Science.gov

Sample records for adult mammalian central

  1. Regeneration strategies after the adult mammalian central nervous system injury—biomaterials

    PubMed Central

    Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-01-01

    The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. PMID:27047678

  2. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  3. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.

    PubMed

    Hamilton, L K; Truong, M K V; Bednarczyk, M R; Aumont, A; Fernandes, K J L

    2009-12-15

    A stem cell's microenvironment, or "niche," is a critical regulator of its behaviour. In the adult mammalian spinal cord, central canal ependymal cells possess latent neural stem cell properties, but the ependymal cell niche has not yet been described. Here, we identify important similarities and differences between the central canal ependymal zone and the forebrain subventricular zone (SVZ), a well-characterized niche of neural stem cells. First, direct immunohistochemical comparison of the spinal cord ependymal zone and the forebrain SVZ revealed distinct patterns of neural precursor marker expression. In particular, ependymal cells in the spinal cord were found to be bordered by a previously uncharacterized sub-ependymal layer, which is relatively less elaborate than that of the SVZ and comprised of small numbers of astrocytes, oligodendrocyte progenitors and neurons. Cell proliferation surrounding the central canal occurs in close association with blood vessels, but unlike in the SVZ, involves mainly ependymal rather than sub-ependymal cells. These proliferating ependymal cells typically self-renew rather than produce transit-amplifying progenitors, as they generate doublets of progeny that remain within the ependymal layer and show no evidence of a lineage relationship to sub-ependymal cells. Interestingly, the dorsal pole of the central canal was found to possess a sub-population of tanycyte-like cells that express markers of both ependymal cells and neural precursors, and their presence correlates with higher numbers of dorsally proliferating ependymal cells. Together, these data identify key features of the spinal cord ependymal cell niche, and suggest that dorsal ependymal cells possess the potential for stem cell activity. This work provides a foundation for future studies aimed at understanding ependymal cell regulation under normal and pathological conditions.

  4. Control of Cell Survival in Adult Mammalian Neurogenesis.

    PubMed

    Kuhn, H Georg

    2015-10-28

    The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain.

  5. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    ERIC Educational Resources Information Center

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  6. Cholesterol, the central lipid of mammalian cells

    PubMed Central

    Maxfield, Frederick R.; van Meer, Gerrit

    2010-01-01

    Summary of recent advances Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5–10 fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis. PMID:20627678

  7. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    PubMed

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-09-18

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.

  8. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  9. The role of olfactory stimulus in adult mammalian neurogenesis.

    PubMed

    Arisi, Gabriel M; Foresti, Maira L; Mukherjee, Sanjib; Shapiro, Lee A

    2012-02-14

    Neurogenesis occurs in the adult mammalian brain in discrete regions related to olfactory sensory signaling and integration. The olfactory receptor cell population is in constant turn-over through local progenitor cells. Also, newborn neurons are added to the olfactory bulbs through a major migratory route from the subventricular zone, the rostral migratory stream. The olfactory bulbs project to different brain structures, including: piriform cortex, amygdala, entorhinal cortex, striatum and hippocampus. These structures play important roles in odor identification, feeding behavior, social interactions, reproductive behavior, behavioral reinforcement, emotional responses, learning and memory. In all of these regions neurogenesis has been described in normal and in manipulated mammalian brain. These data are reviewed in the context of a sensory-behavioral hypothesis on adult neurogenesis that olfactory input modulates neurogenesis in many different regions of the brain.

  10. Epigenetic choreographers of neurogenesis in the adult mammalian brain

    PubMed Central

    Ma, Dengke K; Marchetto, Maria Carolina; Guo, Junjie U; Ming, Guo-li; Gage, Fred H; Song, Hongjun

    2012-01-01

    Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders. PMID:20975758

  11. Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus?

    PubMed Central

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as “bottom-up,” where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and “top-down,” where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions. PMID:24255101

  12. Central pattern generators of the mammalian spinal cord.

    PubMed

    Frigon, Alain

    2012-02-01

    Neuronal networks within the spinal cord of mammals are responsible for generating various rhythmic movements, such as walking, running, swimming, and scratching. The ability to generate multiple rhythmic movements highlights the complexity and flexibility of the mammalian spinal circuitry. The present review describes features of some rhythmic motor behaviors generated by the mammalian spinal cord and discusses how the spinal circuitry is able to produce different rhythmic movements with their own sets of goals and demands.

  13. Measuring synchrony in the mammalian central circadian circuit

    PubMed Central

    Herzog, Erik D.; Kiss, István Z.; Mazuski, Cristina

    2016-01-01

    Circadian clocks control daily rhythms in physiology and behavior across all phyla. These rhythms are intrinsic to individual cells that must synchronize to their environment and to each other to anticipate daily events. Recent advances in recording from large numbers of cells for many circadian cycles have enabled researchers to begin to evaluate the mechanisms and consequences of intercellular circadian synchrony. Consequently, methods have been adapted to estimate the period, phase and amplitude of individual circadian cells and calculate synchrony between cells. Stable synchronization requires that the cells share a common period. As a result, synchronized cells maintain constant phase relationships to each (e.g. with cell 1 peaking an hour before cell 2 each cycle). This chapter reviews how circadian rhythms are recorded from single mammalian cells and details methods for measuring their period and phase synchrony. These methods have been useful, for example, in showing that specific neuropeptides are essential to maintain synchrony among circadian cells. PMID:25707270

  14. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  15. Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N-glycans.

    PubMed

    Schwalbe, Ruth A; Corey, Melissa J; Cartwright, Tara A

    2008-02-01

    The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.

  16. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  17. 96-well electroporation method for transfection of mammalian central neurons.

    PubMed

    Buchser, William J; Pardinas, Jose R; Shi, Yan; Bixby, John L; Lemmon, Vance P

    2006-11-01

    Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes.

  18. 96-Well electroporation method for transfection of mammalian central neurons

    PubMed Central

    Buchser, William J.; Pardinas, Jose R.; Shi, Yan; Bixby, John L.; Lemmon, Vance P.

    2008-01-01

    Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes. PMID:17140120

  19. Development-inspired reprogramming of the mammalian central nervous system.

    PubMed

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  20. An in vitro model of adult mammalian nerve repair.

    PubMed

    Vyas, Alka; Li, Zhaobo; Aspalter, Manuela; Feiner, Jeffrey; Hoke, Ahmet; Zhou, Chunhua; O'Daly, Andres; Abdullah, Madeel; Rohde, Charles; Brushart, Thomas M

    2010-05-01

    The role of pathway-derived growth factors in the support of peripheral axon regeneration remains elusive. Few appropriate knock-out mice are available, and gene silencing techniques are rarely 100% effective. To overcome these difficulties, we have developed an in vitro organotypic co-culture system that accurately models peripheral nerve repair in the adult mammal. Spinal cord sections from P4 mice that express YFP in their neurons are used to innervate segments of P4 peripheral nerve. This reconstructed ventral root is then transected and joined to a nerve graft. Growth of axons across the nerve repair and into the graft can be imaged repeatedly with fluorescence microscopy to define regeneration speed, and parent neurons can be labeled in retrograde fashion to identify contributing neurons. Nerve graft harvested from adult mice remains viable in culture by both morphologic and functional criteria. Motoneurons are supported with GDNF for the first week in culture, after which they survive axotomy, and are thus functionally adult. This platform can be modified by using motoneurons from any genetically modified mouse that can be bred to express XFP, by harvesting nerve graft from any source, or by treating the culture systemically with antibodies, growth factors, or pathway inhibitors. The regeneration environment is controlled to a degree not possible in vivo, and the use of experimental animals is reduced substantially. The flexibility and control offered by this technique should thus make it a useful tool for the study of regeneration biology.

  1. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  2. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  3. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain

    PubMed Central

    Sun, Gerald J.; Zhou, Yi; Stadel, Ryan P.; Moss, Jonathan; Yong, Jing Hui A.; Ito, Shiori; Kawasaki, Nicholas K.; Phan, Alexander T.; Oh, Justin H.; Modak, Nikhil; Reed, Randall R.; Toni, Nicolas; Song, Hongjun; Ming, Guo-li

    2015-01-01

    In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system. PMID:26170290

  4. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system.

    PubMed

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-04-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS.

  5. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  6. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.

    PubMed

    Llinás, R R

    1988-12-23

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhythmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  7. Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments

    PubMed Central

    Tohyama, Koujiro; Akagi, Takumi; Furuse, Tamio; Sadakata, Tetsushi; Tanaka, Mika; Shinoda, Yo; Hashikawa, Tsutomu; Itohara, Shigeyoshi; Sano, Yoshitake; Ghandour, M. Said; Wakana, Shigeharu

    2016-01-01

    Opalin, a central nervous system-specific myelin protein phylogenetically unique to mammals, has been suggested to play a role in mammalian-specific myelin. To elucidate the role of Opalin in mammalian myelin, we disrupted the Opalin gene in mice and analyzed the impacts on myelination and behavior. Opalin-knockout (Opalin−/−) mice were born at a Mendelian ratio and had a normal body shape and weight. Interestingly, Opalin−/− mice had no obvious abnormalities in major myelin protein compositions, expression of oligodendrocyte lineage markers, or domain organization of myelinated axons compared with WT mice (Opalin+/+) mice. Electron microscopic observation of the optic nerves did not reveal obvious differences between Opalin+/+ and Opalin−/− mice in terms of fine structures of paranodal loops, transverse bands, and multi-lamellae of myelinated axons. Moreover, sensory reflex, circadian rhythm, and locomotor activity in the home cage, as well as depression-like behavior, in the Opalin−/− mice were indistinguishable from the Opalin+/+ mice. Nevertheless, a subtle but significant impact on exploratory activity became apparent in Opalin−/− mice exposed to a novel environment. These results suggest that Opalin is not critical for central nervous system myelination or basic sensory and motor activities under conventional breeding conditions, although it might be required for fine-tuning of exploratory behavior. PMID:27855200

  8. Holocene mammalian change in the central Columbia Basin of eastern Washington state, USA

    NASA Astrophysics Data System (ADS)

    Lyman, R. Lee

    2016-08-01

    Predictions of changes in the Holocene mammalian fauna of the central Columbia Basin in eastern Washington (USA) based on environmental changes are largely met. Taxonomic richness is greatest during periods of cool-moist climate. Rates of input of faunal remains to the paleozoological record may suggest greater mammalian biomass during periods of greater moisture but are difficult to interpret without data on sampling intensity in the form of volume of sediment excavated. Abundances of leporids and grazing ungulates fluctuate in concert with abundance of grass. Several biogeographic records are tantalizing but require additional study and data before being accepted as valid. Records of red fox (Vulpes vulpes) indicate this species was present in the central basin during the Holocene contrary to historic records and recent suggestions modern foxes there are escapees from fur farms. Bison (Bison bison) and bighorn sheep (Ovis canadensis) underwent diminution of body size during the Holocene. Modern efforts to conserve the Columbia Basin ecosystem are advised to consider the Holocene record as indicative of what may happen to that ecosystem in the future.

  9. Marriage Matters But How Much? Marital Centrality Among Young Adults.

    PubMed

    Willoughby, Brian J; Hall, Scott S; Goff, Saige

    2015-01-01

    Marriage, once a gateway to adulthood, is no longer as widely considered a requirement for achieving adult status. With declining marriage rates and delayed marital transitions, some have wondered whether current young adults have rejected the traditional notion of marriage. Utilizing a sample of 571 young adults, the present study explored how marital centrality (the expected importance to be placed on the marital role relative to other adult roles) functioned as a unique and previously unexplored marital belief among young adults. Results suggested that marriage remains an important role for many young adults. On average, young adults expected that marriage would be more important to their life than parenting, careers, or leisure activities. Marital centrality profiles were found to significantly differ based on both gender and religiosity. Marital centrality was also associated with various outcomes including binge-drinking and sexual activity. Specifically, the more central marriage was expected to be, the less young adults engaged in risk-taking or sexual behaviors.

  10. Temporal features of adult neurogenesis: differences and similarities across mammalian species

    PubMed Central

    Brus, Maïna; Keller, Matthieu; Lévy, Frédéric

    2013-01-01

    Production of new neurons continues throughout life in most invertebrates and vertebrates like crustaceans, fishes, reptiles, birds, and mammals including humans. Most studies have been carried out on rodent models and demonstrated that adult neurogenesis is located mainly in two structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ). If adult neurogenesis is well preserved throughout evolution, yet there are however some features which differ between species. The present review proposes to target similarities and differences in the mechanism of mammalian adult neurogenesis by comparing selected species including humans. We will highlight the cellular composition and morphological organization of the SVZ in primates which differs from that of rodents and may be of functional relevance. We will particularly focus on the dynamic of neuronal maturation in rodents, primates, and humans but also in sheep which appears to be an interesting model due to its similarities with the primate brain. PMID:23935563

  11. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis.

    PubMed

    Chojnacka, Katarzyna; Zarzycka, Marta; Mruk, Dolores D

    A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.

  12. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms.

    PubMed

    Parr-Brownlie, Louise C; Bosch-Bouju, Clémentine; Schoderboeck, Lucia; Sizemore, Rachel J; Abraham, Wickliffe C; Hughes, Stephanie M

    2015-01-01

    Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.

  13. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    PubMed Central

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-01-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-d-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix–loop–helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases. PMID:15353594

  14. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  15. Localization and Targeting of Voltage-Gated Ion Channels in Mammalian Central Neurons

    PubMed Central

    Vacher, Helene; Mohapatra, Durga P.; Trimmer, James S.

    2008-01-01

    The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific population of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits co-assemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed at determining the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization, and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels. PMID:18923186

  16. α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals

    PubMed Central

    Wu, Xin-Sheng; Sheng, Jiansong; Zhang, Zhen; Yue, Hai-Yuan; Sun, Lixin; Sgobio, Carmelo; Lin, Xian; Peng, Shiyong; Jin, Yinghui; Gan, Lin; Wu, Ling-Gang

    2016-01-01

    α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53T in calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. SIGNIFICANCE STATEMENT α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration. PMID:27098685

  17. Identification of mammalian noggin and its expression in the adult nervous system.

    PubMed

    Valenzuela, D M; Economides, A N; Rojas, E; Lamb, T M; Nuñez, L; Jones, P; Lp, N Y; Espinosa, R; Brannan, C I; Gilbert, D J

    1995-09-01

    The multiple roles of noggin during dorsal fate specification in Xenopus embryos, together with noggin's ability to directly induce neural tissue, inspired an effort to determine whether a similar molecule exists in mammals. Here we describe the identification of human and rat noggin and explore their expression patterns; we also localize the human NOGGIN gene to chromosome 17q22, and the mouse gene to a syntenic region of chromosome 11. Mammalian noggin is remarkably similar in its sequence to Xenopus noggin, and is similarly active in induction assays performed on Xenopus embryo tissues. In the adult mammal, noggin is most notably expressed in particular regions of the nervous system, such as the tufted cells of the olfactory bulb, the piriform cortex of the brain, and the Purkinje cells of the cerebellum, suggesting that one of the earliest acting neural inducers also has important roles in the adult nervous system.

  18. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family

    PubMed Central

    Porrello, Enzo R.; Mahmoud, Ahmed I.; Simpson, Emma; Johnson, Brett A.; Grinsfelder, David; Canseco, Diana; Mammen, Pradeep P.; Rothermel, Beverly A.; Olson, Eric N.; Sadek, Hesham A.

    2013-01-01

    We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity. PMID:23248315

  19. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  20. Current recordings at the single channel level in adult mammalian isolated cardiomyocytes.

    PubMed

    Guinamard, Romain; Hof, Thomas; Sallé, Laurent

    2014-01-01

    This chapter describes appropriate methods to investigate mammalian cardiac channels properties at the single channel level. Cell isolation is performed from new born or adult heart by enzymatic digestion on minced tissue or using the Langendorff apparatus. Isolation proceeding is suitable for rabbit, rat, and mouse hearts. In addition, isolation of human atrial cardiomyocytes is described. Such freshly isolated cells or cells maintained in primary culture are suitable for patch-clamp studies. Here we describe the single channel variants of the patch-clamp technique (cell-attached, inside-out, outside-out) used to investigate channel properties. Proceedings for the evaluation of biophysical properties such as conductance, ionic selectivity, regulations by extracellular and intracellular mechanisms are described. To illustrate the study, we provide an example by the characterization of a calcium-activated non-selective cation channel (TRPM4).

  1. [Proliferation of adult mammalian ventricular cardiomyocytes: a sporadic but feasible phenomenon].

    PubMed

    Vargas-González, Alvaro

    2014-01-01

    Proliferation of adult mammalian ventricular cardiomyocytes has been ruled out by some researchers, who have argued that these cells are terminally differentiated; however, this dogma has been rejected because other researchers have reported that these cells can present the processes necessary to proliferate, that is, DNA synthesis, mitosis and cytokinesis when the heart is damaged experimentally through pharmacological and surgical strategies or due to pathological conditions concerning the cardiovascular system. This review integrates some of the available works in the literature evaluating the DNA synthesis, mitosis and cytokinesis in these myocytes, when the myocardium is damaged, with the purpose of knowing if their proliferation can be considered as a feasible phenomenon. The review is concluded with a reflection about the perspectives of the knowledge generated in this area.

  2. Cholesterol regulates multiple forms of vesicle endocytosis at a mammalian central synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2015-07-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non-specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl-β-cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca(2+) channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl-β-cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  3. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow.

    PubMed

    Yeo, Jia Hao; McAllan, Bronwyn M; Fraser, Stuart T

    2016-04-01

    Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production.

  4. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo

    PubMed Central

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-01-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  5. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  6. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss).

    PubMed

    Downs, Anna G; Scholles, Katie R; Hollis, David M

    2016-12-01

    Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca(2+) entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system.

  7. Hemi-central retinal artery occlusion in young adults.

    PubMed

    Rishi, Pukhraj; Rishi, Ekta; Sharma, Tarun; Mahajan, Sheshadri

    2010-01-01

    Amongst the clinical presentations of retinal artery occlusion, hemi-central retinal artery occlusion (Hemi-CRAO) is rarely described. This case series of four adults aged between 22 and 36 years attempts to describe the clinical profile, etiology and management of Hemi-CRAO. Case 1 had an artificial mitral valve implant. Polycythemia and malignant hypertension were noted in Case 2. The third patient had Leiden mutation while the fourth patient had Eisenmenger's syndrome. Clinical examination and fundus fluorescein angiography revealed a bifurcated central retinal artery at emergence from the optic nerve head, in all cases. Color Doppler examination of the central retinal artery confirmed branching of the artery behind the lamina cribrosa. It is hypothesized that bifurcation of central retinal artery behind the lamina cribrosa may predispose these hemi-trunks to develop an acute occlusion if associated with underlying risk factors. The prognosis depends upon arterial recanalisation and etiology of the thromboembolic event.

  8. Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons

    PubMed Central

    Chen, Meifan; Geoffroy, Cédric G.; Wong, Hetty N.; Tress, Oliver; Nguyen, Mallorie T.; Holzman, Lawrence B.; Jin, Yishi; Zheng, Binhai

    2016-01-01

    Leucine Zipper-bearing Kinase (LZK/MAP3K13) is a member of the mixed lineage kinase family with high sequence identity to Dual Leucine Zipper Kinase (DLK/MAP3K12). While DLK is established as a key regulator of axonal responses to injury, the role of LZK in mammalian neurons is poorly understood. By gain- and loss-of-function analyses in neuronal cultures, we identify LZK as a novel positive regulator of axon growth. LZK signals specifically through MKK4 and JNKs among MAP2Ks and MAPKs respectively in neuronal cells, with JNK activity positively regulating LZK protein levels. Neuronal maturation or activity deprivation activates the LZK-MKK4-JNK pathway. LZK and DLK share commonalities in signaling, regulation, and effects on axon extension. Furthermore, LZK-dependent regulation of DLK protein expression and the lack of additive effects on axon growth upon co-manipulation suggest complex functional interaction and cross-regulation between these two kinases. Together, our data support the possibility for two structurally related MAP3Ks to work in concert to mediate axonal responses to external insult or injury in mammalian CNS neurons. PMID:27511108

  9. Glycine-mediated changes of onset reliability at a mammalian central synapse.

    PubMed

    Kopp-Scheinpflug, C; Dehmel, S; Tolnai, S; Dietz, B; Milenkovic, I; Rübsamen, R

    2008-11-19

    Glycine is an inhibitory neurotransmitter activating a chloride conductance in the mammalian CNS. In vitro studies from brain slices revealed a novel presynaptic site of glycine action in the medial nucleus of the trapezoid body (MNTB) which increases the release of the excitatory transmitter glutamate from the calyx of Held. Here, we investigate the action of glycine on action potential firing of single MNTB neurons from the gerbil under acoustic stimulation in vivo. Iontophoretic application of the glycine receptor antagonist strychnine caused a significant decrease in spontaneous and sound-evoked firing rates throughout the neurons' excitatory response areas, with the largest changes at the respective characteristic frequency (CF). The decreased firing rate was accompanied by longer and more variable onset latencies of sound-evoked responses. Outside the neurons' excitatory response areas, firing rates increased during the application of strychnine due to a reduction of inhibitory sidebands, causing a broadening of frequency tuning. These results indicate that glycine enhances the efficacy for on-CF stimuli, while simultaneously suppressing synaptic transmission for off-CF stimuli. These in vivo results provide evidence of multiple excitatory and inhibitory glycine effects on the same neuronal population in the mature mammalian CNS.

  10. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    PubMed Central

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  11. A compact light-sheet microscope for the study of the mammalian central nervous system

    NASA Astrophysics Data System (ADS)

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-05-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community.

  12. A compact light-sheet microscope for the study of the mammalian central nervous system

    PubMed Central

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  13. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers.

    PubMed

    Li, Chunyi; Yang, Fuhe; Sheppard, Allan

    2009-09-01

    Mammalian organ regeneration is the "Holy Grail" of modern regenerative biology and medicine. The most dramatic organ replacement is known as epimorphic regeneration. To date our knowledge of epimorphic regeneration has come from studies of amphibians. Notably, these animals have the ability to reprogram phenotypically committed cells at the amputation plane toward an embryonic-like cell phenotype (dedifferentiation). The capability of mammals to initiate analogous regeneration, and whether similar mechanisms would be involved if it were to occur, remain unclear. Deer antlers are the only mammalian appendages capable of full renewal, and therefore offer a unique opportunity to explore how nature has solved the problem of mammalian epimorphic regeneration. Following casting of old hard antlers, new antlers regenerate from permanent bony protuberances, known as pedicles. Studies through morphological and histological examinations, tissue deletion and transplantation, and cellular and molecular techniques have demonstrated that antler renewal is markedly different from that of amphibian limb regeneration (dedifferentiation-based), being a stem cell-based epimorphic process. Antler stem cells reside in the pedicle periosteum. We envisage that epimorphic regeneration of mammalian appendages, other than antler, could be made possible by recreating comparable milieu to that which supports the elaboration of that structure from the pedicle periosteum.

  14. The electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro.

    PubMed

    de Curtis, M; Paré, D; Llinás, R R

    1991-10-01

    The viability and general electrophysiological properties of the limbic system in the adult mammalian brain isolated and maintained in vitro by arterial perfusion are described. The isolated brain preparation combines the advantages of intact synaptic connectivity and accessibility of different areas of the encephalic mass with those of the in vitro approach, i.e., stability and control of the ionic environment. Extracellular field potential as well as intracellular recordings were performed at different levels in the limbic system of isolated adult guinea pig brains. The results demonstrate that in the piriform, entorhinal, and hippocampal cortices, the intrinsic electrical properties of individual cells as well as the spontaneous and evoked electrical activity in the neuronal ensembles they comprise, were virtually identical to those observed in vivo. The properties of the limbic system loop were determined.

  15. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  16. The insecticide esfenvalerate modulates neuronal excitability in mammalian central nervous system in vitro.

    PubMed

    Varró, Petra; Kovács, Melinda; Világi, Ildikó

    2017-02-05

    Pyrethroids are neurotoxic insecticides showing significant selective toxicity on insects over mammals, but effects on mammalian nervous system are not negligible. These substances act on the voltage-gated sodium channel, prolonging the duration of the open state. The present study focused on the effect of the pyrethroid esfenvalerate on the excitability of neuronal networks in vitro. From isolated rat brain slices, neocortical and hippocampal evoked field potentials were recorded; four concentrations (5-40μM) of esfenvalerate were tested using in vitro administration of the commercial product Sumi-Alpha 5 EC(®). Basic excitability and short- and long-term synaptic plasticity were studied. Application of the lowest concentration elicited epileptiform discharges in neocortex, while the highest concentration exerted a strong inhibitory effect on the excitability of both brain areas. The amplitude of population spikes in hippocampal slices was decreased by all applied concentrations. Significant decrease in basic excitability was accompanied by increase of paired-pulse facilitation in hippocampus and decreased efficacy of the development of long-term potentiation in both regions. Pyrethroids have been scarcely studied on brain slices so far, but our results are in concordance with literary data obtained on other in vitro neuronal test systems. It has been described previously that lower concentrations of pyrethroids lead to overexcitation of neurons and repetitive firing (which is in the background of hyperexcitatory symptoms occurring in case of in vivo exposure). Higher concentrations, however, may lead to depolarization block and to inhibition of neuronal firing.

  17. Contour Enhancement Benefits Older Adults with Simulated Central Field Loss

    PubMed Central

    Kwon, MiYoung; Ramachandra, Chaithanya; Satgunam, PremNandhini; Mel, Bartlett W.; Peli, Eli; Tjan, Bosco S.

    2012-01-01

    Purpose Age-related macular degeneration (AMD) is the leading cause of vision loss among Americans over the age of 65. Currently, no effective treatment can reverse the central vision loss associated with most AMD. Digital image-processing techniques have been developed to improve image visibility for peripheral vision; however, both the selection and efficacy of such methods are limited. Progress has been difficult for two reasons: the exact nature of image enhancement that might benefit peripheral vision is not well understood, and efficient methods for testing such techniques have been elusive. The current study aims to develop both an effective image-enhancement technique for peripheral vision and an efficient means for validating the technique. Methods We used a novel contour detection algorithm to locate shape-defining edges in images based on natural-image statistics. We then enhanced the scene by locally boosting the luminance contrast along such contours. Using a gaze-contingent display, we simulated central visual field loss in normally-sighted young (ages 18–30) and older adults (ages 58–88). Visual search performance was measured as a function of contour enhancement strength ("Original" (unenhanced), "Medium", and "High"). For preference task, a separate group of subjects judged which image in a pair "would lead to better search performance". Results We found that while contour enhancement had no significant effect on search time and accuracy in young adults, Medium enhancement resulted in significantly shorter search time in older adults (~13% reduction relative to Original). Both age groups preferred images with Medium enhancement over Original (2 to 7 times). Furthermore, across age groups, image content types and enhancement strengths, there was a robust correlation between preference and performance. Conclusions Our findings demonstrate a beneficial role of contour enhancement in peripheral vision for older adults. Our findings further suggest

  18. Gene expression profile during functional maturation of a central mammalian synapse.

    PubMed

    Körber, Christoph; Dondzillo, Anna; Eisenhardt, Gisela; Herrmannsdörfer, Frank; Wafzig, Oliver; Kuner, Thomas

    2014-09-01

    Calyx of Held giant presynaptic terminals in the auditory brainstem form glutamatergic axosomatic synapses that have advanced to one of the best-studied synaptic connections of the mammalian brain. As the auditory system matures and adjusts to high-fidelity synaptic transmission, the calyx undergoes extensive structural and functional changes - in mice, it is formed at about postnatal day 3 (P3), achieves immature function until hearing onset at about P10 and can be considered mature from P21 onwards. This setting provides a unique opportunity to examine the repertoire of genes driving synaptic structure and function during postnatal maturation. Here, we determined the gene expression profile of globular bushy cells (GBCs), neurons giving rise to the calyx of Held, at different maturational stages (P3, P8, P21). GBCs were retrogradely labelled by stereotaxic injection of fluorescent cholera toxin-B, and their mRNA content was collected by laser microdissection. Microarray profiling, successfully validated with real time quantitative polymerase chain reaction and nCounter approaches, revealed genes regulated during maturation. We found that mostly genes implicated in the general cell biology of the neuron were regulated, while most genes related to synaptic function were regulated around the onset of hearing. Among these, voltage-gated ion channels and calcium-binding proteins were strongly regulated, whereas most genes involved in the synaptic vesicle cycle were only moderately regulated. These results suggest that changes in the expression patterns of ion channels and calcium-binding proteins are a dominant factor in defining key synaptic properties during maturation of the calyx of Held.

  19. Perforated microelectrode arrays implanted in the regenerating adult central nervous system.

    PubMed

    Heiduschka, P; Romann, I; Stieglitz, T; Thanos, S

    2001-09-01

    Adult mammalian optic nerve axons are able to regenerate, when provided with the permissive environment of an autologous peripheral nerve graft, which is usually the sciatic nerve. This study demonstrates the ability of adult rat optic nerve axons to regenerate through the preformed perforations of a polyimide electrode carrier implanted at the interface between the proximal stump of the cut optic nerve and the stump of the peripheral nerve piece used for grafting. Evidence that retinal ganglion cells regenerated their axons through the perforated electrode carrier was obtained by retrograde labeling with a fluorescent dye deposited into the sciatic nerve graft beyond the nerve-carrier-nerve junction. The number of regenerating cells could be enhanced by injecting neuroprotective drugs like aurintricarboxylic acid and cortisol intravitreally. A second line of evidence was obtained by immunohistochemical staining with antibodies to neurofilament. Third, electrical activity of the regenerating nerves was recorded after stimulating the retina with a flash of light. The results suggest that a regenerating central nerve tract may serve as an experimental model to implant artificial microdevices to monitor the physiological and topographical properties of neurites passing through the device or to stimulate them, thus interfering with their potential to grow. This study reports for the first time that the optic nerve has unique properties, which aids in the realization of these goals.

  20. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington's disease.

    PubMed

    Shema, Reut; Kulicke, Ruth; Cowley, Glenn S; Stein, Rachael; Root, David E; Heiman, Myriam

    2015-01-06

    Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.

  1. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord.

    PubMed

    Corns, Laura F; Deuchars, Jim; Deuchars, Susan A

    2013-10-11

    The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABA(A) receptors contribute to this response. A lack of effect by baclofen suggests that GABA(B) receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.

  2. Amino acid pharmacology of mammalian central neurones grown in tissue culture.

    PubMed

    Barker, J L; Ransom, B R

    1978-07-01

    -test experiments with pairs of GABA and glycine responses suggest that the reversal of response polarity is due to a rapid redistribution of Cl- ions. 9. The limiting slope of log-log dose-response curves for GABA-induced conductance averaged about 2, while those for glutamate-induced depolarizations averaged about 1. The results suggest that two molecules of GABA and one molecule of glutamate participate in the respective post-synaptic responses. 10. The observation indicate that mammalian C.N.S. tissue grown in culture is a suitable model to study C.N.S. membrane pharmacology with increasing precision.

  3. Mammalian Axoneme Central Pair Complex Proteins: Broader Roles Revealed by Gene Knockout Phenotypes

    PubMed Central

    Teves, Maria E.; Nagarkatti-Gude, David R.; Zhang, Zhibing; Strauss, Jerome F.

    2016-01-01

    The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions. PMID:26785425

  4. Amino acids as central synaptic transmitters or modulators in mammalian thermoregulation

    SciTech Connect

    Bligh, J.

    1981-11-01

    Of the amino acids that affect the activity of central neurons, aspartate and glutamate (which exert generally excitatory influences) and glycine, taurine, and ..gamma..-aminobutyric acid (GABA) (which generally exert inhibitory influences) are the strongest neurotransmitter candidates. As with other putative transmitter substances, their effects on body temperature when injected into the cerebral ventricles or the preoptic hypothalamus tend to vary within and between species. These effects are uninterpretable without accompanying information regarding effector activity changes and the influences of dose and ambient temperature. Observations necessary for analysis of apparent action have been made in studies of the effects of intracerebroventricular injections of these amino acids into sheep. Aspartate and glutamate have similar excitatory effects on the pathway from cold sensors, whereas taurine and GABA exert inhibitory influences on the neural pathways that activate both heat production and heat loss effectors. Glycine appears to be without effect.

  5. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  6. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator.

    PubMed

    Otis, Jessica P; Raybould, Helen E; Carey, Hannah V

    2011-05-01

    Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.

  7. Infiltration of central nervous system in adult acute myeloid leukaemia.

    PubMed Central

    Pippard, M J; Callender, S T; Sheldon, P W

    1979-01-01

    Out of 64 consecutive unselected patients with acute myeloid leukaemia studied during 1973-6, five developed clinical evidence of spread to the central nervous system (CNS). Neuroradiological examination showed cerebral deposits in three, in whom rapid symptomatic relief was obtained with radiotherapy. In two of these patients who developed solid intracranial deposits haematological remission could be reinduced or maintained; they were still alive 86 and 134 weeks later. When patients presented with spread to the CNS complicating generalised uncontrolled leukaemia they had short survivals. CNS infiltration may respond dramatically to appropriate treatment provided that it is not associated with generalised uncontrolled leukaemia, which has a poor prognosis. In view of this, routine "prophylaxis" of the CNS in adult acute myeloid leukaemia does not seem justified at present. Images FIG 1 FIG 2 FIG 3 PMID:283873

  8. The herb community of a tropical forest in central Panamá: dynamics and impact of mammalian herbivores.

    PubMed

    Royo, Alejandro A; Carson, Walter P

    2005-08-01

    Mammals are hypothesized to either promote plant diversity by preventing competitive exclusion or limit diversity by reducing the abundance of sensitive plant species through their activities as browsers or disturbance agents. Previous studies of herbivore impacts in plant communities have focused on tree species and ignored the herbaceous community. In an experiment in mature-phase, tropical moist forest sites in central Panamá, we studied the impact of excluding ground-dwelling mammals on the richness and abundance of herbs in 16, 30x45-m plots. Within each plot, we censused the herbaceous community in 28, 2x2-m subplots (1,792 m2 total area sampled). We identified over 54 species of herbs averaging 1.21 ramets m-2 and covering approximately 4.25% of the forest floor. Excluding mammals for 5 years had no impact on overall species richness. Within exclosures, however, there was a significant two-fold increase in the density of rare species. Overall herbaceous density and percent cover did not differ between exclosures and adjacent control plots, although cover did increase over time. Mammalian exclusion significantly increased the total cover of three-dominant herb species, Pharus latifolius, Calathea inocephala, and Adiantum lucidum, but did not affect their density. This study represents one of the most extensive herbaceous community censuses conducted in tropical forests and is among a few that quantify herbaceous distribution and abundance in terms of both density and cover. Additionally, this work represents the first community level test of mammalian impacts on the herbaceous community in a tropical forest to date. Our results suggest that ground dwelling mammals do not play a key role in altering the relative abundance patterns of tropical herbs in the short term. Furthermore, our results contrast sharply with prior studies on similar temporal and spatial scales that demonstrate mammals strongly alter tree seedling composition and reduce seedling density

  9. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Sobhebidari, Pooya; Tavakkoli, Jahan; Wen, Xiao-Yan; Baker, Andrew J

    2016-12-20

    Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.

  10. Synthesis and Characterization of a Model Extracellular Matrix that Induces Partial Regeneration of Adult Mammalian Skin

    NASA Astrophysics Data System (ADS)

    Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F.

    1989-02-01

    Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen--glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 μ m, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was >5 × 104 cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physicochemical structure, functioning as a transient basal lamina during morphogenesis of skin.

  11. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin.

    PubMed Central

    Yannas, I V; Lee, E; Orgill, D P; Skrabut, E M; Murphy, G F

    1989-01-01

    Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen-glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 microns, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was greater than 5 x 10(4) cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physiochemical structure, functioning as a transient basal lamina during morphogenesis of skin. Images PMID:2915988

  12. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    PubMed

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.

  13. Residential Pesticide Usage in Older Adults Residing in Central California

    PubMed Central

    Armes, Mary N.; Liew, Zeyan; Wang, Anthony; Wu, Xiangmei; Bennett, Deborah H.; Hertz-Picciotto, Irva; Ritz, Beate

    2011-01-01

    Information on residential pesticide usage and behaviors that may influence pesticide exposure was collected in three population-based studies of older adults residing in the three Central California counties of Fresno, Kern, and Tulare. We present data from participants in the Study of Use of Products and Exposure Related Behaviors (SUPERB) study (N = 153) and from community controls ascertained in two Parkinson’s disease studies, the Parkinson’s Environment and Gene (PEG) study (N = 359) and The Center for Gene-Environment Studies in Parkinson’s Disease (CGEP; N = 297). All participants were interviewed by telephone to obtain information on recent and lifetime indoor and outdoor residential pesticide use. Interviews ascertained type of product used, frequency of use, and behaviors that may influence exposure to pesticides during and after application. Well over half of all participants reported ever using indoor and outdoor pesticides; yet frequency of pesticide use was relatively low, and appeared to increase slightly with age. Few participants engaged in behaviors to protect themselves or family members and limit exposure to pesticides during and after treatment, such as ventilating and cleaning treated areas, or using protective equipment during application. Our findings on frequency of use over lifetime and exposure related behaviors will inform future efforts to develop population pesticide exposure models and risk assessment. PMID:21909294

  14. Detection, Characterization, and Spontaneous Differentiation In Vitro of Very Small Embryonic-Like Putative Stem Cells in Adult Mammalian Ovary

    PubMed Central

    Parte, Seema; Telang, Jyoti; Daithankar, Vinita; Salvi, Vinita; Zaveri, Kusum; Hinduja, Indira

    2011-01-01

    The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1–3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4–7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase–polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial–mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals. PMID:21291304

  15. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Telang, Jyoti; Daithankar, Vinita; Salvi, Vinita; Zaveri, Kusum; Hinduja, Indira

    2011-08-01

    The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.

  16. Fm1-43 reveals membrane recycling in adult inner hair cells of the mammalian cochlea.

    PubMed

    Griesinger, Claudius B; Richards, Chistopher D; Ashmore, Jonathan F

    2002-05-15

    Neural transmission of complex sounds demands fast and sustained rates of synaptic release from the primary cochlear receptors, the inner hair cells (IHCs). The cells therefore require efficient membrane recycling. Using two-photon imaging of the membrane marker FM1-43 in the intact sensory epithelium within the cochlear bone of the adult guinea pig, we show that IHCs possess fast calcium-dependent membrane uptake at their apical pole. FM1-43 did not permeate through the stereocilial mechanotransducer channel because uptake kinetics were neither changed by the blockers dihydrostreptomycin and d-tubocurarine nor by treatment of the apical membrane with BAPTA, known to disrupt mechanotransduction. Moreover, the fluid phase marker Lucifer Yellow produced a similar labeling pattern to FM1-43, consistent with FM1-43 uptake via endocytosis. We estimate the membrane retrieval rate at approximately 0.5% of the surface area of the cell per second. Labeled membrane was rapidly transported to the base of IHCs by kinesin-dependent trafficking and accumulated in structures that resembled synaptic release sites. Using confocal imaging of FM1-43 in excised strips of the organ of Corti, we show that the time constants of fluorescence decay at the basolateral pole of IHCs and apical endocytosis were increased after depolarization of IHCs with 40 mm potassium, a stimulus that triggers calcium influx and increases synaptic release. Blocking calcium channels with either cadmium or nimodipine during depolarization abolished the rate increase of apical endocytosis. We suggest that IHCs use fast calcium-dependent apical endocytosis for activity-associated replenishment of synaptic membrane.

  17. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    PubMed

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  18. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System

    PubMed Central

    Baer, Matthew L.; Henderson, Scott C.; Colello, Raymond J.

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50–100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair. PMID:26562295

  19. Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration.

    PubMed

    Rasmussen, Kristin; Palacios, Daniel M; Calambokidis, John; Saborío, Marco T; Dalla Rosa, Luciano; Secchi, Eduardo R; Steiger, Gretchen H; Allen, Judith M; Stone, Gregory S

    2007-06-22

    We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.

  20. Adult vaccination in 11 Central European countries - calendars are not just for children.

    PubMed

    Chlibek, Roman; Anca, Ioana; André, Francis; Čižman, Milan; Ivaskeviciene, Inga; Mangarov, Atanas; Mészner, Zsófia; Perenovska, Penka; Pokorn, Marko; Prymula, Roman; Richter, Darko; Salman, Nuran; Šimurka, Pavol; Tamm, Eda; Tešović, Goran; Urbancikova, Ingrid; Zavadska, Dace; Usonis, Vytautas

    2012-02-21

    As Europe's population ages, disease morbidity and treatment costs in the adult population are likely to rise substantially, making this a pertinent time to review and revise preventive strategies such as vaccination. Vaccine uptake remains a problem for adults and there is a lack of coordinated programmes for vaccination of adults. Countries in Western Europe have begun to identify the need to increase adult vaccination, but the situation in Central European countries remains poorly identified and inadequately described. This paper summarises the evidence to support the development of an adult vaccination calendar in the Central European Vaccination Awareness Group (CEVAG) member countries (Bulgaria, Croatia, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Romania, Slovakia, Slovenia and Turkey). CEVAG recommends the introduction of an adult vaccination calendar, which should include vaccination against diseases that represent a large burden in adults in terms of mortality and morbidity. This calendar could be modified to meet the priorities of individual countries.

  1. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  2. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain

    PubMed Central

    Fallon, James; Reid, Steve; Kinyamu, Richard; Opole, Isaac; Opole, Rebecca; Baratta, Janie; Korc, Murray; Endo, Tiffany L.; Duong, Alexander; Nguyen, Gemi; Karkehabadhi, Masoud; Twardzik, Daniel; Loughlin, Sandra

    2000-01-01

    The development of an in vivo procedure for the induction of massive proliferation, directed migration, and neurodifferentiation (PMD) in the damaged adult central nervous system would hold promise for the treatment of human neurodegenerative disorders such as Parkinson's disease. We investigated the in vivo induction of PMD in the forebrain of the adult rat by using a combination of 6-hydroxydopamine lesion of the substantia nigra dopaminergic neurons and infusions of transforming growth factor α (TGFα) into forebrain structures. Only in animals with both lesion and infusion of TGFα was there a rapid proliferation of forebrain stem cells followed by a timed migration of a ridge of neuronal and glial progenitors directed toward the region of the TGFα infusion site. Subsequently, increasing numbers of differentiated neurons were observed in the striatum. In behavioral experiments, there was a significant reduction of apomorphine-induced rotations in animals receiving the TGFα infusions. These results show that the brain contains stem cells capable of PMD in response to an exogenously administered growth factor. This finding has significant implications with respect to the development of treatments for both acute neural trauma and neurodegenerative diseases. PMID:11121069

  3. Theory of Mind and Central Coherence in Adults with High-Functioning Autism or Asperger Syndrome

    ERIC Educational Resources Information Center

    Beaumont, Renae; Newcombe, Peter

    2006-01-01

    The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no…

  4. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  5. Centralization or decentralization of facial structures in Korean young adults.

    PubMed

    Yoo, Ja-Young; Kim, Jeong-Nam; Shin, Kang-Jae; Kim, Soon-Heum; Choi, Hyun-Gon; Jeon, Hyun-Soo; Koh, Ki-Seok; Song, Wu-Chul

    2013-05-01

    It is well known that facial beauty is dictated by facial type, and harmony between the eyes, nose, and mouth. Furthermore, facial impression is judged according to the overall facial contour and the relationship between the facial structures. The aims of the present study were to determine the optimal criteria for the assessment of gathering or separation of the facial structures and to define standardized ratios for centralization or decentralization of the facial structures.Four different lengths were measured, and 2 indexes were calculated from standardized photographs of 551 volunteers. Centralization and decentralization were assessed using the width index (interpupillary distance / facial width) and height index (eyes-mouth distance / facial height). The mean ranges of the width index and height index were 42.0 to 45.0 and 36.0 to 39.0, respectively. The width index did not differ with sex, but males had more decentralized faces, and females had more centralized faces, vertically. The incidence rate of decentralized faces among the men was 30.3%, and that of centralized faces among the women was 25.2%.The mean ranges in width and height indexes have been determined in a Korean population. Faces with width and height index scores under and over the median ranges are determined to be "centralized" and "decentralized," respectively.

  6. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  7. Comparison of ultrasonography-guided central venous catheterization between adult and pediatric populations.

    PubMed

    Tercan, Fahri; Oguzkurt, Levent; Ozkan, Ugur; Eker, Hatice Evren

    2008-01-01

    The purpose of this study was to compare the technical success and complication rates of ultrasonography-guided central venous catheterization between adult and pediatric patients which have not been reported previously. In a 4-year period, 859 ultrasonography-guided central vein catheterizations in 688 adult patients and 247 catheterizations in 156 pediatric patients were retrospectively evaluated. Mean age was 56.3 years (range, 18 to 95 years) for adults and 3.3 years (range, 0.1 to 16.3 years) for children. The preferred catheterization site was internal jugular vein in 97% of adults and 85% of children. The technical success rate, mean number of punctures, and rate of single wall puncture were 99.4%, 1.04 (range, 1-3), and 83% for adults and 90.3%, 1.25 (range, 1-5), and 49% for children, respectively. All the differences were statistically significant (p < 0.05). Complication rates were 2.3% and 2.4% for adults and children, respectively (p > 0.05). Major complications such as pneumothorax and hemothorax were not seen in any group. In conclusion, ultrasonography-guided central venous catheterization has a high technical success rate, lower puncture attempt rate, and higher single wall puncture rate in adults compared to children. Complication rates are comparable in the two groups.

  8. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  9. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  10. Soft materials to treat central nervous system injuries: evaluation of the suitability of non-mammalian fibrin gels.

    PubMed

    Uibo, Raivo; Laidmäe, Ivo; Sawyer, Evelyn S; Flanagan, Lisa A; Georges, Penelope C; Winer, Jessamine P; Janmey, Paul A

    2009-05-01

    Polymeric scaffolds formed from synthetic or natural materials have many applications in tissue engineering and medicine, and multiple material properties need to be optimized for specific applications. Recent studies have emphasized the importance of the scaffolds' mechanical properties to support specific cellular responses in addition to considerations of biochemical interactions, material transport, immunogenicity, and other factors that determine biocompatibility. Fibrin gels formed from purified fibrinogen and thrombin, the final two reactants in the blood coagulation cascade, have long been shown to be effective in wound healing and supporting the growth of cells in vitro and in vivo. Fibrin, even without additional growth factors or other components has potential for use in neuronal wound healing in part because of its mechanical compliance that supports the growth of neurons without activation of glial proliferation. This review summarizes issues related to the use of fibrin gels in neuronal cell contexts, with an emphasis on issues of immunogenicity, and considers the potential advantages and disadvantages of fibrin prepared from non-mammalian sources.

  11. Soft materials to treat central nervous system injuries: evaluation of the suitability of non-mammalian fibrin gels

    PubMed Central

    Uibo, Raivo; Laidmäe, Ivo; Sawyer, Evelyn S.; Flanagan, Lisa A.; Georges, Penelope C.; Winer, Jessamine P.; Janmey, Paul A.

    2010-01-01

    Polymeric scaffolds formed from synthetic or natural materials have many applications in tissue engineering and medicine, and multiple material properties need to be optimized for specific applications. Recent studies have emphasized the importance of the scaffolds’ mechanical properties to support specific cellular responses in addition to considerations of biochemical interactions, material transport, immunogenicity, and other factors that determine biocompatibility. Fibrin gels formed from purified fibrinogen and thrombin, the final two reactants in the blood coagulation cascade, have long been shown to be effective in wound healing and supporting the growth of cells in vitro and in vivo. Fibrin, even without additional growth factors or other components has potential for use in neuronal wound healing in part because of its mechanical compliance that supports the growth of neurons without activation of glial proliferation. This review summarizes issues related to the use of fibrin gels in neuronal cell contexts, with an emphasis on issues of immunogenicity, and considers the potential advantages and disadvantages of fibrin prepared from non-mammalian sources. PMID:19344675

  12. Cellular and Molecular Characterization of Multipolar Map5-Expressing Cells: A Subset of Newly Generated, Stage-Specific Parenchymal Cells in the Mammalian Central Nervous System

    PubMed Central

    Crociara, Paola; Parolisi, Roberta; Conte, Daniele; Fumagalli, Marta; Bonfanti, Luca

    2013-01-01

    Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons. We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells. We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions. PMID:23667595

  13. Cellular and molecular characterization of multipolar Map5-expressing cells: a subset of newly generated, stage-specific parenchymal cells in the mammalian central nervous system.

    PubMed

    Crociara, Paola; Parolisi, Roberta; Conte, Daniele; Fumagalli, Marta; Bonfanti, Luca

    2013-01-01

    Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons. We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells. We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions.

  14. College and Adult Reading XI: The Eleventh Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Joseph A., Ed.

    This yearbook contains selected papers presented at the twenty-third and twenty-fourth annual meetings of the North Central Reading Association, held in October of 1981 and 1982. Papers in the yearbook include: "History of Adult Reading Programs" (Clarence Anderson); "About Creativity and Study Skills" (Mark E. Thompson); "Recent Changes in…

  15. Involvement of the Central Cognitive Mechanism in Word Production in Adults Who Stutter

    ERIC Educational Resources Information Center

    Tsai, Pei-Tzu; Bernstein Ratner, Nan

    2016-01-01

    Purpose: The study examined whether semantic and phonological encoding processes were capacity demanding, involving the central cognitive mechanism, in adults who do and do not stutter (AWS and NS) to better understand the role of cognitive demand in linguistic processing and stuttering. We asked (a) whether the two linguistic processes in AWS are…

  16. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines.

    PubMed

    Zou, Wu; Al-Rubeai, Mohamed

    2016-09-01

    The central carbon metabolism (glycolysis, the pentose phosphate pathway [PPP], and the tricarboxylic acid [TCA] cycle) plays an essential role in the supply of biosynthetic precursors and energy. How the central carbon metabolism changes with the varying growth rates in the in vitro cultivation of rapidly proliferating mammalian cells, such as cancer cells and continuous cell lines for recombinant protein production, remains elusive. Based on relationships between the growth rate and the activity of seven key enzymes from six cell clones, this work reports finding an important metabolic characteristic in rapidly proliferating glutamine synthetase-Chinese hamster ovary cells. The key enzymatic activity involved in the TCA cycle that is responsible for the supply of energy became elevated as the growth rate exhibited increases, while the activity of key enzymes in metabolic pathways (glycolysis and the PPP), responsible for the supply of biosynthetic precursors, tended to decrease-suggesting that rapidly proliferating cells still depended predominantly on the TCA cycle rather than on aerobic glycolysis for their energetic demands. Meanwhile, the growth-limiting resource was most likely biosynthetic substrates rather than energy provision. In addition, the multifaceted role of glucose-6-phosphate isomerase (PGI) was confirmed, based on a significant correlation between PGI activity and the percentage of G2/M-phase cells.

  17. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses.

    PubMed

    Obara, Marta; Szeliga, Monika; Albrecht, Jan

    2008-05-01

    The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that

  18. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain.

  19. Clinical outcomes of children and adults with central nervous system primitive neuroectodermal tumor.

    PubMed

    Lester, Rachael A; Brown, Lindsay C; Eckel, Laurence J; Foote, Robert T; NageswaraRao, Amulya A; Buckner, Jan C; Parney, Ian F; Wetjen, Nicholas M; Laack, Nadia N

    2014-11-01

    Central nervous system primitive neuroectodermal tumors (CNS PNETs) predominantly occur in children and rarely in adults. Because of the rarity of this tumor, its outcomes and prognostic variables are not well characterized. The purpose of this study was to evaluate clinical outcomes and prognostic factors for children and adults with CNS PNET. The records of 26 patients (11 children and 15 adults) with CNS PNET from 1991 to 2011 were reviewed retrospectively. Disease-free survival (DFS) and overall survival (OS) were estimated with the Kaplan-Meier method, and relevant prognostic factors were analyzed. For the cohort, both the 5-year DFS and the OS were 46 %. For pediatric patients, the 5-year DFS was 78 %; for adult patients, it was 22 % (P = 0.004). Five-year OS for the pediatric and adult patients was 67 and 33 %, respectively (P = 0.07). With bivariate analysis including chemotherapy regimen (high dose vs. standard vs. nonstandard) or risk stratification (standard vs. high) and age, the increased risk of disease recurrence in adults persisted. A nonsignificant tendency toward poorer OS in adult patients relative to pediatric patients also persisted. High-dose chemotherapy with stem cell rescue was associated with a statistically significant improvement in OS and a tendency toward improved DFS, although the findings were mitigated when the effect of age was considered. Local recurrence was the primary pattern of treatment failure in both adults and children. Our results suggest that adult patients with CNS PNETs have inferior outcomes relative to the pediatric cohort. Further research is needed to improve outcomes for CNS PNET in populations of all ages.

  20. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system

    PubMed Central

    Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A.; Gyllborg, Daniel; Muñoz Manchado, Ana; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M.; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D.; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-01-01

    Oligodendrocytes have been considered as a functionally homogenous population in the central nervous system (CNS). We performed single-cell RNA-Seq on 5072 cells of the oligodendrocyte lineage from ten regions of the mouse juvenile/adult CNS. Twelve populations were identified, representing a continuum from Pdgfra+ oligodendrocyte precursors (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly-formed oligodendrocytes were found to be resident in the adult CNS and responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  1. Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system

    PubMed Central

    Caillava, Céline; Vandenbosch, Renaud; Jablonska, Beata; Deboux, Cyrille; Spigoni, Giulia; Gallo, Vittorio; Malgrange, Brigitte

    2011-01-01

    The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2−/− mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin. PMID:21502361

  2. Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico.

    PubMed

    Alcántar-Escalera, F J; García-Varela, M; Vázquez-Domínguez, E; Pérez-Ponce de León, G

    2013-11-01

    In parasitic organisms, particularly helminths, the usage of the mitochondrial cytochrome c oxidase subunit I gene as the standard DNA barcoding region for species identification and discovery has been very limited. Here, we present an integrated study, based on both DNA barcoding and morphological analyses, for acanthocephalans belonging to the genus Polymorphus, whose larvae (cystacanths) are commonly found in the mesentery of freshwater fishes, while adults are found in the intestine of fish-eating birds. The alpha taxonomy of parasitic helminths is based on adult morphological traits, and because of that larval forms cannot be identified to species level based on morphology alone. DNA barcoding offers an alternative tool for linking larval stages of parasitic organisms to known adults. We sequenced cystacanths collected from freshwater fishes in localities across central Mexico and adults obtained from fish-eating birds, to determine whether they were conspecific. To corroborate the molecular results, we conducted a morphometric analysis with 'Proboscis profiler', which is a software tool developed to detect heterogeneity in morphologically similar acanthocephalans based on the multivariate statistical analysis of proboscis hook dimensions. Both sources of information indicate that cystacanths infecting freshwater fishes in central Mexico belong to a single species, Polymorphus brevis.

  3. Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage.

    PubMed

    Amrein, Irmgard; Isler, Karin; Lipp, Hans-Peter

    2011-09-01

    Adult hippocampal neurogenesis is a prominent event in rodents. In species with longer life expectancies, newly born cells in the adult dentate gyrus of the hippocampal formation are less abundant or can be completely absent. Several lines of evidence indicate that the regulatory mechanisms of adult neurogenesis differ between short- and long-lived mammals. After a critical appraisal of the factors and problems associated with comparing different species, we provide a quantitative comparison derived from seven laboratory strains of mice (BALB, C57BL/6, CD1, outbred) and rats (F344, Sprague-Dawley, Wistar), six other rodent species of which four are wild-derived (wood mouse, vole, spiny mouse and guinea pig), three non-human primate species (marmoset and two macaque species) and one carnivore (red fox). Normalizing the number of proliferating cells to total granule cell number, we observe an overall exponential decline in proliferation that is chronologically equal between species and orders and independent of early developmental processes and life span. Long- and short-lived mammals differ with regard to major life history stages; at the time points of weaning, age at first reproduction and average life expectancy, long-lived primates and foxes have significantly fewer proliferating cells than rodents. Although the database for neuronal differentiation is limited, we find indications that the extent of neuronal differentiation is subject to species-specific selective adaptations. We conclude that absolute age is the critical factor regulating cell genesis in the adult hippocampus of mammals. Ontogenetic and ecological factors primarily influence the regulation of neuronal differentiation rather than the rate of cell proliferation.

  4. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland.

    PubMed

    Rath, Martin F; Muñoz, Estela; Ganguly, Surajit; Morin, Fabrice; Shi, Qiong; Klein, David C; Møller, Morten

    2006-04-01

    Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.

  5. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  6. Muscle Strength, Physical Activity, and Functional Limitations in Older Adults with Central Obesity

    PubMed Central

    Germain, Cassandra M.; Batsis, John A.; Vasquez, Elizabeth; McQuoid, Douglas R.

    2016-01-01

    Background. Obesity and muscle weakness are independently associated with increased risk of physical and functional impairment in older adults. It is unknown whether physical activity (PA) and muscle strength combined provide added protection against functional impairment. This study examines the association between muscle strength, PA, and functional outcomes in older adults with central obesity. Methods. Prevalence and odds of physical (PL), ADL, and IADL limitation were calculated for 6,388 community dwelling adults aged ≥ 60 with central obesity. Individuals were stratified by sex-specific hand grip tertiles and PA. Logistic models were adjusted for age, education, comorbidities, and body-mass index and weighted. Results. Overall prevalence of PL and ADL and IADL limitations were progressively lower by grip category. Within grip categories, prevalence was lower for individuals who were active than those who were inactive. Adjusted models showed significantly lower odds of PL OR 0.42 [0.31, 0.56]; ADL OR 0.60 [0.43, 0.84], and IADL OR 0.46 [0.35, 0.61] for those in the highest grip strength category as compared to those in the lowest grip category. Conclusion. Improving grip strength in obese elders who are not able to engage in traditional exercise is important for reducing odds of physical and functional impairment. PMID:27034833

  7. Diffuse Infantile Hepatic Hemangioendothelioma With Early Central Enhancement in an Adult

    PubMed Central

    Dong, Aisheng; Dong, Hui; Zuo, Changjing; He, Tianlin

    2015-01-01

    Abstract Infantile hepatic hemangioendothelioma (IHH) is the most common vascular tumor of the liver in infancy. Adult with IHH is extremely rare. We presented a diffuse IHH in an adult patient with computed tomography (CT) and magnetic resonance image (MRI) findings. A 39-year-old man was admitted to our hospital because of a 2-year history of abnormal liver function tests and a 7-day history of jaundice. Physical examination revealed enlarged liver. Unenhanced abdominal CT showed enlargement of the liver with diffuse hypodensity. Enhanced CT on the arterial phase revealed multiple centrally enhanced lesions diffusely involved the enlarged liver. The enhanced areas of the lesions became larger on the portal phase and all the lesions became homogeneous enhanced on the delayed phase. These lesions showed heterogeneously hyperintense on T2-weighted image, hypointense on T1-weighted image, and early centrally enhanced on dynamic gadolinium-enhanced MRI, with complete tumor enhancement after 180 s. The patient underwent orthotopic liver transplantation. IHH type 2 was confirmed by pathology. The patient died of tumor recurrence in the liver 4 months after transplantation. Unlike the previously described imaging appearances of IHH, this case showed diffuse nodules with early central enhancement on CT and MRI. Considering the importance of the ability to differentiate IHH from other hepatic tumors, radiologists should be aware of these imaging appearances to establish knowledge of the entire spectrum of IHH. PMID:26705232

  8. Neonatal exposure to amphetamine alters social affiliation and central dopamine activity in adult male prairie voles.

    PubMed

    Fukushiro, D F; Olivera, A; Liu, Y; Wang, Z

    2015-10-29

    The prairie vole (Microtus ochrogaster) is a socially monogamous rodent species that forms pair bonds after mating. Recent data have shown that amphetamine (AMPH) is rewarding to prairie voles as it induces conditioned place preferences. Further, repeated treatment with AMPH impairs social bonding in adult prairie voles through a central dopamine (DA)-dependent mechanism. The present study examined the effects of neonatal exposure to AMPH on behavior and central DA activity in adult male prairie voles. Our data show that neonatal exposure to AMPH makes voles less social in an affiliation test during adulthood, but does not affect animals' locomotor activity and anxiety-like behavior. Neonatal exposure to AMPH also increases the levels of tyrosine hydroxylase (TH) and DA transporter (DAT) mRNA expression in the ventral tegmental area (VTA) in the brain, indicating an increase in central DA activity. As DA has been implicated in AMPH effects on behavioral and cognitive functions, altered DA activity in the vole brain may contribute to the observed changes in social behavior.

  9. Prevalence of Central Obesity among Adults with Normal BMI and Its Association with Metabolic Diseases in Northeast China

    PubMed Central

    Zhang, Peng; Wang, Rui; Gao, Chunshi; Jiang, Lingling; Lv, Xin; Song, Yuanyuan; Li, Bo

    2016-01-01

    Objectives The present study aimed to investigate the prevalence of central obesity among adults with normal BMI and its association with metabolic diseases in Jilin Province, China. Methods A population-based cross-sectional study was conducted in 2012 in Jilin Province of China. Information was collected by face to face interview. Descriptive data analysis and 95% confidence intervals (CI) of prevalence/frequency were conducted. Log-binomial regression analyses were used to find the independent factors associated with central obesity and to explore the adjusted association between central obesity and metabolic diseases among adults with normal BMI. Results Among the adult residents with normal BMI in Jilin Province, 55.6% of participants with central obesity self-assessed as normal weight and 27.0% thought their body weight were above normal. 12.7% of central obesity people took methods to lose weight, while 85.3% didn’t. Female, older people and non-manual worker had higher risk to be central obesity among adults with normal BMI. Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI, the PRs were 1.337 (1.224–1.461), 1.323 (1.193–1.456) and 1.261 (1.152–1.381) separately when adjusted for gender, age and BMI. Conclusions Hypertension, diabetes and hyperlipidemia were significantly associated with central obesity among adults with normal BMI in Jilin Province, China. The low rates of awareness and control of central obesity among adults with normal BMI should be improved by government and health department. PMID:27467819

  10. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  11. Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China

    PubMed Central

    Zhang, Qiang; Chen, Xinguang; Liu, Zhitao; Varma, Deepthi S.; Wan, Rong; Wan, Qingqing; Zhao, Shiwen

    2016-01-01

    Dietary patterns represent a broader picture of food consumption, and are better correlated with a variety of health outcomes. However, few studies have been conducted to explore the associations between dietary patterns and obesity in Southwest China. Data from the 2010–2012 National Nutrition Survey in the province of Yunnan, Southwest China, were analyzed (n = 1604, aged 18–80 years). Dietary data were collected using the 24 h dietary recall over three consecutive days. Height, weight, and waist circumference were measured following standard methods. Exploratory factor analysis was used to identify dietary patterns. Logistic regression was used to explore the association between dietary patterns and obesity. Three distinct dietary patterns were identified, which were labeled as traditional, modern, and tuber according to their key components. With potential confounders adjusted, adults in the highest quartile of the modern pattern were at higher risk of general and central obesity (odds ratio (OR) 1.95, 95% confidence interval (CI) 1.15–3.48; OR 2.01, 95% CI 1.37–2.93). In contrast, adults in the highest quartile of the tuber pattern were at lower risk of general and central obesity (OR 0.34, 95% CI 0.15–0.61; OR 0.64, 95% CI 0.43–0.95) but at higher risk of underweight (OR 2.57, 95% CI 1.20–6.45). No significant association was found between the traditional pattern and obesity. Moreover, dietary pattern differences occurred due to the differences in socio-demographic characteristics. In conclusion, the modern dietary pattern was positively, and the tuber pattern negatively, associated with general and central obesity among adults in Southwest China. PMID:27827895

  12. Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults.

    PubMed

    Tarumi, Takashi; de Jong, Daan L K; Zhu, David C; Tseng, Benjamin Y; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B; Kerwin, Diana R; Lu, Hanzhang; Munro Cullum, C; Zhang, Rong

    2015-04-15

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65 ± 6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults.

  13. CENTRAL DIABETES INSIPIDUS: CLINICAL CHARACTERISTICS AND LONG-TERM COURSE IN A LARGE COHORT OF ADULTS.

    PubMed

    Masri-Iraqi, Hiba; Hirsch, Dania; Herzberg, Dana; Lifshitz, Avner; Tsvetov, Gloria; Benbassat, Carlos; Shimon, Ilan

    2017-02-22

    Purpose Central diabetes insipidus (CDI) is a rare heterogeneous condition with various underlying causes. This study sought to increase the still-limited data on the clinical characteristics and long-term course in adults diagnosed with CDI. Methods Data on demographics, presentation, imaging findings, affected pituitary axes, treatment, and complications were collected retrospectively from the files of 70 adult patients with CDI followed at a referral endocrine clinic. Results 40 women and 30 men were included. Mean age was 46.8±15 years at the time of this study and 29.3±20 years at CDI diagnosis. Twenty-eight patients were diagnosed in childhood. Forty patients (57%) acquired CDI following surgery. Main sellar pathologies were: craniopharyngioma, 17 patients (11 diagnosed in childhood); Langerhans histiocytosis, 10 patients (5 diagnosed in childhood); 7 patients (all diagnosed as adults) had a growth-hormone-secreting adenoma; twelve patients (17%; 6 diagnosed in childhood) had idiopathic CDI. At least one anterior pituitary axis was affected in 73% of the cohort: 59% had growth hormone deficiency, 56% hypogonadism, 55% central hypothyroidism, 44% ACTH-cortisol deficiency. Patients with post-operative/trauma CDI (n=44) tended to have multiple anterior pituitary axes deficits compared to the non-surgical group of patients. All patients were treated with vasopressin preparations, mostly nasal spray. Hyponatremia developed in 32 patients, more in women and was severe (<125 mEq/l) in 10. Hypernatremia (>150 mEq/l) was noticed in 5 patients. Overall, the calculated complication rate was 22/1250 treatment-years. Conclusions Most adult patients with CDI have anterior pituitary dysfunction. Stability is usually achieved with long-term treatment. Women were more susceptible to desmopressin complications, albeit with an overall relatively low complication rate.

  14. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain

    PubMed Central

    Kaltschmidt, Barbara; Kaltschmidt, Christian

    2015-01-01

    The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system. PMID:26635522

  15. Exploring stress-induced cognitive impairment in middle aged, centrally obese adults.

    PubMed

    Lasikiewicz, N; Hendrickx, H; Talbot, D; Dye, L

    2013-01-01

    Extensive research has shown that psychosocial stress can induce cognitive impairment. However, few studies have explored impairment following acute stress exposure in individuals with central obesity. Central obesity co-occurs with glucocorticoid excess and can lead to elevated cortisol responses to stress. It is not clear whether centrally obese individuals exhibit greater cognitive impairment following acute stress. Cortisol responses to stress versus no-stress control were compared in 66 high- and low waist to hip ratio (WHR) middle-aged adults (mean age of 46 ± 7.17 years). Cognitive performance post exposure was assessed using Cambridge Automated Neuropsychological Test Battery. It was hypothesised that high WHR would exhibit greater cortisol in response to stress exposure and would show poorer cognitive performance. Males, particularly of high WHR, tended to secrete greater cortisol during stress exposure. Exposure to stress and increasing WHR were specifically associated with poorer performance on declarative memory tasks (spatial recognition memory and paired associates learning). These data tentatively suggest a reduction in cognitive performance in those with central obesity following exposure to acute stress. Further research is needed to elucidate the effects of stress on cognition in this population.

  16. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.

  17. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  18. Prolactin inhibition at the end of lactation programs for a central hypothyroidism in adult rat.

    PubMed

    Bonomo, Isabela Teixeira; Lisboa, Patrícia Cristina; Passos, Magna Cottini Fonseca; Alves, Simone Bezerra; Reis, Adelina Martha; de Moura, Egberto Gaspar

    2008-08-01

    Malnutrition during lactation is associated with hypoprolactinemia and failure in milk production. Adult rats whose mothers were malnourished presented higher body weight and serum tri-iodothyronine (T(3)). Maternal hypoprolactinemia at the end of lactation caused higher body weight in adult life, suggesting an association between maternal prolactin (PRL) level and programming of the offspring's adult body weight. Here, we studied the consequences of the maternal PRL inhibition at the end of lactation by bromocriptine (BRO) injection, a dopaminergic agonist, upon serum TSH and thyroid hormones, thyroid iodide uptake, liver mitochondrial alpha-glycerophosphate dehydrogenase (mGPD), liver and pituitary de-iodinase activities (D1 and/or D2), and in vitro post-TRH TSH release in the adult offspring. Wistar lactating rats were divided into BRO - injected with 1 mg/twice a day, daily for the last 3 days of lactation, and C - control, saline-injected with the same frequency. At 180 days of age, the offspring were injected with (125)I i.p. and after 2 h, they were killed. Adult animals whose mothers were treated with BRO at the end of lactation presented lower serum TSH (-51%), T(3) (-23%), and thyroxine (-21%), lower thyroid (125)I uptake (-41%), liver mGPD (-55%), and pituitary D2 (-51%) activities, without changes in the in vitro post-TRH TSH release. We show that maternal PRL suppression at the end of lactation programs a hypometabolic state in adulthood, in part due to a thyroid hypofunction, caused by a central hypothyroidism, probably due to decreased TRH secretion. We suggest that PRL during lactation can regulate the hypothalamus-pituitary-thyroid axis and programs its function.

  19. Evaluation of neck circumference as a predictor of central obesity and insulin resistance in Chinese adults

    PubMed Central

    Wang, Xuhong; Zhang, Ning; Yu, Caiguo; Ji, Zhili

    2015-01-01

    Objectives: To evaluate whether neck circumference (NC) could be used as a valid and effective method for identifying obesity and insulin resistance (IR) in Chinese adults. Methods: A total of 3307 adults aged 20-65 years were randomly recruited from two communities of Tongzhou, Beijing. Height, weight, waist circumference (WC), hip circumference (HC), neck circumference (NC), blood pressure, fasting plasma glucose (FPG), fasting serum insulin (FINS), total cholesterol (TC), serum triglyceride (TG), High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and Urinary albumin (UAlb) were measured. Pearson correlation coefficient was used to explore the relationship between NC and other measurements. Furthermore, the best cutoff values of NC for central obesity identification were determined by applying the receiver operating characteristic (ROC) curve analysis. Results: NC correlated positively with BMI, SBP and WC In both sexes. Both WC and NC correlated significantly positively with IR. A positive correlation between NC and FPG as well as a negative correlation between NC and HDL were found in obese men. NC≥38.5 cm for men and ≥34.5 cm for women were determined to be the best cutoff levels for identifying subjects with central obesity, with 82.9% accuracy for men and 79.9% accuracy for women. Conclusions: NC correlated positively with BMI and WC in both genders, indicating that NC could be used as a valid marker for both overall obesity and central obesity. In addition, measuring NC was shown to be a useful test for IR identification. Large number of NC is suggested to be associated with high risk of developing metabolic disorders, such as diabetes and dyslipidemia. PMID:26770540

  20. Third-molar development in relation to chronologic age in young adults of central China.

    PubMed

    Bai, Yuming; Mao, Jing; Zhu, Shengrong; Wei, Wei

    2008-08-01

    The estimation of chronologic age based on the stages of third-molar development was evaluated by using the eight stages (A-H) method of Demirjian and the third-molar development was compared, in terms of sex and age, with results of previous studies. The samples consisted of 291 orthopantomograms from young Chinese subjects of known chronologic age and sex (including 139 males with a mean age of 14.67+/-3.62 y and 152 females with a mean age of 14.85+/-3.70 y). Statistical analysis was performed by employing the Mann-Whitney U-test and the t-test. Regression analysis was conducted to obtain regression formulas for calculating dental age from the chronologic age. Our results showed statistically significant differences (P<0.05) in third-molar development between males and females, at the calcification stages D, E and H. And a strong correlation was found between age and third-molar development in both males (r (2)=0.65) and females (r (2)=0.61). New equations (Age=8.76+1.32 Development stage) for estimating chronologic age were derived. It is concluded that third-molar genesis took place earlier in males than in females. The use of third molars as a developmental marker is appropriate in young adults of Central China. The formula obtained in the present study can be used as a guide for estimation of dental maturity and a standard for age estimation for young adults of Central China.

  1. Central Nervous System Involvement in Adult Acute Lymphoblastic Leukemia: Diagnostic Tools, Prophylaxis, and Therapy

    PubMed Central

    Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Sconocchia, Giuseppe; Cefalo, Mariagiovanna; De Santis, Giovanna; Di Veroli, Ambra; Ditto, Concetta; Nasso, Daniela; Postorino, Massimiliano; Refrigeri, Marco; Attrotto, Cristina; Del Poeta, Giovanni; Lo-Coco, Francesco; Amadori, Sergio; Venditti, Adriano

    2014-01-01

    In adult patients with acute lymphoblastic leukemia (ALL), Central Nervous System (CNS) involvement is associated with a very poor prognosis. The diagnostic assessment of this condition relies on the use of neuroradiology, conventional cytology (CC) and flow cytometry (FCM). Among these approaches, which is the gold standard it is still a matter of debate. Neuroradiology and CC have a limited sensitivity with a higher rate of false negative results. FCM demonstrated a superior sensitivity over CC, particularly when low levels of CNS infiltrating cells are present. Although prospective studies of a large series of patients are still awaited, a positive finding by FCM appears to anticipate an adverse outcome even if CC shows no infiltration. Current strategies for adult ALL CNS-directed prophylaxis or therapy involve systemic and intrathecal chemotherapy and radiation therapy. An early and frequent intrathecal injection of cytostatic combined with systemic chemotherapy is the most effective strategy to reduce the frequency of CNS involvement. In patients with CNS overt ALL, at diagnosis or upon relapse, allogeneic hematopoietic stem cell transplantation might be considered. This review discusses risk factors, diagnostic techniques for identification of CNS infiltration and modalities of prophylaxis and therapy to manage it. PMID:25408861

  2. Major Dietary Patterns in Relation to General and Central Obesity among Chinese Adults

    PubMed Central

    Yu, Canqing; Shi, Zumin; Lv, Jun; Du, Huaidong; Qi, Lu; Guo, Yu; Bian, Zheng; Chang, Liang; Tang, Xuefeng; Jiang, Qilian; Mu, Huaiyi; Pan, Dongxia; Chen, Junshi; Chen, Zhengming; Li, Liming

    2015-01-01

    Limited evidence exists for the association between diet pattern and obesity phenotypes among Chinese adults. In the present study, we analyzed the cross-sectional data from 474,192 adults aged 30–79 years from the China Kadoorie Biobank baseline survey. Food consumption was collected by an interviewer-administered questionnaire. Three dietary patterns were extracted by factor analysis combined with cluster analysis. After being adjusted for potential confounders, individuals following a traditional southern dietary pattern had the lowest body mass index (BMI) and waist circumference (WC); the Western/new affluence dietary pattern had the highest BMI; and the traditional northern dietary pattern had the highest WC. Compared to the traditional southern dietary pattern in multivariable adjusted logistic models, individuals following a Western/new affluence dietary pattern had a significantly increased risk of general obesity (prevalence ratio (PR): 1.06, 95% confidence interval (CI): 1.03–1.08) and central obesity (PR: 1.07, 95% CI: 1.06–1.08). The corresponding risks for the traditional northern dietary pattern were 1.05 (1.02–1.09) and 1.17 (1.25–1.18), respectively. In addition, the associations were modified by lifestyle behaviors, and the combined effects with alcohol drinking, tobacco smoking, and physical activity were analyzed. Further prospective studies are needed to elucidate the diet-obesity relationships. PMID:26184308

  3. Variations of midline facial soft tissue thicknesses among three skeletal classes in Central Anatolian adults.

    PubMed

    Gungor, Kahraman; Bulut, Ozgur; Hizliol, Ismail; Hekimoglu, Baki; Gurcan, Safa

    2015-11-01

    Facial reconstruction is a technique employed in a forensic investigation as a last resort to recreate an individual's facial appearance from his/her skull. Forensic anthropologists or artists use facial soft tissue thickness (FSTT) measurements as a guide in facial reconstructions. The aim of this study was to develop FSTT values for Central Anatolian adults, taking into consideration sex and skeletal classes; first, to achieve better results obtaining the likenesses of deceased individuals in two or three-dimensional forensic facial reconstructions and, second, to compare these values to existing databases. Lateral cephalograms were used to determine FSTT values at 10 midline facial landmarks of 167 adults. Descriptive statistics were calculated for these facial soft tissue thickness values, and these values were compared to those reported in two other comparable databases. The majority of the landmarks showed sex-based differences. Males were found to have significantly larger landmark values than female subjects. These results point not only to the necessity to present data in accordance with sexual dimorphism, but also the need to consider that individuals from different geographical areas have unique facial features and that, as a result, geographical population-specific FSTT values are required.

  4. Birth weight modifies the association between central nervous system gene variation and adult body mass index.

    PubMed

    Ruiz-Narváez, Edward A; Haddad, Stephen A; Rosenberg, Lynn; Palmer, Julie R

    2016-03-01

    Genome wide association studies have identified ~100 loci associated with body mass index (BMI). Persons with low birth weight have an increased risk of metabolic disorders. We postulate that normal mechanisms of body weight regulation are disrupted in subjects with low birth weight. The present analyses included 2215 African American women from the Black Women's Health Study, and were based on genotype data on 20 BMI-associated loci and self-reported data on birth weight, weight at age 18 and adult weight. We used general linear models to assess the association of individual single-nucleotide polymorphisms (SNPs) with BMI at age 18 and later in adulthood within strata of birth weight (above and below the median, 3200 g). Three SNPs (rs1320330 near TMEM18, rs261967 near PCSK1 and rs17817964 in FTO), and a genetic score combining these three variants, showed significant interactions with birth weight in relation to BMI. Among women with birth weight <3200 g, there was an inverse association between genetic score and BMI; beta-coefficient=-0.045 (95% confidence intervals (CI) -0.104, 0.013) for BMI at age 18, and -0.055 (95% CI -0.112, 0.002) for adult BMI. Among women with birth weight ⩾3200 g, genetic score was positively associated with BMI: beta-coefficient=0.110 (95% CI 0.051, 0.169) for BMI at age 18 (P for interaction=0.0002), and 0.112 (95% CI 0.054, 0.170) for adult BMI (P for interaction<0.0001). Because TMEM18, PCSK1 and FTO are highly expressed in the central nervous system (CNS), our results suggest that low-birth weight may disrupt mechanisms of CNS body weight regulation.

  5. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  6. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    PubMed Central

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  7. Diabetes mellitus and its association with central obesity and disability among older adults: a global perspective.

    PubMed

    Tyrovolas, Stefanos; Koyanagi, Ai; Garin, Noe; Olaya, Beatriz; Ayuso-Mateos, Jose Luis; Miret, Marta; Chatterji, Somnath; Tobiasz-Adamczyk, Beata; Koskinen, Seppo; Leonardi, Matilde; Haro, Josep Maria

    2015-04-01

    The aim of the study was to evaluate the association between various factors and diabetes type II (DM) with a particular emphasis on indicators of central obesity, and to compare the effect of DM on disability among elder populations (≥ 50 years old) in nine countries. Data were available for 52,946 people aged ≥ 18 years who participated in the WHO Study on global AGEing and adult health and the Collaborative Research on Ageing in Europe studies conducted between 2007 and 2012. DM was defined as self-report of physician diagnosis. Height, weight, and waist circumference were measured. Disability status was assessed with the WHODAS II questionnaire. The overall prevalence of DM was 7.9% and ranged from 3.8% (Ghana) to 17.6% (Mexico). A 10 cm increase in waist circumference and waist-to-height ratio of >0.5 were associated with a significant 1.26 (India) to 1.77 (Finland), and 1.68 (China, Spain) to 5.40 (Finland) times higher odds for DM respectively. No significant associations were observed in Mexico and South Africa. DM was associated with significantly higher disability status in all countries except Mexico in the model adjusted for demographics and smoking. The inclusion of chronic conditions associated with diabetes in the model attenuated the coefficients in varying degrees depending on the country. A considerable proportion of the studied older population had DM. Central obesity may be a key factor for the prevention of DM among older populations globally. Prevention of DM especially among the older population globally may contribute to reducing the burden of disability.

  8. Aging, the Central Nervous System, and Mobility in Older Adults: Neural Mechanisms of Mobility Impairment

    PubMed Central

    Cruz-Almeida, Yenisel; Clark, David J.; Viswanathan, Anand; Scherzer, Clemens R.; De Jager, Philip; Csiszar, Anna; Laurienti, Paul J.; Hausdorff, Jeffery M.; Chen, Wen G.; Ferrucci, Luiggi; Rosano, Caterina; Studenski, Stephanie A.; Black, Sandra E.; Lipsitz, Lewis A.

    2015-01-01

    Background. Mobility is crucial for successful aging and is impaired in many older adults. We know very little about the subtle, subclinical age-related changes in the central nervous system (CNS) that mediate mobility impairment. Methods. A conference series focused on aging, the CNS, and mobility was launched. The second conference addressed major age-associated mechanisms of CNS-mediated mobility impairment. Speakers and conference attendees recommended key areas for future research, identified barriers to progress, and proposed strategies to overcome them. Results. Priorities identified for future research include (a) studying interactions among different mechanisms; (b) examining effects of interventions targeting these mechanisms; (c) evaluating the effect of genetic polymorphisms on risks and course of age-related mobility impairment; and (d) examining the effect of age on CNS repair processes, neuroplasticity, and neuronal compensatory mechanisms. Key strategies to promote research include (a) establish standard measures of mobility across species; (b) evaluate the effect of aging in the absence of disease on CNS and mobility; and (c) use advanced computational methods to better evaluate the interactions between CNS and other systems involved in mobility. Conclusions. CNS is a major player in the process, leading to mobility decline with aging. Future research in this area has the potential to prolong independence in older persons. Better interactions among disciplines and shared research paradigms are needed to make progress. Research priorities include the development of innovative approaches to integrate research on aging, cognition, and movement with attention to neurovascular function, neuroplasticity, and neurophysiological reserve. PMID:26386013

  9. Adult Education Research in the Countries in Transition. Adult Education Research Trends in the Former Socialist Countries of Central and Eastern Europe and the Baltic Region. Research Project Report. Studies and Researches 6.

    ERIC Educational Resources Information Center

    Jelenc, Zoran

    This document presents results of an investigation into the state of the art of research on the education of adults in Central and Eastern European and Baltic countries. The first section discusses the background and implementation of the research. Section 2 is "Adult Education Research Trends in Central and Eastern Europe: Research Project…

  10. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System.

    PubMed

    Kaliszewski, Michael; Kennedy, Austin K; Blaes, Shelby L; Shaffer, Robert S; Knott, Andrew B; Song, Wenjun; Hauser, Henry A; Bossy, Blaise; Huang, Ting-Ting; Bossy-Wetzel, Ella

    2016-01-01

    Superoxide dismutase 1 (SOD1) knockout (Sod1(-/-)) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1(-/-) mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.

  11. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    PubMed Central

    Kaliszewski, Michael; Kennedy, Austin K.; Blaes, Shelby L.; Shaffer, Robert S.; Knott, Andrew B.; Song, Wenjun; Hauser, Henry A.; Bossy, Blaise; Huang, Ting-Ting; Bossy-Wetzel, Ella

    2016-01-01

    Superoxide dismutase 1 (SOD1) knockout (Sod1−/−) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1−/− mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system. PMID:28066183

  12. Long-Term Central Venous Catheter Use and Risk of Infection in Older Adults With Cancer

    PubMed Central

    Lipitz-Snyderman, Allison; Sepkowitz, Kent A.; Elkin, Elena B.; Pinheiro, Laura C.; Sima, Camelia S.; Son, Crystal H.; Atoria, Coral L.; Bach, Peter B.

    2014-01-01

    Purpose Long-term central venous catheters (CVCs) are often used in patients with cancer to facilitate venous access to administer intravenous fluids and chemotherapy. CVCs can also be a source of bloodstream infections, although this risk is not well understood. We examined the impact of long-term CVC use on infection risk, independent of other risk factors such as chemotherapy, in a population-based cohort of patients with cancer. Patients and Methods We conducted a retrospective analysis using SEER-Medicare data for patients age > 65 years diagnosed from 2005 to 2007 with invasive colorectal, head and neck, lung, or pancreatic cancer, non-Hodgkin lymphoma, or invasive or noninvasive breast cancer. Cox proportional hazards regression was used to examine the relationship between CVC use and infections, with CVC exposure as a time-dependent predictor. We used multivariable analysis and propensity score methods to control for patient characteristics. Results CVC exposure was associated with a significantly elevated infection risk, adjusting for demographic and disease characteristics. For patients with pancreatic cancer, risk of infections during the exposure period was three-fold greater (adjusted hazard ratio [AHR], 2.93; 95% CI, 2.58 to 3.33); for those with breast cancer, it was six-fold greater (AHR, 6.19; 95% CI, 5.42 to 7.07). Findings were similar when we accounted for propensity to receive a CVC and limited the cohort to individuals at high risk of infections. Conclusion Long-term CVC use was associated with an increased risk of infections for older adults with cancer. Careful assessment of the need for long-term CVCs and targeted strategies for reducing infections are critical to improving cancer care quality. PMID:24982458

  13. Microenvironmental determinants of adult neural stem cell proliferation and lineage commitment in the healthy and injured central nervous system.

    PubMed

    Moyse, Emmanuel; Segura, Stéphanie; Liard, Oliver; Mahaut, Stéphanie; Mechawar, Naguib

    2008-09-01

    The discovery of neural stem cells (NSC) which ensure continuous neurogenesis in the adult mammalian brain, has led to a conceptual revolution in basic neuroscience and to high hopes for clinical nervous tissue repair. However, several research issues remain to address before neural stem cells can be harnessed for regenerative therapies. The presence of NSC in a nervous structure is demonstrated in vitro by primary culture of dissociated adult nervous tissue in the presence of the specific mitogens EGF and bFGF. This leads to spherical masses of proliferating cells endowed with capacities for self-renewal and, after growth factor removal, differentiation into the three characteristic cell types of nervous tissue (neurons, astrocytes, oligodendrocytes). In vivo, neurogenesis per se, i.e. production of new neurons, occurs only in a small subset of NSC-endowed structures. The production of oligodendrocytes, i.e. myelinating glial cells, is similarly restricted. Such in vivo restrictions were formally demonstrated to arise from the tissular microenvironnement, which led to the emerging concept of "neurogenic niche". In this context, major challenges now consist in identifying the nature of tissue-specific extracellular signals that determine lineage commitment of NSC progeny, understanding why NSCs display weak in vivo reactivity to lesions compared to other stem cell types in adults, and identifying the factors behind the very high resistance to tumorigenesis displayed by NSCs. Altogether, the current data offer hope for the future use of adult NSCs in regenerative therapies, provided that tissue-specific signals are identified in view of counteracting the intrinsic repression of new cell genesis and/or stimulating endogenous NSC recruitment to lesion sites.

  14. Effect of half adult dose of oral Rifampicin (300mg) in patients with idiopathic central serous chorioretinopathy

    PubMed Central

    Khan, Muhammad Saim; Sameen, Murtaza; Lodhi, Arshad Ali; Ahmed, Munawar; Ahmed, Noman; Kamal, Mustafa; Junejo, Sameen Afzal

    2016-01-01

    Objectives: To evaluate the effect of half adult dose of oral Rifampicin on mean change in best corrected visual acuity and central macular thickness in patients with central serous chorioretinopathy. Methods: Thirty-eight eyes of 31 patients with idiopathic central serous chorioretinopathy (CSCR) were registered. Unaided Visual acuity, best corrected visual acuity was documented and detailed slit lamp examination along with dilated ophthalmoscopy was performed. All subjects were treated with oral Rifampicin 300 mg (half adult dose) daily for 03 months. Patients underwent a complete ocular and systemic examination as well as central macular thickness (CMT) measurement by optical coherence tomography (OCT) every month after starting treatment until four months. Fundus fluorescein angiography (FFA) was performed in recurrent cases. Liver function tests were carried out prior to the treatment and during follow up period. Results: A total of 38 eyes of 31 patients (24 males, 07 females) were included in the study. Mean age of patients was 36.16±3.19 years (range 30-44). Mean best corrected visual acuity (BCVA) before treatment was 0.56±0.11 and improved to 0.47±0.14 at 04 weeks (P<0.001) of treatment. The mean CMT at the time of presentation was 494.39±96.29 um and was decreased to 306.90±50.71 um after 04 weeks of treatment (P<0.001). The mean induced reduction in CMT was 187.48±122 um (P<0.001) while that in BCVA 0.41±0.16 at 04 weeks of treatment (P<0.001). Liver function tests were within normal range before and after the treatment. Conclusion: Half adult dose rifampicin (300mg) is effective and safe in treatment of central serous chorioretinopathy without causing any systemic imbalance. PMID:27882013

  15. An Update of the Mayo Clinic Cohort of Patients With Adult Primary Central Nervous System Vasculitis

    PubMed Central

    Salvarani, Carlo; Brown, Robert D.; Christianson, Teresa; Miller, Dylan V.; Giannini, Caterina; Huston, John; Hunder, Gene G.

    2015-01-01

    Abstract Primary central nervous system vasculitis (PCNSV) is an uncommon condition in which lesions are limited to vessels of the brain and spinal cord. Because the clinical manifestations are not specific, the diagnosis is often difficult, and permanent disability and death are frequent outcomes. This study is based on a cohort of 163 consecutive patients with PCNSV who were examined at the Mayo Clinic over a 29-year period from 1983 to 2011. The aim of the study was to define the characteristics of these patients, which represents the largest series in adults reported to date. A total of 105 patients were diagnosed by angiographic findings and 58 by biopsy results. The patients diagnosed by biopsy more frequently had at presentation cognitive dysfunction, greater cerebrospinal fluid total protein concentrations, less frequent cerebral infarcts, and more frequent leptomeningeal gadolinium-enhanced lesions on magnetic resonance imaging (MRI), along with less mortality and disability at last follow-up. The patients diagnosed by angiograms more frequently had at presentation hemiparesis or a persistent neurologic deficit or stroke, more frequent infarcts on MRI and an increased mortality. These differences were mainly related to the different size of the vessels involved in the 2 groups. Although most patients responded to therapy with glucocorticoids alone or in conjunction with cyclophosphamide and tended to improve during the follow-up period, an overall increased mortality rate was observed. Relapses occurred in one-quarter of the patients and were less frequent in patients treated with prednisone and cyclophosphamide compared with those treated with prednisone alone. The mortality rate and degree of disability at last follow-up were greater in those with increasing age, cerebral infarctions on MRI, angiographic large vessel involvement, and diagnosis made by angiography alone, but were lower in those with gadolinium-enhanced lesions on MRI and in those with

  16. The California and Central Valley Microwave Network: Serving Adult Learners through Lifelong Learning Opportunity.

    ERIC Educational Resources Information Center

    Leveille, David E.

    Ways that technology is being integrated into the instructional and administrative operation of U.S. colleges are considered, along with the application of one of the technologies, microwave, to adult learning opportunities. Changing demographics relating to adult learners over the next 10 to 15 years are identified. Eight projects applying…

  17. Overwintering of Uranotaenia Unguiculata Adult Females in Central Europe: A Possible Way of Persistence of the Putative New Lineage of West Nile Virus?

    PubMed

    Rudolf, Ivo; Šebesta, Oldřich; Straková, Petra; Betášová, Lenka; Blažejová, Hana; VEnclíková, Kristýna; Seidel, Bernhard; Tóth, Sandor; Hubálek, Zdeněk; Schaffner, Francis

    2015-12-01

    We report the overwintering of Uranotaenia unguiculata adult females in Central Europe (Czech Republic, Hungary, Austria). This finding suggests a potential mode of winter persistence of putative novel lineage of West Nile virus in the temperate regions of Europe.

  18. Abnormal degree centrality of functional hubs associated with negative coping in older Chinese adults who lost their only child.

    PubMed

    Liu, Wei; Liu, HuiJuan; Wei, Dongtao; Sun, Jiangzhou; Yang, Junyi; Meng, Jie; Wang, Lihong; Qiu, Jiang

    2015-12-01

    The loss of an only child is a negative life event and may potentially increase the risk of psychiatric disorders. However, the psychological consequences of the loss of an only child and the associated neural mechanisms remain largely unexplored. Degree centrality (DC), derived from resting-state functional magnetic resonance imaging (fMRI), was used to examine network communication in 22 older adults who lost their only child and 23 matched controls. The older adults who lost their only child exhibited an ineffective coping style. They also showed decreased distant and local DC in the precuneus and left inferior parietal lobule and decreased distant DC in the bilateral dorsolateral prefrontal cortex (DLPFC). Furthermore, the decreased local and distant DC of these regions and the decreased DLPFC-precuneus connectivity strength were negatively correlated with negative coping scores in the loss group but not in the controls. Overall, the results suggested a model that the impaired neural network communication of brain hubs within the default mode network (DMN) and central executive network (CEN) were associated with a negative coping style in older adults who lost their only child. The decreased connectivity of the hubs can be identified as a neural risk factor that is related to future psychopathology.

  19. The macrophage in acute neural injury: changes in cell numbers over time and levels of cytokine production in mammalian central and peripheral nervous systems.

    PubMed

    Leskovar, A; Moriarty, L J; Turek, J J; Schoenlein, I A; Borgens, R B

    2000-06-01

    We evaluated the timing and density of ED-1-positive macrophage accumulation (ED 1 is the primary antibody for the macrophage) and measured cytokine production by macrophages in standardized compression injuries to the spinal cord and sciatic nerves of individual rats 3, 5, 10 and 21 days post-injury. The actual site of mechanical damage to the nervous tissue, and a more distant site where Wallerian degeneration had occurred, were evaluated in both the peripheral nervous system (PNS) and the central nervous system (CNS) at these time points. The initial accumulation of activated macrophages was similar at both the central and peripheral sites of damage. Subsequently, macrophage densities at all locations studied were statistically significantly higher in the spinal cord than in the sciatic nerve at every time point but one. The peak concentrations of three cytokines, tumor necrosis factor &agr; (TNF &agr; ), interleukin-1 (IL-1) and interleukin-6 (IL-6), appeared earlier and were statistically significantly higher in injured spinal cord than in injured sciatic nerve. We discuss the meaning of these data relative to the known differences in the reparative responses of the PNS and CNS to injury.

  20. Diffuse Infantile Hepatic Hemangioendothelioma With Early Central Enhancement in an Adult: A Case Report of CT and MRI Findings.

    PubMed

    Dong, Aisheng; Dong, Hui; Zuo, Changjing; He, Tianlin

    2015-12-01

    Infantile hepatic hemangioendothelioma (IHH) is the most common vascular tumor of the liver in infancy. Adult with IHH is extremely rare. We presented a diffuse IHH in an adult patient with computed tomography (CT) and magnetic resonance image (MRI) findings.A 39-year-old man was admitted to our hospital because of a 2-year history of abnormal liver function tests and a 7-day history of jaundice. Physical examination revealed enlarged liver. Unenhanced abdominal CT showed enlargement of the liver with diffuse hypodensity. Enhanced CT on the arterial phase revealed multiple centrally enhanced lesions diffusely involved the enlarged liver. The enhanced areas of the lesions became larger on the portal phase and all the lesions became homogeneous enhanced on the delayed phase. These lesions showed heterogeneously hyperintense on T2-weighted image, hypointense on T1-weighted image, and early centrally enhanced on dynamic gadolinium-enhanced MRI, with complete tumor enhancement after 180 s. The patient underwent orthotopic liver transplantation. IHH type 2 was confirmed by pathology. The patient died of tumor recurrence in the liver 4 months after transplantation.Unlike the previously described imaging appearances of IHH, this case showed diffuse nodules with early central enhancement on CT and MRI. Considering the importance of the ability to differentiate IHH from other hepatic tumors, radiologists should be aware of these imaging appearances to establish knowledge of the entire spectrum of IHH.

  1. Le gliome du tronc cérébral : cause rare de vertige central de l’adulte

    PubMed Central

    Turki, Senda; Mardassi, Ali; Nefzaoui, Safa; Hachicha, Amani; Rhouma, Sofiène Ben

    2016-01-01

    Contrairement à ceux de l'enfant, les gliomes du tronc cérébral de l'adulte sont rares et représentent un groupe hétérogène de tumeurs, souvent de bas grade et de meilleur pronostic. Ces tumeurs représentent une cause rare de vertige central chez l'adulte. Le traitement des gliomes diffus repose sur la radiothérapie. A travers un cas de gliome du tronc cérébral de bas grade chez une femme de 35 ans révélé par des troubles de l'équilibre, ce travail développera les différents aspects cliniques, paracliniques et radiologiques de cette affection, ainsi que les moyens thérapeutiques et les modalités évolutives. PMID:28292097

  2. Central nervous system involvement in adult patients with diffuse large B-cell lymphoma: Influence of rituximab

    PubMed Central

    CAO, BING; ZHOU, XIAOYAN; JI, DONGMEI; CAO, JUNNING; GUO, YE; ZHANG, QUNLING; WU, XIANGHUA; LI, JUNMIN; WANG, JIANMIN; CHEN, FANGYUAN; WANG, CHUN; ZOU, SHANHUA; HONG, XIAONAN

    2012-01-01

    CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone)-like chemotherapy, in combination with rituximab (R-CHOP-like), improves outcome in patients with diffuse large B-cell lymphoma (DLBCL). We aimed to investigate the impact of rituximab on central nervous system (CNS) disease in adult patients. We studied 315 patients (aged 18–60 years old) from six hospitals between July 2003 and May 2008. All patients received CHOP-like (n=165) or R-CHOP-like (n=150) regimen every 3 weeks. With a median follow-up of 3.69 years, 10 patients (3.17%) developed CNS disease. The cumulative risk of CNS occurrence was not significantly different between the two treatment groups (P=0.871). We conclude that the addition of rituximab did not reduce the risk of CNS disease in adult patients with DLBCL. PMID:22970053

  3. [Ultrasound-guided central venous access in adults and children: Procedure and pathological findings].

    PubMed

    Scheiermann, P; Seeger, F H; Breitkreutz, R

    2010-01-01

    Central venous line placement is a standard procedure in critical care and peri-operative medicine. This procedure can be associated with severe complications. In contrast to the landmark technique, ultrasound-guided punctures can significantly reduce the rate of complications. Patients with a high risk for difficult vascular access include critical care and emergency patients as well as patients on anticoagulation medication and dialysis. Placement of central venous catheters can be difficult in ventilated patients and if there has been prior surgery in the puncture area. In children and small infants central venous access can also be challenging due to the anatomical relationship in the head and neck region. Puncture techniques are explained briefly by means of ultrasound anatomy. Typical ultrasonographic images visualize pathological findings in order to identify dangers and complications in central venous catheterization.

  4. Hemispheric Lateralization of Bilaterally Presented Homologous Visual and Auditory Stimuli in Normal Adults, Normal Children, and Children with Central Auditory Dysfunction

    ERIC Educational Resources Information Center

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2008-01-01

    Two experiments were conducted to examine the performance of normal adults, normal children, and children diagnosed with central auditory dysfunction presumed to involve the interhemispheric pathways on a dichotic digits test in common clinical use for the diagnosis of central auditory processing disorder (CAPD) and its corresponding visual…

  5. Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India

    PubMed Central

    Bayani, Abhijeet; Tiwade, Dilip; Dongre, Ashok; Dongre, Aravind P.; Phatak, Rasika; Watve, Milind

    2016-01-01

    Crop raiding by wild herbivores close to an area of protected wildlife is a serious problem that can potentially undermine conservation efforts. Since there is orders of magnitude difference between farmers’ perception of damage and the compensation given by the government, an objective and realistic estimate of damage was found essential. We employed four different approaches to estimate the extent of and patterns in crop damage by wild herbivores along the western boundary of Tadoba-Andhari Tiger Reserve in the state of Maharashtra, central India. These approaches highlight different aspects of the problem but converge on an estimated damage of over 50% for the fields adjacent to the forest, gradually reducing in intensity with distance. We found that the visual damage assessment method currently employed by the government for paying compensation to farmers was uncorrelated to and grossly underestimated actual damage. The findings necessitate a radical rethinking of policies to assess, mitigate as well as compensate for crop damage caused by protected wildlife species. PMID:27093293

  6. Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India.

    PubMed

    Bayani, Abhijeet; Tiwade, Dilip; Dongre, Ashok; Dongre, Aravind P; Phatak, Rasika; Watve, Milind

    2016-01-01

    Crop raiding by wild herbivores close to an area of protected wildlife is a serious problem that can potentially undermine conservation efforts. Since there is orders of magnitude difference between farmers' perception of damage and the compensation given by the government, an objective and realistic estimate of damage was found essential. We employed four different approaches to estimate the extent of and patterns in crop damage by wild herbivores along the western boundary of Tadoba-Andhari Tiger Reserve in the state of Maharashtra, central India. These approaches highlight different aspects of the problem but converge on an estimated damage of over 50% for the fields adjacent to the forest, gradually reducing in intensity with distance. We found that the visual damage assessment method currently employed by the government for paying compensation to farmers was uncorrelated to and grossly underestimated actual damage. The findings necessitate a radical rethinking of policies to assess, mitigate as well as compensate for crop damage caused by protected wildlife species.

  7. Dientamoeba fragilis is more prevalent than Giardia duodenalis in children and adults attending a day care centre in Central Italy.

    PubMed

    Crotti, D; D'Annibale, M L; Fonzo, G; Lalle, M; Cacciò, S M; Pozio, E

    2005-06-01

    Giardia duodenalis is a well recognised enteropathogen, while Dientamoeba fragilis is rarely detected and consequently it is not recognised as an important human pathogen. In 2002-2003, a survey has been carried out on enteroparasites in faecal samples of outpatients attending a day care centre in the town of Perugia (Central Italy). To improve the detection level, at least three samples from each patient were collected at different days and within two hours from defecation. The coproparasitological examination has been carried out by direct microscopic examination, faecal concentration, and Giemsa and modified Ziehl-Nielsen stainings of faecal smears. The genotypes of Giardia duodenalis isolates were determined by PCR of the beta-giardin gene. Of 1,989 enrolled people (966 children, 1,023 adults), 165 persons (8.3%; 153 adults, 15.0%; 12 children, 1.2%), were positive for parasites, but only 1 12 adults (73.2% of those infected) and eight children (66.7% of those infected) harboured D. fragilis and G. duodenalis. Both the Assemblages A and B were detected in 18 G. duodenalis isolates examined at the beta-giardin gene. The higher prevalence of D. fragilis infections than that of G. duodenalis is probably related to the method used, a procedure, which is rarely followed in laboratories for the diagnosis of enteric parasites. These epidemiological data suggest that when faecal samples are examined after a period of time and without Giemsa staining, most D. fragilis infections goes undetected.

  8. Vocational identity, positive affect, and career thoughts in a group of young adult central nervous system cancer survivors.

    PubMed

    Lange, Dustin D; Wong, Alex W K; Strauser, David R; Wagner, Stacia

    2014-12-01

    The aims of this study were as follows: (a) to compare levels of career thoughts and vocational identity between young adult childhood central nervous system (CNS) cancer survivors and noncancer peers and (b) to investigate the contribution of vocational identity and affect on career thoughts among cancer survivors. Participants included 45 young adult CNS cancer survivors and a comparison sample of 60 college students. Participants completed Career Thoughts Inventory, My Vocational Situation, and the Positive and Negative Affect Schedule. Multivariate analysis of variance and multiple regression analysis were used to analyze the data in this study. CNS cancer survivors had a higher level of decision-making confusion than the college students. Multiple regression analysis indicated that vocational identity and positive affect significantly predicted the career thoughts of CNS survivors. The differences in decision-making confusion suggest that young adult CNS survivors would benefit from interventions that focus on providing knowledge of how to make decisions, while increasing vocational identity and positive affect for this specific population could also be beneficial.

  9. College and Adult Reading XII: The Twelfth Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Joseph A., Ed.

    Consisting of a selection of papers presented at the 1982 and 1983 meetings of the North Central Reading Association, this yearbook includes sections on computers, research, professional issues, and programs. Papers include: "The Computerized Broom Will Sweep Our Future Classrooms: But Not Necessarily Clean" (George E. Mason); "Beyond the…

  10. College and Adult Reading XIV: The Fourteenth Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Kay E., Ed.; Fisher, Joseph A., Ed.

    Containing selections from the 1987 and 1988 annual meetings of the North Central Reading Association, this yearbook includes sections on research; reviews of research; professional issues; and program descriptions. Papers include: "The Effects of a Secondary Reading Methods Course on Undergraduate Students' Awareness of Reading Skills"…

  11. College and Adult Reading VII: The Seventh Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Wark, David M., Ed.

    Spanning the annual meetings of the North Central Reading Association from 1971 to 1974, this yearbook presents papers dealing with programs and centers, materials and techniques, a new research field, and in honor of Roger S. Pepper. Papers include: "Attitudinal Factors among Marginal Admission Students" (Roger S. Pepper and John A. Drexler,…

  12. College and Adult Reading IX: The Ninth Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Joseph A., Ed.

    Drawn from presentations at the 1977 meeting of the North Central Reading Association, this yearbook includes sections on programs and centers; professional training; clinical problems and methods; research; the Roger Pepper Research Award presentation; and the invitational address. Papers include: "Use of Galvanic Skin Response, Heart Rate,…

  13. College and Adult Reading X: The Tenth Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Joseph A., Ed.

    Including sections on research, programs, and professional problems and issues, this yearbook contains presentations given at the 1978 and 1979 meetings of the North Central Reading Association. Papers include: "The Effects of Anxiety on Reading Comprehension" (David Wark and others); "Some Effects of Anxiety on University Students" (J. Michael…

  14. College and Adult Reading XIII: The Thirteenth Yearbook of the North Central Reading Association.

    ERIC Educational Resources Information Center

    Fisher, Joseph A., Ed.

    Containing selections of the papers presented at the 1984 and 1985 annual meetings of the North Central Reading Association, this yearbook includes sections on research; reviews of research; professional issues; and program descriptions. Papers include: "Twenty-Five Years of Professional Progress" (James E. Walker); "A Study of Student Alienation…

  15. Mammalian clock output mechanisms.

    PubMed

    Kalsbeek, Andries; Yi, Chun-Xia; Cailotto, Cathy; la Fleur, Susanne E; Fliers, Eric; Buijs, Ruud M

    2011-06-30

    In mammals many behaviours (e.g. sleep-wake, feeding) as well as physiological (e.g. body temperature, blood pressure) and endocrine (e.g. plasma corticosterone concentration) events display a 24 h rhythmicity. These 24 h rhythms are induced by a timing system that is composed of central and peripheral clocks. The highly co-ordinated output of the hypothalamic biological clock not only controls the daily rhythm in sleep-wake (or feeding-fasting) behaviour, but also exerts a direct control over many aspects of hormone release and energy metabolism. First, we present the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, especially the neuro-endocrine and energy homoeostatic systems. Subsequently, we review a number of physiological experiments investigating the functional significance of this neuro-anatomical substrate. Together, this overview of experimental data reveals a highly specialized organization of connections between the hypothalamic pacemaker and neuro-endocrine system as well as the pre-sympathetic and pre-parasympathetic branches of the autonomic nervous system.

  16. Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats.

    PubMed

    García, Graciela B; Quiroga, Ariel D; Stürtz, Nelson; Martinez, Alejandra I; Biancardi, María E

    2004-08-01

    In the present work we show morphological data of the in vivo susceptibility of CNS myelin to sodium metavanadate [V(+5)] in adult rats. The possible role of vanadium in behavioral alterations and in brain lipid peroxidation was also investigated. Animals were injected intraperitoneally (i.p.) with 3 mg/kg body weight (bw) of sodium metavanadate [1.25 V/kg bw/day] for 5 consecutive days. Open field and rotarod tests were performed the day after the last dose had been administered and then animals were sacrificed by different methods for histological and lipid peroxidation studies. The present results show that intraperitoneal administration of V(+5) to adult rats resulted in changes in locomotor activity, specific myelin stainings and lipid peroxidation in some brain areas. They support the notion that CNS myelin could be a preferential target of V(+5)-mediated lipid peroxidation in adult rats. The mechanisms underlying this action could affect the myelin sheath leading to behavioral perturbations.

  17. Ramsay Hunt Syndrome Associated with Central Nervous System Involvement in an Adult

    PubMed Central

    Chan, Tommy L. H.; Cartagena, Ana M.; Bombassaro, Anne Marie; Hosseini-Moghaddam, Seyed M.

    2016-01-01

    Ramsay Hunt syndrome associated with varicella zoster virus reactivation affecting the central nervous system is rare. We describe a 55-year-old diabetic female who presented with gait ataxia, right peripheral facial palsy, and painful vesicular lesions involving her right ear. Later, she developed dysmetria, fluctuating diplopia, and dysarthria. Varicella zoster virus was detected in the cerebrospinal fluid by polymerase chain reaction. She was diagnosed with Ramsay Hunt syndrome associated with spread to the central nervous system. Her facial palsy completely resolved within 48 hours of treatment with intravenous acyclovir 10 mg/kg every 8 hours. However, cerebellar symptoms did not improve until a tapering course of steroid therapy was initiated. PMID:27366189

  18. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons.

    PubMed

    Dupraz, Sebastián; Grassi, Diego; Karnas, Diana; Nieto Guil, Alvaro F; Hicks, David; Quiroga, Santiago

    2013-01-01

    Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal

  19. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  20. Effects of Laparoscopic Sleeve Gastrectomy on Central Obesity and Metabolic Syndrome in Indian Adults- A Prospective Study

    PubMed Central

    Thillai, Manoj; Nain, Prabhdeep Singh; Ahuja, Ashish; Vayoth, Sudheer Othiyil; Khurana, Preetika

    2017-01-01

    Introduction Increasing incidence of obesity in Indian population has led to an exponential rise in the number of bariatric operations performed annually. Laparoscopic Sleeve Gastrectomy (LSG) has been proposed to cause rapid remission of Type 2 Diabetes Melitus (T2DM) and metabolic syndrome in a weight loss independent manner. Aim To evaluate the effects of LSG on metabolic syndrome and central obesity in morbidly and severely obese Indian adults. Material and Methods: Study was conducted on 91 morbidly obese [Body Mass Index (BMI)>40 kg/m2] and severely obese (BMI>35 kg/m2) individuals who were suffering from diabetes, hypertension or dyslipidemia. The patients were followed up for six months and the trends of glycaemic control, mean blood pressure, lipid profile, weight loss parameters and changes in parameters of central obesity were studied. Results Weight loss was significant at three months postsurgery and was sustained through six months. There was significant improvement in glycaemic control leading to reduction in need for oral hypoglycaemic agents or insulin in majority of them and even discontinuation of these medications in few patients. Hypertension and dyslipidemia also showed an improving trend through six months postsurgery. There was a significant impact on reduction of central obesity in these patients as marked by significant reduction in waist to hip ratio. Conclusion LSG produces sustainable weight loss with significant improvement in glycaemic status and control of metabolic syndrome in severe to morbidly obese patients. LSG is also efficacious in reducing central obesity in Indian population which is a major depressive ailment amongst obese individuals. PMID:28273998

  1. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring.

    PubMed

    Ferreira-Vieira, Talita Hélen; de Freitas-Silva, Danielle Marra; Ribeiro, Andrea Frozino; Pereira, Sílvia Rejane Castanheira; Ribeiro, Ângela Maria

    2016-03-23

    The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life.

  2. Quality of Life for Diverse Older Adults in Assisted Living: The Centrality of Control.

    PubMed

    Koehn, Sharon D; Mahmood, Atiya N; Stott-Eveneshen, Sarah

    This pilot project asked: How do ethnically diverse older adult residents of assisted living (AL) facilities in British Columbia (BC) experience quality of life? And, what role, if any, do organizational and physical environmental features play in influencing how quality of life is experienced? The study was conducted at three AL sites in BC: two ethnoculturally targeted and one nontargeted. Environmental audits at each site captured descriptive data on policies, fees, rules, staffing, meals, and activities, and the built environment of the AL building and neighborhood. Using a framework that understands the quality of life of older adults to be contingent on their capability to pursue 5 conceptual attributes-attachment, role, enjoyment, security, and control-we conducted 3 focus groups with residents (1 per site) and 6 interviews with staff (2 per site). Attributes were linked to the environmental features captured in the audits. All dimensions of the environment, especially organizational, influence tenants' capability to attain the attributes of quality of life, most importantly control. Although many tenants accept the trade-off between increased safety and diminished control that accompanies a move into AL, more could be done to minimize that loss. Social workers can advocate for the necessary multi-sectoral changes.

  3. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  4. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  5. [Viral infection risk in polytransfused adults: seroprevalence of seven viruses in central Tunisia].

    PubMed

    Hannachi, N; Boughammoura, L; Marzouk, M; Tfifha, M; Khlif, A; Soussi, S; Skouri, H; Boukadida, J

    2011-08-01

    The aim of this study is to evaluate the prevalence of seven transfusion-transmitted viruses in polytransfused adults and children comparatively with a group of healthy control subjects. We studied 107 polytransfused patients (59 adults and 48 children) and 160 control subjects (100 blood donors and 60 children). Immunoenzymatic tests were used for detection of HBs antigen (HBs Ag), antibodies against hepatitis C Virus (anti-HCV), and human immunodeficiency virus (anti-HIV), and IgG antibodies against human cytomegalovirus (IgG anti-CMV), human parvovirus B19 (IgG anti-PB19), and hepatitis E virus (IgG anti-HEV). An immunofluorescent assay was performed for the detection of human herpesvirus 8 antibodies (anti-HHV8). Prevalence of HBs Ag, anti-HCV, anti-HIV, IgG anti-CMV, IgG anti-PB19, IgG anti-HEV, and anti-HHV8 in polytransfused group was 8.4, 4.7, 0, 86.9, 60.7, 28.9, and 47.6%, respectively, and 1.8, 0.6, 0, 86.2, 53.1, 10, and 12.5%, respectively, in the control group. The difference in prevalence between the two groups was statistically significant for HBs Ag (P = 0.01), anti-HCV (P = 0.03), IgG anti-HEV (P < 10(-4)), and IgG anti-HHV8 (P < 10(-4)). Categorization according to age showed that hepatitis B and C risk was limited in adult polytransfused group. HHV8 infection was higher in polytransfused subjects born before the use of leucocyte-depleted blood components. Our results corroborate literature data on the risk of HEV and HHV8 infection by blood transfusion. Hepatitis B vaccination and improvement in screening tests have an important role in reduction of hepatitis B and C risk in transfusion, especially in young polytransfused persons. However, a residual risk of transmitting viral infections persists, and efforts are needed to improve transfusion safety.

  6. Brainstem Auditory Evoked Potentials (BAEP)- A Pilot Study Conducted on Young Healthy Adults from Central India

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gandhe, Swapnali Mahendra; Puttewar, A.N.; Saraf, Chhaya; Singh, Ramji

    2014-01-01

    Objective: To Evaluate I, II, III, IV, V wave latencies and I-III, III-V, I-V inter-peak latencies and V/I wave amplitude ratio in Normal subjects in Central India. Methods: We recorded BAEP from 50 healthy normal subjects from the community of same sex and geographical setup. The absolute, interpeak and wave V/I amplitude ratio were measurement and recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Result: Absolute, interpeak and wave V/I amplitude ratio were measured in normal subjects and compared with other previous studies. Conclusion: This study was conducted as exploratory pilot study only on male healthy controls. Since, the study conducted in different regions, there are some differences in the latencies and interpeak latencies and amplitude ratio but they are within range, so reference range of this study can be used for future studies in this Wardha region of Central India. PMID:25120971

  7. Transmitted drug-resistance in human immunodeficiency virus-infected adult population in El Salvador, Central America.

    PubMed

    Holguín, Á; Yebra, G; Martín, L; de Pineda, A T; Ruiz, L E; Quezada, A Y; Nieto, A I; Escobar, G

    2013-12-01

    El Salvador harbours one of the largest Central American human immunodeficiency virus (HIV) epidemics, but few studies have analysed it in depth. Here, we describe the presence of transmitted drug resistance (TDR) and HIV variants in the HIV-infected adult population in El Salvador. Dried blood spots from 119 HIV-infected antiretroviral-naive adults attended in El Salvador were collected in 2011. The TDR was assessed according to the list recommended by the WHO. HIV-1 variants were described using phylogeny. Pol sequences could be amplified in 88 patients (50.6% men), with a mean age of 35 years. Almost all (96.7%) were infected with HIV through sexual practice and 58.7% were recently diagnosed. The mean CD4(+) count was 474 cells/mm(3) and 43.1% and 15.5% of patients showed moderate (<500 CD4 cells) or severe (<200) immune suppression, respectively. HIV-1 viral load was >100 000 copies/mL in 24.7% of patients and <2000 copies/mL in 9.1%. Five samples (5.7%) harboured any TDR mutation: 2.3% for nucleoside reverse transcriptase inhibitor (NRTI) and non-nucleoside reverse transcriptase inhibitor (NNRTI), and 1.4% for protease inhibitor (PI). All showed only one TDR single-class resistance mutation: M184I (two cases) for NRTI, K101E and K103N for NNRTI and L23I for PI. All viruses excepting one (URF_BG) belonged to subtype B. No phylogenetic TDR networks were found. In conclusion, we report a TDR prevalence of 5.7% in El Salvador, lower than in other Central American studies. Periodical studies are essential to monitor and prevent TDR emergence in low-income and middle-income regions. Also, more efforts are needed to promote early diagnosis and prevention of infection in El Salvador.

  8. Relation of adult size to movements and distribution of smallmouth bass in a central Maine Lake

    USGS Publications Warehouse

    Cole, M.B.; Moring, J.R.

    1997-01-01

    Forty-four smallmouth bass Micropterus dolomieu of three size-classes were radiotracked in Green Lake, Maine, during summer 1993 (10 June-1 September) to determine whether adult size influenced distribution and movement. Large smallmouth bass (>406 mm) used deep water (>8 m) more often than did small (248-279 mm) or medium-sized (305-356 mm) smallmouth bass during the late summer (15 July-1 September). Large smallmouth bass also were found at middepths (4-8 m) significantly more often than were small individuals during late summer. Small fish used cover more frequently than large ones during early summer (10 June-13 July). Both small and medium-sized individuals were associated with cover more frequently than large smallmouth bass were during the late summer. Small smallmouth bass exhibited significantly smaller summer total ranges than did large individuals, and mean active displacement differed among all three size-classes.

  9. Perception and Attitude of a Rural Community Regarding Adult Blindness in North Central Nigeria

    PubMed Central

    Olatunji, Victoria A.; Adepoju, Feyi G.; Owoeye, Joshua F. A.

    2015-01-01

    Aim: To determine the perception and attitudes of a rural community regarding the etiology, prevention, and treatment of blindness in adults. Methods: A cross-sectional, descriptive study was performed in a rural community in Kwara State, Nigeria using semi-structured questionnaire. All adults aged 40 years or older who were residents for a minimum of 6 months in the community were included. Data were collected on patient demographics, knowledge, attitude, perception, and use of the eye care facility. Results: A total of 290 participants were interviewed. The male-to-female ratio was 1:2. Consumption of certain types of food was an important cause of blindness as perceived by 57.9% of the respondents, followed by supernatural forces (41.7%) and aging (19%). Sixty percent of respondents thought blindness could be prevented. Age (P = 0.04) and level of education (P =0.003) significantly affected the beliefs on the prevention of blindness. Most respondents (79.3%) preferred orthodox eye care, but only 65% would accept surgical intervention if required. The level of education significantly affected the acceptance of surgery (P = 0.04). Reasons for refusing surgery were, fear (64%), previous poor outcomes in acquaintances (31%), belief that surgery is not required (3%), and cost (2%). About 65% used one form of traditional eye medication or the other. Over half (56.6%) believed that spectacles could cure all causes of blindness. Of those who had ocular complaints, 57.1% used orthodox care without combining with either traditional or spiritual remedies. Conclusion: This rural Nigerian community had some beliefs that were consistent with modern knowledge. However, the overall knowledge, attitude, and perceptions of this community need to be redirected to favor the eradication of avoidable blindness. Although an eye care facility was available, use by the community was suboptimal. Age and the level of education affected their overall perception and attitudes. PMID:26692726

  10. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals

    PubMed Central

    Rossignol, Serge

    2006-01-01

    This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions. PMID:16939980

  11. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  12. High prevalence of central hypothyroidism in adult patients with β-thalassemia major.

    PubMed

    De Sanctis, V; Soliman, A; Candini, G; Campisi, S; Anastasi, S; Iassin, M

    2013-09-01

    The commonest form of thyroid dysfunction seen in subjects with TM is primary hypothyroidism due to abnormalities of the thyroid gland. Central hypothyroidism (CH) has been reported as an uncommon clinical entity in TM patients although the anterior pituitary gland is particularly sensitive to free radical oxidative stresses. Diagnosis is usually made on a biochemical basis showing low circulating concentrations of thyroid hormone associated with an inappropriately low TSH levels. The diagnosis is not clinically obvious and a basal normal TSH level does not exclude the diagnosis of CH. Therefore, it is important that clinicians accurately interpret thyroid function tests. In TM patients, CH prevalence differs at different ages is unknown and it is not easy to diagnose because most of the symptoms of symptoms of CH are non specific and are frequently attributed to anaemia or other associated complications . We performed a cross-sectional analysis on a large database using the clinical records of our TM patients to explore the prevalence of CH in prepubertal (<11 years: 25 patients; 13 males) peripubertal (between 11 and 16 years: 9 patients; 3 males), and pubertal TM subjects (>16 years: 305 patients; 164 males). Central hypothyroidism was present in 26 (7,6%) TM patients. Their mean age was 29.9 ± 8.4 years, 14 (53.8%) were males and 12 (46.1%) were females. The prevalence of CH was 6% in patients with a chronological age below 21 years and 7.9% in those above 21 years. Clinicians should be alert for the diagnosis of CH through accurate interpretation of thyroid function tests. We recommend L-thyroxine therapy if the level of FT4 is consistently low provided that the patient has normal cortisol levels.

  13. Adult T-cell leukemia/lymphoma in South and Central America and the Caribbean: systematic search and review.

    PubMed

    Oliveira, Pedro D; de Carvalho, Rebeca F; Bittencourt, Achiléa L

    2017-03-01

    Adult T-cell leukemia/lymphoma (ATL) is caused by the human T-cell lymphotropic virus type 1 (HTLV-1) which is endemic in countries of Caribbean and Central and South America. We performed a systematic search and review to identify publications on ATL in these countries to verify if this disease was getting recognition in these regions as well as the characteristics of the observed cases. The median age of 49.4 years was lower than that referred to in Japan. According to our findings in most Brazilian states and in some other countries, ATL is not being recognized and should be strongly considered in the differential diagnosis of T-cell leukemias/lymphomas. Failure to identify these cases may be due to the unsystematic realization of serology for HTLV-1 and phenotypic identification of non-Hodgkin lymphomas that may result from lack of resources. Detection of ATL cases has been more feasible with cooperation from foreign research centers. A huge effort should be made to improve the surveillance system for ATL diagnosis in most of the South- and Central-American and Caribbean countries, and this attitude should be embraced by public organs to support health professionals in this important task.

  14. Pulmonary Langerhans Cell Histiocytosis in an Adult Male Presenting with Central Diabetes Insipidus and Diabetes Mellitus: A Case Report.

    PubMed

    Choi, Yeun Seoung; Lim, Jung Soo; Kwon, Woocheol; Jung, Soon-Hee; Park, Il Hwan; Lee, Myoung Kyu; Lee, Won Yeon; Yong, Suk Joong; Lee, Seok Jeong; Jung, Ye-Ryung; Choi, Jiwon; Choi, Ji Sun; Jeong, Joon Taek; Yoo, Jin Sae; Kim, Sang-Ha

    2015-10-01

    Pulmonary Langerhans cell histiocytosis is an uncommon diffuse cystic lung disease in adults. In rare cases, it can involve extrapulmonary organs and lead to endocrine abnormalities such as central diabetes insipidus. A 42-year-old man presented with polyphagia and polydipsia, as well as a dry cough and dyspnea on exertion. Magnetic resonance imaging of the hypothalamic-pituitary system failed to show the posterior pituitary, which is a typical finding in patients with central diabetes insipidus. This condition was confirmed by a water deprivation test, and the patient was also found to have type 2 diabetes mellitus. Computed tomographic scanning of the lungs revealed multiple, irregularly shaped cystic lesions and small nodules bilaterally, with sparing of the costophrenic angles. Lung biopsy through video-assisted thoracoscopic surgery revealed pulmonary Langerhans cell histiocytosis. On a follow-up visit, only 1 year after the patient had quit smoking, clinical and radiological improvement was significant. Here, we report an uncommon case of pulmonary Langerhans cell histiocytosis that simultaneously presented with diabetes insipidus and diabetes mellitus.

  15. Divergent paths for adult mortality in Russia and Central Asia: evidence from Kyrgyzstan.

    PubMed

    Guillot, Michel; Gavrilova, Natalia; Torgasheva, Liudmila; Denisenko, Mikhail

    2013-01-01

    Adult mortality has been lower in Kyrgyzstan vs. Russia among males since at least 1981 and among females since 1999. Also, Kyrgyzstan's mortality fluctuations have had smaller amplitude. This has occurred in spite of worse macro-economic outcomes in Kyrgyzstan. To understand these surprising patterns, we analyzed cause-specific mortality in Kyrgyzstan vs. Russia for the period 1981-2010, using unpublished official data. We find that, as in Russia, fluctuations in Kyrgyzstan have been primarily due to changes in external causes and circulatory causes, and alcohol appears to play an important role. However, in contrast with Russia, mortality from these causes in Kyrgyzstan has been lower and has increased by a smaller amount. As a result, the mortality gap between the two countries is overwhelmingly attributable to external and cardio-vascular causes, and more generally, to causes that have been shown to be strongly related to alcohol consumption. These cause-specific results, together with the existence of large ethnic differentials in mortality in Kyrgyzstan, highlight the importance of cultural and religious differences, and their impact on patterns of alcohol consumption, in explaining the mortality gap between the two countries. These findings show that explanatory frameworks relying solely on macro-economic factors are not sufficient for understanding differences in mortality levels and trends among former Soviet republics.

  16. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

    PubMed Central

    Vajn, Katarina; Viljetić, Barbara; Degmečić, Ivan Večeslav; Schnaar, Ronald L.; Heffer, Marija

    2013-01-01

    Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies. PMID:24098718

  17. Assessing the association of taurodontism with numeric dentition anomalies in an adult central Indian population

    PubMed Central

    Puttalingaiah, Vinuth Dundanahalli; Agarwal, Poonam; Miglani, Rohit; Gupta, Puneet; Sankaran, Abilash; Dube, Gunjan

    2014-01-01

    Aim: To study the association between taurodontism and numeric anomalies in adult population. Materials and Methods: Out of 1,012; 946 panoramic radiographs and dental records were retrospectively assessed to determine the presence of dental agenesis and supernumerary and taurodont teeth. Results: Taurodontism of one or more teeth was observed in 164 cases (97 females and 67 males). Hypodontia was observed in 148 patients (84 females and 64 males) with 62 patients having associated taurodontism (38 females, 24 males), oligodontia in 12 patients (five females and seven males) of whom nine patients also had taurodontism of one or more teeth (five females and four males). Forty-five patients (32 females and 13 males) presented with 57 supernumerary teeth (ST) with 12 patients having simultaneous presence of taurodontic tooth (seven females and five males). Conclusion: Our study suggests a preferential association between tooth agenesis and taurodontism; however, such association was not observed in individuals with hyperdontia. Understanding the nature of this preferential association may be of importance in determining the etiology of both conditions. This association may also define a subphenotype for future genetic studies on dental development. Further molecular studies are necessary to verify the etiology and mechanism of taurodontism associated with tooth agenesis. PMID:25097429

  18. Early central nervous complications after umbilical cord blood transplantation for adults.

    PubMed

    Narimatsu, Hiroto; Miyamura, Koichi; Iida, Hiroatsu; Hamaguchi, Motohiro; Uchida, Toshiki; Morishita, Yoshihisa

    2009-01-01

    Early central nervous complications (CNS) are significant after allogeneic stem cell transplantation; however, the clinical characteristics of early CNS complications have not yet been well described. The medical record of 77 patients who underwent cord blood transplantation (CBT) between March 2001 and November 2005, at 8 centers of the Nagoya Blood and Marrow Transplantation Group were retrospectively reviewed. The preparative regimen included myeloablative CBT (n = 31) or reduced-intensity (RI)-CBT (n = 46). Of the 77 patients, 10 (13%) developed early CNS complications. Causes included Cyclosporine encephalopathy (n = 5), tacrolimus encephalopathy (n = 2), thrombocytic microangiopathy (n = 1), and unknown (n = 3). The median time of onset was 19 days (range: 2-58 days). All of the 10 patients developed impaired consciousness. Seizures developed in 6 patients. Early CNS complications spontaneously subsided in 3 patients. Three patients responded to cyclosporine or tacrolimus discontinuation. The remaining 4 patients died within 30 days of developing of early CNS complications. No relationship was detected between the preparative regimen and the onset of early CNS complications, while an HLA disparity showed borderline significance (hazard ratio, 3.24; 95% confidential interval, 0.94-11.20; P = .06). Early CNS complications are a significant problem after CBT, and the clinician has to be aware of the possibility of these complications.

  19. Primary central nervous system ALK-positive anaplastic large cell lymphoma in an adult

    PubMed Central

    Dong, Xiaoqin; Li, Jun; Huo, Na; Wang, Yan; Wu, Zhao; Lin, Xiaohong; Zhao, Hong

    2016-01-01

    Abstract Rationale: Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin lymphoma. It mostly invades lymph nodes with extranodal involvement observed in the soft tissue, bone, and skin. Patient concerns: We report a 34-year-old Chinese male patient who presented with headache, diplopia, and vomit. Cerebrospinal fluid (CSF) analysis via lumbar puncture showed elevated CSF pressure, elevated CSF protein concentrations, decreased CSF glucose and chloride concentration significantly, and pleocytosis of 68 to 350 × 106/L, in which lymphocytes and monocytes were predominant. These changes could be suggestive of tuberculous (TB) meningitis. Enhanced magnetic resonance imaging of spinal cord delineated multiple enhancing nodules in spinal cord, cauda equina, and cristae membrane, and multiple abnormal enhancing lesions in bilateral lumbar intervertebral foramen. Diagnoses: Spinal dura mater biopsy and paraffin pathology examination revealed anaplastic lymphoma kinase positive ALCL. Interventions: High-dose methotrexate, cytosine arabinoside craniospinal, and radiotherapy. Outcomes: Last follow-up on September 22, 2015 showed no evidence of tumor recurrence and the lower extremity muscle strength recovered to 4/5. Lessons: ALCL of primary central nervous system is an exceedingly rare tumor, which is usually misdiagnosed as meningitis (especially TB meningitis) according to clinical manifestation and laboratory examination. Thus closely monitoring patient's conditions and timely adjusting therapeutic regimen during treatment are necessary. PMID:27930548

  20. Resveratrol prevents hyperleptinemia and central leptin resistance in adult rats programmed by early weaning.

    PubMed

    Franco, J G; Lisboa, P C; da Silva Lima, N; Peixoto-Silva, N; Maia, L A; Oliveira, E; Passos, M C F; de Moura, E G

    2014-09-01

    We have previously shown that early weaning in rats increases the risk of obesity and insulin resistance at adulthood, and leptin resistance can be a prime factor leading to these changes. Resveratrol is reported to decrease oxidative stress, insulin resistance, and cardiovascular risk. However, there is no report about its effect on leptin resistance. Thus, in this study we have evaluated resveratrol-preventing effect on the development of visceral obesity, insulin, and leptin resistance in rats programmed by early weaning. To induce early weaning, lactating dams were separated into 2 groups: early weaning (EW)--dams were wrapped with a bandage to interrupt lactation in the last 3 days of lactation and control (C)--dams whose pups had free access to milk during throughout lactation period (21 days). At 150 days-old, EW offspring were subdivided into 2 groups: EW+res--treated with resveratrol solution (30 mg/kg BW/day) or EW--receiving equal volume of vehicle solution, both given by gavage during 30 days. Control group received vehicle solution. Resveratrol prevented the higher body weight, hyperphagia, visceral obesity, hyperleptinemia, hyperglycemia, insulin resistance, and hypoadiponectinemia at adulthood in animals that were early weaned. Leptin resistance, associated with lower JAK2 and pSTAT3 and higher NPY in hypothalamus of EW rats were also normalized by resveratrol. The present results suggest that resveratrol is useful as therapeutic tool in treating obesity, mainly because it prevents the development of central leptin resistance.

  1. The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system

    PubMed Central

    Mueller, Bernhard K; Yamashita, Toshihide; Schaffar, Gregor; Mueller, Reinhold

    2006-01-01

    During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues. PMID:16939972

  2. Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G.

    PubMed Central

    Dominguez, D; Kislig, E; Altmann, M; Trachsel, H

    2001-01-01

    The translation eukaryotic initiation factor (eIF)4G of the yeast Saccharomyces cerevisiae interacts with the RNA helicase eIF4A (a member of the DEAD-box protein family; where DEAD corresponds to Asp-Glu-Ala-Asp) through a C-terminal domain in eIF4G (amino acids 542-883). Mammalian eIF4G has two interaction domains for eIF4A, a central domain and a domain close to the C-terminus. This raises the question of whether eIF4A binding to eIF4G is conserved between yeast and mammalian cells or whether it is different. We isolated eIF4G1 mutants defective in eIF4A binding and showed that these mutants are strongly impaired in translation and growth. Extracts from mutants displaying a temperature-sensitive phenotype for growth have low in vitro translation activity, which can be restored by addition of the purified eIF4G1-eIF4E complex, but not by eIF4E alone. Analysis of mutant eIF4G(542-883) proteins defective in eIF4A binding shows that the interaction of yeast eIF4A with eIF4G1 depends on amino acid motifs that are conserved between the yeast eIF4A-binding site and the central eIF4A-binding domain of mammalian eIF4G. We show that mammalian eIF4A binds tightly to yeast eIF4G1 and, furthermore, that mutant yeast eIF4G(542-883) proteins, which do not bind yeast eIF4A, do not interact with mammalian eIF4A. Despite the conservation of the eIF4A-binding site in eIF4G and the strong sequence conservation between yeast and mammalian eIF4A (66% identity; 82% similarity at the amino acid level) mammalian eIF4A does not substitute for the yeast factor in vivo and is not functional in a yeast in vitro translation system. PMID:11256967

  3. Peripherally Inserted Central Catheter-Related Infections in a Cohort of Hospitalized Adult Patients

    SciTech Connect

    Bouzad, Caroline; Duron, Sandrine; Bousquet, Aurore; Arnaud, François-Xavier; Valbousquet, Laura; Weber-Donat, Gabrielle Teriitehau, Christophe Baccialone, Jacques Potet, Julien

    2016-03-15

    PurposeTo determine the incidence and the risks factors of peripherally inserted central catheter (PICC)-related infectious complications.Materials and MethodsMedical charts of every in-patient that underwent a PICC insertion in our hospital between January 2010 and October 2013 were reviewed. All PICC-related infections were recorded and categorized as catheter-related bloodstream infections (CR-BSI), exit-site infections, and septic thrombophlebitis.ResultsNine hundred and twenty-three PICCs were placed in 644 unique patients, mostly male (68.3 %) with a median age of 58 years. 31 (3.4 %) PICC-related infections occurred during the study period corresponding to an infection rate of 1.64 per 1000 catheter-days. We observed 27 (87.1 %) CR-BSI, corresponding to a rate of 1.43 per 1000 catheter-days, 3 (9.7 %) septic thrombophlebitis, and 1 (3.2 %) exit-site infection. Multivariate logistic regression analysis showed a higher PICC-related infection rate with chemotherapy (odds ratio (OR) 7.2–confidence interval (CI) 95 % [1.77–29.5]), auto/allograft (OR 5.9–CI 95 % [1.2–29.2]), and anti-coagulant therapy (OR 2.2–95 % [1.4–12]).ConclusionChemotherapy, auto/allograft, and anti-coagulant therapy are associated with an increased risk of developing PICC-related infections.Clinical AdvanceChemotherapy, auto/allograft, and anti-coagulant therapy are important predictors of PICC-associated infections. A careful assessment of these risk factors may be important for future success in preventing PICC-related infections.

  4. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  5. Asymmetries of the central sulcus in young adults: Effects of gender, age and sulcal pattern.

    PubMed

    Sun, Bo; Ge, Haitao; Tang, Yuchun; Hou, Zhongyu; Xu, Junhai; Lin, Xiangtao; Liu, Shuwei

    2015-08-01

    In this study, we clarified the gender and age-related asymmetries of the central sulcus (CS) in early adulthood using a parametric ribbon method. The CS was reconstructed and parameterized automatically from 3D MR images of 112 healthy right-handed subjects. The 3D anatomic morphology of the CS was presented using 5 sulcal parameters, including sulcal depth position-based profile (DPP), average depth (AD), average width (AW), top length (TL) and bottom length (BL). Asymmetry differences in DPPs were found in the medial and lateral part of the CS. In addition, significant gender differences were observed in the medial and middle parts of the right CS DPPs but scattered in the left side. We found leftward asymmetries of TL in males, but rightward asymmetries of AW in females. Males had a greater AW than females in the right hemisphere. Moreover, the females had bilateral longer TL and a longer left BL than did males. We also found significant age-related reductions in bilateral TL and increases in bilateral AW, with males presenting more obvious age-related change than females. There were sexual differences of the CS patterns, in which Type b was the most dominant sulcal pattern in males, whereas Type a was dominant in females. Three-way ANOVA revealed sexual and asymmetry changes of TL and BL among different CS patterns. Our findings indicate that the lateralization performances of the CS manifest as sexually and regionally different. In addition, it is suggested that males may undergo a faster progress of aging compared to females.

  6. Iatrogenic chylothorax due to pleural cavity extravasation of total parenteral nutrition in two adults receiving nutrition through a peripherally inserted central catheter.

    PubMed

    Johnson, Thomas J; Jamous, Fady G; Kooistra, Alma; Zawada, Edward T

    2010-02-01

    Extravasation of total parenteral nutrition (TPN) delivered via central lines is a known potential complication, but significant extravasations of infusate into the pleural space when using peripherally inserted central catheters (PICCs) have not been reported in adults. We report 2 cases ofpleural cavity extravasation ofTPN delivered via a PICC. Measurement of the glucose level of the effusate is a quick way to determine the presence of TPN and should be considered in any patient receiving TPN via any type of central line with a rapidly developing effusion.

  7. Val1483Ile in FASN gene is linked to central obesity and insulin sensitivity in adult white men.

    PubMed

    Moreno-Navarrete, José M; Botas, Patricia; Valdés, Sergio; Ortega, Francisco J; Delgado, Elías; Vázquez-Martín, Alejandro; Bassols, Judit; Pardo, Gerard; Ricart, Wifredo; Menéndez, Javier A; Fernández-Real, José M

    2009-09-01

    The Val1483Ile polymorphism in the human fatty acid synthase (FASN) gene is located within the interdomain region of the FASN close to the two dynamic active centers of the FASN enzyme and putatively affects FASN action. We aimed to evaluate the association of this polymorphism with obesity phenotypes, insulin sensitivity, and adipose tissue FASN activity in adult white subjects. The polymorphism was evaluated in association with metabolic variables in two independent studies: in a case-control study of 457 men (229 with normal glucose tolerance (NGT) and 228 with altered glucose tolerance (AGT)); and in 600 population-based NGT subjects (274 men and 326 women). Adipose tissue FASN activity was analyzed using the method of Nepokroeff. The Ile variant was associated with a lower waist-to-hip ratio (WHR) and a lower increase in weight over a 7-year period in NGT men. In a subset of 147 men, carriers of the Ile variant showed significantly increased insulin sensitivity. BMI (P < 0.001), WHR (P = 0.03), and Val1483Ile (P = 0.03), contributed independently to 37% of insulin sensitivity variance. In men from the population-based study, the Ile variant was associated with a lower BMI, WHR, fasting glucose, and systolic blood pressure compared with carriers of the Val variant. In agreement with these results, the adipose tissue FASN activity was significantly lower in subjects with the Ile variant (P = 0.01). In summary, adult white men with the Ile 1483 variant of the FASN gene seem protected from developing central obesity through decreased adipose tissue FASN activity.

  8. Assessing the WHO 50% Prevalence Threshold in School-Aged Children as Indication for Treatment of Urogenital Schistosomiasis in Adults in Central Nigeria

    PubMed Central

    Evans, Darin S.; King, Jonathan D.; Eigege, Abel; Umaru, John; Adamani, William; Alphonsus, Kal; Sambo, Yohanna; Miri, Emmanual S.; Goshit, Danjuma; Ogah, Gladys; Richards, Frank O.

    2013-01-01

    Preventive chemotherapy with praziquantel is recommended in adults by the World Health Organization when prevalence of schistosomiasis in school-aged children (SAC) is ≥ 50%. This study ascertained the value of this threshold in predicting prevalence and intensity of Schistosoma hematobium (SH) infection in adults in central Nigeria. We evaluated urogenital schistosomiasis prevalence in 1,164 adults: 659 adults in 12 communities where mean hematuria among SAC in 2008 was 26.6% and 505 adults in 7 communities where the mean hematuria among SAC in 2008 was 70.4%. No statistically significant differences were found between the two groups of adults in prevalence of hematuria, prevalence of SH eggs, or intensity of infections. We conclude that, in this setting, the SAC threshold is not useful for treatment decisions in adults. Given the increased risk of subtle morbidity or urogenital schistosomiasis as a risk factor for human immunodeficiency virus (HIV), more liberal treatment of adults with praziquantel is warranted. PMID:23382170

  9. Chronic prenatal ethanol exposure alters expression of central and peripheral insulin signaling molecules in adult guinea pig offspring.

    PubMed

    Dobson, Christine C; Thevasundaram, Kersh; Mongillo, Daniel L; Winterborn, Andrew; Holloway, Alison C; Brien, James F; Reynolds, James N

    2014-11-01

    Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling

  10. Adenosine 5' triphosphate evoked mobilization of intracellular calcium in central nervous system white matter of adult mouse optic nerve.

    PubMed

    James, G; Butt, A M

    1999-06-11

    Although it has been established that immature glial cells express functional purinergic receptors, the responsiveness of mature glial cells in vivo had not been elucidated. This question was addressed using fura-2 ratiometric measurements of [Ca2+]i in the adult mouse optic nerve, a central nervous system (CNS) white matter tract, taking advantage of the facts that (i), the optic nerve contains glial cells but not neurons and (ii), that fura-2 loads primarily astrocytes in isolated intact optic nerves. We show that adenosine 5' triphosphate (ATP) evoked an increase in [Ca2+]i in a concentration-dependent manner with a half-maximal effect at 3 microm ATP, and with a rank order of agonist potency of ATP > ADP > alpha,beta-methyline-ATP > UDP > adenosine. The results indicate mainly P2Y and P2X components, consistent with the in vitro astroglial purinergic receptor profile. The in vivo response of mature glia to ATP may be important in their response to CNS damage.

  11. Central amygdala lesions inhibit pontine nuclei acoustic reactivity and retard delay eyeblink conditioning acquisition in adult rats.

    PubMed

    Pochiro, Joseph M; Lindquist, Derick H

    2016-06-01

    In delay eyeblink conditioning (EBC) a neutral conditioned stimulus (CS; tone) is repeatedly paired with a mildly aversive unconditioned stimulus (US; periorbital electrical shock). Over training, subjects learn to produce an anticipatory eyeblink conditioned response (CR) during the CS, prior to US onset. While cerebellar synaptic plasticity is necessary for successful EBC, the amygdala is proposed to enhance eyeblink CR acquisition. In the current study, adult Long-Evans rats received bilateral sham or neurotoxic lesions of the central nucleus of the amygdala (CEA) followed by 1 or 4 EBC sessions. Fear-evoked freezing behavior, CS-mediated enhancement of the unconditioned response (UR), and eyeblink CR acquisition were all impaired in the CEA lesion rats relative to sham controls. There were also significantly fewer c-Fos immunoreactive cells in the pontine nuclei (PN)-major relays of acoustic information to the cerebellum-following the first and fourth EBC session in lesion rats. In sham rats, freezing behavior decreased from session 1 to 4, commensurate with nucleus-specific reductions in amygdala Fos+ cell counts. Results suggest delay EBC proceeds through three stages: in stage one the amygdala rapidly excites diffuse fear responses and PN acoustic reactivity, facilitating cerebellar synaptic plasticity and the development of eyeblink CRs in stage two, leading, in stage three, to a diminution or stabilization of conditioned fear responding.

  12. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis)

    USGS Publications Warehouse

    Honeyfield, D.C.; Ross, J.P.; Carbonneau, D.A.; Terrell, S.P.; Woodward, A.R.; Schoeb, T.R.; Perceval, H.F.; Hinterkopf, J.P.

    2008-01-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B"1) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities. ?? Wildlife Disease Association 2008.

  13. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis).

    PubMed

    Honeyfield, Dale C; Ross, J Perran; Carbonneau, Dwayne A; Terrell, Scott P; Woodward, Allan R; Schoeb, Trenton R; Perceval, H Franklin; Hinterkopf, Joy P

    2008-04-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B(1)) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities.

  14. [Estimation of adult mortality in six parishes of the central valley of Costa Rica (1888-1910) based on information on orphanhood].

    PubMed

    Jaspers Faijer, D; Perez Brignoli, H

    1985-04-01

    "This paper contains an application of the orphanhood method for estimating adult mortality, based on information provided during the period 1888-1910 by the brides and bridegrooms of six parishes of the Central Valley of Costa Rica.... Using the Brass technique for estimating adult mortality from orphanhood and interpolating the resulting probabilities of surviving into... Coale and Demeny's regional model life tables, the life expectancy at the age of 25 years is estimated [at] 41 years for women and 40 years for men." Mortality differences by region and social-occupational group are considered. (summary in ENG)

  15. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  16. Mammalian development in space.

    PubMed

    Ronca, April E

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  17. Hemispheric lateralization of bilaterally presented homologous visual and auditory stimuli in normal adults, normal children, and children with central auditory dysfunction.

    PubMed

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2008-04-01

    Two experiments were conducted to examine the performance of normal adults, normal children, and children diagnosed with central auditory dysfunction presumed to involve the interhemispheric pathways on a dichotic digits test in common clinical use for the diagnosis of central auditory processing disorder (CAPD) and its corresponding visual analog. Results of the first experiment revealed a significant right ear advantage (REA) for the dichotic listening task and a left-visual-field advantage (LVFA) for the corresponding visual analog in normal adults and children. In the second experiment, results revealed a significantly larger REA in the children with CAPD as compared to the normal children. Results also revealed a reversed cerebral asymmetry (RVFA) for the children with CAPD on the visual task. Significant cross-modal correlations suggest that the two tasks may reflect, at least in part, similar interhemispheric processing mechanisms in children. Findings are discussed in relation to differential diagnosis and modality-specificity of CAPD.

  18. Characterization of a novel gene product (mammalian tolloid-like) with high sequence similarity to mammalian tolloid/bone morphogenetic protein-1

    SciTech Connect

    Takahara, Kazuhiko; Brevard, R.; Hoffman, G.G.; Greenspan, D.S.

    1996-06-01

    Bone morphogenetic protein-1 (BMP-1), a metalloprotease isolated from osteogenic extracts of demineralized bone, is capable of cleaving the C-propeptides of procollagen types I, II, and III. A single mammalian gene produces alternatively spliced RNA transcripts for BMP-1 and for a second longer protein, designated mammalian tolloid (mTld) due to a domain structure identical to that of the Drosophilia dorsal-ventral patterning gene product tolloid (Tld). Here we report the use of a cDNA library, prepared from BMP-1/mTld-null mouse embryos, to solate cDNA clones for a novel mammalian protein with a domain structure identical to that of mTld. The new protein, designated mammalian tolloid-like (mTll), has 76% identity with mTld for amino acid residues in all domains downstream of, and including, the protease domain. In contrast, the N-terminal activation domains of the two proteins show little similarity. In situ hybridizations show the distribution of mTll RNA to overlap extensively that previously shown for the BMP-1 and mTld RNA forms. However, mTll shows additional strong expression in structures of the developing, neonatal, and adult brain in which expression of BMP-1 and mTld has not been observed. The murine mTl1 gene (Tll) is mapped to central chromosome 8, which is a different chromosomal location than that of the BMP-1/mTld gene. Loci for some developmental abnormalities map to the same general chromosomal location as Tll. 38 refs., 6 figs.

  19. A protein related to p21-activated kinase (PAK) that is involved in neurogenesis in the Drosophila adult central nervous system.

    PubMed

    Melzig, J; Rein, K H; Schäfer, U; Pfister, H; Jäckle, H; Heisenberg, M; Raabe, T

    1998-11-05

    Brains are organized by the developmental processes generating them. The embryonic neurogenic phase of Drosophila melanogaster has been studied in detail at the genetic, cellular and molecular level. In contrast, much of what is known of postembryonic brain development has been gathered by neuroanatomical and gene expression studies. The molecular mechanisms underlying cellular diversity and structural organisation in the adult brain, such as the establishment of the correct neuroblast number, the spatial and temporal control of neuroblast proliferation, cell fate determination, and the generation of the precise pattern of neuronal connectivity, are largely unknown. In a screen for viable mutations affecting adult central brain structures, we isolated the mushroom bodies tiny (mbt) gene of Drosophila, which encodes a protein related to p21-activated kinase (PAK). We show that mutations in mbt primarily interfere with the generation or survival of the intrinsic cells (Kenyon cells) of the mushroom body, a paired neuropil structure in the adult brain involved in learning and memory.

  20. Moderate-Heavy Alcohol Consumption Lifestyle in Older Adults Is Associated with Altered Central Executive Network Community Structure during Cognitive Task

    PubMed Central

    Moussa, Malaak N.; Simpson, Sean L.; Lyday, Robert G.; Burdette, Jonathan H.; Porrino, Linda J.; Laurienti, Paul J.

    2016-01-01

    Older adults today consume more alcohol than previous generations, the majority being social drinkers. The effects of heavy alcohol use on brain functioning closely resemble age-related changes, but it is not known if moderate-heavy alcohol consumption intensifies brain aging. Whether a lifestyle of moderate-heavy alcohol use in older adults increased age-related brain changes was examined. Forty-one older adults (65–80 years) that consumed light (< 2 drinks/week and ≥ 1 drink/month, n = 20) or moderate-heavy (7–21 drinks/week, non-bingers, n = 21) amounts of alcohol were enrolled. Twenty-two young adults (24–35 years) were also enrolled (light, n = 11 and moderate-heavy, n = 11). Functional brain networks based on magnetic resonance imaging data were generated for resting state and during a working memory task. Whole-brain, Central Executive Network (CEN), and Default Mode Network (DMN) connectivity were assessed in light and moderate-heavy alcohol consuming older adults with comparisons to young adults. The older adults had significantly lower whole brain connectivity (global efficiency) and lower regional connectivity (community structure) in the CEN during task and in the DMN at rest. Moderate-heavy older drinkers did not exhibit whole brain connectivity differences compared to the low drinkers. However, decreased CEN connectivity was observed during the task. There were no differences in the DMN connectivity between drinking groups. Taken together, a lifestyle including moderate-heavy alcohol consumption may be associated with further decreases in brain network connectivity within task-related networks in older adults. Further research is required to determine if this decrease is compensatory or an early sign of decline. PMID:27494180

  1. Moderate-Heavy Alcohol Consumption Lifestyle in Older Adults Is Associated with Altered Central Executive Network Community Structure during Cognitive Task.

    PubMed

    Mayhugh, Rhiannon E; Moussa, Malaak N; Simpson, Sean L; Lyday, Robert G; Burdette, Jonathan H; Porrino, Linda J; Laurienti, Paul J

    2016-01-01

    Older adults today consume more alcohol than previous generations, the majority being social drinkers. The effects of heavy alcohol use on brain functioning closely resemble age-related changes, but it is not known if moderate-heavy alcohol consumption intensifies brain aging. Whether a lifestyle of moderate-heavy alcohol use in older adults increased age-related brain changes was examined. Forty-one older adults (65-80 years) that consumed light (< 2 drinks/week and ≥ 1 drink/month, n = 20) or moderate-heavy (7-21 drinks/week, non-bingers, n = 21) amounts of alcohol were enrolled. Twenty-two young adults (24-35 years) were also enrolled (light, n = 11 and moderate-heavy, n = 11). Functional brain networks based on magnetic resonance imaging data were generated for resting state and during a working memory task. Whole-brain, Central Executive Network (CEN), and Default Mode Network (DMN) connectivity were assessed in light and moderate-heavy alcohol consuming older adults with comparisons to young adults. The older adults had significantly lower whole brain connectivity (global efficiency) and lower regional connectivity (community structure) in the CEN during task and in the DMN at rest. Moderate-heavy older drinkers did not exhibit whole brain connectivity differences compared to the low drinkers. However, decreased CEN connectivity was observed during the task. There were no differences in the DMN connectivity between drinking groups. Taken together, a lifestyle including moderate-heavy alcohol consumption may be associated with further decreases in brain network connectivity within task-related networks in older adults. Further research is required to determine if this decrease is compensatory or an early sign of decline.

  2. Perceptions of Young Adult Central Nervous System Cancer Survivors and Their Parents Regarding Career Development and Employment

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Chan, Fong; Wong, Alex W. K.

    2014-01-01

    Purpose: Identify barriers to career development and employment from both the survivor and parent perspective. Method: Young adult survivors (N = 43) and their parents participated in focus groups to elicit information regarding perceptions regarding career development and employment. Results: Perceptions of both the young adults and parents…

  3. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1

    NASA Astrophysics Data System (ADS)

    Saijilafu; Hur, Eun-Mi; Liu, Chang-Mei; Jiao, Zhongxian; Xu, Wen-Lin; Zhou, Feng-Quan

    2013-10-01

    In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.

  4. Direct Participation in and Indirect Exposure to the Occupy Central Movement and Depressive Symptoms: A Longitudinal Study of Hong Kong Adults.

    PubMed

    Ni, Michael Y; Li, Tom K; Pang, Herbert; Chan, Brandford H Y; Yuan, Betty Y; Kawachi, Ichiro; Schooling, C Mary; Leung, Gabriel M

    2016-11-01

    Despite the extensive history of social movements around the world, the evolution of population mental health before, during, and after a social movement remains sparsely documented. We sought to assess over time the prevalence of depressive symptoms during and after the Occupy Central movement in Hong Kong and to examine the associations of direct and indirect exposures to Occupy Central with depressive symptoms. We longitudinally administered interviews to 909 adults who were randomly sampled from the population-representative FAMILY Cohort at 6 time points from March 2009 to March 2015: twice each before, during, and after the Occupy Central protests. The Patient Health Questionnaire-9 was used to assess depressive symptoms and probable major depression (defined as Patient Health Questionnaire-9 score ≥10). The absolute prevalence of probable major depression increased by 7% after Occupy Central, regardless of personal involvement in the protests. Higher levels of depressive symptoms were associated with online and social media exposure to protest-related news (incidence rate ratio (IRR) = 1.28, 95% confidence interval (CI): 1.06, 1.55) and more frequent Facebook use (IRR = 1.38, 95% CI: 1.12, 1.71). Higher levels of intrafamilial sociopolitical conflict was associated with more depressive symptoms (IRR = 1.05, 95% CI: 1.01, 1.09). The Occupy Central protests resulted in substantial and sustained psychological distress in the community.

  5. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  6. Appraisals of discriminatory events among adult offspring of Indian residential school survivors: the influences of identity centrality and past perceptions of discrimination.

    PubMed

    Bombay, Amy; Matheson, Kimberly; Anisman, Hymie

    2014-01-01

    As part of a government policy of assimilation beginning in the mid-1800s, a large proportion of Aboriginal children in Canada were forcibly removed from their homes to attend Indian Residential Schools (IRSs), a practice which continued into the 1990s. This traumatic experience had lasting negative effects not only on those who attended but also on their offspring, who were previously found to report higher levels of perceived discrimination and depressive symptoms compared with Aboriginal adults whose families were not directly affected by IRSs. In attempt to elucidate the processes involved in these previous findings, the current study (N = 399) revealed that greater levels of past perceptions of discrimination among IRS offspring, together with their greater likelihood of considering their Aboriginal heritage to be a central component of their self-concept (i.e., high identity centrality), were associated with an increased likelihood of appraising subsequent negative intergroup scenarios to be a result of discrimination and as threatening to their well-being. In turn, these altered appraisals of threat in response to the scenarios were associated with higher levels of depressive symptoms relative to non-IRS adults. The apparent reinforcing relationships between past discrimination, identity centrality, and appraisals of discrimination and threat in intergroup interactions highlight the need for interventions targeting this cycle that appears to contribute to heightened psychological distress among offspring of those who were directly victimized by collective race-based traumas.

  7. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  8. Chemosignals, hormones and mammalian reproduction.

    PubMed

    Petrulis, Aras

    2013-05-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.

  9. Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa.

    PubMed

    Bertapelle, Carla; Polese, Gianluca; Di Cosmo, Anna

    2017-03-02

    Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, reviled cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis.

  10. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring.

    PubMed

    Bispo, Kenia Pereira; de Oliveira Rodrigues, Letícia; da Silva Soares de Souza, Érica; Mucci, Daniela; Tavares do Carmo, Maria das Graças; de Albuquerque, Kelse Tibau; de Carvalho Sardinha, Fatima Lucia

    2015-01-01

    Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.

  11. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  12. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website.

  13. Development and validation of two food portion photograph books to assess dietary intake among adults and children in Central Africa.

    PubMed

    Amougou, Norbert; Cohen, Emmanuel; Mbala, Marie L; Grosdidier, Basile; Bernard, Jonathan Y; Saïd-Mohamed, Rihlat; Pasquet, Patrick

    2016-03-14

    Owing to nutritional transition in Cameroon, one in two adults is overweight and one in five is obese, and 8·1% of children are overweight and 2·1% are obese. Given this phenomenon, dietary intake assessment is needed to establish appropriate preventive nutrition-sensitive strategies. Our aim was to develop and test the validity of two food portion photograph books (FPPB) to be used as visual aids for adults and children taking part in a 24-h dietary recall. To design FPPB, interviews and focus group discussions were undertaken with women to obtain consensus on the local categorisation of foods. For each cooked and weighed food, three photographs of the average small, medium and large serving portion sizes were taken, and four intermediary portion sizes were calculated. To validate the FPPB, a sample of adults (361) and children (224) were asked, at meal times, to self-serve a food portion prepared in the household and the portion sizes were weighed; 24 h after the measurement, the same subjects were shown the appropriate FPPB and were asked to indicate the food and the portion they consumed. In adults, of the 821 portions tested, 77% were accurately estimated, whereas in children 74% of the 556 portions tested were accurately estimated. For both groups, the small- and medium-sized portions were frequently selected and accurately estimated (>70%). Our findings suggest that the adult and children's FPPB can be used in Cameroon to estimate food portion sizes, and thus nutritional intake in the frame of the 24-h dietary recall.

  14. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  15. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases

    PubMed Central

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J.; Parrish, Karen E.; Mittapalli, Rajendar K.; Carlson, Brett L.; Sarkaria, Jann N.

    2016-01-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood–brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood–brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show

  16. Adolescent and adult first time mothers' health seeking practices during pregnancy and early motherhood in Wakiso district, central Uganda

    PubMed Central

    Atuyambe, Lynn; Mirembe, Florence; Tumwesigye, Nazarius M; Annika, Johansson; Kirumira, Edward K; Faxelid, Elisabeth

    2008-01-01

    Background Maternal health services have a potentially critical role in the improvement of reproductive health. In order to get a better understanding of adolescent mothers'needs we compared health seeking practices of first time adolescent and adult mothers during pregnancy and early motherhood in Wakiso district, Uganda. Methods This was a cross-sectional study conducted between May and August, 2007 in Wakiso district. A total of 762 women (442 adolescents and 320 adult) were interviewed using a structured questionnaire. We calculated odds ratios with their 95% CI for antenatal and postnatal health care seeking, stigmatisation and violence experienced from parents comparing adolescents to adult first time mothers. STATA V.8 was used for data analysis. Results Adolescent mothers were significantly more disadvantaged in terms of health care seeking for reproductive health services and faced more challenges during pregnancy and early motherhood compared to adult mothers. Adolescent mothers were more likely to have dropped out of school due to pregnancy (OR = 3.61, 95% CI: 2.40–5.44), less likely to earn a salary (OR = 0.43, 95%CI: 0.24–0.76), and more likely to attend antenatal care visits less than four times compared to adult mothers (OR = 1.52, 95%CI: 1.12–2.07). Adolescents were also more likely to experience violence from parents (OR = 2.07, 95%CI: 1.39–3.08) and to be stigmatized by the community (CI = 1.58, 95%CI: 1.09–2.59). In early motherhood, adolescent mothers were less likely to seek for second and third vaccine doses for their infants [Polio2 (OR = 0.73, 95% CI: 0.55–0.98), Polio3 (OR = 0.70: 95% CI: 0.51–0.95), DPT2 (OR = 0.71, 95% CI: 0.53–0.96), DPT3 (OR = 0.68, 95% CI: 0.50–0.92)] compared to adult mothers. These results are compelling and call for urgent adolescent focused interventions. Conclusion Adolescents showed poorer health care seeking behaviour for themselves and their children, and experienced increased community

  17. Food insecurity is associated with social capital, perceived personal disparity, and partnership status among older and senior adults in a largely rural area of central Texas.

    PubMed

    Dean, Wesley R; Sharkey, Joseph R; Johnson, Cassandra M

    2011-01-01

    This study examined the association of compositional measures of collective social functioning, composed of community and familial social capital and perceived personal disparity, with food security among older (aged 50-59 y) and senior (aged ≥ 60 y) adult residents of the largely rural Brazos Valley in Central Texas using data from the 2006 Brazos Valley Community Health Assessment (analytic N = 1059, 74% response rate). Among older adults and seniors, 18.6% reported food insecurity (5.5% often and 13.1% sometimes), defined as running out of food and not having money to buy more. Low community social capital was reported by 22.4% of participants, and 30.8% indicated they were single, widowed, or divorced, an indicator of limited familial social capital. A robust multinomial regression model found the odds of reporting greater food insecurity increased for individuals who were women, African American, residents of a household with a low or poverty-level income, individuals who perceived themselves to be worse off than others within their community, and those who had low social capital. The odds of being food insecure decreased for older respondents, partnered respondents and persons with more education (pseudo r(2) = 0.27, p < 0.0000). Compositional level measures of collective social functioning are important associates of food insecurity among older adults and seniors, regardless of severity.

  18. Higher sika deer density is associated with higher local abundance of Haemaphysalis longicornis nymphs and adults but not larvae in central Japan.

    PubMed

    Tsukada, Hideharu; Nakamura, Yoshio; Kamio, Tsugihiko; Inokuma, Hisashi; Hanafusa, Yasuko; Matsuda, Naoko; Maruyama, Tetsuya; Ohba, Takahiro; Nagata, Koji

    2014-02-01

    Haemaphysalis longicornis (Acari: Ixodidae) is one of the most common and important arthropod disease vectors in Japan, carrying Japanese spotted fever and bovine theileriosis. The recent expansion of sika deer (Cervus nippon, Artiodactyla: Cervidae) populations, the most common wild host of H. longicornis, has also caused concern about increasing the risk of vector-borne diseases in Japan. We used generalized linear mixed model analysis to determine the relative contribution of deer density and other biological and abiotic factors on the abundance of H. longicornis ticks questing at each developmental stage. A total of 6223 H. longicornis adults, nymphs, and larvae were collected from 70 sites in three regions of central Japan. The abundance of questing adult and nymphal ticks was associated with deer density and other biotic and abiotic factors. However, the abundance of questing larvae showed no association with deer density but did show an association with other biotic and abiotic factors. These findings show that a high density of deer along with other biotic and abiotic factors is associated with increased risk of vector-borne diseases through amplified local abundance of questing nymphal and adult H. longicornis. Further, questing larvae abundance is likely regulated by environmental conditions and is likely correlated with survival potential or the distribution of other host species.

  19. The effects of neonatal castration on the subsequent behavioural response to centrally administered arginine vasopressin and the expression of V1a receptors in adult male prairie voles.

    PubMed

    Cushing, B S; Okorie, U; Young, L J

    2003-11-01

    Centrally administered arginine vasopressin induces the formation of partner preferences in male prairie voles (Microtus ochrogaster). The expression of many vasopressin-regulated behaviours is testosterone dependent. In this study, we tested the hypothesis that early exposure to gonadal steroids are necessary to establish the typical response of adult male prairie voles to exogenous vasopressin, predicting that adult males which were castrated neonatally would not form partner preferences in response to centrally administered vasopressin. We also examined the effect of neonatal castration on the expression of vasopressin (V1a) receptors. Voles were castrated on the day of birth (NEOCAST), sham-castrated on the day of birth (NEOSHAM) or castrated as adults (ADULTCAST). With the exception of one group of neonatal sham males (NEOSHAM CON), which served as a control for the effects of vasopressin, as adults, all males received a 1- micro l intracerebroventricular injection of vasopressin (100 ng) in artificial cerebrospinal fluid. In addition, 2 weeks before testing, one group of neonatally castrated males received an implant of testosterone propionate (NEOCAST + TP). Between 60 and 90 days of age, an internal cannula was placed in the lateral cerebral ventricle and, 24 h later, males were injected with vasopressin. Subsequently, after an additional 15 min, males were cohabitated with a female 'partner' for 1 h. Immediately following cohabitation, males were placed in a Y-shaped partner preference test apparatus for 3 h, in which the male had access to the 'partner' and a novel female, 'stranger.' Time spent with the partner versus the stranger was compared within and between treatments. The results were found to support our hypothesis as the NEOSHAM and ADULTCAST males formed partner preferences, spending more time with the partner, and they spent significantly more time with their partner than did NEOSHAM CON, NEOCAST or NEOCAST + TP males. Replacement of

  20. Satb2 determines miRNA expression and long-term memory in the adult central nervous system

    PubMed Central

    Jaitner, Clemens; Reddy, Chethan; Abentung, Andreas; Whittle, Nigel; Rieder, Dietmar; Delekate, Andrea; Korte, Martin; Jain, Gaurav; Fischer, Andre; Sananbenesi, Farahnaz; Cera, Isabella; Singewald, Nicolas

    2016-01-01

    SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory. DOI: http://dx.doi.org/10.7554/eLife.17361.001 PMID:27897969

  1. The Mammalian Septin Interactome

    PubMed Central

    Neubauer, Katharina; Zieger, Barbara

    2017-01-01

    Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions. PMID:28224124

  2. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  3. A Rosetta stone of mammalian genetics.

    PubMed

    Nadeau, J H; Grant, P L; Mankala, S; Reiner, A H; Richardson, J E; Eppig, J T

    1995-01-26

    The Mammalian Comparative Database provides genetic maps of mammalian species. Comparative maps are valuable aids for predicting linkages, developing animal models and studying genome organization and evolution.

  4. The truncated TrkB receptor influences mammalian sleep

    PubMed Central

    Watson, Adam J.; Henson, Kyle; Dorsey, Susan G.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin hypothesized to play an important role in mammalian sleep expression and regulation. In order to investigate the role of the truncated receptor for BDNF, TrkB.T1, in mammalian sleep, we examined sleep architecture and sleep regulation in adult mice constitutively lacking this receptor. We find that TrkB.T1 knockout mice have increased REM sleep time, reduced REM sleep latency, and reduced sleep continuity. These results demonstrate a novel role for the TrkB.T1 receptor in sleep expression and provide new insights into the relationship between BDNF, psychiatric illness, and sleep. PMID:25502751

  5. Trends in central nervous system tumor incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010

    PubMed Central

    Gittleman, Haley R; Ostrom, Quinn T; Rouse, Chaturia D; Dowling, Jacqueline A; de Blank, Peter M; Kruchko, Carol A; Elder, J Bradley; Rosenfeld, Steven S; Selman, Warren R; Sloan, Andrew E; Barnholtz-Sloan, Jill S

    2015-01-01

    BACKGROUND Time trends in cancer incidence rates (IR) are important to measure the changing burden of cancer on a population over time. The overall IR of cancer in the United States is declining. Although central nervous system tumors (CNST) are rare, they contribute disproportionately to mortality and morbidity. In this analysis, the authors examined trends in the incidence of the most common cancers and CNST between 2000 and 2010. METHODS The current analysis used data from the United States Cancer Statistics publication and the Central Brain Tumor Registry of the United States. Age-adjusted IR per 100,000 population with 95% confidence intervals and the annual percent change (APC) with 95% confidence intervals were calculated for selected common cancers and CNST overall and by age, sex, race/ethnicity, selected histologies, and malignancy status. RESULTS In adults, there were significant decreases in colon (2000-2010: APC, −3.1), breast (2000-2010: APC, −0.8), lung (2000-2010: APC, −1.1), and prostate (2000-2010: APC, −2.4) cancer as well as malignant CNST (2008-2010: APC, −3.1), but a significant increase was noted in nonmalignant CNST (2004-2010: APC, 2.7). In adolescents, there were significant increases in malignant CNST (2000-2008: APC, 1.0) and nonmalignant CNST (2004-2010: APC, 3.9). In children, there were significant increases in acute lymphocytic leukemia (2000-2010: APC, 1.0), non-Hodgkin lymphoma (2000-2010: APC, 0.6), and malignant CNST (2000-2010: APC, 0.6). CONCLUSIONS Surveillance of IR trends is an important way to measure the changing public health and economic burden of cancer. In the current study, there were significant decreases noted in the incidence of adult cancer, whereas adolescent and childhood cancer IR were either stable or increasing. Cancer 2015;121:102–112. © 2014 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. Time trends in cancer incidence rates are important to

  6. Evolution of the mammalian dentate gyrus.

    PubMed

    Hevner, Robert F

    2016-02-15

    The dentate gyrus (DG), a part of the hippocampal formation, has important functions in learning, memory, and adult neurogenesis. Compared with homologous areas in sauropsids (birds and reptiles), the mammalian DG is larger and exhibits qualitatively different phenotypes: 1) folded (C- or V-shaped) granule neuron layer, concave toward the hilus and delimited by a hippocampal fissure; 2) nonperiventricular adult neurogenesis; and 3) prolonged ontogeny, involving extensive abventricular (basal) migration and proliferation of neural stem and progenitor cells (NSPCs). Although gaps remain, available data indicate that these DG traits are present in all orders of mammals, including monotremes and marsupials. The exception is Cetacea (whales, dolphins, and porpoises), in which DG size, convolution, and adult neurogenesis have undergone evolutionary regression. Parsimony suggests that increased growth and convolution of the DG arose in stem mammals concurrently with nonperiventricular adult hippocampal neurogenesis and basal migration of NSPCs during development. These traits could all result from an evolutionary change that enhanced radial migration of NSPCs out of the periventricular zones, possibly by epithelial-mesenchymal transition, to colonize and maintain nonperiventricular proliferative niches. In turn, increased NSPC migration and clonal expansion might be a consequence of growth in the cortical hem (medial patterning center), which produces morphogens such as Wnt3a, generates Cajal-Retzius neurons, and is regulated by Lhx2. Finally, correlations between DG convolution and neocortical gyrification (or capacity for gyrification) suggest that enhanced abventricular migration and proliferation of NSPCs played a transformative role in growth and folding of neocortex as well as archicortex.

  7. Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

    PubMed

    Fyffe-Maricich, Sharyl L; Schott, Alexandra; Karl, Molly; Krasno, Janet; Miller, Robert H

    2013-11-20

    Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following episodes of demyelination such as those that occur in patients with multiple sclerosis, however, the matching of myelin thickness to axon diameter fails leaving remyelinated axons with thin myelin sheaths potentially compromising function and leaving axons vulnerable to damage. How oligodendrocytes determine the appropriate thickness of myelin for an axon of defined size during repair is unknown and identifying the signals that regulate myelin thickness has obvious therapeutic implications. Here, we show that sustained activation of extracellular-regulated kinases 1 and 2 (ERK1/2) in oligodendrocyte lineage cells results in accelerated myelin repair after injury, and is sufficient for the generation of thick myelin sheaths around remyelinated axons in the adult mouse spinal cord. Our findings suggest a model where ERK1/2 MAP kinase signaling acts as a myelin thickness rheostat that instructs oligodendrocytes to generate axon-appropriate quantities of myelin.

  8. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  9. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  10. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  11. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals

    PubMed Central

    KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304

  13. The role of cannabinoids in adult neurogenesis

    PubMed Central

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-01-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  14. A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone

    PubMed Central

    Daude, Nathalie; Lee, Inyoul; Kim, Taek-Kyun; Janus, Christopher; Glaves, John Paul; Gapeshina, Hristina; Yang, Jing; Sykes, Brian D.; Carlson, George A.; Hood, Leroy E.; Westaway, David

    2016-01-01

    Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery. PMID:26894278

  15. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993

    PubMed Central

    Lazarus, Hillard M.; Richards, Susan M.; Chopra, Raj; Litzow, Mark R.; Burnett, Alan K.; Wiernik, Peter H.; Franklin, Ian M.; Tallman, Martin S.; Cook, Lucy; Buck, Georgina; Durrant, I. Jill; Rowe, Jacob M.; Goldstone, Anthony H.

    2006-01-01

    Outcome of acute lymphoblastic leukemia (ALL) in adults with central nervous system (CNS) disease at diagnosis is unclear. We treated 1508 de novo ALL patients with 2-phase induction and then high-dose methotrexate with l-asparaginase. Patients up to 50 years old in first remission (CR1) with a matched related donor (MRD) underwent an allogeneic stem cell transplantation (SCT); the remainder in CR1 were randomized to an autologous SCT or intensive consolidation followed by maintenance chemotherapy. Philadelphia chromosome (Ph)–positive patients were offered a matched unrelated donor (MUD) allogeneic SCT. Seventy-seven of 1508 (5%) patients a median age of 29 years had CNS leukemia at presentation; 13 of the 77 (17%) had Ph-positive ALL. Sixty-nine of 77 (90%) patients attained CR1. Thirty-six patients underwent transplantation in CR1 (25 MRD, 5 MUD, and 6 autografts). Eleven of 25 patients with MRD transplantation remain alive at 21 to 102 months, 2 of 5 with MUD at 42 and 71 months, and 1 of 6 with autologous SCT at 35 months. Seven of 27 treated with consolidation/maintenance remain in CR1 56 to 137 months after diagnosis. Overall survival at 5 years was 29% in those with CNS involvement at diagnosis versus 38% (P = .03) for those without. CNS leukemia in adult ALL is uncommon at diagnosis. Adult Ph-negative ALL patients, however, can attain long-term disease-free survival using SCT as well as conventional chemotherapy. PMID:16556888

  16. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration

    PubMed Central

    Chen, William C. W.; Wang, Zhouguang; Missinato, Maria Azzurra; Park, Dae Woo; Long, Daniel Ward; Liu, Heng-Jui; Zeng, Xuemei; Yates, Nathan A.; Kim, Kang; Wang, Yadong

    2016-01-01

    Heart attack is a global health problem that leads to significant morbidity, mortality, and health care burden. Adult human hearts have very limited regenerative capability after injury. However, evolutionarily primitive species generally have higher regenerative capacity than mammals. The extracellular matrix (ECM) may contribute to this difference. Mammalian cardiac ECM may not be optimally inductive for cardiac regeneration because of the fibrotic, instead of regenerative, responses in injured adult mammalian hearts. Given the high regenerative capacity of adult zebrafish hearts, we hypothesize that decellularized zebrafish cardiac ECM (zECM) made from normal or healing hearts can induce mammalian heart regeneration. Using zebrafish and mice as representative species of lower vertebrates and mammals, we show that a single administration of zECM, particularly the healing variety, enables cardiac functional recovery and regeneration of adult mouse heart tissues after acute myocardial infarction. zECM-treated groups exhibit proliferation of the remaining cardiomyocytes and multiple cardiac precursor cell populations and reactivation of ErbB2 expression in cardiomyocytes. Furthermore, zECM exhibits pro-proliferative and chemotactic effects on human cardiac precursor cell populations in vitro. These contribute to the structural preservation and correlate with significantly higher cardiac contractile function, notably less left ventricular dilatation, and substantially more elastic myocardium in zECM-treated hearts than control animals treated with saline or decellularized adult mouse cardiac ECM. Inhibition of ErbB2 activity abrogates beneficial effects of zECM administration, indicating the possible involvement of ErbB2 signaling in zECM-mediated regeneration. This study departs from conventional focuses on mammalian ECM and introduces a new approach for cardiac tissue regeneration. PMID:28138518

  17. Development of mammalian ovary.

    PubMed

    Smith, Peter; Wilhelm, Dagmar; Rodgers, Raymond J

    2014-06-01

    Pre-natal and early post-natal ovarian development has become a field of increasing importance over recent years. The full effects of perturbations of ovarian development on adult fertility, through environmental changes or genetic anomalies, are only now being truly appreciated. Mitigation of these perturbations requires an understanding of the processes involved in the development of the ovary. Herein, we review some recent findings from mice, sheep, and cattle on the key events involved in ovarian development. We discuss the key process of germ cell migration, ovigerous cord formation, meiosis, and follicle formation and activation. We also review the key contributions of mesonephric cells to ovarian development and propose roles for these cells. Finally, we discuss polycystic ovary syndrome, premature ovarian failure, and pre-natal undernutrition; three key areas in which perturbations to ovarian development appear to have major effects on post-natal fertility.

  18. Quantitative genetic-interaction mapping in mammalian cells.

    PubMed

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-05-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ∼11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape.

  19. Enhanced Transcriptional Activity and Mitochondrial Localization of STAT3 Co-induce Axon Regrowth in the Adult Central Nervous System.

    PubMed

    Luo, Xueting; Ribeiro, Marcio; Bray, Eric R; Lee, Do-Hun; Yungher, Benjamin J; Mehta, Saloni T; Thakor, Kinjal A; Diaz, Francisca; Lee, Jae K; Moraes, Carlos T; Bixby, John L; Lemmon, Vance P; Park, Kevin K

    2016-04-12

    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor central to axon regrowth with an enigmatic ability to act in different subcellular regions independently of its transcriptional roles. However, its roles in mature CNS neurons remain unclear. Here, we show that along with nuclear translocation, STAT3 translocates to mitochondria in mature CNS neurons upon cytokine stimulation. Loss- and gain-of-function studies using knockout mice and viral expression of various STAT3 mutants demonstrate that STAT3's transcriptional function is indispensable for CNS axon regrowth, whereas mitochondrial STAT3 enhances bioenergetics and further potentiates regrowth. STAT3's localization, functions, and growth-promoting effects are regulated by mitogen-activated protein kinase kinase (MEK), an effect further enhanced by Pten deletion, leading to extensive axon regrowth in the mouse optic pathway and spinal cord. These results highlight CNS neuronal dependence on STAT3 transcriptional activity, with mitochondrial STAT3 providing ancillary roles, and illustrate a critical contribution for MEK in enhancing diverse STAT3 functions and axon regrowth.

  20. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  1. Long-term exposure to twice-ambient ozone (O3) affects carbon sink strength, allocation and stem growth in adult central European forest trees

    NASA Astrophysics Data System (ADS)

    Grams, T. E.; Matyssek, R.

    2009-12-01

    Amongst air pollutants, ground-level ozone (O3) is potentially the most detrimental to vegetation. Spreading globally, enhanced O3 levels are predicted to increase, in particular, in rapidly developing countries and, thus, O3 must now be considered in climate change scenarios and post-Kyoto policies. Here, we present an appraisal of a unique 8-year free-air O3 fumigation experiment on adult European beech (Fagus sylvatica) and Noway spruce (Picea abies), ecologically and economically important, late-succession tree species in Central Europe. For the first time, whole-plant canopies of naturally grown, 60 to 70 years old forest trees were exposed to twice-ambient O3 levels for a total of eight years. Throughout the study period, enhanced O3 uptake in the elevated O3 treatment affected net C fixation and distinctly weakened the whole-stem growth in beech. In contrast, adult spruce at the same site did not display decline in stem biomass development. Those findings corroborate species-specific sensitivities to O3 reported from previous chamber studies on juvenile beech and spruce trees. Carbon allocation of adult trees, as a mechanistical basis of growth processes, was investigated through stable isotope tracer experiments using 13C depleted CO2 at the canopy level. To this end, a novel free-air CO2 exposure system, named tubeFACE, was developed, which employed micro-porous PVC tubes hanging through the canopy of adult trees. In a 19-day 13CO2/12CO2 labeling experiment, CO2 with a δ13C of -46.9 ‰ was continuously released into the canopy to increase [CO2] by 100 µmol mol-1, resulting in a reduction in δ13C of about 8 ‰. Subsequently, C allocation to respiratory pools of various tree organs was studied. Similar to the reduced stem growth in beech, elevated O3 significantly reduced allocation of labeled C to stem respiration, whereas in spruce such a reduction was not found. Hence, our study underlines the need to understand O3 risks by species, so that modeling

  2. Nutritional status of adult patients with pulmonary tuberculosis in rural central India and its association with mortality.

    PubMed

    Bhargava, Anurag; Chatterjee, Madhuri; Jain, Yogesh; Chatterjee, Biswaroop; Kataria, Anju; Bhargava, Madhavi; Kataria, Raman; D'Souza, Ravi; Jain, Rachna; Benedetti, Andrea; Pai, Madhukar; Menzies, Dick

    2013-01-01

    Under-nutrition is a known risk factor for TB and can adversely affect treatment outcomes. However, data from India are sparse, despite the high burden of TB as well as malnutrition in India. We assessed the nutritional status at the time of diagnosis and completion of therapy, and its association with deaths during TB treatment, in a consecutive cohort of 1695 adult patients with pulmonary tuberculosis in rural India during 2004 - 2009.Multivariable logistic regression was used to obtain adjusted estimates of the association of nutritional status with deaths during treatment. At the time of diagnosis, median BMI and body weights were 16.0 kg/m(2)and 42.1 kg in men, and 15.0 kg/m(2)and 34.1 kg in women, indicating that 80% of women and 67% of men had moderate to severe under-nutrition (BMI<17.0 kg/m(2)). Fifty two percent of the patients (57% of men and 48% of women) had stunting indicating chronic under-nutrition. Half of women and one third of men remained moderately to severely underweight at the end of treatment. 60 deaths occurred in 1179 patients (5%) in whom treatment was initiated. Severe under-nutrition at diagnosis was associated with a 2 fold higher risk of death. Overall, a majority of patients had evidence of chronic severe under-nutrition at diagnosis, which persisted even after successful treatment in a significant proportion of them. These findings suggest the need for nutritional support during treatment of pulmonary TB in this rural population.

  3. Adult myeloid leukaemia, geology, and domestic exposure to radon and gamma radiation: a case control study in central Italy

    PubMed Central

    Forastiere, F.; Sperati, A.; Cherubini, G.; Miceli, M.; Biggeri, A.; Axelson, O.

    1998-01-01

    OBJECTIVES: To investigate whether indoor randon or gamma radiation might play a part in myeloid leukaemia as suggested by studies based on crude geographical or geological data for exposure assessment. METHODS: For six months randon and gamma radiation was measured with solid state nuclear track detectors and thermoluminescent dosimeters in dwellings of 44 adult male cases of acute myeloid leukaemia and 211 controls (all subjects deceased). Conditional logistic regression ORs (ORs) and 95% confidence intervals (95% CIs) were estimated for quartiles of radon and gamma radiation and for municipality and dwelling characteristics. RESULTS: The risk of leukaemia was associated with an increasing urbanisation index (p value for trend = 0.008). An increased OR was found among those living in more modern houses (OR 3.0, 95% CI 1.4 to 6.6). Confirming the findings of a previous study in the same area, geological features bore a positive association with myeloid leukemia, even by adjusting for level of urbanisation. Contrary to expectations from the previous study, however, no association appeared between myeloid leukaemia and radon and gamma radiation; for the highest quartiles of exposure, ORs were 0.56 (95% CI 0.2 to 1.4) and 0.52 (95% CI 0.2 to 1.4), respectively. Considering only subjects who had lived > or = 20 years in the monitored home and adjusting for urbanisation, there was still no effect of exposure to radiation. CONCLUSIONS: In view of the limited numbers, the results do not in general refute a possible risk of myeloid leukaemia from exposure to indoor radon or gamma radiation, but decrease the credibility of such a relation in the area studied and also of other studies suggesting an effect without monitoring indoor radiation. Some other fairly strong determinants have appeared--that is, level of urbanisation and living in modern houses-- that might need further consideration.   PMID:9614394

  4. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure.

    PubMed

    Nobre, J L; Lisboa, P C; Santos-Silva, A P; Lima, N S; Manhães, A C; Nogueira-Neto, J F; Cabanelas, A; Pazos-Moura, C C; Moura, E G; de Oliveira, E

    2011-09-01

    Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C - standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N - standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (+51%), catecholamine content (+37%), and serum 25-hydroxyvitamin D(3) (+76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (-37%) and higher in liver (+42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action.

  5. Employment of adult mammalian primary cells in toxicology: In vivo and in vitro genotoxic effects of environmentally significant N-nitrosodialkylamines in cells of the liver, lung, and kidney

    SciTech Connect

    Pool, B.L.; Brendler, S.Y.; Liegibel, U.M.; Schmezer, P. ); Tompa, A. )

    1990-01-01

    This report focuses on the use of freshly isolated primary mammalian cells from different tissues and organs of the rat for the rapid and efficient analysis of toxic and genotoxic chemicals. The cells are either treated in vitro or they are isolated from treated animals. Viability by trypan blue exclusion and DNA damage as single-strand breaks are monitored in either case. Therefore, it is possible to compare in vitro and in vivo results directly. N-nitrosamines with unique organ-specific modes in carcinogenesis were studied in vitro using hepatocytes derived from three species (rat, hamster, and pig) and in rat lung and kidney cells. The sensitive detection of all carcinogenic nitrosamines was achieved, although a pattern of cell-specific activation was not observable. The new modification of the in vivo approach allowed the sensitive detection of NDMA genotoxicity in hepatic and in extrahepatic tissues. It is important to point out that the method is an efficient tool for toxicokinetic studies with genotoxic carcinogens in vivo.

  6. Focusing on RISC assembly in mammalian cells

    SciTech Connect

    Hong Junmei; Wei Na; Chalk, Alistair; Wang Jue; Song, Yutong; Yi Fan; Qiao Renping; Sonnhammer, Erik L.L.; Wahlestedt, Claes; Liang Zicai Du, Quan

    2008-04-11

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.

  7. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  8. Adult Asylum Seekers from the Middle East Including Syria in Central Europe: What Are Their Health Care Problems?

    PubMed Central

    Pfortmueller, Carmen Andrea; Schwetlick, Miriam; Mueller, Thomas; Lehmann, Beat; Exadaktylos, Aristomenis Konstantinos

    2016-01-01

    Background Forced displacement related to persecution and violent conflict has reached a new peak in recent years. The primary aim of this study is to provide an initial overview of the acute and chronic health care problems of asylum seekers from the Middle East, with special emphasis on asylum seekers from Syria. Methods Our retrospective data analysis comprised adult patients presenting to our emergency department between 01.11.2011 and 30.06.2014 with the official resident status of an “asylum seeker” or “refugee” from the Middle East. Results In total, 880 patients were included in the study. Of these, 625 (71.0%) were male and 255 (29.0%) female. The median age was 34 (range 16–84). 222 (25.2%) of our patients were from Syria. The most common reason for presentation was surgical (381, 43.3%), followed by medical (321, 36.5%) and psychiatric (137, 15.6%). In patients with surgical presentations, trauma-related problems were most common (n = 196, 50.6%). Within the group of patients with medical presentation, acute infectious diseases were most common (n = 141, 43.9%), followed by neurological problems (n = 70, 21.8%) and gastrointestinal problems (n = 47, 14.6%). There were no differences between Syrian and non-Syrian refugees concerning surgical or medical admissions. The most common chronic disorder of unclear significance was chronic gastrointestinal problems (n = 132, 15%), followed by chronic musculoskeletal problems (n = 108, 12.3%) and chronic headaches (n = 78, 8.9%). Patients from Syria were significantly younger and more often suffered from a post-traumatic stress disorder than patients of other nationalities (p<0.0001, and p = 0.05, respectively). Conclusion Overall a remarkable number of our very young group of patients suffered from psychiatric disorders and unspecified somatic symptoms. Asylum seekers should be carefully evaluated when presenting to a medical facility and physicians should be aware of the high incidence of unspecified

  9. Appropriate Body Mass Index and Waist Circumference Cutoff for Overweight and Central Obesity among Adults in Cambodia

    PubMed Central

    An, Yom; Yi, Siyan; Fitzpatrick, Annette; Gupta, Vinay; Prak, Piseth Raingsey; Oum, Sophal; LoGerfo, James P.

    2013-01-01

    Background Body mass index (BMI) and waist circumference (WC) are used in risk assessment for the development of non-communicable diseases (NCDs) worldwide. Within a Cambodian population, this study aimed to identify an appropriate BMI and WC cutoff to capture those individuals that are overweight and have an elevated risk of vascular disease. Methodology/Principal Findings We used nationally representative cross-sectional data from the STEP survey conducted by the Department of Preventive Medicine, Ministry of Health, Cambodia in 2010. In total, 5,015 subjects between age 25 and 64 years were included in the analyses. Chi-square, Fisher’s Exact test and Student t-test, and multiple logistic regression were performed. Of total, 35.6% (n = 1,786) were men, and 64.4% (n = 3,229) were women. Mean age was 43.0 years (SD = 11.2 years) and 43.6 years (SD = 10.9 years) for men and women, respectively. Significant association of subjects with hypertension and hypercholesterolemia was found in those with BMI ≥23.0 kg/m2 and with WC >80.0 cm in both sexes. The Area Under the Curve (AUC) from Receiver Operating Characteristic curves was significantly greater in both sexes (all p-values <0.001) when BMI of 23.0 kg/m2 was used as the cutoff point for overweight compared to that using WHO BMI classification for overweight (BMI ≥25.0 kg/m2) for detecting the three cardiovascular risk factors. Similarly, AUC was also significantly higher in men (p-value <0.001) when using WC of 80.0 cm as the cutoff point for central obesity compared to that recommended by WHO (WC ≥94.0 cm in men). Conclusion Lower cutoffs for BMI and WC should be used to identify of risks of hypertension, diabetes, and hypercholesterolemia for Cambodian aged between 25 and 64 years. PMID:24205019

  10. Mammalian protein glycosylation--structure versus function.

    PubMed

    Defaus, S; Gupta, P; Andreu, D; Gutiérrez-Gallego, R

    2014-06-21

    Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays--e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc.--with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.

  11. Local neurons play key roles in the mammalian olfactory bulb.

    PubMed

    Saghatelyan, Armen; Carleton, Alan; Lagier, Samuel; de Chevigny, Antoine; Lledo, Pierre-Marie

    2003-01-01

    Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in

  12. Virological response and resistance profiles after 24 months of first-line antiretroviral treatment in adults living in Bangui, Central African Republic.

    PubMed

    Péré, Hélène; Charpentier, Charlotte; Mbelesso, Pascal; Dandy, Marius; Matta, Mathieu; Moussa, Sandrine; De Dieu Longo, Jean; Grésenguet, Gérard; Abraham, Bruno; Bélec, Laurent

    2012-04-01

    The rate of virological failure was assessed in 386 adult patients attending the Centre National Hospitalier Universitaire of Bangui, the capital city of the Central African Republic (CAR), receiving their first-line antiretroviral (ARV) drug regimen for 24 months, according to the World Health Organization (WHO) recommendations. In addition, genotypic resistance testing was carried out in 45 of 145 randomly selected patients whose plasma HIV-1 RNA load was detectable. Overall, 28.5% of ARV-treated patients were in virological failure (e.g., HIV-1 RNA >3.7 log(10) copies/ml). Twenty-four percent of patients in virological failure showed wild-type viruses, likely indicating poor adherence. Even after excluding the M184V mutation, all 76% of patients in virological failure displayed viruses harboring at least one major drug resistance mutation to nucleoside reverse transcriptase inhibitors (NRTI), non-NRTI, or protease inhibitors. Whereas the second-line regimen proposed by the 2010 WHO recommendations, including zidovudine, tenofovir, lopinavir, and atazanavir, could be effective in more than 90% of patients in virological failure with resistant viruses, the remaining patients showed genotypic profiles highly predictive of resistance to the usual WHO second-line regimen, including complex genotypic profiles diagnosed only by genotypic resistance tests in some patients. In conclusion, our observations highlight the high frequency of therapeutic failure in ARV-treated adults in this study, as well as the urgent and absolute need for improving viral load assessment in the CAR to prevent and/or, from now on, to monitor therapeutic failure.

  13. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  14. The performance of South African English first and second adult speakers on a "low linguistically loaded" central auditory processing test protocol.

    PubMed

    Saleh, Safia; Campbell, Nicole G; Wilson, Wayne J

    2003-01-01

    The lack of standardized tests of central auditory processing disorder (CAPD) in South Africa (SA) led to the formation of a SA CAPD Taskforce, and the interim development of a "low linguistically loaded" CAPD test protocol using test recordings from the 'Tonal and Speech Materials for Auditory Perceptual Assessment Disc 2.0'. This study inferentially compared the performance of 16 SA English first, and 16 SA English second, language adult speakers on this test protocol, and descriptively compared their performances to previously published American normative data. Comparisons between the SA English first and second language speakers showed a poorer right ear performance (p < .05) by the second language speakers on the two-pair dichotic digits test only. Equivalent performances (p < .05) were observed on the left ear performance on the two pair dichotic digits test, and the frequency patterns test, the duration patterns test, the low-pass filtered speech test, the 45% time compressed speech test, the speech masking level difference test, and the consonant vowel consonant (CVC) binaural fusion test. Comparisons between the SA English and the American normative data showed many large differences (up to 37.1% with respect to predicted pass criteria as calculated by mean-2SD cutoffs), with the SA English speakers performing both better and worse depending on the test involved. As a result, the American normative data was not considered appropriate for immediate use as normative data in SA. Instead, the preliminary data provided in this study was recommended as interim normative data for both SA English first and second language adult speakers, until larger scale SA normative data can be obtained.

  15. Transient expression of doublecortin during adult neurogenesis.

    PubMed

    Brown, Jason P; Couillard-Després, Sébastien; Cooper-Kuhn, Christiana M; Winkler, Jürgen; Aigner, Ludwig; Kuhn, H Georg

    2003-12-01

    During development of the central nervous system, expression of the microtubule binding protein doublecortin (DCX) is associated with migration of neuroblasts. In addition to this developmental role, expression of DCX remains high within certain areas of the adult mammalian brain. These areas, mainly the dentate gyrus and the lateral ventricle wall in conjunction with the rostral migratory stream and olfactory bulb, retain the capacity to generate new neurons into adulthood. Adult neurogenesis is typically detected by incorporation of bromodeoxyuridine (BrdU) into dividing cells and colabeling of BrdU-positive cells with markers for mature neurons. To elucidate whether DCX could act as an alternative indicator for adult neurogenesis, we investigated the temporal expression pattern of DCX in neurogenic regions of the adult brain. Analysis of newly generated cells showed that DCX is transiently expressed in proliferating progenitor cells and newly generated neuroblasts. As the newly generated cells began expressing mature neuronal markers, DCX immunoreactivity decreased sharply below the level of detection and remained undetectable thereafter. The transient expression pattern of DCX in neuronal committed progenitor cells/neuroblasts indicates that DCX could be developed into a suitable marker for adult neurogenesis and may provide an alternative to BrdU labeling. This assumption is further supported by our observation that the number of DCX-expressing cells in the dentate gyrus was decreased with age according to the reduction of neurogenesis in the aging dentate gyrus previously reported.

  16. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-02-07

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.

  17. Effect of methylprednisolone on mammalian neuronal networks in vitro.

    PubMed

    Wittstock, Matthias; Rommer, Paulus S; Schiffmann, Florian; Jügelt, Konstantin; Stüwe, Simone; Benecke, Reiner; Schiffmann, Dietmar; Zettl, Uwe K

    2015-01-01

    Glucocorticosteroids (GCS) are widely used for the treatment of neurological diseases, e.g. multiple sclerosis. High levels of GCS are toxic to the central nervous system and can produce adverse effects. The effect of methylprednisolone (MP) on mammalian neuronal networks was studied in vitro. We demonstrate a dose-dependent excitatory effect of MP on cultured neuronal networks, followed by a shut-down of electrical activity using the microelectrode array technique.

  18. In Vivo Quantum Dot Labeling of Mammalian Stem and Progenitor Cells

    PubMed Central

    Slotkin, Jonathan R.; Chakrabarti, Lina; Dai, Hai Ning; Carney, Rosalind S.E.; Hirata, Tsutomu; Bregman, Barbara S.; Gallicano, G. Ian; Corbin, Joshua G.; Haydar, Tarik F.

    2009-01-01

    Fluorescent semiconductor nanocrystal quantum dots (QDs) are a class of multifunctional inorganic fluorophores that hold great promise for clinical applications and biomedical research. Because no methods currently exist for directed QD-labeling of mammalian cells in the nervous system in vivo, we developed novel in utero electroporation and ultrasound-guided in vivo delivery techniques to efficiently and directly label neural stem and progenitor cells (NSPCs) of the developing mammalian central nervous system with QDs. Our initial safety and proof of concept studies of one and two-cell QD-labeled mouse embryos reveal that QDs are compatible with early mammalian embryonic development. Our in vivo experiments further show that in utero labeled NSPCs continue to develop in an apparent normal manner. These studies reveal that QDs can be effectively used to label mammalian NSPCs in vivo and will be useful for studies of in vivo fate mapping, cellular migration, and NSPC differentiation during mammalian development. PMID:17626285

  19. Allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia who had central nervous system involvement: a study from the Adult ALL Working Group of the Japan Society for Hematopoietic Cell Transplantation.

    PubMed

    Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji

    2017-02-14

    The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.

  20. Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome.

    PubMed

    Parada, Carolina; Gato, Angel; Bueno, David

    2005-01-01

    During early stages of embryo development, the brain cavity is filled with Embryonic Cerebro-Spinal Fluid, which has an essential role in the survival, proliferation and neurogenesis of the neuroectodermal stem cells. We identified and analyzed the proteome of Embryonic Cerebro-Spinal Fluid from rat embryos (Rattus norvegicus), which includes proteins involved in the regulation of Central Nervous System development. The comparison between mammalian and avian Embryonic Cerebro-Spinal Fluid proteomes reveals great similarity, but also greater complexity in some protein groups. The pattern of apolipoproteins and enzymes in CSF is more complex in the mammals than in birds. This difference may underlie the greater neural complexity and synaptic plasticity found in mammals. Fourteen Embryonic Cerebro-Spinal Fluid gene products were previously identified in adult human Cerebro-Spinal Fluid proteome, and interestingly they are altered in patients with neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis may contribute to our understanding of Central Nervous System development and evolution, and these human diseases.

  1. A possible role for the immune system in adult neurogenesis: new insights from an invertebrate model.

    PubMed

    Harzsch, Steffen; von Bohlen Und Halbach, Oliver

    2016-04-01

    Persistent neurogenesis in the adult brain of both vertebrates and invertebrates was previously considered to be driven by self-renewing neuronal stem cells of ectodermal origin. Recent findings in an invertebrate model challenge this view and instead provide evidence for a recruitment of neuronal precursors from a non-neuronal source. In the brain of adult crayfish, a neurogenic niche was identified that contributes progeny to the adult central olfactory pathway. The niche may function in attracting cells from the hemolymph and transforming them into cells with a neuronal fate. This finding implies that the first-generation neuronal precursors located in the crayfish neurogenic niche are not self-renewing. Evidence is summarized in support of a critical re-evaluation of long-term self-renewal of mammalian neuronal stem cells. Latest findings suggest that a tight link between the immune system and the system driving adult neurogenesis may not only exist in the crayfish but also in mammals.

  2. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  3. Area and mammalian elevational diversity.

    PubMed

    McCain, Christy M

    2007-01-01

    Elevational gradients hold enormous potential for understanding general properties of biodiversity. Like latitudinal gradients, the hypotheses for diversity patterns can be grouped into historical explanations, climatic drivers, and spatial hypotheses. The spatial hypotheses include the species-area effect and spatial constraint (mid-domain effect null models). I test these two spatial hypotheses using regional diversity patterns for mammals (non-volant small mammals and bats) along 34 elevational gradients spanning 24.4 degrees S-40.4 degrees N latitude. There was high variability in the fit to the species-area hypothesis and the mid-domain effect. Both hypotheses can be eliminated as primary drivers of elevational diversity. Area and spatial constraint both represent sources of error rather than mechanisms underlying these mammalian diversity patterns. Similar results are expected for other vertebrate taxa, plants, and invertebrates since they show comparable distributions of elevational diversity patterns to mammalian patterns.

  4. Movement Symmetries and the Mammalian Vestibular System

    NASA Astrophysics Data System (ADS)

    McCollum, Gin; Boyle, Richard

    2000-03-01

    Unity of movement requires vertebrates to have an ability to symmetrize along the midline. For example, human erect stance involves symmetry with respect to gravity. The mammalian vestibular system provides a mechanism for maintaining symmetries, which is also open to influence and adaptation by the rest of the organism. The vestibular system includes the inner ear endorgans and central nuclei, along with projections to oculomotor, cerebellar, thalamic, and spinal motor centers. The vestibular endorgans - the semicircular canals and the otoliths - use sensory hairs to register inertia. The vestibular endorgans are right-left symmetric and the semicircular canals form an approximately orthogonal coordinate system for angular motion. Primary afferent axons project from the endorgans to the vestibular nuclei (and a few other places). The vestibular nuclei integrate vestibular, visual, and somatosensory signals, along with a proposed copy of the voluntary motor command and signals from other central structures. The relationship between the canals and the otoliths gives rise to symmetries among neurons, in the organization among the several vestibular nuclei, and in the projections from the vestibular nuclei. These symmetries organize the space of body movements so that functional relationships are maintained in spite of the many free variables of body movement. They also provide a foundation for adaptive reinterpretation of the relationship between canal and otolith signals, for example in freefall.

  5. High-Sensitivity C-Reactive Protein is Related to Central Obesity and the Number of Metabolic Syndrome Components in Jamaican Young Adults

    PubMed Central

    Bennett, Nadia R.; Ferguson, Trevor S.; Bennett, Franklyn I.; Tulloch-Reid, Marshall K.; Younger-Coleman, Novie O. M.; Jackson, Maria D.; Samms-Vaughan, Maureen E.; Wilks, Rainford J.

    2014-01-01

    Background: High-sensitivity C-reactive protein (hsCRP) has been shown to predict cardiovascular disease (CVD) endpoints and is associated with CVD risk factors and the metabolic syndrome. This study evaluated the association between hsCRP and CVD risk factors among Afro-Caribbean young adults in Jamaica. Methods: We conducted a cross-sectional analysis of data from the Jamaica 1986 Birth Cohort Study. Data were collected between 2005 and 2007 when participants were 18–20 years old. All participants completed an interviewer administered questionnaire and had anthropometric and blood pressure (BP) measurements performed. Fasting blood samples were collected for measurement of glucose, lipids, and hsCRP. Logistic regression models were used to identify factors independently associated with high hsCRP. Results: Analyses included 342 men and 404 women with mean age 18.8 ± 0.6 years. Approximately 15% of the participants had high risk hsCRP (>3 mg/L), with a higher prevalence among women (20 vs. 9%; p < 0.001). The prevalence of elevated hsCRP increased with body mass index category, high waist circumference (WC), high triglycerides, low high density lipoprotein, and lower parental education among women, but only for high WC and lower parental education among men. In logistic regression models controlling for sex and parental education, high WC was associated with significantly higher odds of high hsCRP (OR 7.8, 95% CI 4.8–12.9, p < 0.001). In a similar model, high hsCRP was also associated with the number of metabolic syndrome components. Compared to participants with no metabolic syndrome component, having one metabolic syndrome component was associated with a twofold higher odds of high hsCRP (OR 2.2, 95% CI 1.3–3.8, p = 0.005), while having three components was associated with a 14-fold higher odds of high hsCRP (OR 13.5, 95% CI 2.4–76.0, p < 0.001). Conclusion: High hsCRP is common among Jamaican young adults and is strongly

  6. Central corneal thickness, intraocular pressure, and degree of myopia in an adult myopic population aged 20 to 40 years in southeast Spain: determination and relationships

    PubMed Central

    Garcia-Medina, Manuel; Garcia-Medina, Jose Javier; Garrido-Fernandez, Pablo; Galvan-Espinosa, Jose; Martin-Molina, Jesus; Garcia-Maturana, Carlos; Perez-Pardo, Sergio; Pinazo-Duran, Maria Dolores

    2011-01-01

    Objective: To determine the values of, and study the relationships among, central corneal thickness (CCT), intraocular pressure (IOP), and degree of myopia (DM) in an adult myopic population aged 20 to 40 years in Almeria (southeast Spain). To our knowledge this is first study of this kind in this region. Methods: An observational, descriptive, cross-sectional study was done in which a sample of 310 myopic patients (620 eyes) aged 20 to 40 years was selected by gender- and age-stratified sampling, which was proportionally fixed to the size of the population strata for which a 20% prevalence of myopia, 5% epsilon, and a 95% confidence interval were hypothesized. We studied IOP, CCT, and DM and their relationships by calculating the mean, standard deviation, 95% confidence interval for the mean, median, Fisher’s asymmetry coefficient, range (maximum, minimum), and the Brown-Forsythe’s robust test for each variable (IOP, CCT, and DM). Results: In the adult myopic population of Almeria aged 20 to 40 years (mean of 29.8), the mean overall CCT was 550.12 μm. The corneas of men were thicker than those of women (P = 0.014). CCT was stable as no significant differences were seen in the 20- to 40-year-old subjects’ CCT values. The mean overall IOP was 13.60 mmHg. Men had a higher IOP than women (P = 0.002). Subjects over 30 years (13.83) had a higher IOP than those under 30 (13.38) (P = 0.04). The mean overall DM was −4.18 diopters. Men had less myopia than women (P < 0.001). Myopia was stable in the 20- to 40-year-old study population (P = 0.089). A linear relationship was found between CCT and IOP (R2 = 0.152, P ≤ 0.001). CCT influenced the IOP value by 15.2%. However no linear relationship between DM and IOP, or between CCT and DM, was found. Conclusions: CCT was found to be similar to that reported in other studies in different populations. IOP tends to increase after the age of 30 and is not accounted for by alterations in CCT values. PMID:21468330

  7. Evaluation of the repeated-dose liver micronucleus assay using N-nitrosomorpholine in young adult rats: report on collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study (MMS) Group.

    PubMed

    Hayashi, Aya; Kosaka, Mizuki; Kimura, Aoi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    The present study was conducted to evaluate the suitability of a repeated-dose liver micronucleus (LMN) assay in young adult rats as a collaborative study by the Mammalian mutagenicity study (MMS) group. All procedures were performed in accordance with the standard protocols of the MMS Group. Six-week-old male Crl:CD(SD) rats (5 animals/group) received oral doses of the hepatocarcinogen N-nitrosomorpholine (NMOR) at 0 (control), 5, 10, and 30mg/kg/day (10mL/kg) for 14 days. Control animals received vehicle (water). Hepatocytes were collected from the liver 24h after the last dose, and the number of micronucleated hepatocytes (MNHEPs) was determined by microscopy. The number of micronucleated immature erythrocytes (MNIMEs) in the femoral bone marrow was also determined. The liver was examined using histopathologic methods after formalin fixation. The results showed statistically significant and dose-dependent increases in the number of MNHEPs in the liver at doses of 10mg/kg and greater when compared with the vehicle control. However, no significant increase was noted in the number of MNIMEs in the bone marrow at doses of up to 30mg/kg. Histopathology of the liver revealed hypertrophy and single cell necrosis of hepatocytes at doses of 5mg/kg and above. These results showed that the induction of micronuclei by NMOR was detected by the repeated-dose LMN assay, but not by the repeated-dose bone marrow micronucleus assay.

  8. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  9. When herbivores eat predators: predatory insects effectively avoid incidental ingestion by mammalian herbivores.

    PubMed

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60-80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions.

  10. When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores

    PubMed Central

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60–80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions. PMID:23424674

  11. GLUTs and mammalian sperm metabolism.

    PubMed

    Bucci, Diego; Rodriguez-Gil, Juan Enrique; Vallorani, Claudia; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2011-01-01

    Mammalian cells use glucides as a substrate that can be catabolized through glycolitic pathways or oxidative phosphorylation, used as a source of reducing potential, or used for anabolic aims. An important role in supplying cells with energy is played by different membrane proteins that can actively (sodium-dependent glucose transporters) or passively (glucose transporters; GLUT) transport hexoses through the lipidic bilayer. In particular, GLUTs are a family of 13 proteins that facilitate the transport of sugars and have a peculiar distribution in different tissues as well as a particular affinity for substrates. These proteins are also present in mature sperm cells, which, in fact, need carriers for uptake energetic sources that are important for maintaining cell basic activity as well as specific functions, such as motility and fertilization ability. Likewise, several GLUTs have been studied in various mammalian species (man, bull, rat, mouse, boar, dog, stallion, and donkey) to point out both their actual presence or absence and their localization on plasma membrane. The aim of this work is to give an overall picture of the studies available on GLUTs in mammalian spermatozoa at this moment, pointing out the species peculiarity, the possible role of these proteins, and the potential future research on this item.

  12. Identification of mammalian orthologs using local synteny

    PubMed Central

    2009-01-01

    Background Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals. Results We test a simple method for the measurement and utilization of gene order (local synteny) in the identification of mammalian orthologs by investigating the agreement between coding sequence based orthology (Inparanoid) and local synteny based orthology. In the 5 mammalian genomes studied, 93% of the sampled inter-species pairs were found to be concordant between the two orthology methods, illustrating that local synteny is a robust substitute to coding sequence for identifying orthologs. However, 7% of pairs were found to be discordant between local synteny and Inparanoid. These cases of discordance result from evolutionary events including retrotransposition and genome rearrangements. Conclusions By analyzing cases of discordance between local synteny and Inparanoid we show that local synteny can distinguish between true orthologs and recent retrogenes, can resolve ambiguous many-to-many orthology relationships into one-to-one ortholog pairs, and might be used to identify cases of non-orthologous gene

  13. Cloning of the GABAB Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey

    PubMed Central

    Romaus-Sanjurjo, Daniel; Fernández-López, Blanca; Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2016-01-01

    In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes. PMID:28008311

  14. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  15. Functional characterization of mammalian Wntless homolog in mammalian system.

    PubMed

    Wang, Li-Ting; Wang, Shih-Jong; Hsu, Shih-Hsien

    2012-07-01

    Wntless (GPR177) protein is a newly identified regulator of Wnt signals in Drosophila, but its cellular function in mammals is still unclear. In this study, we explored the expression pattern and potential cellular function of Wntless in mammalian cells. Wntless mRNA was expressed in many mouse tissues, including the spleen, lung, kidney, thymus, and stomach, and lower levels of expression were detected in the mouse brain and testis. Expression of Wntless protein analyzed by Western blot and immunohistochemical staining was only detected in the submucosa, muscle, ganglia, and nerve cells of murine large intestines. Both immunofluorescence staining and subcellular fraction extraction analysis revealed that endogenous Wntless protein was expressed predominantly in the cytoplasmic organelles with a morphologically dot-shaped distribution. Furthermore, overexpression of Wntless could be corrected by and may activate the nuclear factor-κB (NF-κB) signaling pathway in cancer (HeLa) cells. These results suggest that Wntless plays a role in signaling regulation during the formation of cancer in addition to its role as a retromer protein in mammalian systems.

  16. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  17. A mammalian acetate switch regulates stress erythropoiesis

    PubMed Central

    Xu, Min; Nagati, Jason S.; Xie, Jian; Li, Jiwen; Walters, Holly; Moon, Young-Ah; Gerard, Robert D.; Huang, Chou-Long; Comerford, Sarah A.; Hammer, Robert E.; Horton, Jay D.; Chen, Rui; Garcia, Joseph A.

    2014-01-01

    Endocrine erythropoietin (Epo), which is synthesized in the kidney or liver of adult mammals, controls erythrocyte production and is regulated by the stress-responsive transcription factor Hypoxia Inducible Factor 2 (HIF-2). We previously reported that the lysine acetyltransferase Cbp is required for HIF-2α acetylation and efficient HIF-2 dependent Epo induction during hypoxia. We now show these processes require acetate-dependent acetyl CoA synthetase 2 (Acss2). In Hep3B hepatoma cells and in Epo-generating organs of hypoxic or acutely anemic mice, acetate levels increase and Acss2 is required for HIF-2α acetylation, Cbp/HIF-2α complex formation and recruitment to the Epo enhancer, and efficient Epo induction. In acutely anemic mice, acetate supplementation augments stress erythropoiesis in an Acss2-dependent manner. In acquired and genetic chronic anemia mouse models, acetate supplementation also increases Epo expression and resting hematocrits. Thus, a mammalian stress-responsive acetate switch controls HIF-2 signaling and Epo induction during pathophysiological states marked by tissue hypoxia. PMID:25108527

  18. Adult Education in Greece

    ERIC Educational Resources Information Center

    Kokkos, Alexios

    2008-01-01

    The central aim of this article is to analyse the current situation of adult education in Greece. The article focuses on the following points: (a) the degree of participation in programmes of continuing professional training and general adult education courses, (b) the quality and the outcomes of the adult education provision in Greece, and (c)…

  19. Social epidemiology of excess weight and central adiposity in older Indians: analysis of Study on global AGEing and adult health (SAGE)

    PubMed Central

    Samal, Sudipta; Panigrahi, Pinaki; Dutta, Ambarish

    2015-01-01

    Objectives We aimed to estimate the prevalence of overweight and obesity, represented by extra body weight and abdominal circumference, among older Indians; and to characterise the social pattern of obesity and measure the magnitude of hypertension attributable to it. Setting A nationally representative sample of older Indians was selected from 6 Indian states, including Rajasthan, Uttar Pradesh, West Bengal, Assam, Maharashtra and Karnataka, as a part of the multicountry Study on global AGEing and adult health (SAGE). Participants Indians aged 50 years or more (n=7273) were included in the first wave of the SAGE (2010), which we used in our study. Primary and secondary outcome measures The primary outcome measures included excess weight (EW), defined by body mass index (BMI) >25 kg/m2, and central adiposity (CA), defined by waist circumference >90 cm for men and >80 cm for women. The secondary outcome included hypertension, defined by systolic blood pressure >139 or diastolic blood pressure >79 mm Hg, or by those receiving antihypertensive medications. Results 14% of older Indians possessed EW, whereas 35% possessed CA; 50.9% of the wealthier third and 27.7% of the poorer two-thirds have CA; the proportions being 69.1% and 46.2%, respectively, in older women. Mostly wealth (adjusted OR for CA: 4.36 (3.23 to 5.95) and EW: 4.39 (3.49 to 5.53)), but also urban residence, privileged caste, higher education, white-collared occupation and female gender, were important determinants. One of 17 older Indians overall and 1 of 18 in the poorer 70% suffered from CA-driven hypertension, independent of BMI. Conclusions The problem of CA and its allied diseases is already substantial and expected to rise across all socioeconomic strata of older Indians, though currently, CA affects the privileged more than the underprivileged, in later life. Population-based promotion of appropriate lifestyles, with special emphasis on women, is required to counteract prosperity

  20. Ceramide signaling in mammalian epidermis.

    PubMed

    Uchida, Yoshikazu

    2014-03-01

    Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

  1. Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) - Mammalian Mutagenicity Study Group (MMS).

    PubMed

    Hamada, Shuichi; Ohyama, Wakako; Takashima, Rie; Shimada, Keisuke; Matsumoto, Kazumi; Kawakami, Satoru; Uno, Fuyumi; Sui, Hajime; Shimada, Yasushi; Imamura, Tadashi; Matsumura, Shoji; Sanada, Hisakazu; Inoue, Kenji; Muto, Shigeharu; Ogawa, Izumi; Hayashi, Aya; Takayanagi, Tomomi; Ogiwara, Yosuke; Maeda, Akihisa; Okada, Emiko; Terashima, Yukari; Takasawa, Hironao; Narumi, Kazunori; Wako, Yumi; Kawasako, Kazufumi; Sano, Masaki; Ohashi, Nobuyuki; Morita, Takeshi; Kojima, Hajime; Honma, Masamitsu; Hayashi, Makoto

    2015-03-01

    The repeated-dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect hepatocarcinogens. We conducted a collaborative study to assess the performance of this assay and to evaluate the possibility of integrating it into general toxicological studies. Twenty-four testing laboratories belonging to the Mammalian Mutagenicity Study Group, a subgroup of the Japanese Environmental Mutagen Society, participated in this trial. Twenty-two model chemicals, including some hepatocarcinogens, were tested in 14- and/or 28-day RDLMN assays. As a result, 14 out of the 16 hepatocarcinogens were positive, including 9 genotoxic hepatocarcinogens, which were reported negative in the bone marrow/peripheral blood micronucleus (MN) assay by a single treatment. These outcomes show the high sensitivity of the RDLMN assay to hepatocarcinogens. Regarding the specificity, 4 out of the 6 non-liver targeted genotoxic carcinogens gave negative responses. This shows the high organ specificity of the RDLMN assay. In addition to the RDLMN assay, we simultaneously conducted gastrointestinal tract MN assays using 6 of the above carcinogens as an optional trial of the collaborative study. The MN assay using the glandular stomach, which is the first contact site of the test chemical when administered by oral gavage, was able to detect chromosomal aberrations with 3 test chemicals including a stomach-targeted carcinogen. The treatment regime was the 14- and/or 28-day repeated-dose, and the regime is sufficiently promising to incorporate these methods into repeated-dose toxicological studies. The outcomes of our collaborative study indicated that the new techniques to detect chromosomal aberrations in vivo in several tissues worked successfully.

  2. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  3. Timing of circadian genes in mammalian tissues

    PubMed Central

    Korenčič, Anja; Košir, Rok; Bordyugov, Grigory; Lehmann, Robert; Rozman, Damjana; Herzel, Hanspeter

    2014-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology. The cell-autonomous clock is governed by an interlocked network of transcriptional feedback loops. Hundreds of clock-controlled genes (CCGs) regulate tissue specific functions. Transcriptome studies reveal that different organs (e.g. liver, heart, adrenal gland) feature substantially varying sets of CCGs with different peak phase distributions. To study the phase variability of CCGs in mammalian peripheral tissues, we develop a core clock model for mouse liver and adrenal gland based on expression profiles and known cis-regulatory sites. ‘Modulation factors’ associated with E-boxes, ROR-elements, and D-boxes can explain variable rhythms of CCGs, which is demonstrated for differential regulation of cytochromes P450 and 12 h harmonics. By varying model parameters we explore how tissue-specific peak phase distributions can be generated. The central role of E-boxes and ROR-elements is confirmed by analysing ChIP-seq data of BMAL1 and REV-ERB transcription factors. PMID:25048020

  4. Late Quaternary mammalian zoogeography of eastern Washington

    NASA Astrophysics Data System (ADS)

    Lyman, R. Lee; Livingston, Stephanie D.

    1983-11-01

    The late Quaternary mammalian zoogeographic history of eastern Washington as revealed by archaeological and paleontological research conforms to a set of past environmental conditions inferred from botanical data. During the relatively cool and moist late Pleistocene and early Holocene, Cervus cf. elaphus, Ovis canadensis, Vulpes vulpes, Martes americana, Alopex lagopus, and perhaps Rangifer sp., taxa with ecological preferences for mesic steppe habitats, were present in the now xeric Columbia Basin. As the climate became progressively warmer and drier during the late Pleistocene and early Holocene, Antilocapra americana, Onychomys leucogaster, Spermophilus townsendii, and Neotoma cinerea, taxa with ecological preferences for xeric steppe habitats, appear in the Columbia Basin. Bison sp. and Taxidea taxus may have been present in eastern Washington for the last 20,000 yr. Middle and late Holocene records for Oreamnos americanus, Spermophilus columbianus, S. townsendii, Lagurus curtatus, and Urocyon cinereoargenteus in central eastern Washington suggest fluctuations in the ranges of these taxa that conform to a middle Holocene period of less effective precipitation and a ca. 3500-yr-old period of more effective precipitation before essentially modern environmental conditions prevailed.

  5. Renewed hope for a vaccine against the intestinal adult Taenia solium.

    PubMed

    Sciutto, Edda; Rosas, Gabriela; Cruz-Revilla, Carmen; Toledo, Andrea; Cervantes, Jacquelynne; Hernández, Marisela; Hernándezt, Beatríz; Goldbaum, Fernando A; de Aluja, Aline S; Fragoso, Gladis; Larralde, Carlos

    2007-08-01

    Review of experimental and observational evidence about various cestode infections of mammalian hosts revives hope for the development of an effective vaccine against adult intestinal tapeworms, the central protagonists in their transmission dynamics. As for Taenia solium, there are abundant immunological data regarding cysticercosis in humans and pigs, but information about human taeniasis is scarce. A single publication reporting protection against T. solium taeniasis by experimental primo infection and by vaccination of an experimental foster host, the immunocompetent female hamster, kindles the hope of a vaccine against the tapeworm to be used in humans, its only natural definitive host.

  6. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  7. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  8. Mammalian skin evolution: a reevaluation.

    PubMed

    Maderson, P F A

    2003-06-01

    A 1972 model for the evolutionary origin of hair suggested a primary mechanoreceptor role improving behavioral thermoregulation contributed to the success of late Paleozoic mammal-like reptiles. An insulatory role appeared secondarily subsequent to protohair multiplication. That model is updated in light of new data on (a) palaeoecology of mammalian ancestors; (b) involvement of HRPs in keratinization; (c) lipogenic lamellar bodies that form the barrier to cutaneous water loss; and (d) growth factors involved in hair follicle embryogenesis and turnover. It is now proposed that multiplication of sensory protohairs caused by mutations in patterning genes initially protected the delicate barrier tissues and eventually produced the minimal morphology necessary for an insulatory pelage. The latter permitted Mesozoic mammals to occupy the nocturnal niche 'in the shadow of dinosaurs'. When the giant reptiles became extinct, mammals underwent rapid radiation and reemerged as the dominant terrestrial vertebrates.

  9. Mammalian glutaminase isozymes in brain.

    PubMed

    Márquez, Javier; Cardona, Carolina; Campos-Sandoval, José A; Peñalver, Ana; Tosina, Marta; Matés, José M; Martín-Rufián, Mercedes

    2013-06-01

    Glutamine/glutamate homeostasis must be exquisitely regulated in mammalian brain and glutaminase (GA, E.C. 3.5.1.2) is one of the main enzymes involved. The products of GA reaction, glutamate and ammonia, are essential metabolites for energy and biosynthetic purposes but they are also hazardous compounds at concentrations beyond their normal physiological thresholds. The classical pattern of GA expression in mammals has been recently challenged by the discovery of novel transcript variants and protein isoforms. Furthermore, the interactome of brain GA is also starting to be uncovered adding a new level of regulatory complexity. GA may traffic in brain and unexpected locations, like cytosol and nucleus, have been found for GA isoforms. Finally, the expression of GA in glial cells has been reported and its potential implications in ammonia homeostasis are discussed.

  10. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  11. Interaction theory of mammalian mitochondria.

    PubMed

    Nakada, K; Inoue, K; Hayashi, J

    2001-11-09

    We generated mice with deletion mutant mtDNA by its introduction from somatic cells into mouse zygotes. Expressions of disease phenotypes are limited to tissues expressing mitochondrial dysfunction. Considering that all these mice share the same nuclear background, these observations suggest that accumulation of the mutant mtDNA and resultant expressions of mitochondrial dysfunction are responsible for expression of disease phenotypes. On the other hand, mitochondrial dysfunction and expression of clinical abnormalities were not observed until the mutant mtDNA accumulated predominantly. This protection is due to the presence of extensive and continuous interaction between exogenous mitochondria from cybrids and recipient mitochondria from embryos. Thus, we would like to propose a new hypothesis on mitochondrial biogenesis, interaction theory of mitochondria: mammalian mitochondria exchange genetic contents, and thus lost the individuality and function as a single dynamic cellular unit.

  12. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  13. Genome regulation in mammalian cells.

    PubMed

    Puck, T T; Krystosek, A; Chan, D C

    1990-05-01

    A theory is presented proposing that genetic regulation in mammalian cells is at least a two-tiered effect; that one level of regulation involves the transition between gene exposure and sequestration; that normal differentiation requires a different spectrum of genes to be exposed in each separate state of differentiation; that the fiber systems of the cell cytoskeleton and the nuclear matrix together control the degree of gene exposure; that specific phosphorylation of these elements causes them to assume a different organizational network and to impose a different pattern of sequestration and exposure on the elements of the genome; that the varied gene phosphorylation mechanisms in the cell are integrated in this function; that attachment of this network system to specific parts of the chromosomes brings about sequestration or exposure of the genes in their neighborhood in a fashion similar to that observed when microtubule elements attach through the kinetochore to the centromeric DNA; that one function of repetitive sequences is to serve as elements for the final attachment of this fibrous network to the specific chromosomal loci; and that at least an important part of the calcium manifestation as a metabolic trigger of different differentiation states involves its acting as a binding agent to centers of electronegativity, in particular proteins and especially phosphorylated groups, so as to change the conformation of the fiber network that ultimately controls gene exposure in the mammalian cell. It would appear essential to determine what abnormal gene exposures and sequestrations are characteristic of each type of cancer; which agonists, if any, will bring about reverse transformation; and whether these considerations can be used in therapy.

  14. The mammalian Cretaceous cochlear revolution.

    PubMed

    Manley, Geoffrey A

    2016-12-19

    The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture.

  15. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    PubMed Central

    Merienne, Nicolas; Douce, Juliette Le; Faivre, Emilie; Déglon, Nicole; Bonvento, Gilles

    2013-01-01

    Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain. PMID:23847471

  16. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  17. Functional Zonation of the Adult Mammalian Adrenal Cortex

    PubMed Central

    Vinson, Gavin P.

    2016-01-01

    The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts. PMID:27378832

  18. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: The Cancer and Leukemia Group B experience

    PubMed Central

    Mrózek, Krzysztof; Carroll, Andrew J.; Maharry, Kati; Rao, Kathleen W.; Patil, Shivanand R.; Pettenati, Mark J.; Watson, Michael S.; Arthur, Diane C.; Tantravahi, Ramana; Heerema, Nyla A.; Koduru, Prasad R. K.; Block, AnneMarie W.; Qumsiyeh, Mazin B.; Edwards, Colin G.; Sterling, Lisa J.; Holland, Kelsi B.; Bloomfield, Clara D.

    2009-01-01

    The Cancer and Leukemia Group B has performed central review of karyotypes submitted by institutional cytogenetics laboratories from patients with acute myeloid (AML) and acute lymphoblastic (ALL) leukemia since 1986. We assessed the role of central karyotype review in maintaining accurate, high quality cytogenetic data for clinical and translational studies using two criteria: the proportion of karyotypes rejected (i.e. inadequate), and, among accepted (i.e. adequate) cases, the proportion of karyotypes whose interpretation was changed on central karyotype review. We compared the first four years during which central karyotype review was performed with a recent four-year period and found that the proportion of rejected samples decreased significantly for both AML and ALL. However, during the latter period, central karyotype reviews still found 8% of AML and 16% of ALL karyotypes inadequate. Among adequate cases, the karyotype was revised in 26% of both AML and ALL samples. Some revisions resulted in changing the patients’ assignment to particular World Health Organization diagnostic categories and/or moving patients from one prognostic group to another. Overall, when both data on rejection rates and data on karyotype revisions made in accepted cases were considered together, 32% of AML and 38% of ALL samples submitted were either rejected or revised on central karyotype review during the recent 4-year period. These data underscore the necessity of continued central karyotype review in multi-institutional cooperative group studies. PMID:18636143

  19. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  20. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  1. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  2. Experience-dependent structural synaptic plasticity in the mammalian brain.

    PubMed

    Holtmaat, Anthony; Svoboda, Karel

    2009-09-01

    Synaptic plasticity in adult neural circuits may involve the strengthening or weakening of existing synapses as well as structural plasticity, including synapse formation and elimination. Indeed, long-term in vivo imaging studies are beginning to reveal the structural dynamics of neocortical neurons in the normal and injured adult brain. Although the overall cell-specific morphology of axons and dendrites, as well as of a subpopulation of small synaptic structures, are remarkably stable, there is increasing evidence that experience-dependent plasticity of specific circuits in the somatosensory and visual cortex involves cell type-specific structural plasticity: some boutons and dendritic spines appear and disappear, accompanied by synapse formation and elimination, respectively. This Review focuses on recent evidence for such structural forms of synaptic plasticity in the mammalian cortex and outlines open questions.

  3. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  4. Fine-tuning the central nervous system: microglial modelling of cells and synapses.

    PubMed

    Xavier, Anna L; Menezes, João R L; Goldman, Steven A; Nedergaard, Maiken

    2014-10-19

    Microglia constitute as much as 10-15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells.

  5. Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon

    PubMed Central

    Mulder, Jan; Spence, Lauren; Tortoriello, Giuseppe; DiNieri, Jennifer A.; Uhlén, Mathias; Shui, Bo; Kotlikoff, Michael I.; Yanagawa, Yuchio; Aujard, Fabienne; Hökfelt, Tomas; Hurd, Yasmin L.; Harkany, Tibor

    2010-01-01

    The Ca2+-binding proteins (CBPs) calbindin D28k, calretinin and parvalbumin are phenotypic markers of functionally diverse subclasses of neurons in the adult brain. The developmental dynamics of CBP expression are precisely timed: calbindin and calretinin are present in prospective cortical interneurons from mid-gestation, while parvalbumin only becomes expressed during the early postnatal period in rodents. Secretagogin (scgn) is a CBP cloned from pancreatic β and neuroendocrine cells. We hypothesized that scgn may be expressed by particular neuronal contingents during prenatal development of the mammalian telencephalon. We find that scgn is expressed in neurons transiting in the subpallial differentiation zone by embryonic day (E) 11 in mouse. From E12, scgn+ cells commute towards the extended amygdala and colonize the bed nucleus of stria terminalis, interstitial nucleus of the posterior limb of the anterior commissure, dorsal substantia innominata (SI), and the central and medial amygdaloid nuclei. Scgn+ neurons can acquire a cholinergic phenotype in the SI or differentiate into GABA cells in the central amygdala. We also uncover phylogenetic differences in scgn expression since this CBP defines not only neurons destined to the extended amygdala but also cholinergic projection cells and cortical pyramidal cells in the fetal non-human primate and human brains, respectively. Overall, our findings emphasize the developmentally shared origins of neurons populating the extended amygdala, and suggest that secretagogin can be relevant to the generation of functional modalities in specific neuronal circuitries. PMID:20529129

  6. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  7. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  8. Structure of the mammalian kinetochore.

    PubMed

    Ris, H; Witt, P L

    1981-01-01

    The structure of the mammalian trilaminar kinetochore was investigated using stereo electron microscopy of chromosomes in hypotonic solutions which unraveled the chromosome but maintained microtubules. Mouse and Chinese hamster ovary cells were arrested in Colcemid and allowed to reform microtubules after Colcemid was removed. Recovered cells were then swelled, lysed or spread in hypotonic solutions which contained D2O to preserve microtubules. The chromosomes were observed in thin and thick sections and as whole mounts using high voltage electron microscopy. Bundles of microtubules were seen directly attached to chromatin, indicating that the kinetochore outer layer represents a differential arrangement of chromatin, continuous with the body of the chromosome. In cells fixed wihout pretreatment, the outer layer could be seen to be composed of hairpin loops of chromatin stacked together to form a solid layer. The hypotonically-induced unraveling of the outer layer was found to be reversible, and the typical 300 nm thick disk reformed when cells were returned to isotonic solutions. Short microtubules, newly nucleated after Colcemid removal, were found not to be attached to the kinetochore out layer, but were situated in the fibrous corona on the external surface of the outer layer. This was verified by observation of thick sections in stereo which made it possible to identify microtubules ends within the section. Thus, kinetochore microtubules are nucleated within the fibrous corona, and subsequently become attached to the outer layer.

  9. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  10. Co-chaperones of the mammalian endoplasmic reticulum.

    PubMed

    Melnyk, Armin; Rieger, Heiko; Zimmermann, Richard

    2015-01-01

    In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.

  11. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  12. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  13. Redescription of the adults and new descriptions of the previously unknown immature stages of Culex (Culex) articularis Philippi, 1865 (Diptera: Culicidae) from central Chile.

    PubMed

    González, Christian R; Reyes, Carolina; Rada, Viviana

    2015-05-05

    Male and female adults of Culex (Culex) articularis Philippi are redescribed, and the 4th-instar larva and pupa are described and illustrated for the first time. Culex articularis is compared with other species of the subgenus Culex. Illustrations of diagnostic characters of the female, male genitalia, 4th-instar larva, and pupa are also provided.

  14. Expression of protein kinase C genes during ontogenic development of the central nervous system

    SciTech Connect

    Sposi, N.M.; Bottero, L.; Testa, U.; Peschle, C.; Russo, G.

    1989-05-01

    The authors have analyzed the RNA expression of three protein kinase C (PKC) genes in (/alpha/, /beta/, and /gamma/) in human and murine central nervous systems during embryonic-fetal, perinatal, and adult life. Analysis of human brain poly(A)/sup +/ RNA indicates that expression of PKC /alpha/ and /beta/ genes can be detected as early as 6 weeks postconception, undergoes a gradual increase until 9 weeks postconception, and reaches its highest level in the adult stage,and that the PKC /gamma/ gene, although not expressed during embryonic and early fetal development, is abundantly expressed in the adult period. Similar developmental patterns were observed in human spinal cord and medulla oblongata. A detailed analysis of PKC gene expression during mammalian ontogeny was performed on poly(A)/sup +/ RNA from the brain cells of murine embryos at different stages of development and the brain cells of neonatal and adult mice. The ontogenic patterns were similar to those observed for human brain. Furthermore, they observed that the expression of PKC /gamma/ is induced in the peri- and postnatal phases. These results suggest that expression of PKC /alpha/, /beta/, and /gamma/ genes possibly mediates the development of central neuronal functions, and expression of PKC /gamma/ in particular may be involved in the development of peri- and postnatal functions.

  15. Enzymology of Mammalian DNA Methyltransferases.

    PubMed

    Jurkowska, Renata Z; Jeltsch, Albert

    2016-01-01

    DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.

  16. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  17. Bats and Rodents Shape Mammalian Retroviral Phylogeny.

    PubMed

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-11-09

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general.

  18. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  19. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  20. Pathways of mammalian replication fork restart.

    PubMed

    Petermann, Eva; Helleday, Thomas

    2010-10-01

    Single-molecule analyses of DNA replication have greatly advanced our understanding of mammalian replication restart. Several proteins that are not part of the core replication machinery promote the efficient restart of replication forks that have been stalled by replication inhibitors, suggesting that bona fide fork restart pathways exist in mammalian cells. Different models of replication fork restart can be envisaged, based on the involvement of DNA helicases, nucleases, homologous recombination factors and the importance of DNA double-strand break formation.

  1. Circadian Plasticity of Mammalian Inhibitory Interneurons

    PubMed Central

    2017-01-01

    Inhibitory interneurons participate in all neuronal circuits in the mammalian brain, including the circadian clock system, and are indispensable for their effective function. Although the clock neurons have different molecular and electrical properties, their main function is the generation of circadian oscillations. Here we review the circadian plasticity of GABAergic interneurons in several areas of the mammalian brain, suprachiasmatic nucleus, neocortex, hippocampus, olfactory bulb, cerebellum, striatum, and in the retina. PMID:28367335

  2. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-06

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line.

  3. Authenticity in Adult Learning

    ERIC Educational Resources Information Center

    Ashton, Sam

    2010-01-01

    This paper is concerned with the relationship between authenticity and adult learning and prompted by some studies in which adult "authentic learning" is a central concept. The implication revealed by them is that real-worldness of learning contexts, learning content and learning tasks is perceived as conferring authenticity on learning. Here,…

  4. How common is the lipid body-containing interstitial cell in the mammalian lung?

    PubMed

    Tahedl, Daniel; Wirkes, André; Tschanz, Stefan A; Ochs, Matthias; Mühlfeld, Christian

    2014-09-01

    Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.

  5. Young Aphids Avoid Erroneous Dropping when Evading Mammalian Herbivores by Combining Input from Two Sensory Modalities

    PubMed Central

    Gish, Moshe; Dafni, Amots; Inbar, Moshe

    2012-01-01

    Mammalian herbivores may incidentally ingest plant-dwelling insects while foraging. Adult pea aphids (Acyrthosiphon pisum) avoid this danger by dropping off their host plant after sensing the herbivore's warm and humid breath and the vibrations it causes while feeding. Aphid nymphs may also drop (to escape insect enemies), but because of their slow movement, have a lower chance of finding a new plant. We compared dropping rates of first-instar nymphs with those of adults, after exposing pea aphids to different combinations of simulated mammalian breath and vibrations. We hypothesized that nymphs would compensate for the greater risk they face on the ground by interpreting more conservatively the mammalian herbivore cues they perceive. Most adults dropped in response to breath alone, but nymphs rarely did so. Breath stimulus accompanied by one concurrent vibrational stimulus, caused a minor rise in adult dropping rates. Adding a second vibration during breath had no additional effect on adults. The nymphs, however, relied on a combination of the two types of stimuli, with a threefold increase in dropping rates when the breath was accompanied by one vibration, and a further doubling of dropping rates when the second vibration was added. The age-specificity of the aphids' herbivore detection mechanism is probably an adaptation to the different cost of dropping for the different age groups. Relying on a combination of stimuli from two sensory modalities enables the vulnerable nymphs to avoid costly mistakes. Our findings emphasize the importance of the direct trophic effect of mammalian herbivory for plant-dwelling insects. PMID:22496734

  6. Prevalence of Diabetes and Intermediate Hyperglycemia Among Adults From the First Multinational Study of Noncommunicable Diseases in Six Central American Countries

    PubMed Central

    Barcelo, Alberto; Gregg, Edward W.; Gerzoff, Robert B.; Wong, Roy; Perez Flores, Enrique; Ramirez-Zea, Manuel; Cafiero, Elizabeth; Altamirano, Lesbia; Ascencio Rivera, Melanie; de Cosio, Gerardo; de Maza, Martha Dinorah; del Aguila, Roberto; Emanuel, Englebert; Gil, Enrique; Gough, Ethan; Jenkins, Valerie; Orellana, Patrícia; Palma, Ruben; Palomo, Ruben; Pastora, Martha; Peña, Rodolfo; Pineda, Elia; Rodriguez, Bismark; Tacsan, Luis; Thompson, Loraine; Villagra, Lucy

    2012-01-01

    OBJECTIVE The increasing burdens of obesity and diabetes are two of the most prominent threats to the health of populations of developed and developing countries alike. The Central America Diabetes Initiative (CAMDI) is the first study to examine the prevalence of diabetes in Central America. RESEARCH DESIGN AND METHODS The CAMDI survey was a cross-sectional survey based on a probabilistic sample of the noninstitutionalized population of five Central American populations conducted between 2003 and 2006. The total sample population was 10,822, of whom 7,234 (67%) underwent anthropometry measurement and a fasting blood glucose or 2-h oral glucose tolerance test. RESULTS The total prevalence of diabetes was 8.5%, but was higher in Belize (12.9%) and lower in Honduras (5.4%). Of the screened population, 18.6% had impaired glucose tolerance/impaired fasting glucose. CONCLUSIONS As this population ages, the prevalence of diabetes is likely to continue to rise in a dramatic and devastating manner. Preventive strategies must be quickly introduced. PMID:22323417

  7. Stem cells and lineage development in the mammalian blastocyst.

    PubMed

    Rossant, Janet

    2007-01-01

    The mammalian blastocyst is the source of the most pluripotent stem cells known: embryonic stem (ES) cells. However, ES cells are not totipotent; in mouse chimeras, they do not contribute to extra-embryonic cell types of the trophectoderm (TE) and primitive endoderm (PrE) lineages. Understanding the genetic pathways that control pluripotency v. extra-embryonic lineage restriction is key to understanding not only normal embryonic development, but also how to reprogramme adult cells to pluripotency. The trophectoderm and primitive endoderm lineages also provide the first signals that drive patterned differentiation of the pluripotent epiblast cells of the embryo. My laboratory has produced permanent mouse cell lines from both the TE and the PrE, termed trophoblast stem (TS) and eXtra-embryonic ENdoderm (XEN) cells. We have used these cells to explore the genetic and molecular hierarchy of lineage restriction and identify the key factors that distinguish the ES cell v. the TS or XEN cell fate. The major molecular pathways of lineage commitment defined in mouse embryos and stem cells are probably conserved across mammalian species, but more comparative studies of lineage development in embryos of non-rodent mammals will likely yield interesting differences in terms of timing and details.

  8. Computational models of adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  9. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  10. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

    PubMed

    Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T; Talbot, Jared C; Hromowyk, Kimberly J; Tenente, Inês M; Langenau, David M; Amacher, Sharon L

    2017-04-15

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.

  11. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  12. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    PubMed Central

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of

  13. Electric fences to reduce mammalian predation on waterfowl nests

    USGS Publications Warehouse

    Lokemoen, J.T.; Doty, H.A.; Sharp, D.E.; Neaville, J.E.

    1982-01-01

    We evaluated electric fences as predator barriers to reduce high losses of waterfowl nests to mammalian predation at Waterfowl Production Areas (WPAs). The work was done in 1978-81 on 3 paired sites in central North Dakota and western Minnesota. Resident mammalian predators were trapped from inside the exclosures. All 3 fences operated during the study period with few major maintenance problems. Nest success in the exclosures was 65% in North Dakota and 55% in Minnesota vs. 45 and 12% in the respective controls. Cover inside the electric fence produced 7.8 more young/ha than cover in control plots in North Dakota during the 3 years. Cover inside the 2 electric fences in Minnesota yielded 9.5 and 4.3 more young/ha than cover in control plots during the 3 years. Using construction costs only we estimated that each additional duckling produced in cover protected by electric fencing cost $0.65 in North Dakota and $0.87 in Minnesota.

  14. RNAi pathway participates in chromosome segregation in mammalian cells.

    PubMed

    Huang, Chuan; Wang, Xiaolin; Liu, Xu; Cao, Shuhuan; Shan, Ge

    2015-01-01

    The RNAi machinery is a mighty regulator in a myriad of life events. Despite lines of evidence that small RNAs and components of the RNAi pathway may be associated with structure and behavior of mitotic chromosomes in diverse organisms, a direct role of the RNAi pathway in mammalian mitotic chromosome segregation remains elusive. Here we report that Dicer and AGO2, two central components of the mammalian RNAi pathway, participate in the chromosome segregation. Knockdown of Dicer or AGO2 results in a higher incidence of chromosome lagging, and this effect is independent from microRNAs as examined with DGCR8 knockout cells. Further investigation has revealed that α-satellite RNA, a noncoding RNA derived from centromeric repeat region, is managed by AGO2 under the guidance of endogenous small interference RNAs (ASAT siRNAs) generated by Dicer. Furthermore, the slicer activity of AGO2 is essential for the chromosome segregation. Level and distribution of chromosome-associated α-satellite RNA have crucial regulatory effect on the localization of centromeric proteins such as centromere protein C1 (CENPC1). With these results, we also provide a paradigm in which the RNAi pathway participates in vital cellular events through the maintenance of level and distribution of noncoding RNAs in cells.

  15. AMIGO3 is an NgR1/p75 co-receptor signalling axon growth inhibition in the acute phase of adult central nervous system injury.

    PubMed

    Ahmed, Zubair; Douglas, Michael R; John, Gabrielle; Berry, Martin; Logan, Ann

    2013-01-01

    Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.

  16. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  17. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  18. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  19. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  20. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  1. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study

    PubMed Central

    Van Loan, Marta D.; Keim, Nancy L.; Adams, Sean H.; Souza, Elaine; Woodhouse, Leslie R.; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R.; Piccolo, Brian; Bremer, Andrew A.; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered. PMID:21941636

  2. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study.

    PubMed

    Van Loan, Marta D; Keim, Nancy L; Adams, Sean H; Souza, Elaine; Woodhouse, Leslie R; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R; Piccolo, Brian; Bremer, Andrew A; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered.

  3. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  4. Structure and diversity in mammalian accessory olfactory bulb.

    PubMed

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  5. Directory of Adult Education Agencies in Egypt.

    ERIC Educational Resources Information Center

    El-Bashary, Ahmed, Comp.

    The directory of Adult Education Agencies in Egypt is a listing of six different types of organizations: national bodies and central agencies; teachers' training institutes and research institutions; adult education institutions (governmental); adult education institutions (non-governmental); central libraries and documentation centers; and…

  6. Feedback Loops of the Mammalian Circadian Clock Constitute Repressilator

    PubMed Central

    Pett, J. Patrick; Korenčič, Anja; Wesener, Felix; Kramer, Achim; Herzel, Hanspeter

    2016-01-01

    Mammals evolved an endogenous timing system to coordinate their physiology and behaviour to the 24h period of the solar day. While it is well accepted that circadian rhythms are generated by intracellular transcriptional feedback loops, it is still debated which network motifs are necessary and sufficient for generating self-sustained oscillations. Here, we systematically explore a data-based circadian oscillator model with multiple negative and positive feedback loops and identify a series of three subsequent inhibitions known as “repressilator” as a core element of the mammalian circadian oscillator. The central role of the repressilator motif is consistent with time-resolved ChIP-seq experiments of circadian clock transcription factors and loss of rhythmicity in core clock gene knockouts. PMID:27942033

  7. Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate retreat to Siberian steppes rather than extinction.

    PubMed

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan; Zrzavý, Jan

    2015-08-06

    We examined the presence of possible Recent refugia of Pleistocene mammalian faunas in Eurasia by analysing regional differences in the mammalian species composition, occurrence and extinction rates between Recent and Last Glacial faunas. Our analyses revealed that most of the widespread Last Glacial species have survived in the central Palearctic continental regions, most prominently in Altai-Sayan (followed by Kazakhstan and East European Plain). The Recent Altai-Sayan and Kazakhstan regions show species compositions very similar to their Pleistocene counterparts. The Palearctic regions have lost 12% of their mammalian species during the last 109,000 years. The major patterns of the postglacial changes in Palearctic mammalian diversity were not extinctions but rather radical shifts of species distribution ranges. Most of the Pleistocene mammalian fauna retreated eastwards, to the central Eurasian steppes, instead of northwards to the Arctic regions, considered Holocene refugia of Pleistocene megafauna. The central Eurasian Altai and Sayan mountains could thus be considered a present-day refugium of the Last Glacial biota, including mammals.

  8. Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate retreat to Siberian steppes rather than extinction

    PubMed Central

    Řičánková, Věra Pavelková; Robovský, Jan; Riegert, Jan; Zrzavý, Jan

    2015-01-01

    We examined the presence of possible Recent refugia of Pleistocene mammalian faunas in Eurasia by analysing regional differences in the mammalian species composition, occurrence and extinction rates between Recent and Last Glacial faunas. Our analyses revealed that most of the widespread Last Glacial species have survived in the central Palearctic continental regions, most prominently in Altai–Sayan (followed by Kazakhstan and East European Plain). The Recent Altai–Sayan and Kazakhstan regions show species compositions very similar to their Pleistocene counterparts. The Palearctic regions have lost 12% of their mammalian species during the last 109,000 years. The major patterns of the postglacial changes in Palearctic mammalian diversity were not extinctions but rather radical shifts of species distribution ranges. Most of the Pleistocene mammalian fauna retreated eastwards, to the central Eurasian steppes, instead of northwards to the Arctic regions, considered Holocene refugia of Pleistocene megafauna. The central Eurasian Altai and Sayan mountains could thus be considered a present-day refugium of the Last Glacial biota, including mammals. PMID:26246136

  9. Information processing in the mammalian olfactory system.

    PubMed

    Lledo, Pierre-Marie; Gheusi, Gilles; Vincent, Jean-Didier

    2005-01-01

    Recently, modern neuroscience has made considerable progress in understanding how the brain perceives, discriminates, and recognizes odorant molecules. This growing knowledge took over when the sense of smell was no longer considered only as a matter for poetry or the perfume industry. Over the last decades, chemical senses captured the attention of scientists who started to investigate the different stages of olfactory pathways. Distinct fields such as genetic, biochemistry, cellular biology, neurophysiology, and behavior have contributed to provide a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. So far, the combination of these approaches has been most effective at the cellular level, but there are already signs, and even greater hope, that the same is gradually happening at the systems level. This review summarizes the current ideas concerning the cellular mechanisms and organizational strategies used by the olfactory system to process olfactory information. We present findings that exemplified the high degree of olfactory plasticity, with special emphasis on the first central relay of the olfactory system. Recent observations supporting the necessity of such plasticity for adult brain functions are also discussed. Due to space constraints, this review focuses mainly on the olfactory systems of vertebrates, and primarily those of mammals.

  10. Prevalence and risk factors of diabetes mellitus in a central district in Islamic Republic of Iran: a population-based study on adults aged 40-80 years.

    PubMed

    Katibeh, M; Hosseini, S; Soleimanizad, R; Manaviat, M R; Kheiri, B; Khabazkhoob, M; Daftarian, N; Dehghan, M H

    2015-09-08

    Previous studies on type 2 diabetes mellitus in the Islamic Republic of Iran were mainly performed in provinces with large populations. This study determined the prevalence and risk factors of diabetes mellitus in an adult population (40-80 years old) from Yazd district. Multistage, systematic cluster random sampling was used in a crosssectional, population-based survey. Demographic, clinical and anthropometric data were collected, with diabetes defined as fasting blood sugar ≥ 7 mmol/L or a positive medical history of diabetes. The age- and sex-standardized prevalence of diabetes in 2090 individuals participants was 24.5% (95% CI: 22.2-26.8%), including 10.5% new cases. For each year of ageing, the prevalence of diabetes increased significantly by 4% and this trend was more pronounced in females than males. Low education and hypertension were significantly associated with diabetes prevalence. The prevalence of diabetes mellitus in Yazd is greater than the average levels nationwide and those of nearby countries.

  11. The role of the miR-17-92 cluster in neurogenesis and angiogenesis in the central nervous system of adults.

    PubMed

    Yang, Ping; Cai, Linghu; Zhang, Guan; Bian, Zhiqun; Han, Gaofeng

    2016-11-21

    It is well known that neurogenesis is not the only concern for the fully functional recovery after brain or spinal cord injury, as it has been shed light on the critical role of angiogenesis in improving neurological functional recovery. Angiogenesis and neurogenesis coordinately interact with each other in the developing and adult brain, during which they may respond to similar mediators and receptors, in which they share a common posttranscriptional regulator: the miR-17-92 cluster. The miR-17-92 cluster was initially described as an oncogene and was later demonstrated to drive key physiological and pathological responses during development and diseases respectively. It has been reported that the miR-17-92 cluster regulates both neurogenesis and angiogenesis. The miR-17-92 cluster modulates neural progenitor cells proliferation not only during development but also during neurological disorders such as stroke. It has also been shown that the endothelial miR-17-92 cluster regulates angiogenesis during embryonic stage and adulthood. In this review, we have discussed the actions of the miR-17-92 cluster in neuronal and vascular plasticity, and its potential as a novel therapeutic strategy for CNS injury. © 2016 Wiley Periodicals, Inc.

  12. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  13. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  14. Architecture of mammalian respiratory complex I.

    PubMed

    Vinothkumar, Kutti R; Zhu, Jiapeng; Hirst, Judy

    2014-11-06

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The 14 conserved 'core' subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 'supernumerary' subunits are unknown. Here we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we considerably advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases.

  15. Architecture of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2014-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is essential for oxidative phosphorylation in mammalian mitochondria. It couples electron transfer from NADH to ubiquinone with proton translocation across the energy-transducing inner membrane, providing electrons for respiration and driving ATP synthesis. Mammalian complex I contains 44 different nuclear- and mitochondrial-encoded subunits, with a combined mass of 1 MDa. The fourteen conserved ‘core’ subunits have been structurally defined in the minimal, bacterial complex, but the structures and arrangement of the 30 ‘supernumerary’ subunits are unknown. Here, we describe a 5 Å resolution structure of complex I from Bos taurus heart mitochondria, a close relative of the human enzyme, determined by single-particle electron cryo-microscopy. We present the structures of the mammalian core subunits that contain eight iron-sulphur clusters and 60 transmembrane helices, identify 18 supernumerary transmembrane helices, and assign and model 14 supernumerary subunits. Thus, we significantly advance knowledge of the structure of mammalian complex I and the architecture of its supernumerary ensemble around the core domains. Our structure provides insights into the roles of the supernumerary subunits in regulation, assembly and homeostasis, and a basis for understanding the effects of mutations that cause a diverse range of human diseases. PMID:25209663

  16. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  17. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  18. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  19. Structure of mammalian respiratory complex I

    PubMed Central

    Hirst, Judy

    2016-01-01

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner membrane. Mammalian complex I1 contains 45 subunits, comprising 14 core subunits that house the catalytic machinery and are conserved from bacteria to humans, and a mammalian-specific cohort of 31 supernumerary subunits1,2. Knowledge about the structures and functions of the supernumerary subunits is fragmentary. Here, we describe a 4.2 Å resolution single-particle cryoEM structure of complex I from Bos taurus. We locate and model all 45 subunits to provide the entire structure of the mammalian complex. Furthermore, computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally-dynamic regions and match biochemical descriptions of the ‘active-to-deactive’ enzyme transition that occurs during hypoxia3,4. Thus, our structures provide a foundation for understanding complex I assembly5 and the effects of mutations that cause clinically-relevant complex I dysfunctions6, insights into the structural and functional roles of the supernumerary subunits, and new information on the mechanism and regulation of catalysis. PMID:27509854

  20. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  1. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system.

  2. A promoter-level mammalian expression atlas.

    PubMed

    Forrest, Alistair R R; Kawaji, Hideya; Rehli, Michael; Baillie, J Kenneth; de Hoon, Michiel J L; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Mungall, Christopher J; Meehan, Terrence F; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A; Ishizu, Yuri; Young, Robert S; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M; Arakawa, Takahiro; Archer, John A C; Arner, Peter; Babina, Magda; Rennie, Sarah; Balwierz, Piotr J; Beckhouse, Anthony G; Pradhan-Bhatt, Swati; Blake, Judith A; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A Maxwell; Califano, Andrea; Cannistraci, Carlo V; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C; Dalla, Emiliano; Davis, Carrie A; Detmar, Michael; Diehl, Alexander D; Dohi, Taeko; Drabløs, Finn; Edge, Albert S B; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C; Faulkner, Geoffrey J; Favorov, Alexander V; Fisher, Malcolm E; Frith, Martin C; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furino, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B; Gibson, Andrew P; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J; Ho Sui, Shannan J; Hofmann, Oliver M; Hoof, Ilka; Hori, Furni; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I; Kawashima, Tsugumi; Kempfle, Judith S; Kenna, Tony J; Kere, Juha; Khachigian, Levon M; Kitamura, Toshio; Klinken, S Peter; Knox, Alan J; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T; Laros, Jeroen F J; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-Sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; de Lima Morais, David A; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Noma, Shohei; Noazaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohimiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G D; Rackham, Owen J L; Ramilowski, Jordan A; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A; Schulze-Tanzil, Gundula G; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaai; Suzuki, Masanori; Suzuki, Naoko; Swoboda, Rolf K; 't Hoen, Peter A C; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyodo, Hiroo; Toyoda, Tetsuro; Valen, Elvind; van de Wetering, Marc; van den Berg, Linda M; Verado, Roberto; Vijayan, Dipti; Vorontsov, Ilya E; Wasserman, Wyeth W; Watanabe, Shoko; Wells, Christine A; Winteringham, Louise N; Wolvetang, Ernst; Wood, Emily J; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Susan E; Zhang, Peter G; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M; Suzuki, Harukazu; Daub, Carsten O; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C; Lenhard, Boris; Bajic, Vladimir B; Taylor, Martin S; Makeev, Vsevolod J; Sandelin, Albin; Hume, David A; Carninci, Piero; Hayashizaki, Yoshihide

    2014-03-27

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.

  3. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks

    PubMed Central

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  4. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system.

    PubMed

    Jiang, Haihui; Cui, Yong; Wang, Junmei; Lin, Song

    2016-11-24

    The latest World Health Organization (WHO) classification of tumors of the central nervous system (CNS) integrates both histological and molecular features in the definition of diagnostic entities. This new approach enrolls novel entities of gliomas. In this study, we aimed to reveal the epidemiological characteristics, including age at diagnosis, gender ratio, tumor distribution and survival, of these new entities. We retrospectively reclassified 1210 glioma samples according to the 2016 CNS WHO diagnostic criteria. In our cohort, glioblastoma multiforme (GBM) with wildtype isocitrate dehydrogenase (IDH) was the most common malignant tumor in the brain. Almost all gliomas were more prevalent in males, especially in the cluster of WHO grade III gliomas and IDH-wildtype GBM. Age at diagnosis was directly proportional to tumor grade. With respect to the distribution by histology, we found that gliomas concurrent with IDH-mutant and 1p/19q-codeleted or with single IDH-mutant were mainly distributed in frontal lobe, while those with IDH-wildtype were dominant in temporal lobe. Lesions located in insular lobe were more likely to be IDH-mutant astrocytoma. In summary, our results elucidated the epidemiological characteristics as well as the regional constituents of these new gliomas entities, which could bring insights into tumorigenesis and personalized treatment of Chinese glioma population.

  5. Translation of fit & strong! For middle-aged and older adults: examining implementation and effectiveness of a lay-led model in central Texas.

    PubMed

    Ory, Marcia G; Lee, Shinduk; Zollinger, Alyson; Bhurtyal, Kiran; Jiang, Luohua; Smith, Matthew Lee

    2014-01-01

    The Fit & Strong! program is an evidence-based, multi-component program promoting physical activity among older adults, particularly those suffering from lower-extremity osteoarthritis. The primary purpose of the study is to examine if the Fit & Strong! program translated into a lay-leader model can produce comparable outcomes to the original program taught by physical therapists and/or certified exercise instructors. A single-group, pre-post study design was employed, and data were collected at the baseline (n = 136 participants) and the intervention conclusion (n = 71) with both baseline and post-intervention data. The measurements included socio-demographic information, health- and behavior-related information, and health-related quality of life. Various statistical tests were used for the program impact analysis and examination of the association between participant characteristics and program completion. As in the original study, there were statistically significant (p < 0.05) improvements in self-efficacy for exercise, aerobic capacity, joint stiffness, level of energy, and amount and intensity of physical activities. The odds of completing the program were significantly lower for the participants from rural areas and those having multiple chronic conditions. Successful adaptation of the Fit & Strong! program to a lay-leader model can increase the likelihood of program dissemination by broadening the selection pool of instructors and, hence, reducing the potential issue of resource limitation. However, high program attrition rates (54.1%) emphasize the importance of adopting evidence-based strategies for improving the retention of the participants from rural areas and those with multiple chronic conditions.

  6. Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors

    PubMed Central

    Keast, Janet R.; Forrest, Shelley L.; Osborne, Peregrine B.

    2010-01-01

    Most small unmyelinated neurons in adult rat dorsal ganglia (DRG) express one or more of the co-receptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin and artemin (GFRα1, GFRα2 and GFRα3 respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitisation. In this study, we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord, there was a widespread increase in neuronal GFRα1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRα3-IR also increased but in a more restricted area. In contrast, GFRα2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabelled L5 DRG sections suggested the main effect of injury on GFRα1- and GFRα3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRα2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRα2-IR neurons. Our results suggest the DRG neuronal populations targeted by GDNF, neurturin or artemin, and the effect of exogenous GFLs could change significantly after a peripheral nerve injury. PMID:20533358

  7. The relationship of prenatal ethanol exposure and anxiety-related behaviors and central androgen receptor and vasopressin expression in adult male mandarin voles.

    PubMed

    He, F

    2014-04-25

    Prenatal exposure to ethanol has been shown to increase the risk of anxiety in offspring. Here, we tested the effect of prenatal ethanol exposure on adult male mandarin voles (Microtus mandarinus). We examined anxiety-like behavior in the open field and elevated plus-maze tests in males exposed to ethanol prenatally. One control group was not exposed to ethanol or saline, while another control group was exposed to saline. At the age of 90days, males were tested and levels of serum testosterone, androgen receptor immunoreactive neurons (AR-IRs) and arginine vasopressin immunoreactive neurons (AVP-IRs) were measured. Animals exposed to ethanol spent less time in the center of the chamber, covered less distance and conducted fewer crossings in the open-field test. These animals also spent less time and conducted fewer crossings in the open arms. However, they spent more time and made more entries in the closed arms, and traveled less total distance during the elevated plus-maze test, compared to the control voles. Serum T was lower in the ethanol group, and the AR-IR number in the bed nucleus of the stria terminalis (BNST), medial preoptic area (mPOA) and medial amygdaloid nucleus (MeA) was significantly lower. The number of AVP-IRs in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the ethanol group was higher than that of the control groups. Our findings suggest that prenatal ethanol exposure may lead to reduced serum T levels, decreased AR and increased AVP in the CNS and result in the development of anxiety-like behaviors.

  8. Intra-Operative Fluid Management in Adult Neurosurgical Patients Undergoing Intracranial Tumour Surgery: Randomised Control Trial Comparing Pulse Pressure Variance (PPV) and Central Venous Pressure (CVP)

    PubMed Central

    Salins, Serina Ruth; Kumar, Amar Nandha; Korula, Grace

    2016-01-01

    Introduction Fluid management in neurosurgery presents specific challenges to the anaesthesiologist. Dynamic para-meters like Pulse Pressure Variation (PPV) have been used successfully to guide fluid management. Aim To compare PPV against Central Venous Pressure (CVP) in neurosurgical patients to assess hemodynamic stability and perfusion status. Materials and Methods This was a single centre prospective randomised control trial at a tertiary care centre. A total of 60 patients undergoing intracranial tumour excision in supine and lateral positions were randomised to two groups (Group 1, CVP n=30), (Group 2, PPV n=30). Intra-operative fluid management was titrated to maintain baseline CVP in Group 1(5-10cm of water) and in Group 2 fluids were given to maintain PPV less than 13%. Acid base status, vital signs and blood loss were monitored. Results Although intra-operative hypotension and acid base changes were comparable between the groups, the patients in the CVP group had more episodes of hypotension requiring fluid boluses in the first 24 hours post surgery. {CVP group median (25, 75) 2400ml (1850, 3110) versus PPV group 2100ml (1350, 2200) p=0.03} The patients in the PPV group received more fluids than the CVP group which was clinically significant. {2250 ml (1500, 3000) versus 1500ml (1200, 2000) median (25, 75) (p=0.002)}. The blood loss was not significantly different between the groups The median blood loss in the CVP group was 600ml and in the PPV group was 850 ml; p value 0.09. Conclusion PPV can be used as a reliable index to guide fluid management in neurosurgical patients undergoing tumour excision surgery in supine and lateral positions and can effectively augment CVP as a guide to fluid management. Patients in PPV group had better hemodynamic stability and less post operative fluid requirement. PMID:27437329

  9. The role of p21 in regulating mammalian regeneration.

    PubMed

    Arthur, Larry Matthew; Heber-Katz, Ellen

    2011-06-29

    The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.

  10. The role of p21 in regulating mammalian regeneration

    PubMed Central

    2011-01-01

    The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation. PMID:21722344

  11. Enhanced Neurite Growth from Mammalian Neurons in Three-Dimensional Salmon Fibrin Gels

    PubMed Central

    Ju, Yo-El; Janmey, Paul A.; McCormick, Margaret; Sawyer, Evelyn S.; Flanagan, Lisa A.

    2007-01-01

    Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels or to any copurifying plasminogen. Co-purified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury. PMID:17258313

  12. Non-communicable diseases, infection and survival in a retrospective cohort of Indigenous and non-Indigenous adults in central Australia

    PubMed Central

    Einsiedel, Lloyd; Fernandes, Liselle; Joseph, Sheela; Brown, Alex; Woodman, Richard J

    2013-01-01

    Objectives We hypothesise that rising prevalence rates of non-communicable diseases (NCDs) increase infection risk and worsen outcomes among socially disadvantaged Indigenous Australians undergoing a rapid epidemiological transition. Design Available pathology, imaging and discharge morbidity codes were retrospectively reviewed for a period of 5 years prior to admission with a bloodstream infection (BSI), 1 January 2003 to 30 June 2007. Participants 558 Indigenous and 55 non-Indigenous community residents of central Australia. Outcome measures The effects of NCDs on risk of infection and death were determined after stratifying by ethnicity. Results The mean annual BSI incidence rates were far higher among Indigenous residents (Indigenous, 937/100 000; non-Indigenous, 64/100 000 person-years; IRR=14.6; 95% CI 14.61 to 14.65, p<0.001). Indigenous patients were also more likely to have previous bacterial infections (68.7% vs 34.6%; respectively, p<0.001), diabetes (44.3% vs 20%; p<0.001), harmful alcohol consumption (37% vs 12.7%; p<0.001) and other communicable diseases (human T-lymphotropic virus type 1, 45.2%; strongyloidiasis, 36.1%; hepatitis B virus, 12.9%). Among Indigenous patients, diabetes increased the odds of current Staphylococcus aureus BSI (OR=1.6, 95% CI 1.0 to 2.5) and prior skin infections (adjusted OR=2.1, 95% CI 1.4 to 3.3). Harmful alcohol consumption increased the odds of current Streptococcus pneumoniae BSI (OR=1.57, 95% CI 1.02 to 2.40) and of previous BSI (OR=1.7, 95% CI 1.1 to 2.5), skin infection (OR=1.7, 95% CI 1.1 to 2.6) or pneumonia (OR=4.3, 95% CI 2.8 to 6.7). Twenty-six per cent of Indigenous patients died at a mean (SD) age of 47±15 years. Complications of diabetes and harmful alcohol consumption predicted 28-day mortality (non-rheumatic heart disease, HR=2.9; 95% CI 1.4 to 6.2; chronic renal failure, HR=2.6, 95%CI 1.0 to 6.5; chronic liver disease, HR=3.3, 95% CI 1.6 to 6.7). Conclusions In a socially disadvantaged

  13. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks

    PubMed Central

    Bedont, Joseph L.; Blackshaw, Seth

    2015-01-01

    The circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions. We review advances in the understanding of adult SCN function, what has been described about SCN development to date, and the potential of both current and future studies of SCN development to yield important insights into master clock function, dysfunction, and evolution. PMID:26005407

  14. Functional neurogenesis in the adult hippocampus

    NASA Astrophysics Data System (ADS)

    van Praag, Henriette; Schinder, Alejandro F.; Christie, Brian R.; Toni, Nicolas; Palmer, Theo D.; Gage, Fred H.

    2002-02-01

    There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.

  15. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  16. Problems of allometric scaling analysis: examples from mammalian reproductive biology.

    PubMed

    Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K

    2005-05-01

    Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best

  17. Potassium transport in the mammalian collecting duct.

    PubMed

    Muto, S

    2001-01-01

    The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.

  18. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  19. Synaptic Release at Mammalian Bipolar Cell Terminals

    PubMed Central

    Wan, Qun-Fang; Heidelberger, Ruth

    2011-01-01

    Bipolar cells play a vital role in the transfer of visual information across the vertebrate retina. The synaptic output of these neurons is regulated by factors that are extrinsic and intrinsic. Relatively little is known about the intrinsic factors that regulate neurotransmitter exocytosis. Much of what we know about intrinsic presynaptic mechanisms that regulate glutamate release has come from the study of the unusually large and accessible synaptic terminal of the goldfish rod-dominant bipolar cell, the Mb1 bipolar cell. However, over the past several years, examination of presynaptic mechanisms governing neurotransmitter release has been extended to the mammalian rod bipolar cell. In this review, we discuss the recent advances in our understanding of synaptic vesicle dynamics and neurotransmitter release in rodent rod bipolar cells and consider how these properties help shape the synaptic output of the mammalian retina. PMID:21272392

  20. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  1. Lactate Metabolism is Associated with Mammalian Mitochondria

    PubMed Central

    Chen, Ying-Jr; Mahieu, Nathaniel G.; Huang, Xiaojing; Singh, Manmilan; Crawford, Peter A; Johnson, Stephen L.; Gross, Richard W.; Schaefer, Jacob

    2016-01-01

    It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. Within the fermenting cell itself, however, it is generally assumed that lactate is produced to replenish NAD+ and then is secreted. Here we explored the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. With high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells. PMID:27618187

  2. Circadian aspects of mammalian parturition: a review.

    PubMed

    Olcese, James

    2012-02-05

    The identification of circadian clocks in endocrine tissues has added considerable depth and complexity to our understanding of their physiology. A growing body of research reveals circadian clock gene expression in the uterus of non-pregnant and pregnant rodents. This review will focus on the mammalian uterus and its rhythmicity, particularly as it pertains to the circadian timing of parturition. This key event in the reproductive axis shows dramatic species-specific differences in its circadian phase. It is proposed here that these differences in the phasing of mammalian parturition are likely a function of opposite uterine cell responses to humoral cues. The argument will be made that melatonin fulfills many of the criteria to serve as a circadian signal in the initiation of human parturition, including specific actions on uterine smooth muscle cells that are consistent with a role for this hormone in the circadian timing of parturition.

  3. Ricin trafficking in plant and mammalian cells.

    PubMed

    Lord, J Michael; Spooner, Robert A

    2011-07-01

    Ricin is a heterodimeric plant protein that is potently toxic to mammalian and many other eukaryotic cells. It is synthesized and stored in the endosperm cells of maturing Ricinus communis seeds (castor beans). The ricin family has two major members, both, lectins, collectively known as Ricinus communis agglutinin ll (ricin) and Ricinus communis agglutinin l (RCA). These proteins are stored in vacuoles within the endosperm cells of mature Ricinus seeds and they are rapidly broken down by hydrolysis during the early stages of post-germinative growth. Both ricin and RCA traffic within the plant cell from their site of synthesis to the storage vacuoles, and when they intoxicate mammalian cells they traffic from outside the cell to their site of action. In this review we will consider both of these trafficking routes.

  4. Structure and function of mammalian cilia.

    PubMed

    Satir, Peter; Christensen, Søren T

    2008-06-01

    In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.

  5. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  6. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  7. Epigenetic Regulation of the Mammalian Cell

    PubMed Central

    Baverstock, Keith; Rönkkö, Mauno

    2008-01-01

    Background Understanding how mammalian cells are regulated epigenetically to express phenotype is a priority. The cellular phenotypic transition, induced by ionising radiation, from a normal cell to the genomic instability phenotype, where the ability to replicate the genotype accurately is compromised, illustrates important features of epigenetic regulation. Based on this phenomenon and earlier work we propose a model to describe the mammalian cell as a self assembled open system operating in an environment that includes its genotype, neighbouring cells and beyond. Phenotype is represented by high dimensional attractors, evolutionarily conditioned for stability and robustness and contingent on rules of engagement between gene products encoded in the genetic network. Methodology/Findings We describe how this system functions and note the indeterminacy and fluidity of its internal workings which place it in the logical reasoning framework of predicative logic. We find that the hypothesis is supported by evidence from cell and molecular biology. Conclusions Epigenetic regulation and memory are fundamentally physical, as opposed to chemical, processes and the transition to genomic instability is an important feature of mammalian cells with probable fundamental relevance to speciation and carcinogenesis. A source of evolutionarily selectable variation, in terms of the rules of engagement between gene products, is seen as more likely to have greater prominence than genetic variation in an evolutionary context. As this epigenetic variation is based on attractor states phenotypic changes are not gradual; a phenotypic transition can involve the changed contribution of several gene products in a single step. PMID:18523589

  8. Some principles of regeneration in mammalian systems.

    PubMed

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form.

  9. Aneuploidy in mammalian somatic cells in vivo.

    PubMed

    Cimino, M C; Tice, R R; Liang, J C

    1986-01-01

    Aneuploidy is an important potential source of human disease and of reproductive failure. Nevertheless, the ability of chemical agents to induce aneuploidy has been investigated only sporadically in intact (whole-animal) mammalian systems. A search of the available literature from the EMCT Aneuploidy File (for years 1970-1983) provided 112 papers that dealt with aneuploidy in mammalian somatic cells in vivo. 59 of these papers did not meet minimal criteria for analysis and were rejected from subsequent review. Of the remaining 53 papers that dealt with aneuploidy induction by chemical agents in mammalian somatic cells in vivo, only 3 (6%) contained data that were considered to be supported conclusively by adequate study designs, execution, and reporting. These 3 papers dealt with 2 chemicals, one of which, mercury, was negative for aneuploidy induction in humans, and the other, pyrimethamine, was positive in an experimental rodent study. The majority of papers (94%) were considered inconclusive for a variety of reasons. The most common reasons for calling a study inconclusive were (a) combining data on hyperploidy with those on hypoploidy and/or polyploidy, (b) an inadequate or unspecified number of animals and/or cells per animal scored per treatment group, and (c) poor data presentation such that animal-to-animal variability could not be assessed. Suggestions for protocol development are made, and the future directions of research into aneuploidy induction are discussed.

  10. Comparison of amphibian and mammalian thyroperoxidase ...

    EPA Pesticide Factsheets

    Thyroperoxidase (TPO) catalyzes the production of thyroid hormones in the vertebrate thyroid gland by oxidizing iodide (I- ) to produce iodinated tyrosines on thyroglobulin, and further coupling of specific mono- or di-iodinated tyrosines to generate the triiodo- and tetra-iodothyronine, precursors to thyroid hormone. This enzyme is a target for thyroid disrupting chemicals. TPO-inhibition by xenobiotics is a molecular initiating event that is known to perturb the thyroid axis by preventing synthesis of thyroid hormone. Previous work on TPO-inhibition has been focused on mammalian TPO; specifically, the rat and pig. A primary objective of this experiment was to directly measure TPO activity in a non-mammalian system, in this case a thyroid gland homogenate from Xenopus laevis; as well as compare chemical inhibition from past mammalian studies to the amphibian data generated. Thyroid glands obtained from X. laevis tadpoles at NF stages 58-60, were pooled and homogenized by sonication in phosphate buffer. This homogenate was then used to test 24 chemicals for inhibition of TPO as measured by conversion of Amplex UltraRed (AUR) substrate to its fluorescent product. The test chemicals were selected based upon previous results from rat in vitro TPO assays, and X. laevis in vitro and in vivo studies for thyroid disrupting endpoints, and included both positive and negative chemicals in these assays. An initial screening of the chemicals was done at a single high con

  11. Mammalian masticatory muscles: homology, nomenclature, and diversification.

    PubMed

    Druzinsky, Robert E; Doherty, Alison H; De Vree, Frits L

    2011-08-01

    There is a deep and rich literature of comparative studies of jaw muscles in mammals but no recent analyses employ modern phylogenetic techniques to better understand evolutionary changes that have occurred in these muscles. In order to fully develop and utilize the Feeding Experiments End-user Database (FEED), we are constructing a comprehensive ontology of mammalian jaw muscles. This process has led to a careful consideration of nomenclature and homologies of the muscles and their constituent parts. Precise determinations of muscle attachments have shown that muscles with similar names are not necessarily homologous. Using new anatomical descriptions derived from the literature, we defined character states for the jaw muscles in diverse mammalian species. We then mapped those characters onto a recent phylogeny of mammals with the aid of the Mesquite software package. Our data further elucidate how muscle groups associated with the feeding apparatus differ and have become highly specialized in certain mammalian orders, such as Rodentia, while remaining conserved in other orders. We believe that careful naming of muscles and statistical analyses of their distributions among mammals, in association with the FEED database, will lead to new, significant insights into the functional, structural, and evolutionary morphology of the jaw muscles.

  12. Mutation hot spots in mammalian mitochondrial DNA.

    PubMed

    Galtier, Nicolas; Enard, David; Radondy, Yoan; Bazin, Eric; Belkhir, Khalid

    2006-02-01

    Animal mitochondrial DNA is characterized by a remarkably high level of within-species homoplasy, that is, phylogenetic incongruence between sites of the molecule. Several investigators have invoked recombination to explain it, challenging the dogma of maternal, clonal mitochondrial inheritance in animals. Alternatively, a high level of homoplasy could be explained by the existence of mutation hot spots. By using an exhaustive mammalian data set, we test the hot spot hypothesis by comparing patterns of site-specific polymorphism and divergence in several groups of closely related species, including hominids. We detect significant co-occurrence of synonymous polymorphisms among closely related species in various mammalian groups, and a correlation between the site-specific levels of variability within humans (on one hand) and between Hominoidea species (on the other hand), indicating that mutation hot spots actually exist in mammalian mitochondrial coding regions. The whole data, however, cannot be explained by a simple mutation hot spots model. Rather, we show that the site-specific mutation rate quickly varies in time, so that the same sites are not hypermutable in distinct lineages. This study provides a plausible mutation model that potentially accounts for the peculiar distribution of mitochondrial sequence variation in mammals without the need for invoking recombination. It also gives hints about the proximal causes of mitochondrial site-specific hypermutability in humans.

  13. MAMMALIAN CELLS CONTAIN A SECOND NUCLEOCYTOPLASMIC HEXOSAMINIDASE

    PubMed Central

    Gutternigg, Martin; Rendić, Dubravko; Voglauer, Regina; Iskratsch, Thomas; Wilson, Iain B. H.

    2010-01-01

    Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterised in recombinant form and has an important role in cellular function due to its ability to cleave β-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterise for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability; furthermore, a myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localisation. Transcripts of the corresponding gene are expressed in a number of murine tissues. Based on its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be found from mammalian sources. PMID:19040401

  14. Short latency compound action potentials from mammalian gravity receptor organs

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  15. Treatment of adult ALL with central nervous system involvement at diagnosis using autologous and allogeneic transplantation: a study from the Société Française de Greffe de Moelle et de Thérapie Cellulaire.

    PubMed

    Chantepie, S P; Mohty, M; Tabrizi, R; Robin, M; Deconinck, E; Buzyn, A; Contentin, N; Raus, N; Lhéritier, V; Reman, O

    2013-05-01

    To assess the role of hematopoietic SCT (HSCT) in adult ALL patients with central nervous system involvement at diagnosis, we retrospectively analyzed 90 patients who underwent autologous HSCT (auto-HSCT group; n=27) or allogeneic HSCT (allo-HSCT group; n=63) and reported to the Société Française de Greffe de Moelle et de Thérapie Cellulaire registry between 1994 and 2008. At the time of transplantation, 67 patients (74%) were in first CR, 15 (17%) in CR2 and 8 (9%) with progressive disease. The 5-year probabilities of overall survival (OS) and disease-free survival (DFS) were 52% and 46% for the allo-HSCT and 37% and 33% for the auto-HSCT groups, respectively (P=NS). The TRM at 5 years was 29.8% for the allo-HSCT group and 3.7% for the auto-HSCT group. Using univariate analysis, a time for transplantation of <12 months, the remission status at transplantation, the use of high-dose TBI and the number of the transplant were all determined to be prognostic factors for improved DFS and OS probabilities. Using multivariate analysis, we demonstrated that both the use of high-dose TBI and the remission status had a favorable impact on OS. Although the DFS and OS were better in the allo-HSCT group, the differences were not statistically significant.

  16. Long-term tracing of the BrdU label-retaining cells in adult rat brain.

    PubMed

    Zhang, Lei; Li, Haihong; Zeng, Shaopeng; Chen, Lu; Fang, Zeman; Huang, Qingjun

    2015-03-30

    Stem cells have been shown to be label-retaining, slow-cycling cells. In the adult mammalian central nervous system, the distribution of the stem cells is inconsistent among previous studies. The purpose of the present study was to determine the distribution of BrdU-LRCs and the cell types of the BrdU-LRCs in rat brain. To label BrdU-LRCs in rat brain, six newborn rats were administered intraperitoneal injections of BrdU 50mg/kg/time twice a day at 2h intervals, over four consecutive days. The BrdU-LRCs were detected by immunohistochemistry, the cell types were examined by double immunofluorescence staining for BrdU/GFAP and BrdU/MAP2, and the percentage of BrdU-LRCs was calculated following a chase period of 24 weeks post-injection. We observed that BrdU-LRCs distributed extensively in rat brain. In the LV, DG, striatum, cerebellum and neocortex, the percentage of BrdU-LRCs was 11.3 ± 2.5%, 10.9 ± 1.3%, 6.4 ± 1.2%, 5.6 ± 0.8%, and 4.9 ± 0.6%, respectively. The highest density of BrdU-LRCs was in LV and DG, the known stem cell sites in adult mammalian brain. Both BrdU/GFAP and BrdU/MAP2 double-staining cells could be detected in the above five brain subregions. Ongoing cell production was widespread in the adult mammalian brain, which would allow us to reevaluate the capacity and potentiality of the brain in homeostasis, wound repair, and regeneration.

  17. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.

    PubMed

    Gluckman, Peter D; Lillycrop, Karen A; Vickers, Mark H; Pleasants, Anthony B; Phillips, Emma S; Beedle, Alan S; Burdge, Graham C; Hanson, Mark A

    2007-07-31

    Developmental plasticity in response to environmental cues can take the form of polyphenism, as for the discrete morphs of some insects, or of an apparently continuous spectrum of phenotype, as for most mammalian traits. The metabolic phenotype of adult rats, including the propensity to obesity, hyperinsulinemia, and hyperphagia, shows plasticity in response to prenatal nutrition and to neonatal administration of the adipokine leptin. Here, we report that the effects of neonatal leptin on hepatic gene expression and epigenetic status in adulthood are directionally dependent on the animal's nutritional status in utero. These results demonstrate that, during mammalian development, the direction of the response to one cue can be determined by previous exposure to another, suggesting the potential for a discontinuous distribution of environmentally induced phenotypes, analogous to the phenomenon of polyphenism.

  18. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS.

    PubMed

    Takihara, Yuji; Inatani, Masaru; Eto, Kei; Inoue, Toshihiro; Kreymerman, Alexander; Miyake, Seiji; Ueno, Shinji; Nagaya, Masatoshi; Nakanishi, Ayami; Iwao, Keiichiro; Takamura, Yoshihiro; Sakamoto, Hirotaka; Satoh, Keita; Kondo, Mineo; Sakamoto, Tatsuya; Goldberg, Jeffrey L; Nabekura, Junichi; Tanihara, Hidenobu

    2015-08-18

    The lack of intravital imaging of axonal transport of mitochondria in the mammalian CNS precludes characterization of the dynamics of axonal transport of mitochondria in the diseased and aged mammalian CNS. Glaucoma, the most common neurodegenerative eye disease, is characterized by axon degeneration and the death of retinal ganglion cells (RGCs) and by an age-related increase in incidence. RGC death is hypothesized to result from disturbances in axonal transport and in mitochondrial function. Here we report minimally invasive intravital multiphoton imaging of anesthetized mouse RGCs through the sclera that provides sequential time-lapse images of mitochondria transported in a single axon with submicrometer resolution. Unlike findings from explants, we show that the axonal transport of mitochondria is highly dynamic in the mammalian CNS in vivo under physiological conditions. Furthermore, in the early stage of glaucoma modeled in adult (4-mo-old) mice, the number of transported mitochondria decreases before RGC death, although transport does not shorten. However, with increasing age up to 23-25 mo, mitochondrial transport (duration, distance, and duty cycle) shortens. In axons, mitochondria-free regions increase and lengths of transported mitochondria decrease with aging, although totally organized transport patterns are preserved in old (23- to 25-mo-old) mice. Moreover, axonal transport of mitochondria is more vulnerable to glaucomatous insults in old mice than in adult mice. These mitochondrial changes with aging may underlie the age-related increase in glaucoma incidence. Our method is useful for characterizing the dynamics of axonal transport of mitochondria and may be applied to other submicrometer structures in the diseased and aged mammalian CNS in vivo.

  19. Freirean Philosophy and Pedagogy in the Adult Education Context: The Case of Older Adults' Learning

    ERIC Educational Resources Information Center

    Findsen, Brian

    2007-01-01

    Central tenets of Freirean philosophy and pedagogy are explored and applied to the emerging field of older adults' learning (educational gerontology), a sub-field of adult education. I argue that many of Freire's concepts and principles have direct applicability to the tasks of adult educators working alongside marginalized older adults. In…

  20. Excretion of fluorescent substrates of mammalian multidrug resistance-associated protein (MRP) in the Schistosoma mansoni excretory system.

    PubMed

    Sato, H; Kusel, J R; Thornhill, J

    2004-01-01

    The protonephridium of platyhelminths including Schistosoma mansoni plays a pivotal role in their survival by excretion of metabolic wastes as well as xenobiotics, and can be revealed in the living adult parasite by certain fluorescent compounds which are concentrated in excretory tubules and collecting ducts. To determine the presence of the multidrug resistance-associated protein (MRP) as a possible transporter in protonephridial epithelium, adult schistosomes were exposed to a fluorescent Ca2+ indicator, fluo-3 acetyloxymethyl ester, which is a potential substrate of mammalian MRP. Specific fluorescence related to fluo-3/Ca2+ chelate delineated the whole length of the protonephridial system. Simultaneously, a fluorescent substance was accumulated in the posterior part of collecting ducts and the excretory bladder. Similarly, when other fluorogenic substrates for mammalian MRP such as monoclorobimane, fluorescein diacetate, and 5(6)-carboxyfluorescein diacetate were applied to adult schistosomes, these fluorescent markers were observed in the excretory tubules through to the excretory bladder. The excretory system of mechanically-transformed schistosomula was not labelled with any of these 4 fluorescent markers. These findings suggest that the protonephridial epithelium of adult schistosomes, but not schistosomula, might express the homologue of the mammalian MRP transporting organic anionic conjugates with glutathione, glucuronate or sulphate as well as unconjugated amphiphilic organic anions.

  1. Protein and genome evolution in Mammalian cells for biotechnology applications.

    PubMed

    Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J

    2009-06-01

    Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.

  2. Mammalian niche conservation through deep time.

    PubMed

    DeSantis, Larisa R G; Beavins Tracy, Rachel A; Koontz, Cassandra S; Roseberry, John C; Velasco, Matthew C

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene

  3. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    SciTech Connect

    Estabrook, Ronald W. . E-mail: Ronald.estabrook@utsouthwestern.edu

    2005-12-09

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11{beta}-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O{sup 18} studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17{alpha}-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17{alpha}-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11{beta}-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.

  4. The response of the anterior striatum during adult human vocal learning.

    PubMed

    Simmonds, Anna J; Leech, Robert; Iverson, Paul; Wise, Richard J S

    2014-08-15

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia "loops," which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts.

  5. Rescue of Adult Hippocampal Neurogenesis in a Mouse Model of HIV Neurologic Disease

    PubMed Central

    Lee, Myoung-Hwa; Wang, Tongguang; Jang, Mi-Hyeon; Steiner, Joseph; Haughey, Norman; Ming, Guo-li; Song, Hongjun; Nath, Avindra; Venkatesan, Arun

    2011-01-01

    The prevalence of central nervous system (CNS) neurologic dysfunction associated with human immunodeficiency virus (HIV) infection continues to increase, despite the use of antiretroviral therapy. Previous work has focused on the deleterious effects of HIV on mature neurons and on development of neuroprotective strategies, which have consistently failed to show a meaningful clinical benefit. It is now well established that new neurons are continuously generated in discrete regions in the adult mammalian brain, and accumulating evidence supports important roles for these neurons in specific cognitive functions. In a transgenic mouse model of HIV neurologic disease with glial expression of the HIV envelope protein gp120, we demonstrate a significant reduction in proliferation of hippocampal neural progenitors in the dentate gyrus of adult animals, resulting in a dramatic decrease in the number of newborn neurons in the adult brain. We identify amplifying neural progenitor cells (ANPs) as the first class of progenitors affected by gp120, and we also demonstrate that newly generated neurons exhibit aberrant dendritic development. Furthermore, voluntary exercise and treatment with a selective serotonin reuptake inhibitor increase the ANP population and rescue the observed deficits in gp120 transgenic mice. Thus, during HIV infection, the envelope protein gp120 may potently inhibit adult hippocampal neurogenesis, and neurorestorative approaches may be effective in ameliorating these effects. Our study has significant implications for the development of novel therapeutic approaches for HIV-infected individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21146610

  6. [Is neo-oogenesis in the adult ovary, a realistic paradigm?].

    PubMed

    Gougeon, A

    2010-06-01

    It is a central dogma of female reproductive biology that oogenesis ceases around the time of birth in mammalian species. In 2004 and 2005, two studies were published by Johnson et al., in which they claimed that in the adult mouse ovary, neo-oogenesis takes place and originates from female germline stem cells that are present in either the ovarian surface epithelium or bone marrow. Following these publications, experiments showed that non-germinal stem cells could generate oocytes. However, in the mouse, ability of extra-ovarian stem cells to refurbish the ovary in new oocytes competent to ovulate, and subsequent existence of a spontaneous neo-oogenesis in the adult ovary in normal physiologic conditions, have been disputed. Morphologic studies performed in the adult mouse ovary showed that atresia of the immature follicle pool was strongly overestimated by Johnson et al., and that no intermediary stages of meiosis were seen. These observations led to the conclusion that adult female mice do not need neo-oogenesis for maintaining a normal reproductive function. However, a recent study have shown that female germline stem cells might be present in the ovarian surface epithelium in mice and humans. When sampled in GFP transgenic mice, cultured for a long period and transplanted into ovaries of sterilized mice, these cells underwent oogenesis and the mice produced offsprings. These new data support the possibility to experimentally restore fertility in women suffering from a premature ovarian failure.

  7. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  8. The Kinesin-4 Protein KIF7 Regulates Mammalian Hedgehog Signaling by Organizing the Cilia Tip Compartment

    PubMed Central

    He, Mu; Subramanian, Radhika; Bangs, Fiona; Omelchenko, Tatiana; Liem, Karel F.; Kapoor, Tarun M.; Anderson, Kathryn V.

    2014-01-01

    Mammalian Hedgehog (Hh) signal transduction requires the primary cilium, a microtubule-based organelle, and the Gli/Sufu complexes that mediate Hh signaling are enriched at cilia tips. KIF7, a kinesin-4 family protein, is a conserved regulator of the Hh signaling pathway and a human ciliopathy protein. Here we show that KIF7 localizes to cilia tips, the site of microtubule plus-ends, where it limits cilia length and controls cilia structure. Purified recombinant KIF7 binds the plus-ends of growing microtubules in vitro, where it reduces the rate of microtubule growth and increases the frequency of microtubule catastrophe. KIF7 is not required for normal intraflagellar transport or for trafficking of Hh pathway proteins into cilia. Instead, a central function of KIF7 in the mammalian Hh pathway is to control cilia architecture and to create a single cilia tip compartment where Gli/Sufu activation can be correctly regulated. PMID:24952464

  9. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  10. Genome Editing Using Mammalian Haploid Cells

    PubMed Central

    Horii, Takuro; Hatada, Izuho

    2015-01-01

    Haploid cells are useful for studying gene functions because disruption of a single allele can cause loss-of-function phenotypes. Recent success in generating haploid embryonic stem cells (ESCs) in mice, rats, and monkeys provides a new platform for simple genetic manipulation of the mammalian genome. Use of haploid ESCs enhances the genome-editing potential of the CRISPR/Cas system. For example, CRISPR/Cas was used in haploid ESCs to generate multiple knockouts and large deletions at high efficiency. In addition, genome-wide screening is facilitated by haploid cell lines containing gene knockout libraries. PMID:26437403

  11. AS52/GPT Mammalian Mutagenesis Assay

    DTIC Science & Technology

    1996-05-10

    dimethylnitrosamine (DMN) at 50 and 100 f.J.g/rnl was used as a 3 TLS Project Nn. A0ŗ-003: AS52/GPT Mammalian Mutagenesis Assay promutagen that requires metabolic...Chemical Source Lot No. air Air Products N/A calcium chloride Sigma 84F-0723 d imeth y !sulfoxide Fisher 933274 dimethylnitrosamine Sigma 82B0365...methanesulfonate (EMS) at 150 and 300 J.i-g/ml is used as a direct-acting mutagen for the nonactivated portion, and dimethylnitrosamine (DMN) at 150 and 300

  12. The transcriptional landscape of the mammalian genome.

    PubMed

    Carninci, P; Kasukawa, T; Katayama, S; Gough, J; Frith, M C; Maeda, N; Oyama, R; Ravasi, T; Lenhard, B; Wells, C; Kodzius, R; Shimokawa, K; Bajic, V B; Brenner, S E; Batalov, S; Forrest, A R R; Zavolan, M; Davis, M J; Wilming, L G; Aidinis, V; Allen, J E; Ambesi-Impiombato, A; Apweiler, R; Aturaliya, R N; Bailey, T L; Bansal, M; Baxter, L; Beisel, K W; Bersano, T; Bono, H; Chalk, A M; Chiu, K P; Choudhary, V; Christoffels, A; Clutterbuck, D R; Crowe, M L; Dalla, E; Dalrymple, B P; de Bono, B; Della Gatta, G; di Bernardo, D; Down, T; Engstrom, P; Fagiolini, M; Faulkner, G; Fletcher, C F; Fukushima, T; Furuno, M; Futaki, S; Gariboldi, M; Georgii-Hemming, P; Gingeras, T R; Gojobori, T; Green, R E; Gustincich, S; Harbers, M; Hayashi, Y; Hensch, T K; Hirokawa, N; Hill, D; Huminiecki, L; Iacono, M; Ikeo, K; Iwama, A; Ishikawa, T; Jakt, M; Kanapin, A; Katoh, M; Kawasawa, Y; Kelso, J; Kitamura, H; Kitano, H; Kollias, G; Krishnan, S P T; Kruger, A; Kummerfeld, S K; Kurochkin, I V; Lareau, L F; Lazarevic, D; Lipovich, L; Liu, J; Liuni, S; McWilliam, S; Madan Babu, M; Madera, M; Marchionni, L; Matsuda, H; Matsuzawa, S; Miki, H; Mignone, F; Miyake, S; Morris, K; Mottagui-Tabar, S; Mulder, N; Nakano, N; Nakauchi, H; Ng, P; Nilsson, R; Nishiguchi, S; Nishikawa, S; Nori, F; Ohara, O; Okazaki, Y; Orlando, V; Pang, K C; Pavan, W J; Pavesi, G; Pesole, G; Petrovsky, N; Piazza, S; Reed, J; Reid, J F; Ring, B Z; Ringwald, M; Rost, B; Ruan, Y; Salzberg, S L; Sandelin, A; Schneider, C; Schönbach, C; Sekiguchi, K; Semple, C A M; Seno, S; Sessa, L; Sheng, Y; Shibata, Y; Shimada, H; Shimada, K; Silva, D; Sinclair, B; Sperling, S; Stupka, E; Sugiura, K; Sultana, R; Takenaka, Y; Taki, K; Tammoja, K; Tan, S L; Tang, S; Taylor, M S; Tegner, J; Teichmann, S A; Ueda, H R; van Nimwegen, E; Verardo, R; Wei, C L; Yagi, K; Yamanishi, H; Zabarovsky, E; Zhu, S; Zimmer, A; Hide, W; Bult, C; Grimmond, S M; Teasdale, R D; Liu, E T; Brusic, V; Quackenbush, J; Wahlestedt, C; Mattick, J S; Hume, D A; Kai, C; Sasaki, D; Tomaru, Y; Fukuda, S; Kanamori-Katayama, M; Suzuki, M; Aoki, J; Arakawa, T; Iida, J; Imamura, K; Itoh, M; Kato, T; Kawaji, H; Kawagashira, N; Kawashima, T; Kojima, M; Kondo, S; Konno, H; Nakano, K; Ninomiya, N; Nishio, T; Okada, M; Plessy, C; Shibata, K; Shiraki, T; Suzuki, S; Tagami, M; Waki, K; Watahiki, A; Okamura-Oho, Y; Suzuki, H; Kawai, J; Hayashizaki, Y

    2005-09-02

    This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

  13. The virome in mammalian physiology and disease

    PubMed Central

    Virgin, Herbert W.

    2014-01-01

    The virome contains the most abundant and fastest-mutating genetic elements on Earth. The mammalian virome is constituted of viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect the broad array of other types of organisms that inhabit us. Virome interactions with the host cannot be encompassed by a monotheistic view of viruses as pathogens. Instead, the genetic and transcriptional identity of mammals is defined in part by our co-evolved virome, a concept with profound implications for understanding health and disease. PMID:24679532

  14. Mammalian odorant receptors: functional evolution and variation

    PubMed Central

    Jiang, Yue; Matsunami, Hiroaki

    2015-01-01

    In mammals, the perception of smell starts with the activation of odorant receptors (ORs) by volatile molecules in the environment. The mammalian OR repertoire has been subject to rapid evolution, and is highly diverse within the human population. Recent advances in the functional expression and ligand identification of ORs allow for functional analysis of OR evolution, and reveal that changes in OR protein sequences translate into high degrees of functional variations. Moreover, in several cases the functional variation of a single OR affects the perception of its cognate odor ligand, providing clues as to how an odor is coded at the receptor level. PMID:25660959

  15. Derivation of the mammalian skull vault

    PubMed Central

    MORRISS-KAY, GILLIAN M.

    2001-01-01

    This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816

  16. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  17. Mammalian developmental genetics in the twentieth century.

    PubMed

    Artzt, Karen

    2012-12-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas.

  18. Mammalian cell culture capacity for biopharmaceutical manufacturing.

    PubMed

    Ecker, Dawn M; Ransohoff, Thomas C

    2014-01-01

    : With worldwide sales of biopharmaceuticals increasing each year and continuing growth on the horizon, the manufacture of mammalian biopharmaceuticals has become a major global enterprise. We describe the current and future industry wide supply of manufacturing capacity with regard to capacity type, distribution, and geographic location. Bioreactor capacity and the use of single-use products for biomanufacturing are also profiled. An analysis of the use of this capacity is performed, including a discussion of current trends that will influence capacity growth, availability, and utilization in the coming years.

  19. Mammalian Developmental Genetics in the Twentieth Century

    PubMed Central

    Artzt, Karen

    2012-01-01

    This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas. PMID:23212897

  20. Molecular architecture of the mammalian circadian clock.

    PubMed

    Partch, Carrie L; Green, Carla B; Takahashi, Joseph S

    2014-02-01

    Circadian clocks coordinate physiology and behavior with the 24h solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24h timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally directed therapeutics to improve health and prevent disease.

  1. Understanding Adult Education and Training.

    ERIC Educational Resources Information Center

    Foley, Griff, Ed.

    This book introduces readers to issues, debates and literatures related to a number of central areas of practice in adult education and training, especially in Australia. It is intended as a first attempt to define the field of adult education in Australia in an analytical and theoretical, as opposed to a theoretical and practical sense. Written…

  2. The Development of Kisspeptin Circuits in the Mammalian Brain

    PubMed Central

    Semaan, Sheila J.; Tolson, Kristen P.

    2015-01-01

    The neuropeptide kisspeptin, encoded by the Kiss1 gene, is required for mammalian puberty and fertility. Examining the development of the kisspeptin system contributes to our understanding of pubertal progression and adult reproduction and sheds light on possible mechanisms underlying the development of reproductive disorders, such as precocious puberty or hypogonadotropic hypogonadism. Recent work, primarily in rodent models, has begun to study the development of kisspeptin neurons and their regulation by sex steroids and other factors at early life stages. In the brain, kisspeptin is predominantly expressed in two areas of the hypothalamus, the anteroventral periventricular nucleus and neighboring periventricular nucleus (pre-optic area in some species) and the arcuate nucleus. Kisspeptin neurons in these two hypothalamic regions are differentially regulated by testosterone and estradiol, both in development and in adulthood, and also display differences in their degree of sexual dimorphism. In this chapter, we discuss what is currently known and not known about the ontogeny, maturation, and sexual differentiation of kisspeptin neurons, as well as their regulation by sex steroids and other factors during development. PMID:23550009

  3. Modeling transformations of neurodevelopmental sequences across mammalian species.

    PubMed

    Workman, Alan D; Charvet, Christine J; Clancy, Barbara; Darlington, Richard B; Finlay, Barbara L

    2013-04-24

    A general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life. The progress of neural events across species is sufficiently predictable that a single model can be used to predict the timing of all events in all species, with a correlation of modeled values to empirical data of 0.9929. Each species' rate of progress through the event scale, described by a regression equation predicting duration of development in days, is highly correlated with adult brain size. Neural heterochrony can be seen in selective delay of retinogenesis in the cat, associated with greater numbers of rods in its retina, and delay of corticogenesis in all species but rodents and the rabbit, associated with relatively larger cortices in species with delay. Unexpectedly, precocial mammals (those unusually mature at birth) delay the onset of first neurogenesis but then progress rapidly through remaining developmental events.

  4. Control of mammalian germ cell entry into meiosis.

    PubMed

    Feng, Chun-Wei; Bowles, Josephine; Koopman, Peter

    2014-01-25

    Germ cells are unique in undergoing meiosis to generate oocytes and sperm. In mammals, meiosis onset is before birth in females, or at puberty in males, and recent studies have uncovered several regulatory steps involved in initiating meiosis in each sex. Evidence suggests that retinoic acid (RA) induces expression of the critical pre-meiosis gene Stra8 in germ cells of the fetal ovary, pubertal testis and adult testis. In the fetal testis, CYP26B1 degrades RA, while FGF9 further antagonises RA signalling to suppress meiosis. Failsafe mechanisms involving Nanos2 may further suppress meiosis in the fetal testis. Here, we draw together the growing knowledge relating to these meiotic control mechanisms, and present evidence that they are co-ordinately regulated and that additional factors remain to be identified. Understanding this regulatory network will illuminate not only how the foundations of mammalian reproduction are laid, but also how mis-regulation of these steps can result in infertility or germline tumours.

  5. Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species

    PubMed Central

    Workman, Alan D.; Charvet, Christine J.; Clancy, Barbara; Darlington, Richard B.

    2013-01-01

    A general model of neural development is derived to fit 18 mammalian species, including humans, macaques, several rodent species, and six metatherian (marsupial) mammals. The goal of this work is to describe heterochronic changes in brain evolution within its basic developmental allometry, and provide an empirical basis to recognize equivalent maturational states across animals. The empirical data generating the model comprises 271 developmental events, including measures of initial neurogenesis, axon extension, establishment, and refinement of connectivity, as well as later events such as myelin formation, growth of brain volume, and early behavioral milestones, to the third year of human postnatal life. The progress of neural events across species is sufficiently predictable that a single model can be used to predict the timing of all events in all species, with a correlation of modeled values to empirical data of 0.9929. Each species' rate of progress through the event scale, described by a regression equation predicting duration of development in days, is highly correlated with adult brain size. Neural heterochrony can be seen in selective delay of retinogenesis in the cat, associated with greater numbers of rods in its retina, and delay of corticogenesis in all species but rodents and the rabbit, associated with relatively larger cortices in species with delay. Unexpectedly, precocial mammals (those unusually mature at birth) delay the onset of first neurogenesis but then progress rapidly through remaining developmental events. PMID:23616543

  6. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    PubMed

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  7. Effects of Tetrodotoxin on the Mammalian Cardiovascular System

    PubMed Central

    Zimmer, Thomas

    2010-01-01

    The human genome encodes nine functional voltage-gated Na+ channels. Three of them, namely Nav1.5, Nav1.8, and Nav1.9, are resistant to nanomolar concentrations of tetrodotoxin (TTX; IC50 ≥ 1 μM). The other isoforms, which are predominantly expressed in the skeletal muscle and nervous system, are highly sensitive to TTX (IC50 ~ 10 nM). During the last two decades, it has become evident that in addition to the major cardiac isoform Nav1.5, several of those TTX sensitive isoforms are expressed in the mammalian heart. Whereas immunohistochemical and electrophysiological methods demonstrated functional expression in various heart regions, the physiological importance of those isoforms for cardiac excitation in higher mammals is still debated. This review summarizes our knowledge on the systemic cardiovascular effects of TTX in animals and humans, with a special focus on cardiac excitation and performance at lower concentrations of this marine drug. Altogether, these data strongly suggest that TTX sensitive Na+ channels, detected more recently in various heart tissues, are not involved in excitation phenomena in the healthy adult heart of higher mammals. PMID:20411124

  8. Adherent neural stem (NS) cells from fetal and adult forebrain.

    PubMed

    Pollard, Steven M; Conti, Luciano; Sun, Yirui; Goffredo, Donato; Smith, Austin

    2006-07-01

    Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

  9. Central line infections - hospitals

    MedlinePlus

    ... infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired infection - central line infection; Patient safety - central ...

  10. Ecology and evolution of mammalian biodiversity

    PubMed Central

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  11. Genomic imprinting: a mammalian epigenetic discovery model.

    PubMed

    Barlow, Denise P

    2011-01-01

    Genomic imprinting is an epigenetic process leading to parental-specific expression of one to two percent of mammalian genes that offers one of the best model systems for a molecular analysis of epigenetic regulation in development and disease. In the twenty years since the first imprinted gene was identified, this model has had a significant impact on decoding epigenetic information in mammals. So far it has led to the discovery of long-range cis-acting control elements whose epigenetic state regulates small clusters of genes and of unusual macro noncoding RNAs (ncRNAs) that directly repress genes in cis, and critically, it has demonstrated that one biological role of DNA methylation is to allow expression of genes normally repressed by default. This review describes the progress in understanding how imprinted protein-coding genes are silenced; in particular, it focuses on the role of macro ncRNAs that have broad relevance as a potential new layer of regulatory information in the mammalian genome.

  12. Structure and function in mammalian societies

    PubMed Central

    Clutton-Brock, Tim

    2009-01-01

    Traditional interpretations of the evolution of animal societies have suggested that their structure is a consequence of attempts by individuals to maximize their inclusive fitness within constraints imposed by their social and physical environments. In contrast, some recent re-interpretations have argued that many aspects of social organization should be interpreted as group-level adaptations maintained by selection operating between groups or populations. Here, I review our current understanding of the evolution of mammalian societies, focusing, in particular, on the evolution of reproductive strategies in societies where one dominant female monopolizes reproduction in each group and her offspring are reared by other group members. Recent studies of the life histories of females in these species show that dispersing females often have little chance of establishing new breeding groups and so are likely to maximize their inclusive fitness by helping related dominants to rear their offspring. As in eusocial insects, increasing group size can lead to a progressive divergence in the selection pressures operating on breeders and helpers and to increasing specialization in their behaviour and life histories. As yet, there is little need to invoke group-level adaptations in order to account for the behaviour of individuals or the structure of mammalian groups. PMID:19805430

  13. The terminal DNA structure of mammalian chromosomes.

    PubMed Central

    McElligott, R; Wellinger, R J

    1997-01-01

    In virtually all eukaryotic organisms, telomeric DNA is composed of a variable number of short direct repeats. While the primary sequence of telomeric repeats has been determined for a great variety of species, the actual physical DNA structure at the ends of a bona fide metazoan chromosome with a centromere is unknown. It is shown here that an overhang of the strand forming the 3' ends of the chromosomes, the G-rich strand, is found at mammalian chromosome ends. Moreover, on at least some telomeres, the overhangs are > or = 45 bases long. Such surprisingly long overhangs were present on chromosomes derived from fully transformed tissue culture cells and normal G0-arrested peripheral leukocytes. Thus, irrespective of whether the cells were actively dividing or arrested, a very similar terminal DNA arrangement was found. These data suggest that the ends of mammalian and possibly all vertebrate chromosomes consist of an overhang of the G-rich strand and that these overhangs may be considerably larger than previously anticipated. PMID:9218811

  14. The Mammalian Ovary from Genesis to Revelation

    PubMed Central

    Edson, Mark A.; Nagaraja, Ankur K.; Matzuk, Martin M.

    2009-01-01

    Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago. PMID:19776209

  15. An Adaptive Threshold in Mammalian Neocortical Evolution

    PubMed Central

    Kalinka, Alex T.; Tomancak, Pavel; Huttner, Wieland B.

    2014-01-01

    Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group. PMID:25405475

  16. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  17. Kinetic Analysis of a Mammalian Phospholipase D

    PubMed Central

    Henage, Lee G.; Exton, John H.; Brown, H. Alex

    2013-01-01

    In mammalian cells, phospholipase D activity is tightly regulated by diverse cellular signals, including hormones, neurotransmitters, and growth factors. Multiple signaling pathways converge upon phospholipase D to modulate cellular actions, such as cell growth, shape, and secretion. We examined the kinetics of protein kinase C and G-protein regulation of mammalian phospholipase D1 (PLD1) in order to better understand interactions between PLD1 and its regulators. Activation by Arf-1, RhoA, Rac1, Cdc42, protein kinase Cα, and phosphatidylinositol 4,5-bisphosphate displayed surface dilution kinetics, but these effectors modulated different kinetic parameters. PKCα activation of PLD1 involves N- and C-terminal PLD domains. Rho GTPases were binding activators, enhancing the catalytic efficiency of a purified PLD1 catalytic domain via effects on Km. Arf-1, a catalytic activator, stimulated PLD1 by enhancing the catalytic constant, kcat. A kinetic description of PLD1 activation by multiple modulators reveals a mechanism for apparent synergy between activators. Synergy was observed only when PLD1 was simultaneously stimulated by a binding activator and a catalytic activator. Surprisingly, synergistic activation was steeply dependent on phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine. Together, these findings suggest a role for PLD1 as a signaling node, in which integration of convergent signals occurs within discrete locales of the cellular membrane. PMID:16339153

  18. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  19. Ballistic transfection of mammalian cells in vivo

    SciTech Connect

    Kolesnikov, V.A.; Zelenin, A.V.; Zelenina, I.A.

    1995-11-01

    The method of ballistic transfection initially proposed for genetic transformation of plants was used for animal cells in vitro and in situ. The method consists in bombarding the transfected cells with microparticles of heavy metals carrying foreign DNA. Penetrating the cell nucleus, the microparticles transport the introduced gene. Successful genetic transformation of the cultured mouse cells and fish embryos was realized, and this allowed the study of mammalian cells in situ. The performed studies allowed us to demonstrate expression of the reporter genes of chloramphenicol acetyltransferase, galactosidase, and neomycin phosphotransferase in the mouse liver, mammary gland and kidney explants, in the liver and cross-striated muscle of mouse and rat in situ, and in developing mouse embryos at the stages of two-cell embryo, morula, and blastocyst. All these genes were introduced by ballistic transfection. In the liver and cross-striated muscle the transgene activity was detected within two to three months after transfection. Thus, the ballistic introduction of the foreign genes in the cells in situ was demonstrated, and this opens possibilities for the use of this method in gene therapy. Methodical aspects of the bombarding and transfection are considered in detail, and the published data on transfection and genetic transformation of mammalian cells are discussed. 41 refs., 13 figs., 1 tab.

  20. Catabolic flexibility of mammalian-associated lactobacilli

    PubMed Central

    2013-01-01

    Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus. PMID:23680304

  1. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats.

    PubMed

    Fang, Yuan; Mo, Xiaofen; Guo, Wenyi; Zhang, Meng; Zhang, Peihua; Wang, Yan; Rong, Xianfang; Tian, Jie; Sun, Xinghuai

    2010-12-01

    Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.

  2. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.

    PubMed

    Lundstrom, Kenneth

    2010-01-01

    One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this

  3. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  4. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand

    NASA Astrophysics Data System (ADS)

    Tougard, C.; Montuire, S.

    2006-01-01

    Mammalian faunal studies have provided various clues for a better reconstruction of hominid Quaternary paleoenvironments. In this work, two methods were used: (1) the cenogram method, based on a graphical representation of the mammalian community structure, and (2) the species richness of murine rodents to estimate climatic parameters. These methods were applied to Middle and Late Pleistocene mammalian faunas of South-East Asia, from South China to Indonesia. Special emphasis was laid on a fauna from north-east Thailand dated back to approximately 170,000 years (i.e. a glacial period). This Thai fauna seems characteristic of a slightly open forested environment intermediate between those of present-day central Myanmar and the northern part of South China. In the Thai fauna, the occurrence of both cool-loving mammalian taxa, currently living further north, and species of larger body size than their living counterparts, indicates cooler and probably drier climatic conditions than present-day climates in Thailand. These results are quite consistent with Middle Pleistocene palynological records from South China and eastern Java. From other less well-documented Pleistocene faunas, taken into account in this work, humid climatic conditions of interglacial periods were revealed from large mammalian taxa.

  5. A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space

    NASA Astrophysics Data System (ADS)

    Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian

    2008-08-01

    Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

  6. Mottled Mice and Non-Mammalian Models of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Krzeptowski, Wojciech; Lipiński, Paweł; Grzmil, Paweł; Starzyński, Rafał; Pierzchała, Olga; Møller, Lisbeth Birk

    2015-01-01

    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals. PMID:26732058

  7. Mottled Mice and Non-Mammalian Models of Menkes Disease.

    PubMed

    Lenartowicz, Małgorzata; Krzeptowski, Wojciech; Lipiński, Paweł; Grzmil, Paweł; Starzyński, Rafał; Pierzchała, Olga; Møller, Lisbeth Birk

    2015-01-01

    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals.

  8. The Mammalian Endoplasmic Reticulum-Associated Degradation System

    PubMed Central

    Olzmann, James A.; Kopito, Ron R.; Christianson, John C.

    2013-01-01

    The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells. PMID:23232094

  9. Mammalian social odours: attraction and individual recognition

    PubMed Central

    Brennan, Peter A; Kendrick, Keith M

    2006-01-01

    Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory

  10. Vestibular rehabilitation of older adults with dizziness.

    PubMed

    Alrwaily, Muhammad; Whitney, Susan L

    2011-04-01

    The role of rehabilitation for treatment of older adults with dizziness and balance disorders is reviewed. Theories related to functional recovery from peripheral and central vestibular disorders are presented. Suggestions on which older adults might benefit from vestibular rehabilitation therapy are presented. Promising innovative rehabilitation strategies and technologies that might enhance recovery of the older adult with balance dysfunction are discussed.

  11. Elabela-apelin receptor signaling pathway is functional in mammalian systems.

    PubMed

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-02-02

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development.

  12. Mammalian viviparity: a complex niche in the evolution of genomic imprinting

    PubMed Central

    Keverne, E B

    2014-01-01

    Evolution of mammalian reproductive success has witnessed a strong dependence on maternal resources through placental in utero development. Genomic imprinting, which has an active role in mammalian viviparity, also reveals a biased role for matrilineal DNA in its regulation. The co-existence of three matrilineal generations as one (mother, foetus and post-meiotic oocytes) has provided a maternal niche for transgenerational co-adaptive selection pressures to operate. In utero foetal growth has required increased maternal feeding in advance of foetal energetic demands; the mammary glands are primed for milk production in advance of birth, while the maternal hypothalamus is hormonally primed by the foetal placenta for nest building and post-natal care. Such biological forward planning resulted from maternal–foetal co-adaptation facilitated by co-expression of the same imprinted allele in the developing hypothalamus and placenta. This co-expression is concurrent with the placenta interacting with the adult maternal hypothalamus thereby providing a transgenerational template on which selection pressures may operate ensuring optimal maternalism in this and the next generation. Invasive placentation has further required the maternal immune system to adapt and positively respond to the foetal allotype. Pivotal to these mammalian evolutionary developments, genomic imprinting emerged as a monoallelic gene dosage regulatory mechanism of tightly interconnected gene networks providing developmental genetic stability for in utero development. PMID:24569636

  13. Elabela-Apelin Receptor Signaling Pathway is Functional in Mammalian Systems

    PubMed Central

    Wang, Zhi; Yu, Daozhan; Wang, Mengqiao; Wang, Qilong; Kouznetsova, Jennifer; Yang, Rongze; Qian, Kun; Wu, Wenjun; Shuldiner, Alan; Sztalryd, Carole; Zou, Minghui; Zheng, Wei; Gong, Da-Wei

    2015-01-01

    Elabela (ELA) or Toddler is a recently discovered hormone which is required for normal development of heart and vasculature through activation of apelin receptor (APJ), a G protein-coupled receptor (GPCR), in zebrafish. The present study explores whether the ELA-APJ signaling pathway is functional in the mammalian system. Using reverse-transcription PCR, we found that ELA is restrictedly expressed in human pluripotent stem cells and adult kidney whereas APJ is more widely expressed. We next studied ELA-APJ signaling pathway in reconstituted mammalian cell systems. Addition of ELA to HEK293 cells over-expressing GFP-AJP fusion protein resulted in rapid internalization of the fusion receptor. In Chinese hamster ovarian (CHO) cells over-expressing human APJ, ELA suppresses cAMP production with EC50 of 11.1 nM, stimulates ERK1/2 phosphorylation with EC50 of 14.3 nM and weakly induces intracellular calcium mobilization. Finally, we tested ELA biological function in human umbilical vascular endothelial cells and showed that ELA induces angiogenesis and relaxes mouse aortic blood vessel in a dose-dependent manner through a mechanism different from apelin. Collectively, we demonstrate that the ELA-AJP signaling pathways are functional in mammalian systems, indicating that ELA likely serves as a hormone regulating the circulation system in adulthood as well as in embryonic development. PMID:25639753

  14. Molecular cloning of cDNA encoding the Xenopus homolog of mammalian RelB.

    PubMed Central

    Suzuki, K; Yamamoto, T; Inoue, J

    1995-01-01

    We have molecularly cloned cDNA encoding a new Rel-related protein in Xenopus laevis. Nucleotide sequencing revealed that the product is most homologous to mammalian RelB in its N-terminal region. Furthermore, the putative protein kinase A phosphorylation site (RRPS), found in most of the Rel family proteins, but replaced by QRLT in mammalian RelB, is replaced by QRIT, indicating that our cDNA most likely encodes the Xenopus homolog of mammalian RelB (XrelB). As in the case of mouse RelB, XrelB alone does not bind to DNA efficiently, while XrelB/human p50 heterodimers bind to kappa B sites and activate transcription. XrelB transcripts are present at all stages of oocyte maturation and in adult tissues examined. However, in staged embryos XrelB is undetectable from neurula to stage 28 and resumes expression at stage 47, while Xrel1/XrelA, the Xenopus homolog of p65, has been demonstrated to be expressed throughout embryogenesis. These results raise the possibility that XrelB and Xrel1/XrelA play different roles in the development of X.laevis. Images PMID:8524658

  15. Microglia in central nervous system repair after injury.

    PubMed

    Jin, Xuemei; Yamashita, Toshihide

    2016-05-01

    Accumulating evidence suggests that immune cells perform crucial inflammation-related functions including clearing dead tissue and promoting wound healing. Thus, they provide a conducive environment for better neuronal regeneration and functional recovery after adult mammalian central nervous system (CNS) injury. However, activated immune cells can also induce secondary damage of intact tissue and inhibit post-injury CNS repair. The inflammation response is due to the microglial production of cytokines and chemokines for the recruitment of peripheral immune cell populations, such as monocytes, neutrophils, dendritic cells and T lymphocytes. Interestingly, microglia and T lymphocytes can be detected at the injured site in both the early and later stages after nerve injury, whereas other peripheral immune cells infiltrate the injured parenchyma of the brain and spinal cord only in the early post-injury phase, and subsequently disappear. This suggests that microglia and T cells may play crucial roles in the post-injury functional recovery of the CNS. In this review, we summarize the current studies on microglia that examined neuronal regeneration and the molecular signalling mechanisms in the injured CNS. Better understanding of the effects of microglia on neural regeneration will aid the development of therapy strategies to enhance CNS functional recovery after injury.

  16. Scar-modulating treatments for central nervous system injury.

    PubMed

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  17. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence.

    PubMed

    Kronstad, Jim; Saikia, Sanjay; Nielson, Erik David; Kretschmer, Matthias; Jung, Wonhee; Hu, Guanggan; Geddes, Jennifer M H; Griffiths, Emma J; Choi, Jaehyuk; Cadieux, Brigitte; Caza, Mélissa; Attarian, Rodgoun

    2012-02-01

    The basidiomycete fungus Cryptococcus neoformans infects humans via inhalation of desiccated yeast cells or spores from the environment. In the absence of effective immune containment, the initial pulmonary infection often spreads to the central nervous system to result in meningoencephalitis. The fungus must therefore make the transition from the environment to different mammalian niches that include the intracellular locale of phagocytic cells and extracellular sites in the lung, bloodstream, and central nervous system. Recent studies provide insights into mechanisms of adaptation during this transition that include the expression of antiphagocytic functions, the remodeling of central carbon metabolism, the expression of specific nutrient acquisition systems, and the response to hypoxia. Specific transcription factors regulate these functions as well as the expression of one or more of the major known virulence factors of C. neoformans. Therefore, virulence factor expression is to a large extent embedded in the regulation of a variety of functions needed for growth in mammalian hosts. In this regard, the complex integration of these processes is reminiscent of the master regulators of virulence in bacterial pathogens.

  18. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain.

    PubMed

    Rhodes, Kenneth J; Carroll, Karen I; Sung, M Amy; Doliveira, Lisa C; Monaghan, Michael M; Burke, Sharon L; Strassle, Brian W; Buchwalder, Lynn; Menegola, Milena; Cao, Jie; An, W Frank; Trimmer, James S

    2004-09-08

    Voltage-gated potassium (Kv) channels from the Kv4, or Shal-related, gene family underlie a major component of the A-type potassium current in mammalian central neurons. We recently identified a family of calcium-binding proteins, termed KChIPs (Kv channel interacting proteins), that bind to the cytoplasmic N termini of Kv4 family alpha subunits and modulate their surface density, inactivation kinetics, and rate of recovery from inactivation (An et al., 2000). Here, we used single and double-label immunohistochemistry, together with circumscribed lesions and coimmunoprecipitation analyses, to examine the regional and subcellular distribution of KChIPs1-4 and Kv4 family alpha subunits in adult rat brain. Immunohistochemical staining using KChIP-specific monoclonal antibodies revealed that the KChIP polypeptides are concentrated in neuronal somata and dendrites where their cellular and subcellular distribution overlaps, in an isoform-specific manner, with that of Kv4.2 and Kv4.3. For example, immunoreactivity for KChIP1 and Kv4.3 is concentrated in the somata and dendrites of hippocampal, striatal, and neocortical interneurons. Immunoreactivity for KChIP2, KChIP4, and Kv4.2 is concentrated in the apical and basal dendrites of hippocampal and neocortical pyramidal cells. Double-label immunofluorescence labeling revealed that throughout the forebrain, KChIP2 and KChIP4 are frequently colocalized with Kv4.2, whereas in cortical, hippocampal, and striatal interneurons, KChIP1 is frequently colocalized with Kv4.3. Coimmunoprecipitation analyses confirmed that all KChIPs coassociate with Kv4 alpha subunits in brain membranes, indicating that KChIPs 1-4 are integral components of native A-type Kv channel complexes and are likely to play a major role as modulators of somatodendritic excitability.

  19. Predictive chromatin signatures in the mammalian genome

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Ren, Bing

    2009-01-01

    The DNA sequence of an organism is a blueprint of life: it harbors not only the information about proteins and other molecules produced in each cell, but also instructions on when and where such molecules are made. Chromatin, the structure of histone and DNA that has co-evolved with eukaryotic genome, also contains information that indicates the function and activity of the underlying DNA sequences. Such information exists in the form of covalent modifications to the histone proteins that comprise the nucleosome. Thanks to the development of high throughput technologies such as DNA microarrays and next generation DNA sequencing, we have begun to associate the various combinations of chromatin modification patterns with functional sequences in the human genome. Here, we review the rapid progress from descriptive observations of histone modification profiles to highly predictive models enabling use of chromatin signatures to enumerate novel functional sequences in mammalian genomes that have escaped previous detection. PMID:19808796

  20. Cenozoic climate change influences mammalian evolutionary dynamics

    PubMed Central

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul

    2012-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ18O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic. PMID:22203974

  1. Chemical analysis of individual mammalian cells

    SciTech Connect

    Tan, W.; Yeung, E.S.

    1994-12-31

    The extremely small size of mammalian cells creates an unusual challenge for the analytical chemist, both in terms of separation and detection. Under a microscope, it is possible to confirm the injection of individual cells such as erythrocyte into capillaries with 10-{mu}m i.d. by hydrostatic pressure. The ionic contents can then be separated by capillary electrophoresis after the cell lyses. Enzymes at the zeptomole level can be monitored by on-column fluorescence enzyme assay. On-column particle-counting immunoassay can be applied to a broad range of analytes (antigens), also at the zeptomole level. The authors report here the simultaneous determination of the amounts of glucose-6-phosphate dehydrogenase (G6PDH) and their activities in individual erythrocytes by using a combination of the two detection schemes. Insights into the degradation of proteins as a function of cell age can be derived.

  2. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  3. Genetic reassortment of mammalian reoviruses in mice.

    PubMed Central

    Wenske, E A; Chanock, S J; Krata, L; Fields, B N

    1985-01-01

    Reassortments between type 1 (Lang) and type 3 (Dearing) reoviruses were isolated from suckling mice infected perorally with an inoculum containing both type 1 and type 3 viruses. A total of five distinct reassortants (designated as E1 through E5) were isolated from animals during the course of the experiment. Two reassortants (E1 and E2) represented the majority of the reassortants isolated. The majority of genes of types E1 and E2 were derived from type 1 (Lang). However, E1 had an M2 gene and an S1 gene derived from type 3 (Dearing), while E2 had M2 and S2 genes derived from type 3 (Dearing). Thus, nonrandom reassortment between mammalian reoviruses can be demonstrated in vivo. PMID:4057359

  4. Fundamentals of Expression in Mammalian Cells.

    PubMed

    Dyson, Michael R

    2016-01-01

    Expression of proteins in mammalian cells is a key technology important for many functional studies on human and higher eukaryotic genes. Studies include the mapping of protein interactions, solving protein structure by crystallization and X-ray diffraction or solution phase NMR and the generation of antibodies to enable a range of studies to be performed including protein detection in vivo. In addition the production of therapeutic proteins and antibodies, now a multi billion dollar industry, has driven major advances in cell line engineering for the production of grams per liter of active proteins and antibodies. Here the key factors that need to be considered for successful expression in HEK293 and CHO cells are reviewed including host cells, expression vector design, transient transfection methods, stable cell line generation and cultivation conditions.

  5. [Thiamine triphosphatase activity in mammalian mitochondria].

    PubMed

    Rusina, I M; Makarchikov, A F

    2003-01-01

    Mitochondrial preparations isolated from bovine kidney and brain as well as the liver and the brain of rat show thiamine triphosphatase (ThTPase) activity. The activity was determined from the particles by freezing-thawing suggesting that a soluble enzyme is involved. The liberation patterns of ThTPase and marker enzyme activities from mitochondria under osmotic shock or treatment with increasing Triton X-100 concentrations indicate the presence of ThTPase both in the matrix and intermembrane space. It was found, basing on gel filtration behavior, that the mitochondrial ThTPase has the same molecular mass as specific cytosolic ThTPase (EC 3.6.1.28). The enzymes, however, were clearly distinguishable in Km values, the mitochondrial one showing a higher apparent affinity for substrate. These results imply the existence of ThTPase multiple forms in mammalian cells.

  6. Mammalian telomeres and their partnership with lamins

    PubMed Central

    Burla, Romina; La Torre, Mattia; Saggio, Isabella

    2016-01-01

    ABSTRACT Chromosome ends are complex structures, which require a panel of factors for their elongation, replication, and protection. We describe here the mechanics of mammalian telomeres, dynamics and maintainance in relation to lamins. Multiple biochemical connections, including association of telomeres to the nuclear envelope and matrix, of telomeric proteins to lamins, and of lamin-associated proteins to chromosome ends, underline the interplay between lamins and telomeres. Paths toward senescence, such as defective telomere replication, altered heterochromatin organization, and impaired DNA repair, are common to lamins' and telomeres' dysfunction. The convergence of phenotypes can be interpreted through a model of dynamic, lamin-controlled functional platforms dedicated to the function of telomeres as fragile sites. The features of telomeropathies and laminopathies, and of animal models underline further overlapping aspects, including the alteration of stem cell compartments. We expect that future studies of basic biology and on aging will benefit from the analysis of this telomere-lamina interplay. PMID:27116558

  7. Differential Light Scattering from Spherical Mammalian Cells

    PubMed Central

    Brunsting, Albert; Mullaney, Paul F.

    1974-01-01

    The differential scattered light intensity patterns of spherical mammalian cells were measured with a new photometer which uses high-speed film as the light detector. The scattering objects, interphase and mitotic Chinese hamster ovary cells and HeLa cells, were modeled as (a) a coated sphere, accounting for nucleus and cytoplasm, and (b) a homogeneous sphere when no cellular nucleus was present. The refractive indices and size distribution of the cells were measured for an accurate comparison of the theoretical model with the light-scattering measurements. The light scattered beyond the forward direction is found to contain information about internal cellular morphology, provided the size distribution of the cells is not too broad. ImagesFIGURE 1 PMID:4134589

  8. Trapping mammalian protein complexes in viral particles

    PubMed Central

    Eyckerman, Sven; Titeca, Kevin; Van Quickelberghe, Emmy; Cloots, Eva; Verhee, Annick; Samyn, Noortje; De Ceuninck, Leentje; Timmerman, Evy; De Sutter, Delphine; Lievens, Sam; Van Calenbergh, Serge; Gevaert, Kris; Tavernier, Jan

    2016-01-01

    Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. PMID:27122307

  9. The Evolution of Mammalian Olfactory Receptor Genes

    PubMed Central

    Issel-Tarver, L.; Rine, J.

    1997-01-01

    We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago. PMID:9017400

  10. Mammalian Autophagy: How Does It Work?

    PubMed

    Bento, Carla F; Renna, Maurizio; Ghislat, Ghita; Puri, Claudia; Ashkenazi, Avraham; Vicinanza, Mariella; Menzies, Fiona M; Rubinsztein, David C

    2016-06-02

    Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.

  11. Cenozoic climate change influences mammalian evolutionary dynamics.

    PubMed

    Figueirido, Borja; Janis, Christine M; Pérez-Claros, Juan A; De Renzi, Miquel; Palmqvist, Paul

    2012-01-17

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ(18)O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic.

  12. Signaling mechanisms in mammalian myoblast fusion.

    PubMed

    Hindi, Sajedah M; Tajrishi, Marjan M; Kumar, Ashok

    2013-04-23

    Myoblast fusion is a critical process that contributes to the growth of muscle during development and to the regeneration of myofibers upon injury. Myoblasts fuse with each other as well as with multinucleated myotubes to enlarge the myofiber. Initial studies demonstrated that myoblast fusion requires extracellular calcium and changes in cell membrane topography and cytoskeletal organization. More recent studies have identified several cell-surface and intracellular proteins that mediate myoblast fusion. Furthermore, emerging evidence suggests that myoblast fusion is also regulated by the activation of specific cell-signaling pathways that lead to the expression of genes whose products are essential for the fusion process and for modulating the activity of molecules that are involved in cytoskeletal rearrangement. Here, we review the roles of the major signaling pathways in mammalian myoblast fusion.

  13. Mechanism of protein biosynthesis in mammalian mitochondria.

    PubMed

    Christian, Brooke E; Spremulli, Linda L

    2012-01-01

    Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.

  14. Studies on the mammalian toxicity of fenthion*

    PubMed Central

    Francis, Jean I.; Barnes, J. M.

    1963-01-01

    This paper constitutes a report on mammalian toxicological investigations of fen hion, carried out as part of the WHO malaria eradication programme, and on the conclusions drawn from them. Fenthion is found to be of intermediate toxicity to the four rodent species studied. In rats the signs of poisoning develop rather slowly but persist for several days, male rats being more susceptible than females, whereas for most phosphorothionates the converse is true. The results suggest that fenthion is not simply oxidized from the P=S compound to the P=O. It has been stated that the sulfoxide and sulfone are produced before the P=S→P=O oxidation takes place, but experiments suggest that further changes are involved. The findings are discussed in relation to the possible health hazard that might be encountered by those who have to apply fenthion as a residual spray. PMID:14056272

  15. KN-93 inhibits IKr in mammalian cardiomyocytes

    PubMed Central

    Hegyi, Bence; Chen-Izu, Ye; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T.; Banyasz, Tamas

    2015-01-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 is widely used in multiple fields of cardiac research especially for studying the mechanisms of cardiomyopathy and cardiac arrhythmias. Whereas KN-93 is a potent inhibitor of CaMKII, several off-target effects have also been found in expression cell systems and smooth muscle cells, but there is no information on the KN93 side effects in mammalian ventricular myocytes. In this study we explore the effect of KN-93 on the rapid component of delayed rectifier potassium current (IKr) in the ventricular myocytes from rabbit and guinea pig hearts. Our data indicate that KN-93 exerts direct inhibitory effect on IKr that is not mediated via CaMKII. This off-target effect of KN93 should be taken into account when interpreting the data from using KN93 to investigate the role of CaMKII in cardiac function. PMID:26463508

  16. KN-93 inhibits IKr in mammalian cardiomyocytes.

    PubMed

    Hegyi, Bence; Chen-Izu, Ye; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Banyasz, Tamas

    2015-12-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 is widely used in multiple fields of cardiac research especially for studying the mechanisms of cardiomyopathy and cardiac arrhythmias. Whereas KN-93 is a potent inhibitor of CaMKII, several off-target effects have also been found in expression cell systems and smooth muscle cells, but there is no information on the KN93 side effects in mammalian ventricular myocytes. In this study we explore the effect of KN-93 on the rapid component of delayed rectifier potassium current (IKr) in the ventricular myocytes from rabbit and guinea pig hearts. Our data indicate that KN-93 exerts direct inhibitory effect on IKr that is not mediated via CaMKII. This off-target effect of KN93 should be taken into account when interpreting the data from using KN93 to investigate the role of CaMKII in cardiac function.

  17. Cellular and chemical neuroscience of mammalian sleep.

    PubMed

    Datta, Subimal

    2010-05-01

    Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep.

  18. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  19. Mammalian sperm nuclear organization: resiliencies and vulnerabilities.

    PubMed

    Champroux, A; Torres-Carreira, J; Gharagozloo, P; Drevet, J R; Kocer, A

    2016-01-01

    Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.

  20. Scaling of the mammalian middle ear.

    PubMed

    Nummela, S

    1995-05-01

    This study considers the general question how animal size limits the size and information receiving capacity of sense organs. To clarify this in the case of the mammalian middle ear, I studied 63 mammalian species, ranging from a small bat to the Indian elephant. I determined the skull mass and the masses of the ossicles malleus, incus and stapes (M, I and S), and measured the tympanic membrane area, A1. The ossicular mass (in mg) is generally negatively allometric to skull mass (in g), the regression equation for the whole material (excluding true seals) being y = 1.373 x(0.513). However, for very small mammals the allometry approaches isometry. Within a group of large mammals no distinct allometry can be discerned. The true seals (Phocidae) are exceptional by having massive ossicles. The size relations within the middle ear are generally rather constant. However, the I/M relation is slightly positively allometric, y = 0.554 x(1.162). Two particularly isometric relations were found; the S/(M + I) relation for the ossicles characterized by the regression equation y = 0.054 x(0.993), and the relation between a two-dimensional measure of the ossicles and the tympanic membrane ares, (M + I)2/3 /A1. As in isometric ears the sound energy collected by the tympanic membrane is linearly related to its area, the latter isometry suggests that, regardless of animal size, a given ossicular cross-sectional area is exposed to a similar sound-induced stress. Possible morphological middle ear adaptations to particular acoustic environments are discussed.

  1. Defining the mammalian CArGome

    PubMed Central

    Sun, Qiang; Chen, Guang; Streb, Jeffrey W.; Long, Xiaochun; Yang, Yumei; Stoeckert, Christian J.; Miano, Joseph M.

    2006-01-01

    Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton. PMID:16365378

  2. Cortical pathways to the mammalian amygdala.

    PubMed

    McDonald, A J

    1998-06-01

    The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.

  3. Engineered Trehalose Permeable to Mammalian Cells.

    PubMed

    Abazari, Alireza; Meimetis, Labros G; Budin, Ghyslain; Bale, Shyam Sundhar; Weissleder, Ralph; Toner, Mehmet

    2015-01-01

    Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre) demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre) and trehalose tetraacetate (4-O-Ac-Tre). Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants) reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  4. Development of a stereotaxic device for low impact implantation of neural constructs or pieces of neural tissues into the mammalian brain.

    PubMed

    Jozwiak, Andrzej; Liu, Yiwen; Yang, Ying; Gates, Monte A

    2014-01-01

    Implanting pieces of tissue or scaffolding material into the mammalian central nervous system (CNS) is wrought with difficulties surrounding the size of tools needed to conduct such implants and the ability to maintain the orientation and integrity of the constructs during and after their transplantation. Here, novel technology has been developed that allows for the implantation of neural constructs or intact pieces of neural tissue into the CNS with low trauma. By "laying out" (instead of forcibly expelling) the implantable material from a thin walled glass capillary, this technology has the potential to enhance neural transplantation procedures by reducing trauma to the host brain during implantation and allowing for the implantation of engineered/dissected tissues or constructs in such a way that their orientation and integrity are maintained in the host. Such technology may be useful for treating various CNS disorders which require the reestablishment of point-to-point contacts (e.g., Parkinson's disease) across the adult CNS, an environment which is not normally permissive to axonal growth.

  5. Inhibition of Mammalian Target of Rapamycin (mTOR) Signaling in the Insular Cortex Alleviates Neuropathic Pain after Peripheral Nerve Injury

    PubMed Central

    Kwon, Minjee; Han, Jeongsoo; Kim, Un Jeng; Cha, Myeounghoon; Um, Sun Woo; Bai, Sun Joon; Hong, Seong-Karp; Lee, Bae Hwan

    2017-01-01

    Injury of peripheral nerves can trigger neuropathic pain, producing allodynia and hyperalgesia via peripheral and central sensitization. Recent studies have focused on the role of the insular cortex (IC) in neuropathic pain. Because the IC is thought to store pain-related memories, translational regulation in this structure may reveal novel targets for controlling chronic pain. Signaling via mammalian target of rapamycin (mTOR), which is known to control mRNA translation and influence synaptic plasticity, has been studied at the spinal level in neuropathic pain, but its role in the IC under these conditions remains elusive. Therefore, this study was conducted to determine the role of mTOR signaling in neuropathic pain and to assess the potential therapeutic effects of rapamycin, an inhibitor of mTORC1, in the IC of rats with neuropathic pain. Mechanical allodynia was assessed in adult male Sprague-Dawley rats after neuropathic surgery and following microinjections of rapamycin into the IC on postoperative days (PODs) 3 and 7. Optical recording was conducted to observe the neural responses of the IC to peripheral stimulation. Rapamycin reduced mechanical allodynia and downregulated the expression of postsynaptic density protein 95 (PSD95), decreased neural excitability in the IC, thereby inhibiting neuropathic pain-induced synaptic plasticity. These findings suggest that mTOR signaling in the IC may be a critical molecular mechanism modulating neuropathic pain. PMID:28377693

  6. An Analytical Study of Mammalian Bite Wounds Requiring Inpatient Management

    PubMed Central

    Lee, Young-Geun; Kim, Woo-Kyung

    2013-01-01

    Background Mammalian bite injuries create a public health problem because of their frequency, potential severity, and increasing number. Some researchers have performed fragmentary analyses of bite wounds caused by certain mammalian species. However, little practical information is available concerning serious mammalian bite wounds that require hospitalization and intensive wound management. Therefore, the purpose of this study was to perform a general review of serious mammalian bite wounds. Methods We performed a retrospective review of the medical charts of 68 patients who were referred to our plastic surgery department for the treatment of bite wounds between January 2003 and October 2012. The cases were analyzed according to the species, patient demographics, environmental factors, injury characteristics, and clinical course. Results Among the 68 cases of mammalian bite injury, 58 (85%) were caused by dogs, 8 by humans, and 2 by cats. Most of those bitten by a human and both of those bitten by cats were male. Only one-third of all the patients were children or adolescents. The most frequent site of injury was the face, with 40 cases, followed by the hand, with 16 cases. Of the 68 patients, 7 were treated with secondary intention healing. Sixty-one patients underwent delayed procedures, including delayed direct closure, skin graft, composite graft, and local flap. Conclusions Based on overall findings from our review of the 68 cases of mammalian bites, we suggest practical guidelines for the management of mammalian bite injuries, which could be useful in the treatment of serious mammalian bite wounds. PMID:24286042

  7. Hypoxia induces heart regeneration in adult mice.

    PubMed

    Nakada, Yuji; Canseco, Diana C; Thet, SuWannee; Abdisalaam, Salim; Asaithamby, Aroumougame; Santos, Celio X; Shah, Ajay M; Zhang, Hua; Faber, James E; Kinter, Michael T; Szweda, Luke I; Xing, Chao; Hu, Zeping; Deberardinis, Ralph J; Schiattarella, Gabriele; Hill, Joseph A; Oz, Orhan; Lu, Zhigang; Zhang, Cheng Cheng; Kimura, Wataru; Sadek, Hesham A

    2017-01-12

    The adult mammalian heart is incapable of regeneration following cardiomyocyte loss, which underpins the lasting and severe effects of cardiomyopathy. Recently, it has become clear that the mammalian heart is not a post-mitotic organ. For example, the neonatal heart is capable of regenerating lost myocardium, and the adult heart is capable of modest self-renewal. In both of these scenarios, cardiomyocyte renewal occurs via the proliferation of pre-existing cardiomyocytes, and is regulated by aerobic-respiration-mediated oxidative DNA damage. Therefore, we reasoned that inhibiting aerobic respiration by inducing systemic hypoxaemia would alleviate oxidative DNA damage, thereby inducing cardiomyocyte proliferation in adult mammals. Here we report that, in mice, gradual exposure to severe systemic hypoxaemia, in which inspired oxygen is gradually decreased by 1% and maintained at 7% for 2 weeks, results in inhibition of oxidative metabolism, decreased reactive oxygen species production and oxidative DNA damage, and reactivation of cardiomyocyte mitosis. Notably, we find that exposure to hypoxaemia 1 week after inductio