed in this cohort. The deficits in FEV1 and FVC associated with pneumonia and bronchitis in the first two years of life are consistent with a causal relation.

 PMID:9797752

  7. Pilates Method for Lung Function and Functional Capacity in Obese Adults.

    PubMed

    Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia

    2015-01-01

    Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made ​​up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not

  8. Whole Lung Irradiation for Adults With Pulmonary Metastases From Ewing Sarcoma

    SciTech Connect

    Casey, Dana L.; Alektiar, Kaled M.; Gerber, Naamit K.; Wolden, Suzanne L.

    2014-08-01

    Purpose: To evaluate feasibility and patterns of failure in adult patients with Ewing sarcoma (ES) treated with whole lung irradiation (WLI) for pulmonary metastases. Methods and Materials: Retrospective review of all ES patients treated at age 18 or older with 12-15 Gy WLI for pulmonary metastases at a single institution between 1990 and 2014. Twenty-six patients met the study criteria. Results: The median age at WLI was 23 years (range, 18-40). The median follow-up time of the surviving patients was 3.8 years (range, 1.0-9.6). The 3-year cumulative incidence of pulmonary relapse (PR) was 55%, with a 3-year cumulative incidence of PR as the site of first relapse of 42%. The 3-year event-free survival (EFS) and overall survival (OS) were 38 and 45%, respectively. Patients with exclusively pulmonary metastases had better outcomes than did those with extrapulmonary metastases: the 3-year PR was 45% in those with exclusively lung metastases versus 76% in those with extrapulmonary metastases (P=.01); the 3-year EFS was 49% versus 14% (P=.003); and the 3-year OS was 61% versus 13% (P=.009). Smoking status was a significant prognostic factor for EFS: the 3-year EFS was 61% in nonsmokers versus 11% in smokers (P=.04). Two patients experienced herpes zoster in the radiation field 6 and 12 weeks after radiation. No patients experienced pneumonitis or cardiac toxicity, and no significant acute or late sequelae were observed among the survivors. Conclusion: WLI in adult patients with ES and lung metastases is well tolerated and is associated with freedom from PR of 45% at 3 years. Given its acceptable toxicity and potential therapeutic effect, WLI for pulmonary metastases in ES should be considered for adults, as it is in pediatric patients. All patients should be advised to quit smoking before receiving WLI.

  9. Basic Fibroblast Growth Factor-2/beta3 Integrin Expression Profile: Signature of Local Progression After Chemoradiotherapy for Patients With Locally Advanced Non-Small-Cell Lung Cancer

    SciTech Connect

    Massabeau, Carole; Rouquette, Isabelle; Lauwers-Cances, Valerie; Mazieres, Julien; Bachaud, Jean-Marc; Armand, Jean-Pierre; Delisle, Marie-Bernadette; Favre, Gilles; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2009-11-01

    Purpose: No biologic signature of chemoradiotherapy sensitivity has been reported for patients with locally advanced non-small-cell lung cancer (NSCLC). We have previously demonstrated that basic fibroblast growth factor (FGF-2) and alphavbeta3 integrin pathways control tumor radioresistance. We investigated whether the expression of the proteins involved in these pathways might be associated with the response to treatment and, therefore, the clinical outcome. Methods and Materials: FGF-2, beta3 integrin, angiopoietin-2, and syndecan-1 expression was studied using immunohistochemistry performed on biopsies obtained, before any treatment, from 65 patients exclusively treated with chemoradiotherapy for locally advanced NSCLC. The response to treatment was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria using computed tomography at least 6 weeks after the end of the chemoradiotherapy. Local progression-free survival, metastasis-free survival, and disease-free survival were studied using the log-rank test and Cox proportional hazard analysis. Results: Among this NSCLC biopsy population, 43.7% overexpressed beta3 integrin (beta3{sup +}), 43% FGF-2 (FGF-2{sup +}), 41.5% syndecan-1, and 59.4% angiopoietin-2. Our results showed a strong association between FGF-2 and beta3 integrin expression (p = .001). The adjusted hazard ratio of local recurrence for FGF-2{sup +}/beta3{sup +} tumors compared with FGF-2{sup -}/beta3{sup -} tumors was 6.1 (95% confidence interval, 2.6-14.6, p = .005). However, the risk of local recurrence was not increased when tumors overexpressed beta3 integrin or FGF-2 alone. Moreover, the co-expression of these two proteins was marginally associated with the response to chemoradiotherapy and metastasis-free survival. Conclusion: The results of this study have identified the combined profile FGF-2/beta3 integrin expression as a signature of local control in patients treated with chemoradiotherapy for locally advanced

  10. Fibroblast Growth Factor 2-A Predictor of Outcome for Patients Irradiated for Stage II-III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2012-01-01

    Purpose: The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. Methods and Materials: The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years, smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. Results: On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. Conclusions: Tumor cell expression of FGF-2 appeared to be an independent negative predictor

  11. Long Chain Fatty Acid Esters of Quercetin-3-O-glucoside Attenuate H₂O₂-induced Acute Cytotoxicity in Human Lung Fibroblasts and Primary Hepatocytes.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2016-01-01

    Cellular oxidative stress causes detrimental effects to macromolecules, such as lipids, nucleic acids and proteins, leading to many pathological conditions. Quercetin-3-O-glucoside (Q3G), a glycosylated derivative of quercetin (Q), is a natural polyphenolic compound known to possess antioxidant activity. The hydrophilic/lipophilic nature of an antioxidant molecule is considered as an important factor governing the accessibility to the active sites of oxidative damages in vivo. Six long chain fatty acid esters of Q3G were evaluated with comparison to Q and Q3G, for their cytoprotective activity under H₂O₂-induced oxidative stress using cell culture model systems through cell viability, lipid peroxidation and fluorescence microscopy studies. Pre-incubation of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) esters of Q3G exhibited significantly (p ≤ 0.05) greater cell viability in both human lung fibroblast (WI-38) and human primary hepatocytes upon exposure to H₂O₂ insult when compared to the control. Cytoprotection due to oleic acid and linoleic acid esters of Q3G was observed only in human primary hepatocytes. All the derivatives, Q3G and quercetin showed ability to significantly (p ≤ 0.05) lower production of lipid hydroperoxides under induced oxidative stress, compared to the control. However, ALA and DHA esters of Q3G resulted in significantly lower lipid hydroperoxidation than Q and Q3G. Based on fluorescence microscopy study, H₂O₂-induced apoptosis was attenuated by the fatty acid derivatives of Q3G. The fatty acid derivatives of Q3G possess better cytoprotective effect than Q3G against H₂O₂-induced cytotoxicity in vitro and the concentration should be selected to avoid cytotoxicity. PMID:27058521

  12. Indoor nitrous acid and respiratory symptoms and lung function in adults

    PubMed Central

    Jarvis, D; Leaderer, B; Chinn, S; Burney, P

    2005-01-01

    Background: Nitrogen dioxide (NO2) is an important pollutant of indoor and outdoor air, but epidemiological studies show inconsistent health effects. These inconsistencies may be due to failure to account for the health effects of nitrous acid (HONO) which is generated directly from gas combustion and indirectly from NO2. Methods: Two hundred and seventy six adults provided information on respiratory symptoms and lung function and had home levels of NO2 and HONO measured as well as outdoor levels of NO2. The association of indoor HONO levels with symptoms and lung function was examined. Results: The median indoor HONO level was 3.10 ppb (IQR 2.05–5.09), with higher levels in homes with gas hobs, gas ovens, and in those measured during the winter months. Non-significant increases in respiratory symptoms were observed in those living in homes with higher HONO levels. An increase of 1 ppb in indoor HONO was associated with a decrease in forced expiratory volume in 1 second (FEV1) percentage predicted (–0.96%; 95% CI –0.09 to –1.82) and a decrease in percentage FEV1/forced vital capacity (FVC) (–0.45%; 95% CI –0.06 to –0.83) after adjustment for relevant confounders. Measures of indoor NO2 were correlated with HONO (r = 0.77), but no significant association of indoor NO2 with symptoms or lung function was observed. After adjustment for NO2 measures, the association of HONO with low lung function persisted. Conclusion: Indoor HONO levels are associated with decrements in lung function and possibly with more respiratory symptoms. Inconsistencies between studies examining health effects of NO2 and use of gas appliances may be related to failure to account for this association. PMID:15923247

  13. Primary human adult lung epithelial cells in vitro: response to interferon-gamma and cytomegalovirus.

    PubMed Central

    Ibrahim, L; Dominguez, M; Yacoub, M

    1993-01-01

    Primary human adult lung epithelial cells (ALEC) were established in culture using the most distal parts of the lung to avoid the airways. Immunocytochemical peroxidase staining and semiquantitative flow cytometry were used to characterize the cells in conjunction with a panel of monoclonal antibodies (mAb). The cells showed a constitutive expression of major histocompatibility complex (MHC) class I antigens, patchy expression of intercellular adhesion molecule-1 (ICAM-1) and a weak patchy expression of MHC class II antigens (detected using immunocytochemical staining). Incubation of the primary ALEC with interferon-gamma (IFN-gamma) (250 U/ml) stimulated an up-regulation of the expression of these three antigens to varying degrees; expression of MHC class I antigens and ICAM-1 molecules showed an up-regulation at 10 hr after the start of the treatment, reaching a peak at 48 hr, maintaining it for the next 24 hr and then, steadily and progressively, losing it towards the end of the experiment at 96 hr. Expression of HLA-DR showed an up-regulation at 17 hr after the start of the treatment, reaching a peak at 72 hr and maintaining it for the next 24 hr. Cytomegalovirus (CMV) infection of ALEC in culture caused an up-regulation of expression of class I antigens and ICAM-1, but not DR. However, when the infected cells were incubated with IFN-gamma, an up-regulation in the expression of DR took place. Therefore, within the micro-environment of the transplanted lung the presence of cytokines (IFN-gamma) produced by infiltrating activated mononuclear cells, may render the lung epithelial cells capable of acting as antigen-presenting cells, expressing high levels of class I antigens, ICAM-1 and class II antigens, activating CD8 and CD4 cells thus playing a major part in the process of rejection of the lung allograft; themselves becoming a primary target in the process. Images Figure 1 Figure 2 PMID:8099565

  14. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  15. Requirement for active glycogen synthase kinase-3β in TGF-β1 upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts

    PubMed Central

    Bahammam, Maha; Black, Samuel A.; Sume, Siddika Selva; Assaggaf, Mohammad A.; Faibish, Michael

    2013-01-01

    Connective tissue growth factor (CCN2/CTGF) mediates transforming growth factor-β (TGF-β)-induced fibrosis. Drug-induced gingival overgrowth is tissue specific. Here the role of the phosphoinositol 3-kinase (PI3K) pathway in mediating TGF-β1-stimulated CCN2/CTGF expression in primary human adult gingival fibroblasts and human adult lung fibroblasts was compared. Data indicate that PI3K inhibitors attenuate upregulation of TGF-β1-induced CCN2/CTGF expression in human gingival fibroblasts independent of reducing JNK MAP kinase activation. Pharmacologic inhibitors and small interfering (si)RNA-mediated knockdown studies indicate that calcium-dependent isoforms and an atypical isoform of protein kinase C (PKC-δ) do not mediate TGF-β1-stimulated CCN2/CTGF expression in gingival fibroblasts. As glycogen synthase kinase-3β (GSK-3β) can undergo phosphorylation by the PI3K/pathway, the effects of GSK-3β inhibitor kenpaullone and siRNA knockdown were investigated. Data in gingival fibroblasts indicate that kenpaullone attenuates TGF-β1-mediated CCN2/CTGF expression. Activation of the Wnt canonical pathways with Wnt3a, which inhibits GSK-3β, similarly inhibits TGF-β1-stimulated CCN2/CTGF expression. In contrast, inhibition of GSK-3β by Wnt3a does not inhibit, but modestly stimulates, CCN2/CTGF levels in primary human adult lung fibroblasts and is β-catenin dependent, consistent with previous studies performed in other cell models. These data identify a novel pathway in gingival fibroblasts in which inhibition of GSK-3β attenuates CCN2/CTGF expression. In adult lung fibroblasts inhibition of GSK-3β modestly stimulates TGF-β1-regulated CCN2/CTGF expression. These studies have potential clinical relevance to the tissue specificity of drug-induced gingival overgrowth. PMID:23824844

  16. Efficient estimation of the total number of acini in adult rat lung

    PubMed Central

    Barré, Sébastien F.; Haberthür, David; Stampanoni, Marco; Schittny, Johannes C.

    2014-01-01

    Abstract Pulmonary airways are subdivided into conducting and gas‐exchanging airways. An acinus is defined as the small tree of gas‐exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X‐ray micro‐CT or synchrotron radiation‐based X‐rays tomographic microscopy. The entrances of the acini were counted in three‐dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60‐day‐old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume. PMID:24997068

  17. Predictions of ozone absorption in human lungs from newborn to adult

    SciTech Connect

    Overton, J.H.; Graham, R.C. )

    1989-01-01

    Although children are an important human population, dosimetry models for gases have been used to predict absorption mainly in laboratory animals and adult humans. To correct this omission, we have used several sources of data on age-dependent lower respiratory tract (LRT) volumes, age-dependent airway dimensions, a model of the adult tracheobronchial region, and a model of the adult acinus to construct theoretical LRT lung models for humans from birth to adulthood. An ozone (O3) dosimetry model was then used to estimate the regional and local uptake of O3 in the (theoretical) LRT of children and adults. For sedentary or quiet breathing, the LRT distribution of absorbed O3, the percent uptake (84 to 88%) and the centriacinar O3 tissue dose are not very sensitive to age. For maximal work during exercise, predicted LRT uptakes range from 87 to 93%, and the regional percent uptakes are more dependent on age than during quiet breathing. In general, the total quantity of O3 absorbed per minute increases with age. Regardless of age and state of breathing, the largest tissue dose of O3 is predicted to occur in the centriacinar region, where many animal studies show the maximal morphological damage from O3.

  18. Effect of methionine replacement by homocystine in cultures containing both malignant rat breast carcinosarcoma (Walker-256) cells and normal adult rat liver fibroblasts.

    PubMed

    Halpern, B C; Ezzell, R; Hardy, D N; Clark, B R; Ashe, H; Halpern, R M; Smith, R A

    1975-01-01

    When malignant W-256 rat breast carcinosarcoma cells are mixed with an equal number of normal adult rat liver fibroblasts and allowed to grow in a medium containing sufficient L-methionine and an excess of vitamin B12 and of folic acid, the malignant cells outgrow the normal cells, and within 2 weeks the tissue culture flasks contain only neoplastic cells. However, when ample DL-homocystine or homocysteine replaces methionine in the medium containing the same amount of vitamin B12 and folic acid, and seeded with the same type and number of malignant and normal cells, the malignant cells die and the normal cells thrive. Substantiating this conclusion are the results of injections into rats of comparable numbers of cells from each group after 3 weeks of growth in tissue culture. Fatal malignancies are produced by the homocystein-cultivated cells.

  19. Expression of profibrotic growth factors and their receptors by mouse lung macrophages and fibroblasts under conditions of acute viral inflammation in influenza A/H5N1 virus.

    PubMed

    Anikina, A G; Shkurupii, V A; Potapova, O V; Kovner, A V; Shestopalov, A M

    2014-04-01

    Morphological signs of early interstitial fibrosis, developing under conditions of acute viral inflammation (postinfection days 1-14), were observed in C57Bl/6 mice infected with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus. The development of fibrosis was confirmed by an increase in the number of lung cells expressing TNF-α. These changes were recorded in the presence of a many-fold increase in the counts of macrophages and fibroblasts expressing FGF, EGF, and their receptors.

  20. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways

    PubMed Central

    Cheng, Yi; Lin, Chien-huang; Chen, Jing-Yun; Li, Chien-Hua; Liu, Yu-Tin; Chen, Bing-Chang

    2016-01-01

    Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and

  1. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC

    PubMed Central

    Rolandsson Enes, Sara; Andersson Sjöland, Annika; Skog, Ingrid; Hansson, Lennart; Larsson, Hillevi; Le Blanc, Katarina; Eriksson, Leif; Bjermer, Leif; Scheding, Stefan; Westergren-Thorsson, Gunilla

    2016-01-01

    Mesenchymal stromal cells (MSC) are multipotent cells with regenerative and immune-modulatory properties. Therefore, MSC have been proposed as a potential cell-therapy for bronchiolitis obliterans syndrome (BOS). On the other hand, there are publications demonstrating that MSC might be involved in the development of BOS. Despite limited knowledge regarding the functional role of tissue-resident lung-MSC, several clinical trials have been performed using MSC, particularly bone marrow (BM)-derived MSC, for various lung diseases. We aimed to compare lung-MSC with the well-characterized BM-MSC. Furthermore, MSC isolated from lung-transplanted patients with BOS were compared to patients without BOS. Our study show that lung-MSCs are smaller, possess a higher colony-forming capacity and have a different cytokine profile compared to BM-MSC. Utilizing gene expression profiling, 89 genes including lung-specific FOXF1 and HOXB5 were found to be significantly different between BM-MSC and lung-MSC. No significant differences in cytokine secretion or gene expression were found between MSC isolated from BOS patients compared recipients without BOS. These data demonstrate that lung-resident MSC possess lung-specific properties. Furthermore, these results show that MSC isolated from lung-transplanted patients with BOS do not have an altered phenotype compared to MSC isolated from good outcome recipients. PMID:27381039

  2. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  3. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  4. Multiple protein kinase pathways mediate amplified IL-6 release by human lung fibroblasts co-exposed to nickel and TLR-2 agonist, MALP-2

    SciTech Connect

    Gao Fei; Brant, Kelly A.; Ward, Rachel M.; Cattley, Richard T.; Barchowsky, Aaron; Fabisiak, James P.

    2010-09-01

    Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO{sub 4} was obvious after 8 h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all led to rapid and transient phosphorylations of ERK{sub 1/2} and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1{alpha} and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK{sub 1/2}, p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1{alpha} protein, however, COX-2 expression and, more markedly PGE{sub 2} production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK{sub 1/2}, p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1{alpha} to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE{sub 2}.

  5. Chronic obstructive pulmonary disease - adults - discharge

    MedlinePlus

    ... adults - discharge; Chronic obstructive airways disease - adults - discharge; Chronic obstructive lung disease - adults - discharge; Chronic bronchitis - adults - discharge; Emphysema - adults - ...

  6. ARSENIC AND SKIN LESION STATUS IN RELATION TO MALIGNANT AND NON-MALIGNANT LUNG DISEASE MORTALITY IN BANGLADESHI ADULTS

    PubMed Central

    Argos, Maria; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Ahmed, Alauddin; Hore, Samar Kumar; Islam, Tariqul; Chen, Yu; Pierce, Brandon L.; Slavkovich, Vesna; Olopade, Christopher; Yunus, Muhammad; Baron, John A.; Graziano, Joseph H.; Ahsan, Habibul

    2015-01-01

    Background Chronic arsenic exposure through drinking water is a public health problem affecting millions of people worldwide, including at least 30 million in Bangladesh. We prospectively investigated the associations of arsenic exposure and arsenical skin lesion status with lung disease mortality in Bangladeshi adults. Methods Data are from a population-based sample of 26,043 adults, with an average of 8.5 years of follow-up (220,157 total person-years). There were 156 non-malignant lung disease deaths and 90 lung cancer deaths ascertained through October 2013. We used Cox proportional hazards models to estimate adjusted hazard ratios and 95% confidence intervals (CIs) for lung disease mortality. Results Creatinine-adjusted urinary total arsenic was associated with non-malignant lung disease mortality, with persons in the highest tertile of exposure having a 75% increased risk for mortality (95% CI=1.15–2.66) compared with those in the lowest tertile of exposure. Persons with arsenical skin lesions were at increased risk of lung cancer mortality (hazard ratio=4.53 [95% CI=2.82–7.29]) compared with those without skin lesions. Conclusions This prospective investigation of lung disease mortality, utilizing individual-level arsenic measures and skin lesion status, confirms a deleterious effect of ingested arsenic on mortality from lung disease. Further investigations should evaluate effects on the incidence of specific lung diseases, more fully characterize dose-response, and evaluate screening and biomedical interventions to prevent premature death among arsenic-exposed populations, particularly among those who may be most susceptible to arsenic toxicity. PMID:24802365

  7. Intrapulmonary Pharmacokinetics and Pharmacodynamics of Micafungin in Adult Lung Transplant Patients▿

    PubMed Central

    Walsh, Thomas J.; Goutelle, Sylvain; Jelliffe, Roger W.; Golden, Jeffrey A.; Little, Emily A.; DeVoe, Catherine; Mickiene, Diana; Hayes, Maggie; Conte, John E.

    2010-01-01

    Invasive pulmonary aspergillosis is a life-threatening infection in lung transplant recipients; however, no studies of the pharmacokinetics and pharmacodynamics (PKPD) of echinocandins in transplanted lungs have been reported. We conducted a single-dose prospective study of the intrapulmonary and plasma PKPD of 150 mg of micafungin administered intravenously in 20 adult lung transplant recipients. Epithelial lining fluid (ELF) and alveolar cell (AC) samples were obtained via bronchoalveolar lavage performed 3, 5, 8, 18, or 24 h after initiation of infusion. Micafungin concentrations in plasma, ELF, and ACs were determined using high-pressure liquid chromatography. Noncompartmental methods, population analysis, and multiple-dose simulations were used to calculate PKPD parameters. Cmax in plasma, ELF, and ACs was 4.93, 1.38, and 17.41 μg/ml, respectively. The elimination half-life in plasma was 12.1 h. Elevated concentrations in ELF and ACs were sustained during the 24-h sampling period, indicating prolonged compartmental half-lives. The mean micafungin concentration exceeded the MIC90 of Aspergillus fumigatus (0.0156 μg/ml) in plasma (total and free), ELF, and ACs throughout the dosing interval. The area under the time-concentration curve from 0 to 24 h (AUC0-24)/MIC90 ratios in plasma, ELF, and ACs were 5,077, 923.1, and 13,340, respectively. Multiple-dose simulations demonstrated that ELF and AC concentrations of micafungin would continue to increase during 14 days of administration. We conclude that a single 150-mg intravenous dose of micafungin resulted in plasma, ELF, and AC concentrations that exceeded the MIC90 of A. fumigatus for 24 h and that these concentrations would continue to increase during 14 days of administration, supporting its potential activity for prevention and early treatment of pulmonary aspergillosis. PMID:20439610

  8. Pneumonia in Childhood and Impaired Lung Function in Adults: A Longitudinal Study

    PubMed Central

    Chan, Johnny Y.C.; Stern, Debra A.; Guerra, Stefano; Wright, Anne L.; Morgan, Wayne J.

    2015-01-01

    BACKGROUND: Diminished lung function and increased prevalence of asthma have been reported in children with a history of early lower respiratory illnesses (LRIs), including pneumonia. Whether these associations persist up to adulthood has not been established. METHODS: As part of the prospective Tucson Children's Respiratory Study, LRIs during the first 3 years of life were ascertained by pediatricians. Spirometry was performed at ages 11, 16, 22, and 26 years. The occurrence of asthma/wheeze during the previous year was ascertained at ages 11, 13, 16, 18, 22, 24, 26, and 29 years. Longitudinal random effects models and generalized estimating equations were used to assess the relation of LRIs to lung function and asthma. RESULTS: Compared with participants without early-life LRIs, those with pneumonia had the most severe subsequent lung function impairment, with mean ± SE deficits of −3.9% ± 0.9% (P < .001) and −2.5% ± 0.8% (P = .001) for pre- and post-bronchodilator FEV1:FVC ratio from age 11 to 26 years, respectively. Pneumonia was associated with increased risk for asthma (odds ratio [OR]: 1.95; 95% confidence interval [CI]: 1.11–3.44) and wheeze (OR: 1.94; 95% CI: 1.28–2.95) over the same age range. Early non-pneumonia LRIs were associated with mildly impaired pre-bronchodilator FEV1 (−62.8 ± 27.9mL, P = .024) and FEV1:FVC ratio (−1.1 ± 0.5%, P = .018), and wheeze (OR: 1.37; 95% CI: 1.09–1.72). CONCLUSIONS: Early pneumonia is associated with asthma and impaired airway function, which is partially reversible with bronchodilators and persists into adulthood. Early pneumonia may be a major risk factor for adult chronic obstructive pulmonary disease. PMID:25733757

  9. Neonatal pneumococcal colonisation caused by Influenza A infection alters lung function in adult mice

    PubMed Central

    FitzPatrick, Meaghan; Royce, Simon G.; Langenbach, Shenna; McQualter, Jonathan; Reading, Patrick C.; Wijburg, Odilia; Anderson, Gary P.; Stewart, Alastair; Bourke, Jane; Bozinovski, Steven

    2016-01-01

    There is emerging epidemiological data to suggest that upper respiratory tract bacterial colonisation in infancy may increase the risk of developing respiratory dysfunction later in life, and respiratory viruses are known to precipitate persistent colonisation. This study utilized a neonatal mouse model of Streptococcus pneumonia (SP) and influenza A virus (IAV) co-infection, where bronchoalveolar leukocyte infiltration had resolved by adulthood. Only co-infection resulted in persistent nasopharyngeal colonisation over 40 days and a significant increase in airway resistance in response to in vivo methacholine challenge. A significant increase in hysteresivity was also observed in IAV and co-infected mice, consistent with ventilatory heterogeneity and structural changes in the adult lung. Airway hyper-responsiveness was not associated with a detectable increase in goblet cell transdifferentiation, peribronchial smooth muscle bulk or collagen deposition in regions surrounding the airways. Increased reactivity was not observed in precision cut lung slices challenged with methacholine in vitro. Histologically, the airway epithelium appeared normal and expression of epithelial integrity markers (ZO-1, occludin-1 and E-cadherin) were not altered. In summary, neonatal co-infection led to persistent nasopharyngeal colonisation and increased airway responsiveness that was not associated with detectable smooth muscle or mucosal epithelial abnormalities, however increased hysteresivity may reflect ventilation heterogeneity. PMID:26940954

  10. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons.

    PubMed

    Liu, Meng-Lu; Zang, Tong; Zou, Yuhua; Chang, Joshua C; Gibson, Jay R; Huber, Kimberly M; Zhang, Chun-Li

    2013-01-01

    Cell fate can be reprogrammed by modifying intrinsic and extrinsic cues. Here we show that two small molecules (forskolin and dorsomorphin) enable the transcription factor Neurogenin 2 (NGN2) to convert human fetal lung fibroblasts into cholinergic neurons with high purity (>90%) and efficiency (up to 99% of NGN2-expressing cells). The conversion is direct without passing through a proliferative progenitor state. These human induced cholinergic neurons (hiCN) show mature electrophysiological properties and exhibit motor neuron-like features, including morphology, gene expression and the formation of functional neuromuscular junctions. Inclusion of an additional transcription factor, SOX11, also efficiently converts postnatal and adult skin fibroblasts from healthy and diseased human patients to cholinergic neurons. Taken together, this study identifies a simple and highly efficient strategy for reprogramming human fibroblasts to subtype-specific neurons. These findings offer a unique venue for investigating the molecular mechanisms underlying cellular plasticity and human neurodegenerative diseases.

  11. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  12. A comparative study on efficiency of adult fibroblasts and amniotic fluid-derived stem cells as donor cells for production of hand-made cloned buffalo (Bubalus bubalis) embryos.

    PubMed

    Em, Sadeesh; Kataria, Meena; Shah, Fozia; Yadav, P S

    2016-08-01

    The efficiency of two cell types, namely adult fibroblasts, and amniotic fluid stem (AFS) cells as nuclear donor cells for somatic cell nuclear transfer by hand-made cloning in buffalo (Bubalus bubalis) was compared. The in vitro expanded buffalo adult fibroblast cells showed a typical "S" shape growth curve with a doubling time of 40.8 h and stained positive for vimentin. The in vitro cultured undifferentiated AFS cells showed a doubling time of 33.2 h and stained positive for alkaline phosphatase, these cells were also found positive for undifferentiated embryonic stem cell markers like OCT-4, NANOG and SOX-2, which accentuate their pluripotent property. Further, when AFS cells were exposed to corresponding induction conditions, these cells differentiated into osteogenic, adipogenic and chondrogenic lineages which was confirmed through alizaran, oil red O and alcian blue staining, respectively. Cultured adult fibroblasts and AFS cells of passages 10-15 and 8-12, respectively, were used as nuclear donors. A total of 94 embryos were reconstructed using adult fibroblast as donor cells with cleavage and blastocyst production rate of 62.8 ± 1.8 and 19.1 ± 1.5, respectively. An overall cleavage and blastocyst formation rate of 71.1 ± 1.2 and 29.9 ± 2.2 was obtained when 97 embryos were reconstructed using AFS cells as donor cells. There were no significant differences (P > 0.05) in reconstructed efficiency between the cloned embryos derived from two donor cells, whereas the results showed that there were significant differences (P < 0.05) in cleavage and blastocyst rates between the cloned embryos derived from two donor cell groups. Average total cell numbers for blastocyst generated using AFS cells (172.4 ± 5.8) was significantly (P < 0.05) higher than from adult fibroblasts (148.2 ± 6.1). This study suggests that the in vitro developmental potential of the cloned embryos derived from AFS cells were higher than that of the cloned embryos

  13. Urinary Dialkyl Phosphate Concentrations and Lung Function Parameters in Adolescents and Adults: Results from the Canadian Health Measures Survey

    PubMed Central

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.; Senthilselvan, Ambikaipakan

    2015-01-01

    Background: Epidemiological studies have reported associations between lung function parameters and organophosphate (OP) pesticide exposures in agricultural occupations, but to our knowledge associations have not been evaluated in general populations. Objectives: We examined associations between OP metabolite dialkyl phosphates (DAPs) and lung function using data from the Canadian Health Measures Survey (CHMS) Cycle 1. Methods: Forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), FEV1/FVC ratio, and forced expiratory flow between 25% and 75% of FVC (FEF25%–75%) were measured for 4,446 CHMS participants. Urinary concentrations of six DAP metabolites (DMP, DMTP, DMDTP, DEP, DETP, and DEDTP), smoking status, and other predictors of lung function were also measured in the CHMS-Cycle 1. Multiple linear regression analyses were used to examine the relationship between total DAP concentrations (ΣDAPs) and lung function in adolescents (12–19 years) and adults (20–79 years). Results: In adults, estimates from multiple regression analyses suggested that a 1-unit increase on natural logarithmic scale (171% increase on the original scale) in the creatinine-corrected urinary concentration (nanomoles per gram creatinine) of ΣDAP was associated with a 32.6-mL (95% CI: –57.2, –8.1) reduction in FVC, 32.6-mL (95% CI: –59.0, –6.3) reduction in FEV1, 0.2% (95% CI: –0.6, 0.2) reduction in FEV1/FVC ratio, and 53.1-mL/sec (95% CI: –113.9, 7.7) reduction in FEF25%–75%. In adolescents, associations between ΣDAP and FEV1 were closer to the null and positive for FVC, whereas associations with FEV1/FVC and FEF25%–75% were negative, as in adults. However, none of the associations were significant in adolescents. Conclusions: The negative association between ΣDAP and lung function in adult participants suggests a detrimental effect of OP pesticides on lung function in the adult general population. Further studies using prospective designs are

  14. Antibiotic Treatment Response of Chronic Lung Diseases of Adult Sheep in the United Kingdom Based upon Ultrasonographic Findings

    PubMed Central

    Scott, Phil

    2014-01-01

    Examination of the lungs of adult sheep with chronic respiratory diseases was readily achieved using both 5 MHz linear and sector scanners. Superficial lung abscesses in eight sheep appeared as anechoic areas containing multiple hyperechoic dots bordered distally by a broad hyperechoic capsule. Unilateral fibrinous pleurisy (2 sheep) appeared as an anechoic area containing a hyperechoic latticework. Ovine pulmonary adenocarcinoma (OPA) lesions appeared as sharply demarcated hypoechoic areas in the lung parenchyma initially in the cranioventral lung lobes (21 sheep) with lesions also present in the caudodorsal diaphragmatic lobe (11 sheep); abscesses and areas of calcification within the OPA tumour mass were also identified. Daily treatment with procaine penicillin for 30 consecutive days was successful in both sheep with unilateral fibrinous pleurisy and six sheep identified with superficial lung abscesses measuring 2–8 cm in diameter; only one of two sheep with more extensive lesions recovered. Auscultation of the chest failed to detect adventitious sounds in any of the ten sheep with lung abscesses; normal breath sounds were reduced over the area of fibrinous pleurisy; no pleuritic rubs were heard. Wheezes and crackles auscultated in some OPA cases and did not correlate well with lesions detected ultrasonographically. PMID:24977091

  15. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  16. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  17. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background Guidelines do not currently recommend the use of lung ultrasound (LUS) as an alternative to chest X-ray (CXR) or chest computerized tomography (CT) scan for the diagnosis of pneumonia. We conducted a meta-analysis to summarize existing evidence of the diagnostic accuracy of LUS for pneumonia in adults. Methods We conducted a systematic search of published studies comparing the diagnostic accuracy of LUS against a referent CXR or chest CT scan and/or clinical criteria for pneumonia in adults aged ≥18 years. Eligible studies were required to have a CXR and/or chest CT scan at the time of evaluation. We manually extracted descriptive and quantitative information from eligible studies, and calculated pooled sensitivity and specificity using the Mantel-Haenszel method and pooled positive and negative likelihood ratios (LR) using the DerSimonian-Laird method. We assessed for heterogeneity using the Q and I2 statistics. Results Our initial search strategy yielded 2726 articles, of which 45 (1.7%) were manually selected for review and 10 (0.4%) were eligible for analyses. These 10 studies provided a combined sample size of 1172 participants. Six studies enrolled adult patients who were either hospitalized or admitted to Emergency Departments with suspicion of pneumonia and 4 studies enrolled critically-ill adult patients. LUS was performed by highly-skilled sonographers in seven studies, by trained physicians in two, and one did not mention level of training. All studies were conducted in high-income settings. LUS took a maximum of 13 minutes to conduct. Nine studies used a 3.5-5 MHz micro-convex transducer and one used a 5–9 MHz convex probe. Pooled sensitivity and specificity for the diagnosis of pneumonia using LUS were 94% (95% CI, 92%-96%) and 96% (94%-97%), respectively; pooled positive and negative LRs were 16.8 (7.7-37.0) and 0.07 (0.05-0.10), respectively; and, the area-under-the-ROC curve was 0.99 (0.98-0.99). Conclusions Our meta

  18. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.

    PubMed

    Lees, Emma K; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W; Delibegovic, Mirela

    2014-10-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans. PMID:24935677

  19. In Vitro and In Vivo Development of Horse Cloned Embryos Generated with iPSCs, Mesenchymal Stromal Cells and Fetal or Adult Fibroblasts as Nuclear Donors

    PubMed Central

    Olivera, Ramiro; Moro, Lucia Natalia; Jordan, Roberto; Luzzani, Carlos; Miriuka, Santiago; Radrizzani, Martin; Donadeu, F. Xavier; Vichera, Gabriel

    2016-01-01

    The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals. PMID:27732616

  20. Systems Biology Studies of Adult Paragonimus Lung Flukes Facilitate the Identification of Immunodominant Parasite Antigens

    PubMed Central

    McNulty, Samantha N.; Fischer, Peter U.; Townsend, R. Reid; Curtis, Kurt C.; Weil, Gary J.; Mitreva, Makedonka

    2014-01-01

    Background Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite proteins that may be useful for development of improved diagnostic tests. Methodology/Principal Findings The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci, and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive proteins, and these warrant further study as diagnostic candidates. Conclusions The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic tests. Similar integrated approaches may be useful for identifying novel

  1. The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts.

    PubMed

    Zago, Michela; Rico de Souza, Angela; Hecht, Emelia; Rousseau, Simon; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J

    2014-04-21

    Diseases due to cigarette smoke exposure, including chronic obstructive pulmonary disease (COPD) and lung cancer, are associated with chronic inflammation typified by the increased expression of cyclooxygenase-2 (COX-2) protein. RelB is an NF-κB family member that suppresses cigarette smoke induction of COX-2 through an unknown mechanism. The ability of RelB to regulate COX-2 expression may be via miR-146a, a miRNA that attenuates COX-2 in lung fibroblasts. In this study we tested whether RelB attenuation of cigarette smoke-induced COX-2 protein is due to miR-146a. Utilizing pulmonary fibroblasts deficient in RelB expression, together with siRNA knock-down of RelB, we show the essential role of RelB in diminishing smoke-induced COX-2 protein expression despite robust activation of the canonical NF-κB pathway and subsequent induction of Cox-2 mRNA. RelB did not regulate COX-2 protein expression at the level of mRNA stability. Basal levels of miR-146a were significantly lower in Relb-deficient cells and cigarette smoke increased miR-146a expression only in Relb-expressing cells. Inhibition of miR-146a had no effects on Relb expression or induction of Cox-2 mRNA by cigarette smoke but significantly increased COX-2 protein. These data highlight the potential of a RelB-miR-146a axis as a novel regulatory pathway that attenuates inflammation in response to respiratory toxicants.

  2. Liver and lung transplantation in cystic fibrosis: an adult cystic fibrosis centre's experience.

    PubMed

    Sivam, S; Al-Hindawi, Y; Di Michiel, J; Moriarty, C; Spratt, P; Jansz, P; Malouf, M; Plit, M; Pleass, H; Havryk, A; Bowen, D; Haber, P; Glanville, A R; Bye, P T P

    2016-07-01

    Liver disease develops in one-third of patients with cystic fibrosis (CF). It is rare for liver disease to have its onset after 20 years of age. Lung disease, however, is usually more severe in adulthood. A retrospective analysis was performed on nine patients. Three patients required lung transplantation approximately a decade after liver transplant, and another underwent combined liver and lung transplants. Four additional patients with liver transplants are awaiting assessment for lung transplants. One patient is awaiting combined liver and lung transplants. With increased survival in CF, several patients may require more than single organ transplantation. PMID:27405894

  3. Throat Swabs and Sputum Culture as Predictors of P. aeruginosa or S. aureus Lung Colonization in Adult Cystic Fibrosis Patients

    PubMed Central

    Seidler, Darius; Griffin, Mary; Nymon, Amanda; Koeppen, Katja; Ashare, Alix

    2016-01-01

    Background Due to frequent infections in cystic fibrosis (CF) patients, repeated respiratory cultures are obtained to inform treatment. When patients are unable to expectorate sputum, clinicians obtain throat swabs as a surrogate for lower respiratory cultures. There is no clear data in adult subjects demonstrating the adequacy of throat swabs as a surrogate for sputum or BAL. Our study was designed to determine the utility of throat swabs in identifying lung colonization with common organisms in adults with CF. Methods Adult CF subjects (n = 20) underwent bronchoscopy with BAL. Prior to bronchoscopy, a throat swab was obtained. A sputum sample was obtained from subjects who were able to spontaneously expectorate. All samples were sent for standard microbiology culture. Results Using BAL as the gold standard, we found the positive predictive value for Pseudomonas aeruginosa to be 100% in both sputum and throat swab compared to BAL. However, the negative predictive value for P. aeruginosa was 60% and 50% in sputum and throat swab, respectively. Conversely, the positive predictive value for Staphylococcus aureus was 57% in sputum and only 41% in throat swab and the negative predictive value of S. aureus was 100% in sputum and throat swab compared to BAL. Conclusions Our data show that positive sputum and throat culture findings of P. aeruginosa reflect results found on BAL fluid analysis, suggesting these are reasonable surrogates to determine lung colonization with P. aeruginosa. However, sputum and throat culture findings of S. aureus do not appear to reflect S. aureus colonization of the lung. PMID:27711152

  4. Urinary thiocyanate concentrations are associated with adult cancer and lung problems: US NHANES, 2009-2012.

    PubMed

    Shiue, Ivy

    2015-04-01

    Links between environmental chemicals and human health have emerged but the effects from perchlorate, nitrate and thiocyanate were unclear. Therefore, it was aimed to study the relationships of urinary perchlorate, nitrate and thiocyanate concentrations and adult health conditions in a national and population-based study. Data was retrieved from US National Health and Nutrition Examination Surveys, 2009-2012, including demographics, blood pressure readings, self-reported health conditions and urinary perchlorate, nitrate and thiocyanate concentrations. Analyses included chi-square test, t test survey-weighted logistic regression models and population attributable risk estimation. There were no clear associations between urinary perchlorate concentrations and adult health conditions, although people with hearing loss and diabetes could be at the borderline risk. Urinary thiocyanate concentrations were significantly associated with emphysema (odds ratio (OR) 2.70 95% confidence intervals (CI) 1.91-3.82, P < 0.001), cancer (OR 1.21 95%CI 1.06-1.39, P = 0.008), chronic bronchitis (OR 1.23 95%CI 1.10-1.52, P = 0.003), wheezing (OR 1.24 95%CI 1.05-1.46, P = 0.011), coughing (OR 1.19 95%CI 1.03-1.37, P = 0.018) and sleep complaints (OR 1.14 95%CI 1.02-1.26, P = 0.019). The population attributable risks accounted for 3.3% (1.8-5.3%), 1.9% (0.6-3.5%), 1.2% (0.5-2.6%), 2.2% (0.5-4.1%), 1.8% (0.3-6.2%) and 1.3% (0.2-2.4%) for emphysema, cancer, chronic bronchitis, wheezing, coughing and sleep complaints, respectively. In addition, there was an inverse association observed between urinary nitrate level and heart failure. This is for the first time observing significant risk effects of urinary thiocyanate concentrations on adult cancer and lung problems, although the causality cannot be established. Elimination of such environmental chemical in humans should be included in future health policy and intervention programs. PMID:25367645

  5. Urinary thiocyanate concentrations are associated with adult cancer and lung problems: US NHANES, 2009-2012.

    PubMed

    Shiue, Ivy

    2015-04-01

    Links between environmental chemicals and human health have emerged but the effects from perchlorate, nitrate and thiocyanate were unclear. Therefore, it was aimed to study the relationships of urinary perchlorate, nitrate and thiocyanate concentrations and adult health conditions in a national and population-based study. Data was retrieved from US National Health and Nutrition Examination Surveys, 2009-2012, including demographics, blood pressure readings, self-reported health conditions and urinary perchlorate, nitrate and thiocyanate concentrations. Analyses included chi-square test, t test survey-weighted logistic regression models and population attributable risk estimation. There were no clear associations between urinary perchlorate concentrations and adult health conditions, although people with hearing loss and diabetes could be at the borderline risk. Urinary thiocyanate concentrations were significantly associated with emphysema (odds ratio (OR) 2.70 95% confidence intervals (CI) 1.91-3.82, P < 0.001), cancer (OR 1.21 95%CI 1.06-1.39, P = 0.008), chronic bronchitis (OR 1.23 95%CI 1.10-1.52, P = 0.003), wheezing (OR 1.24 95%CI 1.05-1.46, P = 0.011), coughing (OR 1.19 95%CI 1.03-1.37, P = 0.018) and sleep complaints (OR 1.14 95%CI 1.02-1.26, P = 0.019). The population attributable risks accounted for 3.3% (1.8-5.3%), 1.9% (0.6-3.5%), 1.2% (0.5-2.6%), 2.2% (0.5-4.1%), 1.8% (0.3-6.2%) and 1.3% (0.2-2.4%) for emphysema, cancer, chronic bronchitis, wheezing, coughing and sleep complaints, respectively. In addition, there was an inverse association observed between urinary nitrate level and heart failure. This is for the first time observing significant risk effects of urinary thiocyanate concentrations on adult cancer and lung problems, although the causality cannot be established. Elimination of such environmental chemical in humans should be included in future health policy and intervention programs.

  6. Influence of hyperoxia and mechanical ventilation in lung inflammation and diaphragm function in aged versus adult rats.

    PubMed

    Andrade, P V; dos Santos, J M; Silva, H C A; Wilbert, D D; Cavassani, S S; Oliveira-Júnior, I S

    2014-04-01

    Although assist ventilation with FIO2 0.21 is the preferable mode of ventilation in the intensive care unit, sometimes controlled ventilation with hyperoxia is needed. But the impact of this setting has not been extensively studied in elderly subjects. We hypothesized that a high fraction of inspired oxygen (FiO(2)) and controlled mechanical ventilation (CMV) is associated with greater deleterious effects in old compared to adult subjects. Adult and old rats were submitted to CMV with low tidal volume (6 ml/kg) and FiO(2) 1 during 3 or 6 h. Arterial blood gas samples were measured at 0, 60 and 180 min (four groups: old and adult rats, 3 or 6 h of CMV), and additionally at 360 min (two groups: old and adult rats, 6 h of CMV). Furthermore, total protein content (TPC) and tumor necrosis factor-alpha (TNF-α) in bronchoalveolar lavage were assessed; lung tissue was used for malondialdehyde and histological analyses, and the diaphragm for measurement of contractile function. Arterial blood gas analysis showed an initial (60 min) greater PaO(2) in elderly versus adult animals; after that time, elderly animals had lowers pH and PaO(2), and greater PaCO(2). After 3 h of CMV, TPC and TNF-α levels were higher in the old compared with the adult group (P < 0.05). After 6 h of MV, malondialdehyde was significantly higher in elderly compared with the adult animals (P < 0.05). Histological analysis showed leukocyte infiltration and edema, greater in old animals. In diaphragm, twitch contraction with caffeine significantly declined after 6 h of CMV only for the elderly group. These data support the hypothesis that relatively short-term CMV with low tidal volume and hyperoxia has greatest impact in elderly rats, decreasing diaphragmatic contractile function and increasing lung inflammation.

  7. Lower fibroblast growth factor 23 levels in young adults with Crohn disease as a possible secondary compensatory effect on the disturbance of bone and mineral metabolism.

    PubMed

    Oikonomou, Konstantinos A; Orfanidou, Timoklia I; Vlychou, Marianna K; Kapsoritakis, Andreas N; Tsezou, Aspasia; Malizos, Konstantinos N; Potamianos, Spyros P

    2014-01-01

    Fibroblast growth factor 23 (FGF-23) is a bone-derived circulating phosphaturic factor that decreases serum concentration of phosphate and vitamin D, suggested to actively participate in a complex renal-gastrointestinal-skeletal axis. Serum FGF-23 concentrations, as well as various other laboratory parameters involved in bone homeostasis, were measured and analyzed with regard to various diseases and patients' characteristics in 44 patients with Crohn disease (CD) and 20 healthy controls (HCs) included in this cross-sectional study. Serum FGF-23 levels were significantly lower in patients with CD (900.42 ± 815.85pg/mL) compared with HC (1410.94 ± 1000.53pg/mL), p = 0.037. Further analyses suggested FGF-23 as a factor independent from various parameters including age (r = -0.218), body mass index (r = -0.115), 25-hydroxy vitamin D (r = 0.126), parathyroid hormone (r = 0.084), and bone mineral density (BMD) of hip and lumbar (r = 0.205 and r = 0.149, respectively). This observation remained even after multivariate analyses, exhibiting that BMD was not affected by FGF-23, although parameters such as age (p = 0.026), cumulative prednisolone dose (p < 0.0001), and smoking status (p = 0.024) were strong determinants of BMD regarding hip. Lower FGF-23 levels in patients with bowel inflammation are accompanied but not directly correlated with lower vitamin D levels, showing no impact on BMD determination of young adults with CD. The downregulation of serum FGF-23 levels in CD appears as a secondary compensatory effect on the bone and mineral metabolism induced by chronic intestinal inflammation.

  8. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    PubMed Central

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  9. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    NASA Astrophysics Data System (ADS)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  10. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  11. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  12. Clinical and laboratory correlates of lung disease and cancer in adults with idiopathic hypogammaglobulinaemia.

    PubMed

    Brent, J; Guzman, D; Bangs, C; Grimbacher, B; Fayolle, C; Huissoon, A; Bethune, C; Thomas, M; Patel, S; Jolles, S; Alachkar, H; Kumaratne, D; Baxendale, H; Edgar, J D; Helbert, M; Hambleton, S; Arkwright, P D

    2016-04-01

    Idiopathic hypogammaglobulinaemia, including common variable immune deficiency (CVID), has a heterogeneous clinical phenotype. This study used data from the national UK Primary Immune Deficiency (UKPID) registry to examine factors associated with adverse outcomes, particularly lung damage and malignancy. A total of 801 adults labelled with idiopathic hypogammaglobulinaemia and CVID aged 18-96 years from 10 UK cities were recruited using the UKPID registry database. Clinical and laboratory data (leucocyte numbers and serum immunoglobulin concentrations) were collated and analysed using uni- and multivariate statistics. Low serum immunoglobulin (Ig)G pre-immunoglobulin replacement therapy was the key factor associated with lower respiratory tract infections (LRTI) and history of LRTI was the main factor associated with bronchiectasis. History of overt LRTI was also associated with a significantly shorter delay in diagnosis and commencing immunoglobulin replacement therapy [5 (range 1-13 years) versus 9 (range 2-24) years]. Patients with bronchiectasis started immunoglobulin replacement therapy significantly later than those without this complication [7 (range 2-22) years versus 5 (range 1-13) years]. Patients with a history of LRTI had higher serum IgG concentrations on therapy and were twice as likely to be on prophylactic antibiotics. Ensuring prompt commencement of immunoglobulin therapy in patients with idiopathic hypogammaglobulinaemia is likely to help prevent LRTI and subsequent bronchiectasis. Cancer was the only factor associated with mortality. Overt cancer, both haematological and non-haematological, was associated with significantly lower absolute CD8(+) T cell but not natural killer (NK) cell numbers, raising the question as to what extent immune senescence, particularly of CD8(+) T cells, might contribute to the increased risk of cancers as individuals age.

  13. Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function

    PubMed Central

    Tang, Wenbo; Kowgier, Matthew; Loth, Daan W.; Soler Artigas, María; Joubert, Bonnie R.; Hodge, Emily; Gharib, Sina A.; Smith, Albert V.; Ruczinski, Ingo; Gudnason, Vilmundur; Mathias, Rasika A.; Harris, Tamara B.; Hansel, Nadia N.; Launer, Lenore J.; Barnes, Kathleen C.; Hansen, Joyanna G.; Albrecht, Eva; Aldrich, Melinda C.; Allerhand, Michael; Barr, R. Graham; Brusselle, Guy G.; Couper, David J.; Curjuric, Ivan; Davies, Gail; Deary, Ian J.; Dupuis, Josée; Fall, Tove; Foy, Millennia; Franceschini, Nora; Gao, Wei; Gläser, Sven; Gu, Xiangjun; Hancock, Dana B.; Heinrich, Joachim; Hofman, Albert; Imboden, Medea; Ingelsson, Erik; James, Alan; Karrasch, Stefan; Koch, Beate; Kritchevsky, Stephen B.; Kumar, Ashish; Lahousse, Lies; Li, Guo; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Lohman, Kurt; Lumley, Thomas; McArdle, Wendy L.; Meibohm, Bernd; Morris, Andrew P.; Morrison, Alanna C.; Musk, Bill; North, Kari E.; Palmer, Lyle J.; Probst-Hensch, Nicole M.; Psaty, Bruce M.; Rivadeneira, Fernando; Rotter, Jerome I.; Schulz, Holger; Smith, Lewis J.; Sood, Akshay; Starr, John M.; Strachan, David P.; Teumer, Alexander; Uitterlinden, André G.; Völzke, Henry; Voorman, Arend; Wain, Louise V.; Wells, Martin T.; Wilk, Jemma B.; Williams, O. Dale; Heckbert, Susan R.; Stricker, Bruno H.; London, Stephanie J.; Fornage, Myriam; Tobin, Martin D.; O′Connor, George T.; Hall, Ian P.; Cassano, Patricia A.

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function. PMID:24983941

  14. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke-induced chronic obstructive pulmonary disease in adult mice.

    PubMed

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2011-08-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes.

  15. Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.

    PubMed

    Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter

    2016-01-01

    Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values.

  16. Sustained activation of toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis.

    PubMed

    Kirillov, Varvara; Siler, Jonathan T; Ramadass, Mahalakshmi; Ge, Lingyin; Davis, James; Grant, Geraldine; Nathan, Steven D; Jarai, Gabor; Trujillo, Glenda

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF.

  17. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  18. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

    PubMed Central

    Kaye, D; Pimental, D; Prasad, S; Mäki, T; Berger, H J; McNeil, P L; Smith, T W; Kelly, R A

    1996-01-01

    One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased

  19. Increased Mortality from Lung Cancer and Bronchiectasis in Young Adults after Exposure to Arsenic in Utero and in Early Childhood

    PubMed Central

    Smith, Allan H.; Marshall, Guillermo; Yuan, Yan; Ferreccio, Catterina; Liaw, Jane; von Ehrenstein, Ondine; Steinmaus, Craig; Bates, Michael N.; Selvin, Steve

    2006-01-01

    Arsenic in drinking water is an established cause of lung cancer, and preliminary evidence suggests that ingested arsenic may also cause nonmalignant lung disease. Antofagasta is the second largest city in Chile and had a distinct period of very high arsenic exposure that began in 1958 and lasted until 1971, when an arsenic removal plant was installed. This unique exposure scenario provides a rare opportunity to investigate the long-term mortality impact of early-life arsenic exposure. In this study, we compared mortality rates in Antofagasta in the period 1989–2000 with those of the rest of Chile, focusing on subjects who were born during or just before the peak exposure period and who were 30–49 years of age at the time of death. For the birth cohort born just before the high-exposure period (1950–1957) and exposed in early childhood, the standardized mortality ratio (SMR) for lung cancer was 7.0 [95% confidence interval (CI), 5.4–8.9; p < 0.001] and the SMR for bronchiectasis was 12.4 (95% CI, 3.3–31.7; p < 0.001). For those born during the high-exposure period (1958–1970) with probable exposure in utero and early childhood, the corresponding SMRs were 6.1 (95% CI, 3.5–9.9; p < 0.001) for lung cancer and 46.2 (95% CI, 21.1–87.7; p < 0.001) for bronchiectasis. These findings suggest that exposure to arsenic in drinking water during early childhood or in utero has pronounced pulmonary effects, greatly increasing subsequent mortality in young adults from both malignant and nonmalignant lung disease. PMID:16882542

  20. Sphingosine 1-Phosphate (S1P) Receptor Agonists Mediate Pro-fibrotic Responses in Normal Human Lung Fibroblasts via S1P2 and S1P3 Receptors and Smad-independent Signaling

    PubMed Central

    Sobel, Katrin; Menyhart, Katalin; Killer, Nina; Renault, Bérengère; Bauer, Yasmina; Studer, Rolf; Steiner, Beat; Bolli, Martin H.; Nayler, Oliver; Gatfield, John

    2013-01-01

    Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways. PMID:23589284

  1. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age

    PubMed Central

    Owusu, Sarah A.; Ross, A. Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism–plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  2. The Oxygen Environment at Birth Specifies the Population of Alveolar Epithelial Stem Cells in the Adult Lung.

    PubMed

    Yee, Min; Gelein, Robert; Mariani, Thomas J; Lawrence, B Paige; O'Reilly, Michael A

    2016-05-01

    Alveolar epithelial type II cells (AEC2) maintain pulmonary homeostasis by producing surfactant, expressing innate immune molecules, and functioning as adult progenitor cells for themselves and alveolar epithelial type I cells (AEC1). How the proper number of alveolar epithelial cells is determined in the adult lung is not well understood. Here, BrdU labeling, genetic lineage tracing, and targeted expression of the anti-oxidant extracellular superoxide dismutase in AEC2s are used to show how the oxygen environment at birth influences postnatal expansion of AEC2s and AEC1s in mice. Birth into low (12%) or high (≥60%) oxygen stimulated expansion of AEC2s through self-renewal and differentiation of the airway Scgb1a1 + lineage. This non-linear or hormesis response to oxygen was specific for the alveolar epithelium because low oxygen stimulated and high oxygen inhibited angiogenesis as defined by changes in V-cadherin and PECAM (CD31). Although genetic lineage tracing studies confirmed adult AEC2s are stem cells for AEC1s, we found no evidence that postnatal growth of AEC1s were derived from self-renewing Sftpc + or the Scbg1a1 + lineage of AEC2s. Taken together, our results show how a non-linear response to oxygen at birth promotes expansion of AEC2s through two distinct lineages. Since neither lineage contributes to the postnatal expansion of AEC1s, the ability of AEC2s to function as stem cells for AEC1s appears to be restricted to the adult lung. Stem Cells 2016;34:1396-1406. PMID:26891117

  3. Radio-modifying potential of Saraca indica against ionizing radiation: an in vitro study using Chinese hamster lung fibroblast (V79) cells.

    PubMed

    Das, Shubhankar; Kumar, Rishikesh; Rao, Bola Sadashiva Satish

    2015-09-01

    This study demonstrated the radioprotective efficacy of extracts prepared from stem bark of Saraca indica (SI) against X-rays induced cellular damage, which was evaluated by a battery of cytotoxicity, genotoxicity, apoptotic, and biochemical assays using Chinese hamster fibroblast (V79) cells. Cell viability and surviving fraction were increased significantly when V79 cells were preconditioned with optimal concentration of hydroalcoholic extract (HE; 50 μg/mL) of SI for 2 h prior exposure to X-rays. Radiation induced cellular damage was correlated with a significant elevation in intracellular ROS and increased mitochondrial depolarization and loss of intracellular antioxidant enzymes. However, cells preconditioned with 50 μg/mL of HE reversed this effect. Pretreatment of HE resulted in inhibition of radiation induced GSH, GST, SOD, catalase levels, and lipid peroxidation to that of radiation-alone treated group. Also, a significant decrease in radiation induced DNA damage, apoptotic and necrotic cell death was observed in case of cells preconditioned with HE. Supporting to this HPLC analysis indicated the presence of ellagic acid as one of the major phytochemical present in HE. Thus, the maintenance of cellular redox status by pretreatment with HE, conferred protection of cellular DNA, oxidative stress by neutralizing free radicals generated by the cellular irradiation and resulted in increased in cell survival may be attributed to the presence of ellagic acid indicating SI's radioprotective potential.

  4. Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device.

    PubMed

    Yu, Ting; Guo, Zhe; Fan, Hui; Song, Jing; Liu, Yuanbin; Gao, Zhancheng; Wang, Qi

    2016-05-01

    The tumor microenvironment is comprised of cancer cells and various stromal cells and their respective cellular components. Cancer-associated fibroblasts (CAFs), a major part of the stromal cells, are a key determinant in tumor progression, while glucose-regulated protein (GRP)78 is overexpressed in many human cancers and is involved in tumor invasion and metastasis. This study developed a microfluidic-based three dimension (3D) co-culture device to mimic an in vitro tumor microenvironment in order to investigate tumor cell invasion in real-time. This bionic chip provided significant information regarding the role of GRP78, which may be stimulated by CAFs, to promote non-small cell lung cancer cell invasion in vitro. The data showed that CAF induced migration of NSCLC A549 and SPCA-1 cells in this three-dimensional invasion microdevice, which is confirmed by using the traditional Transwell system. Furthermore, CAF induced GRP78 expression in A549 and SPCA-1 cells to facilitate NSCLC cell migration and invasion, whereas knockdown of GRP78 expression blocked A549 and SPCA-1 cell migration and invasion capacity. In conclusion, these data indicated that CAFs might promote NSCLC cell invasion by up-regulation of GRP78 expression and this bionic chip microdevice is a robust platform to assess the interaction of cancer and stromal cells in tumor environment study. PMID:27016417

  5. Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device

    PubMed Central

    Song, Jing; Liu, Yuanbin; Gao, Zhancheng; Wang, Qi

    2016-01-01

    The tumor microenvironment is comprised of cancer cells and various stromal cells and their respective cellular components. Cancer-associated fibroblasts (CAFs), a major part of the stromal cells, are a key determinant in tumor progression, while glucose-regulated protein (GRP)78 is overexpressed in many human cancers and is involved in tumor invasion and metastasis. This study developed a microfluidic-based three dimension (3D) co-culture device to mimic an in vitro tumor microenvironment in order to investigate tumor cell invasion in real-time. This bionic chip provided significant information regarding the role of GRP78, which may be stimulated by CAFs, to promote non-small cell lung cancer cell invasion in vitro. The data showed that CAF induced migration of NSCLC A549 and SPCA-1 cells in this three-dimensional invasion microdevice, which is confirmed by using the traditional Transwell system. Furthermore, CAF induced GRP78 expression in A549 and SPCA-1 cells to facilitate NSCLC cell migration and invasion, whereas knockdown of GRP78 expression blocked A549 and SPCA-1 cell migration and invasion capacity. In conclusion, these data indicated that CAFs might promote NSCLC cell invasion by up-regulation of GRP78 expression and this bionic chip microdevice is a robust platform to assess the interaction of cancer and stromal cells in tumor environment study. PMID:27016417

  6. Cancer-associated fibroblasts promote non-small cell lung cancer cell invasion by upregulation of glucose-regulated protein 78 (GRP78) expression in an integrated bionic microfluidic device.

    PubMed

    Yu, Ting; Guo, Zhe; Fan, Hui; Song, Jing; Liu, Yuanbin; Gao, Zhancheng; Wang, Qi

    2016-05-01

    The tumor microenvironment is comprised of cancer cells and various stromal cells and their respective cellular components. Cancer-associated fibroblasts (CAFs), a major part of the stromal cells, are a key determinant in tumor progression, while glucose-regulated protein (GRP)78 is overexpressed in many human cancers and is involved in tumor invasion and metastasis. This study developed a microfluidic-based three dimension (3D) co-culture device to mimic an in vitro tumor microenvironment in order to investigate tumor cell invasion in real-time. This bionic chip provided significant information regarding the role of GRP78, which may be stimulated by CAFs, to promote non-small cell lung cancer cell invasion in vitro. The data showed that CAF induced migration of NSCLC A549 and SPCA-1 cells in this three-dimensional invasion microdevice, which is confirmed by using the traditional Transwell system. Furthermore, CAF induced GRP78 expression in A549 and SPCA-1 cells to facilitate NSCLC cell migration and invasion, whereas knockdown of GRP78 expression blocked A549 and SPCA-1 cell migration and invasion capacity. In conclusion, these data indicated that CAFs might promote NSCLC cell invasion by up-regulation of GRP78 expression and this bionic chip microdevice is a robust platform to assess the interaction of cancer and stromal cells in tumor environment study.

  7. Effects of lumbopelvic sling and abdominal drawing-in exercises on lung capacity in healthy adults

    PubMed Central

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Shin, Young-Jun

    2016-01-01

    [Purpose] To examine the effects of lumbopelvic sling and abdominal drawing-in exercises on the lung capacities of healthy subjects. [Subjects and Methods] Twenty-nine healthy subjects with no orthopedic history of the back were recruited. Subjects were randomly assigned to a experimental group and control group. Subjects were allocated to one of two groups; an experimental group that underwent lumbopelvic sling and abdominal drawing-in exercises and a control group that underwent treadmill and abdominal drawing-in exercises. Lung capacities were evaluated 4 weeks after exercises. [Results] The experimental group showed significant increments in EV, ERV, IRV, VT vs. pre-intervention results, and the control group showed significant increments in the EVC and IRV. Significant intergroup differences were observed in terms of post-training gains in EVC, IRV, and VT. [Conclusion] Combined application of lumbopelvic sling and abdominal drawing-in exercises were found to have a positive effect on lung capacity. PMID:27630393

  8. Effects of lumbopelvic sling and abdominal drawing-in exercises on lung capacity in healthy adults.

    PubMed

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Shin, Young-Jun

    2016-08-01

    [Purpose] To examine the effects of lumbopelvic sling and abdominal drawing-in exercises on the lung capacities of healthy subjects. [Subjects and Methods] Twenty-nine healthy subjects with no orthopedic history of the back were recruited. Subjects were randomly assigned to a experimental group and control group. Subjects were allocated to one of two groups; an experimental group that underwent lumbopelvic sling and abdominal drawing-in exercises and a control group that underwent treadmill and abdominal drawing-in exercises. Lung capacities were evaluated 4 weeks after exercises. [Results] The experimental group showed significant increments in EV, ERV, IRV, VT vs. pre-intervention results, and the control group showed significant increments in the EVC and IRV. Significant intergroup differences were observed in terms of post-training gains in EVC, IRV, and VT. [Conclusion] Combined application of lumbopelvic sling and abdominal drawing-in exercises were found to have a positive effect on lung capacity. PMID:27630393

  9. Effects of lumbopelvic sling and abdominal drawing-in exercises on lung capacity in healthy adults

    PubMed Central

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Shin, Young-Jun

    2016-01-01

    [Purpose] To examine the effects of lumbopelvic sling and abdominal drawing-in exercises on the lung capacities of healthy subjects. [Subjects and Methods] Twenty-nine healthy subjects with no orthopedic history of the back were recruited. Subjects were randomly assigned to a experimental group and control group. Subjects were allocated to one of two groups; an experimental group that underwent lumbopelvic sling and abdominal drawing-in exercises and a control group that underwent treadmill and abdominal drawing-in exercises. Lung capacities were evaluated 4 weeks after exercises. [Results] The experimental group showed significant increments in EV, ERV, IRV, VT vs. pre-intervention results, and the control group showed significant increments in the EVC and IRV. Significant intergroup differences were observed in terms of post-training gains in EVC, IRV, and VT. [Conclusion] Combined application of lumbopelvic sling and abdominal drawing-in exercises were found to have a positive effect on lung capacity.

  10. Increased Lung and Bladder Cancer Incidence In Adults After In Utero and Early-Life Arsenic Exposure

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Acevedo, Johanna; Yuan, Yan; Liaw, Jane; Durán, Viviana; Cuevas, Susana; García, José; Meza, Rodrigo; Valdés, Rodrigo; Valdés, Gustavo; Benítez, Hugo; VanderLinde, Vania; Villagra, Vania; Cantor, Kenneth P; Moore, Lee E; Perez, Saida G; Steinmaus, Scott; Smith, Allan H

    2014-01-01

    Background From 1958–70, >100,000 people in northern Chile were exposed to a well-documented, distinct period of high drinking water arsenic concentrations. We previously reported ecological evidence suggesting that early-life exposure in this population resulted in increased mortality in adults from several outcomes including lung and bladder cancer. Methods We have now completed the first study ever assessing incident cancer cases after early-life arsenic exposure, and the first study on this topic with individual participant exposure and confounding factor data. Subjects included 221 lung and 160 bladder cancer cases diagnosed in northern Chile from 2007–2010, and 508 age and gender-matched controls. Results Odds ratios (ORs) adjusted for age, sex, and smoking in those only exposed in early-life to arsenic water concentrations of ≤110, 110–800, and >800 μg/L were 1.00, 1.88 (95% confidence interval (CI), 0.96–3.71), and 5.24 (3.05–9.00) (p-trend<0.001) for lung cancer, and 1.00, 2.94 (1.29–6.70), and 8.11 (4.31–15.25) (p-trend<0.001) for bladder cancer. ORs were lower in those not exposed until adulthood. The highest category (>800 μg/L) involved exposures which started 49–52 years before, and ended 37–40 years before the cancer cases were diagnosed. Conclusion Lung and bladder cancer incidence in adults was markedly increased following exposure to arsenic in early-life, even up to 40 years after high exposures ceased. Findings like these have not been identified before for any environmental exposure, and suggest that humans are extraordinarily susceptible to early-life arsenic exposure. Impact Policies aimed at reducing early-life exposure may help reduce the long-term risks of arsenic-related disease. PMID:24859871

  11. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts.

    PubMed

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the "cytokine fingerprints" identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  12. Association between Lung Function in Adults and Plasma DDT and DDE Levels: Results from the Canadian Health Measures Survey

    PubMed Central

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.

    2014-01-01

    Background Although DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] has been banned in many countries since the 1970s, it may still pose a risk to human respiratory health. In agriculture, DDT exposures have been associated with asthma and chronic bronchitis. However, little is known about the effect of DDT on lung function. Methods We used data on 1,696 participants 20–79 years of age from the Canadian Health Measures Survey (CHMS) and conducted multiple regression analysis to estimate associations between plasma p,p´-DDT/DDE and lung function. Results Almost all participants (> 99.0%) had detectable concentrations of plasma p,p´-DDE, but only 10.0% had detectable p,p´-DDT. Participants with detectable p,p´-DDT had significantly lower mean FVC (difference = 311 mL; 95% CI: –492, –130; p = 0.003) and FEV1 (difference = 232 mL; 95% CI: –408, –55; p = 0.015) than those without. A 100-ng/g lipid increase in plasma p,p´-DDE was associated with an 18.8-mL decrease in mean FVC (95% CI: –29, –9) and an 11.8-mL decrease in mean FEV1 (95% CI: –21, –3). Neither exposure was associated with FEV1/FVC ratio or FEF25%–75%. Conclusions DDT exposures, which may have occurred decades ago, were still detectable among Canadians. Plasma DDT and DDE were negatively associated with lung function parameters. Additional research on the potential effects of DDT use on lung function is warranted. Citation Ye M, Beach J, Martin JW, Senthilselvan A. 2015. Association between lung function in adults and plasma DDT and DDE levels: results from the Canadian Health Measures Survey. Environ Health Perspect 123:422–427; http://dx.doi.org/10.1289/ehp.1408217 PMID:25536373

  13. Living near main streets and respiratory symptoms in adults: the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults.

    PubMed

    Bayer-Oglesby, Lucy; Schindler, Christian; Hazenkamp-von Arx, Marianne E; Braun-Fahrländer, Charlotte; Keidel, Dirk; Rapp, Regula; Künzli, Nino; Braendli, Otto; Burdet, Luc; Sally Liu, L-J; Leuenberger, Philippe; Ackermann-Liebrich, Ursula

    2006-12-15

    The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA), conducted in 1991 (SAPALDIA 1) in eight areas among 9,651 randomly selected adults aged 18-60 years, reported associations among the prevalence of respiratory symptoms, nitrogen dioxide, and particles with an aerodynamic diameter of less than 10 microg/m3. Later, 8,047 subjects reenrolled in 2002 (SAPALDIA 2). The effects of individually assigned traffic exposures on reported respiratory symptoms were estimated, while controlling for socioeconomic and exposure- and health-related factors. The risk of attacks of breathlessness increased for all subjects by 13% (95% confidence interval: 3, 24) per 500-m increment in the length of main street segments within 200 m of the home and decreased in never smokers by 12% (95% confidence interval: 0, 22) per 100-m increment in distance from home to a main street. Living within 20 m of a main street increased the risks of regular phlegm by 15% (95% confidence interval: 0, 31) and wheezing with breathing problems by 34% (95% confidence interval: 0, 79) in never smokers. In 2002, the effects related to road distance were different from those in 1991, which could be due to changes in the traffic pollution mixture. These findings among a general population provide strong confirmation that living near busy streets leads to adverse respiratory health effects. PMID:17032694

  14. Lung Function and Inflammatory responses in healthy young adults exposed to 0.06 ppm Ozone for 6.6 hours

    EPA Science Inventory

    Rationale: Exposure to ozone causes a decrease in spirometric lung function and an increase in airway inflammation in healthy young adults at concentrations as low as 0.08 ppm close to the the National Ambient Air Quality Standard for ground level ozone. Objectives: To test wheth...

  15. Predictors of Family Conflict at the End of Life: The Experience of Spouses and Adult Children of Persons with Lung Cancer

    ERIC Educational Resources Information Center

    Kramer, Betty J.; Kavanaugh, Melinda; Trentham-Dietz, Amy; Walsh, Matthew; Yonker, James A.

    2010-01-01

    Purpose: Guided by an explanatory matrix of family conflict at the end of life, the purpose of this article was to examine the correlates and predictors of family conflict reported by 155 spouses and adult children of persons with lung cancer. Design and Methods: A cross-sectional statewide survey of family members of persons who died from lung…

  16. Measures of body habitus are associated with lung function in adults with cystic fibrosis: A population-based study☆

    PubMed Central

    Forrester, Doug L.; Knox, Alan J.; Smyth, Alan R.; Fogarty, Andrew W.

    2013-01-01

    Background Body habitus differences may explain some of the variation in lung function between individuals with cystic fibrosis (CF). We tested the hypothesis that measures of lean muscle mass and obesity are independently associated with lung function in CF. Methods Cross-sectional study design using UK CF registry data from 2096 clinically stable adults. Results Serum creatinine and BMI were positively and independently associated with FEV1 and FVC. One standard deviation increment in serum creatinine was associated with an FEV1 increase of 171 ml (95% confidence intervals CI: + 116 to + 227 ml) in males and 90 ml (95% CI: + 46 to + 133 ml) in females. Compared to the reference group of 20–24.9 kg/m2, those with a BMI < 20 kg/m2 had lower FEV1 with values of − 642 ml (95%CI: − 784 to − 500 ml) for males and − 468 ml (95%CI: − 564 to − 372 ml) for females. Conclusions Prospective studies and controlled trials are required to ascertain if these associations have therapeutic potential in modifying disease progression. PMID:22958983

  17. Bacterial Fucose-Rich Polysaccharide Stabilizes MAPK-Mediated Nrf2/Keap1 Signaling by Directly Scavenging Reactive Oxygen Species during Hydrogen Peroxide-Induced Apoptosis of Human Lung Fibroblast Cells

    PubMed Central

    Roy Chowdhury, Sougata; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and 1H/13C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities. PMID:25412177

  18. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells.

    PubMed

    Roy Chowdhury, Sougata; Sengupta, Suman; Biswas, Subir; Sinha, Tridib Kumar; Sen, Ramkrishna; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2014-01-01

    Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.

  19. CEMP1 Induces Transformation in Human Gingival Fibroblasts

    PubMed Central

    Bermúdez, Mercedes; Imaz-Rosshandler, Ivan; Rangel-Escareño, Claudia; Zeichner-David, Margarita; Arzate, Higinio; Mercado-Celis, Gabriela E.

    2015-01-01

    Cementum Protein 1 (CEMP1) is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a “mineralizing” cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1’s biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF) growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer. PMID:26011628

  20. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". PMID:26721596

  1. Elevated Lung Cancer in Younger Adults and Low Concentrations of Arsenic in Water

    PubMed Central

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R.; Liaw, Jane; Smith, Allan H.

    2014-01-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer. PMID:25371173

  2. Elevated lung cancer in younger adults and low concentrations of arsenic in water.

    PubMed

    Steinmaus, Craig; Ferreccio, Catterina; Yuan, Yan; Acevedo, Johanna; González, Francisca; Perez, Liliana; Cortés, Sandra; Balmes, John R; Liaw, Jane; Smith, Allan H

    2014-12-01

    Arsenic concentrations greater than 100 µg/L in drinking water are a known cause of cancer, but the risks associated with lower concentrations are less well understood. The unusual geology and good information on past exposure found in northern Chile are key advantages for investigating the potential long-term effects of arsenic. We performed a case-control study of lung cancer from 2007 to 2010 in areas of northern Chile that had a wide range of arsenic concentrations in drinking water. Previously, we reported evidence of elevated cancer risks at arsenic concentrations greater than 100 µg/L. In the present study, we restricted analyses to the 92 cases and 288 population-based controls who were exposed to concentrations less than 100 µg/L. After adjustment for age, sex, and smoking behavior, these exposures from 40 or more years ago resulted in odds ratios for lung cancer of 1.00, 1.43 (90% confidence interval: 0.82, 2.52), and 2.01 (90% confidence interval: 1.14, 3.52) for increasing tertiles of arsenic exposure, respectively (P for trend = 0.02). Mean arsenic water concentrations in these tertiles were 6.5, 23.0, and 58.6 µg/L. For subjects younger than 65 years of age, the corresponding odds ratios were 1.00, 1.62 (90% confidence interval: 0.67, 3.90), and 3.41 (90% confidence interval: 1.51, 7.70). Adjustments for occupation, fruit and vegetable intake, and socioeconomic status had little impact on the results. These findings provide new evidence that arsenic water concentrations less than 100 µg/L are associated with higher risks of lung cancer.

  3. Mycobacterium avium lung disease combined with a bronchogenic cyst in an immunocompetent young adult.

    PubMed

    Kwon, Yong Soo; Han, Joungho; Jung, Ki Hwan; Kim, Je Hyeong; Koh, Won-Jung

    2013-01-01

    We report a very rare case of a bronchogenic cyst combined with nontuberculous mycobacterial pulmonary disease in an immunocompetent patient. A 21-year-old male was referred to our institution because of a cough, fever, and worsening of abnormalities on his chest radiograph, despite anti-tuberculosis treatment. Computed tomography of the chest showed a large multi-cystic mass over the right-upper lobe. Pathological examination of the excised lobe showed a bronchogenic cyst combined with a destructive cavitary lesion with granulomatous inflammation. Microbiological culture of sputum and lung tissue yielded Mycobacterium avium. The patient was administered anti-mycobacterial treatment that included clarithromycin. PMID:23346002

  4. Interstitial lung disease in an adult with Fanconi anemia: Clues to the pathogenesis

    SciTech Connect

    Rubinstein, W.S.; Wenger, S.L.; Hoffman, R.M.

    1997-03-31

    We have studied a 38-year-old man with a prior diagnosis of Holt-Oram syndrome, who presented with diabetes mellitus. He had recently taken prednisone for idiopathic interstitial lung disease and trimethoprim-sulfamethoxazole for sinusitis. Thrombocytopenia progressed to pancytopenia. The patient had skeletal, cardiac, renal, cutaneous, endocrine, hepatic, neurologic, and hematologic manifestations of Fanconi anemia (FA). Chest radiographs showed increased interstitial markings at age 25, dyspnea began in his late 20s, and he stopped smoking at age 32. At age 38, computerized tomography showed bilateral upper lobe fibrosis, lower lobe honeycombing, and bronchiectasis. Pulmonary function tests, compromised at age 29, showed a moderately severe obstructive and restrictive pattern by age 38. Serum alpha-1 antitrypsin level was 224 (normal 85-213) mg/dL and PI phenotype was M1. Karyotype was 46,X-Y with a marked increase in chromosome aberrations induced in vitro by diepoxybutane. The early onset and degree of pulmonary disease in this patient cannot be fully explained by environmental or known genetic causes. The International Fanconi Anemia Registry (IFAR) contains no example of a similar pulmonary presentation. Gene-environment (ecogenetic) interactions in FA seem evident in the final phenotype. The pathogenic mechanism of lung involvement in FA may relate to oxidative injury and cytokine anomalies. 49 refs., 2 figs., 1 tab.

  5. Investigation of Spa Pools Associated with Lung Disorders Caused by Mycobacterium avium Complex in Immunocompetent Adults

    PubMed Central

    Lumb, Richard; Stapledon, Richard; Scroop, Andrew; Bond, Peter; Cunliffe, David; Goodwin, Allan; Doyle, Robyn; Bastian, Ivan

    2004-01-01

    Three cases of Mycobacterium avium complex-related lung disorders were associated with two poorly maintained spa pools by genotypic investigations. Inadequate disinfection of the two spas had reduced the load of environmental bacteria to less than 1 CFU/ml but allowed levels of M. avium complex of 4.3 × 104 and 4.5 × 103 CFU/ml. Persistence of the disease-associated genotype was demonstrated in one spa pool for over 5 months until repeated treatments with greater than 10 mg of chlorine per liter for 1-h intervals eliminated M. avium complex from the spa pool. A fourth case of Mycobacterium avium complex-related lung disease was associated epidemiologically but not genotypically with another spa pool that had had no maintenance undertaken. This spa pool contained low numbers of mycobacteria by smear and was culture positive for M. avium complex, and the nonmycobacterial organism count was 5.2 × 106 CFU/ml. Public awareness about the proper maintenance of private (residential) spa pools must be promoted by health departments in partnership with spa pool retailers. PMID:15294830

  6. Small-cell Lung Cancer in a Young Adult Nonsmoking Patient with Ectopic Adrenocorticotropin (ACTH) Production.

    PubMed

    Aoki, Masahiko; Fujisaka, Yasuhito; Tokioka, Satoshi; Hirai, Ai; Henmi, Yujiro; Inoue, Yosuke; Narabayashi, Ken; Yamano, Takeshi; Tamura, Yosuke; Egashira, Yutaro; Higuchi, Kazuhide

    2016-01-01

    Cushing's syndrome due to young small-cell lung cancer (SCLC) is recognized as being extremely rare. We herein present the case of a 35-year-old nonsmoking man who presented with thirst and polyuria. Laboratory examinations showed hyperglycemia, hypokalemia and liver enzyme elevation. Imaging examinations revealed the presence of multiple liver tumors and lymph node swelling. The levels of serum neuroendocrine tumor markers were elevated. The patient was diagnosed with SCLC based on the pathological examination of a biopsy specimen from the right supraclavicular lymph node. The physical findings, including proximal myopathy, truncal obesity and pigmentation suggested high levels of glucocorticoids. An immunohistochemical examination of the tumor showed that it was positive for adrenocorticotropin (ACTH). An endocrinological investigation allowed for the definitive diagnosis of SCLC with ectopic ACTH production. PMID:27181543

  7. Humidifier Disinfectants Are a Cause of Lung Injury among Adults in South Korea: A Community-Based Case-Control Study

    PubMed Central

    Kwon, Geun-Yong; Gwack, Jin; Park, Young-Joon; Youn, Seung-Ki; Kwon, Jun-Wook; Yang, Byung-Guk; Lee, Moo-Song; Jung, Miran; Lee, Hanyi; Jun, Byung-Yool; Lim, Hyun-Sul

    2016-01-01

    Backgrounds An outbreak of lung injury among South Korean adults was examined in a hospital-based case-control study, and the suspected cause was exposure to humidifier disinfectant (HD). However, a case-control study with community-dwelling controls was needed to validate the previous study’s findings, and to confirm the exposure-response relationship between HD and lung injury. Methods Each case of lung injury was matched with four community-dwelling controls, according to age (±3 years), sex, residence, and history of childbirth since 2006 (for women). Environmental risk factors, which included type and use of humidifier and HD, were investigated using a structured questionnaire during August 2011. The exposure to HD was calculated for both cases and controls, and the corresponding risks of lung injury were compared. Results Among 28 eligible cases, 16 patients agreed to participate, and 60 matched controls were considered eligible for this study. The cases were more likely to have been exposed to HD (odds ratio: 116.1, 95% confidence interval: 6.5–2,063.7). All cases were exposed to HDs containing polyhexamethyleneguanidine phosphate, and the risk of lung injury increased with the cumulative exposure, duration of exposure, and exposure per day. Conclusions This study revealed a statistically significant exposure-response relationship between HD and lung injury. Therefore, continuous monitoring and stricter evaluation of environmental chemicals’ safety should be conducted. PMID:26990641

  8. Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects.

    PubMed Central

    Penttinen, P; Timonen, K L; Tiittanen, P; Mirme, A; Ruuskanen, J; Pekkanen, J

    2001-01-01

    Daily variations in ambient particulate air pollution are associated with variations in respiratory lung function. It has been suggested that the effects of particulate matter may be due to particles in the ultrafine (0.01-0.1 microm) size range. Because previous studies on ultrafine particles only used self-monitored peak expiratory flow rate (PEFR), we assessed the associations between particle mass and number concentrations in several size ranges measured at a central site and measured (biweekly) spirometric lung function among a group of 54 adult asthmatics (n = 495 measurements). We also compared results to daily morning, afternoon, and evening PEFR measurements done at home (n = 7,672-8,110 measurements). The median (maximum) 24 hr number concentrations were 14,500/cm(3) (46,500/cm(3)) ultrafine particles and 800/cm(3) (2,800/cm(3)) accumulation mode (0.1-1 microm) particles. The median (maximum) mass concentration of PM(2.5) (particulate matter < 2.5 microm) and PM(10) (particulate matter < 10 microm in aerodynamic diameter) were 8.4 microg/m(3) (38.3 microg/m(3)) and 13.5 microg/m(3) (73.7 microg/m(3)), respectively. The number of accumulation mode particles was consistently inversely associated with PEFR in spirometry. Inverse, but nonsignificant, associations were observed with ultrafine particles, and no associations were observed with large particles (PM(10)). Compared to the effect estimates for self-monitored PEFR, the effect estimates for spirometric PEFR tended to be larger. The standard errors were also larger, probably due to the lower number of spirometric measurements. The present results support the need to monitor the particle number and size distributions in urban air in addition to mass. PMID:11335178

  9. Parenchymal lung involvement in adult-onset Still disease: A STROBE-compliant case series and literature review.

    PubMed

    Gerfaud-Valentin, Mathieu; Cottin, Vincent; Jamilloux, Yvan; Hot, Arnaud; Gaillard-Coadon, Agathe; Durieu, Isabelle; Broussolle, Christiane; Iwaz, Jean; Sève, Pascal

    2016-07-01

    Parenchymal lung involvement (PLI) in adult-onset Still's disease (AOSD) has seldom, if ever, been studied. We examine here retrospective cohort AOSD cases and present a review of the literature (1971-2014) on AOSD-related PLI cases.Patients with PLI were identified in 57 AOSD cases. For inclusion, the patients had to fulfill Yamaguchi or Fautrel classification criteria, show respiratory symptoms, and have imaging evidence of pulmonary involvement, and data allowing exclusion of infectious, cardiogenic, toxic, or iatrogenic cause of PLI should be available. This AOSD + PLI group was compared with a control group (non-PLI-complicated AOSD cases from the same cohort).AOSD + PLI was found in 3 out of the 57 patients with AOSD (5.3%) and the literature mentioned 27 patients. Among these 30 AOSD + PLI cases, 12 presented an acute respiratory distress syndrome (ARDS) and the remaining 18 another PLI. In the latter, a nonspecific interstitial pneumonia computed tomography pattern prevailed in the lower lobes, pulmonary function tests showed a restrictive lung function, the alveolar differential cell count was neutrophilic in half of the cases, and the histological findings were consistent with bronchiolitis and nonspecific interstitial pneumonia. Corticosteroids were fully efficient in all but 3 patients. Ten out of 12 ARDS cases occurred during the first year of the disease course. All ARDS-complicated AOSD cases received corticosteroids with favorable outcomes in 10 (2 deceased). Most PLIs occurred during the systemic onset of AOSD.PLI may occur in 5% of AOSDs, of which ARDS is the most severe. Very often, corticosteroids are efficient in controlling this complication. PMID:27472698

  10. Subchronic Inhalation of Soluble Manganese Induces Expression of Hypoxia-associated Angiogenic Genes in Adult Mouse Lungs

    PubMed Central

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE) these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m3 for 5 days at 6h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease. PMID:17467022

  11. Development of a chemically defined in vitro culture system to effectively stimulate the proliferation of adult human dermal fibroblasts.

    PubMed

    Kim, Min Seong; Yun, Jung Im; Gong, Seung Pyo; Ahn, Ji Yeon; Lim, Jeong Mook; Song, Young Han; Park, Kyu Hyun; Lee, Seung Tae

    2015-07-01

    Despite the fact that dermal fibroblasts are a practical model for research related to cell physiology and cell therapy, an in vitro culture system excluding serum, which complicates standardization and specificity and induces variability and unwanted effects, does not exist. We tried to establish a CDCS that supports effective proliferation of aHDFs. KDMEM supplemented with 5% (v/v) KSR, 12 ng/ml bFGF, 5 ng/ml EGF and 1 μg/ml hydrocortisone supported sufficient proliferation of aHDFs for 1 week. However, aHDF proliferation was decreased greatly after subculture. This problem could be overcome by culturing aHDFs in CDCM in culture plates coated with 10 μg/ml FN. Long-term culture of aHDFs was achieved using CDCM and FN-coated culture plates for 7 weeks. The optimized CDCS increased the proliferation of aHDFs significantly, without any increase in the senescence rate or alteration in morphology of aHDFs, despite long-term culture. In conclusion, we established a CDCS that improved proliferation of aHDFs while inhibiting cellular senescence. The CDCS will contribute to advances in various future research related to clinical skin regeneration.

  12. Comparison of in vitro developmental competence of cloned caprine embryos using donor karyoplasts from adult bone marrow mesenchymal stem cells vs ear fibroblast cells.

    PubMed

    Kwong, P J; Nam, H Y; Wan Khadijah, W E; Kamarul, T; Abdullah, R B

    2014-04-01

    The aim of this study was to produce cloned caprine embryos using either caprine bone marrow-derived mesenchymal stem cells (MSCs) or ear fibroblast cells (EFCs) as donor karyoplasts. Caprine MSCs were isolated from male Boer goats of an average age of 1.5 years. To determine the pluripotency of MSCs, the cells were induced to differentiate into osteocytes, chondrocytes and adipocytes. Subsequently, MSCs were characterized through cell surface antigen profiles using specific markers, prior to their use as donor karyoplasts for nuclear transfer. No significant difference (p > 0.05) in fusion rates was observed between MSCs (87.7%) and EFCs (91.3%) used as donor karyoplasts. The cleavage rate of cloned embryos derived with MSCs (87.0%) was similar (p > 0.05) to those cloned using EFCs (84.4%). However, the in vitro development of MSCs-derived cloned embryos (25.3%) to the blastocyst stage was significantly higher (p < 0.05) than those derived with EFCs (20.6%). In conclusion, MSCs could be reprogrammed by caprine oocytes, and production of cloned caprine embryos with MSCs improved their in vitro developmental competence, but not in their fusion and cleavage rate as compared to cloning using somatic cells such as EFCs. PMID:24456113

  13. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    PubMed Central

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  14. Boussignac CPAP system for brain death confirmation with apneic test in case of acute lung injury/adult respiratory distress syndrome – series of cases

    PubMed Central

    Wieczorek, Andrzej; Gaszynski, Tomasz

    2015-01-01

    Introduction There are some patients with severe respiratory disturbances like adult respiratory distress syndrome (ARDS) and suspicion of brain death, for whom typical performance of the apneic test is difficult to complete because of quick desaturation and rapid deterioration without effective ventilation. To avoid failure of brain death confirmation and possible loss of organ donation another approach to apneic test is needed. We present two cases of patients with clinical symptoms of brain death, with lung pathology (acute lung injury, ARDS, lung embolism and lung infection), in whom apneic tests for recognizing brain death were difficult to perform. During typical performance of apneic test involving the use of oxygen catheter for apneic oxygenation we observed severe desaturation with growing hypotension and hemodynamic destabilization. But with the use of Boussignac CPAP system all necessary tests were successfully completed, confirming the patient’s brain death, which gave us the opportunity to perform procedures for organ donation. The main reason of apneic test difficulties was severe gas exchange disturbances secondary to ARDS. Thus lack of positive end expiratory pressure during classical performance of apneic test leads to quick desaturation and rapid hemodynamic deterioration, limiting the observation period below dedicated at least 10-minute interval. Conclusion The Boussignac CPAP system may be an effective tool for performing transparent apneic test in case of serious respiratory disturbances, especially in the form of acute lung injury or ARDS. PMID:26124664

  15. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes

    PubMed Central

    McCarthy, G; Westfall, P; Masuda, I; Christopherson, P; Cheung, H; Mitchell, P

    2001-01-01

    OBJECTIVE—To determine the ability of basic calcium phosphate (BCP) crystals to induce (a) mitogenesis, matrix metalloproteinase (MMP)-1, and MMP-13 in human osteoarthritic synovial fibroblasts (HOAS) and (b) MMP-13 in cultured porcine articular chondrocytes.
METHODS—Mitogenesis of HOAS was measured by [3H]thymidine incorporation assay and counts of cells in monolayer culture. MMP messenger RNA (mRNA) accumulation was determined either by northern blot analysis or reverse transcriptase-polymerase chain reaction (RT-PCR) of RNA from chondrocytes or HOAS treated with BCP crystals. MMP-13 secretion was identified by immunoprecipitation and MMP-1 secretion by western blot of conditioned media.
RESULTS—BCP crystals caused a 4.5-fold increase in [3H]thymidine incorporation by HOAS within 20 hours compared with untreated control cultures (p⩽0.05). BCP crystals induced MMP-13 mRNA accumulation and MMP-13 protein secretion by articular chondrocytes. In contrast, in HOAS, MMP-13 mRNA induced by BCP crystals was detectable only by RT-PCR, and MMP-13 protein was undetectable. BCP crystals induced MMP-1 mRNA accumulation and MMP-1 protein secretion by HOAS. MMP-1 expression was further augmented when HOAS were co-incubated with either BCP and tumour necrosis factor α (TNFα; threefold) or BCP and interleukin 1α (IL1α; twofold).
CONCLUSION—These data confirm the ability of BCP crystals to activate HOAS, leading to the induction of mitogenesis and MMP-1 production. MMP-13 production in response to BCP crystals is substantially more detectable in porcine articular chondrocytes than in HOAS. These data support the active role of BCP crystals in osteoarthritis and suggest that BCP crystals act synergistically with IL1α and TNFα to promote MMP production and subsequent joint degeneration.

 PMID:11247873

  16. Household Air Pollution Exposure and Influence of Lifestyle on Respiratory Health and Lung Function in Belizean Adults and Children: A Field Study

    PubMed Central

    Kurti, Stephanie P.; Kurti, Allison N.; Emerson, Sam R.; Rosenkranz, Richard R.; Smith, Joshua R.; Harms, Craig A.; Rosenkranz, Sara K.

    2016-01-01

    Household air pollution (HAP) contributes to the global burden of disease. Our primary purpose was to determine whether HAP exposure was associated with reduced lung function and respiratory and non-respiratory symptoms in Belizean adults and children. Our secondary purpose was to investigate whether lifestyle (physical activity (PA) and fruit and vegetable consumption (FV)) is associated with reported symptoms. Belizean adults (n = 67, 19 Male) and children (n = 23, 6 Male) from San Ignacio Belize and surrounding areas participated in this cross-sectional study. Data collection took place at free walk-in clinics. Investigators performed initial screenings and administered questionnaires on (1) sources of HAP exposure; (2) reported respiratory and non-respiratory symptoms and (3) validated lifestyle questionnaires. Participants then performed pulmonary function tests (PFTs) and exhaled breath carbon monoxide (CO). There were no significant associations between HAP exposure and pulmonary function in adults. Increased exhaled CO was associated with a significantly lower forced expiratory volume in 1-s divided by forced vital capacity (FEV1/FVC) in children. Exposed adults experienced headaches, burning eyes, wheezing and phlegm production more frequently than unexposed adults. Adults who met PA guidelines were less likely to experience tightness and pressure in the chest compared to those not meeting guidelines. In conclusion, adults exposed to HAP experienced greater respiratory and non-respiratory symptoms, which may be attenuated by lifestyle modifications. PMID:27367712

  17. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: results from the AHSMOG study.Adventist Health Study on Smog.

    PubMed Central

    Beeson, W L; Abbey, D E; Knutsen, S F

    1998-01-01

    The purpose of this study was to evaluate the relationship of long-term concentrations of ambient air pollutants and risk of incident lung cancer in nonsmoking California adults. A cohort study of 6,338 nonsmoking, non-Hispanic, white Californian adults, ages 27-95, was followed from 1977 to 1992 for newly diagnosed cancers. Monthly ambient air pollution data were interpolated to zip code centroids according to home and work location histories, cumulated, and then averaged over time. The increased relative risk (RR) of incident lung cancer in males associated with an interquartile range (IQR) increase in 100 ppb ozone (O3) was 3.56 [95% confidence interval (CI), 1.35-9.42]. Incident lung cancer in males was also positively associated with IQR increases for mean concentrations of particulate matter <10 microm (PM10; RR = 5.21; CI, 1.94-13.99) and SO2 (RR = 2.66; CI, 1.62-4.39). For females, incident lung cancer was positively associated with IQR increases for SO2 (RR = 2.14; CI, 1.36-3.37) and IQR increases for PM10 exceedance frequencies of 50 microg/m3 (RR = 1.21; CI, 0.55-2.66) and 60 microg/m3 (RR = 1.25; CI, 0.57-2.71). Increased risks of incident lung cancer were associated with elevated long-term ambient concentrations of PM10 and SO2 in both genders and with O3 in males. The gender differences for the O3 and PM10 results appeared to be partially due to gender differences in exposure. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9831542

  18. A randomized trial to assess the utility of preintubation adult fiberoptic bronchoscope assessment in patients for thoracic surgery requiring one-lung ventilation

    PubMed Central

    Amin, Nayana; Tarwade, Pritee; Shetmahajan, Madhavi; Pramesh, C. S.; Jiwnani, Sabita; Mahajan, Abhishek; Purandare, Nilendu

    2016-01-01

    Background: Confirmation of placement of Double lumen endobronchial tubes (DLETT) and bronchial blockers (BBs) with the pediatric fiberoptic bronchoscope (FOB) is the most preferred practice worldwide. Most centers possess standard adult FOBs, some, particularly in developing countries might not have access to the pediatric-sized devices. We have evaluated the role of preintubation airway assessment using the former, measuring the distance from the incisors to the carina and from carina to the left and right upper lobe bronchus in deciding the depth of insertion of the lung isolation device. Methods: The study was a randomized, controlled, double-blind trial consisting of 84 patients (all >18 years) undergoing thoracic surgery over a 12-month period. In the study group (n = 38), measurements obtained during FOB with the adult bronchoscope decided the depth of insertion of the lung isolation device. In the control group (n = 46), DLETTs and BBs were placed blindly followed by clinical confirmation by auscultation. Selection of the type and size of the lung isolation device was at the discretion of the anesthesiologist conducting the case. In all cases, pediatric FOB was used to confirm accurate placement of devices. Results: Of 84 patients (DLETT used in 76 patients; BB used in 8 patients), preintubation airway measurements significantly improved the success rate of optimal placement of lung isolation device from 25% (11/44) to 50% (18/36) (P = 0.04). Our incidence of failed device placement at initial insertion was 4.7% (4/84). Incidence of malposition was 10% (8/80) with 4 cases in each group. The incidence of suboptimal placement was lower in the study group at 38.9% (14/36) versus 65.9% (29/44). Conclusions: Preintubation airway measurements with the adult FOB reduces airway manipulations and improves the success rate of optimal placement of DLETT and BB. PMID:27052065

  19. Fibroblast biology in pterygia.

    PubMed

    Kim, Kyoung Woo; Park, Soo Hyun; Kim, Jae Chan

    2016-01-01

    Activation of fibroblasts is a vital process during wound healing. However, if prolonged and exaggerated, profibrotic pathways lead to tissue fibrosis or scarring and further organ malfunction. Although the pathogenesis of pterygium is known to be multi-factorial, additional studies are needed to better understand the pathways initiated by fibroblast activation for the purpose of therapeutic translation. Regarding pterygium as a possible systemic disorder, we discuss the different cell types that pterygium fibroblasts originate from. These may include bone marrow-derived progenitor cells, cells undergoing epithelial-mesenchymal transition (EMT), and local resident stromal cells. We also describe how pterygium fibroblasts can be activated and perpetuate profibrotic signaling elicited by various proliferative drivers, immune-inflammation, and novel factors such as stromal cell-derived factor-1 (SDF-1) as well as a known key fibrotic factor, transforming growth factor-beta (TGF-β). Finally, epigenetic modification is discussed to explain inherited susceptibility to pterygium. PMID:26675401

  20. A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells.

    PubMed

    Em, Sadeesh; Shah, Fozia; Kataria, Meena; Yadav, P S

    2016-08-01

    Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.

  1. Effect of Shisha (Waterpipe) Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi Young Adult Shisha Smokers

    PubMed Central

    Meo, Sultan Ayoub; AlShehri, Khaled Ahmed; AlHarbi, Bader Bandar; Barayyan, Omar Rayyan; Bawazir, Abdulrahman Salem; Alanazi, Omar Abdulmohsin; Al-Zuhair, Ahmed Raad

    2014-01-01

    Shisha (waterpipe) smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO) among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers). The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM) range 17–33 years. The control group consisted of similar number (73) of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM) range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO) was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75-85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group. PMID:25233010

  2. Association between Adult Height and Risk of Colorectal, Lung, and Prostate Cancer: Results from Meta-analyses of Prospective Studies and Mendelian Randomization Analyses

    PubMed Central

    Khankari, Nikhil K.; Shu, Xiao-Ou; Wen, Wanqing; Kraft, Peter; Lindström, Sara; Peters, Ulrike; Schildkraut, Joellen; Schumacher, Fredrick; Bofetta, Paolo; Risch, Angela; Bickeböller, Heike; Amos, Christopher I.; Easton, Douglas; Gruber, Stephen B.; Haiman, Christopher A.; Hunter, David J.; Chanock, Stephen J.; Pierce, Brandon L.; Zheng, Wei

    2016-01-01

    Background Observational studies examining associations between adult height and risk of colorectal, prostate, and lung cancers have generated mixed results. We conducted meta-analyses using data from prospective cohort studies and further carried out Mendelian randomization analyses, using height-associated genetic variants identified in a genome-wide association study (GWAS), to evaluate the association of adult height with these cancers. Methods and Findings A systematic review of prospective studies was conducted using the PubMed, Embase, and Web of Science databases. Using meta-analyses, results obtained from 62 studies were summarized for the association of a 10-cm increase in height with cancer risk. Mendelian randomization analyses were conducted using summary statistics obtained for 423 genetic variants identified from a recent GWAS of adult height and from a cancer genetics consortium study of multiple cancers that included 47,800 cases and 81,353 controls. For a 10-cm increase in height, the summary relative risks derived from the meta-analyses of prospective studies were 1.12 (95% CI 1.10, 1.15), 1.07 (95% CI 1.05, 1.10), and 1.06 (95% CI 1.02, 1.11) for colorectal, prostate, and lung cancers, respectively. Mendelian randomization analyses showed increased risks of colorectal (odds ratio [OR] = 1.58, 95% CI 1.14, 2.18) and lung cancer (OR = 1.10, 95% CI 1.00, 1.22) associated with each 10-cm increase in genetically predicted height. No association was observed for prostate cancer (OR = 1.03, 95% CI 0.92, 1.15). Our meta-analysis was limited to published studies. The sample size for the Mendelian randomization analysis of colorectal cancer was relatively small, thus affecting the precision of the point estimate. Conclusions Our study provides evidence for a potential causal association of adult height with the risk of colorectal and lung cancers and suggests that certain genetic factors and biological pathways affecting adult height may also affect the

  3. Immunocytochemical localization of the nuclear 3,5,3'-triiodothyronine receptor in the adult rat: liver, kidney, heart, lung and spleen.

    PubMed

    Luo, M; Faure, R; Tong, Y A; Dussault, J H

    1989-04-01

    A monoclonal antibody was used for the localization of the nuclear T3 receptor in different tissues of the adult rat: the liver, kidney, heart, lung, spleen, testis, and pituitary. In the liver, the immunoreactivity was found uniformly distributed in the nuclei of hepatocytes. Sections incubated with a control ascitic fluid or with the same ascitic fluid pre-adsorbed with purified receptor showed no specific staining. In the kidney, the immunoreactivity was higher in the epithelial cell of the proximal convoluted tubes and juxtaglomerular cells. In the heart, only the myocardial cells were stained. In the lung, the immunoreactivity was confined to type II pneumocytes and alveolar macrophages. In the spleen, only a few mature lymphocyte and macrophage cell nuclei were stained. These results show that: 1) the abundance of the nuclear T3 correlates with previous studies using hormone binding techniques; 2) the nuclear T3 receptor is selectively located in certain cell types, which possess a precise local function.

  4. MicroRNA-96 inhibits FoxO3a function in IPF fibroblasts on type I collagen matrix

    PubMed Central

    Im, Jintaek; Ho, Yen-Yi; Hergert, Polla

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal and progressive lung disease characterized by persistent (myo)fibroblasts and the relentless accumulation of collagen matrix. Unlike normal lung fibroblasts, IPF lung fibroblasts have suppressed forkhead box O3a (FoxO3a) activity, which allows them to expand in this diseased environment. microRNA-96 (miR-96) has recently been found to directly bind to the 3′-untranslated region of FoxO3a mRNA, which subsequently inhibits its function. We examined whether aberrantly low FoxO3a expression is in part due to increased miR-96 levels in IPF fibroblasts on polymerized collagen, thereby causing IPF fibroblasts to maintain their pathological properties. miR-96 expression was upregulated in IPF fibroblasts compared with control fibroblasts when cultured on collagen. In contrast, FoxO3a mRNA levels were reduced in most IPF fibroblasts. However, when miR-96 function was inhibited, FoxO3a mRNA and protein expression were increased, suppressing IPF fibroblast proliferation and promoting their cell death in a dose-dependent fashion. Likewise, FoxO3a and its target proteins p21, p27, and Bim expression was also increased in the presence of a miR-96 inhibitor in IPF fibroblasts. However, when control fibroblasts were treated with miR-96 mimic, FoxO3a, p27, p21, and Bim mRNA and protein levels were decreased. In situ hybridization analysis further revealed the presence of enhanced miR-96 expression in cells within the fibroblastic foci of IPF lung tissue. Our results suggest that when IPF fibroblasts interact with collagen-rich matrix, pathologically altered miR-96 expression inhibits FoxO3a function, causing IPF fibroblasts to maintain their pathological phenotype, which may contribute to the progression of IPF. PMID:25172912

  5. Challenges in the diagnosis and treatment of recurrent non-resolving pneumonia - the case of foreign body aspiration in adult mimicking lung neoplasm.

    PubMed

    Ristić, Lidija; Rančić, Milan; Stanojević, Dragan; Radović, Milan; Ćirić, Zorica

    2014-02-01

    Foreign-body tracheobronchial aspiration in adults is fairly rare, and it is caused mostly by the failure of airway protective mechanisms. The symptoms of this clinical entity can mimic many other respiratory diseases, such as recurrent or non-resolving pneumonia, asthma, lung neoplasm etc. Flexible bronchoscopy was indicated in this situation, both for diagnostic and therapeutic purposes. We are reporting on a case of a fiftythree- year old women with recurrent, non-resolving pneumonia, recurrent hemoptysis, dyspnea, fiver, chest pain and radiological presentation of middle lobe neoplasm caused by aspirated chicken neck bone.

  6. Inflammatory myofibroblastic tumor of the lung in pregnancy mimicking carcinoid tumor.

    PubMed

    Maturu, Venkata Nagarjuna; Bal, Amanjit; Singh, Navneet

    2016-01-01

    Inflammatory myofibroblastic tumors (IMT) are uncommon neoplasms of the lung in adults. They constitute less than 1% of all lung neoplasms and usually present as parenchymal masses. Diagnosis requires a high index of suspicion. They are characterized by spindle-shaped tumor cells (fibroblasts/myofibroblasts) in a background of lymphoplasmacytic infiltrate. About 50% of the tumors harbor an ALK gene rearrangement. They have to be differentiated from inflammatory pseudotumors (IPT), which show increased number of IgG4 plasma cells on immunostaining and are negative for anaplastic lymphoma kinase (ALK) protein. Herein, we present a case of a 28-year old female who presented with hemoptysis and was diagnosed with an IMT of lung in the first trimester of pregnancy. We have not only reviewed the occurrence of IMT during pregnancy but also discuss the management options for IMT during pregnancy. PMID:26933315

  7. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  8. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants

    PubMed Central

    Zong, Jian-Chao; Heaggans, Sarah Y.; Long, Simon Y.; Latimer, Erin M.; Nofs, Sally A.; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D.; Pearson, Virginia R.; Richman, Laura K.

    2015-01-01

    ABSTRACT More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly

  9. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  10. Autophagy is required for IL-2-mediated fibroblast growth

    SciTech Connect

    Kang, Rui; Tang, Daolin; Lotze, Michael T.; Zeh III, Herbert J.

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  11. UNIVERSAL RELATIONSHIP OF TOTAL LUNG DEPOSITION OF PARTICLES IN NORMAL ADULTS WITH PARTICLE SIZE AND BREATHING PATTERN

    EPA Science Inventory

    Particulate matter in the air is known for causing adverse health effects and yet estimating lung deposition dose is difficult because exposure conditions vary widely. We measured total deposition fraction (TDF) of monodisperse aerosols in the size range of 0.04 - 5 micron in dia...

  12. Prostaglandin E₂ increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression.

    PubMed

    Huang, Steven K; Scruggs, Anne M; Donaghy, Jake; McEachin, Richard C; Fisher, Aaron S; Richardson, Bruce C; Peters-Golden, Marc

    2012-09-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E(2) (PGE(2)) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE(2) also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE(2). PGE(2), compared with nontreated controls, increased expression and activity (EC(50)∼10(7) M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE(2) to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE(2), compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC(50)∼3×10(7) M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE(2) increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE(2) decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE(2) biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.

  13. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  14. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  15. Xenobiotic biotransformation in livers and lungs of adult black-tailed deer: comparison with domestic goat and sheep.

    PubMed

    Helferich, W G; Silva, M H; Flueck, W T; Hammock, B D; Shull, L R

    1987-01-01

    1. The capacity of liver and lung tissue of black-tailed dear (Odocoileus hemionus columbianus) to biotransform xenobiotics was compared in vitro to the domestic sheep and goat. Donor animals were all females of varying ages. Tissues from the black-tailed deer were collected in the wild. A variety of biotransformation enzymes were measured in both microsomal and cytosolic fractions. 2. Deer liver was lower in total cytochrome P450 concentration, but mono-oxygenase activities were greater compared to sheep and goat. The opposite was true for the lung. 3. Epoxide hydrolase activities were significantly different in deer vs sheep and goat. 4. In general, both hepatic and pulmonary activities were more similar between sheep and goat than either species compared to the deer, however, the magnitude of the hepatic differences did not exceed 5-fold. 5. Based on these limited results, there is no reason to discredit the sheep or goat as a toxicity testing model for deer.

  16. Cytopathologic observations of the lung of adult newts (Cynops pyrrhogaster) on-board the space shuttle, Columbia, during the Second International Microgravity Laboratory experiments.

    PubMed

    Pfeiffer, C J; Yamashita, M; Izumi-Kurotani, A; Koike, H; Asashima, M

    1995-10-01

    Four adult female Japanese newts, Cynops pyrrhogaster, were carried for 15 days aboard the orbiting space shuttle, Columbia, in July of 1994, as part of the Second International Microgravity Laboratory, IML-2 aquatic animal experiments. These previously fertilized newts, after stimulation with chorionic gonadotropin by a spaceflight adapted injection procedure, deposited numerous eggs for study of early development during weightlessness. The primitive saccular lungs of the two newts which survived the spaceflight revealed by TEM marked pulmonary cytopathologic changes including basal laminar separation, microvillar degeneration, and cytoplasmic granular changes in the primary granulated pneumocytes. Also, intracellular edema in the pulmonary collagenous matrix and vacuolar changes in the ciliated pulmonary lining cell type and in vascular endothelial cells were observed. These changes, triggered by the spaceflight, and not seen in controls also relying on respiration via the skin, may reflect a chronic mild hypoxia as it is known that newts undergoing oviposition are subject to increased oxygen demand.

  17. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs

    PubMed Central

    2013-01-01

    Background Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). Objectives Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. Methods We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. Results We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. Conclusions We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in

  18. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine.

    PubMed

    Fu, Ji-Dong; Srivastava, Deepak

    2015-01-01

    Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.

  19. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform.

    PubMed

    Ying, Li; Zhu, Ziwei; Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  20. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  1. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  2. Limited Lung Function: Impact of Reduced Peak Expiratory Flow on Health Status, Health-Care Utilization, and Expected Survival in Older Adults

    PubMed Central

    Roberts, Melissa H.; Mapel, Douglas W.

    2012-01-01

    The authors examined whether peak expiratory flow (PEF) is a valid measure of health status in older adults. Survey and test data from the 2006 and 2008 cycles of the Health and Retirement Study, a longitudinal study of US adults over age 50 years (with biennial surveys initiated in 1992), were used to develop predicted PEF regression models and to examine relations between low PEF values and other clinical factors. Low PEF (<80% of predicted value) was prevalent among persons with chronic conditions, including frequent pain, obstructive lung disease, heart disease, diabetes, and psychological distress. Persons with higher physical disability scores had substantially higher adjusted odds of having low PEF, on par with those for conditions known to be associated with poor health (cancer, heart disease, and stroke). In a multivariate regression model for difficulty with mobility, PEF remained an independent factor (odds ratio (OR) = 1.69, 95% confidence interval (CI): 1.53, 1.86). Persons with low PEF in 2006 were more likely to be hospitalized (OR = 1.26, 95% CI: 1.10, 1.43) within the subsequent 2 years and to estimate their chances of surviving for 10 or more years at less than 50% (OR = 1.69, 95% CI: 1.24, 2.30). PEF is a valid measure of health status in older persons, and low PEF is an independent predictor of hospitalization and poor subjective mortality assessment. PMID:22759722

  3. Comparison between reference values for FVC, FEV1, and FEV1/FVC ratio in White adults in Brazil and those suggested by the Global Lung Function Initiative 2012*

    PubMed Central

    Pereira, Carlos Alberto de Castro; Duarte, Andrezza Araujo Oliveira; Gimenez, Andrea; Soares, Maria Raquel

    2014-01-01

    OBJECTIVE: To evaluate the spirometry values predicted by the 2012 Global Lung Function Initiative (GLI) equations, which are recommended for international use, in comparison with those obtained for a sample of White adults used for the establishment of reference equations for spirometry in Brazil. METHODS: The sample comprised 270 and 373 healthy males and females, respectively. The mean differences between the values found in this sample and the predicted values calculated from the GLI equations for FVC, FEV1, and VEF1/FVC, as well as their lower limits, were compared by paired t-test. The predicted values by each pair of equations were compared in various combinations of age and height. RESULTS: For the males in our study sample, the values obtained for all of the variables studied were significantly higher than those predicted by the GLI equations (p < 0.01 for all). These differences become more evident in subjects who were shorter in stature and older. For the females in our study sample, only the lower limit of the FEV1/FVC ratio was significantly higher than that predicted by the GLI equation. CONCLUSIONS: The predicted values suggested by the GLI equations for White adults were significantly lower than those used as reference values for males in Brazil. For both genders, the lower limit of the FEV1/FVC ratio is significantly lower than that predicted by the GLI equations. PMID:25210962

  4. Effect of Phenytoin and Age on Gingival Fibroblast Enzymes

    PubMed Central

    Vahabi, Surena; Nazemisalman, Bahareh; Vahid Golpaigani, Mojtaba; Ahmadi, Anahid

    2014-01-01

    Objective: The alteration of cytokine balance is stated to exert greater influence on gingival overgrowth compared to the direct effect of the drug on the regulation of extracellular matrix metabolism. The current study evaluated the effect of phenytoin on the regulation of collagen, lysyl oxidase and elastin in gingival fibroblasts. Materials and Methods: Normal human gingival fibroblasts (HGFs) were obtained from 4 healthy children and 4 adults. Samples were cultured with phenytoin. MTT test was used to evaluate the proliferation and ELISA was performed to determine the level of IL1β and PGE2 production by HGFs. Total RNA of gingival fibroblasts was extracted and RT-PCR was performed on samples. Mann-Whitney U test was used to analyze the data with an alpha error level less than 0.05. Results: There was a significant difference in the expression of elastin between the controls and treated samples in both adult and pediatric groups and also in the lysyl oxidase expression of adult controls and treated adults. No significant difference was found between collagen expression in adults. Conclusion: The significant difference in elastin and lysyl oxidase expression between adult and pediatric samples indicates the significant effect of age on their production. PMID:25628662

  5. Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis

    PubMed Central

    Chen, Bo; Zhang, SuiYang

    2015-01-01

    Lung ultrasonography (LUS) is being increasingly utilized in emergency and critical settings. We performed a systematic review of the current literature to compare the accuracy of LUS and chest radiography (CR) for the diagnosis of adult community-acquired pneumonia (CAP). We searched in Pub Med, EMBASE dealing with both LUS and CR for diagnosis of adult CAP, and conducted a meta-analysis to evaluate the diagnostic accuracy of LUS in comparison with CR. The diagnostic standard that the index test compared was the hospital discharge diagnosis or the result of chest computed tomography scan as a “gold standard”. We calculated pooled sensitivity and specificity using the Mantel-Haenszel method and pooled diagnostic odds ratio using the DerSimonian-Laird method. Five articles met our inclusion criteria and were included in the final analysis. Using hospital discharge diagnosis as reference, LUS had a pooled sensitivity of 0.95 (0.93-0.97) and a specificity of 0.90 (0.86 to 0.94), CR had a pooled sensitivity of 0.77 (0.73 to 0.80) and a specificity of 0.91 (0.87 to 0.94). LUS and CR compared with computed tomography scan in 138 patients in total, the Z statistic of the two summary receiver operating characteristic was 3.093 (P = 0.002), the areas under the curve for LUS and CR were 0.901 and 0.590, respectively. Our study indicates that LUS can help to diagnosis adult CAP by clinicians and the accuracy was better compared with CR using chest computed tomography scan as the gold standard. PMID:26107512

  6. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts

    PubMed Central

    Albrengues, Jean; Bertero, Thomas; Grasset, Eloise; Bonan, Stephanie; Maiel, Majdi; Bourget, Isabelle; Philippe, Claude; Herraiz Serrano, Cecilia; Benamar, Samia; Croce, Olivier; Sanz-Moreno, Victoria; Meneguzzi, Guerrino; Feral, Chloe C.; Cristofari, Gael; Gaggioli, Cedric

    2015-01-01

    Carcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF. Mechanistically, p300-histone acetyltransferase acetylates STAT3, which, in turn, upregulates and activates the DNMT3b DNA methyltransferase. DNMT3b methylates CpG sites of the SHP-1 phosphatase promoter, which abrogates SHP-1 expression, and results in constitutive phosphorylation of JAK1. Sustained JAK1/STAT3 signalling is maintained by DNA methyltransferase DNMT1. Consistently, in human lung and head and neck carcinomas, STAT3 acetylation and phosphorylation are inversely correlated with SHP-1 expression. Combined inhibition of DNMT activities and JAK signalling, in vitro and in vivo, results in long-term reversion of CAF-associated proinvasive activity and restoration of the wild-type fibroblast phenotype. PMID:26667266

  7. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  8. Monoclonal antibodies that demonstrate specificity for several types of human lung cancer.

    PubMed Central

    Cuttitta, F; Rosen, S; Gazdar, A F; Minna, J D

    1981-01-01

    Monoclonal antibodies with selectivity for human lung cancer were produced by immunizing BALB/c mice with an established line of human small cell lung cancer (NCI-H69) and fusing the mouse spleen cells to mouse myeloma line X63-Ag8.653. The resulting hybrid cells were initially screened by immunoautoradiography for production of antibodies that would react with NCI-H69 and another small cell lung cancer line (NCI-H128) but not its autologous B-lymphoblastoid line (NCI-H128BL). Stable monoclonal antibody-producing lines were isolated by repeated cloning. Three independently derived monoclonal antibodies, designated 525A5, 534F8, and 538F12, were found to react with three of the major types of human lung cancer (small cell, adenocarcinoma, and squamous carcinoma). They did not react with bronchioloalveolar and large cell lung cancers, myeloma, lymphomas, leukemias, osteogeneic sarcoma, mesothelioma, hypernephroma, malignant melanoma, simian virus 40-transformed human fetal lung cells, skin fibroblast lines, human B-lymphoblastoid lines, human erythrocytes, and rodent cells. Interestingly, these antibodies also bound to three out of three human neuroblastomas and two out of three breast cancers but failed to react with mouse neuroblastoma and rat pheochromocytoma. The monoclonal antibodies reacted with human small cell lung cancer tumors obtained at autopsy, but had insignificant reactions with normal human lung, liver, spleen, and skeletal muscle. We conclude that monoclonal antibodies have been generated that react with common antigenic determinants expressed on several human lung cancer types, neuroblastoma, and some breast cancers, but are not detectable by our current assays on a variety of other human tumors or normal adult human tissues. Such antibodies are of potential clinical and biological importance. PMID:6270685

  9. High Resolution Computed Tomography Lung Spectrum in Symptomatic Adult HIV-Positive Patients in South-East Asian Nation

    PubMed Central

    Puranik, Swapnil; Madhav, Ramavathu Kumar Venu; KSV, Abhinetri; Sharma, B. B.; Garga, Umesh Chand

    2014-01-01

    Background: Pulmonary infections remain a leading cause of morbidity and mortality and one of the most frequent causes of hospital admission in HIV infected people worldwide. HRCT may be useful in the evaluation of patients with suspected pulmonary disease. The aim of given study was to determine the High Resolution Computed Tomography spectrum of lung parenchymal and interstitial imaging findings in HIV infected patients presented with chest symptoms. Materials and Methods: This study was conducted in a tertiary health care centre, New Delhi, India. The study consisted of 45 patients. A thorough clinical history of all the HIV positive patients presenting with suspicion of pulmonary disease was taken. General physical and respiratory system examination of all patients was done. HRCT scans of the chest were done in all the cases taken in the study. Results: Maximum number of patients was in age group 31-40 years (24 cases). Out of 45 patients included in our study, 32 (71%) were male and 13 (29%) were female. In our series of 45 patients, 62.2% of patients were diagnosed as having pulmonary tuberculosis, followed by bacterial infection in 20% cases and Pneumocystis jiroveci pneumonia (PJP) in 8.9% patients, while 8.9% of the study did not reveal any significant abnormality. Maximum number (22/28) of patients with pulmonary tuberculosis were indentified to have nodular opacities. The most common HRCT finding in bacterial infection was lobar consolidation. The most common HRCT finding in patients with PCP was diffuse ground glass opacities in mosaic pattern of distribution. Conclusion: HRCT is a highly sensitive tool for detecting lung parenchymal and interstitial lesions and allows better characterization of the lesions. HRCT findings should always be correlated with clinical findings, CD4 counts and other available investigations before arriving at a diagnosis or differential diagnosis. PMID:25121043

  10. Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells.

    PubMed

    Badri, Linda; Walker, Natalie M; Ohtsuka, Takashi; Wang, Zhuo; Delmar, Mario; Flint, Andrew; Peters-Golden, Marc; Toews, Galen B; Pinsky, David J; Krebsbach, Paul H; Lama, Vibha N

    2011-10-01

    Multipotent mesenchymal progenitor cells, termed "mesenchymal stem cells" (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung-resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus-labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung.

  11. Characterization of Nontypable Haemophilus influenzae Isolates Recovered from Adult Patients with Underlying Chronic Lung Disease Reveals Genotypic and Phenotypic Traits Associated with Persistent Infection

    PubMed Central

    Garmendia, Junkal; Viadas, Cristina; Calatayud, Laura; Mell, Joshua Chang; Martí-Lliteras, Pau; Euba, Begoña; Llobet, Enrique; Gil, Carmen; Bengoechea, José Antonio; Redfield, Rosemary J.; Liñares, Josefina

    2014-01-01

    Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of

  12. Lung Emergencies

    MedlinePlus

    ... Emergencies Cardiac Emergencies Eye Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at ... should be considered an emergency. Symptoms of sudden lung collapse (pneumothorax) Symptoms of a sudden lung collapse ...

  13. Lung Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Lung Cancer What is Lung Cancer? How Tumors Form The body is made ... button on your keyboard.) Two Major Types of Lung Cancer There are two major types of lung ...

  14. Lung metastases

    MedlinePlus

    Metastases to the lung; Metastatic cancer to the lung ... Metastatic tumors in the lungs are cancers that developed at other places in the body (or other parts of the lungs) and spread through the ...

  15. Interactions of human cytomegalovirus with human fibroblasts.

    PubMed

    Vonka, V; Benyesh-Melnick, M

    1966-01-01

    Vonka, Vladimir (Baylor University College of Medicine, Houston, Tex.), and Matilda Benyesh-Melnick. Interactions of human cytomegalovirus with human fibroblasts. J. Bacteriol. 91:213-220. 1966.-Virus attachment of human cytomegalovirus to human embryo lung fibroblasts was found to be temperature-independent, from 4 to 37 C. Prolonged incubation at 4 C, however, resulted in inactivation of a high proportion of attached virus. Virus penetration seemed to be temperature-dependent, occurring at 37 C but not at 4 C. Detailed studies of the growth curve of the virus were made. Cell-associated virus preceded the appearance of virus in the fluid phase by 2 to 5 days. Complement-fixing antigen could be detected, but only when the cytopathic effect was advanced, and it was demonstrable only in the cell-associated fraction. Under methyl cellulose, decreasing the bicarbonate concentration in the overlay from 0.225 to 0.15% resulted in marked increase in plating efficiency with all strains tested. However, varying the concentration of bicarbonate from 0.3 to 0.15% in fluid medium did not influence the growth of virus.

  16. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  17. Cellular retinol-binding protein-1 is transiently expressed in granulation tissue fibroblasts and differentially expressed in fibroblasts cultured from different organs.

    PubMed Central

    Xu, G.; Redard, M.; Gabbiani, G.; Neuville, P.

    1997-01-01

    We have reported that cellular retinol-binding protein-1 (CRBP-1) is transiently expressed by arterial smooth muscle cells during experimental intimal repair (P. Neuville, A. Geinoz, G. Benzonana, M. Redard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol 1997, 150:509-521). We have examined here the expression of CRBP-1 during wound healing after a full-thickness rat skin wound. CRBP-1 was transiently expressed by a significant proportion of fibroblastic cells including myofibroblasts. Expression started 4 days after wounding, reached a maximum at 12 days, and persisted up to 30 days when a scar was formed. After wound closure, most CRBP-1-containing fibroblastic cells underwent apoptosis. We have further investigated CRBP-1 expression in rat fibroblasts cultured from different organs. CRBP-1 was abundant in lung and heart fibroblasts and was detected in decreasing amounts in muscle, tendon, subcutaneous tissue, and granulation tissue fibroblasts. Dermis fibroblasts contained no detectable levels of CRBP-1. All-trans retinoic acid and transforming growth factor-beta1 inhibited cell proliferation and increased CRBP-1 expression in fibroblastic populations except dermis fibroblasts. We demonstrate that during granulation tissue formation a subpopulation of fibroblastic cells express CRBP-1 de novo. We also demonstrate that CRBP-1 expression by fibroblasts is regulated in vitro by retinoic acid and transforming growth factor-beta1. Our results suggest that CRBP-1 and possibly retinoic acid play a role in the evolution of granulation tissue. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:9403724

  18. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  19. Lung cancer

    SciTech Connect

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer.

  20. Maximal mid-expiratory flow is a surrogate marker of lung clearance index for assessment of adults with bronchiectasis

    PubMed Central

    Guan, Wei-jie; Yuan, Jing-jing; Gao, Yong-hua; Li, Hui-min; Zheng, Jin-ping; Chen, Rong-chang; Zhong, Nan-shan

    2016-01-01

    Little is known about the comparative diagnostic value of lung clearance index (LCI) and maximal mid-expiratory flow (MMEF) in bronchiectasis. We compared the diagnostic performance, correlation and concordance with clinical variables, and changes of LCI and MMEF% predicted during bronchiectasis exacerbations (BEs). Patients with stable bronchiectasis underwent history inquiry, chest high-resolution computed tomography (HRCT), multiple-breath nitrogen wash-out test, spirometry and sputum culture. Patients who experienced BEs underwent these measurements during onset of BEs and 1 week following antibiotics therapy. Sensitivity analyses were performed in mild, moderate and severe bronchiectasis. We recruited 110 bronchiectasis patients between March 2014 and September 2015. LCI demonstrated similar diagnostic value with MMEF% predicted in discriminating moderate-to-severe from mild bronchiectasis. LCI negatively correlated with MMEF% predicted. Both parameters had similar concordance in reflecting clinical characteristics of bronchiectasis and correlated significantly with forced expiratory flow in one second, age, HRCT score, Pseudomonas aeruginosa colonization, cystic bronchiectasis, ventilation heterogeneity and bilateral bronchiectasis. In exacerbation cohort (n = 22), changes in LCI and MMEF% predicted were equally minimal during BEs and following antibiotics therapy. In sensitivity analyses, both parameters had similar diagnostic value and correlation with clinical variables. MMEF% predicted is a surrogate of LCI for assessing bronchiectasis severity. PMID:27339787

  1. Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury

    PubMed Central

    Mongan, Maureen; Tan, Zongqing; Chen, Liang; Peng, Zhimin; Dietsch, Maggie; Su, Bing; Leikauf, George; Xia, Ying

    2008-01-01

    Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury. PMID:18467339

  2. 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells.

    PubMed

    Hashimoto, Yuichiro; Sugiura, Hisatoshi; Togo, Shinsaku; Koarai, Akira; Abe, Kyoko; Yamada, Mitsuhiro; Ichikawa, Tomohiro; Kikuchi, Takashi; Numakura, Tadahisa; Onodera, Katsuhiro; Tanaka, Rie; Sato, Kei; Yanagisawa, Satoru; Okazaki, Tatsuma; Tamada, Tsutomu; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-06-01

    Cellular senescence is reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously showed that 27-hydroxycholesterol (27-OHC) is elevated in the airways of COPD patients compared with those in healthy subjects. The aim of this study was to investigate whether lung fibroblasts of COPD patients are senescent and to determine the effects of 27-OHC on senescence of lung resident cells, including fibroblasts and airway epithelial cells. Localization of senescence-associated proteins and sterol 27-hydroxylase was investigated in the lungs of COPD patients by immunohistochemical staining. To evaluate whether 27-OHC accelerates cellular senescence, lung resident cells were exposed to 27-OHC. Senescence markers and fibroblast-mediated tissue repair were investigated in the 27-OHC-treated cells. Expression of senescence-associated proteins was significantly enhanced in lung fibroblasts of COPD patients. Similarly, expression of sterol 27-hydroxylase was significantly upregulated in lung fibroblasts and alveolar macrophages in these patients. Treatment with the concentration of 27-OHC detected in COPD airways significantly augmented expression of senescence-associated proteins and senescence-associated β-galactosidase activity, and delayed cell growth through the prostaglandin E2-reactive nitrogen species pathway. The 27-OHC-treated fibroblasts impaired tissue repair function. Fibroblasts from lungs of COPD patients showed accelerated senescence and were more susceptible to 27-OHC-induced cellular senescence compared with those of healthy subjects. In conclusion, 27-OHC accelerates cellular senescence in lung resident cells and may play a pivotal role in cellular senescence in COPD. PMID:27036870

  3. CD44 and hyaluronan expression in human cutaneous scar fibroblasts.

    PubMed Central

    Messadi, D. V.; Bertolami, C. N.

    1993-01-01

    Fibrotic disorders of skin and other organs are typically associated with an abnormal accumulation of extracellular matrix. This study focuses on a matrix constituent, hyaluronan-which is known to be altered in fibrotic disorders of skin- and on CD44, a cell adhesion molecule and putative receptor for hyaluronan. Tissue samples were obtained from biopsies of human normal skin, normal cutaneous scar; and hypertrophic cutaneous scar. After culturing, cells were studied by single- and double-labeling immunohistochemistry using the two anti-CD44 monoclonal antibodies, BU-52 and J173, and a biotinylated hyaluronan binding complex probe, b-HABR. Certain cultures were pretreated with Streptomyces hyaluronidase to assess the dependency of CD44 expression on the presence of endogenous hyaluronan. CD44 expression, both in the presence and the absence of exogenous hyaluronan, was quantitated by radioimmunobinding assay. Overall glycosaminoglycan synthesis and identification of hyaluronan were accomplished by precursor incorporation assays and by quantitative cellulose acetate electrophoresis. CD44 was found to be a normal human adult fibroblastic antigen whose expression is markedly increased for hypertrophic scar fibroblasts compared with normal skin fibroblasts. Although hyaluronan was found to be the predominant glycosaminoglycan constituent of the pericellular matrix for these fibroblasts, CD44 attachment to the cell surface is neither mediated by hyaluronan nor is the presence of hyaluronan a prerequisite for CD44 expression. Exogenous hyaluronan induced a decline in measurable CD44 expression for normal skin fibroblasts but not for hypertrophic scar fibroblasts. These observations are compatible with current understanding of the way cells manage the hyaluronan economy of the extracellular matrix and emphasize phenotypic heterogeneities between fibroblasts derived from normal versus scar tissues. Images Figure 1 Figure 4 PMID:8475990

  4. Cell proliferation in vitro modulates fibroblast collagenase activity

    SciTech Connect

    Lindblad, W.J.; Flood, L.

    1986-05-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a /sup 14/C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/..mu..g DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of /sup 3/H-thymidine and /sup 3/H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion.

  5. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1

    PubMed Central

    Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693

  6. Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment

    PubMed Central

    Onofre, Isabel; Mendonça, Nuno; Lopes, Sara; Nobre, Rui; de Melo, Joana Barbosa; Carreira, Isabel Marques; Januário, Cristina; Gonçalves, António Freire; de Almeida, Luis Pereira

    2016-01-01

    Machado Joseph Disease (MJD) is the most frequent autosomal dominantly inherited cerebellar ataxia caused by the over-repetition of a CAG trinucleotide in the ATXN3 gene. This expansion translates into a polyglutamine tract within the ataxin-3 protein that confers a toxic gain-of-function to the mutant protein ataxin-3, contributing to protein misfolding and intracellular accumulation of aggregates and neuronal degeneration. Autophagy impairment has been shown to be one of the mechanisms that contribute for the MJD phenotype. Here we investigated whether this phenotype was present in patient-derived fibroblasts, a common somatic cell type used in the derivation of induced pluripotent stem cells and subsequent differentiation into neurons, for in vitro disease modeling. We generated and studied adult dermal fibroblasts from 5 MJD patients and 4 healthy individuals and we found that early passage MJD fibroblasts exhibited autophagy impairment with an underlying mechanism of decreased autophagosome production. The overexpression of beclin-1 on MJD fibroblasts reverted partially autophagy impairment by increasing the autophagic flux but failed to increase the levels of autophagosome production. Overall, our results provide a well-characterized MJD fibroblast resource for neurodegenerative disease research and contribute for the understanding of mutant ataxin-3 biology and its molecular consequences. PMID:27328712

  7. Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training

    PubMed Central

    Koubaa, Abdessalem; Triki, Moez; Trabelsi, Hajer; Masmoudi, Liwa; Zeghal, Khaled N.; Sahnoun, Zouhair; Hakim, Ahmed

    2015-01-01

    Introduction Pulmonary function is compromised in most smokers. Yet it is unknown whether exercise training improves pulmonary function and aerobic capacity in cigarette and hookah smokers and whether these smokers respond in a similar way as do non-smokers. Aim To evaluate the effects of an interval exercise training program on pulmonary function and aerobic capacity in cigarette and hookah smokers. Methods Twelve cigarette smokers, 10 hookah smokers, and 11 non-smokers participated in our exercise program. All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity (V.O2max). Pulmonary function was measured using spirometry, and maximum aerobic capacity was assessed by maximal exercise testing on a treadmill before the beginning and at the end of the exercise training program. Results As expected, prior to the exercise intervention, the cigarette and hookah smokers had significantly lower pulmonary function than the non-smokers. The 12-week exercise training program did not significantly affect lung function as assessed by spirometry in the non-smoker group. However, it significantly increased both forced expiratory volume in 1 second and peak expiratory flow (PEF) in the cigarette smoker group, and PEF in the hookah smoker group. Our training program had its most notable impact on the cardiopulmonary system of smokers. In the non-smoker and cigarette smoker groups, the training program significantly improved V.O2max (4.4 and 4.7%, respectively), v V.O2max (6.7 and 5.6%, respectively), and the recovery index (7.9 and 10.5%, respectively). Conclusions After 12 weeks of interval training program, the increase of V.O2max and the decrease of recovery index and resting heart rate in the smoking subjects indicated better exercise tolerance. Although the intermittent training program altered pulmonary function only partially, both

  8. Three-dimensional characterization of fibroblast foci in idiopathic pulmonary fibrosis

    PubMed Central

    Jones, Mark G.; Fabre, Aurélie; Schneider, Philipp; Cinetto, Francesco; Sgalla, Giacomo; Jogai, Sanjay; Alzetani, Aiman; Marshall, Ben G.; O’Reilly, Katherine M.A.; Warner, Jane A.; Lackie, Peter M.; Davies, Donna E.; Hansell, David M.; Nicholson, Andrew G.; Sinclair, Ian; Brown, Kevin K.; Richeldi, Luca

    2016-01-01

    In idiopathic pulmonary fibrosis (IPF), the fibroblast focus is a key histological feature representing active fibroproliferation. On standard 2D pathologic examination, fibroblast foci are considered small, distinct lesions, although they have been proposed to form a highly interconnected reticulum as the leading edge of a “wave” of fibrosis. Here, we characterized fibroblast focus morphology and interrelationships in 3D using an integrated micro-CT and histological methodology. In 3D, fibroblast foci were morphologically complex structures, with large variations in shape and volume (range, 1.3 × 104 to 9.9 × 107 μm3). Within each tissue sample numerous multiform foci were present, ranging from a minimum of 0.9 per mm3 of lung tissue to a maximum of 11.1 per mm3 of lung tissue. Each focus was an independent structure, and no interconnections were observed. Together, our data indicate that in 3D fibroblast foci form a constellation of heterogeneous structures with large variations in shape and volume, suggesting previously unrecognized plasticity. No evidence of interconnectivity was identified, consistent with the concept that foci represent discrete sites of lung injury and repair. PMID:27275013

  9. American Thoracic Society. Medical Section of the American Lung Association: Treatment of tuberculosis and tuberculosis infection in adults and children.

    PubMed

    1986-08-01

    Treatment of tuberculosis: A 6-month regimen consisting of isoniazid, rifampin, and pyrazinamide given for 2 months followed by isoniazid and rifampin for 4 months is effective treatment in patients with fully susceptible organisms who comply with the treatment regimen. It may be advisable to include ethambutol in the initial phase when isoniazid resistance is suspected. A 9-month regimen consisting of isoniazid and rifampin is also highly successful. The need for an additional drug in the initial phase is not certain unless isoniazid resistance is suspected, in which case ethambutol should be included until susceptibility tests have been reported. In the presence of documented resistance to isoniazid, rifampin and ethambutol, perhaps supplemented initially by pyrazinamide, should be given for minimum of 12 months. Children should be treated in essentially the same ways as adults using appropriately adjusted doses of the drugs. However, consideration must be given to the important differences in the approach to management in children. Extrapulmonary tuberculosis should be managed according to the principles and with the drug regimens outlined to pulmonary tuberculosis. The major determinant of the outcome of treatment is patient compliance. Careful attention should be paid to measures designed to foster compliance and to ensure that patients take the drugs as prescribed. Treatment of tuberculous infection: Preventive therapy with isoniazid given for 6 to 12 months is effective in decreasing the risk of future tuberculosis. (ABSTRACT TRUNCATED AT 250 WORDS)

  10. Lung isolation, one-lung ventilation and hypoxaemia during lung isolation

    PubMed Central

    Purohit, Atul; Bhargava, Suresh; Mangal, Vandana; Parashar, Vinod Kumar

    2015-01-01

    Lung isolation is being used more frequently in both adult and paediatric age groups due to increasing incidence of thoracoscopy and video-assisted thoracoscopic surgery in these patients. Various indications for lung isolation and one-lung ventilation include surgical and non-surgical reasons. Isolation can be achieved by double-lumen endotracheal tubes or bronchial blocker. Different issues arise in prone and semi-prone position. The management of hypoxia with lung isolation is a stepwise drill of adding inhaled oxygen, adding positive end-expiratory pressure to ventilated lung and continuous positive airway pressure to non-ventilated side. PMID:26556920

  11. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis.

    PubMed

    Gregory, Alyssa D; Kliment, Corrine R; Metz, Heather E; Kim, Kyoung-Hee; Kargl, Julia; Agostini, Brittani A; Crum, Lauren T; Oczypok, Elizabeth A; Oury, Tim A; Houghton, A McGarry

    2015-08-01

    IPF is a progressive lung disorder characterized by fibroblast proliferation and myofibroblast differentiation. Although neutrophil accumulation within IPF lungs has been negatively correlated with outcomes, the role played by neutrophils in lung fibrosis remains poorly understood. We have demonstrated previously that NE promotes lung cancer cell proliferation and hypothesized that it may have a similar effect on fibroblasts. In the current study, we show that NE(-/-) mice are protected from asbestos-induced lung fibrosis. NE(-/-) mice displayed reduced fibroblast and myofibroblast content when compared with controls. NE directly both lung fibroblast proliferation and myofibroblast differentiation in vitro, as evidenced by proliferation assays, collagen gel contractility assays, and αSMA induction. Furthermore, αSMA induction occurs in a TGF-β-independent fashion. Treatment of asbestos-recipient mice with ONO-5046, a synthetic NE antagonist, reduced hydroxyproline content. Thus, the current study points to a key role for neutrophils and NE in the progression of lung fibrosis. Lastly, the study lends rationale to use of NE-inhibitory approaches as a novel therapeutic strategy for patients with lung fibrosis.

  12. Epithelial Interactions and Local Engraftment of Lung-Resident Mesenchymal Stem Cells

    PubMed Central

    Badri, Linda; Walker, Natalie M.; Ohtsuka, Takashi; Wang, Zhuo; Delmar, Mario; Flint, Andrew; Peters-Golden, Marc; Toews, Galen B.; Pinsky, David J.; Krebsbach, Paul H.

    2011-01-01

    Multipotent mesenchymal progenitor cells, termed “mesenchymal stem cells” (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung–resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus–labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung. PMID:21378261

  13. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells.

    PubMed

    Vartio, T; Kaelin, H; Vaheri, A

    1978-10-23

    The proteins in cell layers of cultured normal diploid human skin (ES, ER) and lung (WI-38) fibroblasts were compared to those of SV40-transformed human fibroblasts (WI-38/VA-13), human rhabdomyosarcoma (RD) and fibrosarcoma (HT-1080) cells using metabolic amino acid and sugar labeling and surface labeling with tritiated sodium borohydride after oxidation with galactose oxidase. The labeled proteins were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography (fluorography). A transformation-associated decrease in the pericellular glycoprotein fibronectin (subunit molecular weight, 220 000) and in the synthesis of a set of polypeptides in the 130 000--180 000 dalton region was seen. Synthesis of a glycosylated 160 000 dalton polypeptide was markedly reduced. In transformed cells distinct increases of several specific polypeptides was detected in both [35S]methionine and [3H] mannose incorporation experiments but not using the surface labeling method.

  14. A Critical Role for the mTORC2 Pathway in Lung Fibrosis

    PubMed Central

    Chang, Wenteh; Wei, Ke; Ho, Lawrence; Berry, Gerald J.; Jacobs, Susan S.; Chang, Cheryl H.; Rosen, Glenn D.

    2014-01-01

    A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases. PMID:25162417

  15. Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome

    PubMed Central

    Zhang, Su-Bei; Sun, Xin; Wu, Qi; Wu, Jun-Ping; Chen, Huai-Yong

    2016-01-01

    Background: Bronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS. Methods: Suspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance. Results: LPCs were isolated with the surface phenotype of CD31- CD34- CD45- EpCAM+ Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05). Conclusion: The epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS. PMID:27569228

  16. Lung disease

    MedlinePlus

    ... the lungs to take in oxygen and release carbon dioxide. People with this type of lung disorder often ... the lungs to take up oxygen and release carbon dioxide. These diseases may also affect heart function. An ...

  17. Collapsed Lung

    MedlinePlus

    A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...

  18. Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis.

    PubMed

    Pilling, Darrell; Zheng, Zhichao; Vakil, Varsha; Gomer, Richard H

    2014-12-23

    Monocytes leave the blood and enter tissues. In healing wounds and fibrotic lesions, some of the monocytes differentiate into fibroblast-like cells called fibrocytes. In healthy tissues, even though monocytes enter the tissue, for unknown reasons, very few monocytes differentiate into fibrocytes. In this report, we show that fibroblasts from healthy human tissues secrete the neuronal guidance protein Slit2 and that Slit2 inhibits human fibrocyte differentiation. In mice, injections of Slit2 inhibit bleomycin-induced lung fibrosis. In lung tissue from pulmonary fibrosis patients with relatively normal lung function, Slit2 has a widespread distribution whereas, in patients with advanced disease, there is less Slit2 in the fibrotic lesions. These data may explain why fibrocytes are rarely observed in healthy tissues, may suggest that the relative levels of Slit2 present in healthy tissue and at sites of fibrosis may have a significant effect on the decision of monocytes to differentiate into fibrocytes, and may indicate that modulating Slit2 signaling may be useful as a therapeutic for fibrosis.

  19. Exposure to Biomass Smoke Extract Enhances Fibronectin Release from Fibroblasts

    PubMed Central

    Krimmer, David; Ichimaru, Yukikazu; Burgess, Janette; Black, Judith; Oliver, Brian

    2013-01-01

    COPD induced following biomass smoke exposure has been reported to be associated with a more fibrotic phenotype than cigarette smoke induced COPD. This study aimed to investigate if biomass smoke induced extracellular matrix (ECM) protein production from primary human lung fibroblasts in vitro. Primary human lung fibroblasts (n = 5–10) were stimulated in vitro for up to 72 hours with increasing concentrations of biomass smoke extract (BME) or cigarette smoke extract (CSE) prior to being assessed for deposition of ECM proteins, cytokine release, and activation of intracellular signalling molecules. Deposition of the ECM proteins perlecan and fibronectin was upregulated by both CSE (p<0.05) and BME (p<0.05). The release of the neutrophilic chemokine IL-8 was also enhanced by BME. ERK1/2 phosphorylation was significantly upregulated by BME (p<0.05). Chemical inhibition of ERK signalling molecules partially attenuated these effects (p<0.05). Stimulation with endotoxin had no effect. This study demonstrated that BME had similar effects to CSE in vitro and had the capacity to directly induce fibrosis by upregulating production of ECM proteins. The mechanisms by which both biomass and cigarette smoke exposure cause lung damage may be similar. PMID:24386310

  20. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4.

    PubMed

    Somanna, Naveen K; Valente, Anthony J; Krenz, Maike; Fay, William P; Delafontaine, Patrice; Chandrasekar, Bysani

    2016-05-01

    Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling.

  1. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  2. Differential Responses to Steroid Hormones in Fibroblasts From the Vocal Fold, Trachea, and Esophagus

    PubMed Central

    Mukudai, Shigeyuki; Matsuda, Ken Ichi; Nishio, Takeshi; Sugiyama, Yoichiro; Bando, Hideki; Hirota, Ryuichi; Sakaguchi, Hirofumi; Hisa, Yasuo

    2015-01-01

    There is accumulating evidence that fibroblasts are target cells for steroids such as sex hormones and corticoids. The characteristics of fibroblasts vary among tissues and organs. Our aim in this study is to examine differences in responses to steroid hormones among fibroblasts from different cervicothoracic regions. We compared the actions of steroid hormones on cultured fibroblasts from the vocal folds, which are considered to be the primary target of steroid hormones, and the trachea and esophagus in adult male rats. Expression of steroid hormone receptors (androgen receptor, estrogen receptor α, and glucocorticoid receptor) was identified by immunofluorescence histochemistry. Androgen receptor was much more frequently expressed in fibroblasts from the vocal fold than in those from the trachea and esophagus. Cell proliferation analysis showed that administration of testosterone, estradiol, or corticosterone suppressed growth of all 3 types of fibroblasts. However, mRNA expression for extracellular matrix–associated genes, including procollagen I and III and elastin, and hyaluronic acid synthase I was elevated only by addition of testosterone to fibroblasts from the vocal fold. These results indicate that each steroid hormone exerts region-specific effects on cervicothoracic fibroblasts with different properties through binding to specific receptors. PMID:25514085

  3. Analysis of gene expression in fetal and adult cells infected with rubella virus

    SciTech Connect

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-05

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  4. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth.

    PubMed

    Deterding, R R; Jacoby, C R; Shannon, J M

    1996-10-01

    We have shown that pulmonary epithelial growth and differentiation can occur if pulmonary mesenchyme is replaced with a mixture of growth factors [total growth medium (TGM)] that consists of adult rat bronchoalveolar lavage fluid, insulin, epidermal growth factor (EGF), cholera toxin (CT), acidic fibroblast growth factor (aFGF), and fetal bovine serum. In the present study, we have defined the importance of specific components of TGM. Day 14 fetal rat distal lung epithelium, devoid of mesenchyme, was enrobed in growth factor-depleted Matrigel and cultured for 5 days in various soluble factors. We found that deleting aFGF or CT from TGM significantly reduced DNA synthesis. Epithelial proliferation was not significantly different when keratinocyte growth factor (KGF) replaced aFGF in TGM. KGF, however, required the presence of a basal medium containing CT, insulin, and serum for optimal proliferation. We then added specific growth factors to the basal medium and showed that aFGF and KGF were more potent mitogens than EGF, transforming growth factor-alpha, and hepatocyte growth factor. Additionally, basal medium + KGF also allowed progression to a distal alveolar phenotype. We conclude that aFGF and KGF may be important mediators in epithelial-mesenchymal interactions. PMID:8897895

  5. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  6. Key Regulatory Role of Dermal Fibroblasts in Pigmentation as Demonstrated Using a Reconstructed Skin Model: Impact of Photo-Aging

    PubMed Central

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  7. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging.

    PubMed

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  8. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging.

    PubMed

    Duval, Christine; Cohen, Catherine; Chagnoleau, Corinne; Flouret, Virginie; Bourreau, Emilie; Bernerd, Françoise

    2014-01-01

    To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is

  9. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation.

    PubMed

    Pedroza, Mesias; Le, Thuy T; Lewis, Katherine; Karmouty-Quintana, Harry; To, Sarah; George, Anuh T; Blackburn, Michael R; Tweardy, David J; Agarwal, Sandeep K

    2016-01-01

    Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.

  10. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1

    PubMed Central

    2014-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive parenchymal lung disease of unknown aetiology and poor prognosis, characterized by altered tissue repair and fibrosis. The extracellular matrix (ECM) is a critical component in regulating cellular homeostasis and appropriate wound healing. The aim of our study was to determine the expression profile of highlighted ECM proteins in IPF lungs. Methods ECM gene and protein expression was analyzed by cDNA microarrays, rt-PCR, immunohistochemistry and western-blot in lungs from idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), categorized as chronic (cHP) and subacute (saHP), and healthy lung tissue. Primary fibroblast cultures from normal subjects and fibrotic patients were studied to evaluate tenascin-C (TNC) synthesis. Results A total of 20 ECM proteins were upregulated and 6 proteins downregulated in IPF. TNC was almost undetected in normal lungs and significantly upregulated in fibrotic lungs (IPF and cHP) compared to saHP. Furthermore, it was located specifically in the fibroblastic foci areas of the fibrotic lung with a subepithelial gradient pattern. TNC levels were correlated with fibroblastic foci content in cHP lungs. Versican and fibronectin glycoproteins were associated with TNC, mainly in fibroblastic foci of fibrotic lungs. Fibroblasts from IPF patients constitutively synthesized higher levels of TNC than normal fibroblasts. TNC and α-sma was induced by TGF-β1 in both fibrotic and normal fibroblasts. TNC treatment of normal and fibrotic fibroblasts induced a non-significant increased α-sma mRNA. Conclusions The difference in ECM glycoprotein content in interstitial lung diseases could contribute to the development of lung fibrosis. The increase of TNC in interstitial areas of fibrotic activity could play a key role in the altered wound healing. PMID:25064447

  11. Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.

    PubMed

    Wang, Qing-Hua; Peng, Yun; Cai, Xin-Yong; Wan, Meng; Liu, Yu; Wei, Hong

    2015-08-01

    Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.

  12. Semaphorin 4A enhances lung fibrosis through activation of Akt via PlexinD1 receptor.

    PubMed

    Peng, Hai-Ying; Gao, Wei; Chong, Fa-Rong; Liu, Hong-Yan; Zhang, J I

    2015-12-01

    Semaphorin 4A plays a regulatory role in immune function and angiogenesis. However, its specific involvement in controlling lung fibrosis, a process that is closely related to angiogenesis and inflammation is still poorly understood. In the present study, we show that treatment of Sema4A on normal lung fibroblasts induces expression of proteins that contribute to a contractile phenotype, including alpha-smooth muscle actin (alpha-SMA), ezrin, moesin, and paxillin. We confirm that Sema4A enhances the ability of lung fibroblasts to contract collagen gel. Sema4A treatment led to resistance to apoptosis in normal lung fibroblasts. Relative to normal lung fibroblasts, fibroblasts cultured from scars of patients with the fibrotic disease Systemic Sclerosis (SSc) showed elevated Sema4A secretion, enhanced alpha-SMA, ezrin, moesin, and paxillin expression, and high ability to induce collagen gel contraction. Using neutralizing antibody against Sema4A receptor, PlexinD1, we found that endogenous Sema4A signalling in SSc fibroblast was through PlexinD1 receptor. We then identified the signalling mechanism through which Sema4A-PlexinD1 promotes the ability of normal fibroblasts to contract a collagen gel matrix. Western blot analysis showed that Sema4A activated the Akt pathway in lung fibroblasts, and the specific inhibitor of Akt pathway, Akt inhibitor III, blocked the ability of Sema4A to promote the ability of lung fibroblasts to contract a collagen gel matrix. Thus, blocking Sema4APlexinD1- Akt cascades might be beneficial in reducing pulmonary fibrosis.

  13. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis.

    PubMed

    Xiao, Xiao; Senavirathna, Lakmini K; Gou, Xuxu; Huang, Chaoqun; Liang, Yurong; Liu, Lin

    2016-09-01

    The accumulation of fibroblasts/myofibroblasts in fibrotic foci is one of the characteristics of idiopathic pulmonary fibrosis (IPF). Enhancer of zeste homolog 2 (EZH2) is the catalytic component of a multiprotein complex, polycomb repressive complex 2, which is involved in the trimethylation of histone H3 at lysine 27. In this study, we investigated the role and mechanisms of EZH2 in the differentiation of fibroblasts into myofibroblasts. We found that EZH2 was upregulated in the lungs of patients with IPF and in mice with bleomycin-induced lung fibrosis. The upregulation of EZH2 occurred in myofibroblasts. The inhibition of EZH2 by its inhibitor 3-deazaneplanocin A (DZNep) or an shRNA reduced the TGF-β1-induced differentiation of human lung fibroblasts into myofibroblasts, as demonstrated by the expression of the myofibroblast markers α-smooth muscle actin and fibronectin, and contractility. DZNep inhibited Smad2/3 nuclear translocation without affecting Smad2/3 phosphorylation. DZNep treatment attenuated bleomycin-induced pulmonary fibrosis in mice. We conclude that EZH2 induces the differentiation of fibroblasts to myofibroblasts by enhancing Smad2/3 nuclear translocation. PMID:27582065

  14. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  15. DNA synthesis and Fos and Jun protein expression in mitotic and postmitotic WI-38 fibroblasts in vitro.

    PubMed

    Brenneisen, P; Gogol, J; Bayreuther, K

    1994-04-01

    Normal human embryonic lung fibroblasts WI-38 differentiate spontaneously along the cell lineage mitotic fibroblasts (MF) I, II, and III and postmitotic fibroblasts (PMF) IV, V, VI, and VII in the fibroblast stem cell system in vitro, when appropriate methods are applied. The mitotic fibroblasts can be induced to shift to postmitotic fibroblasts by two treatments with mitomycin C (2 x MMC) in a short period of time compared to spontaneous development. Mitotic and postmitotic fibroblast cell types have specific morphological and biochemical properties, e.g., [35S]methionine polypeptide markers in 2D PAGE. Spontaneously arisen and experimentally induced (2 x MMC) PMF have the same morphological and biochemical characteristics. Mitotic fibroblasts have 2n DNA and undergo DNA synthesis for reduplication. Postmitotic cells undergo, on average, two rounds of DNA synthesis for endoreduplication (polyploidization). Spontaneously arisen and experimentally induced postmitotic populations are composed of postmitotic fibroblasts PMF IV, V, and VI with 2n, 4n, and 8n DNA. DNA synthesis of mitotic and postmitotic WI-38 cell populations may be regulated by the expression of Fos and Jun proteins. The Fos level of MFs was higher by a factor of 15-24 and the Jun level of MFs by a factor of 4.2-6.3 than those of spontaneously arisen PMFs. In 2 x MMC-induced PMFs, the Fos level was about 4.4-7.5 times higher and the Jun level 1.7-3.3 times higher than that of spontaneously arisen PMFs. The down-regulation of these two parameters is a normal event in the development of mitotic to postmitotic WI-38 fibroblasts in the fibroblast stem cell system and is not related to cellular aging. PMID:7908266

  16. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  17. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling

    PubMed Central

    Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266

  18. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling.

    PubMed

    Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian

    2016-08-01

    Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266

  19. Distinct fibroblast lineages determine dermal architecture in skin development and repair

    PubMed Central

    Driskell, Ryan R.; Simons, Ben D.; Charalambous, Marika; Ferron, Sacri R.; Herault, Yann; Pavlovic, Guillaume; Ferguson-Smith, Anne C.; Watt, Fiona M.

    2013-01-01

    Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibers of the extracellular matrix (ECM)1. Even within a single tissue fibroblasts exhibit remarkable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle (APM), which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesise the bulk of the fibrillar ECM, and the pre-adipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialisation. Epidermal beta-catenin activation stimulates expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles2-4. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease. PMID:24336287

  20. Lung VITAL: Rationale, design, and baseline characteristics of an ancillary study evaluating the effects of vitamin D and/or marine omega-3 fatty acid supplements on acute exacerbations of chronic respiratory disease, asthma control, pneumonia and lung function in adults.

    PubMed

    Gold, Diane R; Litonjua, Augusto A; Carey, Vincent J; Manson, JoAnn E; Buring, Julie E; Lee, I-Min; Gordon, David; Walter, Joseph; Friedenberg, Georgina; Hankinson, John L; Copeland, Trisha; Luttmann-Gibson, Heike

    2016-03-01

    Laboratory and observational research studies suggest that vitamin D and marine omega-3 fatty acids may reduce risk for pneumonia, acute exacerbations of respiratory diseases including chronic obstructive lung disease (COPD) or asthma, and decline of lung function, but prevention trials with adequate dosing, adequate power, and adequate time to follow-up are lacking. The ongoing Lung VITAL study is taking advantage of a large clinical trial-the VITamin D and OmegA-3 TriaL (VITAL)--to conduct the first major evaluation of the influences of vitamin D and marine omega-3 fatty acid supplementation on pneumonia risk, respiratory exacerbation episodes, asthma control and lung function in adults. VITAL is a 5-year U.S.-wide randomized, double-blind, placebo-controlled, 2 × 2 factorial trial of supplementation with vitamin D3 ([cholecalciferol], 2000 IU/day) and marine omega-3 FA (Omacor® fish oil, eicosapentaenoic acid [EPA]+docosahexaenoic acid [DHA], 1g/day) for primary prevention of CVD and cancer among men and women, at baseline aged ≥50 and ≥55, respectively, with 5107 African Americans. In a subset of 1973 participants from 11 urban U.S. centers, lung function is measured before and two years after randomization. Yearly follow-up questionnaires assess incident pneumonia in the entire randomized population, and exacerbations of respiratory disease, asthma control and dyspnea in a subpopulation of 4314 randomized participants enriched, as shown in presentation of baseline characteristics, for respiratory disease, respiratory symptoms, and history of cigarette smoking. Self-reported pneumonia hospitalization will be confirmed by medical record review, and exacerbations will be confirmed by Center for Medicare and Medicaid Services data review.

  1. Translational control of the fibroblast-extracellular matrix association

    PubMed Central

    Nho, Richard Seonghun; Polunovsky, Vitaly

    2013-01-01

    Pulmonary fibrosis is a severe lung disease characterized by sustained propagation of lung fibroblasts and relentless accumulation of extracellular matrix (ECM). Idiopathic pulmonary fibrosis (IPF) is the most severe chronic form of pulmonary fibrosis and results both in the gradual exchange of normal lung parenchyma with fibrotic tissue and in the irreversible impairment of gas exchange in the lung. Despite the urgency for novel therapies in IPF treatment, there is no effective and proven medical therapy available. Molecular mechanisms underlying IPF pathogenesis include aberrant ECM signaling through the canonical integrin/PI3K/Akt/mTORC1 signal transduction pathway. One important and well-characterized downstream effector of this pathway is the cellular protein synthesis machinery. Here we will review the recent advances in our understanding of the function of ECM and integrin receptor signaling in development of IPF and will present evidence indicating that the dysregulation of the eIF4F-mediated translational apparatus is an important factor in the development and progression of IPF and other fibrotic disorders. We further discuss the perspectives and challenges to curbing this deadly disease by targeting aberrant translation. PMID:26824013

  2. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing.

    PubMed

    Rognoni, Emanuel; Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L; Simons, Ben D; Watt, Fiona M; Driskell, Ryan R

    2016-07-15

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  3. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing

    PubMed Central

    Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L.; Simons, Ben D.

    2016-01-01

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  4. Clinicoradiological Profile of Lower Lung Field Tuberculosis Cases among Young Adult and Elderly People in a Teaching Hospital of Madhya Pradesh, India

    PubMed Central

    Singh, Saurabh Kumar; Tiwari, Kamlesh Kumar

    2015-01-01

    Aim. To study the clinical and radiological features of lower lung field tuberculosis (LLFTB) in relation to the patients of nonlower lung field tuberculosis (non-LLFTB). Material and Methods. All the patients of lower lung field tuberculosis defined by the lesions below an arbitrary line across the hila in their chest X-rays were included in the study. Their sputum for acid fast bacilli, HIV, blood sugar, and other relevant investigations were performed. Results. The total of 2136 cases of pulmonary tuberculosis was studied. Among them 215 (10%) cases of patients were diagnosed as the case of lower lung field tuberculosis. Females (62%) were more commonly affected. Most common clinical feature in non-LLFTB was cough (69%) followed by fever (65%), chest pain (54.7%), and weight loss (54.4%). Chest X-ray showed predominance of right side (60.9%) in cases of LLFTB. The relative risk of having the LLFTB in diabetes patients, HIV seropositive patients, end stage renal disease patients, and patients on corticosteroid therapy was high. Conclusion. Lower lung field tuberculosis is not an uncommon entity. It is more common in diabetes, HIV positive, end stage renal disease, and corticosteroid treated patients. Clinical and radiological features are different from upper lobe tuberculosis patients. PMID:26379713

  5. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    PubMed

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088). PMID:27599529

  6. Lung transplant

    MedlinePlus

    Solid organ transplant - lung ... the new lung Have severe disease of other organs Cannot reliably take their medicines Are unable to ... medicines Damage to your kidneys, liver, or other organs from anti-rejection medicines Future risk of certain ...

  7. Lung surgery

    MedlinePlus

    ... Pneumonectomy; Lobectomy; Lung biopsy; Thoracoscopy; Video-assisted thoracoscopic surgery; VATS ... You will have general anesthesia before surgery. You will be asleep and unable to feel pain. Two common ways to do surgery on your lungs are thoracotomy and video- ...

  8. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  9. Pediatric lung transplantation: 10 years of experience

    PubMed Central

    Camargo, Priscila C. L. B.; Pato, Eduardo Z. S.; Campos, Silvia V.; Afonso, José E.; Carraro, Rafael M.; Costa, André N.; Teixeira, Ricardo H. O. B.; Samano, Marcos N.; Pêgo-Fernandes, Paulo M.

    2014-01-01

    Lung transplantation is a well-established treatment for advanced lung diseases. In children, the diseases that most commonly lead to the need for a transplantation are cystic fibrosis, pulmonary hypertension, and bronchiolitis. However, the number of pediatric lung transplantations being performed is low compared with the number of transplants performed in the adult age group. The objective of this study was to demonstrate our experience with pediatric lung transplants over a 10-year period in a program initially designed for adults. PMID:24860860

  10. Lung Organogenesis

    PubMed Central

    Warburton, David; El-Hashash, Ahmed; Carraro, Gianni; Tiozzo, Caterina; Sala, Frederic; Rogers, Orquidea; De Langhe, Stijn; Kemp, Paul J.; Riccardi, Daniela; Torday, John; Bellusci, Saverio; Shi, Wei; Lubkin, Sharon R; Jesudason, Edwin

    2011-01-01

    Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the “molecular embryology” of the lung was first comprehensively reviewed, new challenges have emerged—and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits. PMID:20691848

  11. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1.

  12. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1. PMID:9182884

  13. Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine.

    PubMed

    Mukherjee, Subhendu; Ayaub, Ehab A; Murphy, James; Lu, Chao; Kolb, Martin; Ask, Kjetil; Janssen, Luke J

    2015-10-01

    Fibrotic lung disease afflicts millions of people; the central problem is progressive lung destruction and remodeling. We have shown that external growth factors regulate fibroblast function not only through canonical signaling pathways but also through propagation of periodic oscillations in Ca(2+). In this study, we characterized the pharmacological sensitivity of the Ca(2+)oscillations and determined whether a blocker of those oscillations can prevent the progression of fibrosis in vivo. We found Ca(2+) oscillations evoked by exogenously applied transforming growth factor β in normal human fibroblasts were substantially reduced by 1 μM nifedipine or 1 μM verapamil (both L-type blockers), by 2.7 μM mibefradil (a mixed L-/T-type blocker), by 40 μM NiCl2 (selective at this concentration against T-type current), by 30 mM KCl (which partially depolarizes the membrane and thereby fully inactivates T-type current but leaves L-type current intact), or by 1 mM NiCl2 (blocks both L- and T-type currents). In our in vivo study in mice, nifedipine prevented bleomycin-induced fibrotic changes (increased lung stiffness, overexpression of smooth muscle actin, increased extracellular matrix deposition, and increased soluble collagen and hydroxyproline content). Nifedipine had little or no effect on lung inflammation, suggesting its protective effect on lung fibrosis was not due to an antiinflammatory effect but rather was due to altering the profibrotic response to bleomycin. Collectively, these data show that nifedipine disrupts Ca(2+) oscillations in fibroblasts and prevents the impairment of lung function in the bleomycin model of pulmonary fibrosis. Our results provide compelling proof-of-principle that interfering with Ca(2+) signaling may be beneficial against pulmonary fibrosis.

  14. Role of fibroblast growth factor receptors in astrocytic stem cells

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Gonzalez-Perez, Oscar

    2012-01-01

    There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-β) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ. PMID:22347841

  15. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.

    PubMed

    Mendias, Christopher L; Gumucio, Jonathan P; Bakhurin, Konstantin I; Lynch, Evan B; Brooks, Susan V

    2012-04-01

    Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

  16. Ultrastructure of Fanconi anemia fibroblasts.

    PubMed

    Willingale-Theune, J; Schweiger, M; Hirsch-Kauffmann, M; Meek, A E; Paulin-Levasseur, M; Traub, P

    1989-08-01

    Employing indirect immunofluorescence and conventional electron microscopy, gross nuclear aberrations were observed in cultured interphase fibroblasts derived from a patient suffering from Fanconi's anemia (FA). Such aberrations were predominantly expressed in cells at high passages between 28 and 34. The structure of the nuclei appeared compound in nature, often consisting of two to three nuclear fragments connected to each other by thin nuclear bridges containing chromatin and nuclear lamin material. In other cases, the nuclei appeared lobed or budded but the cells did not contain distinct nuclear fragments. Chromatin was conspicuously absent from some nuclear lobes, revealing empty, cage-like structures comprising nuclear lamin material. Micronuclei were often abundant in the perinuclear cytoplasm but in some instances they appeared to be composed of chromatin lacking a delineating nuclear lamin matrix. Residual cytoskeletons examined by whole-mount electron microscopy revealed a network of intermediate filaments (IFs) within FA fibroblasts forming a bridge between the plasma membrane and the nucleus or its major fragments. In addition, there were thinner, 3-4 nm filaments connecting individual IFs with the surface of the nucleus. Micronuclei that were not connected to the main nuclear body, but which were delineated by a distinct lamina and possessed nuclear pores, did not appear to be anchored to the IF network. Multinuclearity, nuclear fragmentation, irregular chromatin distribution and inter-nuclear chromatin/lamin bridges might result from a failure in the redistribution of chromatin to sister nuclei, incomplete cytokinesis and proliferation of nuclear envelope material. These phenomena point to precocious aging of FA fibroblasts and may occur as a consequence of spontaneous damage to the sister chromatids or through the action of DNA-toxic agents.

  17. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands.

    PubMed

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2012-01-01

    In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co

  18. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies.

  19. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  20. Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells.

    PubMed

    Ai, Zongyong; Xiang, Zheng; Li, Yuemin; Liu, Guoku; Wang, Hong; Zheng, Yun; Qiu, Xiaoyan; Zhao, Shumei; Zhu, Xiaoqing; Li, Yanhua; Ji, Weizhi; Li, Tianqing

    2016-01-01

    Non-human primates provide optimal models for the development of stem cell therapies. Although somatic cells have been converted into neural stem/progenitor cells, it is unclear whether telencephalic neuroepithelial stem cells (NESCs) with stable properties can be generated from fibroblasts in primate. Here we report that a combination of transcription factors (Oct4, Sox2, Klf4) with a new culture medium induces rhesus monkey fibroblasts into NESCs, which can develop into miniature neural tube (NT)-like structures at a cell level. Furthermore, single induced NESCs (iNESCs) can generate later-stage 3D-NTs after grown on matrigel in suspension culture. iNESCs express NT cell markers, have a unique gene expression pattern biasing towards telencephalic patterning, and give rise to cortical neurons. Via transplantation, single iNESCs can extensively survive, regenerate myelinated neuron axons and synapse structures in adult monkey striatum and cortex, and differentiate into cortical neurons. Successful transplantation is closely associated with graft regions and grafted cell identities. The ability to generate defined and transplantable iNESCs from primate fibroblasts under a defined condition with predictable fate choices will facilitate disease modeling and cell therapy.

  1. 5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.

    PubMed

    Kuk, Hanna; Hutchenreuther, James; Murphy-Marshman, Hannah; Carter, David; Leask, Andrew

    2015-01-01

    Transforming growth factor (TGF)β acts on fibroblasts to promote the production and remodeling of extracellular matrix (ECM). In adult humans, excessive action of TGFβ is associated with fibrotic disease and fibroproliferative conditions, including gingival hyperplasia. Understanding how the TGFβ1 signals in fibroblasts is therefore likely to result in valuable insights into the fundamental mechanisms underlying fibroproliferative disorders. Previously, we used the TAK1 inhibitor (5Z)-7-Oxozeaenol to show that, in dermal fibroblasts, the non-canonical TAK1 pathway mediates the ability of TGFβ1 to induce genes promoting tissue remodeling and repair. However, the extent to which TAK1 mediates fibroproliferative responses in fibroblasts in response to TGFβ1 remains unclear. Herein, we show that, in gingival fibroblasts, (5Z)-7-Oxozeaenol blocks the ability of TGFβ1 to induce expression of the pro-fibrotic mediator CCN2 (connective tissue growth factor, CTGF) and type I collagen protein. Moreover, genome-wide expression profiling revealed that, in gingival fibroblasts, (5Z)-7-Oxozeaenol reduces the ability of TGFβ1 to induce mRNA expression of essentially all TGFβ1-responsive genes (139/147), including those involved with a hyperproliferative response. Results from microarray analysis were confirmed using real time polymerase chain reaction analysis and a functional cell proliferation assay. Our results are consistent with the hypothesis that TAK1 inhibitors might be useful in treating fibroproliferative disorders, including that in the oral cavity.

  2. Comparison of alveolar and interstitial macrophages in fibroblast stimulation after silica and long or short asbestos

    SciTech Connect

    Adamson, I.Y.R.; Bowden, D.H. )

    1991-03-15

    Pulmonary fibrosis in response to particles has been attributed to secretion of fibroblast growth factors (FGF) by alveolar macrophages (AM). However, since fibrosis is interstitial and is associated with particle retention by interstitial macrophages (IM), the authors have now compared the secretory activity of FGF by rat alveolar (AM) and interstitial macrophages (IM) in response to silica and to long or short asbestos fibers. AM were obtained by broncho-alveolar lavage, and IM by collecting macrophages that migrate from explants of a previously lavaged and perfused lung. Isolated Am and IM from fibrotic lungs, 6 weeks after instilling silica, secreted equal amounts of FGF. Six weeks after giving short asbestos fibers in vivo, lavaged AM secreted FGF in vitro, but there was no change in fibroblast growth and no fibrosis in vivo. After giving long fibers, which reach the interstitium, isolated IM secreted FGF and collagen levels were increased in whole lung. When macrophages were isolated from normal rats and exposed to particles in vitro, Am and IM supernatants contained equal amounts of FGF. The results show that these macrophage populations respond equally to particles with respect to FGF secretion. The fibrotic reaction seen in vivo is likely due to the close proximity to fibroblasts to particle-laden macrophages within the interstitium allowing more efficient transfer of growth factors.

  3. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model.

    PubMed

    Majety, Meher; Pradel, Leon P; Gies, Manuela; Ries, Carola H

    2015-01-01

    In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME.

  4. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  5. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  6. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    PubMed

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and

  7. The actin of muscle and fibroblasts.

    PubMed Central

    Anderson, P J

    1976-01-01

    The isolation and quantification of an 18-residue peptide from the N-terminal region of chicken actin was used to quantify the amount of actin in acetone-dried powders of chicken breast muscle and chicken-embryo fibroblasts. Either isotope dilution or double labelling can be used for peptide quantification. About 17% of the protein of chicken breast muscle was estimated to be actin. However, only 0.25% of the protein of chicken-embryo fibroblasts was determined to be actin by quantification of this peptide. The actin content of fibroblasts may be low or the amino acid sequences of muscle and fibroblast actin may differ in the N-terminal region. The methodology used can be extended to examine whether other regions of muscle actin sequence are present in fibroblasts or other cell types. PMID:938480

  8. DANCE Your Way to Healthier Lungs

    MedlinePlus

    ... Healthier Lungs Font: Aerosol Delivery Oxygen Resources Immunizations Pollution Nutrition Exercise Coming Of Age Older Adults Allergy ... Reduce environmental hazards by Coping with Indoor Air Pollution and by Minimizing the Effects of Outdoor Air ...

  9. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  10. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  11. Lung Diseases

    MedlinePlus

    When you breathe, your lungs take in oxygen from the air and deliver it to the bloodstream. The cells in your body need oxygen to ... you breathe nearly 25,000 times. People with lung disease have difficulty breathing. Millions of people in ...

  12. Lung Cancer

    MedlinePlus

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  13. Tensional homeostasis in single fibroblasts.

    PubMed

    Webster, Kevin D; Ng, Win Pin; Fletcher, Daniel A

    2014-07-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.

  14. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis

    PubMed Central

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  15. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis.

    PubMed

    Warsinske, Hayley C; Wheaton, Amanda K; Kim, Kevin K; Linderman, Jennifer J; Moore, Bethany B; Kirschner, Denise E

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  16. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGES

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  17. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... gases do not move normally across the lung tissues into the blood vessels of the lung. This ...

  18. Collapsed lung (pneumothorax)

    MedlinePlus

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  19. Lung disease - resources

    MedlinePlus

    Resources - lung disease ... The following organizations are good resources for information on lung disease : American Lung Association -- www.lung.org National Heart, Lung, and Blood Institute -- www.nhlbi.nih.gov ...

  20. Curcumin augments lung maturation, preventing neonatal lung injury by inhibiting TGF-β signaling

    PubMed Central

    Sakurai, Reiko; Li, Yishi; Torday, John S.

    2011-01-01

    There is no effective intervention to prevent or treat bronchopulmonary dysplasia (BPD). Curcumin has potent antioxidant and anti-inflammatory properties, and it modulates signaling of peroxisome proliferator-activated receptor-γ (PPARγ), an important molecule in the pathobiology of BPD. However, its role in the prevention of BPD is not known. We determined 1) if curcumin enhances neonatal lung maturation, 2) if curcumin protects against hyperoxia-induced neonatal lung injury, and 3) if this protection is mediated by blocking TGF-β. Embryonic day 19 fetal rat lung fibroblasts were exposed to 21% or 95% O2 for 24 h following 1 h of treatment with curcumin. Curcumin dose dependently accelerated e19 fibroblast differentiation [increased parathyroid hormone-related protein (PTHrP) receptor, PPARγ, and adipocyte differentiation-related protein (ADRP) levels and triolein uptake] and proliferation (increased thymidine incorporation). Pretreatment with curcumin blocked the hyperoxia-induced decrease (PPARγ and ADRP) and increase (α-smooth muscle actin and fibronectin) in markers of lung injury/repair, as well as the activation of TGF-β signaling. In a separate set of experiments, neonatal Sprague-Dawley rat pups were exposed to 21% or 95% O2 for 7 days with or without intraperitoneal administration of curcumin. Analysis for markers of lung injury/repair [PTHrP receptor, PPARγ, ADRP, fibronectin, TGF-β receptor (activin receptor-like kinase 5), and Smad3] and lung morphology (radial alveolar count) demonstrated that curcumin effectively blocks TGF-β activation and hyperoxia-induced lung injury. Therefore, curcumin accelerates lung maturation by stimulating key alveolar epithelial-mesenchymal interactions and prevents hyperoxia-induced neonatal lung injury, possibly by blocking TGF-β activation, suggesting that it is a potential intervention against BPD. PMID:21821729

  1. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  2. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  3. Electrical consequences of cardiac myocyte: fibroblast coupling.

    PubMed

    McArthur, Lisa; Chilton, Lisa; Smith, Godfrey L; Nicklin, Stuart A

    2015-06-01

    Gap junctions are channels which allow electrical signals to propagate through the heart from the sinoatrial node and through the atria, conduction system and onwards to the ventricles, and hence are essential for co-ordinated cardiac contraction. Twelve connexin (Cx) proteins make up one gap junction channel, of which there are three main subtypes in the heart; Cx40, Cx43 and Cx45. In the cardiac myocyte, gap junctions are present mainly at the intercalated discs between neighbouring myocytes, and assist in rapid electrical conduction throughout the ventricular myocardium. Fibroblasts provide the structural skeleton of the myocardium and fibroblast numbers significantly increase in heart disease. Fibroblasts also express connexins and this may facilitate heterocellular electrical coupling between myocytes and fibroblasts in the setting of cardiac disease. Interestingly, cardiac fibroblasts have been demonstrated to increase Cx43 expression in experimental models of myocardial infarction and functional gap junctions between myocytes and fibroblasts have been reported. Therefore, in the setting of heart disease enhanced cardiac myocyte: fibroblast coupling may influence the electrical activity of the myocyte and contribute to arrhythmias.

  4. Different reactivity of primary fibroblasts and endothelial cells towards crystalline silica: A surface radical matter.

    PubMed

    Pozzolini, Marina; Vergani, Laura; Ragazzoni, Milena; Delpiano, Livia; Grasselli, Elena; Voci, Adriana; Giovine, Marco; Scarfì, Sonia

    2016-06-15

    Quartz is a well-known occupational fibrogenic agent able to cause fibrosis and other severe pulmonary diseases such as silicosis and lung cancer. The silicotic pathology owes its severity to the structural and chemo-physical properties of the particles such as shape, size and abundance of surface radicals. In earlier studies, we reported that significant amounts of surface radicals can be generated on crystalline silica by chemical aggression with ascorbic acid (AA), a vitamin naturally abundant in the lung surfactant, and this reaction led to enhanced cytotoxicity and production of inflammatory mediators in a macrophage cell line. However in the lung, other cells acting in the development of silicosis, like fibroblasts and endothelial cells, can come to direct contact with inhaled quartz. We investigated the cytotoxic/pro-inflammatory effects of AA-treated quartz microcrystals (QA) in human primary fibroblasts and endothelial cells as compared to unmodified microcrystals (Q). Our results show that, in fibroblasts, the abundance of surface radicals on quartz microcrystals (Q vs QA) significantly enhanced cell proliferation (with or without co-culture with macrophages), reactive oxygen species (ROS) production, NF-κB nuclear translocation, smooth muscle actin, fibronectin, Bcl-2 and tissue inhibitor of metalloproteinase-1 expression and collagen production. Contrariwise, endothelial cells reacted to the presence of quartz microcrystals independently from the abundance of surface radicals showing similar levels of cytotoxicity, ROS production, cell migration, MCP-1, ICAM-I and fibronectin gene expression when challenged with Q or QA. In conclusion, our in vitro experimental model demonstrates an important and quite unexplored direct contribute of silica surface radicals to fibroblast proliferation and fibrogenic responses. PMID:27381660

  5. Induction of sensitivity of fibroblast cultures to pituitary growth hormone by a thermostable serum factor

    SciTech Connect

    Bulatov, A.A.; Osipova, T.A.; Pankov, Y.A.; Terekhov, S.M.

    1985-05-01

    This paper presents data to show that highly purified pituitary growth hormone (GH) preparations, themselves unable to stimulate DNA biosynthesis in cultures of adult human skin fibroblasts, acquire this ability if the cells are treated simultaneously with a factor present in a thermostable and acid-resistant fraction of rat blood serum. Activity of this factor in rat blood serum has been shown to depend on the pituitary, and to increase after hypophysectomy. Human GH, while not exhibiting activity itself, if added to the medium simultaneously with serum fraction from hypophysectomized rats, stimulated DNA biosynthesis by fibroblasts significantly. The increase in tritium-thymidine incorporation under the influence of the hormone together with the serum fraction amounted to 233%. It is important to not that serum fraction of intact rats of the same age in a concentration of 1% was unable to induce sensitivity of the fibroblasts to human GH.

  6. Sirolimus and Gold Sodium Thiomalate in Treating Patients With Advanced Squamous Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2012-12-13

    Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  7. Towards predicting the lung fibrogenic activity of MWCNT: Key role of endocytosis, kinase receptors and ERK 1/2 signaling.

    PubMed

    Vietti, Giulia; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Yakoub, Yousof; Piret, Jean-Pascal; Marbaix, Etienne; Lison, Dominique; van den Brule, Sybille

    2016-01-01

    Carbon nanotubes (CNT) have been reported to induce lung inflammation and fibrosis in rodents. We investigated the direct and indirect cellular mechanisms mediating the fibrogenic activity of multi-wall (MW) CNT on fibroblasts. We showed that MWCNT indirectly stimulate lung fibroblast (MLg) differentiation, via epithelial cells and macrophages, whereas no direct effect of MWCNT on fibroblast differentiation or collagen production was detected. MWCNT directly stimulated the proliferation of fibroblasts primed with low concentrations of growth factors, such as PDGF, TGF-β or EGF. MWCNT prolonged ERK 1/2 phosphorylation induced by low concentrations of PDGF or TGF-β in fibroblasts. This phenomenon and the proliferative activity of MWCNT on fibroblasts was abrogated by the inhibitors of ERK 1/2, PDGF-, TGF-β- and EGF-receptors. This activity was also reduced by amiloride, an endocytosis inhibitor. Finally, the lung fibrotic response to several MWCNT samples (different in length and diameter) correlated with their in vitro capacity to stimulate the proliferation of fibroblasts and to prolong ERK 1/2 signaling in these cells. Our findings point to a crosstalk between MWCNT, kinase receptors, ERK 1/2 signaling and endocytosis which stimulates the proliferation of fibroblasts. The mechanisms of action identified in this study contribute to predict the fibrogenic potential of MWCNT.

  8. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    PubMed

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  10. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold

    PubMed Central

    Xu, Ruodan; Taskin, Mehmet Berat; Rubert, Marina; Seliktar, Dror; Besenbacher, Flemming; Chen, Menglin

    2015-01-01

    Fibroblasts are ubiquitous cells that constitute the stroma of virtually all tissues and play vital roles in homeostasis. The poor innate healing capacity of fibroblastic tissues is attributed to the scarcity of fibroblasts as collagen-producing cells. In this study, we have developed a functional ECM mimicking scaffold that is capable to supply spatial allocation of stem cells as well as anchorage and storage of growth factors (GFs) to direct stem cells differentiate towards fibroblasts. Electrospun PCL fibers were embedded in a PEG-fibrinogen (PF) hydrogel, which was infiltrated with connective tissue growth factor (CTGF) to form the 3D nanocomposite PFP-C. The human induced pluripotent stem cells derived mesenchymal stem cells (hiPS-MSCs) with an advance in growth over adult MSCs were applied to validate the fibrogenic capacity of the 3D nanocomposite scaffold. The PFP-C scaffold was found not only biocompatible with the hiPS-MSCs, but also presented intriguingly strong fibroblastic commitments, to an extent comparable to the positive control, tissue culture plastic surfaces (TCP) timely refreshed with 100% CTGF. The novel scaffold presented not only biomimetic ECM nanostructures for homing stem cells, but also sufficient cell-approachable bio-signaling cues, which may synergistically facilitate the control of stem cell fates for regenerative therapies. PMID:25684543

  11. DNA damage accumulation and TRF2 degradation in atypical Werner syndrome fibroblasts with LMNA mutations.

    PubMed

    Saha, Bidisha; Zitnik, Galynn; Johnson, Simon; Nguyen, Quyen; Risques, Rosa A; Martin, George M; Oshima, Junko

    2013-01-01

    Segmental progeroid syndromes are groups of disorders with multiple features suggestive of accelerated aging. One subset of adult-onset progeroid syndromes, referred to as atypical Werner syndrome, is caused by mutations in the LMNA gene, which encodes a class of nuclear intermediate filaments, lamin A/C. We previously described rapid telomere attrition and accelerated replicative senescence in cultured fibroblasts overexpressing mutant lamin A. In this study, we investigated the cellular phenotypes associated with accelerated telomere shortening in LMNA mutant primary fibroblasts. In early passage primary fibroblasts with R133L or L140R LMNA mutations, shelterin protein components were already reduced while cells still retained telomere lengths comparable to those of controls. There was a significant inverse correlation between the degree of abnormal nuclear morphology and the level of TRF2, a shelterin subunit, suggesting a potential causal relationship. Stabilization of the telomeres via the introduction of the catalytic subunit of human telomerase, hTERT (human telomerase reverse transcriptase), did not prevent degradation of shelterin components, indicating that reduced TRF2 in LMNA mutants is not mediated by short telomeres. Interestingly, γ-H2AX foci (reflecting double strand DNA damage) in early passage LMNA mutant primary fibroblasts and LMNA mutant hTERT fibroblasts were markedly increased in non-telomeric regions of DNA. Our results raise the possibility that mutant lamin A/C causes global genomic instability with accumulation of non-telomeric DNA damage as an early event, followed by TRF2 degradation and telomere shortening.

  12. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  13. In vitro suppression of fibroblast growth inhibitory lymphokine production by asbestos.

    PubMed Central

    Lemaire, I; Dubois, C

    1983-01-01

    Human peripheral blood mononuclear leucocytes (PBML) stimulated with concanavalin A (Con A) or phytohaemagglutinin (PHA) produced a soluble factor which inhibits lung fibroblast DNA synthesis and growth. Lymphocyte enriched preparations produced significant growth inhibitory activity in the presence of PHA whereas media from adherent mononuclear cells incubated in the presence of the mitogen did not contain similar activity. This fibroblast growth inhibitory factor (FGIF) was non-dialysable, heat stable and resistant to pH 5. FGIF was also resistant to treatment with chymotrypsin and phosphodiesterase but partially sensitive to treatment with trypsin. Interestingly, there was significant suppression of FGIF production by PBML cultured with PHA in the presence of low concentrations of chrysotile asbestos (5-25 micrograms/ml). In this regard, asbestos (25 micrograms/ml) was not cytotoxic for lymphocytes but had a damaging effect on monocytes as evidenced by the release of lactate dehydrogenase (LDH) a cytoplasmic enzyme, in their culture media. These findings indicate that stimulated lymphocytes have the ability to inhibit fibroblast proliferation by releasing FGIF and that asbestos interfere with this process. Thus, while FGIF may regulate the extent of connective tissue proliferation during normal repair process, suppression of its production by asbestos may contribute to excessive fibroblast accumulation and fibrosis. Images Fig. 2 PMID:6872328

  14. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction

    PubMed Central

    Fiore, Vincent F.; Strane, Patrick W.; Bryksin, Anton V.; White, Eric S.; Hagood, James S.

    2015-01-01

    Progressive fibrosis is characterized by excessive deposition of extracellular matrix (ECM), resulting in gross alterations in tissue mechanics. Changes in tissue mechanics can further augment scar deposition through fibroblast mechanotransduction. In idiopathic pulmonary fibrosis, a fatal form of progressive lung fibrosis, previous work has shown that loss of Thy-1 (CD90) expression in fibroblasts correlates with regions of active fibrogenesis, thus representing a pathologically relevant fibroblast subpopulation. We now show that Thy-1 is a regulator of fibroblast rigidity sensing. Thy-1 physically couples to inactive αvβ3 integrins via its RGD-like motif, altering baseline integrin avidity to ECM ligands and also facilitating preadhesion clustering of integrin and membrane rafts via Thy-1’s glycophosphatidylinositol tether. Disruption of Thy-1–αvβ3 coupling altered recruitment of Src family kinases to adhesion complexes and impaired mechanosensitive, force-induced Rho signaling, and rigidity sensing. Loss of Thy-1 was sufficient to induce myofibroblast differentiation in soft ECMs and may represent a physiological mechanism important in wound healing and fibrosis. PMID:26459603

  15. Human fibroblast collagenase: glycosylation and tissue-specific levels of enzyme synthesis.

    PubMed Central

    Wilhelm, S M; Eisen, A Z; Teter, M; Clark, S D; Kronberger, A; Goldberg, G

    1986-01-01

    Human skin fibroblasts secrete collagenase as two proenzyme forms (57 and 52 kDa). The minor (57-kDa) proenzyme form is the result of a partial posttranslational modification of the major (52-kDa) proenzyme through the addition of N-linked complex oligosaccharides. Human endothelial cells as well as fibroblasts from human colon, cornea, gingiva, and lung also secrete collagenase in two forms indistinguishable from those of the skin fibroblast enzyme. In vitro tissue culture studies have shown that the level of constitutive synthesis of this fibroblast-type interstitial collagenase is tissue specific, varies widely, and correlates with the steady-state level of a single collagenase-specific mRNA of 2.5 kilobases. The tumor promoter, phorbol 12-myristate 13-acetate, apparently blocks the control of collagenase synthesis resulting in a similarly high level of collagenase expression (approximately equal to 3-7 micrograms of collagenase per 10(6) cells per 24 hr) in all examined cells. The constitutive level of synthesis of a 28-kDa collagenase inhibitor does not correlate with that of the enzyme. Phorbol 12-myristate 13-acetate stimulates the production of this inhibitor that in turn modulates the activity of collagenase in the conditioned media. As a result, the apparent activity of the enzyme present in the medium does not accurately reflect the rate of its synthesis and secretion. Images PMID:3012533

  16. Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent pathways.

    PubMed

    Tumelty, Kathleen E; Smith, Barbara D; Nugent, Matthew A; Layne, Matthew D

    2014-01-31

    Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal lung disease characterized by the overgrowth, hardening, and scarring of lung tissue. The exact mechanisms of how IPF develops and progresses are unknown. IPF is characterized by extracellular matrix remodeling and accumulation of active TGFβ, which promotes collagen expression and the differentiation of smooth muscle α-actin (SMA)-positive myofibroblasts. Aortic carboxypeptidase-like protein (ACLP) is an extracellular matrix protein secreted by fibroblasts and myofibroblasts and is expressed in fibrotic human lung tissue and in mice with bleomycin-induced fibrosis. Importantly, ACLP knockout mice are significantly protected from bleomycin-induced fibrosis. The goal of this study was to identify the mechanisms of ACLP action on fibroblast differentiation. As primary lung fibroblasts differentiated into myofibroblasts, ACLP expression preceded SMA and collagen expression. Recombinant ACLP induced SMA and collagen expression in mouse and human lung fibroblasts. Knockdown of ACLP slowed the fibroblast-to-myofibroblast transition and partially reverted differentiated myofibroblasts by reducing SMA expression. We hypothesized that ACLP stimulates myofibroblast formation partly through activating TGFβ signaling. Treatment of fibroblasts with recombinant ACLP induced phosphorylation and nuclear translocation of Smad3. This phosphorylation and induction of SMA was dependent on TGFβ receptor binding and kinase activity. ACLP-induced collagen expression was independent of interaction with the TGFβ receptor. These findings indicate that ACLP stimulates the fibroblast-to-myofibroblast transition by promoting SMA expression via TGFβ signaling and promoting collagen expression through a TGFβ receptor-independent pathway. PMID:24344132

  17. Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis).

    PubMed

    Shah, R A; George, A; Singh, M K; Kumar, D; Anand, T; Chauhan, M S; Manik, R S; Palta, P; Singla, S K

    2009-05-01

    Handmade cloning (HMC), a simple, micromanipulation-free cloning technique, has been applied for the production of cloned embryos and offspring in many livestock species. The objective of the present study was to compare the effect of donor cell type on developmental competence of HMC embryos and to explore the possibility of establishing pregnancies using these embryos in buffalo. After technical optimization of the HMC procedure for in vitro development of cloned blastocysts, various donor cells were compared for their developmental efficiency. Using buffalo fetal-, newborn-, adult fibroblasts and cumulus cells, blastocyst production rates obtained from reconstructed embryos were 24.0+/-1.8% (35/145), 33.0+/-8.0% (56/163), 21.0+/-9.3% (29/133) and 49.6+/-1.9% (77/154), respectively. Blastocyst rates were higher (P<0.05) in cumulus cell reconstructed embryos in comparison to those derived from fetal or adult fibroblasts. Pregnancy diagnosis (transrectal ultrasonography) was carried out at Day 40 of gestation. Following transfer of HMC embryos reconstructed using newborn fibroblasts 25% (2/8) buffaloes were pregnant and are at Days 201 and 94 of gestation, whereas after transfer of HMC embryos reconstructed using fetal fibroblasts, 20% (1/5) buffaloes were pregnant and are at Day 73 of gestation. In conclusion, HMC could be a simple and efficient technique for the production of cloned embryos for establishing pregnancies in buffalo.

  18. Pediatric Fibroblastic and Myofibroblastic Tumors: A Pictorial Review.

    PubMed

    Sargar, Kiran M; Sheybani, Elizabeth F; Shenoy, Archana; Aranake-Chrisinger, John; Khanna, Geetika

    2016-01-01

    Pediatric fibroblastic and myofibroblastic tumors are a relatively common group of soft-tissue proliferations that are associated with a wide spectrum of clinical behavior. These tumors have been divided into the following categories on the basis of their biologic behavior: benign (eg, myositis ossificans, myofibroma, fibromatosis colli), intermediate-locally aggressive (eg, lipofibromatosis, desmoid fibroma), intermediate-rarely metastasizing (eg, inflammatory myofibroblastic tumors, infantile fibrosarcoma, low-grade myofibroblastic sarcoma), and malignant (eg, fibromyxoid sarcoma, adult fibrosarcoma). Imaging has a key role in the evaluation of lesion origin, extent, and involvement with adjacent structures, and in the treatment management and postresection surveillance of these tumors. The imaging findings of these tumors are often nonspecific. However, certain imaging features, such as low or intermediate signal intensity on T2-weighted magnetic resonance images and extension along fascial planes, support the diagnosis of a fibroblastic or myofibroblastic tumor. In addition, certain tumors have characteristic imaging findings (eg, multiple subcutaneous or intramuscular lesions in infantile myofibromatosis, plaquelike growth pattern of Gardner fibroma, presence of adipose tissue in lipofibromatosis) or characteristic clinical manifestations (eg, great toe malformations in fibrodysplasia ossificans fibroma, neonatal torticollis in fibromatosis colli) that suggest the correct diagnosis. Knowledge of the syndrome associations of some of these tumors-for example, the association betw