Science.gov

Sample records for adult malaria vectors

  1. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands.

    PubMed

    Zhou, Guofa; Munga, Stephen; Minakawa, Noboru; Githeko, Andrew K; Yan, Guiyun

    2007-07-01

    Information on the spatial relationships between disease vectors and environmental factors is fundamental to vector-borne disease control. Although it is well known that mosquito abundance is associated with the amount of rainfall and thus the number of larval breeding sites, the spatial relationship between larval habitat availability and adult mosquito abundance is not clear. We investigated the impact of environmental heterogeneity and larval habitats on the spatial distribution of Anopheles gambiae s. s. and An. funestus adult mosquitoes, the most important malaria vectors in the highlands of western Kenya. Mosquito sampling was conducted in May, August, and November 2002, and February 2003. Geographic information system layers of larval habitats, land use type, human population distribution, house structure, and hydrologic schemes were overlaid with adult mosquito abundance. Correlography was used to determine the spatial autocorrelation in adult mosquito abundance among houses and the cross-correlation between adult mosquito abundance and environmental factors. Getis' G(i)(*)(d) index was used to define focal adult mosquito abundance clusters. We found a significant autocorrelation in the vector population and a significant cross-correlation between the vector population and larval habitat availability. The threshold distances of both autocorrelation and cross-correlation were significantly varied among seasons. Focal clustering analysis revealed that the adult vector population was concentrated along the Yala River Valley where most larval habitats were found. Regression analysis found that distance of a house to the Yala River, age of the house, elevation, house structure, and tree canopy coverage significantly affected adult mosquito abundance. Our results suggest that vector control targeted at malaria transmission hotspots and supplemented by larval control may be an effective approach for epidemic malaria control in the western Kenya highlands.

  2. [Vector control and malaria control].

    PubMed

    Carnevale, P; Mouchet, J

    1990-01-01

    Vector control is an integral part of malaria control. Limiting parasite transmission vector control must be considered as one of the main preventive measure. Indeed it prevents transmission of Plasmodium from man to vector and from vector to man. But vector control must be adapted to local situation to be efficient and feasible. Targets of vector control can be larval and/or adults stages. In both cases 3 main methods are currently available: physical (source reduction), chemical (insecticides) and biological tolls. Antilarval control is useful only in some particular circumstances (unstable malaria, island, oasis...) Antiadult control is mainly based upon house-spraying while pyrethroid treated bed nets is advocated regarding efficiency, simple technique and cheap price. Vector control measures could seem restricted but can be very efficient if political will is added to a right choice of adapted measures, a good training of involved personal and a large information of the population concerned with vector control.

  3. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.

    PubMed

    Onyango, Shirley A; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M; Kokwaro, Elizabeth; King, Charles H; Mutuku, Francis M

    2013-09-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.

  4. Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito

    PubMed Central

    Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515

  5. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    PubMed

    Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515

  6. Malaria vector species in Colombia - A review

    PubMed Central

    Montoya-Lerma, James; Solarte, Yezid A; Giraldo-Calderón, Gloria Isabel; Quiñones, Martha L; Ruiz-López, Freddy; Wilkerson, Richard C; González, Ranulfo

    2016-01-01

    Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species’ geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species. PMID:21881778

  7. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  8. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  9. Low larval vector survival explains unstable malaria in the western Kenya highlands.

    PubMed

    Koenraadt, C J M; Paaijmans, K P; Schneider, P; Githeko, A K; Takken, W

    2006-08-01

    Several highland areas in eastern Africa have recently suffered from serious malaria epidemics. Some models predict that, in the short term, these areas will experience more epidemics as a result of global warming. However, the various processes underlying these changes are poorly understood. We therefore investigated malaria prevalence, malaria vector densities and malaria vector survival in a highland area in western Kenya, ranging from approximately 1,550-1,650 m altitude. Although only five adult malaria vectors were collected during 180 light traps and 180 resting collections over a 23-month study period, malaria was prevalent among school children (average parasite prevalence: 10%). During an extensive survey of potential larval habitats, we identified only seven habitats containing Anopheles gambiae Giles s.l. larvae. Their limited number and low larval densities suggested that their contribution to the adult vector population was small. Experiments on adult and larval survival showed that at this altitude, adult mosquitoes survived inside local houses, but that larval development was severely retarded: only 2 of 500 A. gambiae s.l. larvae developed to the pupal stage, whereas all other larvae died prior to pupation. At present, high vector densities are unlikely because of unfavourable abiotic conditions in the area. However, temporary favourable conditions, such as during El Niño years, may increase larval vector survival and may lead to malaria epidemics.

  10. A global map of dominant malaria vectors

    PubMed Central

    2012-01-01

    Background Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. Results Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012. PMID:22475528

  11. Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi.

    PubMed

    Sharma, Anil; Dhayal, Devender; Singh, O P; Adak, T; Bhatnagar, Raj K

    2013-10-01

    The midgut of parasite transmitting vector, Anopheles stephensi is a physiologically dynamic ecological niche of resident microbes. The gut resident microbes of anisomorphic and physiologically variable male and female A. stephensi mosquitoes were different (Rani et al., 2009). To understand the possible interaction of gut microbes and mosquito host, we examined the contribution of the microbe community on the fitness of the adult mosquitoes and their ability to permit development of the malaria parasite. A. stephensi mosquitoes were fed with antibiotic to sterilize their gut to study longevity, blood meal digestion, egg laying and maturation capacity, and consequently ability to support malaria parasite development. The sterilization of gut imparted reduction in longevity by a median of 5 days in male and 2 days in female mosquitoes. Similarly, the sterilization also diminished the reproductive potential probably due to increased rate of the resorption of follicles in ovaries coupled with abated blood meal digestion in gut-sterilized females. Additionally, gut sterilization also led to increased susceptibility to oocyst development upon feeding on malaria infected blood. The susceptibility to malaria parasite introduced upon gut sterilization of A. stephensi was restored completely upon re-colonization of gut by native microbes. The information provided in the study provides insights into the role of the gut-resident microbial community in various life events of the mosquito that may be used to develop alternate malaria control strategies, such as paratransgenesis.

  12. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    NASA Astrophysics Data System (ADS)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  13. Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands.

    PubMed

    St Laurent, Brandyce; Cooke, Mary; Krishnankutty, Sindhu M; Asih, Puji; Mueller, John D; Kahindi, Samuel; Ayoma, Elizabeth; Oriango, Robin M; Thumloup, Julie; Drakeley, Chris; Cox, Jonathan; Collins, Frank H; Lobo, Neil F; Stevenson, Jennifer C

    2016-02-01

    The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control. PMID:26787150

  14. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination.

    PubMed

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J W; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-01-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity. PMID:26868185

  15. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    PubMed Central

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-01-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity. PMID:26868185

  16. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination

    NASA Astrophysics Data System (ADS)

    Ren, Zhoupeng; Wang, Duoquan; Ma, Aimin; Hwang, Jimee; Bennett, Adam; Sturrock, Hugh J. W.; Fan, Junfu; Zhang, Wenjie; Yang, Dian; Feng, Xinyu; Xia, Zhigui; Zhou, Xiao-Nong; Wang, Jinfeng

    2016-02-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.

  17. Multigene Phylogenetics Reveals Temporal Diversification of Major African Malaria Vectors

    PubMed Central

    Kamali, Maryam; Marek, Paul E.; Peery, Ashley; Antonio-Nkondjio, Christophe; Ndo, Cyrille; Tu, Zhijian; Simard, Frederic; Sharakhov, Igor V.

    2014-01-01

    The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease. PMID:24705448

  18. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  19. Ecoregional classification of malaria vectors in the neotropics.

    PubMed

    Rubio-Palis, Y; Zimmerman, R H

    1997-09-01

    An ecoregional approach to the classification of malaria in the neotropics region can give health personnel a new prespective on how to manage malaria control programs. We propose an ecoregional classification based on vector distribution and important environmental determinants, including vegetation type, rainfall patterns, mean temperatures, elevation, and geomorphology. The following 5 ecoregions are described: (1) coastal, (2) piedmont, (3) savanna, (4) interior lowland forest, and (5) high valley. Subregional differences are classified when appropriate. Because human activities and extensive changes in land use usually leads to increased human-vector contact and alter local vector distribution and abundance, it is important that these changes be considered in the classification of vector ecoregions. Using this approach, risk areas can be classified as to the presence and potential abundance of particular vectors. Then, in combination with other components of malaria transmission (e.g., migration, cultural practices, living conditions), areas for surveillance and intervention can be prioritized. It is hoped that this forum will be a catalyst for discussion, future research, and the development of ecologically orientated malaria control programs. PMID:9379453

  20. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  1. Spatial association between malaria vector species richness and malaria in Colombia.

    PubMed

    Fuller, Douglas O; Alimi, Temitope; Herrera, Socrates; Beier, John C; Quiñones, Martha L

    2016-06-01

    Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness.

  2. Pyrethroid Resistance in Anopheles gambiae, in Bomi County, Liberia, Compromises Malaria Vector Control

    PubMed Central

    Temu, Emmanuel A.; Maxwell, Caroline; Munyekenye, Godwil; Howard, Annabel F. V.; Munga, Stephen; Avicor, Silas W.; Poupardin, Rodolphe; Jones, Joel J.; Allan, Richard; Kleinschmidt, Immo; Ranson, Hilary

    2012-01-01

    Background Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia. Methods Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance. Results Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed. Conclusion High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors

  3. Ophthalmologic identification of cerebral malaria in adults

    PubMed Central

    Pedrosa, Catarina Areias; Santos, Cristina; Coutinho, Inês; Lisboa, Maria; Teixeira, Susana; Silva, Filomena; Pires, Graça; Prieto, Isabel

    2015-01-01

    Objective: To report the clinical presentation of malarial retinopathy in an adult, emphasizing the importance of this diagnosis for the clinical suspicion and prognosis of cerebral malaria. Methods: A 39-year-old caucasian man presented with hemolytic anemia, thrombocytopenia, acidemia and acute renal failure, developing severe encephalopathy. The diagnosis of Plasmodium falciparum malaria was done and after systemic stabilization, the patient noticed a central scotoma in the left eye. Ophthalmological examination revealed retinal features of malarial retinopathy. Results: At one-month follow-up, the patient had improved his systemic condition and the left eye scotoma had disappeared. Visual acuity was 20/20 in both eyes and on examination almost all lesions had regressed. Conclusion: Malarial retinopathy is a diagnostic factor and a prognosis indicator of severe P. falciparum infection, usually with brain involvement. The knowledge of the ophthalmological features associated with severe malaria, which is more frequent in children but can also occur in adults, becomes imperative in order to reduce the risk of neurologic sequelae and associated mortality.

  4. Larvicidal and repellent activity of Vetiveria zizaniodes (Poaceae) essential oil against the malaria vector Anopheles stephensi (Liston) (Diptera: Culicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Essential oil extracted by steam distillation of Vetiveria zizanioides (L.) Nash (Poaceae) was evaluated for larvicidal and adult repellent activity against the malaria vector Anopheles stephensi (Liston). Median lethal concentrations (LC50) at 24 h post treatment for instars 1-4 were, respectively,...

  5. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination

    PubMed Central

    Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Perkins, T. Alex; Reiner, Robert C.; Tusting, Lucy S.; Sinka, Marianne E.; Moyes, Catherine L.; Eckhoff, Philip A.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.

    2016-01-01

    Background Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Methods and Results Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Conclusions Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. PMID:26822603

  6. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination

    PubMed Central

    2011-01-01

    Background In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. Methods In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. Results Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. Conclusion In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the

  7. Was Anopheles donaldi a vector of malaria in Kuala Lumpur, Malaysia, in the past?

    PubMed

    Reid, J A

    1980-01-01

    Anopheles donaldi Reid, a member of the A. barbirostris species group, is a vector of human filariasis and probably malaria. The discovery of some old specimens of this species, collected in Kuala Lumpur town where it no longer occurs, together with evidence from the literature about past malaria in the town, suggest that donaldi may have played a part in transmitting that malaria.

  8. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae.

    PubMed

    Vizioli, J; Bulet, P; Charlet, M; Lowenberger, C; Blass, C; Müller, H M; Dimopoulos, G; Hoffmann, J; Kafatos, F C; Richman, A

    2000-02-01

    Parasites of the genus Plasmodium are transmitted to mammalian hosts by anopheline mosquitoes. Within the insect vector, parasite growth and development are potentially limited by antimicrobial defence molecules. Here, we describe the isolation of cDNA and genomic clones encoding a cecropin antibacterial peptide from the malaria vector mosquito Anopheles gambiae. The locus was mapped to polytene division 1C of the X chromosome. Cecropin RNA was induced by infection with bacteria and Plasmodium. RNA levels varied in different body parts of the adult mosquito. During development, cecropin expression was limited to the early pupal stage. The peptide was purified from both adult mosquitoes and cell culture supernatants. Anopheles gambiae synthetic cecropins displayed activity against Gram-negative and Gram-positive bacteria, filamentous fungi and yeasts. PMID:10672074

  9. Microbial control of malaria: biological warfare against the parasite and its vector.

    PubMed

    Abdul-Ghani, Rashad; Al-Mekhlafi, Abdulsalam M; Alabsi, Mogeeb S

    2012-02-01

    Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.

  10. Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi.

    PubMed

    François, G; Van Looveren, M; Timperman, G; Chimanuka, B; Aké Assi, L; Holenz, J; Bringmann, G

    1996-11-01

    The larvicidal activity of dionocophylline A, a naphthylisoquinoline alkaloid derived from the tropical vine Triphyophyllum peltatum (Dioncophyllaceae), was investigated against the malaria vector Anopheles stephensi. In direct and indirect inhibition assays it was demonstrated that the younger larval stages were very sensitive towards this natural product, with LC50 values below 1 mg/l. Pronounced effects were observed within 4 h of exposure. Aging larvae, however, were less sensitive, while pupae were totally insensitive to the action of dioncophylline A. The transformations from larvae to pupae and from pupae to adult mosquitoes remained unaffected. Therefore, dioncophylline A can be regarded as a promising specific larvicide.

  11. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    PubMed Central

    2012-01-01

    Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal

  12. Health research ethics in malaria vector trials in Africa

    PubMed Central

    2010-01-01

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks. PMID:21144083

  13. Health research ethics in malaria vector trials in Africa.

    PubMed

    Kilama, Wen L

    2010-12-13

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks.

  14. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    PubMed Central

    Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K.; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area near Bobo-Dioulasso, Burkina Faso. During the first 2 weeks posttreatment, the mixture was as effective as deltamethrin alone and was more effective at killing An. gambiae that carried knockdown resistance (kdr) or insensitive acetylcholinesterase resistance (Ace1R) genes. The mixture seemed to not kill more susceptible genotypes for the kdr or Ace1R alleles. Mixing repellents and organophosphates on bed nets could be used to control insecticide-resistant malaria vectors if residual activity of the mixture is extended and safety is verified. PMID:18976553

  15. MALARIA VECTORS IN SAN JOSÉDEL GUAVIARE, ORINOQUIA, COLOMBIA

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    This study was conducted to determine Anopheles species composition and their natural infectivity by human Plasmodium in 2 localities with the highest malaria transmission in San Jose del Guaviare, Guaviare, Colombia. A total of 1,009 Anopheles mosquitoes were collected using human landing catches during 8 months in 2010. Anopheles darlingi was the most abundant (83.2%) followed by An. albitarsis s.l. (8.6%), Anopheles braziliensis (3.8%), An. oswaldoi s.l. (1%), and An. rangeli (0.3%). Anopheles darlingi showed the highest human biting rate, and it was found naturally infected with Plasmodium vivax VK210 (0.119%) using enzyme-linked immunosorbent assays. All species were collected biting both indoors and outdoors. Anopheles darlingi showed biting activity overnight with an indoor peak between 1200–0100 h. Therefore, we recommend that malaria prevention strategies focus on 1) insecticide-treated nets to reduce human–vector contact when people are most exposed and unprotected; 2) accurate diagnoses; 3) adequate treatment for patients; 4) more timely epidemiological notification; and 5) improved entomological surveillance. PMID:25102591

  16. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-01

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  17. [INSECTICIDE RESISTANCE IN MAJOR MALARIA VECTORS IN UZBEKISTAN].

    PubMed

    Zhakhongirov, Sh M; Saifiev, Sh T; Abidov, Z I

    2016-01-01

    The resistance of Anopheles artemievi to DDT (26.7%) and propoxur (80.0%) was established in the kishlak of Chubat, Bulungursky District, Samarkand Viloyati and that in the kishlak of Rastguzar, Uichinsky District, Namangan Viloyati, was 45.0 and 22.5%, respectively. In the kishlak of Navruz, Kanlikulsky District, Republic of Karakalpakstan, there was reduced propoxur susceptibil- ity (90.0% An. superpictus death); in other human settle- ments, An. artemievi was susceptible--100% death in the use of the test insecticides. An. superpictus proved to be susceptive to 7 test insecticides (other than propoxur). In Uzbekistan, the resistance of An. artemievi was noted only in a small area. Among the major malaria vectors, An. superpictus remained susceptible to pyrethroid insec- ticides.

  18. [INSECTICIDE RESISTANCE IN MAJOR MALARIA VECTORS IN UZBEKISTAN].

    PubMed

    Zhakhongirov, Sh M; Saifiev, Sh T; Abidov, Z I

    2016-01-01

    The resistance of Anopheles artemievi to DDT (26.7%) and propoxur (80.0%) was established in the kishlak of Chubat, Bulungursky District, Samarkand Viloyati and that in the kishlak of Rastguzar, Uichinsky District, Namangan Viloyati, was 45.0 and 22.5%, respectively. In the kishlak of Navruz, Kanlikulsky District, Republic of Karakalpakstan, there was reduced propoxur susceptibil- ity (90.0% An. superpictus death); in other human settle- ments, An. artemievi was susceptible--100% death in the use of the test insecticides. An. superpictus proved to be susceptive to 7 test insecticides (other than propoxur). In Uzbekistan, the resistance of An. artemievi was noted only in a small area. Among the major malaria vectors, An. superpictus remained susceptible to pyrethroid insec- ticides. PMID:27405213

  19. How Effective is Integrated Vector Management Against Malaria and Lymphatic Filariasis Where the Diseases Are Transmitted by the Same Vector?

    PubMed Central

    Stone, Christopher M.; Lindsay, Steve W.; Chitnis, Nakul

    2014-01-01

    Background The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. Methodology/Principal Findings We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Conclusions/Significance Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration

  20. Individual experience affects host choice in malaria vector mosquitoes

    PubMed Central

    2014-01-01

    Background Despite epidemiological importance, few studies have explored whether individual experience and learning could affect the vertebrate host choice of mosquito disease vectors. Here, we investigated whether a first successful blood meal can modulate mosquito preference during a second blood meal. Methods In no-choice situations, females of the mosquito Anopheles coluzzii, one of the primary African malaria vectors, were first allowed to feed on either human, rabbit or guinea pig. Four days later in dual-choice situations, the same mosquitoes were allowed to choose between the two uncommon hosts, rabbit and guinea pig, as a source of blood. ELISA assays were then used to determine which host mosquitoes fed on. Results Our results indicate that, overall, mosquitoes preferred to feed on rabbit over guinea pig and that the nature of the first blood meal had a significant impact on the mosquito host choice during the second blood meal. Compared to mosquitoes that previously fed on guinea pigs or humans, mosquitoes that fed on rabbits were less likely to choose this host species during a second exposition. The decreased preference for rabbit was observed four days after mosquitoes were first exposed to this host, suggesting that the effect lasts at least the duration of a gonotrophic cycle. Furthermore, this effect was observed after only one successful blood meal. Fitness measurements on mosquitoes fed on the three different vertebrate hosts showed that the origin of the blood meal affected mosquito longevity but not fecundity. In particular, human-fed mosquitoes lived longer than guinea pig-fed or rabbit-fed mosquitoes. Conclusions Our study demonstrates that individual experience affects host choice in this mosquito species and might have strong repercussions on biting patterns in natural conditions and hence on malaria transmission. PMID:24885668

  1. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    PubMed Central

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  2. The role of research in molecular entomology in the fight against malaria vectors.

    PubMed

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  3. Genome-Wide Patterns of Gene Expression during Aging in the African Malaria Vector Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; James, Anthony A.; Walker, Edward; Githure, John; Yan, Guiyun

    2010-01-01

    The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae. PMID:20967211

  4. Avoidance behavior to essential oils by Anopheles minimus, a malaria vector in Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excito-repellency tests were used to characterize behavioral responses of laboratory colonized Anopheles minimus, a malaria vector in Thailand, using four essential oils, citronella (Cymbopogom nadus), hairy basil (Ocimum americanum), sweet basil (Ocimum basilicum), vetiver (Vetiveria zizanioides), ...

  5. Using a geographical-information-system-based decision support to enhance malaria vector control in zambia.

    PubMed

    Chanda, Emmanuel; Mukonka, Victor Munyongwe; Mthembu, David; Kamuliwo, Mulakwa; Coetzer, Sarel; Shinondo, Cecilia Jill

    2012-01-01

    Geographic information systems (GISs) with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS) has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control.

  6. Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

    PubMed Central

    Ng'ang'a, Peter N; Shililu, Josephat; Jayasinghe, Gayathri; Kimani, Violet; Kabutha, Charity; Kabuage, Lucy; Kabiru, Ephantus; Githure, John; Mutero, Clifford

    2008-01-01

    Background Malaria transmission in most agricultural ecosystems is complex and hence the need for developing a holistic malaria control strategy with adequate consideration of socio-economic factors driving transmission at community level. A cross-sectional household survey was conducted in an irrigated ecosystem with the aim of investigating vector control practices applied and factors affecting their application both at household and community level. Methods Four villages representing the socio-economic, demographic and geographical diversity within the study area were purposefully selected. A total of 400 households were randomly sampled from the four study villages. Both semi-structured questionnaires and focus group discussions were used to gather both qualitative and quantitative data. Results The results showed that malaria was perceived to be a major public health problem in the area and the role of the vector Anopheles mosquitoes in malaria transmission was generally recognized. More than 80% of respondents were aware of the major breeding sites of the vector. Reported personal protection methods applied to prevent mosquito bites included; use of treated bed nets (57%), untreated bed nets (35%), insecticide coils (21%), traditional methods such as burning of cow dung (8%), insecticide sprays (6%), and use of skin repellents (2%). However, 39% of respondents could not apply some of the known vector control methods due to unaffordability (50.5%), side effects (19.9%), perceived lack of effectiveness (16%), and lack of time to apply (2.6%). Lack of time was the main reason (56.3%) reported for non-application of environmental management practices, such as draining of stagnant water (77%) and clearing of vegetations along water canals (67%). Conclusion The study provides relevant information necessary for the management, prevention and control of malaria in irrigated agro-ecosystems, where vectors of malaria are abundant and disease transmission is stable

  7. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands

    PubMed Central

    2011-01-01

    Background In 2009, Santa Isabel Province in the Solomon Islands embarked on a malaria elimination programme. However, very little is known in the Province about the anopheline fauna, which species are vectors, their bionomics and how they may respond to intensified intervention measures. The purpose of this study was to provide baseline data on the malaria vectors and to ascertain the possibility of successfully eliminating malaria using the existing conventional vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN). Methods Entomological surveys were undertaken during October 2009. To determine species composition and distribution larval surveys were conducted across on the whole island. For malaria transmission studies, adult anophelines were sampled using human landing catches from two villages - one coastal and one inland. Results Five Anopheles species were found on Santa Isabel: Anopheles farauti, Anopheles hinesorum, Anopheles lungae, Anopheles solomonis, and Anopheles nataliae. Anopheles hinesorum was the most widespread species. Anopheles farauti was abundant, but found only on the coast. Anopheles punctulatus and Anopheles koliensis were not found. Anopheles farauti was the only species found biting in the coastal village, it was incriminated as a vector in this study; it fed early in the night but equally so indoors and outdoors, and had a low survival rate. Anopheles solomonis was the main species biting humans in the inland village, it was extremely exophagic, with low survival rates, and readily fed on pigs. Conclusion The disappearance of the two major vectors, An. punctulatus and An. koliensis, from Santa Isabel and the predominance of An. hinesorum, a non-vector species may facilitate malaria elimination measures. Anopheles farauti was identified as the main coastal vector with An. solomonis as a possible inland vector. The behaviour of An. solomonis is novel as it has not been previously found

  8. Toxicological properties of several medicinal plants from the Himalayas (India) against vectors of malaria, filariasis and dengue.

    PubMed

    Alam, M F; Safhi, Mohammed M; Chopra, A K; Dua, V K

    2011-08-01

    The leaves of five plants namely Nyctanthes arbortistis (Oleaceae), Catharanthus roseus (Apocynaceae), Boenininghusenia albiflora (Rutaceae), Valeriana hardwickii (Valerianaceae) and Eupatorium odoratum (Asteraceae) were selected for the first time from the Garhwal region of north west Himalaya to investigation its toxicological properties against mosquito vectors of malaria, filariasis and dengue. In a laboratory study, using different polarity solvents (petroleum ether, chloroform and methanol) were tested against important larvae of malaria, filariasis and dengue vectors in India. It was observed that petroleum ether fraction of all selected plant possess good larvicidal properties than other solvent fraction. The LC(50) values of isolates from Nyctanthes arbortistis (HAR-1), C. roseus (CAT-1), B. albiflora (BOA-1), V. hardwickii (SUG-1) and E. odoratum (EUP-1) against Anopheles stephensi were 185 ppm, 150 ppm, 105 ppm, 225 ppm and 135 ppm, respectively. The results therefore suggest that the fraction code BOA-1 has excellent larvicidal properties and could be incorporated as botanical insecticides against mosquito vectors with high safety to nontarget organisms. The same fraction was tested against adult vectors of malaria, filariasis and dengue, but no mortality was observed.

  9. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation.

    PubMed Central

    Bond, J. Guillermo; Rojas, Julio C.; Arredondo-Jiménez, Juan I.; Quiroz-Martínez, Humberto; Valle, Javier; Williams, Trevor

    2004-01-01

    Insect vector-borne diseases continue to present a major challenge to human health. Understanding the factors that regulate the size of mosquito populations is considered fundamental to the ability to predict disease transmission rates and for vector population control. The mosquito, Anopheles pseudopunctipennis, a vector of Plasmodium spp., breeds in riverside pools containing filamentous algae in Mesoamerica. Breeding pools along 3 km sections of the River Coatan, Chiapas, Mexico were subjected to algal extraction or left as controls in a cross-over trial extending over 2 years. Initial densities of An. pseudopunctipennis larvae were directly proportional to the prevalence of filamentous algae in each breeding site. The extraction of algae brought about a striking decline in the density of An. pseudopunctipennis larvae sustained for about six weeks, and a concurrent reduction in the adult population in both years of the study. Mark-release experiments indicated that dispersal from adjacent untreated areas was unlikely to exert an important influence on the magnitude of mosquito control that we observed. Habitat manipulation by extraction of filamentous algae offers a unique opportunity for sustainable control of this malaria vector. This technique may represent a valuable intervention, complimenting insecticide spraying of households, to minimize Plasmodium transmission rates in Mesoamerica. PMID:15475337

  10. Impact of urban agriculture on malaria vectors in Accra, Ghana.

    PubMed

    Klinkenberg, Eveline; McCall, Pj; Wilson, Michael D; Amerasinghe, Felix P; Donnelly, Martin J

    2008-08-04

    To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2-3 am, indicating that insecticide-treated bednets should be an effective control method.

  11. Ecotope-based entomological surveillance and molecular xenomonitoring of multidrug resistant malaria parasites in anopheles vectors.

    PubMed

    Sorosjinda-Nunthawarasilp, Prapa; Bhumiratana, Adisak

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  12. Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors

    PubMed Central

    2014-01-01

    The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria

  13. Anopheles ziemanni a locally important malaria vector in Ndop health district, north west region of Cameroon

    PubMed Central

    2014-01-01

    Background Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. Methods Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. Results An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). Conclusions An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality. PMID

  14. How the Malaria Vector Anopheles gambiae Adapts to the Use of Insecticide-Treated Nets by African Populations

    PubMed Central

    Ndiath, Mamadou Ousmane; Mazenot, Catherine; Sokhna, Cheikh; Trape, Jean-François

    2014-01-01

    Background Insecticide treated bed nets have been recommended and proven efficient as a measure to protect African populations from malaria mosquito vector Anopheles spp. This study evaluates the consequences of bed nets use on vectors resistance to insecticides, their feeding behavior and malaria transmission in Dielmo village, Senegal, were LLINs were offered to all villagers in July 2008. Methods Adult mosquitoes were collected monthly from January 2006 to December 2011 by human landing catches (HLC) and by pyrethroid spray catches (PCS). A randomly selected sub-sample of 15–20% of An. gambiae s.l. collected each month was used to investigate the molecular forms of the An. gambiae complex, kdr mutations, and Plasmodium falciparum circumsporozoite (CSP) rate. Malaria prevalence and gametocytaemia in Dielmo villagers were measured quarterly. Results Insecticide susceptible mosquitoes (wild kdr genotype) presented a reduced lifespan after LLINs implementation but they rapidly adapted their feeding behavior, becoming more exophageous and zoophilic, and biting earlier during the night. In the meantime, insecticide-resistant specimens (kdr L1014F genotype) increased in frequency in the population, with an unchanged lifespan and feeding behaviour. P. falciparum prevalence and gametocyte rate in villagers decreased dramatically after LLINs deployment. Malaria infection rate tended to zero in susceptible mosquitoes whereas the infection rate increased markedly in the kdr homozygote mosquitoes. Conclusion Dramatic changes in vector populations and their behavior occurred after the deployment of LLINs due to the extraordinary adaptative skills of An. gambiae s. l. mosquitoes. However, despite the increasing proportion of insecticide resistant mosquitoes and their almost exclusive responsibility in malaria transmission, the P. falciparum gametocyte reservoir continued to decrease three years after the deployment of LLINs. PMID:24892677

  15. Modelling the risk of being bitten by malaria vectors in a vector control area in southern Benin, west Africa

    PubMed Central

    2013-01-01

    Background The diversity of malaria vector populations, expressing various resistance and/or behavioural patterns could explain the reduced effectiveness of vector control interventions reported in some African countries. A better understanding of the ecology and distribution of malaria vectors is essential to design more effective and sustainable strategies for malaria control and elimination. Here, we analyzed the spatio-temporal risk of the contact between humans and the sympatric An. funestus and both M and S molecular forms of An. gambiae s.s. in an area of Benin with high coverage of vector control measures with an unprecedented level of resolution. Methods Presence-absence data for the three vectors from 1-year human-landing collections in 19 villages were assessed using binomial mixed-effects models according to vector control measures and environmental covariates derived from field and remote sensing data. After 8-fold cross-validations of the models, predictive maps of the risk of the contact between humans and the sympatric An. funestus and both molecular M and S forms of An. gambiae s.s. were computed. Results Model validations showed that the An. funestus, An. gambiae M form, and S form models provided an excellent (Area Under Curve>0.9), a good (AUC>0.8), and an acceptable (AUC>0.7) level of prediction, respectively. The distribution area of the probability of contact between human and An. funestus largely overlaps that of An. gambiae M form but this latter showed important seasonal variation. An. gambiae S form also showed seasonal variation but with different ecological preferences. Landscape data were useful to discriminate between the species’ distributions. Conclusions These results showed that available remote sensing data could help in predicting the human-vector contact for several species of malaria vectors at a village level scale. The predictive maps showed seasonal and spatial variations in the risk of human-vector contact for all three

  16. Malaria Research

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  17. Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia

    PubMed Central

    Chen, Junhui; Zhong, Zhen; Jian, Jianbo; Amir, Amirah; Cheong, Fei-Wen; Sum, Jia-Siang; Fong, Mun-Yik

    2016-01-01

    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics. PMID:27347683

  18. Participatory Risk Mapping of Malaria Vector Exposure in Northern South America using Environmental and Population Data

    PubMed Central

    Fuller, D.O.; Troyo, A.; Alimi, T.O.; Beier, J.C.

    2014-01-01

    Malaria elimination remains a major public health challenge in many tropical regions, including large areas of northern South America. In this study, we present a new high spatial resolution (90 × 90 m) risk map for Colombia and surrounding areas based on environmental and human population data. The map was created through a participatory multi-criteria decision analysis in which expert opinion was solicited to determine key environmental and population risk factors, different fuzzy functions to standardize risk factor inputs, and variable factor weights to combine risk factors in a geographic information system. The new risk map was compared to a map of malaria cases in which cases were aggregated to the municipio (municipality) level. The relationship between mean municipio risk scores and total cases by muncípio showed a weak correlation. However, the relationship between pixel-level risk scores and vector occurrence points for two dominant vector species, Anopheles albimanus and An. darlingi, was significantly different (p < 0.05) from a random point distribution, as was a pooled point distribution for these two vector species and An. nuneztovari. Thus, we conclude that the new risk map derived based on expert opinion provides an accurate spatial representation of risk of potential vector exposure rather than malaria transmission as shown by the pattern of malaria cases, and therefore it may be used to inform public health authorities as to where vector control measures should be prioritized to limit human-vector contact in future malaria outbreaks. PMID:24976656

  19. The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia.

    PubMed

    Elyazar, Iqbal R F; Sinka, Marianne E; Gething, Peter W; Tarmidzi, Siti N; Surya, Asik; Kusriastuti, Rita; Winarno; Baird, J Kevin; Hay, Simon I; Bangs, Michael J

    2013-01-01

    Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.

  20. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control.

    PubMed

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-01-01

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact. PMID:21179476

  1. Human Antibody Responses to the Anopheles Salivary gSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control

    PubMed Central

    Drame, Papa Makhtar; Poinsignon, Anne; Besnard, Patrick; Cornelie, Sylvie; Le Mire, Jacques; Toto, Jean-Claude; Foumane, Vincent; Dos-Santos, Maria Adelaide; Sembène, Mbacké; Fortes, Filomeno; Simondon, Francois; Carnevale, Pierre; Remoue, Franck

    2010-01-01

    To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact. PMID:21179476

  2. An Assessment of Participatory Integrated Vector Management for Malaria Control in Kenya

    PubMed Central

    Mbogo, Charles; Mwangangi, Joseph; Imbahale, Susan; Kibe, Lydia; Orindi, Benedict; Girma, Melaku; Njui, Annah; Lwande, Wilber; Affognon, Hippolyte; Gichuki, Charity; Mukabana, Wolfgang Richard

    2015-01-01

    Background The World Health Organization (WHO) recommends integrated vector management (IVM) as a strategy to improve and sustain malaria vector control. However, this approach has not been widely adopted. Objectives We comprehensively assessed experiences and findings on IVM in Kenya with a view to sharing lessons that might promote its wider application. Methods The assessment used information from a qualitative external evaluation of two malaria IVM projects implemented between 2006 and 2011 and an analysis of their accumulated entomological and malaria case data. The project sites were Malindi and Nyabondo, located in coastal and western Kenya, respectively. The assessment focused on implementation of five key elements of IVM: integration of vector control methods, evidence-based decision making, intersectoral collaboration, advocacy and social mobilization, and capacity building. Results IVM was more successfully implemented in Malindi than in Nyabondo owing to greater community participation and multistakeholder engagement. There was a significant decline in the proportion of malaria cases among children admitted to Malindi Hospital, from 23.7% in 2006 to 10.47% in 2011 (p < 0.001). However, the projects’ operational research methodology did not allow statistical attribution of the decline in malaria and malaria vectors to specific IVM interventions or other factors. Conclusions Sustaining IVM is likely to require strong participation and support from multiple actors, including community-based groups, non-governmental organizations, international and national research institutes, and various government ministries. A cluster-randomized controlled trial would be essential to quantify the effectiveness and impact of specific IVM interventions, alone or in combination. Citation Mutero CM, Mbogo C, Mwangangi J, Imbahale S, Kibe L, Orindi B, Girma M, Njui A, Lwande W, Affognon H, Gichuki C, Mukabana WR. 2015. An assessment of participatory integrated vector

  3. Insecticide Resistance and Malaria Vector Control: The Importance of Fitness Cost Mechanisms in Determining Economically Optimal Control Trajectories

    PubMed Central

    Brown, Zachary S.; Dickinson, Katherine L.; Kramer, Randall A.

    2014-01-01

    The evolutionary dynamics of insecticide resistance in harmful arthropods has economic implications, not only for the control of agricultural pests (as has been well studied), but also for the control of disease vectors, such as malaria-transmitting Anopheles mosquitoes. Previous economic work on insecticide resistance illustrates the policy relevance of knowing whether insecticide resistance mutations involve fitness costs. Using a theoretical model, this article investigates economically optimal strategies for controlling malaria-transmitting mosquitoes when there is the potential for mosquitoes to evolve resistance to insecticides. Consistent with previous literature, we find that fitness costs are a key element in the computation of economically optimal resistance management strategies. Additionally, our models indicate that different biological mechanisms underlying these fitness costs (e.g., increased adult mortality and/or decreased fecundity) can significantly alter economically optimal resistance management strategies. PMID:23448053

  4. A global bionomic database for the dominant vectors of human malaria

    PubMed Central

    Massey, N. Claire; Garrod, Gala; Wiebe, Antoinette; Henry, Andrew J.; Huang, Zhi; Moyes, Catherine L.; Sinka, Marianne E.

    2016-01-01

    Anopheles mosquitoes were first recognised as the transmitters of human malaria in the late 19th Century and have been subject to a huge amount of research ever since. Yet there is still much that is unknown regarding the ecology, behaviour (collectively ‘bionomics’) and sometimes even the identity of many of the world’s most prominent disease vectors, much less the within-species variation in their bionomics. Whilst malaria elimination remains an ambitious goal, it is becoming increasingly clear that knowledge of vector behaviour is needed to effectively target control measures. A database of bionomics data for the dominant vector species of malaria worldwide has been compiled from published peer-reviewed literature. The data identification and collation processes are described, together with the geo-positioning and quality control methods. This is the only such dataset in existence and provides a valuable resource to researchers and policy makers in this field. PMID:26927852

  5. Melanotic Pathology and Vertical Transmission of the Gut Commensal Elizabethkingia meningoseptica in the Major Malaria Vector Anopheles gambiae

    PubMed Central

    Christophides, Georges K.

    2013-01-01

    Background The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. Results Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival. Conclusion The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies. PMID:24098592

  6. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  7. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    PubMed Central

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  8. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    PubMed

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05) and An. vagus in BPHC (χ2 = 25.3; p = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  9. Vector abundance and behaviour in an area of low malaria endemicity in Bataan, the Philippines.

    PubMed

    Torres, E P; Salazar, N P; Belizario, V Y; Saul, A

    1997-03-01

    The vectorial importance of known and potential vectors in Morong, Bataan, Philippines was assessed based on human and animal baited collections of adult mosquitoes and on larval collections. Anopheles flavirostris, the principal vector in the Philippines, was the most abundant among human landing catches, followed by An. maculatus sensu lato (s.l.). Both showed similar seasonal abundance with a peak during the early drier part of the year, which coincided with the peak in malaria cases. Both An. flavirostris and An. maculatus s.l. fed throughout the night with the broad peak of capture from 00:00 to 04:00 and from 22:00 to 00:00, respectively. The two species had similar parous rates (0.76 and 0.72, respectively) giving an average life span equivalent to four feeding cycles. Neither vector was abundant with average human landing rates on collectors of 0.6 and 0.4 mosquitoes per person per night, respectively over the study period. An. maculatus s.l. showed a stronger preference for outdoor feeding compared to An. flavirostris. An. maculatus s.l. was markedly zoophilic with a biting rate on water buffalo 50 times the human landing rate. An. flavirostris was less zoophilic with a corresponding ratio of 7.5. It was concluded that in this area, An. flavirostris is the principal vector. The combination of localised transmission, late night biting pattern and localised breeding sites of An. flavirostris suggest that the use of bed nets and environmental management are relevant control measures that can be implemented through community participation.

  10. Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America.

    PubMed

    Alimi, Temitope O; Fuller, Douglas O; Quinones, Martha L; Xue, Rui-De; Herrera, Socrates V; Arevalo-Herrera, Myriam; Ulrich, Jill N; Qualls, Whitney A; Beier, John C

    2015-12-23

    With malaria control in Latin America firmly established in most countries and a growing number of these countries in the pre-elimination phase, malaria elimination appears feasible. A review of the literature indicates that malaria elimination in this region will be difficult without locally tailored strategies for vector control, which depend on more research on vector ecology, genetics and behavioural responses to environmental changes, such as those caused by land cover alterations, and human population movements. An essential way to bridge the knowledge gap and improve vector control is through risk mapping. Malaria risk maps based on statistical and knowledge-based modelling can elucidate the links between environmental factors and malaria vectors, explain interactions between environmental changes and vector dynamics, and provide a heuristic to demonstrate how the environment shapes malaria transmission. To increase the utility of risk mapping in guiding vector control activities, definitions of malaria risk for mapping purposes must be standardized. The maps must also possess appropriate scale and resolution in order to become essential tools in integrated vector management (IVM), so that planners can target areas in greatest need of control measures. Fully integrating risk mapping into vector control programmes will make interventions more evidence-based, making malaria elimination more attainable.

  11. [Anopheles gambiae, major malaria vector in Logbessou, a peri-urban area of Douala (Cameroon)].

    PubMed

    Akono, P Ntonga; Tonga, C; Mbida, J A Mbida; Hondt, O E Ngo; Ambene, P Awono; Ndo, C; Magne, G Tamdem; Peka, M F; Ngaha, R; Lehman, L G

    2015-12-01

    An entomological survey was carried out from August to November 2013, in order to determine the vector system of a building site for social housing in a coastal periurban district of Douala (Cameroon). Mosquito larvae were collected and adult endophilic mosquitoes captured on volunteers, for a total sample of 4897 mosquitoes. Morpho-taxonomic techniques alongside molecular techniques enabled the identification of 4 species, all aggressive to humans: Cx. pipiens (22.3%), Ae. albopictus (0.3%), An. coluzzii and An. gambiae (77.4%). The overall average biting rate recorded was 41.73 bites/person/night (b/p/n). An. gambiae s.l. represents 90.82% of this aggressive fauna, followed by Cx. pipiens (8.58%) and Ae. albopictus (0.6%). The detection of CSP showed that An. gambiae was responsible for 100% of P. falciparum transmission. The overall mean Entomological Inoculation Rate (EIR) was 3.94 ib/p/n. Female An. gambiae mortality rates were 14.47%, 82.5% and 100% respectively with DDT, permethrin and deltamethrin. The proliferation of An. gambiae in this area during raining season, at the detriment of An. coluzzii Coetze & Wilkerson and An. melas Theobald known to be major malaria vectors in island and coastal areas of Africa, may owe to the forest that still colonises this coastal peri-urban locality. Residents should therefore make use of deltamethrin based protective measures.

  12. [Anopheles gambiae, major malaria vector in Logbessou, a peri-urban area of Douala (Cameroon)].

    PubMed

    Akono, P Ntonga; Tonga, C; Mbida, J A Mbida; Hondt, O E Ngo; Ambene, P Awono; Ndo, C; Magne, G Tamdem; Peka, M F; Ngaha, R; Lehman, L G

    2015-12-01

    An entomological survey was carried out from August to November 2013, in order to determine the vector system of a building site for social housing in a coastal periurban district of Douala (Cameroon). Mosquito larvae were collected and adult endophilic mosquitoes captured on volunteers, for a total sample of 4897 mosquitoes. Morpho-taxonomic techniques alongside molecular techniques enabled the identification of 4 species, all aggressive to humans: Cx. pipiens (22.3%), Ae. albopictus (0.3%), An. coluzzii and An. gambiae (77.4%). The overall average biting rate recorded was 41.73 bites/person/night (b/p/n). An. gambiae s.l. represents 90.82% of this aggressive fauna, followed by Cx. pipiens (8.58%) and Ae. albopictus (0.6%). The detection of CSP showed that An. gambiae was responsible for 100% of P. falciparum transmission. The overall mean Entomological Inoculation Rate (EIR) was 3.94 ib/p/n. Female An. gambiae mortality rates were 14.47%, 82.5% and 100% respectively with DDT, permethrin and deltamethrin. The proliferation of An. gambiae in this area during raining season, at the detriment of An. coluzzii Coetze & Wilkerson and An. melas Theobald known to be major malaria vectors in island and coastal areas of Africa, may owe to the forest that still colonises this coastal peri-urban locality. Residents should therefore make use of deltamethrin based protective measures. PMID:26419486

  13. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region.

    PubMed

    Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A; Cui, Liwang; Zheng, Bin; Yan, Guiyun

    2016-01-01

    In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission.

  14. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region

    PubMed Central

    Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A.; Cui, Liwang; Zheng, Bin; Yan, Guiyun

    2016-01-01

    In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission. PMID:27171475

  15. Host association and the capacity of sand flies as vectors of lizard malaria in Panama.

    PubMed

    Kimsey, R B

    1992-08-01

    In this paper the capacity of sand flies (Lutzomyia) as vectors of parasites that cause malaria in anoles (Anolis limifrons) in the Zona de Canal, Panama was investigated. Inhabiting all study plots, often in local abundance, L. trinidadensis emerged as the principal candidate sand fly vector; the results of surveys did not suggest a likely mosquito vector. Although L. trinidadensis and infected anoles co-inhabited all plots, their abundances seemed unrelated. No evidence that sand flies parasitized anoles was uncovered. As anole activity patterns in daylight reciprocate with those of sand flies and at night anoles seem to avoid locations that sand flies frequent, anoles may evade sand fly bites altogether. Further, these sand flies occurred in close numerical and ecological association with Thecadactylus rapicauda, a reclusive moist forest gecko, often parasitizing these hosts in large numbers. Thus, sand flies lack capacity as vectors of malaria-causing parasites in central Panamanian anoles. PMID:1356940

  16. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon

    PubMed Central

    2009-01-01

    Background Suitability of environmental conditions determines a species distribution in space and time. Understanding and modelling the ecological niche of mosquito disease vectors can, therefore, be a powerful predictor of the risk of exposure to the pathogens they transmit. In Africa, five anophelines are responsible for over 95% of total malaria transmission. However, detailed knowledge of the geographic distribution and ecological requirements of these species is to date still inadequate. Methods Indoor-resting mosquitoes were sampled from 386 villages covering the full range of ecological settings available in Cameroon, Central Africa. Using a predictive species distribution modeling approach based only on presence records, habitat suitability maps were constructed for the five major malaria vectors Anopheles gambiae, Anopheles funestus, Anopheles arabiensis, Anopheles nili and Anopheles moucheti. The influence of 17 climatic, topographic, and land use variables on mosquito geographic distribution was assessed by multivariate regression and ordination techniques. Results Twenty-four anopheline species were collected, of which 17 are known to transmit malaria in Africa. Ecological Niche Factor Analysis, Habitat Suitability modeling and Canonical Correspondence Analysis revealed marked differences among the five major malaria vector species, both in terms of ecological requirements and niche breadth. Eco-geographical variables (EGVs) related to human activity had the highest impact on habitat suitability for the five major malaria vectors, with areas of low population density being of marginal or unsuitable habitat quality. Sunlight exposure, rainfall, evapo-transpiration, relative humidity, and wind speed were among the most discriminative EGVs separating "forest" from "savanna" species. Conclusions The distribution of major malaria vectors in Cameroon is strongly affected by the impact of humans on the environment, with variables related to proximity to human

  17. Hydrologic modeling to screen potential environmental management methods for malaria vector control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2009-08-01

    This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.

  18. Culex nigripalpus: a natural vector of wild turkey malaria (Plasmodium hermani) in Florida.

    PubMed

    Forrester, D J; Nayar, J K; Foster, G W

    1980-07-01

    Durking 1977 and 1978, more than 21,000 female mosquitoes of 15 species were live-trapped in south Florida where high numbers of wild turkeys (Meleagris gallopavo) are known to harbor malarial infections. By inoculation of mosquito extracts into uninfected domestic poults, the presence of sporozoites of Plasmodium hermani was demonstrated in Culex nigrapalpus. This mosquito, previously shown to be a competent experimental vector, is believed to be the primary natural vector of wild turkey malaria in Florida.

  19. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  20. Malaria vector control at a crossroads: public health entomology and the drive to elimination.

    PubMed

    Mnzava, Abraham P; Macdonald, Michael B; Knox, Tessa B; Temu, Emmanuel A; Shiff, Clive J

    2014-09-01

    Vector control has been at the core of successful malaria control. However, a dearth of field-oriented vector biologists threatens to undermine global reductions in malaria burden. Skilled cadres are needed to manage insecticide resistance, to maintain coverage with current interventions, to develop new paradigms for tackling 'residual' transmission and to target interventions as transmission becomes increasingly heterogeneous. Recognising this human resource crisis, in September 2013, WHO Global Malaria Programme issued guidance for capacity building in entomology and vector control, including recommendations for countries and implementing partners. Ministries were urged to develop long-range strategic plans for building human resources for public health entomology and vector control (including skills in epidemiology, geographic information systems, operational research and programme management) and to set in place the requisite professional posts and career opportunities. Capacity building and national ownership in all partner projects and a clear exit strategy to sustain human and technical resources after project completion were emphasised. Implementing partners were urged to support global and regional efforts to enhance public health entomology capacity. While the challenges inherent in such capacity building are great, so too are the opportunities to establish the next generation of public health entomologists that will enable programmes to continue on the path to malaria elimination.

  1. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    PubMed Central

    2011-01-01

    Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004

  2. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector, Anopheles darlingi

    PubMed Central

    Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.

    2009-01-01

    This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558

  3. Effects of Local Anthropogenic Changes on Potential Malaria Vector Anopheles hyrcanus and West Nile Virus Vector Culex modestus, Camargue, France

    PubMed Central

    Ponçon, Nicolas; Balenghien, Thomas; Toty, Céline; Ferré, Jean Baptiste; Thomas, Cyrille; Dervieux, Alain; L’Ambert, Grégory; Schaffner, Francis; Bardin, Olivier

    2007-01-01

    Using historical data, we highlight the consequences of anthropogenic ecosystem modifications on the abundance of mosquitoes implicated as the current most important potential malaria vector, Anopheles hyrcanus, and the most important West Nile virus (WNV) vector, Culex modestus, in the Camargue region, France. From World War II to 1971, populations of these species increased as rice cultivation expanded in the region in a political context that supported agriculture. They then fell, likely because of decreased cultivation and increased pesticide use to control a rice pest. The species increased again after 2000 with the advent of more targeted pest-management strategies, mainly the results of European regulations decisions. An intertwined influence of political context, environmental constraints, technical improvements, and social factors led to changes in mosquito abundance that had potential consequences on malaria and WNV transmission. These findings suggest that anthropogenic changes should not be underestimated in vectorborne disease recrudescence. PMID:18258028

  4. Use of a mixture statistical model in studying malaria vectors density.

    PubMed

    Boussari, Olayidé; Moiroux, Nicolas; Iwaz, Jean; Djènontin, Armel; Bio-Bangana, Sahabi; Corbel, Vincent; Fonton, Noël; Ecochard, René

    2012-01-01

    Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP) is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with "village" as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%). The NPMP model had a good aptitude to predict the observed values and showed that: i) proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii) water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting. PMID:23185626

  5. Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation

    PubMed Central

    Liu, Kun; Tsujimoto, Hitoshi; Cha, Sung-Jae; Agre, Peter; Rasgon, Jason L.

    2011-01-01

    Altered patterns of malaria endemicity reflect, in part, changes in feeding behavior and climate adaptation of mosquito vectors. Aquaporin (AQP) water channels are found throughout nature and confer high-capacity water flow through cell membranes. The genome of the major malaria vector mosquito Anopheles gambiae contains at least seven putative AQP sequences. Anticipating that transmembrane water movements are important during the life cycle of A. gambiae, we identified and characterized the A. gambiae aquaporin 1 (AgAQP1) protein that is homologous to AQPs known in humans, Drosophila, and sap-sucking insects. When expressed in Xenopus laevis oocytes, AgAQP1 transports water but not glycerol. Similar to mammalian AQPs, water permeation of AgAQP1 is inhibited by HgCl2 and tetraethylammonium, with Tyr185 conferring tetraethylammonium sensitivity. AgAQP1 is more highly expressed in adult female A. gambiae mosquitoes than in males. Expression is high in gut, ovaries, and Malpighian tubules where immunofluorescence microscopy reveals that AgAQP1 resides in stellate cells but not principal cells. AgAQP1 expression is up-regulated in fat body and ovary by blood feeding but not by sugar feeding, and it is reduced by exposure to a dehydrating environment (42% relative humidity). RNA interference reduces AgAQP1 mRNA and protein levels. In a desiccating environment (<20% relative humidity), mosquitoes with reduced AgAQP1 protein survive significantly longer than controls. These studies support a role for AgAQP1 in water homeostasis during blood feeding and humidity adaptation of A. gambiae, a major mosquito vector of human malaria in sub-Saharan Africa. PMID:21444767

  6. Spatial and Temporal Trends in Insecticide Resistance among Malaria Vectors in Chad Highlight the Importance of Continual Monitoring

    PubMed Central

    Foster, Geraldine Marie; Coleman, Michael; Thomsen, Edward; Ranson, Hilary; Yangalbé-Kalnone, Elise; Moundai, Tchomfienet; Demba Kodindo, Israel; Nakebang, Amen; Mahamat, Adoum; Peka, Mallaye; Kerah-Hinzoumbé, Clement

    2016-01-01

    Background A longitudinal Anopheles gambiae s.l. insecticide resistance monitoring programme was established in four sentinel sites in Chad 2008–2010. When this programme ended, only sporadic bioassays were performed in a small number of sites. Methods WHO diagnostic dose assays were used to measure the prevalence of insecticide resistance to 0.1% bendiocarb, 4% DDT, 0.05% deltamethrin, 1% fenitrothion, and 0.75% permethrin in the main malaria vectors at the beginning and end of the malaria transmission season for three years 2008–2010, with subsequent collections in 2011 and 2014. Species and molecular identification of An. gambiae M and S forms and kdr genotyping was performed using PCR-RLFP; circumsporozoite status was assessed using ELISA. Results Between 2008 and 2010, significant changes in insecticide resistance profiles to deltamethrin and permethrin were seen in 2 of the sites. No significant changes were seen in resistance to DDT in any site during the study period. Testing performed after the period of routine monitoring had ended showed dramatic increases to DDT and pyrethroid resistance in 3 sites. No resistance to organophosphate or carbamate insecticides was detected. An. arabiensis was the predominate member of the An. gambiae complex in all 4 sites; adult collections showed temporal variation in species composition in only 1 site. Kdr analysis identified both 1014F and 1014S alleles in An. gambiae S only. Circumsporozoite analysis showed the highest vector infection rates were present in Donia, a site with extensive use of agricultural insecticides. Conclusions During the monitoring gap of four years, significant changes occurred in resistance prevalence in 3 of the 4 sites (p = <0.001), endangering the efficacy of currently implemented malaria control interventions. Significant changes in insecticide resistance profiles and a lack of kdr resistance alleles in adult populations highlight the urgent need for comprehensive entomological

  7. Confirmation of Anopheles varuna in vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus.

    PubMed

    Van Bortel, W; Harbach, R E; Trung, H D; Roelants, P; Backeljau, T; Coosemans, M

    2001-12-01

    Malaria control programs in Southeast Asia are faced with several questions concerning vector behavior and species identification, which need to be answered to consolidate and further improve the results of control practices. The vector system in Southeast Asia is complex because of the number of species potentially involved in malaria transmission. Additionally, the follow-up and evaluation of preventive control measures are hampered by the misidentification of vectors due to overlapping morphological characters of the female mosquitoes. In central Vietnam, control practices are aimed at 2 main species, Anopheles dirus s.l. and Anopheles minimus s.l. These reputed vectors were studied in an area of Binh Thuan Province of south-central Vietnam. Different collection methods were used to capture mosquitoes quarterly during a 1-year period. Mosquitoes were identified in the field and later subjected to detailed morphological examination and polymerase chain reaction-restriction fragment length polymorphism analysis. What was thought to be an unusual morphotype of An. minimus was shown to be Anopheles varuna, and most specimens identified as the former species in the field proved to be the latter species. Very few An. minimus individuals were found during the study period. The population of An. varuna was found to be highly zoophilic, and based on this behavior, it cannot be considered a vector in Vietnam. Because this species was previously being misidentified as An. minimus, a nonvector was mistargeted as a malaria vector in Binh Thuan Province. Anopheles dirus, which was found positive for Plasmodium falciparum circumsporozoite via enzyme-linked immunosorbent assay, is clearly the main vector in this area. Despite the fact that several potential secondary vectors were found during the study, the primary target for vector control in the region should be An. dirus.

  8. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  9. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  10. Malaria transmission after five years of vector control on Bioko Island, Equatorial Guinea

    PubMed Central

    2012-01-01

    extensive malaria control and a generalized reduction in the force of transmission, parasite prevalence and child mortality, foci of very high transmission persist on Bioko Island, particularly in the northwestern Punta Europa area. This area is favorable for anopheline mosquito breeding; human biting rates are high, and the EIRs are among the highest ever recorded. Both vector species collected in the study have a propensity to bite outdoors more frequently than indoors. Despite current vector control efforts mosquito densities remain high in such foci of high malaria transmission. To further reduce transmission, indoor residual spraying (IRS) needs to be supplemented with additional vector control interventions. PMID:23146423

  11. Efficacy of three insect repellents against the malaria vector Anopheles arabiensis.

    PubMed

    Govere, J; Durrheim, D N; Baker, L; Hunt, R; Coetzee, M

    2000-12-01

    Three commercial repellents marketed in South Africa: Bio-Skincare (BSC, oils of coconut, jojoba, rapeseed and vitamin E), Mosiguard towelletes with 0.574 g quwenling (p-menthane-3,8-diol, PMD) and the standard deet (15% diethyl-3-methylbenzamide, Tabard lotion), were compared against a laboratory colony of the mosquito Anopheles arabiensis Patton (Diptera: Culicidae), the predominant malaria vector in South Africa. Human forearms were treated with 1.2 g BSC, 0.8 g PMD towelette or 0.5 g deet and exposed to 200 hungry An. arabiensis females for 1 min, at intervals of 1-6 h post-treatment. Tests were conducted by three adult male volunteers (aged 30-45 years, crossover controlled test design for 3 consecutive days), using their left arm for treatment and right arm for untreated control. Biting rates averaged 39-52 bites/min on untreated arms. All three repellents provided complete protection against An. arabiensis for up to 3-4 h post-application; deet and PMD gave 90-100% protection up to 5-6h, but BSC declined to only 52% protection 6h post-treatment. These results are interpreted to show that all three repellent products give satisfactory levels of personal protection against An. arabiensis for 4-5 h, justifying further evaluation in the field.

  12. [Introduction of Bacillus sphaericus strain-2362 (GRISELESF) for biological control of malaria vectors in Guatemala].

    PubMed

    Blanco Castro, S D; Martínez Arias, A; Cano Velásquez, O R; Tello Granados, R; Mendoza, I

    2000-01-01

    Malaria continues to be an important health problem in a number of countries of Central and South America where it is considered as a highly prevent endemic disease. The objective of this paper is to assess the entomo-epidemiological impact of a pilot program for the biological control of malaria-transmitting vectors, which was implemented in 1998 in Escuintla, Republic of Guatemala. This program was based on the use of 20,000 L of biolarvicide Bacillus sphaericus- strain-2362 (GRISELESF) which was applied in the 46 localities of highest epidemiological risk at a rate of 10 mL/m2 of effective area of breeding. The entomologic effectiveness of this biolarvicide was monitored from the first 72 hours to 4 months after the application. There was a total larval reduction of 94.57 in the maturity stage of the water phase of Anopheles albimanus vector. The epidemiological analysis was carried out by comparing the rate of malaria prevalence (per 1000 pop) during 1997 and 1998. The five treated municipalities showed a statistically significant reduction of 50% (p 0.01). The results obtained in this paper coincided with those reported by comparable studies, so, this allowed us to recommend the use of the biolarvicide Bacillus sphaericus (strain-2362) as part of a comprehensive program of malaria-transmitting vector control in the Republic of Guatemala and other countries of the region.

  13. Newly incriminated anopheline vectors of human malaria parasites in Junin Department, Peru.

    PubMed

    Hayes, J; Calderon, G; Falcon, R; Zambrano, V

    1987-09-01

    Sporozoite data from salivary gland dissections are presented that clearly incriminate Anopheles trinkae, An. pseudopunctipennis, An. sp. near fluminensis, An. oswaldoi, An. nuneztovari and An. rangeli as vectors of malaria parasites in the Rio Ene Valley, a hyperendemic malarious area in Junin Department, eastern Peru. Anopheles trinkae is considered the most important vector based on dissections, abundance and man-vector contact. Other notes are presented on the relative abundance, bionomics and previous records of these species in Peru and in the study sites.

  14. Human Antibody Response to Anopheles gambiae Saliva: An Immuno-Epidemiological Biomarker to Evaluate the Efficacy of Insecticide-Treated Nets in Malaria Vector Control

    PubMed Central

    Drame, Papa M.; Poinsignon, Anne; Besnard, Patrick; Le Mire, Jacques; Dos-Santos, Maria A.; Sow, Cheikh S.; Cornelie, Sylvie; Foumane, Vincent; Toto, Jean-Claude; Sembene, Mbacké; Boulanger, Denis; Simondon, François; Fortes, Filomeno; Carnevale, Pierre; Remoue, Franck

    2010-01-01

    For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to Anopheles saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to An. gambiae saliva were positively associated with the intensity of An. gambiae exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases. PMID:20595489

  15. Remote sensing of anophelines in rice-cropping villages in Mali: Patterns of vector abundance and malaria transmission

    NASA Astrophysics Data System (ADS)

    Diuk Wasser, Maria Ana

    The explosive population growth and widespread urbanization in Africa requires a significant increase in food production. Crop irrigation is therefore expected to increase in the future, although it is often blamed for aggravating the health risk of local communities---by providing habitats suitable for mosquitoes vectors of malaria (Anopheles gambiae s.l. and An. funestus in our study area) and other diseases. An epidemiological paradox sometimes occurs, however, when an increase in vector numbers is accompanied by a reduction of the risk of infection, due to a reduction in mosquito longevity and of their tendency to bite human (vs. animals). The objective of this dissertation was to determine how agricultural patterns mapped using satellite data affected vector densities and malaria transmission parameters in 18 rice-cropping villages in Mali. I used a combination of optical (Landsat ETM+) and synthetic aperture radar (ERS-2 SAR). Using Landsat data, rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). ERS-2 SAR backscatter was correlated with the height and biomass of rice plants and was therefore useful to distinguish among rice growth stages. As in previous studies, the early vegetative stage was associated with higher larval production. SAR was further able to distinguish between agronomic practices linked to high and low-production within those early stages. The landcover maps were integrated with archived data on adult and larval anopheline densities and malaria transmission parameters. The area of several landcovers explained up to 89% of the variability in mosquito numbers. The maximum correlation was obtained when landcover was measured in a 1-km buffer area. Vector density was negatively associated to parity and anthropophilic rates. An. gambiae showed higher vectorial capacity (VC) than An. funestus , with seasonal variations. Peak VC for both species

  16. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector.

    PubMed

    Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier

    2015-11-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

  17. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    PubMed Central

    2009-01-01

    Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282

  18. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management.

  19. Automated innovative diagnostic, data management and communication tool, for improving malaria vector control in endemic settings.

    PubMed

    Vontas, John; Mitsakakis, Konstantinos; Zengerle, Roland; Yewhalaw, Delenasaw; Sikaala, Chadwick Haadezu; Etang, Josiane; Fallani, Matteo; Carman, Bill; Müller, Pie; Chouaïbou, Mouhamadou; Coleman, Marlize; Coleman, Michael

    2016-01-01

    Malaria is a life-threatening disease that caused more than 400,000 deaths in sub-Saharan Africa in 2015. Mass prevention of the disease is best achieved by vector control which heavily relies on the use of insecticides. Monitoring mosquito vector populations is an integral component of control programs and a prerequisite for effective interventions. Several individual methods are used for this task; however, there are obstacles to their uptake, as well as challenges in organizing, interpreting and communicating vector population data. The Horizon 2020 project "DMC-MALVEC" consortium will develop a fully integrated and automated multiplex vector-diagnostic platform (LabDisk) for characterizing mosquito populations in terms of species composition, Plasmodium infections and biochemical insecticide resistance markers. The LabDisk will be interfaced with a Disease Data Management System (DDMS), a custom made data management software which will collate and manage data from routine entomological monitoring activities providing information in a timely fashion based on user needs and in a standardized way. The ResistanceSim, a serious game, a modern ICT platform that uses interactive ways of communicating guidelines and exemplifying good practices of optimal use of interventions in the health sector will also be a key element. The use of the tool will teach operational end users the value of quality data (relevant, timely and accurate) to make informed decisions. The integrated system (LabDisk, DDMS & ResistanceSim) will be evaluated in four malaria endemic countries, representative of the vector control challenges in sub-Saharan Africa, (Cameroon, Ivory Coast, Ethiopia and Zambia), highly representative of malaria settings with different levels of endemicity and vector control challenges, to support informed decision-making in vector control and disease management. PMID:27225553

  20. Malaria

    MedlinePlus

    MENU Return to Web version Malaria Overview What is malaria? Malaria is an infection of a part of the blood called the red blood cells. It is ... by mosquitoes that carry a parasite that causes malaria. If a mosquito carrying this parasite bites you, ...

  1. Fine-scale distribution modeling of avian malaria vectors in north-central Kansas.

    PubMed

    Ganser, Claudia; Gregory, Andrew J; McNew, Lance B; Hunt, Lyla A; Sandercock, Brett K; Wisely, Samantha M

    2016-06-01

    Infectious diseases increasingly play a role in the decline of wildlife populations. Vector-borne diseases, in particular, have been implicated in mass mortality events and localized population declines are threatening some species with extinction. Transmission patterns for vector-borne diseases are influenced by the spatial distribution of vectors and are therefore not uniform across the landscape. Avian malaria is a globally distributed vector-borne disease that has been shown to affect endemic bird populations of North America. We evaluated shared habitat use between avian malaria vectors, mosquitoes in the genus Culex and a native grassland bird, the Greater Prairie-Chicken (Tympanuchus cupido), by (1) modeling the distribution of Culex spp. occurrence across the Smoky Hills of north-central Kansas using detection data and habitat variables, (2) assessing the occurrence of these vectors at nests of female Greater Prairie-Chickens, and (3) evaluating if shared habitat use between vectors and hosts is correlated with malarial infection status of the Greater Prairie-Chicken. Our results indicate that Culex occurrence increased at nest locations compared to other available but unoccupied grassland habitats; however the shared habitat use between vectors and hosts did not result in an increased prevalence of malarial parasites in Greater Prairie-Chickens that occupied habitats with high vector occurrence. We developed a predictive map to illustrate the associations between Culex occurrence and infection status with malarial parasites in an obligate grassland bird that may be used to guide management decisions to limit the spread of vector-borne diseases. PMID:27232133

  2. Using Hydrologic Modeling to Screen Potential Environmental Management Methods for Malaria Vector Control in Niger

    NASA Astrophysics Data System (ADS)

    Gianotti, R. L.; Bomblies, A.; Eltahir, E. A.

    2008-12-01

    This study describes the use of HYDREMATS, a physically-based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The model operates at fine spatial and temporal scales to enable explicit simulation of individual pool dynamics and isolation of mosquito breeding habitats. The results showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season could reduce the persistence time of a pool to less than the time needed for establishment of mosquito breeding, approximately 7 days. Increasing the surface soil permeability by ploughing could also reduce the persistence time of a pool but this technique was not as effective as leveling. Therefore it is considered that leveling should be the preferred of the two options where possible. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control and human health improvement in Sahelian Africa.

  3. Extensive introgression in a malaria vector species complex revealed by phylogenomics

    PubMed Central

    Fontaine, Michael C.; Pease, James B.; Steele, Aaron; Waterhouse, Robert M.; Neafsey, Daniel E.; Sharakhov, Igor V.; Jiang, Xiaofang; Hall, Andrew B.; Catteruccia, Flaminia; Kakani, Evdoxia; Mitchell, Sara N.; Wu, Yi-Chieh; Smith, Hilary A.; Love, R. Rebecca; Lawniczak, Mara K.; Slotman, Michel A.; Emrich, Scott J.; Hahn, Matthew W.; Besansky, Nora J.

    2015-01-01

    Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny, and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between non-sister species. PMID:25431491

  4. Organ-Specific Splice Variants of Aquaporin Water Channel AgAQP1 in the Malaria Vector Anopheles gambiae

    PubMed Central

    Tsujimoto, Hitoshi; Liu, Kun; Linser, Paul J.; Agre, Peter; Rasgon, Jason L.

    2013-01-01

    Background Aquaporin (AQP) water channels are important for water homeostasis in all organisms. Malaria transmission is dependent on Anopheles mosquitoes. Water balance is a major factor influencing mosquito survival, which may indirectly affect pathogen transmission. Methodology/Principal Findings We obtained full-length mRNA sequences for Anopheles gambiae aquaporin 1 (AgAQP1) and identified two splice variants for the gene. In vitro expression analysis showed that both variants transported water and were inhibited by Hg2+. One splice variant (AgAQP1A) was exclusively expressed in adult female ovaries indicating a function in mosquito reproduction. The other splice variant (AgAQP1B) was expressed in the midgut, malpighian tubules and the head in adult mosquitoes. Immunolabeling showed that in malpighian tubules, AgAQP1 is expressed in principal cells in the proximal portion and in stellate cells in the distal portion. Moreover, AgAQP1 is expressed in Johnston’s organ (the “ear”), which is important for courtship behavior. Conclusions And Significance These results suggest that AgAQP1 may play roles associated with mating (courtship) and reproduction in addition to water homeostasis in this important African malaria vector. PMID:24066188

  5. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward.

    PubMed

    Mnzava, Abraham P; Knox, Tessa B; Temu, Emmanuel A; Trett, Anna; Fornadel, Christen; Hemingway, Janet; Renshaw, Melanie

    2015-01-01

    In recent years, there has been an increase in resistance of malaria vectors to insecticides, particularly to pyrethroids which are widely used in insecticide-treated nets. The Global Plan for Insecticide Resistance Management in malaria vectors (GPIRM), released in May 2012, is a collective strategy for the malaria community to tackle this challenge. This review outlines progress made to date and the challenges experienced in the implementation of GPIRM, and outlines focus areas requiring urgent attention. Whilst there has been some advancement, uptake of GPIRM at the national level has generally been poor for various reasons, including limited availability of vector control tools with new mechanisms of action as well as critical financial, human and infrastructural resource deficiencies. There is an urgent need for a global response plan to address these deficits and ensure the correct and efficient use of available tools in order to maintain the effectiveness of current vector control efforts whilst novel vector control tools are under development. Emphasis must be placed on enhancing national capacities (such as human and infrastructural resources) to enable efficient monitoring and management of insecticide resistance, and to support availability and accessibility of appropriate new vector control products. Lack of action by the global community to address the threat of insecticide resistance is unacceptable and deprives affected communities of their basic right of universal access to effective malaria prevention. Aligning efforts and assigning the needed resources will ensure the optimal implementation of GPIRM with the ultimate goal of maintaining effective malaria vector control. PMID:25899397

  6. Vector capacity of Anopheles sinensis in malaria outbreak areas of central China

    PubMed Central

    2012-01-01

    Background Both falciparum and vivax malaria were historically prevalent in China with high incidence. With the control efforts, the annual incidence in the whole country has reduced to 0.0001% except in some areas in the southern borders after 2000. Despite this, the re-emergence or outbreak of malaria was unavoidable in central China during 2005–2007. In order to understand the role of the vector in the transmission of malaria during the outbreak period, the vector capacity of An. sinensis in Huanghuai valley of central China was investigated. Findings The study was undertaken in two sites, namely Huaiyuan county of Anhui province and Yongcheng county of Henan province. In each county, malaria cases were recorded for recent years, and transmission risk factors for each study village including anti-mosquito facilities and total number of livestock were recorded by visiting each household in the study sites. The specimens of mosquitoes were collected in two villages, and population density and species in each study site were recorded after the identification of different species, and the blood-fed mosquitoes were tested by ring precipitation test. Finally, various indicators were calculated to estimate vector capacity or dynamics, including mosquito biting rate (MBR), human blood index (HBI), and the parous rates (M). Finally, the vector capacity, as an important indicator of malaria transmission to predict the potential recurrence of malaria, was estimated and compared in each study site. About 93.0% of 80 households in Huaiyuan and 89.3% of 192 households in Yongcheng had anti-mosquito facilities. No cattle or pigs were found, only less than 10 sheep were found in each study village. A total of 94 and 107 Anopheles spp. mosquitos were captured in two study sites, respectively, and all of An. sinensis were morphologically identified. It was found that mosquito blood-feeding peak was between 9:00 pm and 12:00 pm. Man biting rate of An. sinensis was 6.0957 and

  7. High Frequency of Clinically Significant Bacteremia in Adults Hospitalized With Falciparum Malaria.

    PubMed

    Nyein, Phyo Pyae; Aung, Ne Myo; Kyi, Tint Tint; Htet, Zaw Win; Anstey, Nicholas M; Kyi, Mar Mar; Hanson, Josh

    2016-01-01

    Background.  African children with severe falciparum malaria commonly have concomitant Gram-negative bacteremia, but co-infection has been thought to be relatively rare in adult malaria. Methods.  Adults with a diagnosis of falciparum malaria hospitalized at 4 tertiary referral hospitals in Myanmar had blood cultures collected at admission. The frequency of concomitant bacteremia and the clinical characteristics of the patients, with and without bacteremia, were explored. Results.  Of 67 adults hospitalized with falciparum malaria, 9 (13% [95% confidence interval, 5.3%-21.6%]) were also bacteremic on admission, 7 (78%) with Gram-negative enteric organisms (Escherichia coli [n = 3], typhoidal Salmonella species [n = 3], nontyphoidal Salmonella [n = 1]). Bacteremic adults had more severe disease (median Respiratory Coma Acidosis Malaria [RCAM] score 3; interquartile range [IQR], 1-4) than those without bacteremia (median RCAM score 1; IQR, 1-2) and had a higher frequency of acute kidney injury (50% vs 16%, P = .03). Although 35 (52%) were at high risk of death (RCAM score ≥2), all 67 patients in the study survived, 51 (76%) of whom received empirical antibiotics on admission. Conclusions.  Bacteremia was relatively frequent in adults hospitalized with falciparum malaria in Myanmar. Like children in high transmission settings, bacteremic adults in this low transmission setting were sicker than nonbacteremic adults, and were often difficult to identify at presentation. Empirical antibiotics may also be appropriate in adults hospitalized with falciparum malaria in low transmission settings, until bacterial infection is excluded.

  8. Agent-based modeling of malaria vectors: the importance of spatial simulation

    PubMed Central

    2014-01-01

    Background The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as “agents” in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. Methods In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. Results As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. Conclusions The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important. PMID:24992942

  9. The effect of sublethal exposure to temephos and propoxur on reproductive fitness and its influence on circadian rhythms of pupation and adult emergence in Anopheles stephensi Liston-a malaria vector.

    PubMed

    Sanil, Deepak; Shetty, Nadikere Jaya

    2012-07-01

    The present study was undertaken to investigate the effects of organophosphate and carbamate insecticides namely, temephos and propoxur respectively, on the life history of Anopheles stephensi Liston (Culicidae) under laboratory conditions. The late third instar larvae of the mosquito were exposed to sublethal concentrations of temephos and propoxur at LC(10), LC(30) and LC(50), respectively, and adult survivors were evaluated for fitness parameters. Sublethal effects were also evaluated in subsequent generations. Fecundity, egg hatchability, sex ratio, adult longevity and morphology of gonads were the end points studied and compared to the untreated control. Adverse changes in developmental traits were mainly observed in fecundity, egg hatchability and sex ratio. However, significant differences in adult longevity were observed in the insecticide-exposed population. Pleiotropic effects through prolonged larval duration and enhanced longevity of adults were observed. Morphology of gonads in the insecticide-exposed population was severely affected and is represented by rudimentary and atrophied testes, and the size of the vas deferens was very much reduced when compared to that of the control. In another set of experiments, circadian rhythm (for pupation and adult emergence) of LC(10), LC(30) and LC(50) values to abovementioned insecticides exposed to late third instar larvae was studied. Pupation and adult emergence rhythms were found to be disturbed with an increase in concentrations of insecticides when compared to that of untreated control.

  10. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  11. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector

    PubMed Central

    Pollitt, Laura C.; Bram, Joshua T.; Blanford, Simon; Jones, Matthew J.; Read, Andrew F.

    2015-01-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  12. Efficacy of light-traps in sampling malaria vectors in different ecological zones in central India.

    PubMed

    Singh, N; Mishra, A K

    1997-03-01

    This preliminary field study was designed chiefly to test the efficiency of the light-trap as a tool for sampling malaria vectors, in tribal villages located in different ecological settings in comparison with indoor resting collections as an alternative method. Anopheles culicifacies, a known malaria vector, was the most prevalent species in the study villages and more than 80% of trap catches were obtained before midnight with peak activity during dusk. Reproductive status of trapped specimens revealed proportional representations of unfed, freshly fed, and gravid females. Another vector, An. fluviatilis was found in small numbers by both the methods. Thus the trap could give a reliable and unbiased sample of vector population. Seven species were abundant in the light-trap catches while only four in the indoor resting collections indicates the usefulness of the light-trap for sampling exophilic species. The study revealed that light-traps did not have any bias in favor of any particular species. The method may be useful for assessing the night time densities of different species or the fluctuation of a species at different dates and village to village variations. Light-traps could be used for sampling both endophilic and exophilic anophelines. PMID:9322305

  13. Predictions of malaria vector distribution in Belize based on multispectral satellite data

    NASA Technical Reports Server (NTRS)

    Roberts, D. R.; Paris, J. F.; Manguin, S.; Harbach, R. E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L. J.

    1996-01-01

    Use of multispectral satellite data to predict arthropod-borne disease trouble spots is dependent on clear understandings of environmental factors that determine the presence of disease vectors. A blind test of remote sensing-based predictions for the spatial distribution of a malaria vector, Anopheles pseudopunctipennis, was conducted as a follow-up to two years of studies on vector-environmental relationships in Belize. Four of eight sites that were predicted to be high probability locations for presence of An. pseudopunctipennis were positive and all low probability sites (0 of 12) were negative. The absence of An. pseudopunctipennis at four high probability locations probably reflects the low densities that seem to characterize field populations of this species, i.e., the population densities were below the threshold of our sampling effort. Another important malaria vector, An. darlingi, was also present at all high probability sites and absent at all low probability sites. Anopheles darlingi, like An. pseudopunctipennis, is a riverine species. Prior to these collections at ecologically defined locations, this species was last detected in Belize in 1946.

  14. Distribution, host preference and infection rates of malaria vectors in Mauritania

    PubMed Central

    2009-01-01

    This study reports for the first time on the distribution, host preference and infection rates of malaria vectors in Mauritania. It was conducted during an outbreak of Rift valley fever. Three anopheline species were reported. An. arabiensis was the predominant species observed in all regions whereas An. pharoensis and An. funestus were observed along the south border in the Senegal River valley where extensive irrigation schemes are present. The distribution limits of anopheline species were observed from the Senegal River basin in the Trarza region up to the south limit of the Saharan desert in Tidjikja city. Overall, all An. funestus and An. pharoensis were fed respectively on human and ovine hosts whereas the mean anthropophilic rate of An. gambiae s.l. was 53%. A low Plasmodium falciparum infection rate was observed for species of the An. gambiae complex (0.17%) represented mainly by An. arabiensis. Because of the specific nature of this investigation, longitudinal studies are essential to better characterize the malaria vectors and their respective role in malaria transmission. PMID:19961573

  15. Malaria vectors in the changing environment of the southern Punjab, Pakistan.

    PubMed

    Klinkenberg, Eveline; Konradsen, Flemming; Herrel, Nathaly; Mukhtar, Muhammad; van der Hoek, Wim; Amerasinghe, Felix P

    2004-07-01

    The Pakistani Punjab experienced several devastating malaria epidemics during the twentieth century. Since the 1980s, however, malaria has been at a low ebb, while in other areas of Pakistan and neighbouring India malaria is on the increase. This raises the question of whether transmission in the Pakistani Punjab may have been influenced by a change in vector species abundance or composition, possibly induced by environmental changes. To investigate this question, routinely-collected government entomological data for the period 1970 to 1999 for the district of Bahawalnagar, in the Indus Basin irrigation system in the southern Punjab, was analysed. Our findings suggest that Anopheles stephensi has increased in prevalence and became more common than A. culicifacies during the 1980s. This shift in species dominance may be due to the large-scale ecological changes that have taken place in the Punjab, where irrigation-induced waterlogging of soil with related salinization has created an environment favourable for the more salt-tolerant A. stephensi. Some biotypes of A. stephensi are suspected of being less efficient vectors and, therefore, the shift in species dominance might have played a role in the reduced transmission in the Punjab, although further research is needed to investigate the effect of other transmission-influencing factors.

  16. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole.

  17. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  18. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behavior especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined th...

  19. Falciparum malaria as an emerging cause of fever in adults living in Gabon, Central Africa.

    PubMed

    Bouyou-Akotet, Marielle K; Offouga, Christelle L; Mawili-Mboumba, Denise P; Essola, Laurence; Madoungou, Blondel; Kombila, Maryvonne

    2014-01-01

    Following the observed increase of malaria prevalence among older children in Gabon, a descriptive observational study was carried out in 2012 to determine the prevalence of malaria in adults presenting with fever in two health centres of Libreville, the capital city of Gabon. Thick- and thin-blood smears for malaria diagnosis were performed in febrile individuals aged more than 15 years old. Age, use of bed nets, previous antimalarial drug treatment, clinical symptoms, chest radiography results, and available haemoglobin data were also recorded. Among the 304 patients screened, the global malaria frequency was of 42.1% (n = 128/34). Plasmodium (P). falciparum was the only species identified. The proportion of patients with a clinical malaria requiring parenteral treatment was 38.5%, whereas 47.5% of outpatients had uncomplicated malaria. According to WHO classification, 14 (19.7%) infected patients had severe malaria; neurological and respiratory symptoms tended to be more frequent in case of P. falciparum infection. Anaemia was found in 51.5% adults and none had severe anaemia. Almost half of adults consulting for fever in two health centres of the urban city of Libreville have malaria. The use of insecticide-treated bed nets, the screening, and the treatment of individuals with P. falciparum microscopic and submicroscopic asymptomatic infection or clinical malaria should be emphasized to reduce the transmission.

  20. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    NASA Astrophysics Data System (ADS)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  1. Malaria.

    PubMed

    Garcia, Lynne S

    2010-03-01

    Malaria has had a greater impact on world history than any other infectious disease. More than 300 to 500 million individuals worldwide are infected with Plasmodium spp, and 1.5 to 2.7 million people a year, most of whom are children, die from the infection. Malaria is endemic in over 90 countries in which 2400 million people live; this represents 40% of the world's population. Approximately 90% of malaria deaths occur in Africa. Despite continuing efforts in vaccine development, malaria prevention is difficult, and no drug is universally effective. This article examines malaria caused by the 4 most common Plasmodium spp that infect humans, P vivax, P ovale, P malariae, and P falciparum, as well as mixed infections and the simian parasite P knowlesi. A comprehensive review of the microbiology, clinical presentation, pathogenesis, diagnosis, and treatment of these forms of malaria is given.

  2. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    PubMed

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended. PMID:25004439

  3. Species Composition and Diversity of Malaria Vector Breeding Habitats in Trincomalee District of Sri Lanka

    PubMed Central

    Gunathilaka, Nayana; Abeyewickreme, Wimaladharma; Hapugoda, Menaka; Wickremasinghe, Rajitha

    2015-01-01

    Introduction. Mosquito larval ecology is important in determining larval densities and species assemblage. This in turn influences malaria transmission in an area. Therefore, understanding larval habitat ecology is important in designing malaria control programs. Method. Larval surveys were conducted in 20 localities under five sentinel sites (Padavisiripura, Gomarankadawala, Thoppur, Mollipothana, and Ichchallampaththu) in Trincomalee District, Eastern Province of Sri Lanka, between June 2010 and July 2013. The relationship between seven abiotic variables (temperature, pH, conductivity, Total Dissolved Solid (TDS), turbidity, Dissolved Oxygen (DO), and salinity) was measured. Results. A total of 21,347 anophelines were recorded representing 15 species. Anopheles subpictus 24.72% (5,278/21,347) was the predominant species, followed by 24.67% (5,267/21,347) of An. nigerrimus and 14.56% (3,109/21,347) of An. peditaeniatus. A total of 9,430 breeding habitats under twenty-one categories were identified. An. culcicifacies was noted to be highest from built wells (20.5%) with high salinity (1102.3 ± 81.8 mg/L), followed by waste water collections (20.2%) having low DO levels (2.85 ± 0.03 mg/L) and high TDS (1,654 ± 140 mg/L). Conclusion. This study opens an avenue to explore new breeding habitats of malaria vectors in the country and reemphasizes the requirement of conducting entomological surveillance to detect potential transmission of malaria in Sri Lanka under the current malaria elimination programme. PMID:26583136

  4. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors

    PubMed Central

    2014-01-01

    Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of

  5. Bottlenecks and multiple introductions: Population genetics of the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; LaPointe, Dennis A.; Fleischer, Robert C.

    2000-01-01

    Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, Culex quinquefasciatusthe southern house mosquito, was first introduced to Hawaii around 1830. In order to understand the dynamics of the disease in Hawaii and gain insights into the evolution of vector-mediated parasite–host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian Islands. We used both microsatellite and mitochondrial loci. Not surprisingly we found that mosquitoes in Midway, a small island in the Western group, are quite distinct from the populations in the main Hawaiian Islands. However, we also found that in general mosquito populations are relatively isolated even among the main islands, in particular between Hawaii (the Big Island) and the remaining Hawaiian Islands. We found evidence of bottlenecks among populations within the Big Island and an excess of alleles in Maui, the site of the original introduction. The mitochondrial diversity was typically low but higher than expected. The current distribution of mitochondrial haplotypes combined with the microsatellite information lead us to conclude that there have been several introductions and to speculate on some processes that may be responsible for the current population genetics of vectors of avian malaria in Hawaii.

  6. Malaria Vectors in Ecologically Heterogeneous Localities of the Colombian Pacific Region

    PubMed Central

    Naranjo-Díaz, Nelson; Altamiranda, Mariano; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2014-01-01

    The Colombian Pacific region is second nationally in number of malaria cases reported. This zone presents great ecological heterogeneity and Anopheles species diversity. However, little is known about the current spatial and temporal distribution of vector species. This study, conducted in three ecologically different localities of the Pacific region, aimed to evaluate the composition and distribution of Anopheles species and characterize transmission intensity. A total of 4,016 Anopheles mosquitoes were collected representing seven species. The composition and dominant species differed in each locality. Three species were infected with malaria parasites: Anopheles darlingi and An. calderoni were infected with Plasmodium falciparum and An. nuneztovari with Plasmodium vivax VK210 and VK247. Annual EIRs varied from 3.5–7.2 infective bites per year. These results confirm the importance of the primary vector An. nuneztovari in areas disturbed by human interventions, of An. darlingi in deforested margins of humid tropical rainforest and An. albimanus and the suspected vector An. calderoni in areas impacted by urbanization and large-scale palm oil agriculture close to the coast. This constitutes the first report in the Colombia Pacific region of naturally infected An. darlingi, and in Colombia of naturally infected An. calderoni. Further studies should evaluate the epidemiological importance of An. calderoni in the Pacific region. PMID:25090233

  7. Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria.

    PubMed

    Menger, David J; Omusula, Philemon; Wouters, Karlijn; Oketch, Charles; Carreira, Ana S; Durka, Maxime; Derycke, Jean-Luc; Loy, Dorothy E; Hahn, Beatrice H; Mukabana, Wolfgang R; Mweresa, Collins K; van Loon, Joop J A; Takken, Willem; Hiscox, Alexandra

    2016-04-01

    Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area.

  8. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  9. Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria.

    PubMed

    Menger, David J; Omusula, Philemon; Wouters, Karlijn; Oketch, Charles; Carreira, Ana S; Durka, Maxime; Derycke, Jean-Luc; Loy, Dorothy E; Hahn, Beatrice H; Mukabana, Wolfgang R; Mweresa, Collins K; van Loon, Joop J A; Takken, Willem; Hiscox, Alexandra

    2016-04-01

    Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area. PMID:26834195

  10. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns) and olfactory cues (presence and absence of cheese or Citronella smell) with the reinforcing stimuli (bloodmeal quality) and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood) was associated with an innately preferred cue (such as a darker visual pattern). However, the use of too attractive a cue (e.g. Shropshire cheese smell) was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control. PMID:22284012

  11. The Anopheles gambiae cE5 salivary protein: a sensitive biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control.

    PubMed

    Marie, Alexandra; Ronca, Raffaele; Poinsignon, Anne; Lombardo, Fabrizio; Drame, Papa M; Cornelie, Sylvie; Besnard, Patrick; Le Mire, Jacques; Fiorentino, Gabriella; Fortes, Filomeno; Carnevale, Pierre; Remoue, Franck; Arcà, Bruno

    2015-06-01

    Evaluation of vector control is crucial for improving malaria containment and, according to World Health Organization, new complementary indicators would be very valuable. In this study the IgG response to the Anopheles-specific cE5 salivary protein was tested as a tool to evaluate the efficacy of insecticide-treated nets in reducing human exposure to malaria vectors. Sera collected during a longitudinal study carried out in Angola, and including entomological and parasitological data, were used to assess the IgG response to the Anopheles gambiae cE5 in both children and adults, before and after the application of insecticide-treated nets. Seasonal fluctuation of specific IgG antibody levels according to exposure was only found in children (up to ≈ 14 years old) whose anti-cE5 IgG response dropped after bed nets installation. These results were fully consistent with previous findings obtained with the same set of sera and indicating a substantial reduction of human-vector contact shortly after nets implementation. Overall, children IgG response to the cE5 protein appeared a very sensitive biomarker, which allowed for the detection of even weak exposure to Anopheles bites, indicating it may represent a reliable additional tool to evaluate the efficacy of vector control interventions.

  12. Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

    PubMed Central

    Bahia, Ana C.; Saraiva, Raul G.; Dong, Yuemei; Kang, Seokyoung; Tripathi, Abhai; Mlambo, Godfree; Dimopoulos, George

    2014-01-01

    Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies. PMID:25340821

  13. Visual arrestins in olfactory pathways of Drosophila and the malaria vector mosquito Anopheles gambiae

    PubMed Central

    Merrill, C. E.; Riesgo-Escovar, J.; Pitts, R. J.; Kafatos, F. C.; Carlson, J. R.; Zwiebel, L. J.

    2002-01-01

    Arrestins are important components for desensitization of G protein-coupled receptor cascades that mediate neurotransmission as well as olfactory and visual sensory reception. We have isolated AgArr1, an arrestin-encoding cDNA from the malaria vector mosquito, Anopheles gambiae, where olfaction is critical for vectorial capacity. Analysis of AgArr1 expression revealed an overlap between chemosensory and photoreceptor neurons. Furthermore, an examination of previously identified arrestins from Drosophila melanogaster exposed similar bimodal expression, and Drosophila arrestin mutants demonstrate impaired electrophysiological responses to olfactory stimuli. Thus, we show that arrestins in Drosophila are required for normal olfactory physiology in addition to their previously described role in visual signaling. These findings suggest that individual arrestins function in both olfactory and visual pathways in Dipteran insects; these genes may prove useful in the design of control strategies that target olfactory-dependent behaviors of insect disease vectors. PMID:11792843

  14. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    PubMed Central

    2010-01-01

    Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both the wet and dry seasons

  15. Efficacy of indigenous plant extracts on the malaria vector Anopheles subpictus Grassi (Diptera: Culicidae)

    PubMed Central

    Elango, G.; Zahir, A. Abduz; Bagavan, A.; Kamaraj, C.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Rahuman, A. Abdul

    2011-01-01

    Background & objectives: Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of plant origin may serve as suitable alternative biocontrol techniques in the future. The purpose of the present study was to assess the ethyl acetate, acetone and methanol extracts of Andrographis paniculata, Eclipta prostrata and Tagetes erecta leaves tested for oviposition-deterrent, ovicidal and repellent activities against malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). Methods: The dried leaves of the three plants were powdered mechanically and extracted with ethyl acetate, acetone and methanol. One gram of crude extract was first dissolved in 100 ml of acetone (stock solution). From the stock solution, test solution concentrations of 31.21- 499.42 mg/l for oviposition- deterrence assay and repellency and 15.60 - 998.85 mg/l were used in ovicidal assay. The percentage oviposition- deterrence, hatching rate of eggs and protection time were calculated. One-way analysis of variance was used for the multiple concentration tests and for per cent mortality to determine significant treatment differences. Results: The percentage of effective oviposition repellency was highest at 499.42 mg/l and the lowest at 31.21 mg/l in ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta. The oviposition activity index (OAI) value of ethyl acetate, acetone and methanol extracts of A. paniculata, E. prostrata and T. erecta at 499.42 mg/l were -0.91, -0.93, -0.84, -0.84, -0.87, -0.82, -0.87, -0.89 and -0.87, respectively. Mortality (no egg hatchability) was 100 per cent with ethyl acetate and methanol extracts of A. paniculata, E. prostrata and T. erecta at 998.85 mg/l. The maximum adult repellent activity was observed at 499.42 mg/l in ethyl acetate extracts of A. paniculata, E. prostrata and methanol extracts of T. erecta, and the mean complete protection time ranged from 120 to 150 min with

  16. [Malaria].

    PubMed

    Burchard, G D

    2014-02-01

    Malaria is the most important infectious disease imported by travelers and migrants from tropical and subtropical areas. It is imported quite frequently. It is a life-threatening disease. Symptoms are nonspecific and cannot easily be distinguished from a wide range of other febrile conditions. Therefore, travel history must be taken in all patients with fever of unknown origin and malaria diagnostics must be performed immediately on suspicion of malaria. Uncomplicated falciparum malaria should be treated in the hospital with either atovaquone-proguanil or with an artemisinin-based combination preparation. If there is evidence of severe malaria, the patient must be moved to an intensive care unit. The antiparasitic agent of choice is then artesunate.

  17. Multilocus population genetic analysis of the Southwest Pacific malaria vector Anopheles punctulatus.

    PubMed

    Seah, Ignatius M; Ambrose, Luke; Cooper, Robert D; Beebe, Nigel W

    2013-09-01

    The population structure and history of the cryptic malaria vector species, Anopheles punctulatus (Doenitz), was investigated throughout Papua New Guinea and the Solomon Islands with the aim of detailing genetic subdivisions and the potential for movement through this biogeographically complex region. We obtained larval collections from over 80 sites and utilised a diverse array of molecular markers that evolve through different processes. Individuals were initially identified to species and genotyped using the ribosomal DNA second internal transcribed spacer. DNA sequencing of a single copy nuclear ribosomal protein S9 and the mitochondrial cytochrome oxidase I loci were then investigated and 12 nuclear microsatellite markers were developed and analysed. Our data revealed three genetically distinct populations--one in Papua New Guinea, the second on Buka Island (Bougainville Province, Papua New Guinea), and the third on Guadalcanal Island (Solomon Islands). Genetic differentiation within Papua New Guinea was much lower than that found in studies of other closely related species in the region. The data does suggest that A. punctulatus has undergone a population bottleneck followed by a recent population and range expansion in Papua New Guinea. Humans and regional economic growth may be facilitating this population expansion, as A. punctulatus is able to rapidly occupy human modified landscapes and traverse unsealed roads. We therefore anticipate extensive movement of this species through New Guinea--particularly into the highlands, with a potential increase in malaria frequency in a warming climate--as well as relatively unrestricted gene flow of advantageous alleles that may confound vector control efforts.

  18. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria.

  19. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles stephensi

    PubMed Central

    Sedaghat, MM; Dehkordi, A Sanei; Abai, MR; Khanavi, M; Mohtarami, F; Abadi, Y Salim; Rafi, F; Vatandoost, H

    2011-01-01

    Background: Plant extracts and oils may act as alternatives to conventional pesticides for malaria vector control. The aim of this study was to evaluate the larvicidal activity of essential oils of three plants of Apiaceae family against Anopheles stephensi, the main malaria vector in Iran. Methods: Essential oils from Heracleum persicum, Foeniculum vulgare and Coriandrum sativum seeds were hydro distillated, then their larvicidal activity were evaluated against laboratory-reared larvae of An. stephensi according to standard method of WHO. After susceptibility test, results were analysis using Probit program. Results: Essential oils were separated from H. persicum, F. vulgare and C. sativum plants and their larvicidal activities were tested. Result of this study showed that F. vulgare oil was the most effective against An. stephensi with LC50 and LC90 values of 20.10 and 44.51 ppm, respectively. Conclusion: All three plants essential oil can serve as a natural larvicide against An. stephensi. F. vulgare oil exhibited more larvicidal properties. PMID:22808418

  20. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae.

    PubMed

    Christophides, George K; Vlachou, Dina; Kafatos, Fotis C

    2004-04-01

    In much of Africa, the mosquito Anopheles gambiae is the major vector of human malaria, a devastating infectious disease caused by Plasmodium parasites. Vector and parasite interact at multiple stages and locations, and the nature and effectiveness of this reciprocal interaction determines the success of transmission. Many of the interactions engage the mosquito's innate immunity, a primitive but very effective defense system. In some cases, the mosquito kills the parasite, thus blocking the transmission cycle. However, not all interactions are antagonistic; some represent immune evasion. The sequence of the A. gambiae genome revealed numerous potential components of the innate immune system, and it established that they evolve rapidly, as summarized in the present review. Their rapid evolution by gene family expansion diversification as well as the prevalence of haplotype alleles in the best-studied families may reflect selective adaptation of the immune system to the exigencies of multiple immune challenges in a variety of ecologic niches. As a follow-up to the comparative genomic analysis, the development of functional genomic methodologies has provided novel opportunities for understanding the immune system and the nature of its interactions with the parasite. In this context, identification of both Plasmodium antagonists and protectors in the mosquito represents a significant conceptual advance. In addition to providing fundamental understanding of primitive immune systems, studies of mosquito interactions with the parasite open unprecedented opportunities for novel interventions against malaria transmission. The generation of transgenic mosquitoes that resist malaria infection in the wild and the development of antimalarial 'smart sprays' capable of disrupting interactions that are protective of the parasite, or reinforcing others that are antagonistic, represent technical challenges but also immense opportunities for improvement of global health.

  1. Enhancing Attraction of African Malaria Vectors to a Synthetic Odor Blend.

    PubMed

    Mweresa, Collins K; Mukabana, Wolfgang R; Omusula, Philemon; Otieno, Bruno; Van Loon, Joop J A; Takken, Willem

    2016-06-01

    The deployment of odor-baited tools for sampling and controlling malaria vectors is limited by a lack of potent synthetic mosquito attractants. A synthetic mixture of chemical compounds referred to as "the Mbita blend" (MB) was shown to attract as many host-seeking malaria mosquitoes as attracted to human subjects. We hypothesized that this effect could be enhanced by adding one or more attractive compounds to the blend. We tested changes in the capability of MB (ammonia + L-lactic acid + tetradecanoic acid +3-methyl-1-butanol + carbon dioxide) to attract host-seeking malaria mosquitoes by addition of selected dilutions of butyl-2-methylbutanoate (1:10,000), 2-pentadecanone (1:100), 1-dodecanol (1:10,000), and butan-1-amine (1:10,000,000). The experiments were conducted in semi-field enclosures and in a village in western Kenya. In semi-field enclosures, the attraction of Anopheles gambiae sensu stricto females to MB-baited traps was not enhanced by adding butyl-2-methylbutanoate. There was, however, an increase in the proportion of An. gambiae caught in traps containing MB augmented with the selected dilutions of butan-1-amine, 2-pentadecanone, and 1-dodecanol. When tested in the village, addition of butan-1-amine to MB enhanced catches of female An. gambiae sensu lato, An. funestus, and Culex mosquitoes. 1-Dodecanol increased attraction of An. gambiae s.l. to the MB, while addition of 2-pentadecanone improved trap catches of An. funestus and Culex mosquitoes. This study demonstrates the possibility of enhancing synthetic odor blends for trapping the malarial mosquitoes An. gambiae s.l. and An. funestus, as well as some culicine species. The findings provide promising results for the optimization and utilization of synthetic attractants for sampling and controlling major disease vectors. PMID:27349651

  2. Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    PubMed Central

    2014-01-01

    Background The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behaviour especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined the toxicity and larvicidal activity on this vector of extracts from six selected plants found in Kenya and two compounds identified from Ricinus communis: 3-carbonitrile-4-methoxy-N-methyl-2-pyridone (ricinine), and its carboxylic acid derivative 3-carboxy-4-methoxy-N-methyl-2-pyridone, the latter compound being reported for the first time from this plant. Methods Feeding assays tested for toxic effects of extracts from the plants Artemisia afra Jacq. ex Willd, Bidens pilosa L., Parthenium hysterophorus L., Ricinus coummunis L., Senna didymobotrya Fresen. and Tithonia diversifolia Hemsl. on adult females and larvicidal activity was tested against third-instar larvae of Anopheles gambiae s.s. Mortality of larvae and adult females was monitored for three and eight days, respectively; Probit analysis was used to calculate LC50. Survival was analysed with Kaplan-Meier Model. LC-MS was used to identify the pure compounds. Results Of the six plants screened, extracts from T. diversifolia and R. communis were the most toxic against adult female mosquitoes after 7 days of feeding, with LC50 of 1.52 and 2.56 mg/mL respectively. Larvicidal activity of all the extracts increased with the exposure time with the highest mortality recorded for the extract from R. communis after 72 h of exposure (LC50 0.18 mg/mL). Mosquitoes fed on solutions of the pure compounds, 3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine survived almost as long as those fed on the R. communis extract with mean survival of 4.93 ± 0.07, 4.85 ± 0.07 and 4.50 ± 0.05 days respectively. Conclusions Overall, these findings demonstrate that extracts from the six plant species exhibit

  3. Retinopathy of vivax malaria in adults and its relation with severity parameters.

    PubMed

    Kochar, Anju; Kalra, Paavan; Sb, Vijeth; Ukirade, Vinayak; Chahar, Anita; Kochar, Dhanpat Kumar; Kochar, Sanjay Kumar

    2016-01-01

    Malarial retinopathy is a set of retinal signs in severe malaria due to falciparum malaria. With increased recognition of severe manifestations of vivax malaria, a systematic study to evaluate retinal changes in vivax malaria could elaborate our knowledge about this neglected entity. This observational study included retinal examination of 104 adult patients (>14 years) with varying severity of vivax malaria admitted to a tertiary care center during peak seasons of 2012 and 2013. Thirty-eight percent of severe cases had a retinal sign as compared to 6% of non-severe cases (p < 0.01). No statistically significant effect of residence or age on the presence of retinopathy was noted. Females were found to be more prone to develop a retinal sign (p < 0.01). Presence of retinal signs was significantly associated with anemia and jaundice. No statistical association was noted for retinal signs to be present in either renal dysfunction or altered thrombocytes count. The most common signs were arteriovenous changes, present in eight cases (19%) of severe malaria and three cases (5%) of non-severe malaria. Retinal hemorrhage was present in five cases (12%) of severe malaria and no case of non-severe malaria. Both superficial and deep hemorrhages were seen including white-centered hemorrhages. Other signs included cotton wool spots, hard exudates, blurred disk margins with spontaneous venous pulsations and bilateral disk edema. A correlation between retinal signs and severity parameters was drawn from the study. This is the first systemic study to evaluate the retinal changes in vivax malaria. Larger prospective studies should be done for further knowledge regarding retinal changes in vivax malaria, especially severe disease. Apart from its clinical significance, it might lead to a better understanding of the pathogenesis of the systemic disease of vivax malaria. PMID:27533797

  4. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    PubMed Central

    Vezenegho, Samuel B; Adde, Antoine; de Santi, Vincent Pommier; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities. PMID:27653361

  5. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    PubMed Central

    Vezenegho, Samuel B; Adde, Antoine; de Santi, Vincent Pommier; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.

  6. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    PubMed

    Vezenegho, Samuel B; Adde, Antoine; Pommier de Santi, Vincent; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-09-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities. PMID:27653361

  7. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    PubMed

    Vezenegho, Samuel B; Adde, Antoine; Pommier de Santi, Vincent; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-09-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.

  8. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    PubMed Central

    2011-01-01

    Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org), provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species. PMID:21649883

  9. High Frequency of Clinically Significant Bacteremia in Adults Hospitalized With Falciparum Malaria.

    PubMed

    Nyein, Phyo Pyae; Aung, Ne Myo; Kyi, Tint Tint; Htet, Zaw Win; Anstey, Nicholas M; Kyi, Mar Mar; Hanson, Josh

    2016-01-01

    Background.  African children with severe falciparum malaria commonly have concomitant Gram-negative bacteremia, but co-infection has been thought to be relatively rare in adult malaria. Methods.  Adults with a diagnosis of falciparum malaria hospitalized at 4 tertiary referral hospitals in Myanmar had blood cultures collected at admission. The frequency of concomitant bacteremia and the clinical characteristics of the patients, with and without bacteremia, were explored. Results.  Of 67 adults hospitalized with falciparum malaria, 9 (13% [95% confidence interval, 5.3%-21.6%]) were also bacteremic on admission, 7 (78%) with Gram-negative enteric organisms (Escherichia coli [n = 3], typhoidal Salmonella species [n = 3], nontyphoidal Salmonella [n = 1]). Bacteremic adults had more severe disease (median Respiratory Coma Acidosis Malaria [RCAM] score 3; interquartile range [IQR], 1-4) than those without bacteremia (median RCAM score 1; IQR, 1-2) and had a higher frequency of acute kidney injury (50% vs 16%, P = .03). Although 35 (52%) were at high risk of death (RCAM score ≥2), all 67 patients in the study survived, 51 (76%) of whom received empirical antibiotics on admission. Conclusions.  Bacteremia was relatively frequent in adults hospitalized with falciparum malaria in Myanmar. Like children in high transmission settings, bacteremic adults in this low transmission setting were sicker than nonbacteremic adults, and were often difficult to identify at presentation. Empirical antibiotics may also be appropriate in adults hospitalized with falciparum malaria in low transmission settings, until bacterial infection is excluded. PMID:26989752

  10. High Frequency of Clinically Significant Bacteremia in Adults Hospitalized With Falciparum Malaria

    PubMed Central

    Nyein, Phyo Pyae; Aung, Ne Myo; Kyi, Tint Tint; Htet, Zaw Win; Anstey, Nicholas M.; Kyi, Mar Mar; Hanson, Josh

    2016-01-01

    Background. African children with severe falciparum malaria commonly have concomitant Gram-negative bacteremia, but co-infection has been thought to be relatively rare in adult malaria. Methods. Adults with a diagnosis of falciparum malaria hospitalized at 4 tertiary referral hospitals in Myanmar had blood cultures collected at admission. The frequency of concomitant bacteremia and the clinical characteristics of the patients, with and without bacteremia, were explored. Results. Of 67 adults hospitalized with falciparum malaria, 9 (13% [95% confidence interval, 5.3%–21.6%]) were also bacteremic on admission, 7 (78%) with Gram-negative enteric organisms (Escherichia coli [n = 3], typhoidal Salmonella species [n = 3], nontyphoidal Salmonella [n = 1]). Bacteremic adults had more severe disease (median Respiratory Coma Acidosis Malaria [RCAM] score 3; interquartile range [IQR], 1–4) than those without bacteremia (median RCAM score 1; IQR, 1–2) and had a higher frequency of acute kidney injury (50% vs 16%, P = .03). Although 35 (52%) were at high risk of death (RCAM score ≥2), all 67 patients in the study survived, 51 (76%) of whom received empirical antibiotics on admission. Conclusions. Bacteremia was relatively frequent in adults hospitalized with falciparum malaria in Myanmar. Like children in high transmission settings, bacteremic adults in this low transmission setting were sicker than nonbacteremic adults, and were often difficult to identify at presentation. Empirical antibiotics may also be appropriate in adults hospitalized with falciparum malaria in low transmission settings, until bacterial infection is excluded. PMID:26989752

  11. The bionomics of the malaria vector Anopheles farauti in Northern Guadalcanal, Solomon Islands: issues for successful vector control

    PubMed Central

    2014-01-01

    Background The north coast of Guadalcanal has some of the most intense malaria transmission in the Solomon Islands. And, there is a push for intensified vector control in Guadalcanal, to improve the livelihood of residents and to minimize the number of cases, which are regularly exported to the rest of the country. Therefore, the bionomics of the target vector, Anopheles farauti, was profiled in 2007–08; which was after 20 years of limited surveillance during which time treated bed nets (ITNs) were distributed in the area. Methods In three villages on northern Guadalcanal, blood-seeking female mosquitoes were caught using hourly human landing catches by four collectors, two working indoors and two outdoors, from 18.00-06.00 for at least two nights per month from July 2007 to June 2008. The mosquitoes were counted, identified using morphological and molecular markers and dissected to determine parity. Results Seasonality in vector densities was similar in the three villages, with a peak at the end of the drier months (October to December) and a trough at the end of the wetter months (March to May). There was some variability in endophagy (indoor biting) and nocturnal biting (activity during sleeping hours) both spatially and temporally across the longitudinal dataset. The general biting pattern was consistent throughout all sample collections, with the majority of biting occurring outdoors (64%) and outside of sleeping hours (65%). Peak biting was 19.00-20.00. The proportion parous across each village ranged between 0.54-0.58. Parity showed little seasonal trend despite fluctuations in vector densities over the year. Conclusion The early, outdoor biting behaviour of An. farauti documented 20 years previously on north Guadalcanal was still exhibited. It is possible that bed net use may have maintained this biting profile though this could not be determined unequivocally. The longevity of these populations has not changed despite long-term ITN use. This early

  12. Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    PubMed Central

    2009-01-01

    Background Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad. Methods A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the Anopheles gambiae complex and to the An. funestus group were identified by molecular diagnostic tools. Plasmodium falciparum infection and blood meal sources were detected by ELISA. Results Nine anopheline species were collected by the two sampling methods. The most aggressive species were An. arabiensis (51 bites/human/night), An. pharoensis (12.5 b/h/n), An. funestus (1.5 b/h/n) and An. ziemanni (1.3 b/h/n). The circumsporozoite protein rate was 1.4% for An. arabiensis, 1.4% for An. funestus, 0.8% for An. pharoensis and 0.5% for An. ziemanni. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by An. arabiensis (84.5%) and An. pharoensis (12.2%). Anopheles funestus and An. ziemanni played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening. Conclusion The present study revealed the implication of An. pharoensis in malaria transmission in the

  13. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  14. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    PubMed

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  15. Shading by napier grass reduces malaria vector larvae in natural habitats in Western Kenya highlands.

    PubMed

    Wamae, Peter M; Githeko, Andrew K; Menya, Diana M; Takken, Willem

    2010-12-01

    Increased human population in the Western Kenya highlands has led to reclamation of natural swamps resulting in the creation of habitats suitable for the breeding of Anopheles gambiae, the major malaria vector in the region. Here we report on a study to restore the reclaimed swamp and reverse its suitability as a habitat for malaria vectors. Napier grass-shaded and non-shaded water channels in reclaimed sites in Western Kenya highlands were studied for the presence and density of mosquito larvae, mosquito species composition, and daily variation in water temperature. Shading was associated with 75.5% and 88.4% (P < 0.0001) reduction in anopheline larvae densities and 78.1% and 88% (P < 0.0001) reduction in Anopheles gambiae sensu lato (s.l.) densities in two sites, respectively. Shading was associated with a 5.7°C, 5.0°C, and 4.7°C, and 1.6°C, 3.9°C, and 2.8°C (for maximum, minimum, and average temperatures, respectively) reduction (P < 0.0001) in water temperatures in the two locations, respectively. An. gambiae s.l. was the dominant species, constituting 83.2% and 73.1%, and 44.5% and 42.3%, of anophelines in non-shaded and shaded channels, respectively, in the two sites, respectively. An. gambiae sensu stricto (s.s.) constituted the majority (97.4%) of An. gambiae s.l., while the rest (2.6%) comprised of Anopheles arabiensis. Minimum water temperature decreased with increasing grass height (P = 0.0039 and P = 0.0415 for Lunyerere and Emutete sites, respectively). The results demonstrate how simple environmental strategies can have a strong impact on vector densities.

  16. Development of fungal applications on netting substrates for malaria vector control.

    PubMed

    Farenhorst, Marit; Hilhorst, Anne; Thomas, Matthew B; Knols, Bart G J

    2011-03-01

    Mosquito resistance to chemical insecticides is considered a serious threat for the sustainable use of contemporary malaria vector control methods. Fungal entomopathogens show potential as alternative biological control agents against (insecticide-resistant) anophelines. This study was designed to test whether the fungus, Beauveria bassiana, could be delivered to mosquitoes on netting materials that might be used in house screens, such as eave curtains. Tests were conducted to determine effects of formulation, application method, netting material, and nature of mosquito contact. Beauveria had a twice as high impact on Anopheles gambiae s.s. longevity when suspended in Shellsol solvent compared with Ondina oil (HR = 2.12, 95% confidence interval = 1.83-2.60, P < 0.001), and was significantly more infective when applied through spraying than dipping. Polyester and cotton bednets were the most effective substrates for mosquito infections, with highest spore viability on cotton nets. Whereas fungal impact was highest in mosquitoes that had passed through large-meshed impregnated nets, overall efficacy was equal between small- and large-meshed nets, with < or = 30-min spore contact killing >90% of mosquitoes within 10 d. Results indicate that the use of fungal spores dissolved in Shellsol and sprayed on small-meshed cotton eave curtain nets would be the most promising option for field implementation. Biological control with fungus-impregnated eave curtains could provide a means to target host-seeking mosquitoes upon house entry, and has potential for use in integrated vector management strategies, in combination with chemical vector control measures, to supplement malaria control in areas with high levels of insecticide resistance.

  17. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  18. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  19. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    PubMed

    Van Roey, Karel; Sokny, Mao; Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-12-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  20. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    PubMed Central

    Denis, Leen; Van den Broeck, Nick; Heng, Somony; Siv, Sovannaroth; Sluydts, Vincent; Sochantha, Tho; Coosemans, Marc; Durnez, Lies

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1–97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological

  1. Development and assessment of plant-based synthetic odor baits for surveillance and control of Malaria vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based syntheti...

  2. The use of digital spaceborne SAR data for the delineation of surface features indicative of malaria vector breeding habitats

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L.; Vermillion, C. H.; Khan, F. A.

    1984-01-01

    An investigation to examine the utility of spaceborne radar image data to malaria vector control programs is described. Specific tasks involve an analysis of radar illumination geometry vs information content, the synergy of radar and multispectral data mergers, and automated information extraction techniques.

  3. Evidence of Insulin Resistance in Adult Uncomplicated Malaria: Result of a Two-Year Prospective Study

    PubMed Central

    Acquah, Samuel; Boampong, Johnson Nyarko; Eghan Jnr, Benjamin Ackon; Eriksson, Magdalena

    2014-01-01

    The study aimed at investigating the effects of adult uncomplicated malaria on insulin resistance. Fasting levels of blood glucose (FBG), glycosylated hemoglobin (HbA1c), and serum insulin were measured in 100 diabetics and 100 age-matched controls before and during Plasmodium falciparum malaria. Insulin resistance and beta cell function were computed by homeostatic models assessment of insulin resistance (HOMAIR) and beta cell function (HOMAB) formulae, respectively. Body mass index (BMI) was computed. At baseline, diabetics had significantly (P < 0.05) higher levels of BMI, FBG, HbA1c, and HOMAIR but lower level of HOMAB than controls. Baseline insulin levels were comparable (P > 0.05) between the two study groups. During malaria, diabetics maintained significantly (P < 0.05) higher levels of BMI, FBG, and HbA1c but lower levels of insulin and HOMAB than controls. Malaria-induced HOMAIR levels were comparable (P > 0.05) between the two study groups but higher than baseline levels. Apart from BMI and HOMAB, mean levels of all the remaining parameters increased in malaria-infected controls. In malaria-infected diabetics, significant (P < 0.05) increase was only observed for insulin and HOMAIR but not the other measured parameters. Uncomplicated malaria increased insulin resistance in diabetics and controls independent of BMI. This finding may have implications for the evolution of T2DM in malaria-endemic regions. PMID:25587486

  4. Increased carboxyhemoglobin in adult falciparum malaria is associated with disease severity and mortality.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N; Anstey, Nicholas M

    2013-09-01

    Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%-13%) and in 20 with severe sepsis (8%; 95% CI, 5%-12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%-8%) and 36 controls (3.6%; 95% CI, 3%-5%; P < .001). An increased carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02-1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models.

  5. Ambient temperature and dietary supplementation interact to shape mosquito vector competence for malaria

    PubMed Central

    Murdock, Courtney C.; Blanford, Simon; Luckhart, Shirley; Thomas, Matthew B.

    2014-01-01

    The extent to which environmental factors influence the ability of Anopheles mosquitoes to transmit malaria parasites remains poorly explored. Environmental variation, such as change in ambient temperature, will not necessarily influence the rates of host and parasite processes equivalently, potentially resulting in complex effects on infection outcomes. As proof of principle, we used Anopheles stephensi and the rodent malaria parasite, Plasmodium yoelii, to examine the effects of a range of constant temperatures on one aspect of host defense (detected as alterations in expression of nitric oxide synthase gene – NOS) to parasite infection. We experimentally boosted mosquito midgut immunity to infection through dietary supplementation with the essential amino acid L-Arginine (L-Arg), which increases midgut NO levels by infection-induced NOS catalysis in A. stephensi. At intermediate temperatures, supplementation reduced oocyst prevalence, oocyst intensity, and sporozoite prevalence suggesting that the outcome of parasite infection was potentially dependent upon the rate of NOS-mediated midgut immunity. At low and high temperature extremes, however, infection was severely constrained irrespective of supplementation. The effects of L-Arg appeared to be mediated by NO-dependent negative feedback on NOS expression, as evidenced by depressed NOS expression in L-Arg treated groups at temperatures where supplementation decreased parasite infection. These results suggest the need to consider the direct (e.g. effects of mosquito body temperature on parasite physiology) and indirect effects (e.g. mediated through changes in mosquito physiology / immunity) of environmental factors on mosquito-malaria interactions in order to understand natural variation in vector competence. PMID:24911425

  6. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.--potential for malaria vector control.

    PubMed

    Arokiyaraj, Selvaraj; Dinesh Kumar, Vannam; Elakya, Vijay; Kamala, Tamilselvan; Park, Sung Kwon; Ragam, Muthiah; Saravanan, Muthupandian; Bououdina, Mohomad; Arasu, Mariadhas Valan; Kovendan, Kalimuthu; Vincent, Savariar

    2015-07-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides synthesized of natural products for vector control have been a priority in this area. In the present study, silver nanoparticles (Ag NPs) were green-synthesized using a floral extract of Chrysanthemum indicum screened for larvicidal and pupicidal activity against the first to fourth instar larvae and pupae of the malaria vector Anopheles stephensi mosquitoes. The synthesized Ag NPs were characterized by using UV-vis absorption, X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The textures of the yielded Ag NPs were found to be spherical and polydispersed with a mean size in the range of 25-59 nm. Larvae and pupae were exposed to various concentrations of aqueous extract of C. indicum and synthesized Ag NPs for 24 h, and the maximum mortality was observed from the synthesized Ag NPs against the vector A. stephensi (LC50 = 5.07, 10.35, 14.19, 22.81, and 35.05 ppm; LC90 = 29.18, 47.15, 65.53, 87.96, and 115.05 ppm). These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of A. stephensi. Additionally, this study provides the larvicidal and pupicidal properties of green-synthesized Ag NPs with the floral extract of C. indicum against vector mosquito species from the geographical location of India.

  7. Antennal-Expressed Ammonium Transporters in the Malaria Vector Mosquito Anopheles gambiae

    PubMed Central

    Pulous, Fadi E.; Zwiebel, Laurence J.

    2014-01-01

    The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming better understood, many questions remain unanswered. In this study, we have identified and characterized two candidate ammonium transporter genes, AgAmt and AgRh50 that are expressed in the mosquito antenna and may contribute to physiological and behavioral responses to ammonia, which is an important host kairomone for vector mosquitoes. AgAmt transcripts are highly enhanced in female antennae while a splice variant of AgRh50 appears to be antennal-specific. Functional expression of AgAmt in Xenopus laevis oocytes facilitates inward currents in response to both ammonium and methylammonium, while AgRh50 is able to partially complement a yeast ammonium transporter mutant strain, validating their conserved roles as ammonium transporters. We present evidence to suggest that both AgAmt and AgRh50 are in vivo ammonium transporters that are important for ammonia sensitivity in An. gambiae antennae, either by clearing ammonia from the sensillar lymph or by facilitating sensory neuron responses to environmental exposure. Accordingly, AgAmt and AgRh50 represent new and potentially important targets for the development of novel vector control strategies. PMID:25360676

  8. Malaria vectors in San José del Guaviare, Orinoquia, Colombia.

    PubMed

    Jiménez, Irene P; Conn, Jan E; Brochero, Helena

    2014-06-01

    This study was conducted to determine Anopheles species composition and their natural infectivity by human Plasmodium in 2 localities with the highest malaria transmission in San Jose del Guaviare, Guaviare, Colombia. A total of 1,009 Anopheles mosquitoes were collected using human landing catches during 8 months in 2010. Anopheles darlingi was the most abundant (83.2%) followed by An. albitarsis s.l. (8.6%), Anopheles braziliensis (3.8%), An. oswaldoi s.l. (1%), and An. rangeli (0.3%). Anopheles darlingi showed the highest human biting rate, and it was found naturally infected with Plasmodium vivax VK210 (0.119%) using enzyme-linked immunosorbent assays. All species were collected biting both indoors and outdoors. Anopheles darlingi showed biting activity overnight with an indoor peak between 1200-0100 h. Therefore, we recommend that malaria prevention strategies focus on 1) insecticide-treated nets to reduce human-vector contact when people are most exposed and unprotected; 2) accurate diagnoses; 3) adequate treatment for patients; 4) more timely epidemiological notification; and 5) improved entomological surveillance. PMID:25102591

  9. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    PubMed Central

    Barillas-Mury, C; Charlesworth, A; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-01-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and Cecropin promoters is also induced in larval nuclear extracts following infection. Gambif1 has the ability to bind to kappaB-like sites in vitro. Co-transfection assays in Drosophila mbn-2 cells show that Gambif1 can activate transcription by interacting with the Drosophila Diptericin regulatory elements, but is not functionally equivalent to Dorsal in this assay. Gambif1 protein translocation to the nucleus and the appearance of kappaB-like DNA binding activity can serve as molecular markers of activation of the immune system and open up the possibility of studying the role of defence reactions in determining mosquito susceptibility/refractoriness to malaria infection. Images PMID:8887560

  10. Malaria vectors in San José del Guaviare, Orinoquia, Colombia.

    PubMed

    Jiménez, Irene P; Conn, Jan E; Brochero, Helena

    2014-06-01

    This study was conducted to determine Anopheles species composition and their natural infectivity by human Plasmodium in 2 localities with the highest malaria transmission in San Jose del Guaviare, Guaviare, Colombia. A total of 1,009 Anopheles mosquitoes were collected using human landing catches during 8 months in 2010. Anopheles darlingi was the most abundant (83.2%) followed by An. albitarsis s.l. (8.6%), Anopheles braziliensis (3.8%), An. oswaldoi s.l. (1%), and An. rangeli (0.3%). Anopheles darlingi showed the highest human biting rate, and it was found naturally infected with Plasmodium vivax VK210 (0.119%) using enzyme-linked immunosorbent assays. All species were collected biting both indoors and outdoors. Anopheles darlingi showed biting activity overnight with an indoor peak between 1200-0100 h. Therefore, we recommend that malaria prevention strategies focus on 1) insecticide-treated nets to reduce human-vector contact when people are most exposed and unprotected; 2) accurate diagnoses; 3) adequate treatment for patients; 4) more timely epidemiological notification; and 5) improved entomological surveillance.

  11. Attractiveness of pregnant women to the malaria vector, Anopheles arabiensis, in Sudan.

    PubMed

    Himeidan, Y E; Elbashir, M I; Adam, I

    2004-09-01

    The attractiveness of pregnant women for mosquitoes was investigated in a peri-urban site in New Halfa, eastern Sudan, in September-October 2003. For 20 nights, the mosquitoes feeding on nine pregnant and nine non-pregnant women sleeping under untreated bednets were collected. The women slept outdoors, in the yards of nine houses, each yard holding one pregnant and one non-pregnant woman. In general, each pregnant woman attracted significantly more Anopheles arabiensis (the main vector of Plasmodium falciparum in the area) than each non-pregnant women, with mean biting rates of 0.94 and 0.49 bites/woman-night, respectively (P = 0.005). In contrast, the two groups of women attracted similar numbers of the other mosquito species collected, which were all culicine. Impregnated bednets need to be used in the study area, at least by the pregnant women (who appear to be at particularly high risk of acquiring malaria).

  12. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    PubMed Central

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  13. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    PubMed

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  14. Studies on Anopheles sinensis, the vector species of vivax malaria in Korea

    PubMed Central

    2005-01-01

    Extensive previous studies on taxonomy, behavior/bionomics and control of Anopheles sinensis are reviewed and summarized. Recent molecular identification revealed that the population of An. sinensis complex includes An. sinensis, An. pullus, An. lesteri and at least two new species, and An. yatsushiroensis is synonmy of An. pullus. An. sinensis is the main vector specie of vivax malaria in Korea. Larvae of An. sinensis breed in wide range of habitats which are naturally-made clean water, stagnant or flowing; main habitats include rice fields, ditches, streams, irrigation cannals, marshes, ponds, ground pools, etc. Their host preferences are highly zoophilic. Human blood rate is very low (0.7-1.7%); nevertheless An. sinensis readily feeds on man when domestic animals are not found near by. They feed on hosts throughout the night from dusk to dawn with a peak period of 02:00-04:00 hours; they are slightly more exophagic (biting outdoors); much larger numbers come into the room when light is on. Main resting places are outdoors such as grasses, vegetable fields and rice fields. A mark-release-recapture study resulted that 37.1% was recaptured within 1 km, 29.4% at 1-3 km, 21.1% at 3-6 km, 10.3% at 6-9 km and 2.1% at 9-12 km distance. An. sinensis hibernate outdoors (mostly under part of dense grasses) during October-March. At the end of the hibernation period (March-April) they feed on cows at daytime. Until today any single measure to effectively control An. sinensis population has not been found. Indoor residual spray with a long-lasting insecticide can not reduce vector population densities, but shorten their life spans in some degree, so contributes to malaria control. PMID:16192749

  15. Vector control in a malaria epidemic occurring within a complex emergency situation in Burundi: a case study

    PubMed Central

    Protopopoff, Natacha; Van Herp, Michel; Maes, Peter; Reid, Tony; Baza, Dismas; D'Alessandro, Umberto; Van Bortel, Wim; Coosemans, Marc

    2007-01-01

    Background African highlands often suffer of devastating malaria epidemics, sometimes in conjunction with complex emergencies, making their control even more difficult. In 2000, Burundian highlands experienced a large malaria outbreak at a time of civil unrest, constant insecurity and nutritional emergency. Because of suspected high resistance to the first and second line treatments, the provincial health authority and Médecins Sans Frontières (Belgium) decided to implement vector control activities in an attempt to curtail the epidemic. There are few reported interventions of this type to control malaria epidemics in complex emergency contexts. Here, decisions and actions taken to control this epidemic, their impact and the lessons learned from this experience are reported. Case description Twenty nine hills (administrative areas) were selected in collaboration with the provincial health authorities for the vector control interventions combining indoor residual spraying with deltamethrin and insecticide-treated nets. Impact was evaluated by entomological and parasitological surveys. Almost all houses (99%) were sprayed and nets use varied between 48% and 63%. Anopheles indoor resting density was significantly lower in treated as compared to untreated hills, the latter taken as controls. Despite this impact on the vector, malaria prevalence was not significantly lower in treated hills except for people sleeping under a net. Discussion Indoor spraying was feasible and resulted in high coverage despite being a logistically complex intervention in the Burundian context (scattered houses and emergency situation). However, it had little impact on the prevalence of malaria infection, possibly because it was implemented after the epidemic's peak. Nevertheless, after this outbreak the Ministry of Health improved the surveillance system, changed its policy with introduction of effective drugs and implementation of vector control to prevent new malaria epidemics

  16. Multimodal Pyrethroid Resistance in Malaria Vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in Western Kenya

    PubMed Central

    Kawada, Hitoshi; Dida, Gabriel O.; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M.; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  17. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    PubMed Central

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  18. Insecticide-treated plastic tarpaulins for control of malaria vectors in refugee camps.

    PubMed

    Graham, K; Mohammad, N; Rehman, H; Nazari, A; Ahmad, M; Kamal, M; Skovmand, O; Guillet, P; Allan, R; Zaim, M; Yates, A; Lines, J; Rowland, M

    2002-12-01

    Spraying of canvas tents with residual pyrethroid insecticide is an established method of malaria vector control in tented refugee camps. In recent years, plastic sheeting (polythene tarpaulins) has replaced canvas as the utilitarian shelter material for displaced populations in complex emergencies. Advances in technology enable polythene sheeting to be impregnated with pyrethroid during manufacture. The efficacy of such material against mosquitoes when erected as shelters under typical refugee camp conditions is unknown. Tests were undertaken with free-flying mosquitoes on entomological study platforms in an Afghan refugee camp to compare the insecticidal efficacy of plastic tarpaulin sprayed with deltamethrin on its inner surface (target dose 30 mg/m2), tarpaulin impregnated with deltamethrin (initially > or = 30 mg/m2) during manufacture, and a tent made from the factory impregnated tarpaulin material. Preliminary tests done in the laboratory with Anopheles stephensi Liston (Diptera: Culicidae) showed that 1-min exposure to factory-impregnated tarpaulins would give 100% mortality even after outdoor weathering in a temperate climate for 12 weeks. Outdoor platform tests with the erected materials (baited with human subjects) produced mosquito mortality rates between 86-100% for sprayed or factory-impregnated tarpaulins and tents (average approximately 40 anophelines and approximately 200 culicines/per platform/night), whereas control mortality (with untreated tarpaulin) was no more than 5%. Fewer than 20% of mosquitoes blood-fed on human subjects under either insecticide-treated or non-treated shelters. The tarpaulin shelter was a poor barrier to host-seeking mosquitoes and treatment with insecticide did not reduce the proportion blood-feeding. Even so, the deployment of insecticide-impregnated tarpaulins in refugee camps, if used by the majority of refugees, has the potential to control malaria by killing high proportions of mosquitoes and so reducing the average

  19. Insecticide-treated plastic tarpaulins for control of malaria vectors in refugee camps.

    PubMed

    Graham, K; Mohammad, N; Rehman, H; Nazari, A; Ahmad, M; Kamal, M; Skovmand, O; Guillet, P; Allan, R; Zaim, M; Yates, A; Lines, J; Rowland, M

    2002-12-01

    Spraying of canvas tents with residual pyrethroid insecticide is an established method of malaria vector control in tented refugee camps. In recent years, plastic sheeting (polythene tarpaulins) has replaced canvas as the utilitarian shelter material for displaced populations in complex emergencies. Advances in technology enable polythene sheeting to be impregnated with pyrethroid during manufacture. The efficacy of such material against mosquitoes when erected as shelters under typical refugee camp conditions is unknown. Tests were undertaken with free-flying mosquitoes on entomological study platforms in an Afghan refugee camp to compare the insecticidal efficacy of plastic tarpaulin sprayed with deltamethrin on its inner surface (target dose 30 mg/m2), tarpaulin impregnated with deltamethrin (initially > or = 30 mg/m2) during manufacture, and a tent made from the factory impregnated tarpaulin material. Preliminary tests done in the laboratory with Anopheles stephensi Liston (Diptera: Culicidae) showed that 1-min exposure to factory-impregnated tarpaulins would give 100% mortality even after outdoor weathering in a temperate climate for 12 weeks. Outdoor platform tests with the erected materials (baited with human subjects) produced mosquito mortality rates between 86-100% for sprayed or factory-impregnated tarpaulins and tents (average approximately 40 anophelines and approximately 200 culicines/per platform/night), whereas control mortality (with untreated tarpaulin) was no more than 5%. Fewer than 20% of mosquitoes blood-fed on human subjects under either insecticide-treated or non-treated shelters. The tarpaulin shelter was a poor barrier to host-seeking mosquitoes and treatment with insecticide did not reduce the proportion blood-feeding. Even so, the deployment of insecticide-impregnated tarpaulins in refugee camps, if used by the majority of refugees, has the potential to control malaria by killing high proportions of mosquitoes and so reducing the average

  20. A comparison of two commercial mosquito traps for the capture of malaria vectors in northern belize, central america.

    PubMed

    Wagman, Joseph; Grieco, John P; Bautista, Kim; Polanco, Jorge; Briceño, Ireneo; King, Russell; Achee, Nicole L

    2014-09-01

    To achieve maximum success from any vector control intervention, it is critical to identify the most efficacious tools available. The principal aim of this study was to evaluate the efficacy of 2 commercially available adult mosquito traps for capturing Anopheles albimanus and An. vestitipennis, 2 important malaria vectors in northern Belize, Central America. Additionally, the impact of outdoor baited traps on mosquito entry into experimental huts was assessed. When operated outside of human-occupied experimental huts, the Centers for Disease Control and Prevention (CDC) miniature light trap, baited with human foot odors, captured significantly greater numbers of female An. albimanus per night (5.1 ± 1.9) than the Biogents Sentinel™ trap baited with BG-Lure™ (1.0 ± 0.2). The 2 trap types captured equivalent numbers of female An. vestitipennis per night, 134.3 ± 45.6 in the CDC trap and 129.6 ± 25.4 in the Sentinel trap. When compared to a matched control hut using no intervention, the use of baited CDC light traps outside an experimental hut did not impact the entry of An. vestitipennis into window interception traps, 17.1 ± 1.3 females per hour in experimental huts vs. 17.2 ± 1.4 females per hour in control huts. However, the use of outdoor baited CDC traps did significantly decrease the entry of An. albimanus into window interception traps from 3.5 ± 0.5 females per hour to 1.9 ± 0.2 females per hour. These results support existing knowledge that the underlying ecological and behavioral tendencies of different Anopheles species can influence trap efficacy. Furthermore, these findings will be used to guide trap selection for future push-pull experiments to be conducted at the study site.

  1. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania

    PubMed Central

    2014-01-01

    Background Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). Methods A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 – 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. Results Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls

  2. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers

    PubMed Central

    Segata, Nicola; Baldini, Francesco; Pompon, Julien; Garrett, Wendy S.; Truong, Duy Tin; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2016-01-01

    Microbes play key roles in shaping the physiology of insects and can influence behavior, reproduction and susceptibility to pathogens. In Sub-Saharan Africa, two major malaria vectors, Anopheles gambiae and An. coluzzii, breed in distinct larval habitats characterized by different microorganisms that might affect their adult physiology and possibly Plasmodium transmission. We analyzed the reproductive microbiomes of male and female An. gambiae and An. coluzzii couples collected from natural mating swarms in Burkina Faso. 16S rRNA sequencing on dissected tissues revealed that the reproductive tracts harbor a complex microbiome characterized by a large core group of bacteria shared by both species and all reproductive tissues. Interestingly, we detected a significant enrichment of several gender-associated microbial biomarkers in specific tissues, and surprisingly, similar classes of bacteria in males captured from one mating swarm, suggesting that these males originated from the same larval breeding site. Finally, we identified several endosymbiotic bacteria, including Spiroplasma, which have the ability to manipulate insect reproductive success. Our study provides a comprehensive analysis of the reproductive microbiome of important human disease vectors, and identifies a panel of core and endosymbiotic bacteria that can be potentially exploited to interfere with the transmission of malaria parasites by the Anopheles mosquito. PMID:27086581

  3. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers.

    PubMed

    Segata, Nicola; Baldini, Francesco; Pompon, Julien; Garrett, Wendy S; Truong, Duy Tin; Dabiré, Roch K; Diabaté, Abdoulaye; Levashina, Elena A; Catteruccia, Flaminia

    2016-01-01

    Microbes play key roles in shaping the physiology of insects and can influence behavior, reproduction and susceptibility to pathogens. In Sub-Saharan Africa, two major malaria vectors, Anopheles gambiae and An. coluzzii, breed in distinct larval habitats characterized by different microorganisms that might affect their adult physiology and possibly Plasmodium transmission. We analyzed the reproductive microbiomes of male and female An. gambiae and An. coluzzii couples collected from natural mating swarms in Burkina Faso. 16S rRNA sequencing on dissected tissues revealed that the reproductive tracts harbor a complex microbiome characterized by a large core group of bacteria shared by both species and all reproductive tissues. Interestingly, we detected a significant enrichment of several gender-associated microbial biomarkers in specific tissues, and surprisingly, similar classes of bacteria in males captured from one mating swarm, suggesting that these males originated from the same larval breeding site. Finally, we identified several endosymbiotic bacteria, including Spiroplasma, which have the ability to manipulate insect reproductive success. Our study provides a comprehensive analysis of the reproductive microbiome of important human disease vectors, and identifies a panel of core and endosymbiotic bacteria that can be potentially exploited to interfere with the transmission of malaria parasites by the Anopheles mosquito. PMID:27086581

  4. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria

    PubMed Central

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-01-01

    Background: New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. Methods: A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Results: Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. Conclusions: This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and

  5. Preliminary observations on cross-mating of the malaria vector, Anopheles sergentii from two Egyptian oases.

    PubMed

    Kenawy, M A; Sowilem, M M; Abdel-Hamid, Y M; Wahba, M M

    2000-12-01

    Intra- and inter-strain crosses were made between randomly collected adults Anopheles sergentii originated from Tersa village (El-Faiyum Governorate) and Siwa oasis (Matruh Governorate). The success of such crosses and their effects on fecundity and fertility of the parental females and on survival and development velocities of the F1 immatures were examined. No overall heterosis effects on such attributes were detected suggesting absence of genetic differences between the vector populations in these two malarious areas.

  6. Morphogenetic characterisation, date of divergence, and evolutionary relationships of malaria vectors Anopheles cruzii and Anopheles homunculus.

    PubMed

    Lorenz, Camila; Patané, José S L; Suesdek, Lincoln

    2015-10-01

    The mosquito species Anopheles cruzii and Anopheles homunculus are co-occurring vectors for etiological agents of malaria in southeastern Brazil, a region known to be a major epidemic spot for malaria outside Amazon region. We sought to better understand the biology of these species in order to contribute to future control efforts by (1) improving species identification, which is complicated by the fact that the females are very similar, (2) investigating genetic composition and morphological differences between the species, (3) inferring their phylogenetic histories in comparison with those of other Anophelinae, and (4) dating the evolutionary divergence of the two species. To characterise the species we used wing geometry and mitochondrial cytochrome oxidase subunit I (COI) gene as morphological and genetic markers, respectively. We also used the genes white, 28S, ITS2, Cytb, and COI in our phylogenetic and dating analyses. A comparative analysis of wing thin-plate splines revealed species-specific wing venation patterns, and the species An. cruzii showed greater morphological diversity (8.74) than An. homunculus (5.58). Concerning the COI gene, An. cruzii was more polymorphic and also showed higher haplotype diversity than An. homunculus, with many rare haplotypes that were displayed by only a few specimens. Phylogenetic analyses revealed that all tree topologies converged and showed [Anopheles bellator+An. homunculus] and [Anopheles laneanus+An. cruzii] as sister clades. Diversification within the subgenus Kerteszia occurred 2-14.2millionyears ago. The landmark data associated with wing shape were consistent with the molecular phylogeny, indicating that this character can distinguish higher level phylogenetic relationships within the Anopheles group. Despite their morphological similarities and co-occurrence, An. cruzii and An. homunculus show consistent differences. Phylogenetic analysis revealed that the species are not sister-groups but species that recently

  7. Integrated vector management guidelines for adult mosquitoes.

    PubMed

    Boyce, Kenneth W; Brown, David A

    2003-12-01

    A written document was developed to clarify the District's adult mosquito-management tactics to other interested individuals and agencies. The program described consists of 7 discrete components: 1) initiation criteria, 2) treatment area delineation, 3) agricultural and land-use practices, 4) meteorological conditions, 5) continuance criteria, 6) termination criteria, and 7) factors influencing implementation. The guidelines were adopted as policy by the District's Board of Trustees in 1998 and have been implemented in each of the last 5 years. The adult mosquito population is monitored with 6 Mosquito Magnets traps strategically located in the rice culture areas. Samples are collected daily and laboratory technicians notify the Adulticide/Airplane Coordinator of collection results before 1:00 p.m. PMID:14710754

  8. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands.

    PubMed

    Foley, D H; Bryan, J H

    2000-03-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (SST) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No. 7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the SST should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead. PMID:10759320

  9. Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands [corrected].

    PubMed

    Foley, D H; Bryan, J H

    2000-12-01

    Among the Punctulatus Group of Anopheles mosquitoes (Diptera: Culicidae), first-instar larvae of the medically unimportant freshwater Anopheles farauti species No. 7 survives a seawater tolerance test (STT) that was previously thought to be diagnostic for the saltwater-tolerant malaria vector species, An. farauti Laveran s.s. Salt tolerance in these two closely related isomorphic species appears to be a shared derived character within the Farauti Complex. Failure to differentiate An. farauti s.s. from An. farauti No.7 will overestimate potential malaria vector numbers and waste limited larval control resources. Use of the STT should therefore be discontinued on Guadalcanal and other techniques such as allozyme electrophoresis used instead [corrected]. PMID:11129712

  10. Preventing Childhood Malaria in Africa by Protecting Adults from Mosquitoes with Insecticide-Treated Nets

    PubMed Central

    Killeen, Gerry F; Smith, Tom A; Ferguson, Heather M; Mshinda, Hassan; Abdulla, Salim; Lengeler, Christian; Kachur, Steven P

    2007-01-01

    Background Malaria prevention in Africa merits particular attention as the world strives toward a better life for the poorest. Insecticide-treated nets (ITNs) represent a practical means to prevent malaria in Africa, so scaling up coverage to at least 80% of young children and pregnant women by 2010 is integral to the Millennium Development Goals (MDG). Targeting individual protection to vulnerable groups is an accepted priority, but community-level impacts of broader population coverage are largely ignored even though they may be just as important. We therefore estimated coverage thresholds for entire populations at which individual- and community-level protection are equivalent, representing rational targets for ITN coverage beyond vulnerable groups. Methods and Findings Using field-parameterized malaria transmission models, we show that high (80% use) but exclusively targeted coverage of young children and pregnant women (representing <20% of the population) will deliver limited protection and equity for these vulnerable groups. In contrast, relatively modest coverage (35%–65% use, with this threshold depending on ecological scenario and net quality) of all adults and children, rather than just vulnerable groups, can achieve equitable community-wide benefits equivalent to or greater than personal protection. Conclusions Coverage of entire populations will be required to accomplish large reductions of the malaria burden in Africa. While coverage of vulnerable groups should still be prioritized, the equitable and communal benefits of wide-scale ITN use by older children and adults should be explicitly promoted and evaluated by national malaria control programmes. ITN use by the majority of entire populations could protect all children in such communities, even those not actually covered by achieving existing personal protection targets of the MDG, Roll Back Malaria Partnership, or the US President's Malaria Initiative. PMID:17608562

  11. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon

    PubMed Central

    2012-01-01

    Background Studies on vector behaviour should be conducted in order to evaluate the effectiveness of vector control measures on malaria protection in endemic areas of Latin America, where P. vivax predominates. This work aims to investigate the fauna of anopheline mosquitoes and verify the impact of integrated vector management in two colonization projects in the Careiro Municipality, Western Brazilian Amazon. Methods Four mosquitoes’ captures were carried out from August 2008 to March 2010, with an interval of six months between each collection. Since September 2009 a large programme to reduce the burden of malaria has started in the two communities by distribution of insecticide-treated bed nets (ITN) and intensification of indoor residual spraying (IRS). Human biting rates (HBRs), entomological inoculation rates (EIRs), malaria incidence rate (MIR) and Plasmodium carrier’s prevalence were used as outcomes to estimate the impact of the control measures. Results A total of 3,189 anophelines were collected, belonging to 13 species. Anopheles darlingi was the predominant species in the period (42.6%), followed by Anopheles albitarsis (38.4%). An. darlingi HBRs showed a notable decreasing trend from the start to the end of the study. Conversely, An. albitarsis increased its contribution to overall HBRs throughout the study. For An. darlingi there was a significant positive correlation between HBRs and MIR (p = 0.002). Anopheles albitarsis HBRs showed a significant negative correlation with the corresponding MIR (p = 0.045). EIR from total anophelines and from An. darlingi and An. albitarsis presented decreasing patterns in the successive collections. Four species of anophelines (An. darlingi, An. albitarsis, Anopheles braziliensis and Anopheles nuneztovari) were naturally infected with Plasmodium, albeit at very low infection rates. There were a decrease in the MIR for both vivax and falciparum malaria and in the prevalence of Plasmodium vivax and

  12. Landscape Movements of Anopheles gambiae Malaria Vector Mosquitoes in Rural Gambia

    PubMed Central

    Thomas, Christopher J.; Cross, Dónall E.; Bøgh, Claus

    2013-01-01

    Background For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector. Methods/Principal Findings We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a ‘heavy-tailed’ distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia. Conclusions/Significance Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development. PMID:23874719

  13. Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex

    PubMed Central

    Krzywinski, Jaroslaw; Li, Cong; Morris, Marion; Conn, Jan E.; Lima, José B.; Povoa, Marinete M.; Wilkerson, Richard C.

    2011-01-01

    Many vectors of human malaria belong to complexes of morphologically indistinguishable cryptic species. Here we report the analysis of the newly sequenced complete mitochondrial DNA molecules from six recognized or putative species of one such group, the Neotropical Anopheles albitarsis complex. The molecular evolution of these genomes had been driven by purifying selection, particularly strongly acting on the RNA genes. Directional mutation pressure associated with the strand-asynchronous asymmetric mtDNA replication mechanism may have shaped a pronounced DNA strand asymmetry in the nucleotide composition in these and other Anopheles species. The distribution of sequence polymorphism, coupled with the conflicting phylogenetic trees inferred from the mitochondrial DNA and from the published white gene fragment sequences, indicates that the evolution of the complex may have involved ancient mtDNA introgression. Six protein coding genes (nad5, nad4, cox3, atp6, cox1 and nad2) have high levels of sequence divergence and are likely informative for population genetics studies. Finally, the extent of the mitochondrial DNA variation within the complex supports the notion that the complex consists of a larger number of species than until recently believed. PMID:21241811

  14. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  15. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    PubMed

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M; Zwiebel, Laurence J

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  16. Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis

    PubMed Central

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T.P.; Yang, Liang

    2014-01-01

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments. PMID:24803570

  17. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  18. Lethal effects of Aspergillus niger against mosquitoes vector of filaria, malaria, and dengue: a liquid mycoadulticide.

    PubMed

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC(50), LC(90), and LC(99) values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm(2), after exposure of seven hours. We have calculated significant LT(90) values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides.

  19. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    PubMed

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species.

  20. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Macias, V; Coleman, J; Bonizzoni, M; James, A A

    2014-01-01

    The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. PMID:24947897

  1. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  2. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  3. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  4. Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis.

    PubMed

    Marsden, Clare Diana; Lee, Yoosook; Kreppel, Katharina; Weakley, Allison; Cornel, Anthony; Ferguson, Heather M; Eskin, Eleazar; Lanzaro, Gregory C

    2014-01-10

    Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, Anopheles arabiensis, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the An. arabiensis genome, with ~800,000 high-confidence, single- nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within An. arabiensis decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes.

  5. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a Malaria Endemic Region in Madhya Pradesh State, Central India

    PubMed Central

    Singh, Neeru; Mishra, Ashok K.; Chand, Sunil K.; Bharti, Praveen K.; Singh, Mrigendra P.; Nanda, Nutan; Singh, Om P.; Sodagiri, Kranti; Udhyakumar, Venkatachalam

    2015-01-01

    Background This study was undertaken in two Primary Health Centers (PHCs) of malaria endemic district Jabalpur in Madhya Pradesh (Central India). Methods In this study we had investigated the relative frequencies of the different anopheline species collected within the study areas by using indoor resting catches, CDC light trap and human landing methods. Sibling species of malaria vectors were identified by cytogenetic and molecular techniques. The role of each vector and its sibling species in the transmission of the different Plasmodium species was ascertained by using sporozoite ELISA. Results A total of 52,857 specimens comprising of 17 anopheline species were collected by three different methods (39,964 by indoor resting collections, 1059 by human landing and 11,834 by CDC light trap). Anopheles culicifacies was most predominant species in all collections (55, 71 and 32% in indoor resting, human landing and light trap collections respectively) followed by An. subpictus and An. annularis. All five sibling species of An. culicifacies viz. species A, B, C, D and E were found while only species T and S of An. fluviatilis were collected. The overall sporozoite rate in An. culicifacies and An. fluviatilis were 0.42% (0.25% for P. falciparum and 0.17% for P. vivax) and 0.90% (0.45% for P. falciparum and 0.45% for P. vivax) respectively. An. culicifacies and An. fluviatilis were found harbouring both P. vivax variants VK-210 and VK-247, and P. falciparum. An. culicifacies sibling species C and D were incriminated as vectors during most part of the year while sibling species T of An. fluviatilis was identified as potential vector in monsoon and post monsoon season. Conclusions An. culicifacies species C (59%) was the most abundant species followed by An. culicifacies D (24%), B (8.7%), E (6.7%) and A (1.5%). Among An. fluviatilis sibling species, species T was common (99%) and only few specimens of S were found. Our study provides crucial information on the prevalence

  6. Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa

    PubMed Central

    Egbendewe-Mondzozo, Aklesso; Musumba, Mark; McCarl, Bruce A.; Wu, Ximing

    2011-01-01

    A semi-parametric econometric model is used to study the relationship between malaria cases and climatic factors in 25 African countries. Results show that a marginal change in temperature and precipitation levels would lead to a significant change in the number of malaria cases for most countries by the end of the century. Consistent with the existing biophysical malaria model results, the projected effects of climate change are mixed. Our model projects that some countries will see an increase in malaria cases but others will see a decrease. We estimate projected malaria inpatient and outpatient treatment costs as a proportion of annual 2000 health expenditures per 1,000 people. We found that even under minimal climate change scenario, some countries may see their inpatient treatment cost of malaria increase more than 20%. PMID:21556186

  7. Preliminary lack of evidence for simian odour preferences of savanna populations of Anopheles gambiae and other malaria vectors.

    PubMed

    Costantini, C; Diallo, M

    2001-12-01

    The behavioural response to several culicine and anopheline mosquitoes to the odour of alternative hosts (human vs monkey) arranged in a choice set-up using odour-baited entry traps (OBETs) was assessed in a field experiment in south-eastern Senegal. The experimental protocol followed procedures analogous to those adopted in olfactometer laboratory tests. Two adult Cercopithecus aethiops and a child of similar mass slept inside separate tents and their odours were drawn to each one of two paired OBETs so that approaching mosquitoes could experience both odour-laden streams before "choosing" to fly against one of the two air currents and into the trap. The traps were set up in a riverine forest clearing near the town of Kedougou, where primates (Papio papio, Cercopithecus aethiops, and Erythrocebus patas) are common. A total of 192 mosquitoes belonging to 4 genera was captured during 8 trap nights. All major human malaria vectors including Anopheles gambiae sensu lato, An. funestus, and An. nili, which constituted the bulk of the trap catch (N = 153), clearly expressed a preference for human odour, with > 90% of captured mosquitoes caught in the human-baited trap. A sub-sample of specimens belonging to the An. gambiae complex caught in both traps was identified by rDNA-PCR and RFLP as An. gambiae sensu stricto molecular form S (7/10), and An. arabiensis (3/10). The only species that did not show a preference for the alternative odour-laden air streams, among those caught in significant numbers, were mosquitoes of the genus Mansonia, with both Ma. uniformis and Ma. africana weakly preferring human odour, but not at a statistically significant level. These results are in accordance with the hypothesis that the strongly anthropophilic feeding preferences of An. gambiae did not evolve from an ancestral association with non-human primates.

  8. Malaria vectors in the Republic of Benin: distribution of species and molecular forms of the Anopheles gambiae complex.

    PubMed

    Djogbénou, Luc; Pasteur, Nicole; Bio-Bangana, Sahabi; Baldet, Thierry; Irish, Seth R; Akogbeto, Martin; Weill, Mylène; Chandre, Fabrice

    2010-05-01

    Members of the Anopheles gambiae complex are among the best malaria vectors in the world, but their vectorial capacities vary between species and populations. A large-scale sampling of An. gambiae sensu lato was carried out in 2006 and 2007 in various bioclimatic areas of Benin (West Africa). The objective of this study was to collate data on the relative frequencies of species and forms within the An. gambiae complex and to produce a map of their spatial distribution. Sampling took place at 30 sites and 2122 females were analyzed. Two species were identified through molecular methods. The overall collection showed a preponderance of An. gambiae s.s., but unexpectedly, An. arabiensis was reported in the coastal-Guinean bioclimatic area characterized by a mean annual rainfall of >1500 mm where only An. gambiae s.s. was reported previously. Our study of Benin indicates that An. arabiensis would be adapted not only to the urban areas but also to the rural humid regions. Among 1717 An. gambiae s.s., 26.5% were of the M form and 73.3% were S form. Few hybrid specimens between the M and S forms were observed (0.2%). Only the spatial distribution of the M form appears to be mainly a function of bioclimatic area. Factors that influence the distribution of these malaria vectors are discussed. This study underlines the need of further investigations of biological, ecological, and behavioral traits of these species and forms to better appreciate their vectorial capacities. Acquisition of entomological field data appears essential to better estimate the stratification of malaria risk and help improve malaria vector control interventions.

  9. Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies

    PubMed Central

    Bukhari, Tullu; Takken, Willem; Githeko, Andrew K.; Koenraadt, Constantianus J. M.

    2011-01-01

    Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. Methodology/Principal Findings A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. Conclusions/Significance We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems. PMID:21738774

  10. Satellite-observed sensitivity of weather condition for forecasting malaria vector distribution in Bandarban District, Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Rahman, Atiqur; Roytman, Leonid; Kogan, Felix; Powell, Al; Goldberg, Mitch; Khan, Mohammad M.

    2008-10-01

    Malaria is a serious public health problem in Bangladesh. Almost thirteen districts in Bangladesh experience epidemics of malaria. Epidemics occur mainly in the highlands of Bangladesh, notably in Bandarban district. This study examined the relationship between environmental factors and malaria incidence in Bandarban district in Bangladesh. This paper examines the association between malaria cases and weekly vegetation health condition index for the region for last fourteen years. The vegetation health index derived from a combination of Advance Very High Resolution Radiometer based normalized difference vegetation index and 10 micrometer (μm) to 11 micrometer (μm) thermal radiances, was designed for monitoring moisture and thermal impacts on vegetation health. It estimates the correlation between malaria cases and Vegetation Health (VH) Indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI)) computed for each week over a period of 14 years (1992-2005). Following the results of correlation analysis the principal components regression (PCR) method was performed on weather components of satellite data and climate variability during each of the two annual malaria seasons to construct a model to predict malaria as a function of the TCI computed for this period. A good correlation was found between malaria cases and TCI characterizing thermal condition during the month of August and September. Furthermore the simulated results found from PCR model were compared with observed malaria statistics showing that the error of the estimates of malaria is less than 10%. Remote sensing therefore demonstrates the potential of a seasonal forecasting which can provide information about peak mosquito to breading conditions. The derived results are potential important for decision makers in the region to control malaria particularly under constraint of limited budget allocations.

  11. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    PubMed

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  12. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    PubMed

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834

  13. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations

    PubMed Central

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834

  14. Entomological investigations on malaria vectors in some war-torn areas in the trincomalee district of sri lanka after settlement of 30-year civil disturbance.

    PubMed

    Gunathilaka, Nayana; Hapugoda, Menaka; Abeyewickreme, Wimaladharma; Wickremasinghe, Rajitha

    2015-01-01

    Background. Malaria was an endemic problem in Trincomalee District, Eastern Province of Sri Lanka. Very few recent data concerning Anopheles are available which transmit malaria. Therefore, the aim of this study is to identify various Anopheles species and the dynamics of anophelines including malaria vectors in Trincomalee District for effective vector control under the current malaria elimination program embarked in the country. Method. Entomological surveys were conducted on a monthly basis, using five entomological techniques, namely, indoor hand collection (HC), window trap collection (WTC), cattle-baited net collection (CBNC), and cattle-baited hut collection (CBHC) from June 2010 to June 2012 in 32 study areas under five entomological sentinel sites. Results. Seventeen anopheline species were encountered, of which Anopheles subpictus was the predominant species in all sampling methods. It is noted that A. culicifacies and A. subpictus have adapted to breed in polluted water in urban settings which may cause serious implications on the epidemiology of malaria in the country. Conclusions. It is important to determine the abundance, biology, distribution, and relationship with climatic factors of main and secondary malaria vectors in Sri Lanka in order to initiate evidence based controlling programs under the current malaria elimination program in Sri Lanka. PMID:25789195

  15. Development and Assessment of Plant-Based Synthetic Odor Baits for Surveillance and Control of Malaria Vectors

    PubMed Central

    Nyasembe, Vincent O.; Tchouassi, David P.; Kirwa, Hillary K.; Foster, Woodbridge A.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2014-01-01

    Background Recent malaria vector control measures have considerably reduced indoor biting mosquito populations. However, reducing the outdoor biting populations remains a challenge because of the unavailability of appropriate lures to achieve this. This study sought to test the efficacy of plant-based synthetic odor baits in trapping outdoor populations of malaria vectors. Methodology and Principal Finding Three plant-based lures ((E)-linalool oxide [LO], (E)-linalool oxide and (E)-β-ocimene [LO + OC], and a six-component blend comprising (E)-linalool oxide, (E)-β-ocimene, hexanal, β-pinene, limonene, and (E)-β-farnesene [Blend C]), were tested alongside an animal/human-based synthetic lure (comprising heptanal, octanal, nonanal, and decanal [Blend F]) and worn socks in a malaria endemic zone in the western part of Kenya. Mosquito Magnet-X (MM-X) and lightless Centre for Disease Control (CDC) light traps were used. Odor-baited traps were compared with traps baited with either solvent alone or solvent + carbon dioxide (controls) for 18 days in a series of randomized incomplete-block designs of days × sites × treatments. The interactive effect of plant and animal/human odor was also tested by combining LO with either Blend F or worn socks. Our results show that irrespective of trap type, traps baited with synthetic plant odors compared favorably to the same traps baited with synthetic animal odors and worn socks in trapping malaria vectors, relative to the controls. Combining LO and worn socks enhanced trap captures of Anopheles species while LO + Blend F recorded reduced trap capture. Carbon dioxide enhanced total trap capture of both plant- and animal/human-derived odors. However, significantly higher proportions of male and engorged female Anopheles gambiae s.l. were caught when the odor treatments did not include carbon dioxide. Conclusion and Significance The results highlight the potential of plant-based odors and specifically linalool oxide, with or

  16. Screening Mosquito House Entry Points as a Potential Method for Integrated Control of Endophagic Filariasis, Arbovirus and Malaria Vectors

    PubMed Central

    Ogoma, Sheila B.; Lweitoijera, Dickson W.; Ngonyani, Hassan; Furer, Benjamin; Russell, Tanya L.; Mukabana, Wolfgang R.; Killeen, Gerry F.; Moore, Sarah J.

    2010-01-01

    Background Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases. Methodology The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control. Findings 23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR)  = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant. Significance This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O'Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria. PMID:20689815

  17. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host.

  18. The Importance of Drains for the Larval Development of Lymphatic Filariasis and Malaria Vectors in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    Castro, Marcia C.; Kanamori, Shogo; Kannady, Khadija; Mkude, Sigsbert; Killeen, Gerry F.; Fillinger, Ulrike

    2010-01-01

    Background Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval habitats remains unknown. Methodology Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of habitats that contained larvae was assessed through the local Moran's I indicator of spatial association. Principal Findings More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence. However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p<0.001) times larger, respectively, in drains with stagnant water. There was a positive association between vegetation and the presence of mosquito larvae (p<0.001). The proportion of habitats with mosquito larvae was spatially correlated. Conclusion Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control

  19. Genomic analyses of three malaria vectors reveals extensive shared polymorphism but contrasting population histories.

    PubMed

    O'Loughlin, Samantha M; Magesa, Stephen; Mbogo, Charles; Mosha, Franklin; Midega, Janet; Lomas, Susan; Burt, Austin

    2014-04-01

    Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evidence of cryptic breeding units. Anopheles merus is the most divergent of the three species, supporting a recent new phylogeny based on chromosomal inversions. Even though the species clusters are well separated, there is extensive shared polymorphism, particularly between A. gambiae and A. arabiensis. Divergence between A. gambiae and A. arabiensis does not vary across the autosomes but is higher in X-linked inversions than elsewhere on X or on the autosomes, consistent with the suggestion that this inversion (or a gene within it) is important in reproductive isolation between the species. The 2La/2L+(a) inversion shows no more evidence of introgression between A. gambiae and A. arabiensis than the rest of the autosomes. Population differentiation within A. gambiae and A. arabiensis is weak over approximately 190-270 km, implying no strong barriers to dispersal. Analysis of Tajima's D and the allele frequency spectrum is consistent with modest population increases in A. arabiensis and A. merus, but a more complex demographic history of expansion followed by contraction in A. gambiae. Although they are less than 200 km apart, the two A. gambiae populations show evidence of different demographic histories.

  20. Development of an exposure-free bednet trap for sampling Afrotropical malaria vectors.

    PubMed

    Mathenge, E M; Killeen, G F; Oulo, D O; Irungu, L W; Ndegwa, P N; Knols, B G J

    2002-03-01

    An exposure-free bednet trap (the 'Mbita trap') for sampling of Afrotropical malaria vectors was developed during preliminary studies of mosquito behaviour around human-occupied bednets. Its mosquito sampling efficiency was compared to the CDC miniature light-trap and human landing catches under semi-field conditions in a screen-walled greenhouse using laboratory-reared Anopheles gambiae Giles sensu stricto (Diptera: Culicidae). When compared in a competitive manner (side by side), the Mbita trap caught 4.1+/-0.5 times as many mosquitoes as the CDC light-trap, hung beside an occupied bednet (P < 0.000 1) and 43.2+/-10% the number caught by human landing catches (P < 0.0001). The ratio of Mbita trap catches to those of the CDC light trap increased with decreasing mosquito density. Mosquito density did not affect the ratio of Mbita trap to human-landing catches. In a non-competitive comparison (each method independent of the other), the Mbita trap caught 89.7+/-10% the number of mosquitoes caught by human landing catches (P < 0.0001) and 1.2+/-0.1 times more mosquitoes than the CDC light trap (P = 0.0008). Differences in Mbita trap performance relative to the human landing catch under noncompetitive vs. competitive conditions were explained by the rate at which each method captured mosquitoes. Such bednet traps do not expose people to potentially infectious mosquito bites and operate passively all night without the need for skilled personnel. This trap is specifically designed to catch host-seeking mosquitoes only and may be an effective, sensitive, user-friendly and economic alternative to existing methods for mosquito surveillance in Africa.

  1. Seasonal prevalence of malaria vectors and entomological inoculation rates in the rubber cultivated area of Niete, South Region of Cameroon

    PubMed Central

    2012-01-01

    Background Development of large scale agro-industries are subject to serious environmental modifications. In malaria endemic areas this would greatly impact on the transmission paradigm. Two cross-sectional entomological surveys to characterize the Anopheles fauna and their entomological inoculation rates were conducted during May 2010 (peak rainy season) and December 2010 (peak dry season) in the intense rubber cultivated area of Niete in southern forested Cameroon. Methods Mosquitoes were sampled by night collections on human volunteers, identified morphologically and members of the Anopheles gambiae complex further identified to species and molecular form. Parity status was determined following the dissection of the ovaries. Plasmodium falciparum circumsporozoite antigen indices were estimated after the identification of CS antigen by ELISA and the average entomological inoculation rates determined. Results A total of 1187 Anopheles was collected, 419 (35.3%) in the rainy season and 768 (64.7%) in the dry season. Species found were the M molecular form of An. gambiae s.s (66.8%), An. ziemanni (28.3%), An. paludis (4.7%), An. smithii (0.2%). An. gambiae M-form was the principal species in the dry (56.2%) and wet (86.2%) seasons. Average overall entomological inoculation rate for the malaria vectors varied between the dry season (1.09 ib/p/n) and the rainy season (2.30 ib/p/n). Conclusions Malaria transmission in Niete occurs both in the dry and rainy season with the intensities peaking in the dry season. This is unlike previous studies in other areas of southern forested Cameroon where transmission generally peaks in the rainy season. Environmental modifications due to agro-industrial activities might have influenced vector distribution and the dynamics of malaria transmission in this area. This necessitates the possible implementation of control strategies that are related to the eco-geography of the area. PMID:22963986

  2. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus.

    PubMed

    Riveron, Jacob M; Irving, Helen; Ndula, Miranda; Barnes, Kayla G; Ibrahim, Sulaiman S; Paine, Mark J I; Wondji, Charles S

    2013-01-01

    Pyrethroid insecticides are critical for malaria control in Africa. However, resistance to this insecticide class in the malaria vector Anopheles funestus is spreading rapidly across Africa, threatening the success of ongoing and future malaria control programs. The underlying resistance mechanisms driving the spread of this resistance in wild populations remain largely unknown. Here, we show that increased expression of two tandemly duplicated P450 genes, CYP6P9a and CYP6P9b, is the main mechanism driving pyrethroid resistance in Malawi and Mozambique, two southern African countries where this insecticide class forms the mainstay of malaria control. Genome-wide transcription analysis using microarray and quantitative RT-PCR consistently revealed that CYP6P9a and CYP6P9b are the two genes most highly overexpressed (>50-fold; q < 0.01) in permethrin-resistant mosquitoes. Transgenic expression of CYP6P9a and CYP6P9b in Drosophila melanogaster demonstrated that elevated expression of either of these genes confers resistance to both type I (permethrin) and type II (deltamethrin) pyrethroids. Functional characterization of recombinant CYP6P9b confirmed that this protein metabolized both type I (permethrin and bifenthrin) and type II (deltamethrin and Lambda-cyhalothrin) pyrethroids but not DDT. Variability analysis identified that a single allele of each of these genes is predominantly associated with pyrethroid resistance in field populations from both countries, which is suggestive of a single origin of this resistance that has since spread across the region. Urgent resistance management strategies should be implemented in this region to limit a further spread of this resistance and minimize its impact on the success of ongoing malaria control programs.

  3. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus

    PubMed Central

    Riveron, Jacob M.; Irving, Helen; Ndula, Miranda; Barnes, Kayla G.; Ibrahim, Sulaiman S.; Paine, Mark J. I.; Wondji, Charles S.

    2013-01-01

    Pyrethroid insecticides are critical for malaria control in Africa. However, resistance to this insecticide class in the malaria vector Anopheles funestus is spreading rapidly across Africa, threatening the success of ongoing and future malaria control programs. The underlying resistance mechanisms driving the spread of this resistance in wild populations remain largely unknown. Here, we show that increased expression of two tandemly duplicated P450 genes, CYP6P9a and CYP6P9b, is the main mechanism driving pyrethroid resistance in Malawi and Mozambique, two southern African countries where this insecticide class forms the mainstay of malaria control. Genome-wide transcription analysis using microarray and quantitative RT-PCR consistently revealed that CYP6P9a and CYP6P9b are the two genes most highly overexpressed (>50-fold; q < 0.01) in permethrin-resistant mosquitoes. Transgenic expression of CYP6P9a and CYP6P9b in Drosophila melanogaster demonstrated that elevated expression of either of these genes confers resistance to both type I (permethrin) and type II (deltamethrin) pyrethroids. Functional characterization of recombinant CYP6P9b confirmed that this protein metabolized both type I (permethrin and bifenthrin) and type II (deltamethrin and Lambda-cyhalothrin) pyrethroids but not DDT. Variability analysis identified that a single allele of each of these genes is predominantly associated with pyrethroid resistance in field populations from both countries, which is suggestive of a single origin of this resistance that has since spread across the region. Urgent resistance management strategies should be implemented in this region to limit a further spread of this resistance and minimize its impact on the success of ongoing malaria control programs. PMID:23248325

  4. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components.

    PubMed

    Costantini, C; Birkett, M A; Gibson, G; Ziesmann, J; Sagnon, N F; Mohammed, H A; Coluzzi, M; Pickett, J A

    2001-09-01

    Afrotropical malaria vectors of the Anopheles gambiae complex (Diptera: Culicidae), particularly An. gambiae sensu stricto, are attracted mainly to human hosts. A major source of human volatile emissions is sweat, from which key human-specific components are the carboxylic acids (E)- and (Z)-3-methyl-2-hexenoic acid and 7-octenoic acid. Electrophysiological studies on the antennae of An. gambiae s.s. showed selective sensitivity to these compounds, with a threshold at 10(-6) g comparable to that of known olfactory stimulants 1-octen-3-ol, p-cresol, isovaleric acid, and lower than threshold sensitivity to L-lactic acid and the synthetic mosquito repellent N,N-diethyltoluamide (DEET). A combination of the acids released at concentrations > 10(-5) g in wind tunnel bioassays significantly reduced the response to CO2, the major attractant released by human hosts, for strains of An. gambiae s.s. originating from East and West Africa. Field trials with odour-baited entry traps (OBETs) in Burkina Faso showed that 7-octenoic acid significantly increased (by 1.7-fold) the catch of females of An. gambiae sensu lato (comprising two sibling species: An. arabiensis Patton and An. gambiae s.s.) in OBETs baited with CO2, whereas combinations of the acids significantly reduced the catch in CO2-baited traps (by 2.1-fold) and in whole human odour-baited traps (by 1.5-fold). The pure (E) and (Z) geometric isomers of 3-methyl-2-hexenoic acid gave comparable results to the (EIZ) isomer mixture. These results provide the first experimental evidence that human-specific compounds affect the behaviour of highly anthropophilic An. gambiae s.l. mosquitoes. The compounds appear to inhibit the upwind flight' response to known long-range attractants, and may serve either to mask' the attractants present or, more probably, to 'arrest' upwind flight when mosquitoes arrive at a host under natural conditions. In the final approach to hosts, vectors are known to reduce their flight speed and increase

  5. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  6. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  7. Insecticidal activity of the essential oil from fruits and seeds of Schinus terebinthifolia Raddi against African malaria vectors

    PubMed Central

    2011-01-01

    Background Alternative insecticides for the control of malaria and filarial vectors are of paramount need as resistance is increasing among classes of insecticides currently in use in the public health sector. In this study, mosquitocidal activity of Schinus terebinthifolia essential oil against Anopheles gambiae s.s., An. arabiensis and Culex quinquefasciatus was assessed in laboratory, semi- field and full- field conditions Method Twenty third instar larvae of both Anopheles gambiae s.s. and Cx. quinquefasciatus were exposed to different dosages of plant extract in both laboratory and semi- field environments. Observation of the mortality response was assessed at intervals of 12, 24, 48 and 72 hours. Adult semi- gravid female mosquitoes were exposed to papers treated with S. terebinthifolia and compared with WHO standard paper treated with alphacypermethrin (0.05%). Results Gas chromatography, coupled to mass spectrometry, identified 15 compounds from S. terebinthifolia extracts, the most abundant identified compound was δ-3-carene (55.36%) and the least was γ-elemene (0.41%). The density of the oil was found to be 0.8086 g/ml. The effective dosages in the insectary ranged from 202.15 to 2625.20 ppm and were further evaluated in the semi- field situation. In the laboratory, the mortality of Cx. quinquefasciatus ranged from 0.5 to 96.75% while for An. gambiae s.s it was from 13.75 to 97.91%. In the semi- field experiments, the mortality rates observed varied for both species with time and concentrations. The LC50 and LC95 value in the laboratory was similar for both species while in the semi- field they were different for each. In wild, adult mosquitoes, the KT50 for S. terebinthifolia was 11.29 minutes while for alphacypermethrin was 19.34 minutes. The 24 hour mortality was found to be 100.0% for S. terebinthifolia and 75.0% for alphacypermethrin which was statistically significant (P < 0.001). Conclusion The efficacy shown by essential oils of fruits and seeds

  8. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    USGS Publications Warehouse

    Woodworth, B.L.; Atkinson, C.T.; Lapointe, D.A.; Hart, P.J.; Spiegel, C.S.; Tweed, E.J.; Henneman, C.; LeBrun, J.; Denette, T.; DeMots, R.; Kozar, K.L.; Triglia, D.; Lease, D.; Gregor, A.; Smith, T.; Duffy, D.

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55-270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24-40% by microscopy and 55-83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on south-eastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations.

  9. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria

    PubMed Central

    Woodworth, Bethany L.; Atkinson, Carter T.; LaPointe, Dennis A.; Hart, Patrick J.; Spiegel, Caleb S.; Tweed, Erik J.; Henneman, Carlene; LeBrun, Jaymi; Denette, Tami; DeMots, Rachel; Kozar, Kelly L.; Triglia, Dennis; Lease, Dan; Gregor, Aaron; Smith, Tom; Duffy, David

    2005-01-01

    The past quarter century has seen an unprecedented increase in the number of new and emerging infectious diseases throughout the world, with serious implications for human and wildlife populations. We examined host persistence in the face of introduced vector-borne diseases in Hawaii, where introduced avian malaria and introduced vectors have had a negative impact on most populations of Hawaiian forest birds for nearly a century. We studied birds, parasites, and vectors in nine study areas from 0 to 1,800 m on Mauna Loa Volcano, Hawaii from January to October, 2002. Contrary to predictions of prior work, we found that Hawaii amakihi (Hemignathus virens), a native species susceptible to malaria, comprised from 24.5% to 51.9% of the avian community at three low-elevation forests (55–270 m). Amakihi were more abundant at low elevations than at disease-free high elevations, and were resident and breeding there. Infection rates were 24–40% by microscopy and 55–83% by serology, with most infected individuals experiencing low-intensity, chronic infections. Mosquito trapping and diagnostics provided strong evidence for year-round local transmission. Moreover, we present evidence that Hawaii amakihi have increased in low elevation habitats on southeastern Hawaii Island over the past decade. The recent emergent phenomenon of recovering amakihi populations at low elevations, despite extremely high prevalence of avian malaria, suggests that ecological or evolutionary processes acting on hosts or parasites have allowed this species to recolonize low-elevation habitats. A better understanding of the mechanisms allowing coexistence of hosts and parasites may ultimately lead to tools for mitigating disease impacts on wildlife and human populations. PMID:15668377

  10. Field evaluation of three plant-based insect repellents against malaria vectors in Vaca Diez Province, the Bolivian Amazon.

    PubMed

    Moore, Sarah J; Lenglet, Annick; Hill, Nigel

    2002-06-01

    The efficacy of repellents against Anopheles darlingi, the main malaria vector in Bolivia, was evaluated. This mosquito has a peak in biting activity early in the evening. Three natural repellents (1 eucalyptus based, 1 neem based, and 1 containing several repellent essential oils) were tested in comparison with 15% deet in human landing catches in Bolivia. The eucalyptus-based repellent containing 30% p-menthane-diol applied at a dose similar to those used in practice gave 96.89% protection for 4 h. Deet gave 84.81% protection. The other 2 products did not provide significant protection from mosquito bites. PMID:12083351

  11. Human Antibody Response to Anopheles Saliva for Comparing the Efficacy of Three Malaria Vector Control Methods in Balombo, Angola

    PubMed Central

    Brosseau, Laura; Drame, Papa Makhtar; Besnard, Patrick; Toto, Jean-Claude; Foumane, Vincent; Le Mire, Jacques; Mouchet, François; Remoue, Franck; Allan, Richard; Fortes, Filomeno; Carnevale, Pierre; Manguin, Sylvie

    2012-01-01

    Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008–2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS) - Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL – Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale. PMID:23028499

  12. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    PubMed

    Magnusson, Kalle; Mendes, Antonio M; Windbichler, Nikolai; Papathanos, Philippos-Aris; Nolan, Tony; Dottorini, Tania; Rizzi, Ermanno; Christophides, George K; Crisanti, Andrea

    2011-01-01

    In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  13. Anopheles (Diptera: Culicidae) malaria vectors in the municipality of Puerto Carreno, Vichada, Colombia

    PubMed Central

    Jiménez, Pilar; Conn, Jan E.; Wirtz, Robert; Brochero, Helena

    2013-01-01

    Introduction The study of the biological aspects of Anopheles spp., strengthens the entomological surveillance. Objective To determine biological aspects and behavior of adult Anopheles mosquitoes in the urban area of Puerto Carreño municipality, Vichada, Colombia. Materials and methods Wild anophelines were collected landing on humans both indoors and outdoors between 18:00h and 06:00h for 50 min/h during two consecutive nights/month for eight months in the urban area of Puerto Carreño. The biting rate activity, the natural infection by Plasmodium falciparum and P. vivax VK247 and VK210 using ELISA, and the annual entomological inoculation rate were determined for each species. The members of the Albitarsis complex were determined by amplificacion of the white gene by polymerase chain reaction. Results In order of abundance the species found were An. darlingi (n=1,166), An. marajoara sensu stricto (n=152), An. braziliensis (n=59), An. albitarsis F (n=25), An. albitarsis sensu lato (n=16), An. argyritarsis (n=3) and An. oswaldoi sensu lato (n=2). An. darlingi showed two activity peaks between 21:00 to 22:00 and 05:00 to 06:00 hours outdoors and between 21:00 to 22:00 and 04:00 to 05:00 indoors. Natural infection of this species was found with P. vivax VK210 and its annual entomological inoculation rate was 2. Natural infection of An marajoara sensu stricto with P. falciparum was found, with an annual entomological inoculation rate of 5 and a peak biting activity between 18:00 to 19:00 hrs both indoors and outdoors. Conclusion Transmission of malaria in the urban area of Puerto Carreño, Vichada, can occur by An. darlingi and An. marajoara s. s. PMID:23235809

  14. Malaria: prevention in travellers

    PubMed Central

    Croft, Ashley

    2000-01-01

    Definition Malaria is caused by a protozoan infection of red blood cells with one of four species of the genus plasmodium: P falciparum, P vivax, P ovale, or P malariae.1 Clinically, malaria may present in different ways, but it is usually characterised by fever (which may be swinging), tachycardia, rigors, and sweating. Anaemia, hepatosplenomegaly, cerebral involvement, renal failure, and shock may occur. Incidence/prevalence Each year there are 300-500 million clinical cases of malaria. About 40% of the world's population is at risk of acquiring the disease.23 Each year 25-30 million people from non-tropical countries visit areas in which malaria is endemic,4 of whom between 10 000 and 30 000 contract malaria.5 Aetiology/risk factors Malaria is mainly a rural disease, requiring standing water nearby. It is transmitted by bites6 from infected female anopheline mosquitoes,7 mainly at dusk and during the night.18 In cities, mosquito bites are usually from female culicene mosquitoes, which are not vectors of malaria.9 Malaria is resurgent in most tropical countries and the risk to travellers is increasing.10 Prognosis Ninety per cent of travellers who contract malaria do not become ill until after they return home.5 “Imported malaria” is easily treated if diagnosed promptly, and it follows a serious course in only about 12% of people.1112 The most severe form of the disease is cerebral malaria, with a case fatality rate in adult travellers of 2-6%,3 mainly because of delays in diagnosis.5 Aims To reduce the risk of infection; to prevent illness and death. Outcomes Rates of malarial illness and death, and adverse effects of treatment. Proxy measures include number of mosquito bites and number of mosquitoes in indoor areas. We found limited evidence linking number of mosquito bites and risk of malaria.13 Methods Clinical Evidence search and appraisal in November 1999. We reviewed all identified systematic reviews and randomised controlled trials (RCTs

  15. Re-Emerging Malaria Vectors in Rural Sahel (nouna, Burkina Faso): the Paluclim Project

    NASA Astrophysics Data System (ADS)

    Vignolles, Cécile; Sauerborn, Rainer; Dambach, Peter; Viel, Christian; Soubeyroux, Jean-Michel; Sié, Ali; Rogier, Christophe; Tourre, Yves M.

    2016-06-01

    The Paluclim project applied the tele-epidemiology approach, linking climate, environment and public health (CNES, 2008), to rural malaria in Nouna (Burkina Faso). It was to analyze the climate impact on vectorial risks, and its consequences on entomological risks forecast. The objectives were to: 1) produce entomological risks maps in the Nouna region, 2) produce dynamic maps on larvae sites and their productivity, 3) study the climate impact on malaria risks, and 4) evaluate the feasibility of strategic larviciding approach.

  16. High efficacy of short-term quinine-antibiotic combinations for treating adult malaria patients in an area in which malaria is hyperendemic.

    PubMed Central

    Metzger, W; Mordmüller, B; Graninger, W; Bienzle, U; Kremsner, P G

    1995-01-01

    In a randomized trial, a three-dose quinine monotherapy was compared with short-term combination regimens of quinine-clindamycin and quinine-doxycycline for treating adult Gabonese patients with Plasmodium falciparum malaria. In quinine-treated patients, only 38% were ultimately cured. In contrast, more than 90% of patients were cured after treatment with either combination regimen. PMID:7695315

  17. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass

    PubMed Central

    Bernabeu, Maria; Danziger, Samuel A.; Avril, Marion; Vaz, Marina; Babar, Prasad H.; Brazier, Andrew J.; Herricks, Thurston; Maki, Jennifer N.; Pereira, Ligia; Mascarenhas, Anjali; Gomes, Edwin; Chery, Laura; Aitchison, John D.; Rathod, Pradipsinh K.; Smith, Joseph D.

    2016-01-01

    The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence. PMID:27185931

  18. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    PubMed

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-01

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials. PMID:24840349

  19. A randomized longitudinal factorial design to assess malaria vector control and disease management interventions in rural Tanzania.

    PubMed

    Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn

    2014-05-16

    The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.

  20. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  1. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies

    PubMed Central

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E.; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

    2012-01-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  2. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil.

  3. Operational efficiency and sustainability of vector control of malaria and dengue: descriptive case studies from the Philippines

    PubMed Central

    2012-01-01

    Background Analysis is lacking on the management of vector control systems in disease-endemic countries with respect to the efficiency and sustainability of operations. Methods Three locations were selected, at the scale of province, municipality and barangay (i.e. village). Data on disease incidence, programme activities, and programme management were collected on-site through meetings and focus group discussions. Results Adaptation of disease control strategies to the epidemiological situation per barangay, through micro-stratification, brings gains in efficiency, but should be accompanied by further capacity building on local situational analysis for better selection and targeting of vector control interventions within the barangay. An integrated approach to vector control, aiming to improve the rational use of resources, was evident with a multi-disease strategy for detection and response, and by the use of combinations of vector control methods. Collaboration within the health sector was apparent from the involvement of barangay health workers, re-orientation of job descriptions and the creation of a disease surveillance unit. The engagement of barangay leaders and use of existing community structures helped mobilize local resources and voluntary services for vector control. In one location, local authorities and the community were involved in the planning, implementation and evaluation of malaria control, which triggered local programme ownership. Conclusions Strategies that contributed to an improved efficiency and sustainability of vector control operations were: micro-stratification, integration of vector control within the health sector, a multi-disease approach, involvement of local authorities, and empowerment of communities. Capacity building on situational analysis and vector surveillance should be addressed through national policy and guidelines. PMID:22873707

  4. Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia

    PubMed Central

    Kirby, Matthew J; Green, Clare; Milligan, Paul M; Sismanidis, Charalambos; Jasseh, Momadou; Conway, David J; Lindsay, Steven W

    2008-01-01

    Background In the pre-intervention year of a randomized controlled trial investigating the protective effects of house screening against malaria-transmitting vectors, a multi-factorial risk factor analysis study was used to identify factors that influence mosquito house entry. Methods Mosquitoes were sampled using CDC light traps in 976 houses, each on one night, in Farafenni town and surrounding villages during the malaria-transmission season in The Gambia. Catches from individual houses were both (a) left unadjusted and (b) adjusted relative to the number of mosquitoes caught in four sentinel houses that were operated nightly throughout the period, to allow for night-to-night variation. Houses were characterized by location, architecture, human occupancy and their mosquito control activities, and the number and type of domestic animals within the compound. Results 106,536 mosquitoes were caught, of which 55% were Anopheles gambiae sensu lato, the major malaria vectors in the region. There were seven fold higher numbers of An. gambiae s.l. in the villages (geometric mean per trap night = 43.7, 95% confidence intervals, CIs = 39.5–48.4) than in Farafenni town (6.3, 5.7–7.2) and significant variation between residential blocks (p < 0.001). A negative binomial multivariate model performed equally well using unadjusted or adjusted trap data. Using the unadjusted data the presence of nuisance mosquitoes was reduced if the house was located in the town (odds ratio, OR = 0.11, 95% CIs = 0.09–0.13), the eaves were closed (OR = 0.71, 0.60–0.85), a horse was tethered near the house (OR = 0.77, 0.73–0.82), and churai, a local incense, was burned in the room at night (OR = 0.56, 0.47–0.66). Mosquito numbers increased per additional person in the house (OR = 1.04, 1.02–1.06) or trapping room (OR = 1.19, 1.13–1.25) and when the walls were made of mud blocks compared with concrete (OR = 1.44, 1.10–1.87). Conclusion This study demonstrates that the risk of

  5. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis.

  6. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Benelli, Giovanni

    2016-02-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. In this scenario, eco-friendly control tools against mosquito vectors are a priority. Green synthesis of silver nanoparticles (AgNP) using a cheap, aqueous leaf extract of Anisomeles indica by reduction of Ag(+) ions from silver nitrate solution has been investigated. Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of A. indica leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the A. indica leaf extract and AgNP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized AgNP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 31.56, 35.21 and 38.08 μg/mL, respectively. Overall, this study firstly shed light on the mosquitocidal potential of A. indica, a potential bioresource for rapid, cheap and effective AgNP synthesis. PMID:26708933

  7. An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns

    PubMed Central

    2012-01-01

    Background More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. Results Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153US$ versus 187US$ per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4

  8. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence

  9. Tropical malaria does not mean hot environments.

    PubMed

    Ikemoto, Takaya

    2008-11-01

    If global warming progresses, many consider that malaria in presently malaria-endemic areas will become more serious, with increasing development rates of the vector mosquito and malaria parasites. However, the correlation coefficients between the monthly malaria cases and the monthly mean of daily maximum temperature were negative, showing that the number of malaria cases in tropical areas of Africa decreases during the season when temperature was higher than normal. Moreover, an analysis of temperature and development rate using a thermodynamic model showed that the estimated intrinsic optimum temperatures for the development of the malaria parasites, Plasmodium falciparum and P. vivax, in the adult mosquito stage and that of the vector mosquito Anopheles gambiae s.s. were all approximately 23-24 degrees C. Here, the intrinsic optimum temperature is defined in the thermodynamic model as the temperature at which it is assumed that there are no or negligible adverse effects for development. Therefore, this study indicates that the development of malaria parasites in their mosquito hosts and the development of their vector mosquitoes are inhibited at temperatures higher than 23-24 degrees C. If global warming progresses further, the present center of malarial endemicity in sub-Saharan Africa will move to an area with an optimum temperature for both the vector and the parasite, migrating to avoid the hot environment.

  10. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia.

    PubMed

    Gutiérrez, Lina A; Gómez, Giovan F; González, John J; Castro, Martha I; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2010-07-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia.

  11. Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia

    PubMed Central

    Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2010-01-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475

  12. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  13. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

  14. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J. I.; Wondji, Charles S.

    2015-01-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  15. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    PubMed

    Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S

    2015-10-01

    Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127

  16. Predicted Distribution of Major Malaria Vectors Belonging to the Anopheles dirus Complex in Asia: Ecological Niche and Environmental Influences

    PubMed Central

    Obsomer, Valerie; Defourny, Pierre; Coosemans, Marc

    2012-01-01

    Methods derived from ecological niche modeling allow to define species distribution based on presence-only data. This is particularly useful to develop models from literature records such as available for the Anopheles dirus complex, a major group of malaria mosquito vectors in Asia. This research defines an innovative modeling design based on presence-only model and hierarchical framework to define the distribution of the complex and attempt to delineate sibling species distribution and environmental preferences. At coarse resolution, the potential distribution was defined using slow changing abiotic factors such as topography and climate representative for the timescale covered by literature records of the species. The distribution area was then refined in a second step using a mask of current suitable land cover. Distribution area and ecological niche were compared between species and environmental factors tested for relevance. Alternatively, extreme values at occurrence points were used to delimit environmental envelopes. The spatial distribution for the complex was broadly consistent with its known distribution and influencing factors included temperature and rainfall. If maps developed from environmental envelopes gave similar results to modeling when the number of sites was high, the results were less similar for species with low number of recorded presences. Using presence-only models and hierarchical framework this study not only predicts the distribution of a major malaria vector, but also improved ecological modeling analysis design and proposed final products better adapted to malaria control decision makers. The resulting maps can help prioritizing areas which need further investigation and help simulate distribution under changing conditions such as climate change or reforestation. The hierarchical framework results in two products one abiotic based model describes the potential maximal distribution and remains valid for decades and the other

  17. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Gantz, Valentino M.; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M.; Bier, Ethan; James, Anthony A.

    2015-01-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  18. Workbook on the Identification of Anopheles Adults. Preliminary Issue.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; Stojanovich, Chester J.

    This self-instructional workbook is designed to enable malaria control workers to identify adults of "Anopheles" species that are important malaria vectors. The morphological features of the adults are illustrated in a programed booklet, which also contains an illustrated taxonomic key to adult females of 29 anopheline species. A glossary and a…

  19. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa).

    PubMed

    Hidalgo, Kevin; Dujardin, Jean-Pierre; Mouline, Karine; Dabiré, Roch K; Renault, David; Simard, Frederic

    2015-03-01

    The mosquito, Anopheles coluzzii is a major vector of human malaria in Africa with widespread distribution throughout the continent. The species hence populates a wide range of environments in contrasted ecological settings often exposed to strong seasonal fluctuations. In the dry savannahs of West Africa, this mosquito population dynamics closely follows the pace of surface water availability: the species pullulates during the rainy season and is able to reproduce throughout the dry season in areas where permanent water bodies are available for breeding. The impact of such environmental fluctuation on mosquito development and the phenotypic quality of emerging adults has however not been addressed in details. Here, we examined and compared phenotypic changes in the duration of pre-imaginal development, body dry mass at emergence and wing size, shape and surface area in young adult females An. coluzzii originated from five distinct geographic locations when they are reared in two contrasting conditions mimicking those experienced by mosquitoes during the rainy season (RS) and at the onset of the dry season (ODS) in Burkina Faso (West Africa). Our results demonstrated strong phenotypic plasticity in all traits, with differences in the magnitude and direction of changes between RS and ODS depending upon the geographic origin, hence the genetic background of the mosquito populations. Highest heterogeneity within population was observed in Bama, where large irrigation schemes allow year-round mosquito breeding. Further studies are needed to explore the adaptive value of such phenotypic plasticity and its relevance for local adaptation in An. coluzzii.

  20. Anopheles (Kerteszia) lepidotus (Diptera: Culicidae), not the malaria vector we thought it was: Revised male and female morphology; larva, pupa, and male genitalia characters; and molecular verification

    PubMed Central

    HARRISON, BRUCE A.; RUIZ-LOPEZ, FREDDY; FALERO, GUILLERMO CALDERON; SAVAGE, HARRY M.; PECOR, JAMES E.; WILKERSON, RICHARD C.

    2015-01-01

    The name Anopheles (Kerteszia) lepidotus Zavortink, commonly used for an important malaria vector in the eastern cordillera of the Andes, is here corrected to An. pholidotus Zavortink. We discovered that An. (Ker.) specimens from Peru, and reared-associated specimens from Ecuador, had unambiguous habitus characters that matched those on the male holotype of An. lepidotus. However, the specimens do not exhibit characters of the female allotype and female paratypes of An. lepidotus, which are actually An. pholidotus. Our specimens are the first correctly associated females of An. lepidotus, which allow us to provide a new morphological interpretation for the adult habitus of this species. This finding is also corroborated by molecular data from a portion of the Cytochrome Oxidase I (COI) gene and ribosomal DNA Internal Transcribed Spacer 2 (rDNA ITS2). The pupal stage of An. lepidotus is described for the first time, and additional larval characters are also noted. Diagnostic morphological characters for the adult, pupal, and larval stages of An. pholidotus are provided to separate the two species. All stages of An. lepidotus are easily separated from other currently known species in subgenus Kerteszia and a new key to the females of An. (Kerteszia) is given. Previously published distribution, bionomics, and medical significance data are corrected and enhanced. PMID:26726290

  1. Trends in Malaria in Odisha, India—An Analysis of the 2003–2013 Time-Series Data from the National Vector Borne Disease Control Program

    PubMed Central

    Pradhan, Madan Mohan; AK, Kavitha; Kar, Priyanka; Sahoo, Krushna Chandra; Panigrahi, Pinaki; Dutta, Ambarish

    2016-01-01

    Background Although Odisha is the largest contributor to the malaria burden in India, no systematic study has examined its malaria trends. Hence, the spatio-temporal trends in malaria in Odisha were assessed against the backdrop of the various anti-malaria strategies implemented in the state. Methods Using the district-wise malaria incidence and blood examination data (2003–2013) from the National Vector Borne Disease Control Program, blood examination-adjusted time-trends in malaria incidence were estimated and predicted for 2003–2013 and 2014–2016, respectively. An interrupted time series analysis using segmented regression was conducted to compare the disease trends between the pre (2003–2007) and post-intensification (2009–2013) periods. Key-informant interviews of state stakeholders were used to collect the information on the various anti-malaria strategies adopted in the state. Results The state annual malaria incidence declined from 10.82/1000 to 5.28/1000 during 2003–2013 (adjusted annual decline: -0.54/1000, 95% CI: -0.78 to -0.30). However, the annual blood examination rate remained almost unchanged from 11.25% to 11.77%. The keyinformants revealed that intensification of anti-malaria activities in 2008 led to a more rapid decline in malaria incidence during 2009–2013 as compared to that in 2003–2007 [adjusted decline: -0.83 (-1.30 to -0.37) and -0.27 (-0.41 to -0.13), respectively]. There was a significant difference in the two temporal slopes, i.e., -0.054 (-0.10 to -0.002, p = 0.04) per 1000 population per month, between these two periods, indicating almost a 200% greater decline in the post-intensification period. Although, the seven southern high-burden districts registered the highest decline, they continued to remain in that zone, thereby, making the achievement of malaria elimination (incidence <1/1000) unlikely by 2017. Conclusion The anti-malaria strategies in Odisha, especially their intensification since 2008, have helped

  2. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    PubMed Central

    2012-01-01

    Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h) 55.20 (after 24 h) and 32.41 ppm (after 48 h) and the LC90 values were 147.40 (after 12h), 99.09 (after 24 h) and 98.84 ppm (after 48 h). The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h) 67.53, 107.60 (after 24 h) and 25.51, 111.17 ppm (after 48 h) respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools. PMID:23206364

  3. Ecological succession and its impact on malaria vectors and their predators in borrow pits in western Ethiopia.

    PubMed

    Kiszewski, Anthony E; Teffera, Zelalem; Wondafrash, Melaku; Ravesi, Michael; Pollack, Richard J

    2014-12-01

    Soil pits excavated for home construction are important larval habitats for malaria vectors in certain parts of Africa. Borrow pits in diverse stages of ecological succession in a maize-farming region of Western Ethiopia were surveyed to assess the relationships between stage of succession and the structure and composition of invertebrate and plant communities, with particular attention to Anopheles gambiae s.l. and An. coustani, the primary local malaria vectors. An array of 82 borrow pits was identified in a multi-lobed drainage basin in the community of Woktola. Each pit was evaluated on its physical features and by faunal and floral surveys during August, 2011, at the height of the longer rainy season (kiremt). Anopheles gambiae s.l. and An. coustani were the sole immature anophelines collected, often coexisting with Culex spp. Sedges were the most common plants within these pits, and included Cyperus elegantulus, C. flavescens, C. erectus and C. assimilis. The legume Smithia abyssinica, Nile grass (Acroceras macrum), cutgrass (Leersia hexandra), clover (Trifolium spp.), and the edible herb Centella asiatica, were also common in these habitats. No plant species in particular was strongly and consistently predictive of the presence or absence of mosquito immatures, particularly with regard to An. coustani. The presence of An.gambiae s.l. immatures in borrow pit habitats was negatively correlated with the presence of backswimmers (Notonectidae) (Z = -2.34, P = 0.019). Young (freshly excavated) borrow pits more likely contained immature An. gambiae s.l. (Z =-2.86, P=0.004). Ecological succession was apparent in older pits, and as they aged, they became less likely to serve as habitats for An. gambiae s.l. (Z=0.26, P=0.796), and more likely to support An. coustani (Z=0.728, P=0.007). As borrow pits age they become less suitable for An. gambiae s.l. breeding and more likely to harbor An. coustani. The abundance of notonectids in habitats was a negative indicator for

  4. First report of the infection of insecticide-resistant malaria vector mosquitoes with an entomopathogenic fungus under field conditions

    PubMed Central

    2011-01-01

    Background Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. Methods This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. Results The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5× for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control

  5. Dose–response tests and semi-field evaluation of lethal and sub-lethal effects of slow release pyriproxyfen granules (Sumilarv®0.5G) for the control of the malaria vectors Anopheles gambiae sensu lato

    PubMed Central

    2013-01-01

    Background Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. Methods Dose–response and standardized field tests were implemented following standard procedures of the World Health Organization’s Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. Results Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77

  6. Diagnosis, Clinical Presentation, and In-Hospital Mortality of Severe Malaria in HIV-Coinfected Children and Adults in Mozambique

    PubMed Central

    Hendriksen, Ilse C. E.; Ferro, Josefo; Montoya, Pablo; Chhaganlal, Kajal D.; Seni, Amir; Gomes, Ermelinda; Silamut, Kamolrat; Lee, Sue J.; Lucas, Marcelino; Chotivanich, Kesinee; Fanello, Caterina I.; Day, Nicholas P. J.; White, Nicholas J.; von Seidlein, Lorenz; Dondorp, Arjen M.

    2012-01-01

    Background. Severe falciparum malaria with human immunodeficiency virus (HIV) coinfection is common in settings with a high prevalence of both diseases, but there is little information on whether HIV affects the clinical presentation and outcome of severe malaria. Methods. HIV status was assessed prospectively in hospitalized parasitemic adults and children with severe malaria in Beira, Mozambique, as part of a clinical trial comparing parenteral artesunate versus quinine (ISRCTN50258054). Clinical signs, comorbidity, complications, and disease outcome were compared according to HIV status. Results. HIV-1 seroprevalence was 11% (74/655) in children under 15 years and 72% (49/68) in adults with severe malaria. Children with HIV coinfection presented with more severe acidosis, anemia, and respiratory distress, and higher peripheral blood parasitemia and plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP2). During hospitalization, deterioration in coma score, convulsions, respiratory distress, and pneumonia were more common in HIV-coinfected children, and mortality was 26% (19/74) versus 9% (53/581) in uninfected children (P < .001). In an age- and antimalarial treatment–adjusted logistic regression model, significant, independent predictors for death were renal impairment, acidosis, parasitemia, and plasma PfHRP2 concentration. Conclusions. Severe malaria in HIV-coinfected patients presents with higher parasite burden, more complications, and comorbidity, and carries a higher case fatality rate. Early identification of HIV coinfection is important for the clinical management of severe malaria. PMID:22752514

  7. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    PubMed

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  8. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  9. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle.

    PubMed

    Hodges, Theresa K; Athrey, Giridhar; Deitz, Kevin C; Overgaard, Hans J; Matias, Abrahan; Caccone, Adalgisa; Slotman, Michel A

    2013-12-01

    On Bioko Island, Equatorial Guinea, indoor residual spraying (IRS) has been part of the Bioko Island Malaria Control Project since early 2004. Despite success in reducing childhood infections, areas of high transmission remain on the island. We therefore examined fluctuations in the effective population size (N e ) of the malaria vector Anopheles gambiae in an area of persistent high transmission over two spray rounds. We analyzed data for 13 microsatellite loci from 791 An. gambiae specimens collected at six time points in 2009 and 2010 and reconstructed the demographic history of the population during this period using approximate Bayesian computation (ABC). Our analysis shows that IRS rounds have a large impact on N e , reducing it by 65%-92% from prespray round N e . More importantly, our analysis shows that after 3-5 months, the An. gambiae population rebounded by 2818% compared shortly following the spray round. Our study underscores the importance of adequate spray round frequency to provide continuous suppression of mosquito populations and that increased spray round frequency should substantially improve the efficacy of IRS campaigns. It also demonstrates the ability of ABC to reconstruct a detailed demographic history across only a few tens of generations in a large population.

  10. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    PubMed

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.

  11. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle

    PubMed Central

    Hodges, Theresa K; Athrey, Giridhar; Deitz, Kevin C; Overgaard, Hans J; Matias, Abrahan; Caccone, Adalgisa; Slotman, Michel A

    2013-01-01

    On Bioko Island, Equatorial Guinea, indoor residual spraying (IRS) has been part of the Bioko Island Malaria Control Project since early 2004. Despite success in reducing childhood infections, areas of high transmission remain on the island. We therefore examined fluctuations in the effective population size (Ne) of the malaria vector Anopheles gambiae in an area of persistent high transmission over two spray rounds. We analyzed data for 13 microsatellite loci from 791 An. gambiae specimens collected at six time points in 2009 and 2010 and reconstructed the demographic history of the population during this period using approximate Bayesian computation (ABC). Our analysis shows that IRS rounds have a large impact on Ne, reducing it by 65%–92% from prespray round Ne. More importantly, our analysis shows that after 3–5 months, the An. gambiae population rebounded by 2818% compared shortly following the spray round. Our study underscores the importance of adequate spray round frequency to provide continuous suppression of mosquito populations and that increased spray round frequency should substantially improve the efficacy of IRS campaigns. It also demonstrates the ability of ABC to reconstruct a detailed demographic history across only a few tens of generations in a large population. PMID:24478799

  12. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae

    PubMed Central

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene-drive constructs designed to target and edit each gene [AU:OK?]. For each locus targeted we observed strong gene drive at the molecular level, with transmission rates to progeny of 91 to 99.6%. Population modelling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to control suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  13. “We have become doctors for ourselves”: motives for malaria self-care among adults in southeastern Tanzania

    PubMed Central

    2014-01-01

    Background Prompt and appropriate treatment of malaria with effective medicines remains necessary if malaria control goals are to be achieved. The theoretical concepts from self-care and the health belief model were used to examine the motivations for malaria self-care among the adult population. Methods A qualitative study was conducted through eight focus group discussions with adult community members to explore their general opinions, views and perceptions of malaria and of its treatments. These groups were followed by 15 in-depth interviews of participants with a recent malaria experience to allow for an in-depth exploration of their self-care practices. The analysis followed principles of grounded theory and was conducted using Nvivo 9 qualitative data management software. Results The self-treatment of malaria at home was found to be a common practice among the study participants. The majority of the participants practiced self-medication with a painkiller as an initial response. The persistence and the worsening of the disease symptoms prompted participants to consider other self-care options. Perceptions that many malaria symptoms are suggestive of other conditions motivated participants to self-refer for malaria test. The accessibility of private laboratory facilities and drug shops motivated their use for malaria tests and for obtaining anti-malarial medicines, respectively. Self-treatment with anti-malarial monotherapy was common, motivated by their perceived effectiveness and availability. The perceived barriers to using the recommended combination treatment, artemether-lumefantrine, were related to the possible side-effects and to uncertainty about their effectiveness, and these doubts motivated some participants to consider self-medication with local herbs. Several factors were mentioned as motivating people for self-care practices. These included poor patient provider relationship, unavailability of medicine and the costs associated with accessing

  14. Changing Malaria Prevalence on the Kenyan Coast since 1974: Climate, Drugs and Vector Control

    PubMed Central

    Snow, Robert W.; Kibuchi, Eliud; Karuri, Stella W.; Sang, Gilbert; Gitonga, Caroline W.; Mwandawiro, Charles; Bejon, Philip; Noor, Abdisalan M.

    2015-01-01

    Background Progress toward reducing the malaria burden in Africa has been measured, or modeled, using datasets with relatively short time-windows. These restricted temporal analyses may miss the wider context of longer-term cycles of malaria risk and hence may lead to incorrect inferences regarding the impact of intervention. Methods 1147 age-corrected Plasmodium falciparum parasite prevalence (PfPR2-10) surveys among rural communities along the Kenyan coast were assembled from 1974 to 2014. A Bayesian conditional autoregressive generalized linear mixed model was used to interpolate to 279 small areas for each of the 41 years since 1974. Best-fit polynomial splined curves of changing PfPR2-10 were compared to a sequence of plausible explanatory variables related to rainfall, drug resistance and insecticide-treated bed net (ITN) use. Results P. falciparum parasite prevalence initially rose from 1974 to 1987, dipped in 1991–92 but remained high until 1998. From 1998 onwards prevalence began to decline until 2011, then began to rise through to 2014. This major decline occurred before ITNs were widely distributed and variation in rainfall coincided with some, but not all, short-term transmission cycles. Emerging resistance to chloroquine and introduction of sulfadoxine/pyrimethamine provided plausible explanations for the rise and fall of malaria transmission along the Kenyan coast. Conclusions Progress towards elimination might not be as predictable as we would like, where natural and extrinsic cycles of transmission confound evaluations of the effect of interventions. Deciding where a country lies on an elimination pathway requires careful empiric observation of the long-term epidemiology of malaria transmission. PMID:26107772

  15. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    NASA Astrophysics Data System (ADS)

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-12-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps.

  16. Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi.

    PubMed

    Epis, Sara; Porretta, Daniele; Mastrantonio, Valentina; Urbanelli, Sandra; Sassera, Davide; De Marco, Leone; Mereghetti, Valeria; Montagna, Matteo; Ricci, Irene; Favia, Guido; Bandi, Claudio

    2014-01-01

    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABC gene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps. PMID:25504146

  17. Differences in malaria care seeking and dispensing outcomes for adults and children attending drug vendors in Nasarawa, Nigeria

    PubMed Central

    Liu, Jenny; Isiguzo, Chinwoke; Sieverding, Maia

    2015-01-01

    Objectives To characterise the differences in care seeking behaviour and dispensing outcomes between adults and children purchasing drugs for malaria at retail shops in Nigeria. Methods In Nasarawa State, retail drug shops were enumerated and a subset of those stocking antimalarials were selected as study sites and surveyed. Customers exiting shops after purchasing antimalarial drugs were surveyed and tested with a malaria rapid diagnostic test. Sick adults and caregivers accompanying sick children were eligible, but individuals purchasing drugs for a sick person that was not present were excluded. Multivariate regression analysis was used to identify the correlates of care seeking and the quality of interaction at the shop. Results Of 737 participants, 80% were adults and 20% were children (under age 18). Caregivers of sick children were more likely to obtain a prescription prior to attending a drug retailer than adults seeking care for themselves and waited a shorter time before seeking care. Caregivers of sick children were also more likely than sick adults to have been asked about symptoms by the retailer, to have been given an examination, and to have purchased an ACT. Fewer than half of respondents had purchased an ACT. Only 14% of adults, but 27% of children were RDT-positive; RDT-positive children were more likely to have had an ACT purchased for them than RDT-positive adults. Conclusions Children with suspected malaria tend to receive better care at drug retailers than adults. The degree of overtreatment and prevalence of dispensing non-recommended antimalarials emphasise the need for routine diagnosis before treatment to properly treat both malaria and non-malaria illnesses. PMID:25877471

  18. Asymmetric Dimethylarginine in Adult Falciparum Malaria: Relationships With Disease Severity, Antimalarial Treatment, Hemolysis, and Inflammation

    PubMed Central

    Barber, Bridget E.; William, Timothy; Grigg, Matthew J.; Parameswaran, Uma; Piera, Kim A.; Yeo, Tsin W.; Anstey, Nicholas M.

    2016-01-01

    Background. Endothelial nitric oxide (NO) bioavailability is impaired in severe falciparum malaria (SM). Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase (NOS), contributes to endothelial dysfunction and is associated with mortality in adults with falciparum malaria. However, factors associated with ADMA in malaria, including the NOS-substrate l-arginine, hemolysis, and antimalarial treatment, are not well understood. Methods. In a prospective observational study of Malaysian adults with SM (N = 22) and non-SM (NSM; N = 124) and healthy controls (HCs), we investigated factors associated with plasma ADMA including the effects of antimalarial treatment. Results. Compared with HCs, ADMA levels were lower in NSM (0.488 µM vs 0.540 µM, P = .001) and in the subset of SM patients enrolled before commencing treatment (0.453 µM [N = 5], P = .068), but levels were higher in SM patients enrolled after commencing antimalarial treatment (0.610 µM [N = 17], P = .026). In SM and NSM, ADMA levels increased significantly to above-baseline levels by day 3. Baseline ADMA was correlated with arginine and cell-free hemoglobin in SM and NSM and inversely correlated with interleukin-10 in NSM. Arginine and the arginine/ADMA ratio (reflective of arginine bioavailability) were lower in SM and NSM compared with HCs, and the arginine/ADMA ratio was lower in SM compared with NSM. Conclusions. Pretreatment ADMA concentrations and l-arginine bioavailability are reduced in SM and NSM. Asymmetric dimethylarginine increases to above-baseline levels after commencement of antimalarial treatment. Arginine, hemolysis, and posttreatment inflammation all likely contribute to ADMA regulation, with ADMA likely contributing to the reduced NO bioavailability in SM. PMID:26985445

  19. Magnetic resonance imaging of the brain in adults with severe falciparum malaria

    PubMed Central

    2014-01-01

    Background Magnetic resonance imaging (MRI) allows detailed study of structural and functional changes in the brain in patients with cerebral malaria. Methods In a prospective observational study in adult Bangladeshi patients with severe falciparum malaria, MRI findings in the brain were correlated with clinical and laboratory parameters, retinal photography and optic nerve sheath diameter (ONSD) ultrasound (a marker of intracranial pressure). Results Of 43 enrolled patients, 31 (72%) had coma and 12 (28%) died. MRI abnormalities were present in 79% overall with mostly mild changes in a wide range of anatomical sites. There were no differences in MRI findings between patients with cerebral and non-cerebral or fatal and non-fatal disease. Subtle diffuse cerebral swelling was common (n = 22/43), but mostly without vasogenic oedema or raised intracranial pressure (ONSD). Also seen were focal extracellular oedema (n = 11/43), cytotoxic oedema (n = 8/23) and mildly raised brain lactate on magnetic resonance spectroscopy (n = 5/14). Abnormalities were much less prominent than previously described in Malawian children. Retinal whitening was present in 36/43 (84%) patients and was more common and severe in patients with coma. Conclusion Cerebral swelling is mild and not specific to coma or death in adult severe falciparum malaria. This differs markedly from African children. Retinal whitening, reflecting heterogeneous obstruction of the central nervous system microcirculation by sequestered parasites resulting in small patches of ischemia, is associated with coma and this process is likely important in the pathogenesis. PMID:24884982

  20. Asymmetric Dimethylarginine in Adult Falciparum Malaria: Relationships With Disease Severity, Antimalarial Treatment, Hemolysis, and Inflammation.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Yeo, Tsin W; Anstey, Nicholas M

    2016-01-01

    Background.  Endothelial nitric oxide (NO) bioavailability is impaired in severe falciparum malaria (SM). Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase (NOS), contributes to endothelial dysfunction and is associated with mortality in adults with falciparum malaria. However, factors associated with ADMA in malaria, including the NOS-substrate l-arginine, hemolysis, and antimalarial treatment, are not well understood. Methods.  In a prospective observational study of Malaysian adults with SM (N = 22) and non-SM (NSM; N = 124) and healthy controls (HCs), we investigated factors associated with plasma ADMA including the effects of antimalarial treatment. Results.  Compared with HCs, ADMA levels were lower in NSM (0.488 µM vs 0.540 µM, P = .001) and in the subset of SM patients enrolled before commencing treatment (0.453 µM [N = 5], P = .068), but levels were higher in SM patients enrolled after commencing antimalarial treatment (0.610 µM [N = 17], P = .026). In SM and NSM, ADMA levels increased significantly to above-baseline levels by day 3. Baseline ADMA was correlated with arginine and cell-free hemoglobin in SM and NSM and inversely correlated with interleukin-10 in NSM. Arginine and the arginine/ADMA ratio (reflective of arginine bioavailability) were lower in SM and NSM compared with HCs, and the arginine/ADMA ratio was lower in SM compared with NSM. Conclusions.  Pretreatment ADMA concentrations and l-arginine bioavailability are reduced in SM and NSM. Asymmetric dimethylarginine increases to above-baseline levels after commencement of antimalarial treatment. Arginine, hemolysis, and posttreatment inflammation all likely contribute to ADMA regulation, with ADMA likely contributing to the reduced NO bioavailability in SM.

  1. Other vector-borne parasitic diseases: animal helminthiases, bovine besnoitiosis and malaria.

    PubMed

    Duvallet, G; Boireau, P

    2015-08-01

    The parasitic diseases discussed elsewhere in this issue of the Scientific and Technical Review are not the only ones to make use of biological vectors (such as mosquitoes or ticks) or mechanical vectors (such as horse flies or Stomoxys flies). The authors discuss two major groups of vector-borne parasitic diseases: firstly, helminthiasis, along with animal filariasis and onchocerciasis, which are parasitic diseases that often take a heavytoll on artiodactylsthroughoutthe world; secondly, parasitic diseases caused by vector-borne protists, foremost of which is bovine besnoitiosis (or anasarca of cattle), which has recently spread through Europe by a dual mode of transmission (direct and by vector). Other protists, such as Plasmodium and Hepatozoon, are also described briefly.

  2. A low-cost mesocosm for the study of behaviour and reproductive potential of Afrotropical mosquito (Diptera: Culicidae) vectors of malaria

    PubMed Central

    Jackson, Bryan T.; Stone, Christopher M.; Ebrahimi, Babak; Briët, Olivier J.T.; Foster, Woodbridge A.

    2014-01-01

    A large-scale mesocosm was constructed and tested for its effectiveness for experiments on behaviour, reproduction, and adult survivorship of the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m3) allowed for semi-natural experiments that increased demand on a mosquito’s energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed easy collection of dead bodies so that daily mortality could be assessed accurately, using a method that accounts for a proportion of bodies being lost. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov Chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single-cohort demonstrated successful mating, blood feeding, oviposition, and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes where space and seasonal cold are constraining factors. PMID:25294339

  3. A low-cost mesocosm for the study of behaviour and reproductive potential in Afrotropical mosquito (Diptera: Culicidae) vectors of malaria.

    PubMed

    Jackson, B T; Stone, C M; Ebrahimi, B; Briët, O J T; Foster, W A

    2015-03-01

    A large-scale mesocosm was constructed and tested for its effectiveness for use in experiments on behaviour, reproduction and adult survivorship in the Afrotropical malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae) in temperate climates. The large space (82.69 m(3) ) allowed for semi-natural experiments that increased demand on a mosquito's energetic reserves in an environment of widely distributed resources. A one-piece prefabricated enclosure, made with white netting and vinyl, prevented the ingress of predators and the egress of mosquitoes. Daylight and white materials prompted the mosquitoes to seclude themselves in restricted daytime resting sites and allowed the easy collection of dead bodies so that daily mortality could be assessed accurately using a method that accounts for the loss of a proportion of bodies. Here, daily, age-dependent mortality rates of males and females were estimated using Bayesian Markov chain Monte Carlo simulation. In overnight experiments, mosquitoes successfully located plants and took sugar meals. A 3-week survival trial with a single cohort demonstrated successful mating, blood feeding, oviposition and long life. The relatively low cost of the mesocosm and the performance of the mosquitoes in it make it a viable option for any behavioural or ecological study of tropical mosquitoes in which space and seasonal cold are constraining factors.

  4. Effectiveness of a new granular formulation of biolarvicide Bacillus thuringiensis Var. israelensis against larvae of malaria vectors in India.

    PubMed

    Tiwari, Satyanarayan; Ghosh, Susanta K; Mittal, Pradeep K; Dash, Aditya P

    2011-01-01

    Control of vector(s) or mosquitoes, in general, through biolarvicide as an alternate biocontrol agent is a greatest desire. We evaluated a water-dispersible granular formulation biolarvicide Bacillus thuringiensis var. israelensis (Bti, H-14 serotype; VectoBac(®) WDG) in the laboratory and also in the field against two principal malaria vectors, Anopheles culicifacies and Anopheles stephensi. Laboratory evaluations against laboratory-reared immature of the two species were carried out at a temperature of 28°C ± 2°C and 70%-80% relative humidity. Field trials were conducted in a rural area and in Bangalore city, Karnataka, South India. First trial against the rural vector An. culicifacies was carried out in stone quarry pits at dosages of 0.05, 0.2, and 1 g/m(2). The second trial against urban vector An. stephensi was carried out in ring wells at 0.05, 0.1, 0.2, 0.5, and 1 g/m(2) dosages. Laboratory tests revealed increased efficacy against An. stephensi. The fifty percent lethal concentration (LC(50)) and LC(90) values against An. culicifacies and An. stephensi were 0.348 and 1.008 mg/L (χ(2) = 8.49; p > 0.05) and 0.245 and 0.533 mg/L (χ(2) = 4.67; p < 0.05), respectively. Based on the findings of no pupal production in the field, the formulation was effective up to 14 days at 0.2 g/m(2) or more appropriately at 0.25 g/m(2) dose for both the species under field conditions. We discuss how this new formulation was evaluated against An. culicifacies and An. stephensi under laboratory and field conditions. No adverse effects were observed on the nontarget species such as frogs, their tadpoles, small local fish, Notonectid bugs, and water scatters. We conclude that VectoBac WDG is effective at 0.25 g/m(2) and be recommended for its use in the vector-borne disease control program under integrated vector management concept. PMID:20491582

  5. Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model

    PubMed Central

    Kiware, Samson S.; Corliss, George; Merrill, Stephen; Lwetoijera, Dickson W.; Devine, Gregor; Majambere, Silas; Killeen, Gerry F.

    2015-01-01

    Background Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis - malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. Methods and Findings Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats (Clx) that persist or retain PPF activity (Ux) for only one week (Clx→1, where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of

  6. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors.

    PubMed

    Donnelly, Martin J; Isaacs, Alison T; Weetman, David

    2016-03-01

    Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making.

  7. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors.

    PubMed

    Donnelly, Martin J; Isaacs, Alison T; Weetman, David

    2016-03-01

    Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making. PMID:26750864

  8. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators.

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni

    2016-04-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 μg/ml (CQ-s) and 51.16 μg/ml (CQ-r). AuNP IC50 was 69.47 μg/ml (CQ-s) and 76

  9. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators.

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni

    2016-04-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world's population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2-43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC50 was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC50) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of C. guianensis flower extract was 43.21 μg/ml (CQ-s) and 51.16 μg/ml (CQ-r). AuNP IC50 was 69.47 μg/ml (CQ-s) and 76

  10. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding

    PubMed Central

    2011-01-01

    Background Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae. Results We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree. Conclusions These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies

  11. Mitochondrial DNA Detects a Complex Evolutionary History with Pleistocene Epoch Divergence for the Neotropical Malaria Vector Anopheles nuneztovari Sensu Lato

    PubMed Central

    Scarpassa, Vera Margarete; Conn, Jan E.

    2011-01-01

    Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene Epoch. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene Epoch for New World anophelines. PMID:22049039

  12. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data.

    PubMed

    Dlamini, Sabelo Nick; Franke, Jonas; Vounatsou, Penelope

    2015-06-03

    Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.

  13. Early Phase Clinical Trials with Human Immunodeficiency Virus-1 and Malaria Vectored Vaccines in The Gambia: Frontline Challenges in Study Design and Implementation

    PubMed Central

    Afolabi, Muhammed O.; Adetifa, Jane U.; Imoukhuede, Egeruan B.; Viebig, Nicola K.; Kampmann, Beate; Bojang, Kalifa

    2014-01-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high. Unique challenges, which affect planning and implementation of vaccine trials according to internationally accepted standards have thus been identified. In this review, we highlight specific challenges encountered during two early phase trials of novel HIV-1 and malaria vectored vaccine candidates conducted in The Gambia and how some of these issues were pragmatically addressed. We hope our experience will be useful for key study personnel involved in day-to-day running of similar clinical trials. It may also guide future design and implementation of vaccine trials in resource-constrained settings. PMID:24615122

  14. Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Gitawati, Retno; Tjitra, Emiliana; Kenangalem, Enny; McNeil, Yvette R; Darcy, Christabelle J; Granger, Donald L; Weinberg, J Brice; Lopansri, Bert K; Price, Ric N; Duffull, Stephen B; Celermajer, David S; Anstey, Nicholas M

    2007-10-29

    Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia-peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33-1.47) than in MSM (1.82; 95% CI = 1.7-2.02) and controls (1.93; 95% CI = 1.8-2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6-34; P = 0.006) and exhaled NO by 55% (95% CI = 32-73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted.

  15. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  16. Shape of Key Malaria Protein Could Help Improve Vaccine Efficacy

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  17. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America

    PubMed Central

    2013-01-01

    Background Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene. The aim of this work was to characterize the homologous kdr region of the voltage-gated sodium channel gene in An. albimanus and to conduct a preliminary retrospective analysis of field samples collected in the 1990’s, coinciding with a time of intense pyrethroid application related to agricultural and public health insect control in the region. Methods Degenerate primers were designed to amplify the homologous kdr region in a pyrethroid-susceptible laboratory strain (Sanarate) of An. albimanus. Subsequently, a more specific primer pair was used to amplify and sequence the region that contains the 1014 codon associated with pyrethroid resistance in other Anopheles spp. (L1014F, L1014S or L1014C). Results Direct sequencing of the PCR products confirmed the presence of the susceptible kdr allele in the Sanarate strain (L1014) and the presence of homozygous-resistant kdr alleles in field-collected individuals from Mexico (L1014F), Nicaragua (L1014C) and Costa Rica (L1014C). Conclusions For the first time, the kdr region in An. albimanus is described. Furthermore, molecular evidence suggests the presence of kdr-type resistance in field-collected An. albimanus in Mesoamerica in the 1990s. Further research is needed to conclusively determine an association between the genotypes and resistant phenotypes, and to what extent they may compromise current vector control efforts. PMID:24330978

  18. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  19. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons. PMID:26337272

  20. Changes in the burden of malaria following scale up of malaria control interventions in Mutasa District, Zimbabwe

    PubMed Central

    2013-01-01

    Background To better understand trends in the burden of malaria and their temporal relationship to control activities, a survey was conducted to assess reported cases of malaria and malaria control activities in Mutasa District, Zimbabwe. Methods Data on reported malaria cases were abstracted from available records at all three district hospitals, three rural hospitals and 25 rural health clinics in Mutasa District from 2003 to 2011. Results Malaria control interventions were scaled up through the support of the Roll Back Malaria Partnership, the Global Fund to Fight AIDS, Tuberculosis and Malaria, and The President’s Malaria Initiative. The recommended first-line treatment regimen changed from chloroquine or a combination of chloroquine plus sulphadoxine/pyrimethamine to artemisinin-based combination therapy, the latter adopted by 70%, 95% and 100% of health clinics by 2008, 2009 and 2010, respectively. Diagnostic capacity improved, with rapid diagnostic tests (RDTs) available in all health clinics by 2008. Vector control consisted of indoor residual spraying and distribution of long-lasting insecticidal nets. The number of reported malaria cases initially increased from levels in 2003 to a peak in 2008 but then declined 39% from 2008 to 2010. The proportion of suspected cases of malaria in older children and adults remained high, ranging from 75% to 80%. From 2008 to 2010, the number of RDT positive cases of malaria decreased 35% but the decrease was greater for children younger than five years of age (60%) compared to older children and adults (26%). Conclusions The burden of malaria in Mutasa District decreased following the scale up of malaria control interventions. However, the persistent high number of cases in older children and adults highlights the need for strategies to identify locally effective control measures that target all age groups. PMID:23815862

  1. Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes

    PubMed Central

    2011-01-01

    Background Anopheles nili is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species. Results Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of An. nili using fluorescent in situ hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the An. nili genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of An. nili based on in silico sequence similarity and chromosome synteny with Anopheles gambiae. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions 2Rb and 2Rc. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the 2Rb inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural An. nili populations collected from Burkina Faso. Conclusions Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in An. nili showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences

  2. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data.

    PubMed Central

    Lindsay, S W; Parson, L; Thomas, C J

    1998-01-01

    Members of the Anopheles gambiae complex are major malaria vectors in Africa. We tested the hypothesis that the range and relative abundance of the two major vectors in the complex, An. gambiae sensu stricto and An. arabiensis, could be defined by climate. Climate was characterized at mosquito survey sites by extracting data for each location from climate surfaces using a Geographical Information System. Annual precipitation, together with annual and wet season temperature, defined the ranges of both vectors and were used to map suitable climate zones. Using data from West Africa, we found that where the species were sympatric, An. gambiae s.s. predominated in saturated environments, and An. arabiensis was more common in sites subject to desiccation (r2 = 0.875, p < 0.001). We used the nonlinear equation that best described this relationship to map habitat suitability across Africa. This simple model predicted accurately the relative abundance of both vectors in Tanzania (rs = 0.745, p = 0.002), where species composition is highly variable. The combined maps of species' range and relative abundance showed very good agreement with published maps. This technique represents a new approach to mapping the distribution of malaria vectors over large areas and may facilitate species-specific vector control activities. PMID:9633110

  3. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. PMID:26995063

  4. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors.

  5. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles.

    PubMed

    Riandey, M F; Sannier, C; Peltre, G; Monteny, N; Cavaleyra, M

    1996-06-01

    Lactate dehydrogenase (Ldh) electrophoresis showed the presence of Plasmodium yoelii yoelii in Anopheles stephensi and An. gambiae. The Ldh appeared as an additional band (pLdh) whose activity was more intense with 3-acetyl pyridine adenine dinucleotide as coenzyme than with beta nicotin-amide adenine dinucleotide. Several allelic forms occurred both in the vector and the host. The isoelectric point of Ldh, similar in the vector and host, differed from those of Ldh from mosquito and mouse. The presence of pLdh was detected from the 2nd to the 28th day of infection. The pLdh appeared to be proportional to the number of sporozoites present in infected salivary glands. However, pLdh was not found in salivary glands or midguts, but it was detected in the rest of the corresponding mosquito. The origin and use of pLdh as a marker of Plasmodium in its vector is discussed. PMID:8827592

  6. Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria.

    PubMed

    Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Todjinou, Damien; Odjo, Abibath; Malone, David; Ismail, Hanafy; Akogbeto, Martin; Rowland, Mark

    2016-09-14

    Olyset Duo is a new long-lasting insecticidal net treated with permethrin (a pyrethroid) and pyriproxyfen, an insect growth regulator that disrupts the maturation of oocytes in mosquitoes exposed to the net. We tested the Olyset Duo net against pyrethroid-resistant Anopheles gambiae mosquitoes, which transmit malaria parasites, in laboratory bioassays and in a trial in Benin using experimental huts that closely resemble local habitations. Host-seeking mosquitoes that entered to feed were free to contact the occupied nets and were collected the next morning from exit traps. Surviving blood-fed mosquitoes were observed for effects on reproduction. Control nets were treated with pyrethroid only or pyriproxyfen only, and nets were tested unwashed and after 20 standardized washes. The Olyset Duo net showed improved efficacy and wash resistance relative to the pyrethroid-treated net in terms of mosquito mortality and prevention of blood feeding. The production of offspring among surviving blood-fed A. gambiae in the hut trial was reduced by the pyriproxyfen-treated net and the Olyset Duo net both before washing (90 and 71% reduction, respectively) and after washing (38 and 43% reduction, respectively). The degree of reproductive suppression in the hut trial was predicted by laboratory tunnel tests but not by cone bioassays. The overall reduction in reproductive rate of A. gambiae with the Olyset Duo net in the trial was 94% with no washing and 78% after 20 washes. The Olyset Duo net has the potential to provide community control of mosquito populations and reduce malaria transmission in areas of high insecticide resistance.

  7. Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria.

    PubMed

    Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Todjinou, Damien; Odjo, Abibath; Malone, David; Ismail, Hanafy; Akogbeto, Martin; Rowland, Mark

    2016-09-14

    Olyset Duo is a new long-lasting insecticidal net treated with permethrin (a pyrethroid) and pyriproxyfen, an insect growth regulator that disrupts the maturation of oocytes in mosquitoes exposed to the net. We tested the Olyset Duo net against pyrethroid-resistant Anopheles gambiae mosquitoes, which transmit malaria parasites, in laboratory bioassays and in a trial in Benin using experimental huts that closely resemble local habitations. Host-seeking mosquitoes that entered to feed were free to contact the occupied nets and were collected the next morning from exit traps. Surviving blood-fed mosquitoes were observed for effects on reproduction. Control nets were treated with pyrethroid only or pyriproxyfen only, and nets were tested unwashed and after 20 standardized washes. The Olyset Duo net showed improved efficacy and wash resistance relative to the pyrethroid-treated net in terms of mosquito mortality and prevention of blood feeding. The production of offspring among surviving blood-fed A. gambiae in the hut trial was reduced by the pyriproxyfen-treated net and the Olyset Duo net both before washing (90 and 71% reduction, respectively) and after washing (38 and 43% reduction, respectively). The degree of reproductive suppression in the hut trial was predicted by laboratory tunnel tests but not by cone bioassays. The overall reduction in reproductive rate of A. gambiae with the Olyset Duo net in the trial was 94% with no washing and 78% after 20 washes. The Olyset Duo net has the potential to provide community control of mosquito populations and reduce malaria transmission in areas of high insecticide resistance. PMID:27629488

  8. Impact of long-lasting, insecticidal nets on anaemia and prevalence of Plasmodium falciparum among children under five years in areas with highly resistant malaria vectors

    PubMed Central

    2014-01-01

    Background The widespread use of insecticide-treated nets (LLINs) leads to the development of vector resistance to insecticide. This resistance can reduce the effectiveness of LLIN-based interventions and perhaps reverse progress in reducing malaria morbidity. To prevent such difficulty, it is important to know the real impact of resistance in the effectiveness of mosquito nets. Therefore, an assessment of LLIN efficacy was conducted in malaria prevention among children in high and low resistance areas. Methods The study was conducted in four rural districts and included 32 villages categorized as low or high resistance areas in Plateau Department, south-western Benin. Larvae collection was conducted to measure vector susceptibility to deltamethrin and knockdown resistance (kdr) frequency. In each resistance area, around 500 children were selected to measure the prevalence of malaria infection as well as the prevalence of anaemia associated with the use of LLINs. Results Observed mortalities of Anopheles gambiae s.s population exposed to deltamethrin ranged from 19 to 96%. Knockdown resistance frequency was between 38 and 84%. The prevalence of malaria infection in children under five years was 22.4% (19.9-25.1). This prevalence was 17.3% (14.2-20.9) in areas of high resistance and 27.1% (23.5-31.1) in areas of low resistance (p = 0.04). Eight on ten children that were aged six - 30 months against seven on ten of those aged 31–59 months were anaemic. The anaemia observed in the six to 30-month old children was significantly higher than in the 31–59 month old children (p = 0.00) but no difference associated with resistance areas was observed (p = 0.35). The net use rate was 71%. The risk of having malaria was significantly reduced (p < 0.05) with LLIN use in both low and high resistance areas. The preventive effect of LLINs in high resistance areas was 60% (95% CI: 40–70), and was significantly higher than that observed in low resistance

  9. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso.

    PubMed

    Dabiré, K R; Diabaté, A; Paré-Toé, L; Rouamba, J; Ouari, A; Fontenille, D; Baldet, T

    2008-06-01

    A longitudinal entomological study was carried out from 1999 to 2001 in Lena, a humid savannah village in the western region of Burkina Faso in order to establish malaria vector bionomics and the dynamics of malaria transmission. In the first year, malaria transmission was mainly due to An. gambiae s.s., but during the two later years was due to An. funestus, which were observed in high frequency towards the end of the rainy season. PCR identification of samples of An. gambiae s.1. showed 93% to be An. gambiae s.s. and 7% An. arabiensis. An. funestus constituting more than 60% of the vectors were identified in PCR as An. funestus s.s. The persistence of intense vectorial activity in this village was probably due to the road building in a swampy area creating a semi-permanent swamp that provided large sites for larval mosquitoes. These swampy sites seemed to be more favorable for An. funestus than for An. gambiae s.s. Thus, land development must be monitored and subjected to planning to minimize vector proliferation. Such a system of planning could lead to the restriction or even elimination of the swamp that is the source of larvae developing in the heart of the village. PMID:18697309

  10. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    PubMed

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  11. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis.

    PubMed

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M; Kreppel, Katharina S; Kihonda, Anicet; Govella, Nicodem J; Collier, Travis C; Cornel, Anthony J; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C; Weakley, Allison M; Lanzaro, Gregory C

    2016-09-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  12. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis

    PubMed Central

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M.; Kreppel, Katharina S.; Kihonda, Anicet; Govella, Nicodem J.; Collier, Travis C.; Cornel, Anthony J.; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C.; Weakley, Allison M.; Lanzaro, Gregory C.

    2016-01-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  13. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso.

    PubMed

    Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago

    2015-08-01

    A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical

  14. Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso.

    PubMed

    Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago

    2015-08-01

    A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical

  15. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions.

    PubMed

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  16. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  17. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  18. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae)

    PubMed Central

    Karunamoorthi, Kaliyaperumal; Girmay, Askual; Fekadu, Samuel

    2014-01-01

    Objective To screen the essential oil of Juniperus procera (J. procera) (Cupressaceae) for larvicidal activity against late third instar larvae of Anopheles arabiensis (An. arabiensis) Patton, the principle malaria vector in Ethiopia. Methods The essential oil of J. procera was evaluated against the larvae of An. arabiensis under the laboratory and semi-field conditions by adopting the World Health Organization standard protocols. The larval mortality was observed for 24 h of post exposure. Results The essential oil of J. procera has demonstrated varying degrees of larvicidal activity against An. arabiensis. The LC50 and LC90 values of J. procera were 14.42 and 24.65 mg/L, respectively under the laboratory conditions, and from this data, a Chi-square value 6.662 was observed to be significant at the P=0.05 level. However, under the semi-field conditions the LC50 and LC90 values of J. procera were 24.51 and 34.21 mg/L, respectively and a Chi-square value 4.615 was significant at the P=0.05 level. The observations clearly showed that larval mortality rate is completely time and dose-dependent as compared with the control. Conclusions This investigation indicates that J. procera could serve as a potential larvicidal agent against insect vector of diseases, particularly An. arabiensis. However further studies are strongly recommended for the identification of the chemical constituents and the mode of action towards the rational design of alternative promising insecticidal agents in the near future. PMID:25183156

  19. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

  20. Structural and Inhibitory Effects of Hinge Loop Mutagenesis in Serpin-2 from the Malaria Vector Anopheles gambiae*

    PubMed Central

    Zhang, Xin; Meekins, David A.; An, Chunju; Zolkiewski, Michal; Battaile, Kevin P.; Kanost, Michael R.; Lovell, Scott; Michel, Kristin

    2015-01-01

    Serpin-2 (SRPN2) is a key negative regulator of the melanization response in the malaria vector Anopheles gambiae. SRPN2 irreversibly inhibits clip domain serine proteinase 9 (CLIPB9), which functions in a serine proteinase cascade culminating in the activation of prophenoloxidase and melanization. Silencing of SRPN2 in A. gambiae results in spontaneous melanization and decreased life span and is therefore a promising target for vector control. The previously determined structure of SRPN2 revealed a partial insertion of the hinge region of the reactive center loop (RCL) into β sheet A. This partial hinge insertion participates in heparin-linked activation in other serpins, notably antithrombin III. SRPN2 does not contain a heparin binding site, and any possible mechanistic function of the hinge insertion was previously unknown. To investigate the function of the SRPN2 hinge insertion, we developed three SRPN2 variants in which the hinge regions are either constitutively expelled or inserted and analyzed their structure, thermostability, and inhibitory activity. We determined that constitutive hinge expulsion resulted in a 2.7-fold increase in the rate of CLIPB9Xa inhibition, which is significantly lower than previous observations of allosteric serpin activation. Furthermore, we determined that stable insertion of the hinge region did not appreciably decrease the accessibility of the RCL to CLIPB9. Together, these results indicate that the partial hinge insertion in SRPN2 does not participate in the allosteric activation observed in other serpins and instead represents a molecular trade-off between RCL accessibility and efficient formation of an inhibitory complex with the cognate proteinase. PMID:25525260

  1. SEASONAL DISTRIBUTION OF MALARIA VECTORS (DIPTERA: CULICIDAE) IN RURAL LOCALITIES OF PORTO VELHO, RONDÔNIA, BRAZILIAN AMAZON

    PubMed Central

    GIL, Luiz Herman Soares; RODRIGUES, Moreno de Souza; de LIMA, Alzemar Alves; KATSURAGAWA, Tony Hiroshi

    2015-01-01

    We conducted a survey of the malaria vectors in an area where a power line had been constructed, between the municipalities of Porto Velho and Rio Branco, in the states of Rondônia and Acre, respectively. The present paper relates to the results of the survey of Anopheles fauna conducted in the state of Rondônia. Mosquito field collections were performed in six villages along the federal highway BR 364 in the municipality of Porto Velho, namely Porto Velho, Jaci Paraná, Mutum Paraná, Vila Abunã, Vista Alegre do Abunã, and Extrema. Mosquito captures were performed at three distinct sites in each locality during the months of February, July, and October 2011 using a protected human-landing catch method; outdoor and indoor captures were conducted simultaneously at each site for six hours. In the six sampled areas, we captured 2,185 mosquitoes belonging to seven Anopheles species. Of these specimens, 95.1% consisted of Anopheles darlingi, 1.8% An. triannulatus l.s., 1.7% An. deaneorum, 0.8% An. konderi l.s., 0.4 An. braziliensis, 0.1% An. albitarsis l.s., and 0.1% An. benarrochi. An. darlingi was the only species found in all localities; the remaining species occurred in sites with specific characteristics. PMID:26200969

  2. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    PubMed

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  3. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Labeeba, Mohammed Aamina; Panneerselvam, Chellasamy; Dinesh, Devakumar; Suresh, Udaiyan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Nicoletti, Marcello; Benelli, Giovanni

    2015-10-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. We biosynthesized silver nanoparticles (AgNP) using Aristolochia indica extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. In laboratory, LC50 of A. indica extract against Anopheles stephensi ranged from 262.66 (larvae I) to 565.02 ppm (pupae). LC50 of AgNP against A. stephensi ranged from 3.94 (larvae I) to 15.65 ppm (pupae). In the field, the application of A. indica extract and AgNP (10 × LC50) leads to 100% larval reduction after 72 h. In laboratory, 24-h predation efficiency of Diplonychus indicus against A. stephensi larvae was 33% (larvae II) and 57% (larvae III). In AgNP-contaminated environment (1 ppm), it was 45.5% (larvae II) and 71.75% (larvae III). Overall, A. indica-synthesized AgNP may be considered as newer and safer control tools against Anopheles vectors.

  4. Climate influences on the cost-effectiveness of vector-based interventions against malaria in elimination scenarios.

    PubMed

    Parham, Paul E; Hughes, Dyfrig A

    2015-04-01

    Despite the dependence of mosquito population dynamics on environmental conditions, the associated impact of climate and climate change on present and future malaria remains an area of ongoing debate and uncertainty. Here, we develop a novel integration of mosquito, transmission and economic modelling to assess whether the cost-effectiveness of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) against Plasmodium falciparum transmission by Anopheles gambiae s.s. mosquitoes depends on climatic conditions in low endemicity scenarios. We find that although temperature and rainfall affect the cost-effectiveness of IRS and/or LLIN scale-up, whether this is sufficient to influence policy depends on local endemicity, existing interventions, host immune response to infection and the emergence rate of insecticide resistance. For the scenarios considered, IRS is found to be more cost-effective than LLINs for the same level of scale-up, and both are more cost-effective at lower mean precipitation and higher variability in precipitation and temperature. We also find that the dependence of peak transmission on mean temperature translates into optimal temperatures for vector-based intervention cost-effectiveness. Further cost-effectiveness analysis that accounts for country-specific epidemiological and environmental heterogeneities is required to assess optimal intervention scale-up for elimination and better understand future transmission trends under climate change. PMID:25688017

  5. Assessing the Fauna of Aquatic Insects for Possible Use for Malaria Vector Control in Large River, Central Iran.

    PubMed

    Shayeghi, Mansoureh; Nejati, Jalil; Shirani-Bidabadi, Leila; Koosha, Mona; Badakhshan, Mehdi; Mohammadi Bavani, Mulood; Arzamani, Kourosh; Choubdar, Nayyereh; Bagheri, Fatemeh; Saghafipour, Abedin; Veysi, Arshad; Karimian, Fateh; Akhavan, Amir Ahamd; Vatandoost, Hassan

    2015-01-01

    Insects with over 30,000 aquatic species are known as very successful arthropods in freshwater habitats. Some of them are applied as biological indicators for water quality control, as well as the main food supply for fishes and amphibians. The faunistic studies are the basic step in entomological researches; the current study was carried out emphasizing on the fauna of aquatic insects in Karaj River, northern Iran. A field study was carried out in six various sampling site of Karaj River during spring 2013. The aquatic insects were collected using several methods such as D-frame nets, dipping and direct search on river floor stones. Specimens were collected and preserved in Ethanol and identified by standard identification keys. Totally, 211 samples were collected belonging to three orders; Plecoptera, Trichoptera and Ephemeroptera. Seven genuses (Perla, Isoperla, Hydropsyche, Cheumatopsyche, Baetis, Heptagenia and Maccafferium) from five families (Perlidae, Perlodidae, Hydropsychidae, Batidae, Heptagenidae) were identified. The most predominant order was Plecoptera followed by Trichoptera. Karaj River is a main and important river, which provides almost all of water of Karaj dam. So, identification of aquatic species which exist in this river is vital and further studies about systematic and ecological investigations should be performed. Also, monitoring of aquatic biota by trained health personnel can be a critical step to describe water quality in this river. Understanding the fauna of aquatic insects will provide a clue for possible biological control of medically important aquatic insects such as Anopheles as the malaria vectors.

  6. Climate influences on the cost-effectiveness of vector-based interventions against malaria in elimination scenarios

    PubMed Central

    Parham, Paul E.; Hughes, Dyfrig A.

    2015-01-01

    Despite the dependence of mosquito population dynamics on environmental conditions, the associated impact of climate and climate change on present and future malaria remains an area of ongoing debate and uncertainty. Here, we develop a novel integration of mosquito, transmission and economic modelling to assess whether the cost-effectiveness of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) against Plasmodium falciparum transmission by Anopheles gambiae s.s. mosquitoes depends on climatic conditions in low endemicity scenarios. We find that although temperature and rainfall affect the cost-effectiveness of IRS and/or LLIN scale-up, whether this is sufficient to influence policy depends on local endemicity, existing interventions, host immune response to infection and the emergence rate of insecticide resistance. For the scenarios considered, IRS is found to be more cost-effective than LLINs for the same level of scale-up, and both are more cost-effective at lower mean precipitation and higher variability in precipitation and temperature. We also find that the dependence of peak transmission on mean temperature translates into optimal temperatures for vector-based intervention cost-effectiveness. Further cost-effectiveness analysis that accounts for country-specific epidemiological and environmental heterogeneities is required to assess optimal intervention scale-up for elimination and better understand future transmission trends under climate change. PMID:25688017

  7. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Labeeba, Mohammed Aamina; Panneerselvam, Chellasamy; Dinesh, Devakumar; Suresh, Udaiyan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Nicoletti, Marcello; Benelli, Giovanni

    2015-10-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. We biosynthesized silver nanoparticles (AgNP) using Aristolochia indica extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. In laboratory, LC50 of A. indica extract against Anopheles stephensi ranged from 262.66 (larvae I) to 565.02 ppm (pupae). LC50 of AgNP against A. stephensi ranged from 3.94 (larvae I) to 15.65 ppm (pupae). In the field, the application of A. indica extract and AgNP (10 × LC50) leads to 100% larval reduction after 72 h. In laboratory, 24-h predation efficiency of Diplonychus indicus against A. stephensi larvae was 33% (larvae II) and 57% (larvae III). In AgNP-contaminated environment (1 ppm), it was 45.5% (larvae II) and 71.75% (larvae III). Overall, A. indica-synthesized AgNP may be considered as newer and safer control tools against Anopheles vectors. PMID:26412532

  8. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae.

    PubMed

    Overgaard, Hans J; Sirisopa, Patcharawan; Mikolo, Bertin; Malterud, Karl E; Wangensteen, Helle; Zou, Yuan-Feng; Paulsen, Berit S; Massamba, Daniel; Duchon, Stephane; Corbel, Vincent; Chandre, Fabrice

    2014-01-01

    The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii) is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville) its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE) using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis]), a strain homozygous for the L1014F kdr mutation (kdrKis), and a strain homozygous for the G119S Ace1R allele (AcerKis). The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female), but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides. PMID:25525826

  9. LONGITUDINAL EVALUATION OF MALARIA EPIDEMIOLOGY IN AN ISOLATED VILLAGE IN WESTERN THAILAND: I. STUDY SITE AND ADULT ANOPHELINE BIONOMICS.

    PubMed

    Zollner, Gabriela; Sattabongkot, Jetsumon; Vaughan, Jefferson A; Kankaew, Prasan; Robert, Leon L; Thimasarn, Krongthong; Sithiprasasna, Ratana; Coleman, Russell E

    2016-05-01

    This is the first in a series of papers describing the epidemiology of malaria in an isolated village in western Thailand. The study site was the village of Kong Mong Tha, located in Sangkhla Buri District, Kanchanaburi Province, Thailand. In this paper we present an overview of the study site and results from our adult anopheline mosquito surveillance conducted over 56 consecutive months from June 1999 until January 2004. The collection site, indoor/outdoor location, parity, biting activity and Plasmodiumfalciparum (Pf) and P. vivax (Pv) infection rates were used to calculate seasonal entomological inoculation rates for the predominant four Anopheles species. A total of 21,566 anophelines representing 28 distinct species and 2 groups that were not identified to species were collected using human bait, with almost 95% of the collection consisting of Anopheles minimus, An. maculatus, An. sawadwongporni and An. barbirostris/campestris. Mosquitoes generally peaked during the wet season, were collected throughout the night, and were collected most often outside (ca. 75%) versus inside (ca. 25%) of houses. Approximately 50% of collected mosquitoes were parous. Overall Plasmodium infection rates were 0.27%, with a total of 16 and 42 pools of Pf- and Pv-positive mosquitoes, respectively. Annual EIRs were 2.3 times higher for Pv than for Pf, resulting in approximately 5.5 and 2.6 infective bites per person per year, respectively. The results suggest An. minimus and An. maculatus are the primary and secondary vectors of Pf and Pv transmission in Kong Mong Tha, while An. sawadwongporni and An. barbirostris/campestris also appear to play a role based on the presence of circumsporozoite protein (CSP) in the head/thorax of the specimens tested. PMID:27405117

  10. A geographic sampling strategy for studying relationships between human activity and malaria vectors in urban Africa.

    PubMed

    Keating, Joseph; MacIntyre, Kate; Mbogo, Charles; Githeko, Andrew; Regens, James L; Swalm, Chris; Ndenga, Bryson; Steinberg, Laura J; Kibe, Lydiah; Githure, John I; Beier, John C

    2003-03-01

    This paper describes a geographic sampling strategy for ecologic studies and describes the relationship between human activities and anopheline larval ecology in urban areas. Kisumu and Malindi, Kenya were mapped using global positioning systems, and a geographic information system was used to overlay a measured grid, which served as a sampling frame. Grid cells were stratified and randomly selected according to levels of planning and drainage. A cross-sectional survey was conducted in April and May 2001 to collect entomologic and human ecologic data. Multivariate regression analysis was used to test the relationship between the abundance of potential larval habitats, and house density, socioeconomic status, and planning and drainage. In Kisumu, 98 aquatic habitats were identified, 65% of which were human made and 39% were positive for anopheline larvae. In Malindi, 91 aquatic habitats were identified, of which, 93% were human made and 65% were harboring anopheline larvae. The regression model explains 82% of the variance associated with the abundance of potential larval habitats in Kisumu. In Malindi, 59% of the variance was explained. As the number of households increased, the number of larval habitats increased correspondingly to a point. Beyond a critical threshold, the density of households appeared to suppress the development of aquatic habitats. The proportion of high-income households and the planning and drainage variables tested insignificant in both locations. The integration of social and biologic sciences will allow local mosquito and malaria control groups an opportunity to assess the risk of encountering potentially infectious mosquitoes in a given area, and concentrate resources accordingly.

  11. Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu valley, Haleakala National Park, Hawai'i, USA

    USGS Publications Warehouse

    Aruch, Samuel; Atkinson, Carter T.; Savage, Amy F.; LaPointe, Dennis

    2007-01-01

    We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from Kīpahulu Valley, Haleakalā National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was lower than reported for comparable elevations and habitats elsewhere in the state. Infections occurred primarily in ‘Apapane (Himatione sanguinea) and Hawai‘i ‘Amakihi (Hemignathus virens) at elevations below 1,400 m. Pox-like lesions were detected in only two Hawai‘i ‘Amakihi (2%; 2/94) at elevations below 950 m. We did not detect malaria or pox in birds caught at 1,400 m in upper reaches of the valley. Adult mosquitoes (Culex quinquefasciatus) were captured at four sites at elevations of 640, 760, 915, and 975 m, respectively. Culex quinquefasciatus larvae were found only in rock holes along intermittent tributaries of the two largest streams in the valley, but not in standing surface water, pig wallows, ground pools, tree cavities, and tree fern cavities. Mosquito populations in the valley are low, and they are probably influenced by periods of high rainfall that flush stream systems.

  12. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults

    PubMed Central

    2011-01-01

    Background To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. Methods In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. Results In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. Conclusions All participants were positive for

  13. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  14. Influence of moonlight on light trap catches of the malaria vector Anopheles nuneztovari in Venezuela.

    PubMed

    Rubio-Palis, Y

    1992-06-01

    A significant effect (P = 0.002) of moonlight on light trap catches of Anopheles nuneztovari females was observed during a longitudinal study in western Venezuela. The catch with no moon was 1.86 times larger than with full moon. Nevertheless, moonlight does not seem to have any effect on the composition of adult mosquito population since the difference in the parous rate of females collected during full moon and during no moon was not significant (P greater than 0.05). PMID:1431859

  15. Socio-Demographics and the Development of Malaria Elimination Strategies in the Low Transmission Setting

    PubMed Central

    Chuquiyauri, Raul; Paredes, Maribel; Peñataro, Pablo; Torres, Sonia; Marin, Silvia; Tenorio, Alexander; Brouwer, Kimberly C.; Abeles, Shira; Llanos-Cuentas, Alejandro; Gilman, Robert H.; Kosek, Margaret; Vinetz, Joseph M.

    2011-01-01

    This analysis presents a comprehensive description of malaria burden and risk factors in Peruvian Amazon villages where malaria transmission is hypoendemic. More than 9,000 subjects were studied in contrasting village settings within the Department of Loreto, Peru, where most malaria occurs in the country. Plasmodium vivax is responsible for more than 75% of malaria cases; severe disease from any form of malaria is uncommon and death rare. The association between lifetime malaria episodes and individual and household covariates was studied using polychotomous logistic regression analysis, assessing effects on odds of some vs. no lifetime malaria episodes. Malaria morbidity during lifetime was strongly associated with age, logging, farming, travel history, and living with a logger or agriculturist. Select groups of adults, particularly loggers and agriculturists acquire multiple malaria infections in transmission settings outside of the main domicile, and may be mobile human reservoirs by which malaria parasites move within and between micro-regions within malaria endemic settings. For example, such individuals might well be reservoirs of transmission by introducing or reintroducing malaria into their home villages and their own households, depending on vector ecology and the local village setting. Therefore, socio-demographic studies can identify people with the epidemiological characteristic of transmission risk, and these individuals would be prime targets against which to deploy transmission blocking strategies along with insecticide treated bednets and chemoprophylaxis. PMID:22100446

  16. Socio-demographics and the development of malaria elimination strategies in the low transmission setting.

    PubMed

    Chuquiyauri, Raul; Paredes, Maribel; Peñataro, Pablo; Torres, Sonia; Marin, Silvia; Tenorio, Alexander; Brouwer, Kimberly C; Abeles, Shira; Llanos-Cuentas, Alejandro; Gilman, Robert H; Kosek, Margaret; Vinetz, Joseph M

    2012-03-01

    This analysis presents a comprehensive description of malaria burden and risk factors in Peruvian Amazon villages where malaria transmission is hypoendemic. More than 9000 subjects were studied in contrasting village settings within the Department of Loreto, Peru, where most malaria occurs in the country. Plasmodium vivax is responsible for more than 75% of malaria cases; severe disease from any form of malaria is uncommon and death rare. The association between lifetime malaria episodes and individual and household covariates was studied using polychotomous logistic regression analysis, assessing effects on odds of some vs. no lifetime malaria episodes. Malaria morbidity during lifetime was strongly associated with age, logging, farming, travel history, and living with a logger or agriculturist. Select groups of adults, particularly loggers and agriculturists acquire multiple malaria infections in transmission settings outside of the main domicile, and may be mobile human reservoirs by which malaria parasites move within and between micro-regions within malaria endemic settings. For example, such individuals might well be reservoirs of transmission by introducing or reintroducing malaria into their home villages and their own households, depending on vector ecology and the local village setting. Therefore, socio-demographic studies can identify people with the epidemiological characteristic of transmission risk, and these individuals would be prime targets against which to deploy transmission blocking strategies along with insecticide treated bednets and chemoprophylaxis.

  17. Evaluation of Endod (Phytolacca dodecandra: Phytolaccaceae) as a Larvicide Against Anopheles arabiensis, the Principal Vector of Malaria in Ethiopia.

    PubMed

    Getachew, Dejene; Balkew, Meshesha; Gebre-Michael, Teshome

    2016-06-01

    Malaria control methods rely mostly on adult mosquito control using insecticide-treated nets and indoor residual spraying with insecticides. Plants such as endod (Phytolacca dodecandra) can potentially be used for the control of mosquito larvae as a supplement to adult control methods. Following the discovery of endod, a molluscicide plant, more than 5 decades ago in Ethiopia, subsequent studies have shown that its potency can further be increased by simple procedures such as aging endod berry powder in water. This study was conducted to evaluate the killing effect of fresh and aged endod solution against 4th-stage larvae of Anopheles arabiensis. Laboratory-reared An. arabiensis larvae exposed to different concentrations of endod preparation using distilled or spring water had 50% lethal concentration (LC(50))  =  49.6 ppm and 90% lethal concentration (LC(90))  =  234 ppm for fresh and LC(50)  =  36.4 ppm and LC(90)  =  115.7 ppm for the aged endod solution in distilled water against the laboratory population. Against field-collected larvae of the same species, aged preparations in habitat water resulted in higher LC(50) (472.7 ppm) and LC(90) (691 ppm) values, with only a slight improvement over fresh preparations in habitat water (LC(50)  =  456.2 ppm; LC(90)  =  896.1 ppm). In general, although aged preparations of endod required lower concentrations than fresh to kill at least 90% of the larvae, these concentrations were much higher (12-70×) than that required for schistosome-transmitting snails.

  18. Evaluation of Endod (Phytolacca dodecandra: Phytolaccaceae) as a Larvicide Against Anopheles arabiensis, the Principal Vector of Malaria in Ethiopia.

    PubMed

    Getachew, Dejene; Balkew, Meshesha; Gebre-Michael, Teshome

    2016-06-01

    Malaria control methods rely mostly on adult mosquito control using insecticide-treated nets and indoor residual spraying with insecticides. Plants such as endod (Phytolacca dodecandra) can potentially be used for the control of mosquito larvae as a supplement to adult control methods. Following the discovery of endod, a molluscicide plant, more than 5 decades ago in Ethiopia, subsequent studies have shown that its potency can further be increased by simple procedures such as aging endod berry powder in water. This study was conducted to evaluate the killing effect of fresh and aged endod solution against 4th-stage larvae of Anopheles arabiensis. Laboratory-reared An. arabiensis larvae exposed to different concentrations of endod preparation using distilled or spring water had 50% lethal concentration (LC(50))  =  49.6 ppm and 90% lethal concentration (LC(90))  =  234 ppm for fresh and LC(50)  =  36.4 ppm and LC(90)  =  115.7 ppm for the aged endod solution in distilled water against the laboratory population. Against field-collected larvae of the same species, aged preparations in habitat water resulted in higher LC(50) (472.7 ppm) and LC(90) (691 ppm) values, with only a slight improvement over fresh preparations in habitat water (LC(50)  =  456.2 ppm; LC(90)  =  896.1 ppm). In general, although aged preparations of endod required lower concentrations than fresh to kill at least 90% of the larvae, these concentrations were much higher (12-70×) than that required for schistosome-transmitting snails. PMID:27280350

  19. The impacts of land use change on malaria vector abundance in a water-limited, highland region of Ethiopia.

    PubMed

    Stryker, Jody J; Bomblies, Arne

    2012-12-01

    Changes in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  20. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

  1. Genetic differentiation in the African malaria vector, Anopheles gambiae s.s., and the problem of taxonomic status.

    PubMed Central

    Gentile, Gabriele; Della Torre, Alessandra; Maegga, Bertha; Powell, Jeffrey R; Caccone, Adalgisa

    2002-01-01

    Of the seven recognized species of the Anopheles gambiae complex, A. gambiae s.s. is the most widespread and most important vector of malaria. It is becoming clear that, in parts of West Africa, this nominal species is not a single panmictic unit. We found that the internal transcribed spacer (ITS) of the X-linked rDNA has two distinct sequences with three fixed nucleotide differences; we detected no heterozygotes at these three sites, even in areas of sympatry of the two ITS types. The intergenic spacer (IGS) of this region also displays two distinct sequences that are in almost complete linkage disequilibrium with the distinct ITS alleles. We have designated these two types as S/type I and M/type II. These rDNA types correspond at least partly to the previously recognized chromosomal forms. Here we expand the geographic range of sampling to 251 individuals from 38 populations. Outside of West Africa, a single rDNA type, S/type I, corresponds to the Savanna chromosomal form. In West Africa, both types are often found in a single local sample. To understand if these findings might be due to unusual behavior of the rDNA region, we sequenced the same region for 46 A. arabiensis, a sympatric sibling species. No such distinct discontinuity was observed for this species. Autosomal inversions in one chromosome arm (2R), an insecticide resistance gene on 2L, and this single X-linked region indicate at least two genetically differentiated subpopulations of A. gambiae. Yet, rather extensive studies of other regions of the genome have failed to reveal genetic discontinuity. Evidently, incomplete genetic isolation exists within this single nominal species. PMID:12196401

  2. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru

    PubMed Central

    Moore, Sarah J; Darling, Samuel T; Sihuincha, Moisés; Padilla, Norma; Devine, Gregor J

    2007-01-01

    Background The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD) and lemongrass oil (LG). Methods To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. Results In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p < 0.0001). In Peru, collections were performed for four hours, commencing two hours after repellent application. The PMD/LG repellent provided 95% protection for six hours after application with a biting pressure of >46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p < 0.0001). Conclusion In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities. PMID:17678537

  3. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited Highland Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Stryker, J.; Bomblies, A.

    2012-12-01

    Changes in land use and climate are expected to alter risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically-based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  4. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  5. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  6. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms.

  7. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors. PMID:26792432

  8. Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: A potent eco-friendly tool against malaria and arbovirus vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan; Hoti, S L; Khater, Hanem F; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) are vectors of important pathogens and parasites, including malaria, dengue, chikungunya, Japanese encephalitis, lymphatic filariasis and Zika virus. The application of synthetic insecticides causes development of resistance, biological magnification of toxic substances through the food chain, and adverse effects on the environment and human health. In this scenario, eco-friendly control tools of mosquito vectors are a priority. Here single-step fabrication of silver nanoparticles (AgNP) using a cheap aqueous leaf extract of Zornia diphylla as reducing and capping agent pf Ag(+) ions has been carried out. Biosynthesized AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction analysis (XRD). The acute toxicity of Z. diphylla leaf extract and biosynthesized AgNP was evaluated against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. Both the Z. diphylla leaf extract and Ag NP showed dose dependent larvicidal effect against all tested mosquito species. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 values of 12.53, 13.42 and 14.61μg/ml, respectively. Biosynthesized Ag NP were found safer to non-target organisms Chironomus circumdatus, Anisops bouvieri and Gambusia affinis, with the respective LC50 values ranging from 613.11 to 6903.93μg/ml, if compared to target mosquitoes. Overall, our results highlight that Z. diphylla-fabricated Ag NP are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target organisms. PMID:27318605

  9. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  10. Malaria is related to decreased nutritional status among male adolescents and adults in the setting of intense perennial transmission.

    PubMed

    Friedman, Jennifer F; Kurtis, Jonathan D; Mtalib, Ramadhan; Opollo, Malachi; Lanar, David E; Duffy, Patrick E

    2003-08-01

    We studied the impact of Plasmodium falciparum on nutritional status in a longitudinal cohort of 147 young men in western Kenya, where malaria transmission is intense and perennial. All volunteers received treatment to eradicate parasitemia and then provided weekly blood smears during a 16-week transmission season. We measured body mass index (BMI), pubertal development, frequency and density of parasitemia, and tumor necrosis factor (TNF)-alpha production by peripheral blood mononuclear cells. During early puberty, mean parasite density had a strong negative effect on the natural increase in BMI. Among older individuals, TNF-alpha production in response to malarial antigen predicted a significantly lower BMI (P<.03), equal to 4.6 kg for a man of average height. Our data indicate that burden of parasitemia has a detrimental effect on the nutritional status of early adolescents and that malaria may continue to influence nutritional status among older adolescents and adults via host elaboration of proinflammatory cytokines. These effects of malaria may have pervasive health and socioeconomic consequences in areas where malaria is endemic.

  11. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America

    PubMed Central

    Mirabello, Lisa; Vineis, Joseph H; Yanoviak, Stephen P; Scarpassa, Vera M; Póvoa, Marinete M; Padilla, Norma; Achee, Nicole L; Conn, Jan E

    2008-01-01

    Background Anopheles darlingi is the most important malaria vector in the Neotropics. An understanding of A. darlingi's population structure and contemporary gene flow patterns is necessary if vector populations are to be successfully controlled. We assessed population genetic structure and levels of differentiation based on 1,376 samples from 31 localities throughout the Peruvian and Brazilian Amazon and Central America using 5–8 microsatellite loci. Results We found high levels of polymorphism for all of the Amazonian populations (mean RS = 7.62, mean HO = 0.742), and low levels for the Belize and Guatemalan populations (mean RS = 4.3, mean HO = 0.457). The Bayesian clustering analysis revealed five population clusters: northeastern Amazonian Brazil, southeastern and central Amazonian Brazil, western and central Amazonian Brazil, Peruvian Amazon, and the Central American populations. Within Central America there was low non-significant differentiation, except for between the populations separated by the Maya Mountains. Within Amazonia there was a moderate level of significant differentiation attributed to isolation by distance. Within Peru there was no significant population structure and low differentiation, and some evidence of a population expansion. The pairwise estimates of genetic differentiation between Central America and Amazonian populations were all very high and highly significant (FST = 0.1859 – 0.3901, P < 0.05). Both the DA and FST distance-based trees illustrated the main division to be between Central America and Amazonia. Conclusion We detected a large amount of population structure in Amazonia, with three population clusters within Brazil and one including the Peru populations. The considerable differences in Ne among the populations may have contributed to the observed genetic differentiation. All of the data suggest that the primary division within A. darlingi corresponds to two white gene genotypes between Amazonia (genotype 1) and

  12. Costs and consequences of large-scale vector control for malaria

    PubMed Central

    Yukich, Joshua O; Lengeler, Christian; Tediosi, Fabrizio; Brown, Nick; Mulligan, Jo-Ann; Chavasse, Des; Stevens, Warren; Justino, John; Conteh, Lesong; Maharaj, Rajendra; Erskine, Marcy; Mueller, Dirk H; Wiseman, Virginia; Ghebremeskel, Tewolde; Zerom, Mehari; Goodman, Catherine; McGuire, David; Urrutia, Juan Manuel; Sakho, Fana; Hanson, Kara; Sharp, Brian

    2008-01-01

    Background Five large insecticide-treated net (ITN) programmes and two indoor residual spraying (IRS) programmes were compared using a standardized costing methodology. Methods Costs were measured locally or derived from existing studies and focused on the provider perspective, but included the direct costs of net purchases by users, and are reported in 2005 USD. Effectiveness was estimated by combining programme outputs with standard impact indicators. Findings Conventional ITNs: The cost per treated net-year of protection ranged from USD 1.21 in Eritrea to USD 6.05 in Senegal. The cost per child death averted ranged from USD 438 to USD 2,199 when targeting to children was successful. Long-lasting insecticidal nets (LLIN) of five years duration: The cost per treated-net year of protection ranged from USD 1.38 in Eritrea to USD 1.90 in Togo. The cost per child death averted ranged from USD 502 to USD 692. IRS: The costs per person-year of protection for all ages were USD 3.27 in KwaZulu Natal and USD 3.90 in Mozambique. If only children under five years of age were included in the denominator the cost per person-year of protection was higher: USD 23.96 and USD 21.63. As a result, the cost per child death averted was higher than for ITNs: USD 3,933–4,357. Conclusion Both ITNs and IRS are highly cost-effective vector control strategies. Integrated ITN free distribution campaigns appeared to be the most efficient way to rapidly increase ITN coverage. Other approaches were as or more cost-effective, and appeared better suited to "keep-up" coverage levels. ITNs are more cost-effective than IRS for highly endemic settings, especially if high ITN coverage can be achieved with some demographic targeting. PMID:19091114

  13. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.

    PubMed

    Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R

    2013-01-01

    Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

  14. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    PubMed

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  15. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  16. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  17. Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana

    PubMed Central

    2013-01-01

    Background Integrated Vector Control (IVC) remains the approach for managing the malaria-causing vector. The study investigated the contribution of Bacillus thuringiensis israelensis (Bti) in the control of malaria by targeting the larvae and also mapped and documented major breeding sites in the Kumasi metropolis, Ghana. Methods Using a hand held GPS receiver unit, major breeding sites within the metropolis were mapped out during the larval survey. Mosquito larvae were then collected from the breeding sites and reared in an insectary to obtain an F1 generation for laboratory bioassays. The minimum effective dosage of Bti Water Dispersible Granular (WDG) formulation was determined by a series of bioassays. Based on the results obtained in the laboratory, the optimum effective dosage of Bti formulations against naturally occurring larvae of the indigenous mosquito species was determined through open field trials. Results A total of 33 breeding sites were identified and geo-referenced during the larval surveys with the majority of the breeding sites located in the Asokwa sub-metropolis, Kumasi, Ghana. A Bti (3,000 International Toxic Unit (ITU)/mg) concentration of 0.026 mg/l resulted in 50% mortality whilst a concentration of 0.136 mg/l resulted in 95% mortality. Results from the open field trials with Bti showed that a dosage of 0.2 kg/ha is as effective as 0.4 kg/ha in suppressing late instars and resulting pupae. Conclusion This study reveals that Bti at a very low dosage of 0.2 kg/ha is highly effective against Anopheles larvae and therefore offers viable options for the management of vector mosquitoes. Further research is needed to extend this to the field in order to determine its ability to reduce malaria incidence. PMID:23607376

  18. The distinctive features of Indian malaria parasites.

    PubMed

    Das, Aparup

    2015-03-01

    Malaria and factors driving malaria are heterogeneous in India, unlike in other countries, and the epidemiology of malaria therefore is considered 'highly complex'. This complexity is primarily attributed to several unique features of the malaria parasites, mosquito vectors, malaria-susceptible populations, and ecoclimatic variables in India. Recent research on the genetic epidemiology of Indian malaria parasites has been successful in partly unraveling the mysteries underlying these complexities.

  19. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    PubMed

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  20. Impact of Malaria Vector Control Interventions at the Beginning of a Malaria Elimination Stage in a Dominant Area of Anopheles anthropophagus, Hubei Province, China.

    PubMed

    Li, K J; Cai, S X; Lin, W; Xia, J; Pi, Q; Hu, L Q; Huang, G Q; Pei, S J; Zhang, H X

    2015-10-01

    Three towns with similar socio-ecological characteristics, malaria morbidities, and populations were selected for this study to explore economic and effective malaria control measures.The sources of infection were controlled in each town. Impregnated mosquito nets with 2.5% deltamethrin (15 mg/m(2)) combined with residual spraying of 5% cypermethrin (25 mg/m(2)) was implemented in cattle and pig pens, as well as in crowded sites in Chenji, whereas the mosquito nets were treated with 2.5% deltamethrin only in Guanqiao Town. All the control measures implemented in Fengling (control town) were the same as those implemented in the towns of Chenji and Guanqiao, except for mosquito elimination control. Results were evaluated and compared based on pathogens and entomology. The densities of Anopheles anthropophagus mosquitoes in houses, outside houses (man bait), as well as in cattle pens and pig pens were reduced by 100%, 71.96%, 94.01%, and 67.42%, respectively at all 4 sites in Chenji Town, whereas the density increased at 1 site (the outside house [man bait]) by 12.38%, while the densities at the other 3 sites (in houses, cattle pens and pig pens) were reduced by 99.63%, 18.71% and 69.44% respectively in Guanqiao Town. The biting rates of An. anthropophagus in the 3 towns were 0.11, 0.22, and 1.1 respectively in Chenji, Guanqiao, and Fengling. The incidence of malaria in the 3 towns decreased by 73.12%, 57.71%, and 65.71% in terms of annual average. Both impregnated mosquito nets combined with residual spraying and impregnated mosquito nets only reduced the density of An. anthropophagus in houses in the 2 towns, but reduction was more rapid in Chenji Town.

  1. Benefit of Insecticide-Treated Nets, Curtains and Screening on Vector Borne Diseases, Excluding Malaria: A Systematic Review and Meta-analysis

    PubMed Central

    Wilson, Anne L.; Dhiman, Ramesh C.; Kitron, Uriel; Scott, Thomas W.; van den Berg, Henk; Lindsay, Steven W.

    2014-01-01

    Introduction Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis. Methods MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated. Results Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified. Conclusion There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies

  2. Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control.

    PubMed

    Ambrose, Luke; Cooper, Robert D; Russell, Tanya L; Burkot, Thomas R; Lobo, Neil F; Collins, Frank H; Hii, Jeffrey; Beebe, Nigel W

    2014-03-01

    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.

  3. Impact of Insecticide Resistance on the Effectiveness of Pyrethroid-Based Malaria Vectors Control Tools in Benin: Decreased Toxicity and Repellent Effect.

    PubMed

    Agossa, Fiacre R; Gnanguenon, Virgile; Anagonou, Rodrigue; Azondekon, Roseric; Aïzoun, Nazaire; Sovi, Arthur; Oké-Agbo, Frédéric; Sèzonlin, Michel; Akogbéto, Martin C

    2015-01-01

    Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible "Kisumu", mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted. PMID:26674643

  4. Impact of Insecticide Resistance on the Effectiveness of Pyrethroid-Based Malaria Vectors Control Tools in Benin: Decreased Toxicity and Repellent Effect

    PubMed Central

    Agossa, Fiacre R.; Gnanguenon, Virgile; Anagonou, Rodrigue; Azondekon, Roseric; Aïzoun, Nazaire; Sovi, Arthur; Oké-Agbo, Frédéric; Sèzonlin, Michel; Akogbéto, Martin C.

    2015-01-01

    Since the first evidence of pyrethroids resistance in 1999 in Benin, mutations have rapidly increased in mosquitoes and it is now difficult to design a study including a control area where malaria vectors are fully susceptible. Few studies have assessed the after effect of resistance on the success of pyrethroid based prevention methods in mosquito populations. We therefore assessed the impact of resistance on the effectiveness of pyrethroids based indoor residual spraying (IRS) in semi-field conditions and long lasting insecticidal nets (LLINs) in laboratory conditions. The results observed showed low repulsion and low toxicity of pyrethroids compounds in the test populations. The toxicity of pyrethroids used in IRS was significantly low with An. gambiae s.l (< 46%) but high for other predominant species such as Mansonia africana (93% to 97%). There were significant differences in terms of the repellent effect expressed as exophily and deterrence compared to the untreated huts (P<0.001). Furthermore, mortality was 23.71% for OlyseNet® and 39.06% for PermaNet®. However, with laboratory susceptible “Kisumu”, mortality was 100% for both nets suggesting a resistance within the wild mosquito populations. Thus treatment with pyrethroids at World Health Organization recommended dose will not be effective at reducing malaria in the coming years. Therefore it is necessary to study how insecticide resistance decreases the efficacy of particular pyrethroids used in pyrethroid-based vector control so that a targeted approach can be adopted. PMID:26674643

  5. Falling Plasmodium knowlesi Malaria Death Rate among Adults despite Rising Incidence, Sabah, Malaysia, 2010-2014.

    PubMed

    Rajahram, Giri S; Barber, Bridget E; William, Timothy; Grigg, Matthew J; Menon, Jayaram; Yeo, Tsin W; Anstey, Nicholas M

    2016-01-01

    Deaths from Plasmodium knowlesi malaria have been linked to delayed parenteral treatment. In Malaysia, early intravenous artesunate is now recommended for all severe malaria cases. We describe P. knowlesi fatalities in Sabah, Malaysia, during 2012-2014 and report species-specific fatality rates based on 2010-2014 case notifications. Sixteen malaria-associated deaths (caused by PCR-confirmed P. knowlesi [7], P. falciparum [7], and P. vivax [1] and microscopy-diagnosed "P. malariae" [1]) were reported during 2012-2014. Six patients with severe P. knowlesi malaria received intravenous artesunate at hospital admission. For persons ≥15 years of age, overall fatality rates during 2010-2014 were 3.4, 4.2, and 1.0 deaths/1,000 P. knowlesi, P. falciparum, and P. vivax notifications, respectively; P. knowlesi-associated fatality rates fell from 9.2 to 1.6 deaths/1,000 notifications. No P. knowlesi-associated deaths occurred among children, despite 373 notified cases. Although P. knowlesi malaria incidence is rising, the notification-fatality rate has decreased, likely due to improved use of intravenous artesunate.

  6. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2011-01-01

    Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the

  7. [Clinical studies using the combination atovaquone-proguanil as malaria prophylaxis in non-immune adult and child travelers].

    PubMed

    Camus, D; Dutoit, E; Masson, V; Inglebert, P; Delhaes, L

    2002-01-01

    Prophylaxis for short-term travel in malaria-endemic areas can be difficult for two reasons. The first is that currently available antimalarial drugs are becoming less effective because of the ability of the parasite to adapt to drug pressure. The second involves poor compliance with chemoprophylactic regimens due to the highly restrictive conditions of administration and adverse drug side-effects, especially in "healthy" subjects. The combination of atovaquone/proguanil (Malarone) could provide an answer to both these problems since it is not only effective on multiresistant strains of Plasmodium falciparum but also simplifies the conditions of administration and shows good tolerance in adults and children.

  8. Insecticide resistance mechanisms associated with different environments in the malaria vector Anopheles gambiae: a case study in Tanzania

    PubMed Central

    2014-01-01

    Background Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Methods Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Results Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference

  9. Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

    PubMed Central

    2011-01-01

    Background Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa. Methods Anopheles gambiae s.l populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. Anopheles gambiae mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine kdr and Ace.1R allelic frequencies and activity of the detoxification enzymes. Results Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in An. gambiae s.l. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of An. gambiae s.s. and Anopheles arabiensis. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. Anopheles gambiae s.l. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of 1014F kdr allele was initially showed in An. gambiae from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the L1014S kdr mutation was found in An. arabiensis in Benin. The ace.1R mutation was almost absent in An. gambiae s.l. Conclusion Pyrethroid and DDT resistance is widespread in malaria vector in Benin

  10. Randomized, Double-Blind, Placebo-Controlled Trial of Monthly versus Bimonthly Dihydroartemisinin-Piperaquine Chemoprevention in Adults at High Risk of Malaria

    PubMed Central

    Lwin, Khin Maung; Phyo, Aung Pyae; Tarning, Joel; Hanpithakpong, Warunee; Ashley, Elizabeth A.; Lee, Sue J.; Cheah, Phaikyeong; Singhasivanon, Pratap; White, Nicholas J.; Lindegårdh, Niklas

    2012-01-01

    Intermittent preventive treatment (IPT) is increasingly used to reduce malaria morbidity and mortality in children and pregnant women. The efficacy of IPT depends on the pharmacokinetic and pharmacodynamic properties of the antimalarial drugs used. Healthy adult male volunteers whose occupation put them at high risk of malaria on the Northwest border of Thailand were randomized to receive a 3-day-treatment dose of dihydroartemisinin-piperaquine monthly (DPm) or every 2 months (DPalt) or an identical placebo with or without fat (6.4g/dose) over a 9-month period. All volunteers were monitored weekly. One thousand adults were recruited. Dihydroartemisinin-piperaquine was well tolerated. There were 114 episodes of malaria (49 Plasmodium falciparum, 63 P. vivax, and 2 P. ovale). The protective efficacy against all malaria at 36 weeks was 98% (95% confidence interval [CI], 96% to 99%) in the DPm group and 86% (95% CI, 81% to 90%) in the DPalt group (for both, P < 0.0001 compared to the placebo group). As a result, the placebo group also had lower hematocrits during the study (P < 0.0001). Trough plasma piperaquine concentrations were the main determinant of efficacy; no malaria occurred in participants with a trough concentration above 31 ng/ml. Neither plasma piperaquine concentration nor efficacy was influenced by the coadministration of fat. DPm is safe to use and is effective in the prevention of malaria in adult males living in an area where P. vivax and multidrug-resistant P. falciparum malaria are endemic. PMID:22252804

  11. Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection

    PubMed Central

    Hodgson, Susanne H.; Llewellyn, David; Silk, Sarah E.; Milne, Kathryn H.; Elias, Sean C.; Miura, Kazutoyo; Kamuyu, Gathoni; Juma, Elizabeth A.; Magiri, Charles; Muia, Alfred; Jin, Jing; Spencer, Alexandra J.; Longley, Rhea J.; Mercier, Thomas; Decosterd, Laurent; Long, Carole A.; Osier, Faith H.; Hoffman, Stephen L.; Ogutu, Bernhards; Hill, Adrian V. S.; Marsh, Kevin; Draper, Simon J.

    2016-01-01

    Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan

  12. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania

    PubMed Central

    Dongus, Stefan; Nyika, Dickson; Kannady, Khadija; Mtasiwa, Deo; Mshinda, Hassan; Fillinger, Ulrike; Drescher, Axel W; Tanner, Marcel; Castro, Marcia C; Killeen, Gerry F

    2007-01-01

    Background Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. Methods A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1) community-based development of sketch maps and (2) verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS). Results Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. Conclusion The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa. PMID:17784963

  13. Need for an efficient adult trap for the surveillance of dengue vectors

    PubMed Central

    Sivagnaname, N.; Gunasekaran, K.

    2012-01-01

    The emergence and re-emergence of arboviral diseases transmitted by Aedes aegypti and Ae. albopictus continue to be a major threat in the tropics and subtropics. Associations between currently used indices and dengue transmission have not been proven to be satisfactorily predictive of dengue epidemics. Classical larval indices in dengue surveillance have limited use in assessing transmission risk and are a poor proxy for measuring adult emergence. Besides, collection of larval indices is labour intensive and plagued by difficulties of access particularly in urban settings. The re-emergence of dengue disease in many countries despite lower immature indices has warranted the need for more effective indices in dengue vector surveillance and control. Reliable and highly useful indices could be developed with the help of efficient and appropriate entomological tools. Most current programmes emphasize reduction of immature Ae. aegypti density, but it is of little value because its relation to transmission risk is weak. More attention should be paid to methods directed toward adult rather than immature Ae. aegypti. Collection of sufficient numbers of adult mosquitoes is important to understand disease transmission dynamics and to devise an appropriate control strategy. Even though, use of certain traps such as BG-Sentinel traps has been attempted in monitoring Ae. aegypti population, their utility is limited due to various setbacks which make these insufficient for entomological and epidemiological studies. Thus, there is an urgent need for the development of an ideal trap that could be used for adult vector surveillance. The present review critically analyzes the setbacks in the existing tools of entomological surveillance of dengue vectors and highlights the importance and necessity of more improved, more sensitive and reliable adult trap that could be used for surveillance of dengue vectors. PMID:23287120

  14. The Dutch school of malaria research.

    PubMed

    Verhave, J P

    1987-01-01

    An epidemic of tertian malaria in some coastal areas of The Netherlands resulted in the setting up of official measures in 1920. A scientific and a propaganda commission were charged with control. Efforts were made to reduce mosquito populations by adult and larval spraying. After the discovery that infected mosquitoes were to be found only inside houses, control operations were focussed against adult mosquitoes. Some later discoveries resulted in a more effective control. a) Spraying ditches with Paris green did not prevent adult mosquitoes from entering the control area. b) Anopheles maculipennis turned out to be a complex of species, with A. atroparvus as the vector. The latter preferred brackish water and did not go into full hibernation. The closing of the Zuyder Sea and the expected desalinization gave hope for less suitable conditions for the vector. c) Plasmodium vivax normally had an incubation period of 8 months. d) Pyrethrum was an effective but short-lasting insecticide. e) Healthy parasite carriers could infect mosquitoes. This knowledge was applied through an extensive system of investigation, including spleen examination of schoolchildren. Suspected houses were sprayed bimonthly from August to November, during which period infected mosquitoes were likely to be present. This system worked extremely well, and during the next epidemic from 1943 to 1947 the thus treated towns remained virtually free of malaria! DDT became available and was either sprayed in suspected houses as before, or through wide-spread coverage of all houses. The epidemic subsided whatever method employed and not only due to the use of DDT. The number of cases even went down to the point of no return and the last case of Dutch malaria was recorded in 1959. The wealth of experience on house-spray control, parasite and mosquito biology and experimental malaria of the Dutch malariologists has had its impact on the international bodies engaged in the battle against malaria.

  15. The Dutch school of malaria research.

    PubMed

    Verhave, J P

    1987-01-01

    An epidemic of tertian malaria in some coastal areas of The Netherlands resulted in the setting up of official measures in 1920. A scientific and a propaganda commission were charged with control. Efforts were made to reduce mosquito populations by adult and larval spraying. After the discovery that infected mosquitoes were to be found only inside houses, control operations were focussed against adult mosquitoes. Some later discoveries resulted in a more effective control. a) Spraying ditches with Paris green did not prevent adult mosquitoes from entering the control area. b) Anopheles maculipennis turned out to be a complex of species, with A. atroparvus as the vector. The latter preferred brackish water and did not go into full hibernation. The closing of the Zuyder Sea and the expected desalinization gave hope for less suitable conditions for the vector. c) Plasmodium vivax normally had an incubation period of 8 months. d) Pyrethrum was an effective but short-lasting insecticide. e) Healthy parasite carriers could infect mosquitoes. This knowledge was applied through an extensive system of investigation, including spleen examination of schoolchildren. Suspected houses were sprayed bimonthly from August to November, during which period infected mosquitoes were likely to be present. This system worked extremely well, and during the next epidemic from 1943 to 1947 the thus treated towns remained virtually free of malaria! DDT became available and was either sprayed in suspected houses as before, or through wide-spread coverage of all houses. The epidemic subsided whatever method employed and not only due to the use of DDT. The number of cases even went down to the point of no return and the last case of Dutch malaria was recorded in 1959. The wealth of experience on house-spray control, parasite and mosquito biology and experimental malaria of the Dutch malariologists has had its impact on the international bodies engaged in the battle against malaria. PMID:3334084

  16. Geographic population structure of the African malaria vector Anopheles gambiae suggests a role for the forest-savannah biome transition as a barrier to gene flow

    PubMed Central

    Pinto, J; Egyir-Yawson, A; Vicente, JL; Gomes, B; Santolamazza, F; Moreno, M; Charlwood, JD; Simard, F; Elissa, N; Weetman, D; Donnelly, MJ; Caccone, A; della Torre, A

    2013-01-01

    The primary Afrotropical malaria mosquito vector Anopheles gambiae sensu stricto has a complex population structure. In west Africa, this species is split into two molecular forms and displays local and regional variation in chromosomal arrangements and behaviors. To investigate patterns of macrogeographic population substructure, 25 An. gambiae samples from 12 African countries were genotyped at 13 microsatellite loci. This analysis detected the presence of additional population structuring, with the M-form being subdivided into distinct west, central, and southern African genetic clusters. These clusters are coincident with the central African rainforest belt and northern and southern savannah biomes, which suggests restrictions to gene flow associated with the transition between these biomes. By contrast, geographically patterned population substructure appears much weaker within the S-form. PMID:24062800

  17. Baculovirus-Vectored Multistage Plasmodium vivax Vaccine Induces Both Protective and Transmission-Blocking Immunities against Transgenic Rodent Malaria Parasites

    PubMed Central

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M.; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E.

    2014-01-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. PMID:25092912

  18. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano

  19. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    PubMed Central

    Ageep, Tellal B; Cox, Jonathan; Hassan, M'oawia M; Knols, Bart GJ; Benedict, Mark Q; Malcolm, Colin A; Babiker, Ahmed; El Sayed, Badria B

    2009-01-01

    Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations. Methods Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe) adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS), Geographical Information Systems (GIS) and the Global Positioning System (GPS) was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height. Results Of a total of 3,349 aquatic habitats sampled, 321 (9.6%) contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not evident in vector

  20. Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms

    PubMed Central

    2012-01-01

    Background Attractive toxic sugar bait (ATSB) methods are a new and promising "attract and kill" strategy for mosquito control. Sugar-feeding female and male mosquitoes attracted to ATSB solutions, either sprayed on plants or in bait stations, ingest an incorporated low-risk toxin such as boric acid and are killed. This field study in the arid malaria-free oasis environment of Israel compares how the availability of a primary natural sugar source for Anopheles sergentii mosquitoes: flowering Acacia raddiana trees, affects the efficacy of ATSB methods for mosquito control. Methods A 47-day field trial was conducted to compare impacts of a single application of ATSB treatment on mosquito densities and age structure in isolated uninhabited sugar-rich and sugar-poor oases relative to an untreated sugar-rich oasis that served as a control. Results ATSB spraying on patches of non-flowering vegetation around freshwater springs reduced densities of female An. sergentii by 95.2% in the sugar-rich oasis and 98.6% in the sugar-poor oasis; males in both oases were practically eliminated. It reduced daily survival rates of female An. sergentii from 0.77 to 0.35 in the sugar-poor oasis and from 0.85 to 0.51 in the sugar-rich oasis. ATSB treatment reduced the proportion of older more epidemiologically dangerous mosquitoes (three or more gonotrophic cycles) by 100% and 96.7%, respectively, in the sugar-poor and sugar-rich oases. Overall, malaria vectorial capacity was reduced from 11.2 to 0.0 in the sugar-poor oasis and from 79.0 to 0.03 in the sugar-rich oasis. Reduction in vector capacity to negligible levels days after ATSB application in the sugar-poor oasis, but not until after 2 weeks in the sugar-rich oasis, show that natural sugar sources compete with the applied ATSB solutions. Conclusion While readily available natural sugar sources delay ATSB impact, they do not affect overall outcomes because the high frequency of sugar feeding by mosquitoes has an accumulating effect

  1. Epidemiology of imported malaria among children and young adults in Barcelona (1990-2008)

    PubMed Central

    2011-01-01

    Background Increasing international travel and migration is producing changes in trends in infectious diseases, especially in children from many European cities. The objective of this study was to describe the epidemiology and determine the trends of imported malaria in patients under 20 years old in the city of Barcelona, Spain, during an 18-year period. Methods The study included malaria cases that were laboratory confirmed and reported to the malaria register at the Public Health Agency of Barcelona from 1990 to 2008, residing in Barcelona and less than 20 years old. Patients were classified as natives (born in Spain) or immigrants. Differences in the distribution of demographic, clinical characteristics, and incidence per 100,000 person-year evolution were analysed. Natives and immigrants were compared by logistic regression by calculating the odds ratio (OR) with a 95% confidence interval (CI) and Chi-square for a linear trend (p < 0.05). Results Of the total 174 cases, 143 (82.1%) were immigrants, 100 (57.5%) were female, 121 (69.5%) Plasmodium falciparum, and 108 (62.1%) were visiting friends and relatives (VFR) as the reason for travel. Among the immigrants, 99 (67.8%) were from Equatorial Guinea. Immigrant cases more frequently travelled to Africa than natives (p = 0.02). The factors associated with imported malaria among immigrant residents was travelling for VFR (OR: 6.2 CI 1.9-20.2) and age 15-19 (OR: 3.7 CI 1-13.3). The incidence increased from 1990 to 1999 (p < 0.001) and decreased from 2000 to 2008 (p = 0.01), although the global linear trend was not statistically significant (p = 0.41). The fatality rate was 0.5%. Conclusions The majority of cases of malaria in population less than 20 years in Barcelona were immigrants, travelling to Africa for VFR and Plasmodium falciparum was most frequently detected. The trend analysis of the entire study period did not show a statistically significant decline. It is recommended to be aware of malaria, especially

  2. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools. PMID:26518773

  3. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools.

  4. [Vector control, perspectives and realities].

    PubMed

    Carnevale, P

    1995-01-01

    In the WHO Global Strategy for Malaria Control, selective and sustainable vector control is one of the measures to be implemented to complement case management and for the control of epidemics. Vector control can be targeted against larvae and adults, but two elements must be recognized: -vector control measures must be selected according to the existing eco-epidemiological diversity, which has to be well understood before embarking upon any extensive action; -efficient tools are currently available, both for large scale and household use. House spraying is still the method of choice for epidemic control but must be carefully considered and used selectively in endemic countries for various well known reasons. The promotion of personal protection measures for malaria prevention is advocated because insecticide-impregnated mosquito nets and other materials have proved to be effective in different situations. Implementation, sustainability and large scale use of impregnated nets implies a strong community participation supported by well motivated community health workers, the availability of suitable materials (insecticide, mosquito nets), intersectorial collaboration at all levels, well trained health workers from central to the most peripheral level and appropriate educational messages (Knowledge, Attitude and Practices) adapted and elaborated after surveys. It has to be kept in mind that the evaluation of the impact of vector control activities will be made in epidemiological terms such as the reduction of malaria morbidity and mortality.

  5. Outcome of artemether-lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy

    PubMed Central

    2014-01-01

    Background Malaria and HIV infections are both highly prevalent in sub-Saharan Africa, with HIV-infected patients being at higher risks of acquiring malaria. The majority of antiretroviral (ART) and anti-malarial drugs are metabolized by the CYP450 system, creating a chance of drug-drug interaction upon co-administration. Limited data are available on the effectiveness of the artemether-lumefantrine combination (AL) when co-administered with non-nucleoside reverse transcriptase inhibitors (NNRTIs). The aim of this study was to compare anti-malarial treatment responses between HIV-1 infected patients on either nevirapine- or efavirenz-based treatment and those not yet on ART (control-arm) with uncomplicated falciparum malaria, treated with AL. Method This was a prospective, non-randomized, open-label study conducted in Bagamoyo district, with three arms of HIV-infected adults: efavirenz-based treatment arm (EFV-arm) n = 66, nevirapine-based treatment arm (NVP-arm) n = 128, and control-arm n = 75, with uncomplicated malaria. All patients were treated with AL and followed up for 28 days. The primary outcome measure was an adequate clinical and parasitological response (ACPR) after treatment with AL by day 28. Results Day 28 ACPR was 97.6%, 82.5% and 94.5% for the NVP-arm, EFV-arm and control-arm, respectively. No early treatment or late parasitological failure was reported. The cumulative risk of recurrent parasitaemia was >19-fold higher in the EFV-arm than in the control-arm (Hazard ratio [HR], 19.11 [95% confidence interval {CI}, 10.5–34.5]; P < 0.01). The cumulative risk of recurrent parasitaemia in the NVP-arm was not significantly higher than in the control-arm ([HR], 2.44 [95% {CI}, 0.79–7.6]; P = 0.53). The median (IQR) day 7 plasma concentrations of lumefantrine for the three arms were: 1,125 ng/m (638.8-1913), 300.4 ng/ml (220.8-343.1) and 970 ng/ml (562.1-1729) for the NVP-arm, the EFV-arm and the control-arm, respectively (P

  6. Preliminary Biological Studies on Larvae and Adult Anopheles Mosquitoes (Diptera: Culicidae) in Miraflores, a Malaria Endemic Locality in Guaviare Department, Amazonian Colombia

    PubMed Central

    JIMÉNEZ, IRENE P.; CONN, JAN E.; BROCHERO, HELENA

    2015-01-01

    In the malaria endemic municipality of Miraflores in southeastern Amazonian Colombia, several aspects of the biology of local Anopheles species were investigated to supplement the limited entomological surveillance information available and to provide baseline data for malaria prevention and vector control. Anopheles darlingi Root, 1926 was the most abundant species (95.6%), followed by Anopheles braziliensis (Chagas) (3.6%) and Anopheles oswaldoi s.l. (Peryassu) (0.7%). During the dry season, exophagic activity was prevalent only between 1800–2100 hours; after this (2100–0600 hours) only endophagy was encountered. In contrast, during the rainy season, both endophagy and exophagy occurred throughout the collection period. The human biting rate for An. darlingi was 8.6. This species was positive for Plasmodium vivax VK210 with a sporozoite rate = 0.13 (1/788). Breeding sites corresponded to stream (n = 7), flooded excavations (n = 4), flooded forest (n = 1), wetlands (n = 2), and an abandoned water reservoir (n = 1). An. darlingi predominated in these sites in both seasons. Based on these data, An. darlingi is the main local malaria vector, and we recommend that local prevention and control efforts focus on strengthening entomological surveillance to determine potential changes of species biting behavior and time to reduce human–vector interactions. PMID:25276930

  7. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    PubMed Central

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel GW; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising “mixed-modality” regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  8. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    PubMed

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  9. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.

    PubMed

    Govindarajan, Marimuthu; Vijayan, Periasamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-01

    Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the

  10. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.

    PubMed

    Govindarajan, Marimuthu; Vijayan, Periasamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-01

    Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the

  11. Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches? - A Review

    PubMed Central

    Lima, José Bento Pereira; Rosa-Freitas, Maria Goreti; Rodovalho, Cynara Melo; Santos, Fátima; Lourenço-de-Oliveira, Ricardo

    2014-01-01

    Distribution, abundance, feeding behaviour, host preference, parity status and human-biting and infection rates are among the medical entomological parameters evaluated when determining the vector capacity of mosquito species. To evaluate these parameters, mosquitoes must be collected using an appropriate method. Malaria is primarily transmitted by anthropophilic and synanthropic anophelines. Thus, collection methods must result in the identification of the anthropophilic species and efficiently evaluate the parameters involved in malaria transmission dynamics. Consequently, human landing catches would be the most appropriate method if not for their inherent risk. The choice of alternative anopheline collection methods, such as traps, must consider their effectiveness in reproducing the efficiency of human attraction. Collection methods lure mosquitoes by using a mixture of olfactory, visual and thermal cues. Here, we reviewed, classified and compared the efficiency of anopheline collection methods, with an emphasis on Neotropical anthropophilic species, especially Anopheles darlingi, in distinct malaria epidemiological conditions in Brazil. PMID:25185008

  12. Larval habitat for the avian malaria vector culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2009-01-01

    Effective management of avian malaria (Plasmodium relictum) in Hawai'i's endemic honeycreepers (Drepanidinae) requires the identification and subsequent reduction or treatment of larval habitat for the mosquito vector, Culex quinquefasciatus (Diptera: Culicidae). We conducted ground surveys, treehole surveys, and helicopter aerial surveys from 20012003 to identify all potential larval mosquito habitat within two 100+ ha mesic-dry forest study sites in Hawai'i Volcanoes National Park, Hawai'i; 'Ainahou Ranch and Mauna Loa Strip Road. At 'Ainahou Ranch, anthropogenic sites (43%) were more likely to contain mosquitoes than naturally occurring (8%) sites. Larvae of Cx. quinquefasciatus were predominately found in anthropogenic sites while Aedes albopictus larvae occurred less frequently in both anthropogenic sites and naturally-occurring sites. Additionally, moderate-size (???20-22,000 liters) anthropogenic potential larval habitat had >50% probability of mosquito presence compared to larger- and smaller-volume habitat (<50%). Less than 20% of trees surveyed at ' Ainahou Ranch had treeholes and few mosquito larvae were detected. Aerial surveys at 'Ainahou Ranch detected 56% (95% CI: 42-68%) of the potential larval habitat identified in ground surveys. At Mauna Loa Strip Road, Cx. quinquefasciatus larvae were only found in the rock holes of small intermittent stream drainages that made up 20% (5 of 25) of the total potential larval habitat. The volume of the potential larval habitat did not influence the probability of mosquito occurrence at Mauna Loa Strip Road. Our results suggest that Cx. quinquefasciatus abundance, and subsequently avian malaria, may be controlled by larval habitat reduction in the mesic-dry landscapes of Hawai'i where anthropogenic sources predominate.

  13. [Malaria in Iraq].

    PubMed

    Shamo, F J

    2001-01-01

    Malaria control campaign started in Iraq in 1957. This made the country largely free of the disease. Since 1991, following the recent war, Iraq has been affected by serious epidemic of P. vivax malaria that started in 3 autonomous governorates and soon involved other parts of the country. There were 49,840 malaria cases in the country in 1995. The national malaria programme personnel did their best to contain and control the epidemic. Active and passive case detection and treatment were introduced. Free of charge drugs are provided at all levels in the endemic area. Vector control includes environmental management, distribution of Gambusia fish, larviciding, indoor residual spraying with pyrithroids. A total of 4134 malaria cases were recorded in the country in 1999. PMID:11548316

  14. The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission

    PubMed Central

    Menach, Arnaud Le; McKenzie, F Ellis; Flahault, Antoine; Smith, David L

    2005-01-01

    Background Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae. Methods Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour. Results The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria. Conclusion Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide. PMID:15892886

  15. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    PubMed

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  16. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    PubMed

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  17. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    PubMed Central

    2011-01-01

    Background The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies. Methods Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked. Results Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat

  18. Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria: association with disease severity, impaired microvascular function and increased endothelial activation.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Price, Ric N; Weinberg, J Brice; Hyland, Keith; Granger, Donald L; Anstey, Nicholas M

    2015-03-01

    Tetrahydrobiopterin (BH₄) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH₂), which inhibits NOS. Depending on BH₄ availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH₄/BH₂ ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH₄ deficiency. The primary three biopterin metabolites (BH₄, BH₂ and B₀ [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH₄ was decreased (median 0.16 ¼mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH₂ was increased in SM (median 0.91 ¼mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH₄/BH₂ ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH₄/BH₂ ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH₂ in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO

  19. Malaria ecotypes and stratification.

    PubMed

    Schapira, Allan; Boutsika, Konstantina

    2012-01-01

    To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna

  20. Changing landscape of malaria in China: progress and feasibility of malaria elimination.

    PubMed

    Diouf, Gorgui; Kpanyen, Patrick N; Tokpa, Augustine F; Nie, Shaofa

    2014-01-01

    Large-scale malaria control activities in China have been conducted with significant success, since the launch of the nationwide malaria control program. This study investigated the malaria distribution in China, particularly in provinces with high risks. Spatial and temporal data were assembled for all endemic or historically endemic areas and combined to identify common patterns and to investigate the actual changes in the burden of malaria in the country. Data were analyzed and the progress in malaria elimination feasibility was discussed. The results indicated that the current distribution of malaria and vectors associated could provide evidence on the assessment of the feasibility of the malaria elimination in China.

  1. Risk Factors for Border Malaria in a Malaria Elimination Setting: A Retrospective Case-Control Study in Yunnan, China

    PubMed Central

    Xu, Jian-Wei; Liu, Hui; Zhang, Yu; Guo, Xiang-Rui; Wang, Jia-Zhi

    2015-01-01

    A retrospective case-control study was conducted to identify risk factors for border malaria in a malaria elimination setting of Yunnan Province, China. The study comprised 214 cases and 428 controls. The controls were individually matched to the cases on the basis of residence, age, and gender. In addition, statistical associations are based on matched analyses. The frequencies of imported, male, adult, and vivax malaria cases were respectively 201 (93.9%), 194 (90.7%), 210 (98.1%), and 176 (82.2%). Overnight stay in Myanmar within the prior month was independently associated with malaria infection (odds ratio [OR] 159.5, 95% confidence interval [CI] 75.1–338.9). In particular, stays in lowland and foothill (OR 5.5, 95% CI 2.5–11.8) or mid-hill (OR 42.8, 95% CI 5.1–319.8) areas, or near streamlets (OR 15.3, 95% CI 4.3–55.2) or paddy field or pools (OR10.1, 95% CI 4.4–55.8) were found to be independently associated with malaria. Neither forest exposure nor use of vector control measures was associated with malaria. In conclusion, travel to lowland and foothill or mid-hill hyperendemic areas, especially along the waterside in Myanmar, was found to be the highest risk factor for malaria. In considering the limitations of the study, further investigations are needed to identify the major determinants of malaria risk and develop new strategies for malaria elimination on China-Myanmar border. PMID:25601994

  2. Gene-therapy for malaria prevention.

    PubMed

    Rodrigues, Mauricio M; Soares, Irene S

    2014-11-01

    The limited number of tools for malaria prevention and the inability to eradicate the disease have required large investments in vaccine development, as vaccines have been the only foreseeable type of immunoprophylaxis against malaria. An alternative strategy named vectored immunoprophylaxis (VIP) now would allow genetically transduced host cells to assemble and secrete antibodies that neutralize the infectivity of the malaria parasite and prevent disease.

  3. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    NASA Astrophysics Data System (ADS)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  4. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana.

    PubMed

    Yawson, Alexander E; Weetman, David; Wilson, Michael D; Donnelly, Martin J

    2007-02-01

    The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.

  5. Patterns of Mitochondrial Variation within and between African Malaria Vectors, Anopheles Gambiae and An. Arabiensis, Suggest Extensive Gene Flow

    PubMed Central

    Besansky, N. J.; Lehmann, T.; Fahey, G. T.; Fontenille, D.; Braack, LEO.; Hawley, W. A.; Collins, F. H.

    1997-01-01

    Anopheles gambiae and An. arabiensis are mosquito species responsible for most malaria transmission in sub-Saharan Africa. They are also closely related sibling species that share chromosomal and molecular polymorphisms as a consequence of incomplete lineage sorting or introgressive hybridization. To help resolve these processes, this study examined the partitioning of mtDNA sequence variation within and between species across Africa, from both population genetic and phylogeographic perspectives. Based on partial gene sequences from the cytochrome b, ND1 and ND5 genes, haplotype diversity was high but sequences were very closely related. Within species, little or no population subdivision was detected, and there was no evidence for isolation by distance. Between species, there were no fixed nucleotide differences, a high proportion of shared polymorphisms, and eight haplotypes in common over distances as great as 6000 km. Only one of 16 shared polymorphisms led to an amino acid difference, and there was no compelling evidence for nonneutral variation. Parsimony networks constructed of haplotypes from both species revealed no correspondence of haplotype with either geography or taxonomy. This trend of low intraspecific genetic divergence is consistent with evidence from allozyme and microsatellite data and is interpreted in terms of both extensive gene flow and recent range expansion from relatively large, stable populations. We argue that retention of ancestral polymorphisms is a plausible but insufficient explanation for low interspecific genetic divergence, and that extensive hybridization is a contributing factor. PMID:9409838

  6. Multiple Insecticide Resistance in the Malaria Vector Anopheles funestus from Northern Cameroon Is Mediated by Metabolic Resistance Alongside Potential Target Site Insensitivity Mutations

    PubMed Central

    Menze, Benjamin D.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Antonio-Nkondjio, Christophe; Awono-Ambene, Parfait H.; Wondji, Charles S.

    2016-01-01

    Background Despite the recent progress in establishing the patterns of insecticide resistance in the major malaria vector Anopheles funestus, Central African populations of this species remain largely uncharacterised. To bridge this important gap and facilitate the implementation of suitable control strategies against this vector, we characterised the resistance patterns of An. funestus population from northern Cameroon. Methods and Findings Collection of indoor-resting female mosquitoes in Gounougou (northern Cameroon) in 2012 and 2015 revealed a predominance of An. funestus during dry season. WHO bioassays performed using F1 An. funestus revealed that the population was multiple resistant to several insecticide classes including pyrethroids (permethrin, deltamethrin, lambda-cyhalothrin and etofenprox), carbamates (bendiocarb) and organochlorines (DDT and dieldrin). However, a full susceptibility was observed against the organophosphate malathion. Bioassays performed with 2015 collection revealed that resistance against pyrethroids and DDT is increasing. PBO synergist assays revealed a significant recovery of susceptibility for all pyrethroids but less for DDT. Analysis of the polymorphism of a portion of the voltage-gated sodium channel gene (VGSC) revealed the absence of the L1014F/S kdr mutation but identified 3 novel amino acid changes I877L, V881L and A1007S. However, no association was established between VGSC polymorphism and pyrethroid/DDT resistance. The DDT resistant 119F-GSTe2 allele (52%) and the dieldrin resistant 296S-RDL allele (45%) were detected in Gounougou. Temporal analysis between 2006, 2012 and 2015 collections revealed that the 119F-GSTe2 allele was relatively stable whereas a significant decrease is observed for 296S-RDL allele. Conclusion This multiple resistance coupled with the temporal increased in resistance intensity highlights the need to take urgent measures to prolong the efficacy of current insecticide-based interventions against

  7. Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi?

    PubMed

    Anbu, Priya; Murugan, Kadarkarai; Madhiyazhagan, Pari; Dinesh, Devakumar; Subramaniam, Jayapal; Panneerselvam, Chellasamy; Suresh, Udaiyan; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-09-01

    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.

  8. Potential use of neem leaf slurry as a sustainable dry season management strategy to control the malaria vector Anopheles gambiae (DIPTERA: CULICIDAE) in west African villages.

    PubMed

    Luong, Kyphuong; Dunkel, Florence V; Coulibaly, Keriba; Beckage, Nancy E

    2012-11-01

    Larval management of the malaria vector, Anopheles gambiae Giles s.s., has been successful in reducing disease transmission. However, pesticides are not affordable to farmers in remote villages in Mali, and in other material resource poor countries. Insect resistance to insecticides and nontarget toxicity pose additional problems. Neem (Azadirachta indica A. Juss) is a tree with many beneficial, insect bioactive compounds, such as azadirachtin. We tested the hypothesis that neem leaf slurry is a sustainable, natural product, anopheline larvicide. A field study conducted in Sanambele (Mali) in 2010 demonstrated neem leaf slurry can work with only the available tools and resources in the village. Laboratory bioassays were conducted with third instar An. gambiae and village methods were used to prepare the leaf slurry. Experimental concentration ranges were 1,061-21,224 mg/L pulverized neem leaves in distilled water. The 50 and 90% lethal concentrations at 72 h were 8,825 mg/L and 15,212 mg/L, respectively. LC concentrations were higher than for other parts of the neem tree when compared with previous published studies because leaf slurry preparation was simplified by omitting removal of fibrous plant tissue. Using storytelling as a medium of knowledge transfer, villagers combined available resources to manage anopheline larvae. Preparation of neem leaf slurries is a sustainable approach which allows villagers to proactively reduce mosquito larval density within their community as part of an integrated management system. PMID:23270164

  9. Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say).

    PubMed

    Pandey, Vibha; Agrawal, Veena; Raghavendra, K; Dash, A P

    2007-12-01

    A system for biocontrol of malaria and filarial mosquito vectors has been developed using herbal extracts of three Spilanthes species, S. acmella L.var oleraceae Clarke, S. calva L. and S. paniculata Wall ex DC. Cent percent mortalities was achieved against the late third/early fourth instar larvae of A. stephensi Liston, A. culicifacies species C and C. quinquefasciatus Say using crude hexane extract obtained from flower heads of Spilanthes spp. Of the three plant species, S. acmella extract proved to be the most effective in inducing complete lethality at minimum doses, the respective LC50 and LC90 values being 4.57 and 7.83 (A. stephensi), 0.87 and 1.92 (A. culicifacies) and 3.11 and 8.89 ppm (C. quinquefasciatus). This was followed by S. calva and S. paniculata extracts, respectively. This is the first report of achieving cent percent lethality against these mosquito larvae using minimal doses of plant extracts from this or any other plant species. PMID:17922235

  10. Efficacy and tolerability of a new formulation of artesunate-mefloquine for the treatment of uncomplicated malaria in adult in Senegal: open randomized trial

    PubMed Central

    2012-01-01

    Background Prompt treatment of malaria attacks with arteminisin-based combination therapy (ACT) is an essential tool for malaria control. A new co-blister tablet of artesunate-mefloquine (AM) with 25 mg/kg mefloquine has been developed for the management of uncomplicated malaria attacks. This non-inferiority randomized trial, was conducted to evaluate the efficacy and safety of the new formulation of AM in comparison to artemether-lumefantrine (AL) for the treatment of acute uncomplicated Plasmodium falciparum malaria in adults in Senegal. Methods The study was carried out from September to December 2010 in two health centres in Senegal. The study end points included (i) PCR corrected adequate clinical and parasitological response (ACPR) at day 28, (ii) ACPR at days 42 and 63, (iii) parasites and fever clearance time, (iv) incidence of adverse events and patients biological profile at day 7 using the WHO 2003 protocol for anti-malarial drug evaluation. Results Overall, 310 patients were randomized to receive either AM (n = 157) or AL (n = 153). PCR corrected ACPR at day 28 was at 95.5% in the AM arm while that in the AL arm was at 96.7% (p = 0.83). Therapeutic efficacy was at 98.5% in the AM arm versus 98.2% in the AL group at day 42 (p = 1). At day 63, ACPR in the AM and AL arms was at 98.2% and 97.7%, respectively (p = 0.32). The two treatments were well tolerated with similar biological profile at day 7. However, dizziness was more frequent in the AM arm. Conclusion Artesunate-mefloquine (25 mg/Kg mefloquine) is efficacious and well-tolerated for the treatment of uncomplicated P. falciparum malaria in adult patients. PMID:23234606

  11. Re-emergence of malaria in India.

    PubMed

    Sharma, V P

    1996-01-01

    Malaria was nearly eradicated from India in the early 1960s but the disease has re-emerged as a major public health problem. Early set backs in malaria eradication coincided with DDT shortages. Later in the 1960s and 1970s malaria resurgence was the result of technical, financial and operational problems. In the late 1960s malaria cases in urban areas started to multiply, and upsurge of malaria was widespread. As a result in 1976, 6.45 million cases were recorded by the National Malaria Eradication Programme (NMEP), highest since resurgence. The implementation of urban malaria scheme (UMS) in 1971-72 and the modified plan of operation (MPO) in 1977 improved the malaria situation for 5-6 yr. Malaria cases were reduced to about 2 million. The impact was mainly on vivax malaria. Easy availability of drugs under the MPO prevented deaths due to malaria and reduced morbidity, a peculiar feature of malaria during the resurgence. The Plasmodium falciparum containment programme (PfCP) launched in 1977 to contain the spread of falciparum malaria reduced falciparum malaria in the areas where the containment programme was operated but its general spread could not be contained. P. falciparum showed a steady upward trend during the 1970s and thereafter. Rising trend of malaria was facilitated by developments in various sectors to improve the national economy under successive 5 year plans. Malaria at one time a rural disease, diversified under the pressure of developments into various ecotypes. These ecotypes have been identified as forest malaria, urban malaria, rural malaria, industrial malaria, border malaria and migration malaria; the latter cutting across boundaries of various epidemiological types. Further, malaria in the 1990s has returned with new features not witnessed during the pre-eradication days. These are the vector resistance to insecticide(s); pronounced exophilic vector behaviour; extensive vector breeding grounds created principally by the water resource

  12. The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Senthil Nathan, Sengottayan

    2007-07-01

    Secondary metabolites obtained from the indigenous plants with proven mosquito control potential can be used as an alternative to synthetic insecticides under the integrated vector control. The essential oil extract from the forest redgum, Eucalyptus tereticornis Sm. (Myrtaceae) was tested against mature and immature mosquito vector Anopheles stephensi Liston (Diptera) under laboratory condition. The extract showed strong larvicidal, pupicidal and adulticidal activity. The leaf oil extracts showed high bioactivity at high doses. Results obtained from the laboratory experiment showed that the leaf extracts suppressed the pupal and adult activity of Anopheles stephensi at higher doses. In general, first and second instar larvae were more susceptible to all treatments. Clear dose -response relationships were established with the highest dose of 160ppm plant extract evoking almost 100% mortality. The results obtained suggest that, in addition to their medicinal activities, E. tereticornis can also serve as a natural mosquitocide. PMID:16997545

  13. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide.

    PubMed

    Seenivasagan, T; Iqbal, S Thanvir; Guha, Lopamudra

    2015-07-01

    Egg retention and oviposition behavior of four species of mosquito vectors viz., Anopheles stephensi, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus to a topical insect repellent diethyl-phenylacetamide (DEPA) at 0.1-1000 mg/L was investigated under laboratory conditions. Based on oviposition activity indices, DEPA demonstrated concentration dependent oviposition deterrent effect to A. stephensi (-0.18 to -0.97), A. aegypti (-0.18 to -0.91) and A. albopictus (-0.50 to -0.98) females. In contrast, positive oviposition response by C. quinquefasciatus (+0.39 and +0.70) was observed respectively at 0.1 and 1 ppm, while 10 ppm of DEPA on water received 50% lesser egg rafts than control. Gravid Culex females laid no egg rafts at 100 and 1000 ppm DEPA treated bowls effecting 100% oviposition deterrence. Test mosquito females deposited most of their eggs (> 90%) in the absence of repellent odour, while DEPA odour on water surface forced them to retain huge numbers of eggs. Females of A. aegypti, A. albopictus and A. stephensi retained 49, 67 and 50% of total eggs, respectively throughout the experiment. Egg retention by Culex females due to DEPA on the water surface was ca. 65%, equivalent to 4 egg rafts. Therefore, DEPA at lower concentrations could effectively disturb the oviposition by these vectors. Application of repellents in small water bodies would help in reducing the population build up of mosquitoes near human households and could be useful in the integrated management of mosquito vectors. PMID:26245028

  14. Laboratory and field efficacy of Pedalium murex and predatory copepod, Mesocyclops longisetus on rural malaria vector, Anopheles culicifacies

    PubMed Central

    Chitra, Thangadurai; Murugan, Kadarkarai; Kumar, Arjunan Naresh; Madhiyazhagan, Pari; Nataraj, Thiyagarajan; Indumathi, Duraisamy; Hwang, Jiang-Shiou

    2013-01-01

    Objective To test the potentiality of the leaf extract of Pedalium murex (P. murex) and predatory copepod Mesocyclops longisetus (M. longisetus) in individual and combination in controlling the rural malarial vector, Anopheles culicifacies (An. culicifacies) in laboratory and field studies. Methods P. murex leaves were collected from in and around Erode, Tamilnadu, India. The active compounds were extracted with 300 mL of methanol for 8 h in a Soxhlet apparatus. Laboratory studies on larvicidal and pupicidal effects of methanolic extract of P. murex tested against the rural malarial vector, An. culicifacies were significant. Results Evaluated lethal concentrations (LC50) of P. murex extract were 2.68, 3.60, 4.50, 6.44 and 7.60 mg/L for I, II, III, IV and pupae of An. culicifacies, respectively. Predatory copepod, M. longisetus was examined for their predatory efficacy against the malarial vector, An. culicifacies. M. longisetus showed effective predation on the early instar (47% and 36% on I and II instar) when compared with the later ones (3% and 1% on III and IV instar). Predatory efficacy of M. longisetus was increased (70% and 45% on I and II instar) when the application was along with the P. murex extract. Conclusions Predator survival test showed that the methanolic extract of P. murex is non-toxic to the predatory copepod, M. longisetus. Experiments were also conducted to evaluate the efficacy of methanolic extract of P. murex and M. longisetus in the direct breeding sites (paddy fields) of An. culicifacies. Reduction in larval density was very high and sustained for a long time in combined treatment of P. murex and M. longisetus.

  15. Forced egg retention and oviposition behavior of malaria, dengue and filariasis vectors to a topical repellent diethyl-phenylacetamide.

    PubMed

    Seenivasagan, T; Iqbal, S Thanvir; Guha, Lopamudra

    2015-07-01

    Egg retention and oviposition behavior of four species of mosquito vectors viz., Anopheles stephensi, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus to a topical insect repellent diethyl-phenylacetamide (DEPA) at 0.1-1000 mg/L was investigated under laboratory conditions. Based on oviposition activity indices, DEPA demonstrated concentration dependent oviposition deterrent effect to A. stephensi (-0.18 to -0.97), A. aegypti (-0.18 to -0.91) and A. albopictus (-0.50 to -0.98) females. In contrast, positive oviposition response by C. quinquefasciatus (+0.39 and +0.70) was observed respectively at 0.1 and 1 ppm, while 10 ppm of DEPA on water received 50% lesser egg rafts than control. Gravid Culex females laid no egg rafts at 100 and 1000 ppm DEPA treated bowls effecting 100% oviposition deterrence. Test mosquito females deposited most of their eggs (> 90%) in the absence of repellent odour, while DEPA odour on water surface forced them to retain huge numbers of eggs. Females of A. aegypti, A. albopictus and A. stephensi retained 49, 67 and 50% of total eggs, respectively throughout the experiment. Egg retention by Culex females due to DEPA on the water surface was ca. 65%, equivalent to 4 egg rafts. Therefore, DEPA at lower concentrations could effectively disturb the oviposition by these vectors. Application of repellents in small water bodies would help in reducing the population build up of mosquitoes near human households and could be useful in the integrated management of mosquito vectors.

  16. Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia

    PubMed Central

    Odetoyinbo, J. A.

    1969-01-01

    Light-traps have been used successfully as mechanical sampling tools for insects of agricultural importance but medical entomologists have had only limited success because of the assumption that light-traps would attract vectors, even when sited in open fields well away from hosts. The investigations reported in this paper suggest that vectors are attracted primarily by their hosts and that only when light-traps are placed in the immediate vicinity of hosts, or in the narrow flight paths followed by host-seeking females, are appreciable numbers caught. When the CDC miniature light-trap was placed at various distances from hosts, the number of anopheline and culicine species captured decreased as the distance from the host increased. There were statistically significant differences between the means of catches in light-traps suspended on or in human dwellings, placed inside village compounds, and placed near the breeding site about 1.6 km from the nearest house. The maximum catch of Anopheles gambiae s.l. and culicines exceeded 3000 and 7000 per trap per night, respectively, and the average was in excess of 1200 A. gambiae s.l. The investigations showed that 6 anopheline species could be caught in appreciable numbers in human dwellings and thus demonstrated that light-traps could be used for sampling both endophilic and exophilic anophelines. It also appears that the effective range of the CDC miniature light-trap is about 5 m. PMID:5306720

  17. Anti-mosquito plants as an alternative or incremental method for malaria vector control among rural communities of Bagamoyo District, Tanzania

    PubMed Central

    2014-01-01

    Background Plants represent one of the most accessible resources available for mosquito control by communities in Tanzania. However, no documented statistics exist for their contribution in the management of mosquitoes and other insects except through verbal and some publications. This study aimed at assessing communities’ knowledge, attitudes and practices of using plants as an alternative method for mosquito control among selected communities in a malaria-prone area in Tanzania. Methods Questionnaires were administered to 202 respondents from four villages of Bagamoyo District, Pwani Region, in Tanzania followed by participatory rural appraisal with village health workers. Secondary data collection for plants mentioned by the communities was undertaken using different search engines such as googlescholar, PubMED and NAPRALERT. Results Results showed about 40.3% of respondents used plants to manage insects, including mosquitoes. A broad profile of plants are used, including “mwarobaini” (Azadirachta indica) (22.5%), “mtopetope” (Annona spp) (20.8%), “mchungwa/mlimau” (Citrus spp) (8.3%), “mvumbashi/uvumbati” (Ocimum spp) (7.4%), “mkorosho” (Anacadium occidentale) (7.1%), “mwembe” (5.4%) (Mangifera indica), “mpera” (4.1%) (Psidium spp) and “maganda ya nazi” (4.1%) (Cocos nucifera). Majority of respondents collected these plants from the wild (54.2%), farms (28.9%) and/or home gardens (6%). The roles played by these plants in fighting mosquitoes is reflected by the majority that deploy them with or without bed-nets (p > 0.55) or insecticidal sprays (p >0.22). Most respondents were aware that mosquitoes transmit malaria (90.6%) while few respondents associated elephantiasis/hydrocele (46.5%) and yellow fever (24.3%) with mosquitoes. Most of the ethnobotanical uses mentioned by the communities were consistent with scientific information gathered from the literature, except for Psidium guajava, which is reported for the first time in

  18. Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes.

    PubMed

    Koury, Josely C; Trugo N, M F; Torres, Alexandre G

    2014-09-01

    The aim of the current study was to assess phase angle (PA) and bioelectrical impedance vectors (BIVA) in adolescent (n = 105, 12-19 y) and adult (n = 90, 20-50 y) male athletes practicing varied sports modalities. Bioelectrical impedance analysis (BIA) was performed with a single-frequency tetrapolar impedance analyzer after the athletes had fasted overnight for 8 h. PA and BIVA were determined from BIA data. PA presented correlations (P < .01) with body-mass index (r = .58) in all athletes and also with age in adolescent (r = .63) and adult (r = -.27) athletes. Compared with adults, adolescent athletes presented lower PA and higher frequency of PA below the 5th percentile of a reference population (P < .001). The adolescents with low PA were mostly football and basketball players. The BIVA confidence ellipses of adult and adolescent athletes were different (P < .001) between them and from their respective reference populations and were closer than those of adult and adolescent nonathletes. About 80% of the athletes were in the 95th percentile of BIVA tolerance ellipses and in quadrants consistent with adequate body cell mass and total body water. The adolescent athletes outside the 95th percentile ellipse were all football and basketball players who showed indications of decreased water retention and body cell mass and of increased water retention, respectively. PA and BIVA ellipses showed that the intense training routine of the athletes changed functional and hydration parameters and that the magnitude of these changes in adolescents may depend on the sport modality practiced.

  19. Disease screening of three breeding populations of adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand reveals a high prevalence of a novel polyomavirus and avian malaria infection.

    PubMed

    Baron, Hamish R; Howe, Laryssa; Varsani, Arvind; Doneley, Robert J T

    2014-03-01

    Disease surveillance is vital to the management of New Zealand's endemic and threatened avian species. Three infectious agents that are potential threats to New Zealand's endemic birds include avian polyomavirus (APV), beak and feather disease virus (BFDV), and avian malaria. All three agents have been reported in New Zealand; however, possible reservoir populations have not been identified. In this communication, we report the first study of APV, BFDV, and avian malaria in introduced adult exhibition budgerigars (Melopsittacus undulatus) in New Zealand. Blood samples were collected from 90 living adult budgerigars from three breeding locations in the North Island of New Zealand. An overall APV prevalence of 22% was determined using a broad-spectrum nested PCR that amplified the major capsid protein VP1 gene of polyomavirus. Phylogenetic analysis of the VP1 gene revealed a unique isolate of APV, which had a sequence divergence of 32% to previously reported budgerigar fledgling disease strains and 33% to the recently reported New Zealand finch isolate. All of the budgerigars sampled were found to be PCR negative for BFDV, and an overall prevalence of 30% was detected by PCR for avian malaria. Sequencing revealed the presence of ubiquitous malarial strains and also the potentially destructive Plasmodium relictum strain. The results of this study suggest that both APV and avian malaria are present in New Zealand adult budgerigars, and our study highlights the need for further studies to determine whether these pathogens in captive bird populations may be a threat or spill over into New Zealand's endemic and threatened avifauna and whether prevention and control methods need to be implemented. PMID:24758122

  20. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    PubMed

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  1. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya

    PubMed Central

    Muriu, Simon M; Muturi, Ephantus J; Shililu, Josephat I; Mbogo, Charles M; Mwangangi, Joseph M; Jacob, Benjamin G; Irungu, Lucy W; Mukabana, Richard W; Githure, John I; Novak, Robert J

    2008-01-01

    Background Studies were conducted between April 2004 and February 2006 to determine the blood-feeding pattern of Anopheles mosquitoes in Mwea Kenya. Methods Samples were collected indoors by pyrethrum spay catch and outdoors by Centers for Disease Control light traps and processed for blood meal analysis by an Enzyme-linked Immunosorbent Assay. Results A total of 3,333 blood-fed Anopheles mosquitoes representing four Anopheles species were collected and 2,796 of the samples were assayed, with Anopheles arabiensis comprising 76.2% (n = 2,542) followed in decreasing order by Anopheles coustani 8.9% (n = 297), Anopheles pharoensis 8.2% (n = 272) and Anopheles funestus 6.7% (n = 222). All mosquito species had a high preference for bovine (range 56.3–71.4%) over human (range 1.1–23.9%) or goat (0.1–2.2%) blood meals. Some individuals from all the four species were found to contain mixed blood meals. The bovine blood index (BBI) for An. arabiensis was significantly higher for populations collected indoors (71.8%), than populations collected outdoors (41.3%), but the human blood index (HBI) did not differ significantly between the two populations. In contrast, BBI for indoor collected An. funestus (51.4%) was significantly lower than for outdoor collected populations (78.0%) and the HBI was significantly higher indoors (28.7%) than outdoors (2.4%). Anthropophily of An. funestus was lowest within the rice scheme, moderate in unplanned rice agro-ecosystem, and highest within the non-irrigated agro-ecosystem. Anthropophily of An. arabiensis was significantly higher in the non-irrigated agro-ecosystem than in the other agro-ecosystems. Conclusion These findings suggest that rice cultivation has an effect on host choice by Anopheles mosquitoes. The study further indicate that zooprophylaxis may be a potential strategy for malaria control, but there is need to assess how domestic animals may influence arboviruses epidemiology before adapting the strategy. PMID:18312667

  2. Newer approaches to malaria control

    PubMed Central

    Damodaran, SE; Pradhan, Prita; Pradhan, Suresh Chandra

    2011-01-01

    Malaria is the third leading cause of death due to infectious diseases affecting around 243 million people, causing 863,000 deaths each year, and is a major public health problem. Most of the malarial deaths occur in children below 5 years and is a major contributor of under-five mortality. As a result of environmental and climatic changes, there is a change in vector population and distribution, leading to resurgence of malaria at numerous foci. Resistance to antimalarials is