Science.gov

Sample records for adult mammalian cns

  1. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS

    PubMed Central

    Takihara, Yuji; Inatani, Masaru; Eto, Kei; Inoue, Toshihiro; Kreymerman, Alexander; Miyake, Seiji; Ueno, Shinji; Nagaya, Masatoshi; Nakanishi, Ayami; Iwao, Keiichiro; Takamura, Yoshihiro; Sakamoto, Hirotaka; Satoh, Keita; Kondo, Mineo; Sakamoto, Tatsuya; Goldberg, Jeffrey L.; Nabekura, Junichi; Tanihara, Hidenobu

    2015-01-01

    The lack of intravital imaging of axonal transport of mitochondria in the mammalian CNS precludes characterization of the dynamics of axonal transport of mitochondria in the diseased and aged mammalian CNS. Glaucoma, the most common neurodegenerative eye disease, is characterized by axon degeneration and the death of retinal ganglion cells (RGCs) and by an age-related increase in incidence. RGC death is hypothesized to result from disturbances in axonal transport and in mitochondrial function. Here we report minimally invasive intravital multiphoton imaging of anesthetized mouse RGCs through the sclera that provides sequential time-lapse images of mitochondria transported in a single axon with submicrometer resolution. Unlike findings from explants, we show that the axonal transport of mitochondria is highly dynamic in the mammalian CNS in vivo under physiological conditions. Furthermore, in the early stage of glaucoma modeled in adult (4-mo-old) mice, the number of transported mitochondria decreases before RGC death, although transport does not shorten. However, with increasing age up to 23–25 mo, mitochondrial transport (duration, distance, and duty cycle) shortens. In axons, mitochondria-free regions increase and lengths of transported mitochondria decrease with aging, although totally organized transport patterns are preserved in old (23- to 25-mo-old) mice. Moreover, axonal transport of mitochondria is more vulnerable to glaucomatous insults in old mice than in adult mice. These mitochondrial changes with aging may underlie the age-related increase in glaucoma incidence. Our method is useful for characterizing the dynamics of axonal transport of mitochondria and may be applied to other submicrometer structures in the diseased and aged mammalian CNS in vivo. PMID:26240337

  2. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS.

    PubMed

    Fancy, Stephen P J; Baranzini, Sergio E; Zhao, Chao; Yuk, Dong-In; Irvine, Karen-Amanda; Kaing, Sovann; Sanai, Nader; Franklin, Robin J M; Rowitch, David H

    2009-07-01

    The progressive loss of CNS myelin in patients with multiple sclerosis (MS) has been proposed to result from the combined effects of damage to oligodendrocytes and failure of remyelination. A common feature of demyelinated lesions is the presence of oligodendrocyte precursors (OLPs) blocked at a premyelinating stage. However, the mechanistic basis for inhibition of myelin repair is incompletely understood. To identify novel regulators of OLP differentiation, potentially dysregulated during repair, we performed a genome-wide screen of 1040 transcription factor-encoding genes expressed in remyelinating rodent lesions. We report that approximately 50 transcription factor-encoding genes show dynamic expression during repair and that expression of the Wnt pathway mediator Tcf4 (aka Tcf7l2) within OLPs is specific to lesioned-but not normal-adult white matter. We report that beta-catenin signaling is active during oligodendrocyte development and remyelination in vivo. Moreover, we observed similar regulation of Tcf4 in the developing human CNS and lesions of MS. Data mining revealed elevated levels of Wnt pathway mRNA transcripts and proteins within MS lesions, indicating activation of the pathway in this pathological context. We show that dysregulation of Wnt-beta-catenin signaling in OLPs results in profound delay of both developmental myelination and remyelination, based on (1) conditional activation of beta-catenin in the oligodendrocyte lineage in vivo and (2) findings from APC(Min) mice, which lack one functional copy of the endogenous Wnt pathway inhibitor APC. Together, our findings indicate that dysregulated Wnt-beta-catenin signaling inhibits myelination/remyelination in the mammalian CNS. Evidence of Wnt pathway activity in human MS lesions suggests that its dysregulation might contribute to inefficient myelin repair in human neurological disorders.

  3. The Density of EAAC1 (EAAT3) Glutamate Transporters Expressed by Neurons in the Mammalian CNS

    PubMed Central

    Holmseth, Silvia; Dehnes, Yvette; Huang, Yanhua H.; Follin-Arbelet, Virginie V.; Grutle, Nina J.; Mylonakou, Maria N.; Plachez, Celine; Zhou, Yun; Furness, David N.; Bergles, Dwight E.

    2012-01-01

    The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules μm−3), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-d-aspartate (4-methoxy-7-nitroindolinyl-d-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and d-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses. PMID:22539860

  4. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  5. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  7. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  8. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    ERIC Educational Resources Information Center

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  9. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  10. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    NASA Astrophysics Data System (ADS)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  11. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  12. Age–incidence patterns of primary CNS tumors in children, adolescents, and adults in England

    PubMed Central

    Arora, Ramandeep S.; Alston, Robert D.; Eden, Tim O.B.; Estlin, Edward J.; Moran, Anthony; Birch, Jillian M.

    2009-01-01

    Around 25% of all tumors in those 0–14 years of age and 9% in those 15–24 years of age involve the CNS. They are the most common cause of cancer-related deaths in both age groups. In adults 25–84 years of age, the proportion of CNS tumors is 2%; 5-year overall survival is 10%–15%; and survivors have considerable morbidity. Comprehensive up-to-date population-based incidence data on these tumors are lacking. We present incidence rates for primary CNS tumors based on data derived from the high-quality national cancer registration system in England. A total of 54,336 CNS tumors of malignant, benign, and uncertain behavior were registered across the whole of England from 1995 through 2003. The age-standardized rates for all ages (0–84 years) was 9.21 per 100,000 person-years. This is higher than previously reported for England because it includes nonmalignant CNS tumors and hence gives a more accurate picture of burden of disease. The age-standardized rates for those 0–14 years of age, 15–24 years of age, and 25–84 years of age were 3.56, 3.26, and 14.57 per 100,000 person-years, respectively. In this article, we describe the changing patterns in the epidemiology of primary CNS tumors in these three age groups with respect to sex, tumor behavior, and histology using the current WHO classification. This information will provide a reference for future studies nationally and internationally and make comparisons relevant and meaningful. PMID:19033157

  13. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    PubMed Central

    Cavaliere, Fabio; Benito-Muñoz, Monica; Matute, Carlos

    2016-01-01

    Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia. PMID:27127518

  14. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  15. Markers of epidermal stem cell subpopulations in adult mammalian skin.

    PubMed

    Kretzschmar, Kai; Watt, Fiona M

    2014-10-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties.

  16. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling

    PubMed Central

    Li, Songshan; Yang, Chao; Zhang, Li; Gao, Xin; Wang, Xuejie; Liu, Wen; Wang, Yuqi; Jiang, Songshan; Wong, Yung Hou; Zhang, Yifeng; Liu, Kai

    2016-01-01

    Cell-type–specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling. PMID:26831088

  17. Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus?

    PubMed Central

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as “bottom-up,” where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and “top-down,” where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions. PMID:24255101

  18. Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin

    PubMed Central

    Kretzschmar, Kai; Watt, Fiona M.

    2014-01-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties. PMID:24993676

  19. Predictors of Healthcare Utilization in Adult Survivors of Childhood Cancer Exposed to CNS-Directed Therapy

    PubMed Central

    Kimberg, Cara; Klosky, James L.; Zhang, Nan; Brinkman, Tara M.; Ness, Kirsten K.; Srivastava, Deo Kumar; Robison, Leslie L.; Hudson, Melissa M.; Krull, Kevin R.

    2014-01-01

    Background Survivors of childhood cancer treated with CNS-directed therapy may be at-risk for poor healthcare utilization due to neurocognitive deficits. This study examined associations between neurocognitive function and adherence to routine and risk-based medical evaluations in adult survivors exposed to CNS-directed therapy. Methods Neurocognitive function and healthcare utilization were assessed in 1304 adult survivors of childhood cancer enrolled in the St. Jude Lifetime Cohort Study. Adherence to recommended care was defined as meeting guidelines published by the Children's Oncology Group. Multivariable models were used to evaluate associations between neurocognitive function and health screenings. Established predictors of healthcare utilization were included as covariates. Odds ratios (OR) or prevalence ratios (PR) and 95% confidence intervals (CIs) were calculated for variables maintained in the final models. Results Adherence to recommended medical care was higher for routine (general physician care: 57.6%; dental care: 49.1%) as opposed to specialized care (survivor-focused care: 21.9%; echocardiogram: 19.9%). Higher intelligence was predictive of general physician care (OR=1.74, 95% CI=1.41 - 2.15) and survivor-focused care (OR=1.44, 95% CI=1.13 – 1.83) compared to no care, while better executive function skills were associated with reduced dental care (PR = 0.94, 95% CI = 0.91-0.98). Echocardiogram monitoring was not associated with neurocognition. Possible late-effects of cancer treatment (pain, reduced cardiorespiratory fitness) were associated with an increased likelihood of receiving specialized medical care. Conclusion Survivors with reduced global cognition are at risk for poor healthcare utilization. Education practices regarding recommended healthcare should be personalized to ensure comprehension by survivors with neurocognitive impairment. PMID:25376751

  20. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart

    PubMed Central

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D.; van den Hoff, Maurice J. B.; Butte, Manish J.; Yang, Phillip C.; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2016-01-01

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans. PMID:26375005

  1. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  2. Spatially-dependent Dynamic MAPK Modulation by the Nde1-Lis1-Brap Complex Patterns Mammalian CNS

    PubMed Central

    Lanctot, Alison A.; Peng, Chian-Yu; Pawlisz, Ashley S.; Joksimovic, Milan; Feng, Yuanyi

    2013-01-01

    Summary Regulating cell proliferation and differentiation in CNS development requires both extraordinary complexity and precision. Neural progenitors receive graded overlapping signals from midline signaling centers, yet each makes a unique cell fate decision in a spatiotemporally restricted pattern. The Nde1-Lis1 complex regulates individualized cell fate decisions based on the geographical location with respect to the midline. While cells distant from the midline fail to self-renew in the Nde1-Lis1 double mutant CNS, cells embedded in the signaling centers showed marked over-proliferation. A direct interaction between Lis1 and Brap, a MAPK signaling threshold modulator, mediates this differential response to mitogenic signal gradients. Nde1-Lis1 deficiency resulted in a spatially-dependent alteration of MAPK scaffold Ksr and hyper-activation of MAPK. Epistasis analyses supported synergistic Brap and Lis1 functions. These results suggest that a molecular complex composed of Nde1, Lis1, and Brap regulates the dynamic MAPK signaling threshold in a spatially-dependent fashion. PMID:23673330

  3. Enhancing psychosocial outcomes for young adult childhood CNS cancer survivors: importance of addressing vocational identity and community integration.

    PubMed

    Strauser, David R; Wagner, Stacia; Wong, Alex W K

    2012-12-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years (mean=22, SD=3.62), with a mean age at diagnosis of 8.8 years. Four standardized instruments were used to assess the individual's affect, satisfaction with life, vocational identity, and self-perceived level of community integration. Pearson correlation analyses were carried out to examine the relationships between the satisfaction with life and positive and negative affect, vocational identify, and community integration. A hierarchical linear regression was then performed to determine how well these variables predict satisfaction with life among CNS cancer survivors. Significant positive correlations were found between life satisfaction and positive affect (r=0.423, P<0.01), as well as life satisfaction and community integration (r=-505, P<0.001). A positive correlation between life satisfaction and vocational identity was only marginally significant (r=0.312, P<0.05). Regression results indicate that the model explained 29% of the variance with community integration making a unique contribution. The largest contribution of this study is that the findings provide initial evidence that addressing vocational identity and community integration may be important constructs in improving young adult CNS survivors' overall levels of satisfaction with life. These constructs have not been typically addressed in psychosocial cancer treatment programs.

  4. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  5. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  6. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  7. Releasing the peri-neuronal net to patch-clamp neurons in adult CNS.

    PubMed

    Morales, Ezequiel; Fernandez, Fernando R; Sinclair, Suzanne; Molineux, Michael L; Mehaffey, W Hamish; Turner, Ray W

    2004-05-01

    The extracellular matrix of adult neural tissue contains chondroitin sulphated proteogylcans that form a dense peri-neuronal net surrounding the cell body and proximal dendrites of many neuronal classes. Development of the peri-neuronal net beyond approximately postnatal day 17 obscures visualization and often access by patch electrodes to neuronal membranes with the result that patch clamp recordings are most readily obtained from early postnatal animals. We describe a technique in which the surface tension of a sucrose-based medium promotes partial dissociation of thin tissue slices from adult tissue. Surface tension spreads the tissue and loosens the peri-neuronal net from neuronal membranes within minutes and in the absence of proteolytic enzymes. Furthermore, the extent of dissociation can be controlled so as to maintain the overall slice structure and allow identification of specific cell classes. Excellent structural preservation of neurons and dendrites can be obtained and full access by patch electrodes made possible for current- or voltage-clamp recordings in tissue well beyond the development of peri-neuronal nets. We demonstrate the feasibility of using this approach through patch recordings from neurons in the brainstem and cerebellum of adult gymnotiform fish and in deep cerebellar nuclei of rats as old as 6 months.

  8. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  9. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  10. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis.

    PubMed

    Chojnacka, Katarzyna; Zarzycka, Marta; Mruk, Dolores D

    2016-01-01

    A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis. PMID:27300181

  11. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.

    PubMed Central

    Lois, C; Alvarez-Buylla, A

    1993-01-01

    Subventricular zone (SVZ) cells proliferate spontaneously in vivo in the telencephalon of adult mammals. Several studies suggest that SVZ cells do not differentiate after mitosis into neurons or glia but die. In the present work, we show that SVZ cells labeled in the brains of adult mice with [3H]thymidine differentiate directly into neurons and glia in explant cultures. In vitro labeling with [3H]thymidine shows that 98% of the neurons that differentiate from the SVZ explants are derived from precursor cells that underwent their last division in vivo. This report identifies the SVZ cells as neuronal precursors in an adult mammalian brain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8446631

  12. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

    PubMed Central

    Grace, Peter M.; Ramos, Khara M.; Rodgers, Krista M.; Wang, Xiaohui; Hutchinson, Mark R.; Lewis, Makenzie T.; Morgan, Kelly N.; Kroll, Juliet L.; Taylor, Frederick R.; Strand, Keith A.; Zhang, Yingning; Berkelhammer, Debra; Huey, Madeline G.; Greene, Lisa I.; Cochran, Thomas A.; Yin, Hang; Barth, Daniel S.; Johnson, Kirk W.; Rice, Kenner; Maier, Steven F.; Watkins, Linda R.

    2014-01-01

    CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at TLR4, presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu-opioid receptor (MOR) inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated NFκB, increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and prostaglandin E2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequalae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by

  13. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  14. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture.

    PubMed

    Halpern, B C; Clark, B R; Hardy, D N; Halpern, R M; Smith, R A

    1974-04-01

    In tissue cultures of normal adult and malignant mammalian cells, homocystine has been substituted for methionine in a medium rich in folic acid and cyanocobalamin. Normal adult cells thrive. Three highly malignant cell types from three different species, including man, die.

  15. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.

    PubMed

    Fancy, Stephen P J; Zhao, Chao; Franklin, Robin J M

    2004-11-01

    Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.

  16. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  17. Chondroitin sulfate glycosaminoglycans for CNS homeostasis-implications for material design.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Betancur, Martha; Bellamkonda, Ravi V

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are complex biomolecules that are known to facilitate patterning of axonal direction and cell migration during the early growth and development phase of the mammalian central nervous system (CNS). In adults, they continue to control neuronal plasticity as major constituents of the "peri-neuronal nets" (PNNs) that surround adult CNS neurons. CSPGs are also barrier-forming molecules that are selectively upregulated by invading reactive astroglia after injury to the CNS, and are responsible for the active repulsion of regenerating neurons post-injury. Recent evidence however suggests that the diverse sulfated glycosaminoglycan (GAG) side chains attached to CSPGs are key components that play paradoxical roles in influencing nerve regeneration post-injury to the CNS. Sulfated GAG repeats attached to the CSPG core protein help mediate cell migration, neuritogenesis, axonal pathfinding, and axonal repulsion by directly trapping and presenting a whole host of growth factors to cells locally, or by binding to specific membrane bound proteins on the cell surface to influence cellular function. In this review, we will present the current gamut of interventional strategies used to bridge CNS deficits, and discuss the potential advantages of using sulfated GAG based biomaterials to facilitate the repair and regeneration of the injured CNS. PMID:25139544

  18. A Novel Biopsy Method for Isolating Neural Stem Cells from the Subventricular Zone of the Adult Rat Brain for Autologous Transplantation in CNS Injuries.

    PubMed

    Aligholi, Hadi; Hassanzadeh, Gholamreza; Gorji, Ali; Azari, Hassan

    2016-01-01

    Despite all attempts the problem of regeneration in damaged central nervous system (CNS) has remained challenging due to its cellular complexity and highly organized and sophisticated connections. In this regard, stem cell therapy might serve as a viable therapeutic approach aiming either to support the damaged tissue and hence to reduce the subsequent neurological dysfunctions and impairments or to replace the lost cells and re-establish damaged circuitries. Adult neural stem/progenitor cells (NS/PCs) are one of the outstanding cell sources that can be isolated from the subventricular zone (SVZ) of the lateral ventricles. These cells can differentiate into neurons, astrocytes, and oligodendrocytes. Implanting autologous NS/PCs will greatly benefit the patients by avoiding immune rejection after implantation, better survival, and integration with the host tissue. Developing safe and efficient methods in small animal models will provide us with the opportunity to optimize procedures required to achieve successful human autologous NS/PC transplantation in near future. In this chapter, a highly controlled and safe biopsy method for harvesting stem cell containing tissue from the SVZ of adult rat brain is introduced. Then, isolation and expansion of NS/PCs from harvested specimen as well as the techniques to verify proliferation and differentiation capacity of the resulting NS/PCs are discussed. Finally, a method for assessing the biopsy lesion volume in the brain is described. This safe biopsy method in rat provides a unique tool to study autologous NS/PC transplantation in different CNS injury models. PMID:27604747

  19. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo

    PubMed Central

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-01-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  20. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo.

    PubMed

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-09-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca(2+) imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca(2+) signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  1. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea.

    PubMed

    Yang, Shi-Ming; Chen, Wei; Guo, Wei-Wei; Jia, Shuping; Sun, Jian-He; Liu, Hui-Zhan; Young, Wie-Yen; He, David Z Z

    2012-01-01

    The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60-70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die. PMID:23029493

  2. Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells.

    PubMed

    Smalheiser, N R; Costa, E; Guidotti, A; Impagnatiello, F; Auta, J; Lacor, P; Kriho, V; Pappas, G D

    2000-02-01

    Reelin regulates telencephalic and cerebellar lamination during mammalian development and is expressed in several structures of the adult brain; however, only traces of reelin were believed to be in peripheral tissues. Because reelin structurally resembles extracellular matrix proteins, and because many of these proteins are expressed in blood, we hypothesized that reelin also might be detectable in the circulation. Reelin (420 kDa) and two reelin-like immunoreactive bands (310 and 160 kDa) are expressed in serum and platelet-poor plasma of rats, mice, and humans, but these three bands were not detectable in serum of homozygous reeler (rl/rl) mice. Reelin plasma levels in heterozygous (rl/+) mice were half of those in wild-type littermates. Western blotting and immunocytochemistry using antireelin mAbs indicated that reelin-like immunoreactivity was expressed in a subset of chromaffin cells within the rat adrenal medulla and in a subset of cells coexpressing alpha-melanocyte-stimulating hormone within the pituitary pars intermedia. However, surgical removal of adrenal or pituitary failed to decrease the amount of reelin (420-kDa band) expressed in serum. Adult liver expressed one-third of the reelin mRNA concentration expressed in adult mouse cerebral cortex. Full-length reelin protein was detectable in liver extracts in situ; acutely isolated liver cells also secreted full-length reelin in vitro. Liver appears to be a prime candidate to produce and maintain the circulating reelin pool. It now becomes relevant to ask whether circulating reelin has a physiologic role on one or more peripheral target tissues.

  3. Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells

    PubMed Central

    Smalheiser, Neil R.; Costa, Erminio; Guidotti, Alessandro; Impagnatiello, Francesco; Auta, James; Lacor, Pascale; Kriho, Virginia; Pappas, George D.

    2000-01-01

    Reelin regulates telencephalic and cerebellar lamination during mammalian development and is expressed in several structures of the adult brain; however, only traces of reelin were believed to be in peripheral tissues. Because reelin structurally resembles extracellular matrix proteins, and because many of these proteins are expressed in blood, we hypothesized that reelin also might be detectable in the circulation. Reelin (420 kDa) and two reelin-like immunoreactive bands (310 and 160 kDa) are expressed in serum and platelet-poor plasma of rats, mice, and humans, but these three bands were not detectable in serum of homozygous reeler (rl/rl) mice. Reelin plasma levels in heterozygous (rl/+) mice were half of those in wild-type littermates. Western blotting and immunocytochemistry using antireelin mAbs indicated that reelin-like immunoreactivity was expressed in a subset of chromaffin cells within the rat adrenal medulla and in a subset of cells coexpressing α-melanocyte-stimulating hormone within the pituitary pars intermedia. However, surgical removal of adrenal or pituitary failed to decrease the amount of reelin (420-kDa band) expressed in serum. Adult liver expressed one-third of the reelin mRNA concentration expressed in adult mouse cerebral cortex. Full-length reelin protein was detectable in liver extracts in situ; acutely isolated liver cells also secreted full-length reelin in vitro. Liver appears to be a prime candidate to produce and maintain the circulating reelin pool. It now becomes relevant to ask whether circulating reelin has a physiologic role on one or more peripheral target tissues. PMID:10655522

  4. Regeneration strategies after the adult mammalian central nervous system injury—biomaterials

    PubMed Central

    Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-01-01

    The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. PMID:27047678

  5. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  6. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis.

    PubMed

    Talos, F; Abraham, A; Vaseva, A V; Holembowski, L; Tsirka, S E; Scheel, A; Bode, D; Dobbelstein, M; Brück, W; Moll, U M

    2010-12-01

    The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.

  7. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes.

    PubMed

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-09-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  8. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.

    PubMed

    Garza-Lombó, Carla; Gonsebatt, María E

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  9. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  10. TOPP in the CNS

    NASA Astrophysics Data System (ADS)

    Smart, R. L.; Lattanzi, M. G.; Jahreiss, H.; Bucciarelli, B.; Massone, G.

    2006-08-01

    Introduction: We present the Torino Observatory Parallax Program (TOPP) results for 22 candidates for the Catalog of Nearby Stars (CNS). Methods: Observations were made with the Torino OTAP 1.05m telescope over the period 1996-2001. Results: For the 22 objects examined 12 are within the CNS limit. Discussion: We discuss at length the objects out side the CNS limits which are either misclassified or objects with incorrect trigonometric parallaxes.

  11. Bi-parental care contributes to sexually dimorphic neural cell genesis in the adult mammalian brain.

    PubMed

    Mak, Gloria K; Antle, Michael C; Dyck, Richard H; Weiss, Samuel

    2013-01-01

    Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.

  12. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD

    PubMed Central

    Stańczak, Paweł; Witecka, Joanna; Szydło, Anna; Gutmajster, Ewa; Lisik, Małgorzata; Auguściak-Duma, Aleksandra; Tarnowski, Maciej; Czekaj, Tomasz; Czekaj, Hanna; Sieroń, Aleksander L

    2009-01-01

    Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5′UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome. PMID:18830233

  13. A simple assessment model to quantifying the dynamic hippocampal neurogenic process in the adult mammalian brain.

    PubMed

    Choi, Minee L; Begeti, Faye; Barker, Roger A; Kim, Namho

    2016-04-01

    Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies. PMID:26443687

  14. The Mammalian Adult Neurogenesis Gene Ontology (MANGO) Provides a Structural Framework for Published Information on Genes Regulating Adult Hippocampal Neurogenesis

    PubMed Central

    Overall, Rupert W.; Paszkowski-Rogacz, Maciej; Kempermann, Gerd

    2012-01-01

    Background Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. Methodology/Principal Findings We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. Conclusions/Significance The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a ‘bottom-up’ community effort complementing the already successful

  15. Identification of a NEP1-35 recognizing peptide that neutralizes CNS myelin inhibition using phage display library.

    PubMed

    Deng, Qiyue; Cai, Wenqin; Li, Shurong; Su, Bingyin

    2013-03-01

    Nogo-A has been identified as an inhibitory molecule to neurite outgrowth after injury in adult mammalian central nervous system (CNS). The C-terminal fragment of Nogo-A, Nogo-66, inhibits axonal regrowth through NgR1 signaling. Residues 1-32 of Nogo-66 cover two regions that contribute most affinity of Nogo-66 to NgR1. It is unclear whether blocking the two regions with specific small ligands could neutralize the inhibition of Nogo-66. Therefore in this study we explored two phage display peptide libraries to screen small peptides that might bind Nogo-66. NEP1-35 containing 1-33 residues of Nogo-66 was taken as the target for panning. We found that phage-borne peptides with stronger affinity to NEP1-35 contained a relatively conserved motif, RRXXXXXXXRRX. Afterwards one identified peptide, NH(2)-RRQTLSHQMRRP-COOH was synthesized and tested in neurite outgrowth assay, in which this small molecule showed moderate ability to neutralize CNS myelin inhibition in vitro. Our results demonstrated that short peptides could act as adaptors to Nogo-66 and neutralize CNS myelin inhibition in vitro. Additionally, the results also suggested that phage display could help to discover novel small molecules with high affinity to CNS regrowth inhibitors, which might be able to promote CNS regeneration with fewer side effects since they could block only the corresponding regions of inhibitors.

  16. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow.

    PubMed

    Yeo, Jia Hao; McAllan, Bronwyn M; Fraser, Stuart T

    2016-04-01

    Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production. PMID:26898901

  17. Epigenetic Gene Regulation in the Adult Mammalian Brain: Multiple roles in Memory Formation

    PubMed Central

    Lubin, Farah D.

    2011-01-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the lifespan and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer’s disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. PMID:21419233

  18. Staging Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  19. The mast cells of the mammalian central nervous system. V. The effect of compound 48/80 on the neurolipomastocytoid cells and related areas of the CNS: early changes.

    PubMed

    Ibrahim, M Z; Uthman, M A; Tenekjian, V; Wiedman, T

    1980-01-01

    The response of the neurolipomastocytoid cells (NLMs) and elements in their vicinity within the central nervous system of various animal species was studied following injection of the animals with the specific mast cell (MC)-discharger compound 48/80. The observed alterations were grouped into those occurring early (0--21 days) and later (up to 18 months). In the present report, only the acute changes are described, light and electron microscopically. Most experimental animals developed prostration, scratching, acral-type reaction, signs of respiratory distress and salivation, and, in the monkey, uncontrollable somnolence. Within about 2 weeks after the injection some animals (especially guinea pigs) manifested various degrees of limb paralysis. The NLMs, like MCs outside the CNS, responded to injection by various degrees of degranulation, vacuolation, marked variation in granule size, apparent cell loss and sometimes an increase in number. Electron microscopically, particulate breakdown products of the granules of the NLMs appeared in the cytoplasm; occasionally there was suggestive evidence that they had passed inward across the vessel wall to reach the lumen, and also outward through the outermost basal lamina. Perivascular astrocytic feet showed swelling and vacuolation shortly after the injection, which was followed by evidence of gliosis and later scarring; occasionally, alterations in the mitochondria were observed. In the spinal cord of the guinea pig, capillary neoformation was observed with endothelial cells and adjacent NLMs taking up tritiated thymidine. The discussion centers on the partial similarity of response to compound 48/80 of the NLMs to that of MCs outside the CNS, and the probable involvement of NLM-damage in the parenchymal changes.

  20. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Telang, Jyoti; Daithankar, Vinita; Salvi, Vinita; Zaveri, Kusum; Hinduja, Indira

    2011-08-01

    The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.

  1. Cotransport of sodium and chloride by the adult mammalian choroid plexus

    SciTech Connect

    Johanson, C.E.; Sweeney, S.M.; Parmelee, J.T.; Epstein, M.H. )

    1990-02-01

    Cerebrospinal fluid formation stems primarily from the transport of Na and Cl in choroid plexus (CP). To characterize properties and modulation of choroidal transporters, we tested diuretics and other agents for ability to alter ion transport in vitro. Adult Sprague-Dawley rats were the source of CPs preincubated with drug for 20 min and then transferred to cerebrospinal fluid (CSF) medium containing 22Na or 36Cl with (3H)mannitol (extracellular correction). Complete base-line curves were established for cellular uptake of Na and Cl at 37 degrees C. The half-maximal uptake occurred at 12 s, so it was used to assess drug effects on rate of transport (nmol Na or Cl/mg CP). Bumetanide (10(-5) and 10(-4) M) decreased uptake of Na and Cl with maximal inhibition (up to 45%) at 10(-5) M. Another cotransport inhibitor, furosemide (10(-4) M), reduced transport of Na by 25% and Cl by 33%. However, acetazolamide (10(-4) M) and atriopeptin III (10(-7) M) significantly lowered uptake of Na (but not Cl), suggesting effect(s) other than on cotransport. The disulfonic stilbene 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 10(-4) M), known to inhibit Cl-HCO3 exchange, substantially reduced the transport of 36Cl. Bumetanide plus DIDS (both 10(-4) M) caused additive inhibition of 90% of Cl uptake, which provides strong evidence for the existence of both cotransport and antiport Cl carriers. Overall, this in vitro analysis, uncomplicated by variables of blood flow and neural tone, indicates the presence in rat CP of the cotransport of Na and Cl in addition to the established Na-H and Cl-HCO3 exchangers.

  2. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  3. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors. PMID:27209188

  4. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. PMID:26919435

  5. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  6. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination. PMID:27572856

  7. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  8. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  9. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  10. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level. PMID:20708686

  11. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.

  12. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  13. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  14. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  15. Repression of cyclin D1 expression is necessary for the maintenance of cell cycle exit in adult mammalian cardiomyocytes.

    PubMed

    Tane, Shoji; Kubota, Misae; Okayama, Hitomi; Ikenishi, Aiko; Yoshitome, Satoshi; Iwamoto, Noriko; Satoh, Yukio; Kusakabe, Aoi; Ogawa, Satoko; Kanai, Ayumi; Molkentin, Jeffery D; Nakamura, Kazuomi; Ohbayashi, Tetsuya; Takeuchi, Takashi

    2014-06-27

    The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.

  16. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas.

    PubMed

    Yao, Kai; Qiu, Suo; Tian, Lin; Snider, William D; Flannery, John G; Schaffer, David V; Chen, Bo

    2016-09-27

    In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina. PMID:27681429

  17. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    PubMed Central

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  18. Perispinal Delivery of CNS Drugs.

    PubMed

    Tobinick, Edward Lewis

    2016-06-01

    Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.

  19. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  20. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  1. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    2016-01-01

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  2. Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation.

    PubMed

    Dino, M R; Harroch, S; Hockfield, S; Matthews, R T

    2006-11-01

    Perineuronal nets (PNs) are lattice-like condensations of the extracellular matrix (ECM) that envelop synapses and decorate the surface of subsets of neurons in the CNS. Previous work has suggested that, despite the fact that PNs themselves are not visualized until later in development, some PN component molecules are expressed in the rodent CNS even before synaptogenesis. In the adult mammalian brain, monoclonal antibody Cat-315 recognizes a glycoform of aggrecan, a major component of PNs. In primary cortical cultures, a Cat-315-reactive chondroitin sulfate proteoglycan (CSPG) is also expressed on neuronal surfaces and is secreted into culture media as early as 24 h after plating. In this study, we show that in primary cortical cultures, the Cat-315 CSPG detected in early neural development is expressed in extrasynaptic sites prior to synapse formation. This suggests that ECM components in the CNS, as in the neuromuscular junction (NMJ), may prepattern neuronal surfaces prior to innervation. We further show that while the Cat-315-reactive carbohydrate decorates aggrecan in the adult, it decorates a different CSPG in the developing CNS. Using receptor protein tyrosine phosphatase beta (RPTPbeta/protein tyrosine phosphatase zeta) knock-out mice and immunoprecipitation techniques, we demonstrate here that in the developing rodent brain Cat-315 recognizes RPTPbeta isoforms. Our further examination of the Cat-315 epitope suggests that it is an O-mannose linked epitope in the HNK-1 family. The presence of the Cat-315 reactive carbohydrate on different PN components--RPTPbeta and aggrecan--at different stages of synapse development suggests a potential role for this neuron-specific carbohydrate motif in synaptogenesis.

  3. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain

    PubMed Central

    Kaltschmidt, Barbara; Kaltschmidt, Christian

    2015-01-01

    The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system. PMID:26635522

  4. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  5. A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone

    PubMed Central

    Daude, Nathalie; Lee, Inyoul; Kim, Taek-Kyun; Janus, Christopher; Glaves, John Paul; Gapeshina, Hristina; Yang, Jing; Sykes, Brian D.; Carlson, George A.; Hood, Leroy E.; Westaway, David

    2016-01-01

    Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery. PMID:26894278

  6. A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone.

    PubMed

    Daude, Nathalie; Lee, Inyoul; Kim, Taek-Kyun; Janus, Christopher; Glaves, John Paul; Gapeshina, Hristina; Yang, Jing; Sykes, Brian D; Carlson, George A; Hood, Leroy E; Westaway, David

    2016-01-01

    Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery.

  7. Pathology of CNS parasitic infections.

    PubMed

    Pittella, José Eymard Homem

    2013-01-01

    Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR.

  8. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  9. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  10. Ontogeny and functions of CNS macrophages

    PubMed Central

    Katsumoto, Atsuko; Lu, Haiyan; Miranda, Aline S.; Ransohoff, Richard M.

    2014-01-01

    Microglia, the only non-neuroepithelial cells found in the parenchyma of the central nervous system (CNS), originate during embryogenesis from the yolk sac and enter the CNS quite early (embryonic day 9.5-10 in mice). Thereafter, microglia are maintained independently of any input from the blood and in particular do not require hematopoietic stem cells as a source of replacement for senescent cells. Monocytes are hematopoietic cells, derived from bone marrow. The ontogeny of microglia and monocytes is important for understanding CNS pathologies. Microglial functions are distinct from those of blood-derived monocytes, which invade the CNS only under pathological conditions. Recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis and synaptic interactions. Here we discuss physiology of microglia and the functions of monocytes in CNS pathology. We address the roles of microglia and monocytes in neurodegenerative diseases as an example of CNS pathology. PMID:25193935

  11. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    PubMed

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers. PMID:27188671

  12. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  13. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  14. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  15. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  16. The mast cells of the mammalian central nervous system. VI. Uptake of tritiated thymidine by mast cells, neurolipomastocytoid cells and other elements of the central nervous system.

    PubMed

    Ibrahim, M Z; Koshayan, D S; Khreis, Y M

    1980-01-01

    The central nervous system (CNS) of two mammalian species was studied autoradiographically using tritium-labeled thymidine; the rat, whose brain contains few localized mast cells (MCs) but many ubiquitous neurolipomastocytoid cells (NLMs), and the guinea pig, whose brain contains only ubiquitous NLMs. A few guinea pigs were also injected with an MC discharger compound 48/80 and the response of the NLMs, which are thought to be allied to MCs, as well as of neuroglial and vascular endothelial cells, was noted. The rats were 3 days to 6 weeks old whereas all the guinea pigs were young adults. Both MCs and NLMs took up the label, and much more so in the babies, paralleling similar uptakes in only very small immature MCs outside the CNS. Neuroglial elements, especially subependymal and oligodendroglial, as well as endothelial, perivascular, leptomeningeal and ependymal cells demonstrated some uptake. This was considerably increased upon receipt of compound 48/80, especially in the case of the subependymal glia, the NLMs and the endothelial cells; capillary neoformations were seen in the spinal cords of guinea pigs that had shown signs of paralysis. The cause of this increase is discussed in terms of mild stress induced by that compound. The subependymal response is also discussed with reference to periventricular plaques seen in multiple sclerosis and lymphoreticular and glial tumors seen in that region. It is concluded that both MCs and NLMs are capable of DNA replication and mitosis in immature animals. The NLMs can also divide upon stimulation in adult CNS.

  17. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  18. Reactive gliosis in the pathogenesis of CNS diseases.

    PubMed

    Pekny, Milos; Pekna, Marcela

    2016-03-01

    Astrocytes maintain the homeostasis of the central nervous system (CNS) by e.g. recycling of neurotransmitters and providing nutrients to neurons. Astrocytes function also as key regulators of synaptic plasticity and adult neurogenesis. Any insult to the CNS tissue triggers a range of molecular, morphological and functional changes of astrocytes jointly called reactive (astro)gliosis. Reactive (astro)gliosis is highly heterogeneous and also context-dependent process that aims at the restoration of homeostasis and limits tissue damage. However, under some circumstances, dysfunctional (astro)gliosis can become detrimental and inhibit adaptive neural plasticity mechanisms needed for functional recovery. Understanding the multifaceted and context-specific functions of astrocytes will contribute to the development of novel therapeutic strategies that, when applied at the right time-point, will improve the outcome of diverse neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

  19. Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS.

    PubMed

    Poggiolini, Ilaria; Legname, Giuseppe

    2012-01-01

    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species.

  20. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  1. CNS myelin wrapping is driven by actin disassembly.

    PubMed

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  2. From fish to man: understanding endogenous remyelination in CNS demyelinating diseases

    PubMed Central

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-01-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease Multiple Sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man. PMID:18474520

  3. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders.

    PubMed

    Quesada, Rosannette; Triana, Emilia; Vargas, Gloria; Douglass, John K; Seid, Marc A; Niven, Jeremy E; Eberhard, William G; Wcislo, William T

    2011-11-01

    Allometric studies of the gross neuroanatomy of adults from nine species of spiders from six web-weaving families (Orbicularia), and nymphs from six of these species, show that very small spiders resemble other small animals in having disproportionately larger central nervous systems (CNSs) relative to body mass when compared with large-bodied forms. Small spiderlings and minute adult spiders have similar relative CNS volumes. The relatively large CNS of a very small spider occupies up to 78% of the cephalothorax volume. The CNSs of very small spiders extend into their coxae, occupying as much as 26% of the profile area of the coxae of an Anapisona simoni spiderling (body mass < 0.005 mg). Such modifications occur both in species with minute adults, and in tiny spiderlings of species with large-bodied adults. In at least one such species, Leucauge mariana, the CNS of the spiderling extends into a prominent ventral bulge of the sternum. Tiny spiders also have reduced neuronal cell body diameters. The adults of nearly all orbicularian spiders weave prey capture webs, as do the spiderlings, beginning with second instar nymphs. Comparable allometric relations occur in adults of both orb-weaving and cleptoparasitic species, indicating that this behavioral difference is not reflected in differences in gross CNS allometry. PMID:22036838

  4. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  5. CNS development under altered gravity

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, E.

    The future of space exploration depends on a solid understanding of the developmental process under microgravity. In furtherance of this goal, the present studies assessed the impact of altered gravity on the developing rat cerebellum. Specifically, the expression of selected cerebellar proteins and corresponding genes was compared in rat neonates exposed to hypergravity (1.5G) from embryonic day (E) 11 to postnatal day (P) 6 and P9 against their expression in rat neonates developing under normal gravity. Cerebellar proteins were analyzed by quantitative western blots of cerebellar homogenates; RNA analysis was performed in the same samples using ribonuclease protection assay (RPA). Densitometric analysis of western blots suggested 21% to 31% reduction in neuronal cell adhesion molecule (NCAM) and 31% to 45% reduction in glial acidic protein (GFAP). RPA results suggested a small reduction (<10%) in NCAM mRNA and a moderate reduction (<25%) in GFAP mRNA. These data indicate that the expression of selected cerebellar proteins may be affected at both the transcriptional and translational/postranslational level. Furthermore, these results suggest that changes in expression of selected genes may underlie hypergravity's effect on the developing CNS. (Supported by NASA grant NCC2-1042 and BWH Psychiatry Fund).

  6. Clitoria ternatea and the CNS.

    PubMed

    Jain, Neeti N; Ohal, C C; Shroff, S K; Bhutada, R H; Somani, R S; Kasture, V S; Kasture, S B

    2003-06-01

    The present investigation was aimed at determining the spectrum of activity of the methanolic extract of Clitoria ternatea (CT) on the CNS. The CT was studied for its effect on cognitive behavior, anxiety, depression, stress and convulsions induced by pentylenetetrazol (PTZ) and maximum electroshock (MES). To explain these effects, the effect of CT was also studied on behavior mediated by dopamine (DA), noradrenaline, serotonin and acetylcholine. The extract decreased time required to occupy the central platform (transfer latency, TL) in the elevated plus maze (EPM) and increased discrimination index in the object recognition test, indicating nootropic activity. The extract was more active in the object recognition test than in the EPM. The extract increased occupancy in the open arm of EPM by 160% and in the lit box of the light/dark exploration test by 157%, indicating its anxiolytic activity. It decreased the duration of immobility in tail suspension test (suggesting its antidepressant activity), reduced stress-induced ulcers and reduced the convulsing action of PTZ and MES. The extract exhibited tendency to reduce the intensity of behavior mediated via serotonin and acetylcholine. The effect on DA- and noradrenaline-mediated behavior was not significant. In conclusion, the extract was found to possess nootropic, anxiolytic, antidepressant, anticonvulsant and antistress activity. Further studies are necessary to isolate the active principle responsible for the activities and to understand its mode of action. PMID:12895670

  7. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury

    PubMed Central

    Zou, Yixiao; Stagi, Massimiliano; Wang, Xingxing; Yigitkanli, Kazim; Siegel, Chad S.; Nakatsu, Fubito; Cafferty, William B. J.

    2015-01-01

    Axonal growth and neuronal rewiring facilitate functional recovery after spinal cord injury. Known interventions that promote neural repair remain limited in their functional efficacy. To understand genetic determinants of mammalian CNS axon regeneration, we completed an unbiased RNAi gene-silencing screen across most phosphatases in the genome. We identified one known and 17 previously unknown phosphatase suppressors of injury-induced CNS axon growth. Silencing Inpp5f (Sac2) leads to robust enhancement of axon regeneration and growth cone reformation. Results from cultured Inpp5f−/− neurons confirm lentiviral shRNA results from the screen. Consistent with the nonoverlapping substrate specificity between Inpp5f and PTEN, rapamycin does not block enhanced regeneration in Inpp5f−/− neurons, implicating mechanisms independent of the PI3K/AKT/mTOR pathway. Inpp5f−/− mice develop normally, but show enhanced anatomical and functional recovery after mid-thoracic dorsal hemisection injury. More serotonergic axons sprout and/or regenerate caudal to the lesion level, and greater numbers of corticospinal tract axons sprout rostral to the lesion. Functionally, Inpp5f-null mice exhibit enhanced recovery of motor functions in both open-field and rotarod tests. This study demonstrates the potential of an unbiased high-throughput functional screen to identify endogenous suppressors of CNS axon growth after injury, and reveals Inpp5f (Sac2) as a novel suppressor of CNS axon repair after spinal cord injury. SIGNIFICANCE STATEMENT The extent of axon regeneration is a critical determinant of neurological recovery from injury, and is extremely limited in the adult mammalian CNS. We describe an unbiased gene-silencing screen that uncovered novel molecules suppressing axonal regeneration. Inpp5f (Sac2) gene deletion promoted recovery from spinal cord injury with no side effects. The mechanism of action is distinct from another lipid phosphatase implicated in regeneration

  8. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  9. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  10. Treatment Option Overview (Primary CNS Lymphoma)

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  11. Treatment Options for Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  12. Neurotrauma and Inflammation: CNS and PNS Responses

    PubMed Central

    Mietto, Bruno Siqueira; Mostacada, Klauss; Martinez, Ana Maria Blanco

    2015-01-01

    Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity. PMID:25918475

  13. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    PubMed

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  14. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery.

    PubMed

    Ghose, Arup K; Herbertz, Torsten; Hudkins, Robert L; Dorsey, Bruce D; Mallamo, John P

    2012-01-18

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  15. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The

  16. NAC1, a POZ/BTB protein present in the adult mammalian brain, triggers apoptosis after adenovirus-mediated overexpression in PC-12 cells.

    PubMed

    Korutla, Laxminarayana; Neustadter, Jason H; Fournier, Keith M; Mackler, Scott A

    2003-05-01

    POZ/BTB proteins influence cellular development and in some examples act as oncoproteins. However, several POZ/BTB transcription factors have been found in terminally differentiated neurons, where their functions remain unknown. One example is NAC1, a constitutively-expressed protein that can regulate behaviors associated with cocaine use. The present study represents an initial attempt to understand the actions of NAC1 within neurons by using adenoviral-mediated gene transfer into differentiated PC-12 cells. Cell survival in PC-12 cells overexpressing NAC1 was greatly reduced compared with cells infected by a control Ad-GFP. The morphological appearance of the dying cells was consistent with programmed cell death. Fragmentation of genomic DNA occurred in PC-12 cells infected with adenoviruses encoding NAC1 but not control viruses. NAC1 over expression was followed by the down regulation of the anti-apoptotic proteins Bcl-2 and Bcl-2-xl. Concurrently, levels of the pro-apoptotic proteins Bax and p53 increased following NAC1 overexpression. These observations suggest that NAC1expression in PC-12 cells induces apoptosis by altering the expression of these upstream mediators of the execution phase of programmed cell death. These findings raise the possibility that aberrantly regulated NAC1 expression in the mammalian brain may contribute to programmed cell death.

  17. Neurosteroid regulation of CNS development

    PubMed Central

    Mellon, Synthia H.

    2007-01-01

    Neurosteroids are a relatively new class of neuroactive compounds, brought to prominence in the past two decades. Despite knowing of their presence in the nervous system of various species for over twenty years and knowing of their functions as GABAA and NMDA ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of four distinct neurosteroids – pregnenolone, progesterone, allopregnanolone and dehydroepiandrosterone. PMID:17651807

  18. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  19. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain

    PubMed Central

    Galvez-Contreras, Alma Y.; Quiñones-Hinojosa, Alfredo; Gonzalez-Perez, Oscar

    2013-01-01

    In the adult brain, multipotent progenitor cells have been identified in three areas: the ventricular-subventricular zone (VZ-SVZ), adjacent to the striatal wall of the lateral ventricles, the subgranular zone (SGZ), located at the dentate gyrus of the hippocampus and the subcallosal zone (SCZ), located between the corpus callosum and the CA1 and CA2 regions of the hippocampus. The neural progenitor cells of these regions express the epidermal growth factor receptor (EGFR, ErbB-1 or HER1). EGF, the most important ligand for the EGFR, is a potent mitogenic agent that stimulates proliferation, survival, migration and differentiation into the oligodendrocyte lineage. Other ErbB receptors also activate several intracellular pathways for oligodendrocyte specification, migration and survival. However, the specific downstream pathways related to oligodendrogenesis and the hierarchic interaction among intracellular signaling cascades is not well-known. We summarize the current data regarding the role of EGFR and ErbB family signaling on neural stem cells and the downstream cascades involved in oligodendrogenesis in the neurogenic niches of the adult brain. Understanding the mechanisms that regulate proliferation, differentiation, migration of oligodendrocytes and myelination is of critical importance for the field of neurobiology and constitutes a crucial step in the design of stem-cell-based therapies for demyelinating diseases. PMID:24381541

  20. Intraventricular CNS lesions: A pictorial essay.

    PubMed

    Watts, Jane; Yap, Kelvin K; Ou, Daniel; Tartaglia, Con; Trost, Nicholas; Sutherland, Tom

    2015-08-01

    Intraventricular lesions of the central nervous system (CNS) can present a diagnostic challenge due to a range of differential diagnoses and radiological appearances. Both CT and MRI imaging findings, in combination with location and patient's age, can help limit the differentials. This pictorial essay presents the salient radiological features, location and demographics of the more common intraventricular lesions of the brain.

  1. CNS demyelination in fibrodysplasia ossificans progressiva.

    PubMed

    Kan, Lixin; Kitterman, Joseph A; Procissi, Daniele; Chakkalakal, Salin; Peng, Chian-Yu; McGuire, Tammy L; Goldsby, Robert E; Pignolo, Robert J; Shore, Eileen M; Kaplan, Frederick S; Kessler, John A

    2012-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder of progressive heterotopic ossification (HO) caused by a recurrent activating mutation of ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. FOP is characterized by progressive HO, which is associated with inflammation in the setting of dysregulated BMP signaling, however, a variety of atypical neurologic symptoms are also reported by FOP patients. The main objective of this study is to investigate the potential underlying mechanism that is responsible for the observed atypical neurologic symptoms. We evaluated two mouse models of dysregulated BMP signaling for potential CNS pathology through non-invasive magnetic resonance imaging (MRI) studies and histological and immunohistochemical approaches. In one model, BMP4 is over-expressed under the control of the neuron-specific enolase promoter; the second model is a knock-in of a recurrent FOP mutation of ACVR1/ALK2. We also retrospectively examined MRI scans of four FOP patients. We consistently observed demyelinated lesions and focal inflammatory changes of the CNS in both mouse models but not in wild-type controls, and also found CNS white matter lesions in each of the four FOP patients examined. These findings suggest that dysregulated BMP signaling disturbs normal homeostasis of target tissues, including CNS where focal demyelination may manifest as the neurologic symptoms frequently observed in FOP.

  2. Chemokines in CNS injury and repair.

    PubMed

    Jaerve, Anne; Müller, Hans Werner

    2012-07-01

    Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines. PMID:22700007

  3. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice.

    PubMed

    Sohn, Jiho; Orosco, Lori; Guo, Fuzheng; Chung, Seung-Hyuk; Bannerman, Peter; Mills Ko, Emily; Zarbalis, Kostas; Deng, Wenbin; Pleasure, David

    2015-03-01

    Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.

  4. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain.

    PubMed

    Nezis, Ioannis P; Simonsen, Anne; Sagona, Antonia P; Finley, Kim; Gaumer, Sébastien; Contamine, Didier; Rusten, Tor Erik; Stenmark, Harald; Brech, Andreas

    2008-03-24

    P62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.

  5. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1.

    PubMed

    Kastrukoff, L F; Lau, A S; Kim, S U

    1987-07-01

    The peripheral inoculation of herpes simplex virus type 1 (HSV 1) in experimental animals induces central nervous system (CNS) demyelinating lesions, but the potential relevance of this model to multiple sclerosis is lessened by the unifocal nature of the lesion. In this study, inbred strains of mice were selected on the basis of varying resistance to mortality following lip inoculation with virus. A spectrum of CNS pathology was observed, ranging from focal collections of inflammatory cells at the trigeminal root entry zone in resistant strains (C57BL/6J), to unifocal demyelinating lesions in moderately resistant strains (BALB/cByJ), to multifocal demyelinating lesions throughout the brain in susceptible strains (A/J). Findings from viral titration studies of the CNS support a direct cytolytic effect of virus in the development of demyelinating lesions at the trigeminal root entry zone but cannot exclude an immune-mediated component. Furthermore, 50% tissue-culture-infective doses, immunofluorescence, and electron microscopic studies of primary cultures of oligodendrocytes, derived from the three strains of adult mice, identify differences in resistance to HSV 1 infection in vitro, suggesting that differences at this level may also contribute to the pathological appearance. Multifocal lesions in A/J mice were first observed when the infectious virus could no longer be isolated from the CNS and may be the result of an immune-mediated process "triggered" by the acute CNS infection in susceptible strains of mice.

  6. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS. PMID:26116512

  7. Preparation of embryonic retinal explants to study CNS neurite growth.

    PubMed

    Hanea, Sonia T; Shanmugalingam, Ushananthini; Fournier, Alyson E; Smith, Patrice D

    2016-05-01

    This protocol outlines the preparation of embryonic mouse retinal explants, which provides an effective technique to analyze neurite outgrowth in central nervous system (CNS) neurons. This validated ex vivo system, which displays limited neuronal death, is highly reproducible and particularly amenable to manipulation. Our previously published studies involving embryonic chick or adult mouse retinal explants were instrumental in the preparation of this protocol; aspects of these previous techniques were combined, adopted and optimized. This protocol thus permits more efficient analysis of neurite growth. Briefly, the retina is dissected from the embryonic mouse eye using precise techniques that take into account the small size of the embryonic eye. The approach applied ensures that the retinal ganglion cell (RGC) layer faces the adhesion substrate on coated cover slips. Neurite growth is clear, well-delineated and readily quantifiable. These retinal explants can therefore be used to examine the neurite growth effects elicited by potential therapeutic agents. PMID:27072342

  8. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    PubMed Central

    Williams, Jessica L.; Holman, David W.; Klein, Robyn S.

    2014-01-01

    In the adult central nervous system (CNS), chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier (BBB) including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease. PMID:24920943

  9. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  10. Experimental Study of Stellar Reactions at CNS

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.; Pearson, J.

    2006-11-01

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  11. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  12. Cerebral blood flow variations in CNS lupus

    SciTech Connect

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M. )

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.

  13. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  14. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  15. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.

  16. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  17. Protooncogenes subserve memory formation in the adult CNS.

    PubMed

    Sweatt, J D

    2001-09-13

    Studies of the signal transduction mechanisms underlying learning and memory have provided many new insights into the molecular mechanisms underlying associative conditioning in mammals. In this issue of Neuron, Gean and colleagues report the discovery that the PI-3 kinase/AKT(PKB) pathway contributes to LTP and the consolidation of amygdala-dependent cued fear conditioning in rats.

  18. Sublime microglia: expanding roles for the guardians of the CNS.

    PubMed

    Salter, Michael W; Beggs, Simon

    2014-07-01

    Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.

  19. Insect GDNF:TTC fusion protein improves delivery of GDNF to mouse CNS

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Kashi, Brenda B.; Celia, Samuel A.; Tamrazian, Eric; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-12-18

    With a view toward improving delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) to CNS motor neurons in vivo, we evaluated the bioavailability and pharmacological activity of a recombinant GDNF:tetanus toxin C-fragment fusion protein in mouse CNS. Following intramuscular injection, GDNF:TTC but not recombinant GDNF (rGDNF) produced strong GDNF immunostaining within ventral horn cells of the spinal cord. Intrathecal infusion of GDNF:TTC resulted in tissue concentrations of GDNF in lumbar spinal cord that were at least 150-fold higher than those in mice treated with rGDNF. While levels of immunoreactive choline acetyltransferase and GFR{alpha}-1 in lumbar cord were not altered significantly by intrathecal infusion of rGNDF, GDNF:TTC, or TTC, only rGDNF and GDNF:TTC caused significant weight loss following intracerebroventricular infusion. These studies indicate that insect cell-derived GDNF:TTC retains its bi-functional activity in mammalian CNS in vivo and improves delivery of GDNF to spinal cord following intramuscular- or intrathecal administration.

  20. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  1. Cerebrospinal fluid may mediate CNS ischemic injury

    PubMed Central

    Wang, Yanming F; Gwathmey, Judith K; Zhang, Guorong; Soriano, Sulpicio G; He, Shunli; Wang, Yanguang

    2005-01-01

    Background The central nervous system (CNS) is extremely vulnerable to ischemic injury. The details underlying this susceptibility are not completely understood. Since the CNS is surrounded by cerebrospinal fluid (CSF) that contains a low concentration of plasma protein, we examined the effect of changing the CSF in the evolution of CNS injury during ischemic insult. Methods Lumbar spinal cord ischemia was induced in rabbits by cross-clamping the descending abdominal aorta for 1 h, 2 h or 3 h followed by 7 d of reperfusion. Prior to ischemia, rabbits were subjected to the following procedures; 1) CSF depletion, 2) CSF replenishment at 0 mmHg intracranial pressure (ICP), and 3) replacement of CSF with 8% albumin- or 1% gelatin-modified artificial CSF, respectively. Motor function of the hind limbs and histopathological changes of the spinal cord were scored. Post-ischemic microcirculation of the spinal cord was visualized by fluorescein isothiocyanate (FITC) albumin. Results The severity of histopathological damage paralleled the neurological deficit scores. Paraplegia and associated histopathological changes were accompanied by a clear post-ischemic deficit in blood perfusion. Spinal cord ischemia for 1 h resulted in permanent paraplegia in the control group. Depletion of the CSF significantly prevented paraplegia. CSF replenishment with the ICP reduced to 0 mmHg, did not prevent paraplegia. Replacement of CSF with albumin- or gelatin-modified artificial CSF prevented paraplegia in rabbits even when the ICP was maintained at 10–15 mmHg. Conclusion We conclude that the presence of normal CSF may contribute to the vulnerability of the spinal cord to ischemic injury. Depletion of the CSF or replacement of the CSF with an albumin- or gelatin-modified artificial CSF can be neuroprotective. PMID:16174300

  2. Histamine pharmacology and new CNS drug targets.

    PubMed

    Tiligada, Ekaterini; Kyriakidis, Konstantinos; Chazot, Paul L; Passani, M Beatrice

    2011-12-01

    During the last decade, the identification of a number of novel drug targets led to the development of promising new compounds which are currently under evaluation for their therapeutic prospective in CNS related disorders. Besides the established pleiotropic regulatory functions in the periphery, the interest in the potential homeostatic role of histamine in the brain was revived following the identification of H(3) and H(4) receptors some years ago. Complementing classical CNS pharmacology, the development of selective histamine receptor agonists, antagonists, and inverse agonists provides the lead for the potential exploitation of the histaminergic system in the treatment of brain pathologies. Although no CNS disease entity has been associated directly to brain histamine dysfunction until now, the H(3) receptor is recognized as a drug target for neuropathic pain, sleep-wake disorders, including narcolepsy, and cognitive impairment associated with attention deficit hyperactivity disorder, schizophrenia, Alzheimer's, or Parkinson's disease, while the first H(3) receptor ligands have already entered phase I-III clinical trials. Interestingly, the localization of the immunomodulatory H(4) receptor in the nervous system exposes attractive perspectives for the therapeutic exploitation of this new drug target in neuroimmunopharmacology. This review focuses on a concise presentation of the current "translational research" approach that exploits the latest advances in histamine pharmacology for the development of beneficial drug targets for the treatment of neuronal disorders, such as neuropathic pain, cognitive, and sleep-wake pathologies. Furthermore, the role of the brain histaminergic system(s) in neuroprotection and neuroimmunology/inflammation remains a challenging research area that is currently under consideration.

  3. Role of Secretory Phospholipase A2 in CNS Inflammation: Implications in Traumatic Spinal Cord Injury

    PubMed Central

    Titsworth, W. Lee; Liu, Nai-Kui; Xu, Xiao-Ming

    2009-01-01

    Secretory phospholipases A2 (sPLA2s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA2 is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA2 have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA2s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA2 activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA2 plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA2 may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA2 action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA2 in the CNS with emphasis placed on the possible roles of sPLA2 in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord. PMID:18673210

  4. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system.

    PubMed

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-04-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS.

  5. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system

    PubMed Central

    Randall, Andrew D; Kurihara, Mai; Brandon, Nicholas J; Brown, Jon T

    2014-01-01

    The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS. PMID:24712987

  6. Mammalian airborne allergens.

    PubMed

    Aalberse, Rob C

    2014-01-01

    Historically, horse dandruff was a favorite allergen source material. Today, however, allergic symptoms due to airborne mammalian allergens are mostly a result of indoor exposure, be it at home, at work or even at school. The relevance of mammalian allergens in relation to the allergenic activity of house dust extract is briefly discussed in the historical context of two other proposed sources of house dust allergenic activity: mites and Maillard-type lysine-sugar conjugates. Mammalian proteins involved in allergic reactions to airborne dust are largely found in only 2 protein families: lipocalins and secretoglobins (Fel d 1-like proteins), with a relatively minor contribution of serum albumins, cystatins and latherins. Both the lipocalin and the secretoglobin family are very complex. In some instances this results in a blurred separation between important and less important allergenic family members. The past 50 years have provided us with much detailed information on the genomic organization and protein structure of many of these allergens. However, the complex family relations, combined with the wide range of post-translational enzymatic and non-enzymatic modifications, make a proper qualitative and quantitative description of the important mammalian indoor airborne allergens still a significant proteomic challenge. PMID:24925404

  7. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  8. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  9. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  10. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  11. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks.

    PubMed

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  12. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks.

    PubMed

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  13. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks

    PubMed Central

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  14. CNS activity of Calotropis gigantea roots.

    PubMed

    Argal, Ameeta; Pathak, Anupam Kumar

    2006-06-15

    Alcoholic extract of peeled roots of Calotropis gigantea R.Br. (Asclepiadaceae) was tested orally in albino rats at the dose level of 250 and 500 mg/kg bodyweight for CNS activity. Prominent analgesic activity was observed in Eddy's hot plate method and acetic acid induced writhings. The paw licking time was delayed and the numbers of writhings were greatly reduced. Significant anticonvulsant activity was seen as there was a delay in the onset of pentylenetetrazole induced convulsions as well as decrease in its severity. The extract treated rats spent more time in the open arm of EPM showing its antianxiety activity. There was a decrease in the locomotor activity. The fall off time (motor coordination) was also decreased. A potentiation in the pentobarbitone-induced sleep due to the sedative effect of the extract was observed. No mortality was seen upto the dose of 1 g/kg. These results show the analgesic, anticonvulsant, anxiolytic and sedative effect of the extract.

  15. Gene therapy for CNS diseases - Krabbe disease.

    PubMed

    Rafi, Mohammad A

    2016-01-01

    This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  16. Mammalian touch catches up

    PubMed Central

    Walsh, Carolyn M.; Bautista, Diana M.; Lumpkin, Ellen A.

    2015-01-01

    An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors. PMID:26100741

  17. Distribution of cannabinoid receptor 1 in the CNS of zebrafish.

    PubMed

    Lam, C S; Rastegar, S; Strähle, U

    2006-01-01

    The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.

  18. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  19. CNS involvement in hemophagocytic lymphohistiocytosis: CT and MR findings.

    PubMed

    Chung, Tae Woong

    2007-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare disorder that is characterized by proliferation of benign histiocytes, and this commonly involves the liver, spleen, lymph nodes, bone marrow and central nervous system (CNS). We report here on the CT and MR imaging findings in a case of CNS HLH that showed multiple ring enhancing masses mimicking abscess or another mass on the CT and MR imaging.

  20. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  1. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

  2. Axons modulate the expression of proteolipid protein in the CNS.

    PubMed

    Scherer, S S; Vogelbacker, H H; Kamholz, J

    1992-06-01

    We examined the expression of mRNA encoding proteolipid protein (PLP), the major myelin protein in the CNS, in developing rat cerebrum, and in normal and degenerating optic nerves. PLP transcripts were initiated at two clusters of start sites that were separated by about 30 base pairs. During the peak of PLP mRNA expression in developing cerebrum, a higher proportion of PLP transcripts were initiated from the distal start site, furthest from the open reading frame, than in mature cerebrum. We enucleated one eye of immature rats to cause Wallerian degeneration in the optic nerve. In these degenerating optic nerves, the steady state levels of PLP mRNA fell markedly, and the proportion of distally initiated PLP transcripts declined to the same proportion found in normal adult nerves. Changes in myelin gene expression were not limited to PLP mRNA, as the steady-state levels of myelin basic protein (MBP) mRNA paralleled those of PLP mRNA in the developing cerebrum and in degenerating optic nerves. Thus, oligodendrocytes require axons to maintain their normal levels of PLP and MBP transcripts and the high proportion of distally initiated PLP transcripts that characterize early myelination.

  3. Immune surveillance of the CNS following infection and injury

    PubMed Central

    Russo, Matthew; McGavern, Dorian B.

    2015-01-01

    The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair. PMID:26431941

  4. Time course of IL-6 expression in experimental CNS ischemia.

    PubMed

    Clark, W M; Rinker, L G; Lessov, N S; Hazel, K; Eckenstein, F

    1999-04-01

    Interleukin-6 (IL-6) appears to be an important modulator of the inflammatory response associated with CNS ischemia. Clinically, IL-6 values obtained in the first week post-stroke have been shown to correlate with infarct size and outcome. In this study we used a focal reversible stroke model to investigate the time course and relationship to outcome of IL-6 production in plasma, brain and CSF. Reversible middle cerebral artery occlusion or sham surgery was produced in 50 adult Swiss Webster mice by advancing an 8-0 filament into the internal carotid artery for 2 h (sham 1 min). At 3, 6, 12, 24, and 72 h (8 each ischemia; 2 each sham) groups of animals were evaluated on a 28 point clinical scale, blood and CSF obtained, and the brains were evaluated for infarct volume and IL-6 mRNA levels. Serum levels of IL-6 (ELISA mean +/- SD; undetectable in controls) overall sham group, 102 +/- 87; 3 h, 908 +/- 494* pg ml-1; 6 h, 1079 +/- 468* pg ml-1; 12 h, 980 +/- 221* pg ml-1; pg ml-1; 24 h, 320 +/- 314* pg ml-1; 72 h, 20 +/- 30* pg ml-1 (*p < or = 0.05 to sham). CSF levels (ELISA) overall sham group, 10 +/- 18; 3 h, 379 +/- 210* pg ml-1; 6 h, 157 +/- 61* pg ml-1; 12 h, 136 +/- 88* pg ml-1; 24 h, 127 +/- 99 pg ml-1; 72 h, 72 +/- 9* pg ml-1 (*p < or = 0.05 to sham). Brain IL-6 mRNA levels overall sham group, 20; 3 h, 480; 6 h, 599; 12 h, 7960; 24 h, 20267; 72 h, 0. There was an overall R2 of 0.20 between plasma and CSF IL-6. There was an overall R2 of 0.13 and 0.20 between infarct size and serum and CSF IL-6 level respectively, and an overall R2 of 0.10 and 0.17 between neurologic function and serum and CSF IL-6 level respectively. These findings confirm that IL-6 values increase following CNS ischemia with peak serum and CSF levels occurring before brain values. CSF IL-6 levels had a stronger correlation with neurologic function and infarct size than serum.

  5. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  6. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal

    PubMed Central

    Shelley, Deborah N.; Choleris, Elena; Kavaliers, Martin

    2006-01-01

    The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles. PMID:18985112

  7. A philosophy for CNS radiotracer design.

    PubMed

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available

  8. Primary adult human astrocytes as an ex vivo vehicle for beta-glucuronidase delivery in the brain.

    PubMed

    Serguera, C; Sarkis, C; Ridet, J L; Colin, P; Moullier, P; Mallet, J

    2001-06-01

    Astrocytes are a good candidate cell type for brain transplantation: They are endogenous to the CNS, they have efficient secretory machinery, and they play a major role in neuronal support. We assessed the potential of genetically modified primary adult human astrocytes as vehicles for the delivery of secreted molecules in the mammalian CNS. We report that such cells can be efficiently transduced by a recombinant adenoviral vector carrying the human beta-glucuronidase cDNA (Ad/CMV*beta-glu) and that the transduced astrocytes produce large amounts of the enzyme. Released beta-glucuronidase could be captured, in vitro, by primary neurons and astrocytes and by a neuroblastoma cell line and beta-glucuronidase-deficient fibroblasts. Following grafting into the mouse striatum, adult human astrocytes survived and expressed the transgene for at least 8 weeks. Moreover, the dosage of beta-glucuronidase activity within the grafted brains revealed high enzymatic levels at a long distance from the graft. These experiments document the grafting of engineered primary adult human astrocytes, allowing the release of a secreted therapeutic factor throughout the brain.

  9. Mammalian glycosylation in immunity

    PubMed Central

    Marth, Jamey D.; Grewal, Prabhjit K.

    2009-01-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous of receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome. PMID:18846099

  10. Pathogenesis and management of primary CNS lymphoma.

    PubMed

    Roth, Patrick; Korfel, Agnieszka; Martus, Peter; Weller, Michael

    2012-05-01

    Primary CNS lymphoma (PCNSL), a rare variant of extranodal non-Hodgkin's lymphoma, may cause various neurological symptoms and signs. The best therapeutic strategy is still a matter of debate. High-dose methotrexate (HD-MTX) is the most active compound and should be used as the backbone for any chemotherapy applied. Several other chemotherapeutic drugs have been assessed in combination with HD-MTX, but no standard has yet been defined. Whole-brain radiotherapy is active against PCNSL, but typically does not confer long-lasting remission and is associated with significant neurotoxicity in many patients. The recently published G-PCNSL-SG1 trial has shown that consolidating whole-brain radiotherapy after HD-MTX-based chemotherapy does not prolong overall survival and may therefore be deferred. Combined systemic and intraventricular polychemotherapy, or high-dose chemotherapy followed by stem cell transplantation may offer cures to younger patients. Improving treatment regimens without adding significant (neuro-)toxicity should be the focus of ongoing and future studies.

  11. Targeting gene therapy vectors to CNS malignancies.

    PubMed

    Spear, M A; Herrlinger, U; Rainov, N; Pechan, P; Weissleder, R; Breakefield, X O

    1998-04-01

    Gene therapy offers significant advantages to the field of oncology with the addition of specifically and uniquely engineered mechanisms of halting malignant proliferation through cytotoxicity or reproductive arrest. To confer a true benefit to the therapeutic ratio (the relative toxicity to tumor compared to normal tissue) a vector or the transgene it carries must selectively affect or access tumor cells. Beyond the selective toxicities of many transgene products, which frequently parallel that of contemporary chemotherapeutic agents, lies the potential utility of targeting the vector. This review presents an overview of current and potential methods for designing vectors targeted to CNS malignancies through selective delivery, cell entry, transport or transcriptional regulation. The topic of delivery encompasses physical and pharmaceutic means of increasing the relative exposure of tumors to vector. Cell entry based methodologies are founded on increasing relative uptake of vector through the chemical or recombinant addition of ligand and antibody domains which selectively bind receptors expressed on target cells. Targeted transport involves the potential for using cells to selectively carry vectors or transgenes into tumors. Finally, promoter and enhancer systems are discussed which have potential for selectivity activating transcription to produce targeted transgene expression or vector propagation. PMID:9584951

  12. Application of Nanomedicine to the CNS Diseases.

    PubMed

    Carradori, D; Gaudin, A; Brambilla, D; Andrieux, K

    2016-01-01

    Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience. PMID:27678175

  13. CNS-disease affecting the heart: brain-heart disorders.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-10-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS-disorders are epilepsy, stroke, subarachanoid bleeding, bacterial meningitis, and head injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest as arrhythmias, cardiomyopathy, or autonomic dysfunction. Rarer cardiac complications of CNS disorders include heart failure, systolic or diastolic dysfunction, myocardial infarction, arterial hypertension, or pulmonary hypertension. Cardiomyopathy induced by hereditary CNS disease mainly include stress-induced myocardial dysfunction, known as Takotsubo syndrome (TTS). CNS disease triggering TTS includes epilepsy, ischemic stroke, subarachnoid bleeding, or PRES syndrome. Arrhythmias induced by hereditary CNS disease include supraventricular or ventricular arrhythmias leading to palpitations, dizziness, vertigo, fainting, syncope, (near) sudden cardiac death, or sudden unexplained death in epilepsy (SUDEP). Appropriate management of cardiac involvement in CNS-disorders is essential to improve outcome of affected patients. PMID:25034054

  14. The challenges of long-distance axon regeneration in the injured CNS.

    PubMed

    Chew, Daniel J; Fawcett, James W; Andrews, Melissa R

    2012-01-01

    Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.

  15. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors.

    PubMed

    Wood, M J; Byrnes, A P; Pfaff, D W; Rabkin, S D; Charlton, H M

    1994-09-01

    The use of viral vectors which infect and express genes in post-mitotic neurons is a potential strategy for the treatment of disorders affecting the central nervous system (CNS). However, the inflammatory consequences of such strategies have yet to be systematically examined. Preparations of non-replicating defective herpes simplex virus type 1 (HSV-1) amplicon vectors containing the lacZ gene were obtained by standard methods and stereotaxically injected into the adult rat dentate gyrus (DG). The consequent gene expression and inflammatory effects following microinjection were investigated. beta-Galactosidase activity was detected in neurons of the DG from 24 h to at least 12 days after vector injection. A strong inflammatory response developed within 2 days, characterized by diffuse up-regulation of major histocompatibility complex (MHC) class I antigens and the activation of microglia. After 4 days the recruitment of MHC class II+ cells, activated T lymphocytes and macrophages was detected. These features persisted for at least 31 days. Of importance was the finding of beta-galactosidase activity in a bilateral group of neurons in the supramammillary nuclei (SMN) of the posterior hypothalamus, known to send afferent projections to the DG. The onset of inflammation at this secondary site was delayed, but its cellular characteristics resembled those found at the primary site of injection. Thus, the use of preparations of defective HSV-1 vectors for gene transfer in the CNS has immunological implications both at primary and secondary sites within the CNS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7584093

  16. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences.

    PubMed

    Hart, Adam D; Wyttenbach, Andreas; Perry, V Hugh; Teeling, Jessica L

    2012-07-01

    Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.

  17. Mitochondria and mammalian reproduction.

    PubMed

    Ramalho-Santos, João; Amaral, Sandra

    2013-10-15

    Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.

  18. CNS Vasculitis Associated with Waldenström Macroglobulinemia

    PubMed Central

    Riangwiwat, Tanawan; Wu, Chris Y.; Santos-Ocampo, Alberto S.; Liu, Randal J.

    2016-01-01

    Waldenström macroglobulinemia (WM) is an indolent B cell lymphoproliferative disorder with monoclonal IgM secretion. We present a patient with WM who presented with multifocal acute cortical ischemic strokes and was found to have central nervous system (CNS) vasculitis. Workup was negative for cryoglobulins and hyperviscosity syndrome. Immunosuppression with intravenous steroids and cyclophosphamide stabilized the patient's mental status and neurologic deficits. On followup over 7 years, patient gained independence from walking aids and experienced no recurrences of CNS vasculitis. To our knowledge, CNS vasculitis in a WM patient, in the absence of cryoglobulins, has not been reported. Immunosuppression is the preferred treatment.

  19. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow.

  20. Regional astrocyte allocation regulates CNS synaptogenesis and repair.

    PubMed

    Tsai, Hui-Hsin; Li, Huiliang; Fuentealba, Luis C; Molofsky, Anna V; Taveira-Marques, Raquel; Zhuang, Helin; Tenney, April; Murnen, Alice T; Fancy, Stephen P J; Merkle, Florian; Kessaris, Nicoletta; Alvarez-Buylla, Arturo; Richardson, William D; Rowitch, David H

    2012-07-20

    Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.

  1. More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration

    PubMed Central

    Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim

    2014-01-01

    Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875

  2. Survival Advantage of Neonatal CNS Gene Transfer for Late Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Sondhi, Dolan; Peterson, Daniel A.; Edelstein, Andrew M.; del Fierro, Katrina; Hackett, Neil R.; Crystal, Ronald G.

    2009-01-01

    Summary Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk treated mice, 168 days for 7 wk treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS. PMID:18639872

  3. CNS Dopamine Transmission Mediated by Noradrenergic Innervation

    PubMed Central

    Smith, Caroline C.; Greene, Robert W.

    2012-01-01

    The pre-synaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL6 male mice, that a dopamine (DA) D1 receptor (D1R) mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT) positive fibers are absent in hippocampus, a region with abundant D1Rs. It has been suggested this results from a lack of DAT expression on VTA terminals rather than a lack of these terminals per se. Neither a knockdown of tyrosine hydroxylase (TH) expression in the VTA by THsiRNA, delivered locally, by adeno-associated viral vector, nor localized pharmacological blockade of DAT to prevent amphetamine uptake into DA terminals, has any effect on the D1R synaptic, enhancement response to amphetamine. However, either a decrease in TH expression in the locus coeruleus (LC) or a blockade of the norepinephrine (NE) transporter prevents the DA mediated response, indicating LC terminals can release both NE and DA. These findings suggest noradrenergic fibers may be the primary source of DA release in hippocampus and corresponding DA mediated increase in synaptic transmission. Accordingly, these data imply the LC may have a role in DA transmission in the CNS in response to drugs of abuse, and potentially, under physiological conditions. PMID:22553014

  4. Generation of spike trains in CNS neurons.

    PubMed

    Calvin, W H

    1975-01-24

    The membrane potential waveforms to be expected from many asynchronous inputs to CNS neurons are described, along with modes for repetitive firing through which the input waveforms are converted into spike trains. Area beneath a postsynaptic potential (PSP), rather than PSP peak height, is shown to be an important parameter susceptible to modification. Occasional crossings of threshold produce occasional spikes, but a sustained depolarizing waveform which attempts to hold the membrane potential above threshold elicits rhythmic firing. Firing rate is graded with the amount by which the synaptic depolarizing currents exceed the minimum current for rhythmic firing (approximately rheobase). A systematic sequence of alterations in the membrane potential trajectory between spikes, quite different from those of receptors and invertebrate neurons, may control the firing rate and give rise to sudden changes in the "gain" of this conversion of depolarizing current into firing rate. The different implications of synaptic location during the occasional spike mode and the rhythmic firing mode are discussed, as is the role of the antidromic invasion of the soma-dendritic region during rhythmic firing. Less frequently an"extra spike mode" is seen where depolarizing afterpotentials following a spike themselves cross threshold to elicit an extra spike, which may similarly elicit another extra spike, etc., in a regenerative cycle. The character of the underlying depolarizing afterpotentials (or "delayed depolarizations") is reviewed, along with theories for their origin from the antidromic invasion of the dendritic tree. The stereotyped burst firing patterns characteristic of the extra spike mode can also be seen in deafferented neurons and neurons studied in chronic syndromes such as epilepsy and central pain. This raises the question as to whether some disease states may augment extra spike firing, thus multiplying many-fold the response to a normal input. PMID:163121

  5. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing

  6. CNS drug design: balancing physicochemical properties for optimal brain exposure.

    PubMed

    Rankovic, Zoran

    2015-03-26

    The human brain is a uniquely complex organ, which has evolved a sophisticated protection system to prevent injury from external insults and toxins. Designing molecules that can overcome this protection system and achieve optimal concentration at the desired therapeutic target in the brain is a specific and major challenge for medicinal chemists working in CNS drug discovery. Analogous to the now widely accepted rule of 5 in the design of oral drugs, the physicochemical properties required for optimal brain exposure have been extensively studied in an attempt to similarly define the attributes of successful CNS drugs and drug candidates. This body of work is systematically reviewed here, with a particular emphasis on the interplay between the most critical physicochemical and pharmacokinetic parameters of CNS drugs as well as their impact on medicinal chemistry strategies toward molecules with optimal brain exposure. A summary of modern CNS pharmacokinetic concepts and methods is also provided.

  7. Pharmacokinetic, Pharmacogenetic, and Other Factors Influencing CNS Penetration of Antiretrovirals

    PubMed Central

    Babalola, Chinedum Peace; Morse, Gene D.; Taiwo, Babafemi

    2016-01-01

    Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS efficacy, and neurotoxicity. PMID:27777797

  8. Viral antibodies in the CSF after acute CNS infections.

    PubMed

    Cappel, R; Thiry, L; Clinet, G

    1975-09-01

    Viral antibodies were measured in the cerebrospinal fluid (CSF) and serum from 25 patients having acute viral central nervous system (CNS) infections, and from 39 control patients. The results, collected two weeks after the clinical onset, revealed the presence of antibodies in nine of 13 (69%) CSF specimens from patients suffering from encephalitis of myelitis, and in only one of nine (11%) of the CSF samples of those presenting a viral meningitis infection. This difference was statistically significant and suggests that the titration of viral antibodies in the CSF can be helpful in establishing the diagnosis of viral CNS infection. Our data also suggest that localized production of antibodies occurs during the course of acute CNS infections, and that the respiratory syncytial virus can be associated with CNS infections in man.

  9. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  10. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  11. Human African trypanosomiasis of the CNS: current issues and challenges

    PubMed Central

    Kennedy, Peter G.E.

    2004-01-01

    Human African trypanosomiasis (HAT), also known as sleeping sickness, is a major cause of mortality and morbidity in sub-Saharan Africa. Current therapy with melarsoprol for CNS HAT has unacceptable side-effects with an overall mortality of 5%. This review discusses the issues of diagnosis and staging of CNS disease, its neuropathogenesis, and the possibility of new therapies for treating late-stage disease. PMID:14966556

  12. Prominent Vascular and Perivascular Eosinophilic Infiltrates Heralding CNS Mycosis Fungoides.

    PubMed

    Schowinsky, Jeffrey; Leppert, Michelle; Ney, Douglas; Kleinschmidt-DeMasters, B K

    2015-10-01

    Brain parenchymal involvement of mycosis fungoides (MF) is very rare. This study reports a patient with known cutaneous MF (under treatment) who presented with a CNS syndrome and multiple brain lesions. Brain biopsy demonstrated massive eosinophilic infiltrates but no MF cells. Despite treatment, new lesions developed and the patient died. At autopsy, there was massive involvement MF cells, suggesting that the eosinophilic infiltrates presaged the severe involvement of the CNS by MF. PMID:26352990

  13. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone

    PubMed Central

    Ribeiro Xavier, Anna L.; Kress, Benjamin T.; Goldman, Steven A.; Lacerda de Menezes, João R.

    2015-01-01

    Microglia are involved in synaptic pruning both in development and in the mature CNS. In this study, we investigated whether microglia might further contribute to circuit plasticity by modulating neuronal recruitment from the neurogenic subventricular zone (SVZ) of the adult mouse striatum. We found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low expression of purinoceptors and lack of ATP-elicitable chemotaxis. Furthermore, the in vivo depletion of these microglia hampered the survival and migration of newly generated neuroblasts through the RMS to the olfactory bulb. SVZ and RMS microglia thus appear to comprise a functionally distinct class that is selectively adapted to the support and direction of neuronal integration into the olfactory circuitry. Therefore, this unique microglial subpopulation may serve as a novel target with which to modulate cellular addition from endogenous neural stem and progenitor cells of the adult brain. SIGNIFICANCE STATEMENT Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural circuitry sculpture. Here, we addressed microglial functions in the subventricular zone (SVZ), the major postnatal neurogenic niche. Our results depict microglia as a conspicuous component of SVZ and its anterior extension, the rostral migratory stream, a pathway used by neuroblasts during their transit toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal

  14. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  15. Nuclear transfer technology in mammalian cloning.

    PubMed

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  16. Cellular and molecular characterization of multipolar Map5-expressing cells: a subset of newly generated, stage-specific parenchymal cells in the mammalian central nervous system.

    PubMed

    Crociara, Paola; Parolisi, Roberta; Conte, Daniele; Fumagalli, Marta; Bonfanti, Luca

    2013-01-01

    Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons. We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells. We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions.

  17. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  18. Developmental changes of CaMKII localization, activity and function during postembryonic CNS remodelling in Manduca sexta.

    PubMed

    Burkert, P; Duch, C

    2006-01-01

    Insect metamorphosis is a compelling example of postembryonic remodelling of neuronal structure and synaptic connectivity as larval and adult behaviours place distinct demands on the CNS. Holometabolous insects such as the moth Manduca sexta have long served as suitable models for the study of steroid effects on CNS remodelling, but activity and calcium-dependent mechanisms have been found to act in concert with hormonal signals. This study examines developmental changes in the localization and the activational state of CaMKII during postembryonic Manduca CNS remodelling. Western blotting, CaMKII purification and autophosphorylation with gamma(32)P-ATP indicate that the lepidopteran CNS may contain only one CaMKII isoform. In situ immunohistochemistry reveals developmental changes in the expression patterns of CaMKII in different types of thoracic neurons and in different neuronal compartments. Early pupal life is characterized by an increase in postsynaptic CaMKII localization, which coincides with a developmental increase in CaMKII activation. Both events correlate temporally with motoneuron dendritic filopodia collapse and rapid synaptogenesis, indicating a possible functional role for CaMKII for the postembryonic development of invertebrate motor circuitry. Substrate phosphorylation assays demonstrate that CaMKII activity in the ventral nerve cord reflects changes in calcium influx through voltage-activated channels as occurring in vivo during normal development.

  19. Zebrafish as a Model to Investigate CNS Myelination

    PubMed Central

    Preston, Marnie A.; Macklin, Wendy B.

    2015-01-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems. PMID:25263121

  20. Zebrafish as a model to investigate CNS myelination.

    PubMed

    Preston, Marnie A; Macklin, Wendy B

    2015-02-01

    Myelin plays a critical role in proper neuronal function by providing trophic and metabolic support to axons and facilitating energy-efficient saltatory conduction. Myelination is influenced by numerous molecules including growth factors, hormones, transmembrane receptors and extracellular molecules, which activate signaling cascades that drive cellular maturation. Key signaling molecules and downstream signaling cascades controlling myelination have been identified in cell culture systems. However, in vitro systems are not able to faithfully replicate the complex in vivo signaling environment that occurs during development or following injury. Currently, it remains time-consuming and expensive to investigate myelination in vivo in rodents, the most widely used model for studying mammalian myelination. As such, there is a need for alternative in vivo myelination models, particularly ones that can test molecular mechanisms without removing oligodendrocyte lineage cells from their native signaling environment or disrupting intercellular interactions with other cell types present during myelination. Here, we review the ever-increasing role of zebrafish in studies uncovering novel mechanisms controlling vertebrate myelination. These innovative studies range from observations of the behavior of single cells during in vivo myelination as well as mutagenesis- and pharmacology-based screens in whole animals. Additionally, we discuss recent efforts to develop novel models of demyelination and oligodendrocyte cell death in adult zebrafish for the study of cellular behavior in real time during repair and regeneration of damaged nervous systems.

  1. Tenascin-R restricts posttraumatic remodeling of motoneuron innervation and functional recovery after spinal cord injury in adult mice.

    PubMed

    Apostolova, Ivayla; Irintchev, Andrey; Schachner, Melitta

    2006-07-26

    Tenascin-R (TNR) is an extracellular glycoprotein in the CNS implicated in neural development and plasticity. Its repellent properties for growing axons in a choice situation with a conducive substrate in vitro have indicated that TNR may impede regeneration in the adult mammalian CNS. Here we tested whether constitutive lack of TNR has beneficial impacts on recovery from spinal cord injury in adult mice. Using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale, we found that open-field locomotion in TNR-deficient (TNR-/-) mice recovered better that in wild-type (TNR+/+) littermates after compression of the thoracic spinal cord. We also designed, validated, and applied a motion analysis approach allowing numerical assessment of motor functions. We found, in agreement with the BBB score, that functions requiring low levels of supraspinal control such as plantar stepping improved more in TNR-/- mice. This was not the case for motor tasks demanding precision such as ladder climbing. Morphological analyses revealed no evidence that improved recovery of some functions in the mutant mice were attributable to enhanced tissue sparing or axonal regrowth. Estimates of perisomatic puncta revealed reduced innervation by cholinergic and GABAergic terminals around motoneurons in intact TNR-/- compared with TNR+/+ mice. Relative to nonlesioned animals, spinal cord repair was associated with increase in GABAergic and decrease of glutamatergic puncta in TNR-/- but not in TNR+/+ mice. Our results suggest that TNR restricts functional recovery by limiting posttraumatic remodeling of synapses around motoneuronal cell bodies where TNR is normally expressed in perineuronal nets.

  2. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  3. Triptans and CNS side-effects: pharmacokinetic and metabolic mechanisms.

    PubMed

    Dodick, D W; Martin, V

    2004-06-01

    Triptans are the treatment of choice for acute migraine. While seemingly a homogenous group of drugs, results from a meta-analysis reveal significant differences in efficacy and tolerability among oral triptans. The incidence of drug-related central nervous system (CNS) side-effects with some triptans is as high as 15% and may be associated with functional impairment and reduced productivity. The occurrence of adverse events associated with triptans in general, and CNS side-effects in particular, may lead to a delay in initiating or even avoidance of an otherwise effective treatment. Potential explanations for differences among triptans in the incidence of CNS side-effects may relate to pharmacological and pharmacokinetic differences, including receptor binding, lipophilicity, and the presence of active metabolites. Of the triptans reviewed, at clinically relevant doses, almotriptan 12.5 mg, naratriptan 2.5 mg and sumatriptan 50 mg had the lowest incidence of CNS side-effects, while eletriptan 40 and 80 mg, rizatriptan 10 mg and zolmitriptan 2.5 and 5 mg had the highest incidence. The most likely explanations for the differences in CNS side-effects among triptans are the presence of active metabolites and high lipophilicity of the parent compound and active metabolites. Eletriptan, rizatriptan and zolmitriptan have active metabolites, while lipophilicity is lowest for almotriptan and sumatriptan. If CNS side-effects are a clinically relevant concern in the individual patient, use of a triptan with a low incidence of CNS side-effects may offer the potential for earlier initiation of treatment and more effective outcomes. PMID:15154851

  4. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  5. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    The conversion of fatty acids to fatty alcohols is required for the synthesis of wax monoesters and ether lipids. The mammalian enzymes that synthesize fatty alcohols have not been identified. Here, an in silico approach was used to discern two putative reductase enzymes designated FAR1 and FAR2. Expression studies in intact cells showed that FAR1 and FAR2 cDNAs encoded isozymes that reduced fatty acids to fatty alcohols. Fatty acyl-CoA esters were the substrate of FAR1, and the enzyme required NADPH as a cofactor. FAR1 preferred saturated and unsaturated fatty acids of 16 or 18 carbons as substrates, whereas FAR2 preferred saturated fatty acids of 16 or 18 carbons. Confocal light microscopy indicated that FAR1 and FAR2 were localized in the peroxisome. The FAR1 mRNA was detected in many mouse tissues with the highest level found in the preputial gland, a modified sebaceous gland. The FAR2 mRNA was more restricted in distribution and most abundant in the eyelid, which contains wax-laden meibomian glands. Both FAR mRNAs were present in the brain, a tissue rich in ether lipids. The data suggest that fatty alcohol synthesis in mammals is accomplished by two fatty acyl-CoA reductase isozymes that are expressed at high levels in tissues known to synthesize wax monoesters and ether lipids. PMID:15220348

  6. Mammalian Gut Immunity

    PubMed Central

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  7. The truncated TrkB receptor influences mammalian sleep

    PubMed Central

    Watson, Adam J.; Henson, Kyle; Dorsey, Susan G.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin hypothesized to play an important role in mammalian sleep expression and regulation. In order to investigate the role of the truncated receptor for BDNF, TrkB.T1, in mammalian sleep, we examined sleep architecture and sleep regulation in adult mice constitutively lacking this receptor. We find that TrkB.T1 knockout mice have increased REM sleep time, reduced REM sleep latency, and reduced sleep continuity. These results demonstrate a novel role for the TrkB.T1 receptor in sleep expression and provide new insights into the relationship between BDNF, psychiatric illness, and sleep. PMID:25502751

  8. Evolution of the mammalian dentate gyrus.

    PubMed

    Hevner, Robert F

    2016-02-15

    The dentate gyrus (DG), a part of the hippocampal formation, has important functions in learning, memory, and adult neurogenesis. Compared with homologous areas in sauropsids (birds and reptiles), the mammalian DG is larger and exhibits qualitatively different phenotypes: 1) folded (C- or V-shaped) granule neuron layer, concave toward the hilus and delimited by a hippocampal fissure; 2) nonperiventricular adult neurogenesis; and 3) prolonged ontogeny, involving extensive abventricular (basal) migration and proliferation of neural stem and progenitor cells (NSPCs). Although gaps remain, available data indicate that these DG traits are present in all orders of mammals, including monotremes and marsupials. The exception is Cetacea (whales, dolphins, and porpoises), in which DG size, convolution, and adult neurogenesis have undergone evolutionary regression. Parsimony suggests that increased growth and convolution of the DG arose in stem mammals concurrently with nonperiventricular adult hippocampal neurogenesis and basal migration of NSPCs during development. These traits could all result from an evolutionary change that enhanced radial migration of NSPCs out of the periventricular zones, possibly by epithelial-mesenchymal transition, to colonize and maintain nonperiventricular proliferative niches. In turn, increased NSPC migration and clonal expansion might be a consequence of growth in the cortical hem (medial patterning center), which produces morphogens such as Wnt3a, generates Cajal-Retzius neurons, and is regulated by Lhx2. Finally, correlations between DG convolution and neocortical gyrification (or capacity for gyrification) suggest that enhanced abventricular migration and proliferation of NSPCs played a transformative role in growth and folding of neocortex as well as archicortex.

  9. CNS Anticancer Drug Discovery and Development Conference White Paper.

    PubMed

    Levin, Victor A; Tonge, Peter J; Gallo, James M; Birtwistle, Marc R; Dar, Arvin C; Iavarone, Antonio; Paddison, Patrick J; Heffron, Timothy P; Elmquist, William F; Lachowicz, Jean E; Johnson, Ted W; White, Forest M; Sul, Joohee; Smith, Quentin R; Shen, Wang; Sarkaria, Jann N; Samala, Ramakrishna; Wen, Patrick Y; Berry, Donald A; Petter, Russell C

    2015-11-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.

  10. Nanotechnological advances for the delivery of CNS therapeutics.

    PubMed

    Wong, Ho Lun; Wu, Xiao Yu; Bendayan, Reina

    2012-05-15

    Effective non-invasive treatment of neurological diseases is often limited by the poor access of therapeutic agents into the central nervous system (CNS). The majority of drugs and biotechnological agents do not readily permeate into brain parenchyma due to the presence of two anatomical and biochemical dynamic barriers: the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Therefore, one of the most significant challenges facing CNS drug development is the availability of effective brain targeting technology. Recent advances in nanotechnology have provided promising solutions to this challenge. Several nanocarriers ranging from the more established systems, e.g. polymeric nanoparticles, solid lipid nanoparticles, liposomes, micelles to the newer systems, e.g. dendrimers, nanogels, nanoemulsions and nanosuspensions have been studied for the delivery of CNS therapeutics. Many of these nanomedicines can be effectively transported across various in vitro and in vivo BBB models by endocytosis and/or transcytosis, and demonstrated early preclinical success for the management of CNS conditions such as brain tumors, HIV encephalopathy, Alzheimer's disease and acute ischemic stroke. Future development of CNS nanomedicines need to focus on increasing their drug-trafficking performance and specificity for brain tissue using novel targeting moieties, improving their BBB permeability and reducing their neurotoxicity. PMID:22100125

  11. Targeting anti-HIV drugs to the CNS

    PubMed Central

    Rao, Kavitha S; Ghorpade, Anuja; Labhasetwar, Vinod

    2009-01-01

    The development of antiretroviral drugs over the past couple of decades has been commendable due to the identification of several new targets within the overall Human Immunodeficiency Virus (HIV) replication cycle. However, complete control over HIV/Acquired Immune Deficiency Syndrome is yet to be achieved. This is because the current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. This occurs because most anti-HIV drugs do not accumulate in certain cellular and anatomical reservoirs including the Central Nervous System (CNS). Insufficient delivery of anti-HIV drugs to the CNS is attributed to their low permeability across the blood-brain-barrier (BBB). Hence, low and sustained viral replication within the CNS continues even during prolonged antiretroviral drug therapy. Therefore, developing novel approaches that are targeted at enhancing the CNS delivery of anti-HIV drugs are required. In this review, we discussed the potential of nanocarriers and the role of cell-penetrating peptides in enhancing drug delivery to the CNS. Such drug delivery approaches could also lead to higher drug delivery to other cellular and anatomical reservoirs where the virus harbor than with conventional treatment, thus providing an effective therapy to eliminate the virus completely from the body. PMID:19566446

  12. Bovine-associated CNS species resist phagocytosis differently

    PubMed Central

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  13. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  14. Polysome analysis of mammalian cells.

    PubMed

    He, Shan L; Green, Rachel

    2013-01-01

    To assess the global translational level of mammalian cells (see similar protocols for bacteria and yeast on Analysis of polysomes from bacteria, Polysome Profile Analysis - Yeast and Polysome analysis for determining mRNA and ribosome association in Saccharomyces cerevisiae).

  15. Maturation of the mammalian secretome

    PubMed Central

    Simpson, Jeremy C; Mateos, Alvaro; Pepperkok, Rainer

    2007-01-01

    A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway. PMID:17472737

  16. Disruption of microtubule integrity initiates mitosis during CNS repair.

    PubMed

    Bossing, Torsten; Barros, Claudia S; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-08-14

    Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.

  17. Prospects for the development of epigenetic drugs for CNS conditions.

    PubMed

    Szyf, Moshe

    2015-07-01

    Advances in our understanding of the epigenetic mechanisms that control gene expression in the central nervous system (CNS) and their role in neuropsychiatric disorders are paving the way for a potential new therapeutic approach that is focused on reversing the epigenetic underpinnings of neuropsychiatric conditions. In this article, the complexity of epigenetic processes and the current level of proof for their involvement in CNS disorders are discussed. The preclinical evidence for efficacy of pharmacological approaches that target epigenetics in the CNS and the particular challenges of this approach are also examined. Finally, strategies to address these challenges through the development of improved evidence-based epigenetic therapeutics and through combining pharmacological and behavioural approaches are presented.

  18. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  19. How Do Meningeal Lymphatic Vessels Drain the CNS?

    PubMed

    Raper, Daniel; Louveau, Antoine; Kipnis, Jonathan

    2016-09-01

    The many interactions between the nervous and the immune systems, which are active in both physiological and pathological states, have recently become more clearly delineated with the discovery of a meningeal lymphatic system capable of carrying fluid, immune cells, and macromolecules from the central nervous system (CNS) to the draining deep cervical lymph nodes. However, the exact localization of the meningeal lymphatic vasculature and the path of drainage from the cerebrospinal fluid (CSF) to the lymphatics remain poorly understood. Here, we discuss the potential differences between peripheral and CNS lymphatic vessels and examine the purported mechanisms of CNS lymphatic drainage, along with how these may fit into established patterns of CSF flow. PMID:27460561

  20. Disruption of Microtubule Integrity Initiates Mitosis during CNS Repair

    PubMed Central

    Bossing, Torsten; Barros, Claudia S.; Fischer, Bettina; Russell, Steven; Shepherd, David

    2012-01-01

    Summary Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates. PMID:22841498

  1. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    PubMed Central

    Reddy, Avanish S.; Maletic-Savatic, Mirjana; Aguirre, Adan; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2−/− mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB) granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM), along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2−/− SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration. PMID:24391977

  2. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma.

    PubMed

    Kramer, Kim; Kushner, Brian H; Modak, Shakeel; Pandit-Taskar, Neeta; Smith-Jones, Peter; Zanzonico, Pat; Humm, John L; Xu, Hong; Wolden, Suzanne L; Souweidane, Mark M; Larson, Steven M; Cheung, Nai-Kong V

    2010-05-01

    Innovation in the management of brain metastases is needed. We evaluated the addition of compartmental intrathecal antibody-based radioimmunotherapy (cRIT) in patients with recurrent metastatic central nervous system (CNS) neuroblastoma following surgery, craniospinal irradiation, and chemotherapy. Twenty one patients treated for recurrent neuroblastoma metastatic to the CNS, received a cRIT-containing salvage regimen incorporating intrathecal (131)I-monoclonal antibodies (MoAbs) targeting GD2 or B7H3 following surgery and radiation. Most patients also received outpatient craniospinal irradiation, 3F8/GMCSF immunotherapy, 13-cis-retinoic acid and oral temozolomide for systemic control. Seventeen of 21 cRIT-salvage patients are alive 7-74 months (median 33 months) since CNS relapse, with all 17 remaining free of CNS neuroblastoma. One patient died of infection at 22 months with no evidence of disease at autopsy, and one of lung and bone marrow metastases at 15 months, and one of progressive bone marrow disease at 30 months. The cRIT-salvage regimen was well tolerated, notable for myelosuppression minimized by stem cell support (n = 5), and biochemical hypothyroidism (n = 5). One patient with a 7-year history of metastatic neuroblastoma is in remission from MLL-associated secondary leukemia. This is significantly improved to published results with non-cRIT based where relapsed CNS NB has a median time to death of approximately 6 months. The cRIT-salvage regimen for CNS metastases was well tolerated by young patients, despite their prior history of intensive cytotoxic therapies. It has the potential to increase survival with better than expected quality of life.

  3. Oligodendrocyte Regeneration and CNS Remyelination Require TACE/ADAM17

    PubMed Central

    Klingener, Michael; Raines, Elaine W.; Crawford, Howard C.

    2015-01-01

    The identification of the molecular network that supports oligodendrocyte (OL) regeneration under demyelinating conditions has been a primary goal for regenerative medicine in demyelinating disorders. We recently described an essential function for TACE/ADAM17 in regulating oligodendrogenesis during postnatal myelination, but it is unknown whether this protein also plays a role in OL regeneration and remyelination under demyelinating conditions. By using genetic mouse models to achieve selective gain- or loss-of-function of TACE or EGFR in OL lineage cells in vivo, we found that TACE is critical for EGFR activation in OLs following demyelination, and therefore, for sustaining OL regeneration and CNS remyelination. TACE deficiency in oligodendrocyte progenitor cells following demyelination disturbs OL lineage cell expansion and survival, leading to a delay in the remyelination process. EGFR overexpression in TACE deficient OLs in vivo restores OL development and postnatal CNS myelination, but also OL regeneration and CNS remyelination following demyelination. Our study reveals an essential function of TACE in supporting OL regeneration and CNS remyelination that may contribute to the design of new strategies for therapeutic intervention in demyelinating disorders by promoting oligodendrocyte regeneration and myelin repair. SIGNIFICANCE STATEMENT Oligodendrocyte (OL) regeneration has emerged as a promising new approach for the treatment of demyelinating disorders. By using genetic mouse models to selectively delete TACE expression in oligodendrocyte progenitors cells (OPs), we found that TACE/ADAM17 is required for supporting OL regeneration following demyelination. TACE genetic depletion in OPs abrogates EGFR activation in OL lineage cells, and perturbs cell expansion and survival, blunting the process of CNS remyelination. Moreover, EGFR overexpression in TACE-deficient OPs in vivo overcomes the defects in OL development during postnatal development but also OL

  4. Viscoelastic properties of individual glial cells and neurons in the CNS

    PubMed Central

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-01-01

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word “γλια” means “glue”) or provide a robust scaffold for them (“support cells”). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft (“rubber elastic”), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  5. Structure of mammalian metallothionein.

    PubMed Central

    Kägi, J H; Vasák, M; Lerch, K; Gilg, D E; Hunziker, P; Bernhard, W R; Good, M

    1984-01-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me7(Cys-)20 stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. Experimental proof for the occurrence of such clusters comes from the demonstration of metal-metal interactions by spectroscopic and magnetic means. Thus, in Co(II)7-metallothionein, the Co(II)-specific ESR signals are effectively suppressed by antiferromagnetic coupling of juxtaposed paramagnetic metal ions. By monitoring changes in ESR signal size occurring on stepwise incorporation of Co(II) into the protein, it is possible to follow the building up of the clusters. This process is biphasic. Up to binding of four equivalents of Co(II), the ESR amplitude increases in proportion to the metal content, indicating generation of magnetically noninteracting high-spin complexes. However, upon addition of the remaining three equivalents of Co(II), these features are progressively suppressed, signaling the formation of clusters. The same mode of cluster formation has also been documented for Cd and Hg. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures

  6. The Role of Maternal Care in Shaping CNS Function

    PubMed Central

    Nephew, Benjamin; Murgatroyd, Chris

    2013-01-01

    Maternal care involves the consistent and coordinated expression of a variety of behaviours over an extended period of time, and adverse changes in maternal care can have profound impacts on the CNS and behaviour of offspring. This complex behavioural pattern depends on a number of integrated neuroendocrine mechanisms. This review will discuss the use of animal models in the study of the role of maternal care in shaping CNS function, the contributions of corticosteroid releasing hormone, vasopressin, oxytocin, and prolactin in this process, the molecular mechanisms involved, and the translational relevance of this research. PMID:24210943

  7. Toll-like Receptor 4 in CNS Pathologies

    PubMed Central

    Buchanan, Madison M.; Hutchinson, Mark; Watkins, Linda R.; Yin, Hang

    2010-01-01

    The responses of the brain to infection, ischemia and trauma share remarkable similarities. These and other conditions of the CNS coordinate an innate immune response marked by activation of microglia, the macrophage-like cells of the nervous system. An important contributor to microglial activation is toll-like receptor 4 (TLR4), a pathogen-associated molecular pattern receptor known to initiate an inflammatory cascade in response to various CNS stimuli. The present review traces new efforts to characterize and control the contribution of TLR4 to inflammatory etiologies of the nervous system. PMID:20402965

  8. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent.

    PubMed

    Andrews, Melissa R; Soleman, Sara; Cheah, Menghon; Tumbarello, David A; Mason, Matthew R J; Moloney, Elizabeth; Verhaagen, Joost; Bensadoun, Jean-Charles; Schneider, Bernard; Aebischer, Patrick; Fawcett, James W

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  9. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent

    PubMed Central

    Soleman, Sara; Mason, Matthew R. J.; Verhaagen, Joost; Bensadoun, Jean-Charles; Aebischer, Patrick

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  10. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  11. The cellular code for mammalian thermosensation.

    PubMed

    Pogorzala, Leah A; Mishra, Santosh K; Hoon, Mark A

    2013-03-27

    Mammalian somatosenory neurons respond to thermal stimuli and allow animals to reliably discriminate hot from cold and to select their preferred environments. Previously, we generated mice that are completely insensitive to temperatures from noxious cold to painful heat (-5 to 55°C) by ablating several different classes of nociceptor early in development. In the present study, we have adopted a selective ablation strategy in adult mice to study this phenotype and have demonstrated that separate populations of molecularly defined neurons respond to hot and cold. TRPV1-expressing neurons are responsible for all behavioral responses to temperatures between 40 and 50°C, whereas TRPM8 neurons are required for cold aversion. We also show that more extreme cold and heat activate additional populations of nociceptors, including cells expressing Mrgprd. Therefore, although eliminating Mrgprd neurons alone does not affect behavioral responses to temperature, when combined with ablation of TRPV1 or TRPM8 cells, it significantly decreases responses to extreme heat and cold, respectively. Ablation of TRPM8 neurons distorts responses to preferred temperatures, suggesting that the pleasant thermal sensation of warmth may in fact just reflect reduced aversive input from TRPM8 and TRPV1 neurons. As predicted by this hypothesis, mice lacking both classes of thermosensor exhibited neither aversive nor attractive responses to temperatures between 10 and 50°C. Our results provide a simple cellular basis for mammalian thermosensation whereby two molecularly defined classes of sensory neurons detect and encode both attractive and aversive cues. PMID:23536068

  12. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?

    PubMed

    Raevsky, Oleg A

    2016-04-01

    A detailed analysis of the possibility of using the Multiparameter Optimization approach (MPO) for CNS/non-CNS classification of drugs was carried out. This work has shown that MPO descriptors are able to describe only part of chemical transport in the CNS connected with transmembrane diffusion. Hence the "intuitive" CNS MPO approach with arbitrary selection of descriptors and calculations of score functions, search of thresholds of classification, and absence of any chemometric procedures, leads to rather modest accuracy of CNS/non-CNS classification models. PMID:27491918

  13. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  14. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function. PMID:27186679

  15. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  16. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.

  17. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  18. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells.

    PubMed

    Mokrý, J; Karbanová, J; Lukás, J; Palecková, V; Dvoránková, B

    2000-01-01

    Surrounding the cells with a semipermeable polymeric membrane allows transplanting unmatched xenogeneic cells without a risk of their rejection. We prepared and tested several 2-hydroxyethyl methacrylate (HEMA) copolymers with alkyl methacrylates or acrylates to find out which was the most valuable for cell encapsulation. On the basis of optimum physical properties and good results of cytotoxicity tests, HEMA-EMA copolymer was chosen as a suitable candidate for encapsulation and immunoprotection of xenogeneic cells before their grafting into the central nervous system (CNS). To characterize the biocompatibility of p(HEMA-co-EMA) copolymer in the CNS, we implanted microcapsules made of this hydrogel into the brains of adult rats that were allowed to survive for 0.5, 1, 3, 6, and 9 months. Analysis of histological sections containing the implantation site was aimed at assessment of the cellular density at the implant-brain interface and identification of cell types participating in a tissue reaction. Our results indicated that the tissue reaction that was observed was caused largely by the implantation procedure because HLA-DR- and GSI-B4-positive macrophages/microglia infiltrated mainly the implantation channel. The number of these cells declined with time, which was true also for GFAP-positive reactive astrocytes, as well as for foreign body giant cells. The amount of connective tissue components surrounding the implanted microcapsules increased only slightly. These findings indicated that p(HEMA-co-EMA) hydrogel was well tolerated after implantation in the brain.

  19. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease.

    PubMed

    Jones, Emma V; Bouvier, David S

    2014-01-01

    Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.

  20. The spectrum of post-vaccination inflammatory CNS demyelinating syndromes.

    PubMed

    Karussis, Dimitrios; Petrou, Panayiota

    2014-03-01

    A wide variety of inflammatory diseases temporally associated with the administration of various vaccines, has been reported in the literature. A PubMed search from 1979 to 2013 revealed seventy one (71) documented cases. The most commonly reported vaccinations that were associated with CNS demyelinating diseases included influenza (21 cases), human papilloma virus (HPV) (9 cases), hepatitis A or B (8 cases), rabies (5 cases), measles (5 cases), rubella (5 cases), yellow fever (3 cases), anthrax (2 cases),meningococcus (2 cases) and tetanus (2 cases). The vast majority of post-vaccination CNS demyelinating syndromes, are related to influenza vaccination and this could be attributed to the high percentage of the population that received the vaccine during the HI1N1 epidemia from 2009 to 2012. Usually the symptoms of the CNS demyelinating syndrome appear few days following the immunization (mean: 14.2 days) but there are cases where the clinical presentation was delayed (more than 3 weeks or even up to 5 months post-vaccination) (approximately a third of all the reported cases). In terms of the clinical presentation and the affected CNS areas, there is a great diversity among the reported cases of post-vaccination acute demyelinating syndromes. Optic neuritis was the prominent clinical presentation in 38 cases, multifocal disseminated demyelination in 30, myelitis in 24 and encephalitis in 17. Interestingly in a rather high proportion of the patients (and especially following influenza and human papiloma virus vaccination-HPV) the dominant localizations of demyelination were the optic nerves and the myelon, presenting as optic neuritis and myelitis (with or without additional manifestations of ADEM), reminiscent to neuromyelitic optica (or, more generally, the NMO-spectrum of diseases). Seven patients suffered an NMO-like disease following HPV and we had two similar cases in our Center. One patient with post-vaccination ADEM, subsequently developed NMO. Overall, the

  1. Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations.

    PubMed

    Wollesen, T; Loesel, R; Wanninger, A

    2009-04-30

    Among bilaterian invertebrates, cephalopod molluscs (e.g., squids, cuttlefish and octopuses) have a central nervous system (CNS) that rivals in complexity that of the phylogenetically distant vertebrates (e.g., mouse and human). However, this prime example of convergent evolution has rarely been the subject of recent developmental and evolutionary studies, which may partly be due to the lack of suitable neural markers and the large size of cephalopod brains. Here, we demonstrate the usefulness of fluorescence-coupled phalloidin to characterize the CNS of cephalopods using histochemistry combined with confocal laser scanning microscopy. Whole-mount preparations of developmental stages as well as vibratome sections of embryonic and adult brains were analyzed and the benefits of this technique are illustrated. Compared to classical neuroanatomical and antibody-based studies, phalloidin labeling experiments are less time-consuming and allow a high throughput of samples. Besides other advantages summarized here, phalloidin reliably labels the entire neuropil of the CNS of all squids, cuttlefish and octopuses investigated. This facilitates high-resolution in toto reconstructions of the CNS and contributes to a better understanding of the organization of neural networks. Amenable for multi-labeling experiments employing antibodies against neurotransmitters, proteins and enzymes, phalloidin constitutes an excellent neuropil marker for the complex cephalopod CNS.

  2. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  3. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.

  4. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons. PMID:24909416

  5. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    PubMed

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair. PMID:26562295

  6. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System

    PubMed Central

    Baer, Matthew L.; Henderson, Scott C.; Colello, Raymond J.

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50–100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair. PMID:26562295

  7. Evolution of the mammalian dentate gyrus.

    PubMed

    Hevner, Robert F

    2016-02-15

    The dentate gyrus (DG), a part of the hippocampal formation, has important functions in learning, memory, and adult neurogenesis. Compared with homologous areas in sauropsids (birds and reptiles), the mammalian DG is larger and exhibits qualitatively different phenotypes: 1) folded (C- or V-shaped) granule neuron layer, concave toward the hilus and delimited by a hippocampal fissure; 2) nonperiventricular adult neurogenesis; and 3) prolonged ontogeny, involving extensive abventricular (basal) migration and proliferation of neural stem and progenitor cells (NSPCs). Although gaps remain, available data indicate that these DG traits are present in all orders of mammals, including monotremes and marsupials. The exception is Cetacea (whales, dolphins, and porpoises), in which DG size, convolution, and adult neurogenesis have undergone evolutionary regression. Parsimony suggests that increased growth and convolution of the DG arose in stem mammals concurrently with nonperiventricular adult hippocampal neurogenesis and basal migration of NSPCs during development. These traits could all result from an evolutionary change that enhanced radial migration of NSPCs out of the periventricular zones, possibly by epithelial-mesenchymal transition, to colonize and maintain nonperiventricular proliferative niches. In turn, increased NSPC migration and clonal expansion might be a consequence of growth in the cortical hem (medial patterning center), which produces morphogens such as Wnt3a, generates Cajal-Retzius neurons, and is regulated by Lhx2. Finally, correlations between DG convolution and neocortical gyrification (or capacity for gyrification) suggest that enhanced abventricular migration and proliferation of NSPCs played a transformative role in growth and folding of neocortex as well as archicortex. PMID:26179319

  8. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration

    PubMed Central

    Diekmann, Heike; Kalbhen, Pascal; Fischer, Dietmar

    2015-01-01

    The developmental decrease of the intrinsic regenerative ability of the mammalian central nervous system (CNS) is associated with reduced activity of mechanistic target of rapamycin (mTOR) in mature neurons such as retinal ganglion cells (RGCs). While mTOR activity is further decreased upon axonal injury, maintenance of its pre-injury level, for instance by genetic deletion of the phosphatase and tensin homolog (PTEN), markedly promotes axon regeneration in mammals. The current study now addressed the question whether active mTOR might generally play a central role in axon regeneration by analyzing its requirement in regeneration-competent zebrafish. Remarkably, regulation of mTOR activity after optic nerve injury in zebrafish is fundamentally different compared to mammals. Hardly any activity was detected in naïve RGCs, whereas it was markedly increased upon axotomy in vivo as well as in dissociated cell cultures. After a short burst, mTOR activity was quickly attenuated, which is contrary to the requirements for axon regeneration in mammals. Surprisingly, mTOR activity was not essential for axonal growth per se, but correlated with cytokine- and PTEN inhibitor-induced neurite extension in vitro. Moreover, inhibition of mTOR using rapamycin significantly reduced axon regeneration in vivo and compromised functional recovery after optic nerve injury. Therefore, axotomy-induced mTOR activity is involved in CNS axon regeneration in zebrafish similar to mammals, although it plays an ancillary rather than essential role in this regeneration-competent species. PMID:26217179

  9. Prediction of methotrexate CNS distribution in different species - influence of disease conditions.

    PubMed

    Westerhout, Joost; van den Berg, Dirk-Jan; Hartman, Robin; Danhof, Meindert; de Lange, Elizabeth C M

    2014-06-16

    Children and adults with malignant diseases have a high risk of prevalence of the tumor in the central nervous system (CNS). As prophylaxis treatment methotrexate is often given. In order to monitor methotrexate exposure in the CNS, cerebrospinal fluid (CSF) concentrations are often measured. However, the question is in how far we can rely on CSF concentrations of methotrexate as appropriate surrogate for brain target site concentrations, especially under disease conditions. In this study, we have investigated the spatial distribution of unbound methotrexate in healthy rat brain by parallel microdialysis, with or without inhibition of Mrp/Oat/Oatp-mediated active transport processes by a co-administration of probenecid. Specifically, we have focused on the relationship between brain extracellular fluid (brainECF) and CSF concentrations. The data were used to develop a systems-based pharmacokinetic (SBPK) brain distribution model for methotrexate. This model was subsequently applied on literature data on methotrexate brain distribution in other healthy and diseased rats (brainECF), healthy dogs (CSF) and diseased children (CSF) and adults (brainECF and CSF). Important differences between brainECF and CSF kinetics were found, but we have found that inhibition of Mrp/Oat/Oatp-mediated active transport processes does not significantly influence the relationship between brainECF and CSF fluid methotrexate concentrations. It is concluded that in parallel obtained data on unbound brainECF, CSF and plasma concentrations, under dynamic conditions, combined with advanced mathematical modeling is a most valid approach to develop SBPK models that allow for revealing the mechanisms underlying the relationship between brainECF and CSF concentrations in health and disease.

  10. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. PMID:27284195

  11. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

    PubMed

    Marques, Sueli; Zeisel, Amit; Codeluppi, Simone; van Bruggen, David; Mendanha Falcão, Ana; Xiao, Lin; Li, Huiliang; Häring, Martin; Hochgerner, Hannah; Romanov, Roman A; Gyllborg, Daniel; Muñoz-Manchado, Ana B; La Manno, Gioele; Lönnerberg, Peter; Floriddia, Elisa M; Rezayee, Fatemah; Ernfors, Patrik; Arenas, Ernest; Hjerling-Leffler, Jens; Harkany, Tibor; Richardson, William D; Linnarsson, Sten; Castelo-Branco, Gonçalo

    2016-06-10

    Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra(+) oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra(+) population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.

  12. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

    SciTech Connect

    Shaffer, M.M.; Moody, T.W.

    1986-03-01

    Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

  13. Immortalized neural progenitor cells for CNS gene transfer and repair.

    PubMed

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  14. Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders. PMID:22828751

  15. Cranial radiation necessary for CNS prophylaxis in pediatric NHL

    SciTech Connect

    Mandell, L.R.; Wollner, N.; Fuks, Z.

    1987-03-01

    The records of 95 consecutive children less than or equal to 21 years of age with previously untreated diffuse histology NHL registered in our protocols from 1978 to 1983 were reviewed. Seventy-nine patients were considered eligible for analysis. The histologic subtypes represented included lymphoblastic (LB) 37%; histiocytic (DHL) 29%; undifferentiated (DU) 19%; poorly differentiated (DPDL) 9%; and unclassified (UNHL) 6%. Distribution of the patients according to stage showed Stage I, 0%; Stage II, 11%; Stage III, 53%; Stage IV, 36%. Four different Memorial Hospital protocols for systemic chemotherapy were used (LSA2L2 73%; L10 9%; L17 10%; L17M 8%); however, the IT (intrathecal) chemotherapy was uniform (Methotrexate: 6.0-6.25 mg/M2 per treatment course) and was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was included in the induction, consolidation, and maintenance phases of all treatment protocols. Cranial radiation was not included in the CNS prophylaxis program. The overall median time of follow-up was 43 months. The overall CNS relapse rate was 6.3%; however, the incidence of CNS lymphoma presenting as the first isolated site of relapse in patients in otherwise complete remission (minimum follow-up of 19 months with 97% of patients off treatment) was only 1/58 (1.7%). Our data suggest that IT chemotherapy when given in combination with modern aggressive systemic combination chemotherapy, and without cranial radiation appears to be a highly effective modality for CNS prophylaxis regardless of stage, histology, or bone marrow or mediastinal involvement. (Abstract Truncated)

  16. Hyperbaric oxygen preconditioning protects rats against CNS oxygen toxicity.

    PubMed

    Arieli, Yehuda; Kotler, Doron; Eynan, Mirit; Hochman, Ayala

    2014-06-15

    We examined the hypothesis that repeated exposure to non-convulsive hyperbaric oxygen (HBO) as preconditioning provides protection against central nervous system oxygen toxicity (CNS-OT). Four groups of rats were used in the study. Rats in the control and the negative control (Ctl-) groups were kept in normobaric air. Two groups of rats were preconditioned to non-convulsive HBO at 202 kPa for 1h once every other day for a total of three sessions. Twenty-four hours after preconditioning, one of the preconditioned groups and the control rats were exposed to convulsive HBO at 608 kPa, and latency to CNS-OT was measured. Ctl- rats and the second preconditioned group (PrC-) were not subjected to convulsive HBO exposure. Tissues harvested from the hippocampus and frontal cortex were evaluated for enzymatic activity and nitrotyrosine levels. In the group exposed to convulsive oxygen at 608 kPa, latency to CNS-OT increased from 12.8 to 22.4 min following preconditioning. A significant decrease in the activity of glutathione reductase and glucose-6-phosphate dehydrogenase, and a significant increase in glutathione peroxidase activity, was observed in the hippocampus of preconditioned rats. Nitrotyrosine levels were significantly lower in the preconditioned animals, the highest level being observed in the control rats. In the cortex of the preconditioned rats, a significant increase was observed in glutathione S-transferase and glutathione peroxidase activity. Repeated exposure to non-convulsive HBO provides protection against CNS-OT. The protective mechanism involves alterations in the enzymatic activity of the antioxidant system and lower levels of peroxynitrite, mainly in the hippocampus.

  17. Cancer stem cells in the mammalian central nervous system.

    PubMed

    Pilkington, G J

    2005-12-01

    Malignant tumours intrinsic to the central nervous system (CNS) are among the most difficult of neoplasms to treat effectively. The major biological features of these tumours that preclude successful therapy include their cellular heterogeneity, which renders them highly resistant to both chemotherapy and radiotherapy, and the propensity of the component tumour cells to invade, diffusely, the contiguous nervous tissues. The tumours are classified according to perceived cell of origin, gliomas being the most common generic group. In the 1970s transplacental administration of the potent neurocarcinogen, N-ethyl-N-nitrosourea (ENU), enabled investigation of the sequential development of brain and spinal neoplasms by electron microscopy and immunohistochemistry. The significance of the primitive cells of the subependymal plate in cellular origin and evolution of a variety of glial tumours was thereby established. Since then, the development of new cell culture methods, including the in vitro growth of neurospheres and multicellular tumour spheroids, and new antigenic markers of stem cells and glial/neuronal cell precursor cells, including nestin, Mushashi-1 and CD133, have led to a reappraisal of the histological classification and origins of CNS tumours. Moreover, neural stem cells may also provide new vectors in exciting novel therapeutic strategies for these tumours. In addition to the gliomas, stem cells may have been identified in paediatric tumours including cerebellar medulloblastoma, thought to be of external granule cell neuronal derivation. Interestingly, while the stem cell marker CD133 is expressed in these primitive neuroectodermal tumours (PNETs), the chondroitin sulphate proteoglycan neuronal/glial 2 (NG2), which appears to denote increased proliferative, but reduced migratory activity in adult gliomas, is rarely expressed. This is in contrast to the situation in the histologically similar supratentorial PNETs. A possible functional 'switch' between

  18. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  19. slc7a6os Gene Plays a Critical Role in Defined Areas of the Developing CNS in Zebrafish

    PubMed Central

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes. PMID:25803583

  20. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage

    PubMed Central

    Crane, Genevieve M.; Powell, Helen; Kostadinov, Rumen; Rocafort, Patrick Tim; Rifkin, Dena E.; Burger, Peter C.; Ambinder, Richard F.; Swinnen, Lode J.; Borowitz, Michael J.; Duffield, Amy S.

    2015-01-01

    Immunosuppression for solid organ transplantation increases lymphoproliferative disease risk. While central nervous system (CNS) involvement is more rare, we noticed an increase in primary CNS (PCNS) disease. To investigate a potential association with the immunosuppressive regimen we identified all post-transplant lymphoproliferative disease (PTLD) cases diagnosed over a 28-year period at our institution (174 total, 29 PCNS) and all similar cases recorded in a United Network for Organ Sharing-Organ Procurement and Transplant Network (UNOS-OPTN) data file. While no PCNS cases were diagnosed at our institution between 1986 and 1997, they comprised 37% of PTLD cases diagnosed from 2011–2014. PCNS disease was more often associated with renal vs. other organ transplant, Epstein-Barr virus, large B-cell morphology and mycophenolate mofetil (MMF) as compared to PTLD that did not involve the CNS. Calcineurin inhibitors were protective against PCNS disease when given alone or in combination with MMF. A multivariate analysis of a larger UNOS-OPTN dataset confirmed these findings, where both MMF and lack of calcineurin inhibitor usage were independently associated with risk for development of PCNS PTLD. These findings have significant implications for the transplant community, particularly given the introduction of new regimens lacking calcineurin inhibitors. Further investigation into these associations is warranted. PMID:26460822

  1. MAG, myelin and overcoming growth inhibition in the CNS

    PubMed Central

    McKerracher, Lisa; Rosen, Kenneth M.

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin. Myelin-associated glycoprotein (MAG) was the first myelin-derived growth inhibitory protein identified, and its inhibitory activity was initially elucidated in 1994 independently by the Filbin lab and the McKerracher lab using cell-based and biochemical techniques, respectively. Since that time we have gained a wealth of knowledge concerning the numerous growth inhibitory proteins that are present in myelin, and we also have dissected many of the neuronal signaling pathways that act as stop signs for axon regeneration. Here we give an overview of the early research efforts that led to the identification of myelin-derived growth inhibitory proteins, and the importance of this family of proteins for understanding neurotrauma and CNS diseases. We further provide an update on how this knowledge has been translated towards current clinical studies in regenerative medicine. PMID:26441514

  2. Treatment Options for Medulloblastoma and CNS Primitive Neuroectodermal Tumor (PNET)

    PubMed Central

    Packer, Roger J.

    2016-01-01

    The amount of residual disease after surgery better correlates with survival for medulloblastomas than for CNS PNETs. Maximal surgical resection of tumor should be done, only if additional permanent, neurologic deficits can be spared. Patients should have a staging work-up to assess the extent of disease. This includes postoperative magnetic resonance imaging (MRI) of the brain, MRI of the entire spine and lumbar cerebrospinal fluid (CSF) sampling for cytological examination, if deemed safe. Radiation therapy to the entire CNS axis is required, with a greater dose (boost) given to the region of the primary site or any bulky residual disease for older children. Adjuvant chemotherapy must be given even if no evidence of disease after radiation therapy exists, as the risk of relapse is substantial after radiation alone. Subsets of younger children with medulloblastoma, arbitrarily defined as those younger than 3 years of age in some studies and 4 or even 5 years in other studies, can be effectively treated with chemotherapy alone. Recent genomic studies have revealed further subtypes of disease than previously recognized. Clinical trials to exploit these biologic differences are required to assess potential efficacy of targeted agents. The treatment of medulloblastoma and CNS PNET can cause significant impairment in neurologic function. Evaluations by physical therapy, occupational therapy, speech therapy and neurocognitive assessments should be obtained, as needed. After therapy is completed, survivors need follow-up of endocrine function, surveillance scans and psychosocial support. PMID:23979905

  3. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  4. Origin, fate and dynamics of macrophages at CNS interfaces

    PubMed Central

    Goldmann, Tobias; Jordão, Marta Joana Costa; Wieghofer, Peter; Prutek, Fabiola; Hagemeyer, Nora; Frenzel, Kathrin; Staszewski, Ori; Kierdorf, Katrin; Amann, Lukas; Krueger, Martin; Locatelli, Giuseppe; Hochgarner, Hannah; Zeiser, Robert; Epelman, Slava; Geissmann, Frederic; Priller, Josef; Rossi, Fabio; Bechmann, Ingo; Kerschensteiner, Martin; Linnarsson, Sten; Jung, Steffen; Prinz, Marco

    2016-01-01

    Perivascular, meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It has been assumed that they have a high turnover with blood-borne monocytes. However, large scale single-cell RNA-sequencing reveals a striking molecular overlap between perivascular macrophages and microglia but not monocytes. Using several fate mapping approaches and parabiosis we demonstrate that CNS macrophages arise from yolk sac precursors during embryonic development and remain a stable population. Notably, the generation of CNS macrophages relies on the transcription factor Pu.1 whereas myb, Batf3 and Nr4a1 are not required. Upon autoimmune inflammation, macrophages undergo extensive self-renewal by local proliferation. Our data provide challenging new insights into brains innate immune system. PMID:27135602

  5. Nanotechnology for CNS Delivery of Bio-Therapeutic Agents

    PubMed Central

    Shah, Lipa; Yadav, Sunita; Amiji, Mansoor

    2013-01-01

    The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain. PMID:23894728

  6. Pharmacological approaches to CNS vasculitis: where are we at now?

    PubMed

    Pagnoux, Christian; Hajj-Ali, Rula A

    2016-01-01

    The diagnosis and treatment of central nervous system (CNS) vasculitis is extremely challenging. Several conditions can mimic CNS vasculitis and require totally different treatment. CNS vasculitis, once confirmed, may result from infections or systemic diseases that will warrant specific treatments, or, more rarely, be primary and isolated (PCNSV). Prospective trials to help determine the optimal treatment for PCNSV are lacking, but data from several cohorts have provided seminal data on its management. The consensus is to use glucocorticoids as first-line agents, combined with additional immunosuppressants for the most severe cases, mainly cyclophosphamide for induction, followed by less-toxic maintenance therapy with azathioprine, methotrexate, or mycophenolate mofetil. The recent identification of PCNSV subgroups and predictors of outcomes might help in deciding the adequate treatment for each patient, keeping in mind that these data are based on a small number of patients. Other agents and biologics can be considered for patients with relapsing and/or refractory disease, but evidence is limited. In practice, the diagnosis must be re-questioned in patients with PCNSV refractory to standard treatment, especially with diagnoses not based on pathology. PMID:26559201

  7. Synchronization of mammalian cell cultures by serum deprivation.

    PubMed

    Langan, Thomas J; Chou, Richard C

    2011-01-01

    Mammalian cells are amenable to study the regulation of cell cycle progression in vitro by shifting them into the same phase of the cycle. Procedures to arrest cultured cells in specific phases of the cell cycle may be termed in vitro synchronization. The procedure described here was developed for the study of primary astrocytes and a glioma cell line, but is applicable to other mammalian cells. Its application allows astrocytes to reenter the cell cycle from a state of quiescence (G(0)), and then, under carefully defined experimental conditions, to move together into subsequent phases such as the G(1) and S phases. A number of methods have been established to synchronize mammalian cell cultures, which include physical separation by centrifugal elutriation and mitotic shake off or chemically induced cell cycle arrest. Yet, there are intrinsic limitations associated with these methods. In the present protocol, we describe a simple, reliable, and reversible procedure to synchronize astrocyte and glioma cultures from newborn rat brain by serum deprivation. The procedure is similar, and generally applicable, to other mammalian cells. This protocol consists essentially of two parts: (1) proliferation of astrocytes under optimal conditions in vitro until reaching desired confluence; and (2) synchronization of cultures by serum downshift and arrested in the G(0) phase of the cell cycle. This procedure has been extended to the examination of cell cycle control in astroglioma cells and astrocytes from injured adult brain. It has also been employed in precursor cloning studies in developmental biology, suggesting wide applicability.

  8. Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge.

    PubMed

    Be, Nicholas A; Klinkenberg, Lee G; Bishai, William R; Karakousis, Petros C; Jain, Sanjay K

    2011-09-01

    Clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with CNS disease. We therefore examined CNS dissemination by different laboratory strains (two M. tuberculosis H37Rv, one CDC1551) in a guinea pig aerosol infection model. Although all strains grew exponentially in lungs, with similar bacterial burdens at the time of extrapulmonary dissemination, M. tuberculosis CDC1551 disseminated to the CNS significantly more than the H37Rv strains. No CNS lesions were observed throughout the study, with only a modest cytokine response. These data suggest that M. tuberculosis may have virulence factors that promote CNS dissemination, distinct from those required for pulmonary TB.

  9. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease

    PubMed Central

    2014-01-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases. PMID:25558415

  10. A Novel Purification Method for CNS Projection Neurons Leads to the Identification of Brain Vascular Cells As a Source of Trophic Support for Corticospinal Motor Neurons

    PubMed Central

    Dugas, Jason C.; Mandemakers, Wim; Rogers, Madolyn; Ibrahim, Adil; Daneman, Richard; Barres, Ben A.

    2008-01-01

    One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, CTB immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope cholera toxin beta (CTB), and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain. PMID:18701692

  11. Mechanisms of mammalian iron homeostasis.

    PubMed

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L

    2012-07-24

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.

  12. Evaluation of the repeated-dose liver micronucleus assay using N-nitrosomorpholine in young adult rats: report on collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study (MMS) Group.

    PubMed

    Hayashi, Aya; Kosaka, Mizuki; Kimura, Aoi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    The present study was conducted to evaluate the suitability of a repeated-dose liver micronucleus (LMN) assay in young adult rats as a collaborative study by the Mammalian mutagenicity study (MMS) group. All procedures were performed in accordance with the standard protocols of the MMS Group. Six-week-old male Crl:CD(SD) rats (5 animals/group) received oral doses of the hepatocarcinogen N-nitrosomorpholine (NMOR) at 0 (control), 5, 10, and 30mg/kg/day (10mL/kg) for 14 days. Control animals received vehicle (water). Hepatocytes were collected from the liver 24h after the last dose, and the number of micronucleated hepatocytes (MNHEPs) was determined by microscopy. The number of micronucleated immature erythrocytes (MNIMEs) in the femoral bone marrow was also determined. The liver was examined using histopathologic methods after formalin fixation. The results showed statistically significant and dose-dependent increases in the number of MNHEPs in the liver at doses of 10mg/kg and greater when compared with the vehicle control. However, no significant increase was noted in the number of MNIMEs in the bone marrow at doses of up to 30mg/kg. Histopathology of the liver revealed hypertrophy and single cell necrosis of hepatocytes at doses of 5mg/kg and above. These results showed that the induction of micronuclei by NMOR was detected by the repeated-dose LMN assay, but not by the repeated-dose bone marrow micronucleus assay.

  13. When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores

    PubMed Central

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60–80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions. PMID:23424674

  14. On the presence of serotonin in mammalian cardiomyocytes.

    PubMed

    Pönicke, Klaus; Gergs, Ulrich; Buchwalow, Igor B; Hauptmann, Steffen; Neumann, Joachim

    2012-06-01

    Pleiotropic effects of serotonin (5-HT) in the cardiovascular system are well documented. However, it remains to be elucidated, whether 5-HT is present in adult mammalian cardiomyocytes. To address this issue, we investigated the levels of 5-HT in blood, plasma, platelets, cardiac tissue, and cardiomyocytes from adult mice and for comparison in human right atrial tissue. Immunohistochemically, 5-HT was hardly found in mouse cardiac tissue, but small amounts could be detected in renal preparations, whereas adrenal preparations revealed a strong positive immunoreaction for 5-HT. Using a sensitive HPLC detection system, 5-HT was also detectable in the mouse heart and human atrium. Furthermore, we could identify 5-HT in isolated cardiomyocytes from adult mice. These findings were supported by detection of the activity of 5-HT-forming enzymes-tryptophan hydroxylase and aromatic L-amino acid decarboxylase-in isolated cardiomyocytes from adult mice and by inhibition of these enzymes with p-chlorophenylalanine and 3-hydroxybenzyl hydrazine. Addition of the first intermediate of 5-HT generation, that is 5-hydroxytryptophan, enhanced the 5-HT level and inhibition of monoamine oxidase by tranylcypromine further increased the level of 5-HT. Our findings reveal the presence and synthesis of 5-HT in cardiomyocytes of the mammalian heart implying that 5-HT may play an autocrine and/or paracrine role in the heart. PMID:22367115

  15. Olfactory sensitivity in mammalian species.

    PubMed

    Wackermannová, M; Pinc, L; Jebavý, L

    2016-07-18

    Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described. PMID:27070753

  16. Mammalian homeobox-containing genes: genome organization, structure, expression and evolution.

    PubMed

    Schughart, K; Kappen, C; Ruddle, F H

    1988-12-01

    Mammalian homeo box-containing genes have been isolated by their sequence similarity to Drosophila homeotic selector genes. About 20 murine homeo box genes have been identified to date and their expression and structural organization has been described in detail. Most homeo box gene loci are organized in at least three major gene clusters in the mouse and human genome. The structure of homeo box genes within these clusters is very similar and in this paper the murine Hox-2.2 gene will be discussed as an example. Homeo box genes are expressed in region-specific patterns during different stages of vertebrate development and almost all mammalian homeo box genes are expressed in the central nervous system (CNS) of the developing embryo. Within the developing CNS of mouse embryos the anterior boundaries of expression are specific for each gene. Comparisons of nucleotide and amino acid sequences as well as the analysis of the structural organization of murine and human homeo box genes reveal strong paralogous relationships between genes in different clusters. These findings suggest that the homeo box gene clusters evolved in two steps. First, an ancestral gene cluster was created by duplications of individual genes along one linkage group and in a subsequent step duplications of the ancestral gene complex gave rise to the three (or possibly four) gene clusters observed in mouse and human to date. The possibility of the homeo box genes representing a functional array of genetic switches will be discussed.

  17. The developmental origins of the mammalian ovarian reserve

    PubMed Central

    Grive, Kathryn J.; Freiman, Richard N.

    2015-01-01

    The adult mammalian ovary is devoid of definitive germline stem cells. As such, female reproductive senescence largely results from the depletion of a finite ovarian follicle pool that is produced during embryonic development. Remarkably, the crucial nature and regulation of follicle assembly and survival during embryogenesis is just coming into focus. This developmental pathway involves the coordination of meiotic progression and the breakdown of germ cell cysts into individual oocytes housed within primordial follicles. Recent evidence also indicates that genetic and environmental factors can specifically perturb primordial follicle assembly. Here, we review the cellular and molecular mechanisms by which the mammalian ovarian reserve is established, highlighting the presence of a crucial checkpoint that allows survival of only the highest-quality oocytes. PMID:26243868

  18. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  19. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche.

    PubMed

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.

  20. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    PubMed Central

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future. PMID:27195011

  1. Intranasal Administration of CNS Therapeutics to Awake Mice

    PubMed Central

    Hanson, Leah R.; Fine, Jared M.; Svitak, Aleta L.; Faltesek, Katherine A.

    2013-01-01

    Intranasal administration is a method of delivering therapeutic agents to the central nervous system (CNS). It is non-invasive and allows large molecules that do not cross the blood-brain barrier access to the CNS. Drugs are directly targeted to the CNS with intranasal delivery, reducing systemic exposure and thus unwanted systemic side effects1. Delivery from the nose to the CNS occurs within minutes along both the olfactory and trigeminal neural pathways via an extracellular route and does not require drug to bind to any receptor or axonal transport2. Intranasal delivery is a widely publicized method and is currently being used in human clinical trials3. Intranasal delivery of drugs in animal models allows for initial evaluation of pharmacokinetic distribution and efficacy. With mice, it is possible to administer drugs to awake (non-anesthetized) animals on a regular basis using a specialized intranasal grip. Awake delivery is beneficial because it allows for long-term chronic dosing without anesthesia, it takes less time than with anesthesia, and can be learned and done by many people so that teams of technicians can dose large numbers of mice in short periods. Efficacy of therapeutics administered intranasally in this way to mice has been demonstrated in a number of studies including insulin in diabetic mouse models 4-6 and deferoxamine in Alzheimer's mouse models. 7,8 The intranasal grip for mice can be learned, but is not easy and requires practice, skill, and a precise grip to effectively deliver drug to the brain and avoid drainage to the lung and stomach. Mice are restrained by hand using a modified scruff in the non-dominant hand with the neck held parallel to the floor, while drug is delivered with a pipettor using the dominant hand. It usually takes 3-4 weeks of acclimating to handling before mice can be held with this grip without a stress response. We have prepared this JoVE video to make this intranasal delivery technique more accessible. PMID

  2. Curcumin aggravates CNS pathology in experimental systemic lupus erythematosus.

    PubMed

    Foxley, Sean; Zamora, Marta; Hack, Bradley; Alexander, Rebecca Rashmi; Roman, Brian; Quigg, Richard John; Alexander, Jessy John

    2013-04-01

    Complement activation and inflammation are key disease features of systemic lupus erythematosus. Curcumin is an anti-inflammatory agent that inhibits the complement cascade. Therefore, we hypothesized that curcumin will be protective in CNS lupus. To assess the effect of curcumin on CNS-lupus, MRL/lpr mice were used. Brain MRI showed that curcumin (30mg/kg body wt. i.p. from 12-20 weeks) worsened regional brain atrophy. The volumes of the lateral and third ventricles are significantly increased (150%-213% and 107%-140%, without and with treatment respectively compared to MRL+/+ controls). The hippocampus was reduced further (83%-81%) by curcumin treatment. In line with increased brain atrophy, there were edematous cells (41% increase in cell size in MRL/lpr compared to MRL+/+ mice. The cell size was further increased by 28% when treated with curcumin; p<0.02) in the cortex. In line with increased atrophy and edema, there was a significant increase (p<0.02) in the mRNA and protein expression of the water channel protein, aquaporin 4 in these mice. The increase in the matrix proteins, glial fibrillary acidic protein and vimentin in lupus mice in the hippocampus was prevented by curcumin. Curcumin increased IgG deposits and decreased C3 deposits in brain with a corresponding increase in immune complexes and decrease in C3 concentration (by 60% in MRL/lpr mice Vs. MRL+/+ mice and a further 26% decrease when treated with curcumin) in circulation. Decrease in C3 could alter the transport of immune complexes leading to an increase in IgG deposits which could induce inflammatory pathways thereby leading to worsening of the disease. The neurological outcome as measured by maze performance indicates that the curcumin treated mice performed poorly compared to the untreated counterparts. Our results for the first time provide evidence that at the dose used in this study, curcumin aggravates some CNS disease manifestations in experimental lupus brain. Therefore, until a safe

  3. Kynurenines in CNS disease: regulation by inflammatory cytokines

    PubMed Central

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  4. [Teratogenic effects of ammonium metavanadate on the CNS of the offspring of albino rats. A histological and histochemical study].

    PubMed

    Faría de Rodríguez, C; Villalobos, H; Nava de Leal, C

    1998-04-01

    The vanadium is a metallic oligoelement present in the majority of tissues. Its abnormal biological disposal environment can be related with its possible teratogenicity and alteration in the contents of glycosaminoglycans acids (GAGs), which participate in the morphological processes and the maturation of Central Nervous System (CNS). The proposal of the project is to analyze the teratogenic effect of ammonium metavanadate (AMV) and its action on the GAGs in the CNS of the litter of albino rats. The ammonium metavanadate was diluted in distilled water in concentration of 100 and 200 ppm, drunk by the rats since their birth and/or weaning to adult age, except during the matching and gestation. The animals control drunk water without this metal. The litter were analyzed to detect possible congenital malformations, then CNS were removed of descendents and were processed by light microscope, cuts of 6 u were stained with H/E; Alcian Blue pH 3.5 and 5.6, this last one concentrations of C12Mg from 0.05 M to until 1.0 M. Previously parallels sections were treated with testicular hyaluronidase. The macroscopic analysis of the new born rats that came from rats that received AMV in concentrations 100 and 200 ppm, resulted in congenital anomalies like unilateral hypoplasia of olfactory bulbs and cerebral hemisphere. The microscopic analysis revealed changes in the layers patron of olfactory bulbs and an increased of alcianophilia in the pH 5.6 to 0.2 M MgC12, in the extracellular matrix of CNS of rats descendents treated with AMV to the dose 200 ppm, sensibles to the testicular hyaluronidase, corresponding to hyaluronic acid (HA) and chondroitin 4 and/or 6 sulphate (C4S or C6S) of low grade of sulphation. These results suggest that the AMV given to albino rats has a teratogenic result when it is used before the gestation and for long periods of animals life that alter the of GAGs of CNS contents during the development. PMID:9650461

  5. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. PMID:27317840

  6. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    PubMed

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner.

  7. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies.

  8. Evolutionary paths to mammalian cochleae.

    PubMed

    Manley, Geoffrey A

    2012-12-01

    Evolution of the cochlea and high-frequency hearing (>20 kHz; ultrasonic to humans) in mammals has been a subject of research for many years. Recent advances in paleontological techniques, especially the use of micro-CT scans, now provide important new insights that are here reviewed. True mammals arose more than 200 million years (Ma) ago. Of these, three lineages survived into recent geological times. These animals uniquely developed three middle ear ossicles, but these ossicles were not initially freely suspended as in modern mammals. The earliest mammalian cochleae were only about 2 mm long and contained a lagena macula. In the multituberculate and monotreme mammalian lineages, the cochlea remained relatively short and did not coil, even in modern representatives. In the lineage leading to modern therians (placental and marsupial mammals), cochlear coiling did develop, but only after a period of at least 60 Ma. Even Late Jurassic mammals show only a 270 ° cochlear coil and a cochlear canal length of merely 3 mm. Comparisons of modern organisms, mammalian ancestors, and the state of the middle ear strongly suggest that high-frequency hearing (>20 kHz) was not realized until the early Cretaceous (~125 Ma). At that time, therian mammals arose and possessed a fully coiled cochlea. The evolution of modern features of the middle ear and cochlea in the many later lineages of therians was, however, a mosaic and different features arose at different times. In parallel with cochlear structural evolution, prestins in therian mammals evolved into effective components of a new motor system. Ultrasonic hearing developed quite late-the earliest bat cochleae (~60 Ma) did not show features characteristic of those of modern bats that are sensitive to high ultrasonic frequencies. PMID:22983571

  9. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system

    PubMed Central

    Jiao, Jian-wei; Feldheim, David A.; Chen, Dong Feng

    2008-01-01

    In the central nervous system (CNS) of adult mammals, neurogenesis occurs in only two restricted areas, the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Isolation of multipotent progenitor cells from other CNS regions suggests that their neurogenic potential is dictated by local environmental cues. Here, we report that astrocytes in areas outside of the SGZ and SVZ of adult mice express high levels of ephrin-A2 and -A3, which present an inhibitory niche, negatively regulating neural progenitor cell growth. Adult mice lacking both ephrin-A2 and -A3 display active ongoing neurogenesis throughout the CNS. These findings suggest that neural cell replacement therapies for neurodegeneration or injury in the adult CNS may be achieved by manipulating ephrin signaling pathways. PMID:18562299

  10. Patterning of the mammalian cochlea

    PubMed Central

    Cantos, Raquel; Cole, Laura K.; Acampora, Dario; Simeone, Antonio; Wu, Doris K.

    2000-01-01

    The mammalian cochlea is sophisticated in its function and highly organized in its structure. Although the anatomy of this sense organ has been well documented, the molecular mechanisms underlying its development have remained elusive. Information generated from mutant and knockout mice in recent years has increased our understanding of cochlear development and physiology. This article discusses factors important for the development of the inner ear and summarizes cochlear phenotypes of mutant and knockout mice, particularly Otx and Otx2. We also present data on gross development of the mouse cochlea. PMID:11050199

  11. Putrescine catabolism in mammalian brain

    PubMed Central

    Seiler, N.; Al-Therib, M. J.

    1974-01-01

    In contrast with putrescine (1,4-diaminobutane), which is a substrate of diamine oxidase, monoacetylputrescine is oxidatively deaminated both in vitro and in vivo by monoamine oxidase. The product of this reaction is N-acetyl-γ-aminobutyrate. The existence of a degradative pathway in mammalian brain for putrescine is shown, which comprises acetylation of putrescine, oxidative deamination of monoacetylputrescine to N-acetyl-γ-aminobutyrate, transformation of N-acetyl-γ-aminobutyrate to γ-aminobutyrate and degradation of γ-aminobutyrate to CO2 via the tricarboxylic acid cycle. PMID:4156831

  12. Oligodendrocyte death results in immune-mediated CNS demyelination

    PubMed Central

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreERT;ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis. PMID:26656646

  13. A Model of Tight Junction Function In CNS Myelinated Axons

    PubMed Central

    Gow, Alexander; Devaux, Jerome

    2010-01-01

    The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter PNS fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which tight junctions minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice. PMID:20102674

  14. Gold Nanoparticles for Imaging and Drug Transport to the CNS.

    PubMed

    Male, D; Gromnicova, R; McQuaid, C

    2016-01-01

    Gold nanoparticles with a core size of 2nm covalently coated with glycans to maintain solubility, targeting molecules for brain endothelium, and cargo molecules hold great potential for delivery of therapies into the CNS. They have low toxicity, pass through brain endothelium in vitro and in vivo, and move rapidly through the brain parenchyma. Within minutes of infusion the nanoparticles can be detected in neurons and glia. These nanoparticles are relatively easy to synthesize in association with their surface ligands. They can be detected by electron microscopy, ICP-mass spectrometry, and spectroscopy. However, modification of the basic gold nanoparticle is required for in vivo imaging by MR or radioactive methods. Depending on their surface coat, the nanoparticles cross the brain endothelium by the plasma membrane/cytosolic route (passive transport) or by vesicular transcytosis (active transport). A primary aim of current research is to improve the biodistribution of the nanoparticles for CNS drug delivery. Smaller gold nanoparticles are removed rapidly via the kidney, while larger nanoparticles are taken up by mononuclear phagocytes in various tissues. Receptors selectively located on brain endothelium can act as targets for the nanoparticles, to increase their delivery to the brain. PMID:27678177

  15. Phytocannabinoids as novel therapeutic agents in CNS disorders.

    PubMed

    Hill, Andrew J; Williams, Claire M; Whalley, Benjamin J; Stephens, Gary J

    2012-01-01

    The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB(1) receptors by the major pCB, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ(9)-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ(9)tetrahydrocannabivarin (Δ(9)-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ(9)-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ(9)-THC pCB-based medicines. PMID:21924288

  16. Oligodendrocyte death results in immune-mediated CNS demyelination.

    PubMed

    Traka, Maria; Podojil, Joseph R; McCarthy, Derrick P; Miller, Stephen D; Popko, Brian

    2016-01-01

    Although multiple sclerosis is a common neurological disorder, the origin of the autoimmune response against myelin, which is the characteristic feature of the disease, remains unclear. To investigate whether oligodendrocyte death could cause this autoimmune response, we examined the oligodendrocyte ablation Plp1-CreER(T);ROSA26-eGFP-DTA (DTA) mouse model. Approximately 30 weeks after recovering from oligodendrocyte loss and demyelination, DTA mice develop a fatal secondary disease characterized by extensive myelin and axonal loss. Strikingly, late-onset disease was associated with increased numbers of T lymphocytes in the CNS and myelin oligodendrocyte glycoprotein (MOG)-specific T cells in lymphoid organs. Transfer of T cells derived from DTA mice to naive recipients resulted in neurological defects that correlated with CNS white matter inflammation. Furthermore, immune tolerization against MOG ameliorated symptoms. Overall, these data indicate that oligodendrocyte death is sufficient to trigger an adaptive autoimmune response against myelin, suggesting that a similar process can occur in the pathogenesis of multiple sclerosis.

  17. Glibenclamide for the Treatment of Acute CNS Injury

    PubMed Central

    Kurland, David B.; Tosun, Cigdem; Pampori, Adam; Karimy, Jason K.; Caffes, Nicholas M.; Gerzanich, Volodymyr; Simard, J. Marc

    2013-01-01

    First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel) and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options. PMID:24275850

  18. Neuroimaging of scuba diving injuries to the CNS.

    PubMed

    Warren, L P; Djang, W T; Moon, R E; Camporesi, E M; Sallee, D S; Anthony, D C; Massey, E W; Burger, P C; Heinz, E R

    1988-11-01

    Diving accidents related to barotrauma constitute a unique subset of ischemic insults to the CNS. Victims may demonstrate components of arterial gas embolism, which has a propensity for cerebral involvement, and/or decompression sickness, with primarily spinal cord involvement. Fourteen patients with diving-related barotrauma were studied with MR imaging of the brain and spinal cord and with CT of the brain. In four patients with presumed cerebral gas embolism, cranial MR was abnormal in three patients while CT was abnormal in only one. Twelve patients had decompression sickness and spinal cord symptoms. MR documented spinal cord abnormalities in three patients. However, scans obtained early in our study were frequently limited by technical constraints. MR of the brain is more sensitive than conventional CT scanning techniques in detecting and characterizing foci of cerebral ischemia caused by embolic barotrauma to the CNS. Although spinal MR may be less successful in the localization of spinal cord lesions related to decompression sickness, these lesions were previously undetectable by other neuroimaging methods.

  19. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  20. Drug delivery systems, CNS protection, and the blood brain barrier.

    PubMed

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  1. CNS effects of sumatriptan and rizatriptan in healthy female volunteers.

    PubMed

    van der Post, J; Schram, M T; Schoemaker, R C; Pieters, M S M; Fuseau, E; Pereira, A; Baggen, S; Cohen, A F; van Gerven, J M A

    2002-05-01

    This study investigates the CNS effects of sumatriptan and rizatriptan, with temazepam as an active comparator, in healthy female volunteers. Sixteen volunteers completed a randomized, double-blind, crossover study and on four separate occasions received either 100 mg sumatriptan, 20 mg rizatriptan or 20 mg temazepam. The main parameters were eye movements, EEG, body sway, visual analogue scales and a cognitive test battery. Rizatriptan and sumatriptan decreased saccadic peak velocity by 18.3 (95% CI: 5.7, 30.8) and 15.0 (2.2, 27.9) degrees/sec, respectively, about half the decrease induced by temazepam (35.0 (22.1, 47.8) degrees/sec). Body sway increased (30% for rizatriptan (16%, 45%) and 14% for sumatriptan (1%, 27%), respectively). Temazepam caused larger, similar effects. In contrast to temazepam, sumatriptan and rizatriptan decreased reaction times of recognition tasks and increased EEG alpha power (significant for sumatriptan, 0.477 (0.02, 0.935). Therapeutic doses of sumatriptan and rizatriptan caused CNS effects indicative of mild sedation. For EEG and recognition reaction times the effects were opposite to temazepam, indicating central stimulation. PMID:12100089

  2. Emerging tumor entities and variants of CNS neoplasms.

    PubMed

    Cenacchi, Giovanna; Giangaspero, Felice

    2004-03-01

    Since the appearance in 2000 of the World Health Organization (WHO) classification for central nervous system (CNS) neoplasms, numerous descriptions of new entities or variants have appeared in the literature. In the group of neuronal and mixed glioneuronal neoplasms are lesions with distinctive morphological features that are still not included in a precise classification, including extraventricular neurocytoma, papillary glioneuronal tumor, rosette-forming glioneuronal of the fourth ventricle, glioneuronal with neuropil-like rosette, and DNT-like tumor of the septum pellucidum. The glioneuronal tumor with neuropil-like rosette and oligodendroglioma with neurocytic differentiation represent morphological variants of genetically proven diffuse gliomas. The lipoastrocytoma and the pilomixoid astrocytoma enlarge the group of astrocytic lesions. Rare, low-grade gliomas of the spinal cord with extensive leptomeningeal dissemination associated with unusual neuroimaging are described. The chordoid glioma of the third ventricle and the papillary tumor of the pineal region seem to be correlated by a common histogenesis from the specialized ependyma of the subcommissural organ. An embryonal tumor with neuropil and true rosettes combining features of neuroblastoma and ependymoblastoma is discussed. These new, recently described lesions indicate that the complex morphologic spectrum of CNS tumors is far from being completely delineated.

  3. Rapid Assessment of Internodal Myelin Integrity in CNS Tissue

    PubMed Central

    Kirschner, Daniel A.; Avila, Robin L.; Gamez Sazo, Rodolfo E.; Luoma, Adrienne; Enzmann, Gaby U.; Agrawal, Deepika; Inouye, Hideyo; Bunge, Mary Bartlett; Kocsis, Jeffery; Peters, Alan; Whittemore, Scott R.

    2009-01-01

    Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether x-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited “blind” samples and used an electronic detector to rapidly record diffraction patterns (30 minutes each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced ±10% variation in periodicity and ±40% variation in relative amount of myelin. For samples having the most native-like periods the relative amounts of myelin detected allowed distinctions to be made between normal vs. demyelinating segments and motor vs. sensory tracts within the spinal cord, and aged vs. young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots, and between well-fixed vs. poorly-fixed samples. Our findings suggest that in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination. PMID:19795370

  4. Clamping down on mammalian meiosis

    PubMed Central

    Lyndaker, Amy M; Vasileva, Ana; Wolgemuth, Debra J; Weiss, Robert S; Lieberman, Howard B

    2013-01-01

    The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline. PMID:24013428

  5. Mottled Mice and Non-Mammalian Models of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Krzeptowski, Wojciech; Lipiński, Paweł; Grzmil, Paweł; Starzyński, Rafał; Pierzchała, Olga; Møller, Lisbeth Birk

    2015-01-01

    Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals. PMID:26732058

  6. Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) - Mammalian Mutagenicity Study Group (MMS).

    PubMed

    Hamada, Shuichi; Ohyama, Wakako; Takashima, Rie; Shimada, Keisuke; Matsumoto, Kazumi; Kawakami, Satoru; Uno, Fuyumi; Sui, Hajime; Shimada, Yasushi; Imamura, Tadashi; Matsumura, Shoji; Sanada, Hisakazu; Inoue, Kenji; Muto, Shigeharu; Ogawa, Izumi; Hayashi, Aya; Takayanagi, Tomomi; Ogiwara, Yosuke; Maeda, Akihisa; Okada, Emiko; Terashima, Yukari; Takasawa, Hironao; Narumi, Kazunori; Wako, Yumi; Kawasako, Kazufumi; Sano, Masaki; Ohashi, Nobuyuki; Morita, Takeshi; Kojima, Hajime; Honma, Masamitsu; Hayashi, Makoto

    2015-03-01

    The repeated-dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect hepatocarcinogens. We conducted a collaborative study to assess the performance of this assay and to evaluate the possibility of integrating it into general toxicological studies. Twenty-four testing laboratories belonging to the Mammalian Mutagenicity Study Group, a subgroup of the Japanese Environmental Mutagen Society, participated in this trial. Twenty-two model chemicals, including some hepatocarcinogens, were tested in 14- and/or 28-day RDLMN assays. As a result, 14 out of the 16 hepatocarcinogens were positive, including 9 genotoxic hepatocarcinogens, which were reported negative in the bone marrow/peripheral blood micronucleus (MN) assay by a single treatment. These outcomes show the high sensitivity of the RDLMN assay to hepatocarcinogens. Regarding the specificity, 4 out of the 6 non-liver targeted genotoxic carcinogens gave negative responses. This shows the high organ specificity of the RDLMN assay. In addition to the RDLMN assay, we simultaneously conducted gastrointestinal tract MN assays using 6 of the above carcinogens as an optional trial of the collaborative study. The MN assay using the glandular stomach, which is the first contact site of the test chemical when administered by oral gavage, was able to detect chromosomal aberrations with 3 test chemicals including a stomach-targeted carcinogen. The treatment regime was the 14- and/or 28-day repeated-dose, and the regime is sufficiently promising to incorporate these methods into repeated-dose toxicological studies. The outcomes of our collaborative study indicated that the new techniques to detect chromosomal aberrations in vivo in several tissues worked successfully.

  7. DNA modifications in the mammalian brain

    PubMed Central

    Shin, Jaehoon; Ming, Guo-li; Song, Hongjun

    2014-01-01

    DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function. PMID:25135973

  8. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits.

    PubMed

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-04-26

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  9. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits

    PubMed Central

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-01-01

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  10. Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination.

    PubMed

    Evonuk, Kirsten S; Moseley, Carson E; Doyle, Ryan E; Weaver, Casey T; DeSilva, Tara M

    2016-01-01

    A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration. PMID:27685467

  11. Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC

    PubMed Central

    Filous, Angela R.; Miller, Jared H.; Coulson-Thomas, Yvette M.; Horn, Kevin P.; Alilain, Warren J.; Silver, Jerry

    2010-01-01

    Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re-growth across the gradient. The use of selective enzyme inhibitors revealed that MMP-2 enables immature astrocytes to cross the proteoglycan rim. The bridge-building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pre-treatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes co-injected with chondroitinase ABC induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. PMID:20629049

  12. Genome exposure and regulation in mammalian cells.

    PubMed

    Puck, T T; Webb, P; Johnson, R

    1998-09-01

    A method of measurement of exposed DNA (i.e. hypersensitive to DNase I hydrolysis) as opposed to sequestered (hydrolysis resistant) DNA in isolated nuclei of mammalian cells is described. While cell cultures exhibit some differences in behavior from day to day, the general pattern of exposed and sequestered DNA is satisfactorily reproducible and agrees with results previously obtained by other methods. The general pattern of DNA hydrolysis exhibited by all cells tested consists of a curve which at first rises sharply with increasing DNase I, and then becomes almost horizontal, indicating that roughly about half of the nuclear DNA is highly sequestered. In 4 cases where transformed cells (Raszip6, CHO, HL60 and PC12) were compared, each with its more normal homolog (3T3, and the reverse transformed versions of CHO, HL60 and PC12, achieved by dibutyryl cyclic AMP [DBcAMP], retinoic acid, and nerve growth factor [NGF] respectively), the transformed form displayed less genome exposure than the nontransformed form at every DNase I dose tested. When Ca++ was excluded from the hydrolysis medium in both the Raszip6-3T3 and the CHO-DBcAMP systems, the normal cell forms lost their increased exposure reverting to that of the transformed forms. Therefore Ca++ appears necessary for maintenance of the DNA in the more highly exposed state characteristic of the nontransformed phenotype. LiCl increases the DNA exposure of all transformed cells tested. Dextran sulfate and heparin each can increase the DNA exposure of several different cancers. Colcemid prevents the increase of exposure of CHO by DBcAMP but it must be administered before or simultaneously with the latter compound. Measurements on mouse biopsies reveal large differences in exposure in different normal tissues. Thus, the exposure from adult liver cells was greater than that of adult brain, but both fetal liver and fetal brain had significantly greater exposure than their adult counterparts. Exposure in normal human

  13. Mammalian eusociality: a family affair.

    PubMed

    Jarvis, J U; O'Riain, M J; Bennett, N C; Sherman, P W

    1994-02-01

    Comparative studies of two species of mole-rat are helping to clarify the ecological correlates of mammalian eusociality. Both species live in social groups composed of close kin, within which breeding is restricted to one female and one to three males. They inhabit xeric areas with dispersed, patchy food and unpredictable rainfall. During droughts, they can neither expand their tunnel systems nor disperse. In brief periods after rain the animals must cooperate and dig furiously to locate rich food patches. By living in groups, arid-zone mole-rats can take full advantage of windows of opportunity when conditions are right for burrowing. Thus, ecological factors and kin selection have apparently interacted in the evolution of eusociality in these species. PMID:21236765

  14. Body Size in Mammalian Paleobiology

    NASA Astrophysics Data System (ADS)

    Damuth, John; MacFadden, Bruce J.

    1990-11-01

    This valuable collection of essays presents and evaluates techniques of body-mass estimation and reviews current and potential applications of body-size estimates in paleobiology. Papers discuss explicitly the errors and biases of various regression techniques and predictor variables, and the identification of functionally similar groups of species for improving the accuracy of estimates. At the same time other chapters review and discuss the physiological, ecological, and behavioral correlates of body size in extant mammals; the significance of body-mass distributions in mammalian faunas; and the ecology and evolution of body size in particular paleofaunas. Coverage is particularly detailed for carnivores, primates, and ungulates, but information is also presented on marsupials, rodents, and proboscideans.

  15. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  16. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  17. Suspension culture of mammalian cells.

    PubMed

    Birch, J R; Arathoon, R

    1990-01-01

    Mammalian cell suspension culture systems are being used increasingly in the biotechnology industry. This is due to their many advantages including simplicity and homogeneity of culture. Suspension systems are very adaptable (e.g., for microcarrier, microencapsulation, or other methods of culture). Their engineering is thoroughly understood and standardized at large scale, and automation and cleaning procedures are well established. Suspension systems offer the possibility of quick implementation of production protocols due to their ability to be scaled easily once the basic culture parameters are understood. The only main disadvantage of the suspension culture systems to date is their inapplicability for the production of human vaccines from either primary cell lines or from normal human diploid cell lines (Hayflick et al., 1987 and references therein). One of the great advantages of suspension culture is the opportunity it provides to study interactions of metabolic and production phenomena in chemostat or turbidostat steady-state systems. Furthermore, in suspension culture systems from which cell number and cell mass measurements are easy to obtain, rigorous and quantitative estimations of the effects of growth conditions or perturbations of metabolic homeostasis can be made. Such studies can speed up the development of optimal processes. With our increasing understanding of factors influencing expression in mammalian cells (Cohen and Levinson, 1988; Santoro et al., 1988) and the direct application of new methods in suspension culture (Rhodes and Birch, 1988), its usefulness and importance is likely to increase in the future. In this chapter, we have described some of the potential uses of the various suspension culture systems and have covered most of the established technology and literature. Due to the rapid developments and needs in the biotechnology industry and the versatility of suspension culture systems, it is probable that many more variations on this

  18. Enhanced Neurite Growth from Mammalian Neurons in Three-Dimensional Salmon Fibrin Gels

    PubMed Central

    Ju, Yo-El; Janmey, Paul A.; McCormick, Margaret; Sawyer, Evelyn S.; Flanagan, Lisa A.

    2007-01-01

    Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels or to any copurifying plasminogen. Co-purified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury. PMID:17258313

  19. Inhibition of C5a receptor alleviates experimental CNS lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R; Quigg, Richard J; Alexander, Jessy J

    2010-04-15

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-alpha and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.

  20. Inhibition of C5a receptor alleviates experimental CNS lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus. PMID:20207017

  1. Autoimmune control of lesion growth in CNS with minimal damage

    NASA Astrophysics Data System (ADS)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  2. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  3. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  4. The potential utility of some legal highs in CNS disorders.

    PubMed

    Davidson, Colin; Schifano, Fabrizio

    2016-01-01

    Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders.

  5. The potential utility of some legal highs in CNS disorders.

    PubMed

    Davidson, Colin; Schifano, Fabrizio

    2016-01-01

    Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders. PMID:26232510

  6. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  7. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence

    PubMed Central

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-01-01

    ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248

  8. Subsequent neoplasms of the CNS among survivors of childhood cancer: a systematic review.

    PubMed

    Bowers, Daniel C; Nathan, Paul C; Constine, Louis; Woodman, Catherine; Bhatia, Smita; Keller, Karen; Bashore, Lisa

    2013-07-01

    Childhood cancer survivors are at risk for development of subsequent neoplasms of the CNS. Better understanding of the rates, risk factors, and outcomes of subsequent neoplasms of the CNS among survivors of childhood cancer could lead to more informed screening guidelines. Two investigators independently did a systematic search of Medline and Embase (from January, 1966, through March, 2012) for studies examining subsequent neoplasms of the CNS among survivors of childhood cancer. Articles were selected to answer three questions: what is the risk of CNS tumours after radiation to the cranium for a paediatric cancer, compared with the risk in the general population; what are the outcomes in children with subsequent neoplasms of the CNS who received CNS-directed radiation for a paediatric cancer; and, are outcomes of subsequent neoplasms different from primary neoplasms of the same histology? Our search identified 72 reports, of which 18 were included in this Review. These studies reported that childhood cancer survivors have an 8·1-52·3-times higher incidence of subsequent CNS neoplasms compared with the general population. Nearly all cancer survivors who developed a CNS neoplasm had been exposed to cranial radiation, and some studies showed a correlation between radiation dose and risk of subsequent CNS tumours. 5-year survival ranged from 0-19·5% for subsequent high-grade gliomas and 57·3-100% for meningiomas, which are similar rates to those observed in patients with primary gliomas or meningiomas. The quality of evidence was limited by variation in study design, heterogeneity of details regarding treatment and outcomes, limited follow-up, and small sample sizes. We conclude that survivors of childhood cancer who received cranial radiation therapy have an increased risk for subsequent CNS neoplasms. The current literature is insufficient to comment about the potential harms and benefits of routine screening for subsequent CNS neoplasms.

  9. Novel approaches and challenges to treatment of CNS viral infections

    PubMed Central

    Nath, Avindra; Tyler, Kenneth L.

    2014-01-01

    Existing and emerging viral CNS infections are major sources of human morbidity and mortality. Treatments of proven efficacy are currently limited predominantly to herpesviruses and human immunodeficiency virus. Development of new therapies has been hampered by the lack of appropriate animal model systems for some important viruses and by the difficulty in conducting human clinical trials for diseases that may be rare, or in the case of arboviral infections, often have variable seasonal and geographic incidence. Nonetheless, many novel approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpesvirus drugs include viral helicase-primase and terminase inhibitors. The use of antisense oligonucleotides and other strategies to interfere with viral RNA translation has shown efficacy in experimental models of CNS viral disease. Identifying specific molecular targets within viral replication cycles has led to many existing antivirals and will undoubtedly continue to be the basis of future drug design. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses. Toll-like receptor agonists, and drugs that inhibit specific cytokines as well as interferon preparations have all shown potential therapeutic efficacy. Passive transfer of virus-specific cytotoxic T-lymphocytes have been used in humans and may provide an effective therapies for some herpesvirus infections and potentially for progressive multifocal leukoencephalopathy. Humanized monoclonal antibodies directed against specific viral proteins have been developed and in several cases evaluated in humans in settings including West Nile virus and HIV infection and in pre-exposure prophylaxis for rabies. PMID:23913580

  10. Evolution of the CNS myelin gene regulatory program.

    PubMed

    Li, Huiliang; Richardson, William D

    2016-06-15

    Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.

  11. CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes.

    PubMed

    Bechler, Marie E; Byrne, Lauren; Ffrench-Constant, Charles

    2015-09-21

    Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.

  12. Functional Zonation of the Adult Mammalian Adrenal Cortex

    PubMed Central

    Vinson, Gavin P.

    2016-01-01

    The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts. PMID:27378832

  13. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  14. Purinergic signaling promotes proliferation of adult mouse subventricular zone cells.

    PubMed

    Suyama, Satoshi; Sunabori, Takehiko; Kanki, Hiroaki; Sawamoto, Kazunobu; Gachet, Christian; Koizumi, Schuichi; Okano, Hideyuki

    2012-07-01

    In adult mammalian brains, neural stem cells (NSCs) exist in the subventricular zone (SVZ), where persistent neurogenesis continues throughout life. Those NSCs produce neuroblasts that migrate into the olfactory bulb via formation of transit-amplifying cells, which are committed precursor cells of the neuronal lineage. In this SVZ niche, cell-cell communications conducted by diffusible factors as well as physical cell-cell contacts are important for the regulation of the proliferation and fate determination of NSCs. Previous studies have suggested that extracellular purinergic signaling, which is mediated by purine compounds such as ATP, plays important roles in cell-cell communication in the CNS. Purinergic signaling also promotes the proliferation of adult NSCs in vitro. However, the in vivo roles of purinergic signaling in the neurogenic niche still remain unknown. In this study, ATP infusion into the lateral ventricle of the mouse brain resulted in an increase in the numbers of rapidly dividing cells and Mash1-positive transit-amplifying cells (Type C cells) in the SVZ. Mash1-positive cells express the P2Y1 purinergic signaling receptor and infusion of the P2Y1 receptor-specific antagonist MRS2179 decreased the number of rapidly dividing bromodeoxyuridine (BrdU)-positive cells and Type C cells. Moreover, a 17% reduction of rapidly dividing BrdU-positive cells and a 19% reduction of Mash1-positive cells were observed in P2Y1 knock-out mice. Together, these results suggest that purinergic signaling promotes the proliferation of rapidly dividing cells and transit-amplifying cells, in the SVZ niche through the P2Y1 receptor. PMID:22764232

  15. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  16. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  17. Recent advances in mammalian protein production

    PubMed Central

    Bandaranayake, Ashok D.; Almo, Steven C.

    2014-01-01

    Mammalian protein production platforms have had a profound impact in many areas of basic and applied research, and an increasing number of blockbuster drugs are recombinant mammalian proteins. With global sales of these drugs exceeding US$120 billion per year, both industry and academic research groups continue to develop cost effective methods for producing mammalian proteins to support preclinical and clinical evaluations of potential therapeutics. While a wide range of platforms have been successfully exploited for laboratory use, the bulk of recent biologics have been produced in mammalian cell lines due to the requirement for post translational modification and the biosynthetic complexity of the target proteins. In this review we highlight the range of mammalian expression platforms available for recombinant protein production, as well as advances in technologies for the rapid and efficient selection of highly productive clones. PMID:24316512

  18. Expression of α5 integrin rescues fibronectin responsiveness in NT2N CNS neuronal cells

    PubMed Central

    Meland, Marit N.; Herndon, Mary E.; Stipp, Christopher S.

    2010-01-01

    The extracellular matrix protein fibronectin is implicated in neuronal regeneration in the peripheral nervous system. In the central nervous system (CNS), fibronectin is upregulated at sites of penetrating injuries and stroke; however, CNS neurons downregulate the fibronectin receptor, α5β1 integrin, during differentiation and generally respond poorly to fibronectin. NT2N CNS neuron-like cells (derived from NT2 precursor cells) have been used in pre-clinical and clinical studies for treatment of stroke and a variety of CNS injury and disease models. Here we show that, like primary CNS neurons, NT2N cells downregulate α5β1 integrin during differentiation and respond poorly to fibronectin. The poor neurite outgrowth by NT2N cells on fibronectin can be rescued by transducing NT2 precursors with a retroviral vector expressing α5 integrin under the control of the Murine Stem Cell Virus 5′ long terminal repeat. Sustained α5 integrin expression is compatible with the CNS-like neuronal differentiation of NT2N cells and does not prevent robust neurite outgrowth on other integrin ligands. Thus, α5 integrin expression in CNS neuronal precursor cells may provide a strategy for enhancing the outgrowth and survival of implanted cells in cell replacement therapies for CNS injury and disease. PMID:19598247

  19. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.

    PubMed

    Vuillemenot, Brian R; Korte, Sven; Wright, Teresa L; Adams, Eric L; Boyd, Robert B; Butt, Mark T

    2016-07-01

    Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics. PMID:27354708

  20. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis.

    PubMed

    Waller, K Persson; Aspán, A; Nyman, A; Persson, Y; Andersson, U Grönlund

    2011-08-26

    Coagulase-negative staphylococci (CNS) are often associated with bovine mastitis. Knowledge about the relative importance of specific CNS species in different types of mastitis, and differences in antimicrobial resistance among CNS species is, however, scarce. Therefore, the aims of this study were to compare prevalence and antimicrobial susceptibility of CNS species in clinical and subclinical mastitis using material from two national surveys. Overall, Staphylococcus chromogenes and Staphylococcus epidermidis were the most common CNS species found followed by Staphylococcus simulans and Staphylococcus haemolyticus. S. epidermidis was significantly more prevalent in subclinical than in clinical mastitis, and a similar trend was observed for Staphylococcus saprophyticus, while Staphylococcus hyicus was significantly more common in clinical mastitis. The prevalence of β-lactamase producing isolates varied markedly between CNS species, and was significantly higher in S. epidermidis and S. haemolyticus (∼ 40%), than in S. simulans and S. chromogenes where none or a few of the isolates produced β-lactamase. Resistance to more than one antimicrobial substance occurred in 9% and 7% of the clinical and subclinical isolates, respectively. In conclusion, the distribution of CNS species differed between clinical and subclinical mastitis indicating inter-species variation of pathogenicity and epidemiology. Overall, the prevalence of antimicrobial resistance was low, but some variation between CNS species was observed. PMID:21561725

  1. New tools for studying microglia in the mouse and human CNS

    PubMed Central

    Bennett, F. Chris; Liddelow, Shane A.; Ajami, Bahareh; Zamanian, Jennifer L.; Fernhoff, Nathaniel B.; Mulinyawe, Sara B.; Bohlen, Christopher J.; Adil, Aykezar; Tucker, Andrew; Weissman, Irving L.; Chang, Edward F.; Li, Gordon; Grant, Gerald A.; Hayden Gephart, Melanie G.; Barres, Ben A.

    2016-01-01

    The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease. PMID:26884166

  2. New tools for studying microglia in the mouse and human CNS.

    PubMed

    Bennett, Mariko L; Bennett, F Chris; Liddelow, Shane A; Ajami, Bahareh; Zamanian, Jennifer L; Fernhoff, Nathaniel B; Mulinyawe, Sara B; Bohlen, Christopher J; Adil, Aykezar; Tucker, Andrew; Weissman, Irving L; Chang, Edward F; Li, Gordon; Grant, Gerald A; Hayden Gephart, Melanie G; Barres, Ben A

    2016-03-22

    The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease. PMID:26884166

  3. New tools for studying microglia in the mouse and human CNS.

    PubMed

    Bennett, Mariko L; Bennett, F Chris; Liddelow, Shane A; Ajami, Bahareh; Zamanian, Jennifer L; Fernhoff, Nathaniel B; Mulinyawe, Sara B; Bohlen, Christopher J; Adil, Aykezar; Tucker, Andrew; Weissman, Irving L; Chang, Edward F; Li, Gordon; Grant, Gerald A; Hayden Gephart, Melanie G; Barres, Ben A

    2016-03-22

    The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.

  4. [MicroRNAs in microglia polarization and CNS diseases: mechanism and functions].

    PubMed

    Fang, Xue; Tan, Wei-Xing; He, Cheng; Cao, Li

    2015-02-25

    Microglia are resident macrophages of central nervous system (CNS), and thus act as the crucial stuff of immune response and play very important roles in the progress of various CNS diseases. There are two different polarization statuses of activated microglia, M1 and M2 phenotypes. M1 polarized microglia are important for eradicating bacterial and promoting inflammation, whereas M2 cells are characterized by anti-inflammation and tissue remodeling. Recently, more and more evidence indicated that different polarized microglia showed diverse microRNA (miRNA) expression profiles. MiRNAs regulate microglia polarization, and thus affect the progress of CNS diseases. Fully exploring the polarization status of microglia during CNS diseases and the role of miRNAs in microglia polarization will be very helpful for a deep understanding of the roles of microglia in immunopathologic mechanism of different CNS diseases and offer the theoretical foundation of searching more effective therapies for these disorders. PMID:25672624

  5. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M.; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-01-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5’s suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases. PMID:27152329

  6. Current approaches to enhance CNS delivery of drugs across the brain barriers

    PubMed Central

    Lu, Cui-Tao; Zhao, Ying-Zheng; Wong, Ho Lun; Cai, Jun; Peng, Lei; Tian, Xin-Qiao

    2014-01-01

    Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. PMID:24872687

  7. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  8. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  9. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  10. Deficits in Adult Neurogenesis, Contextual Fear Conditioning, and Spatial Learning in a Gfap Mutant Mouse Model of Alexander Disease

    PubMed Central

    Paylor, Richard; Messing, Albee

    2013-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease. PMID:24259590

  11. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  12. Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate.

    PubMed

    Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Slomianny, Christian; Salzet, Michel; Tasiemski, Aurélie

    2011-02-01

    Unlike mammals, the CNS of the medicinal leech can regenerate damaged neurites, thus restoring neural functions. Our group recently demonstrated that the injured leech nerve cord is able to mount an immune response, which promotes the regenerative processes. This defense mechanism is microorganism-specific, suggesting that the leech CNS is able to discriminate among microbial components. We report here the characterization of two receptors potentially implicated in this detection: HmTLR1 and HmNLR. Interestingly, HmTLR1 presents an endosomal distribution in neurons and appears as a chimera combining the mammalian intraendosomal domain of TLR3 and the cytoplasmic section of TLR13, while HmNLR is cytosolic and has the highest homology to NLRC3 receptors. Both receptors show patterns of induction upon stimulation that suggest their involvement in the leech neuroimmune response. This work constitutes the first demonstration in an invertebrate of (i) an intracellular TLR and (ii) a cytosolic PRR related to the NLR family. PMID:20920526

  13. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  14. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  15. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii

    PubMed Central

    David, Clément N.; Frias, Elma S.; Szu, Jenny I.; Vieira, Philip A.; Hubbard, Jacqueline A.; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E.; Ethell, Iryna M.; Stanley, B. Glenn; Korzus, Edward; Fiacco, Todd A.; Binder, Devin K.; Wilson, Emma H.

    2016-01-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  16. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    PubMed

    David, Clément N; Frias, Elma S; Szu, Jenny I; Vieira, Philip A; Hubbard, Jacqueline A; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E; Ethell, Iryna M; Stanley, B Glenn; Korzus, Edward; Fiacco, Todd A; Binder, Devin K; Wilson, Emma H

    2016-06-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  17. Electrophysiological CNS-processes related to associative learning in humans.

    PubMed

    Christoffersen, Gert R J; Schachtman, Todd R

    2016-01-01

    The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli.

  18. Carbon monoxide and the CNS: challenges and achievements

    PubMed Central

    Queiroga, Cláudia S F; Vercelli, Alessandro; Vieira, Helena L A

    2015-01-01

    Haem oxygenase (HO) and its product carbon monoxide (CO) are associated with cytoprotection and maintenance of homeostasis in several different organs and tissues. This review focuses upon the role of exogenous and endogenous CO (via HO activity and expression) in various CNS pathologies, based upon data from experimental models, as well as from some clinical data on human patients. The pathophysiological conditions reviewed are cerebral ischaemia, chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases), multiple sclerosis and pain. Among these pathophysiological conditions, a variety of cellular mechanisms and processes are considered, namely cytoprotection, cell death, inflammation, cell metabolism, cellular redox responses and vasomodulation, as well as the different targeted neural cells. Finally, novel potential methods and strategies for delivering exogenous CO as a drug are discussed, particularly approaches based upon CO-releasing molecules, their limitations and challenges. The diagnostic and prognostic value of HO expression in clinical use for brain pathologies is also addressed. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24758548

  19. Human abuse liability evaluation of CNS stimulant drugs.

    PubMed

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'.

  20. Five novel cell surface antigens of CNS neoplasms.

    PubMed

    Jennings, M T; Jennings, V D; Asadourian, L L; Rosenblum, M; Albino, A P; Cairncross, J G; Old, L J

    1989-01-01

    Optimal monoclonal antibody-mediated immunotherapy requires the identification of tumor-restricted cell surface antigens. We have identified and partially characterized 5 new monoclonal antibodies generated against malignant astrocytoma, medulloblastoma, neuroblastoma and melanoma which were used to define 5 neuroectodermal tumor antigenic systems. CNT/1 identifies a 57-kDa, heat-stable, trypsin-sensitive neuroblastoma surface antigen, which is expressed intracellularly in many malignant gliomas, medulloblastomas, ependymomas, breast and ovarian carcinomas. CNT/2 reacts with a 130-kDa, heat-labile, trypsin- and neuraminidase-resistant antigen restricted to low-grade astrocytomas and malignant gliomas. CNT/11 reacts with a 70-kDa, heat-labile, trypsin-sensitive antigen coded for by a gene on chromosome 12, and is restricted to astrocytomas, neuroblastomas and sarcomas. CNT/8 identifies a heat-labile, trypsin-sensitive antigen whose gene has been localized to chromosome 15 and is expressed by neuroectodermal and mesodermally derived tumors and few epithelial cancers. The B2.6 antigen is identified only in terms of serologic reactivity with a subset of cultured astrocytomas and melanomas. Neuroectodermal tumor-associated antigens may be categorized as lineage-consistent, lineage-independent and putatively tumor-restricted in their expression. These restricted antibodies may be potentially useful reagents to consider for monoclonal antibody-mediated immunotherapy of CNS neoplasms.

  1. Luteinizing hormone: Evidence for direct action in the CNS.

    PubMed

    Blair, Jeffrey A; Bhatta, Sabina; McGee, Henry; Casadesus, Gemma

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Hormonal dysfunction due to aging, especially during menopause, plays a substantial role in cognitive decline as well as the progression and development of neurodegenerative diseases. The hypothalamic-pituitary-gonadal (HPG) axis has long been implicated in changes in behavior and neuronal morphology. Most notably, estrogens have proven beneficial in the healthy brain through a host of different mechanisms. Recently, luteinizing hormone (LH) has emerged as a candidate for further investigation for its role in the CNS. The basis of this is that both LH and the LH receptor are expressed in the brain, and serum levels of LH correlate with cognitive deficits and Alzheimer's disease (AD) incidence. The study of LH in cognition and AD primarily focuses on evaluating the effects of downregulation of this peptide. This literature has shown that decreasing peripheral LH, through a variety of pharmacological interventions, reduces cognitive deficits in ovariectomy and AD models. However, few studies have researched the direct actions of LH on neurons and glial cells. Here we summarize the role of luteinizing hormone in modulating cognition, and we propose a mechanism that underlies a role for brain LH in this process.

  2. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway.

    PubMed

    Kim, Yuri; Davidson, Joanne O; Gunn, Katherine C; Phillips, Anthony R; Green, Colin R; Gunn, Alistair J

    2016-01-01

    Neurodegenerative, cardiovascular, and metabolic disorders, once triggered, share a number of common features, including sustained inflammatory cell activation and vascular disruption. These shared pathways are induced independently of any genetic predisposition to the disease or the precise external stimulus. Glial cells respond to injury with an innate immune response that includes release of proinflammatory cytokines and chemokines. Vascular endothelial cells may also be affected, leading to opening of the blood-brain barrier that facilitates invasion by circulating inflammatory cells. Inflammation can trigger acute neural injury followed by chronic inflammation that plays a key role in neurodegenerative conditions. Gap junction channels normally allow direct cell-to-cell communication. They are formed by the docking of two hemichannels, one contributed by each of the neighboring cells. While the opening probability of these channels is tightly controlled under resting conditions, hemichannels can open in response to injury or inflammatory factors, forming a large, relatively nonselective membrane pore. In this review, we consider the CNS immune system from the perspective that modulating connexin hemichannel opening can prevent tissue damage arising from excessive and uncontrolled inflammation. We discuss connexin channel roles in microglia, astrocytes, and endothelial cells in both acute and chronic inflammatory conditions, and in particular describe the role of connexin hemichannels in the inflammasome pathway where they contribute to both its activation and its spread to neighboring cells. Finally, we describe the benefits of hemichannel block in animal models of brain injury. PMID:27038371

  3. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses.

    PubMed

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  4. Attention deficit hyperactivity disorder, CNS stimulants and sport.

    PubMed

    Hickey, G; Fricker, P

    1999-01-01

    Attention deficit hyperactivity disorder (ADHD) affects 1 to 10% of children and is characterised by a persistent pattern of inattention and/or hyperactivity/impulsivity. Over one-half of children with ADHD have associated conditions, including learning disabilities, conduct disorders, poor coordination, depression, anxiety, obsessive-compulsive disorders and bipolar disorders. CNS stimulant medication used in the management of ADHD is not permitted for use in competition by the International Olympic Committee (IOC) and this poses a problem for the physicians of patients with ADHD. On the one hand, attention and concentration are improved by stimulant medication and fine motor coordination and balance are improved after methylphenidate administration, but these therapeutic and sport-related benefits are not available to the athlete with ADHD who wishes to compete under IOC rules. It has been suggested that treatment with methylphenidate may be suitable for athletes with ADHD, as cessation of therapy 24 hours before competition is usually adequate to allow drug clearance which should avoid a positive result being returned on drug testing. More research is needed to establish whether stimulant medication for athletes with ADHD provides an unfair advantage in competition.

  5. Attention deficit hyperactivity disorder, CNS stimulants and sport.

    PubMed

    Hickey, G; Fricker, P

    1999-01-01

    Attention deficit hyperactivity disorder (ADHD) affects 1 to 10% of children and is characterised by a persistent pattern of inattention and/or hyperactivity/impulsivity. Over one-half of children with ADHD have associated conditions, including learning disabilities, conduct disorders, poor coordination, depression, anxiety, obsessive-compulsive disorders and bipolar disorders. CNS stimulant medication used in the management of ADHD is not permitted for use in competition by the International Olympic Committee (IOC) and this poses a problem for the physicians of patients with ADHD. On the one hand, attention and concentration are improved by stimulant medication and fine motor coordination and balance are improved after methylphenidate administration, but these therapeutic and sport-related benefits are not available to the athlete with ADHD who wishes to compete under IOC rules. It has been suggested that treatment with methylphenidate may be suitable for athletes with ADHD, as cessation of therapy 24 hours before competition is usually adequate to allow drug clearance which should avoid a positive result being returned on drug testing. More research is needed to establish whether stimulant medication for athletes with ADHD provides an unfair advantage in competition. PMID:10028130

  6. Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses

    PubMed Central

    Kyung, Jae Won; Bae, Jae Ryul; Kim, Dae-Hwan; Song, Woo Keun; Kim, Sung Hyun

    2016-01-01

    Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the “endocytic capacity”) was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles. PMID:27557559

  7. Cell encapsulation technology as a therapeutic strategy for CNS malignancies.

    PubMed Central

    Visted, T.; Bjerkvig, R.; Enger, P. O.

    2001-01-01

    Gene therapy using viral vectors has to date failed to reveal its definitive clinical usefulness. Cell encapsulation technology represents an alternative, nonviral approach for the delivery of biologically active compounds to tumors. This strategy involves the use of genetically engineered producer cells that secrete a protein with therapeutic potential. The cells are encapsulated in an immunoisolating material that makes them suitable for transplantation. The capsules, or bioreactors, permit the release of recombinant proteins that may assert their effects in the tumor microenvironment. During the last decades, there has been significant progress in the development of encapsulation technologies that comprise devices for both macro- and microencapsulation. The polysaccharide alginate is the most commonly used material for cell encapsulation and is well tolerated by various tissues. A wide spectrum of cells and tissues has been encapsulated and implanted, both in animals and humans, indicating the general applicability of this approach for both research and medical purposes, including CNS malignancies. Gliomas most frequently recur at the resection site. To provide local and sustained drug delivery, the bioreactors can be implanted in the brain parenchyma or in the ventricular system. The development of comprehensive analyses of geno- and phenotypic profiles of a tumor (genomics and proteomics) may provide new and important guidelines for choosing the optimal combination of bioreactors and recombinant proteins for therapeutic use. PMID:11465401

  8. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.

    PubMed

    Hallene, K L; Oby, E; Lee, B J; Santaguida, S; Bassanini, S; Cipolla, M; Marchi, N; Hossain, M; Battaglia, G; Janigro, D

    2006-09-29

    Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.

  9. Role of galectin-3 in prion infections of the CNS

    SciTech Connect

    Mok, Simon W.F.; Riemer, Constanze; Madela, Kazimierz; Hsu, Daniel K.; Liu, Fu-Tong; Gueltner, Sandra; Heise, Ines; Baier, Michael . E-mail: baierm@rki.de

    2007-08-03

    Galectin-3 is a multi-functional protein and participates in mediating inflammatory reactions. The pronounced overexpression of galectin-3 in prion-infected brain tissue prompted us to study the role of this protein in a murine prion model. Immunofluorescence double-labelling identified microglia as the major cell type expressing galectin-3. Ablation of galectin-3 did not affect PrP{sup Sc}-deposition and development of gliosis. However, galectin-3{sup -/-}-mice showed prolonged survival times upon intracerebral and peripheral scrapie infections. Moreover, protein levels of the lysosomal activation marker LAMP-2 were markedly reduced in prion-infected galectin-3{sup -/-}-mice suggesting a role of galectin-3 in regulation of lysosomal functions. Lower mRNA levels of Beclin-1 and Atg5 in prion-infected wild-type and galectin-3{sup -/-}-mice indicated an impairment of autophagy although autophagosome formation was unchanged. The results point towards a detrimental role of galectin-3 in prion infections of the CNS and suggest that endo-/lysosomal dysfunction in combination with reduced autophagy may contribute to disease development.

  10. Human abuse liability evaluation of CNS stimulant drugs.

    PubMed

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'. PMID:24793872

  11. Diagnostic and therapeutic potentials of exosomes in CNS diseases.

    PubMed

    Kawikova, Ivana; Askenase, Philip W

    2015-08-18

    A newly discovered cell-to-cell communication system involves small, membrane-enveloped nanovesicles, called exosomes. We describe here how these extracellular nanoparticles were discovered and how it became gradually apparent that they play fundamental roles in regulation of physiological functions and pathological processes. Exosomes enable intercellular communication by transporting genetic material, proteins and lipids to cells in their vicinity or at distant sites, and subsequently regulating functions of targeted cells. Relatively recent experiments indicate that exosomes are released also by CNS cells, including cortical and hippocampal neurons, glial cells, astrocytes and oligodendrocytes, and that exosomes have significant impact on pathophysiology of the brain. How it is decided what individual exosomes will carry to their targets is not understood, but it appears that the contents may represent "signature cargos" that are characteristic for various conditions. Exploration of such characteristics could result in discovery of novel diagnostic biomarkers. Exosomes are also promising as a vehicle for therapeutic delivery of micro RNA or other compounds. How to deliver exosomes to selected sites has been a tantalizing question. Recent experiments revealed that at least some exosomes carry antibodies on their surface, suggesting that it may be feasible to deliver exosomes to unique sites based on the recognition of antigens by those antibodies. This discovery implies that rather precise targeting of both natural and engineered exosomes may be feasible. This would reduce distribution volume of therapeutics, and consequently minimize their side effects. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.

  12. Stress Preconditioning of Spreading Depression in the Locust CNS

    PubMed Central

    Rodgers, Corinne I.; Armstrong, Gary A. B.; Shoemaker, Kelly L.; LaBrie, John D.; Moyes, Christopher D.; Robertson, R. Meldrum

    2007-01-01

    Cortical spreading depression (CSD) is closely associated with important pathologies including stroke, seizures and migraine. The mechanisms underlying SD in its various forms are still incompletely understood. Here we describe SD-like events in an invertebrate model, the ventilatory central pattern generator (CPG) of locusts. Using K+ -sensitive microelectrodes, we measured extracellular K+ concentration ([K+]o) in the metathoracic neuropile of the CPG while monitoring CPG output electromyographically from muscle 161 in the second abdominal segment to investigate the role K+ in failure of neural circuit operation induced by various stressors. Failure of ventilation in response to different stressors (hyperthermia, anoxia, ATP depletion, Na+/K+ ATPase impairment, K+ injection) was associated with a disturbance of CNS ion homeostasis that shares the characteristics of CSD and SD-like events in vertebrates. Hyperthermic failure was preconditioned by prior heat shock (3 h, 45°C) and induced-thermotolerance was associated with an increase in the rate of clearance of extracellular K+ that was not linked to changes in ATP levels or total Na+/K+ ATPase activity. Our findings suggest that SD-like events in locusts are adaptive to terminate neural network operation and conserve energy during stress and that they can be preconditioned by experience. We propose that they share mechanisms with CSD in mammals suggesting a common evolutionary origin. PMID:18159249

  13. Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases.

    PubMed

    Pandareesh, M D; Mythri, R B; Srinivas Bharath, M M

    2015-10-01

    The anatomical location of the central nervous system (CNS) renders it immunologically and pharmacologically privileged due to the blood brain barrier (BBB). Although this limits the transport of unfavorable molecules to the CNS, the ensuing privilege could be disadvantageous for therapeutic compounds. Hence, the greatest challenge in the pharmacotherapy of CNS diseases is to ensure efficient brain targeting and drug delivery. Research evidences indicate that dietary polyphenols have neuroprotective potential against CNS diseases. However, their selective permeability across BBB, poor absorption, rapid metabolism and systemic elimination limit their bioavailability and therapeutic efficacy. Consequently, the beneficial effects of these orally administered agents in the CNS still remain a subject of debate. This has also limited its clinical application either as independent or adjunctive therapy. Improving the in vivo bioavailability by novel methods could improve the therapeutic feasibility of polyphenols and assist in evolving novel drugs and their derivatives with improved efficacy in vivo. Here we review the mechanistic and pharmacological issues related to the bioavailability of polyphenols with therapeutic implications for CNS diseases. We surmise that improving the bioavailability of polyphenols entails efficient in vivo transport across BBB, biochemical stability, improved half-life and persistent neuroprotection in the CNS.

  14. CNS tumors and exposure to acrylonitrile: inconsistency between experimental and epidemiology studies.

    PubMed Central

    Collins, J. J.; Strother, D. E.

    1999-01-01

    Acrylonitrile is a potent CNS tumorigen in rats leading to concern that it may be a tumorigen in humans. There have been 12 epidemiology studies of 37,352 workers exposed to acrylonitrile which evaluate CNS cancers. We summarize and evaluate these epidemiology studies for CNS cancers using the methods of meta-analysis. Our analyses indicate that workers with acrylonitrile exposure have null findings for CNS cancer (relative risk = 1.1, 95% confidence interval 0.8-1.5), which are in stark contrast to the projected risk to humans using the rat findings (relative risk = 3.5, 95% confidence interval 3.0-4.0). We discuss several explanations for the inconsistency between animal and human findings, including the possibility that the acrylonitrile-induced rat CNS tumors may not be relevant to humans. Given the rarity of CNS tumors in humans and a lack of understanding of the causal mechanisms of these tumors in rats, however, a more definitive conclusion will have to await additional experimental and observational data. Nevertheless, the epidemiology evidence indicates that acrylonitrile is not a potent CNS tumorigen. PMID:11550315

  15. Use of a relational database program for quantification of the CNS role.

    PubMed

    Picella, D V

    1996-11-01

    In the current state of flux and economic retrenchment in the healthcare system, clinical nurse specialists (CNSs) are challenged to clearly define their contribution to high quality patient care services. Systems for documenting and reporting on CNS activities that are flexible, easy to use, and do not require extensive time commitments to use are needed. A systematic approach for developing a tool to collect data about the CNS role is presented. This tool can be used with an adaptation of computerized relational database technology that can handle the inputting, managing, and reporting of data collected about the CNS roles and associated activities. A relational database computer software application can run on a personal computer or laptop. When applied to structural evaluation of the CNS role, this system has potential for quickly and effectively performing periodic evaluations that clearly document how CNS time is spent. An accurate and usable database of CNS activities is a critical step toward demonstrating whether or not the CNS is performing appropriate functions and establishes a foundation of critical information for further evaluation of process and outcome data. Further exploration of this technology through experience in its applied use is needed.

  16. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection - a model of chronic CNS inflammation?

    PubMed

    Bonnan, Mickael; Barroso, Bruno; Demasles, Stéphanie; Krim, Elsa; Marasescu, Raluca; Miquel, Marie

    2015-08-15

    HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis. PMID:26198917

  17. Chemosignals, Hormones and Mammalian Reproduction

    PubMed Central

    Petrulis, Aras

    2013-01-01

    Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as “pheromones” but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking. PMID:23545474

  18. Baculovirus Stimulates Antiviral Effects in Mammalian Cells

    PubMed Central

    Gronowski, Ann M.; Hilbert, David M.; Sheehan, Kathleen C. F.; Garotta, Gianni; Schreiber, Robert D.

    1999-01-01

    Herein, we report that Autographa californica nucleopolyhedrovirus, a member of the Baculoviridae family, is capable of stimulating antiviral activity in mammalian cells. Baculoviruses are not pathogenic to mammalian cells. Nevertheless, live baculovirus is shown here to induce interferons (IFN) from murine and human cell lines and induces in vivo protection of mice from encephalomyocarditis virus infection. Monoclonal antibodies specific for the baculovirus envelope gp67 neutralize baculovirus-dependent IFN production. Moreover, UV treatment of baculovirus eliminates both infectivity and IFN-inducing activity. In contrast, the IFN-inducing activity of the baculovirus was unaffected by DNase or RNase treatment. These data demonstrate that IFN production can be induced in mammalian cells by baculovirus even though the cells fail to serve as a natural host for an active viral infection. Baculoviruses, therefore, provide a novel model in which to study at least one alternative mechanism for IFN induction in mammalian cells. PMID:10559307

  19. Mammalian synthetic biology: emerging medical applications

    PubMed Central

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  20. Mammalian synthetic biology: emerging medical applications.

    PubMed

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.

  1. Bats and Rodents Shape Mammalian Retroviral Phylogeny

    PubMed Central

    Cui, Jie; Tachedjian, Gilda; Wang, Lin-Fa

    2015-01-01

    Endogenous retroviruses (ERVs) represent past retroviral infections and accordingly can provide an ideal framework to infer virus-host interaction over their evolutionary history. In this study, we target high quality Pol sequences from 7,994 Class I and 8,119 Class II ERVs from 69 mammalian genomes and surprisingly find that retroviruses harbored by bats and rodents combined occupy the major phylogenetic diversity of both classes. By analyzing transmission patterns of 30 well-defined ERV clades, we corroborate the previously published observation that rodents are more competent as originators of mammalian retroviruses and reveal that bats are more capable of receiving retroviruses from non-bat mammalian origins. The powerful retroviral hosting ability of bats is further supported by a detailed analysis revealing that the novel bat gammaretrovirus, Rhinolophus ferrumequinum retrovirus, likely originated from tree shrews. Taken together, this study advances our understanding of host-shaped mammalian retroviral evolution in general. PMID:26548564

  2. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    PubMed

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.

  3. Observations at the CNS-PNS Border of Ventral Roots Connected to a Neuroma.

    PubMed

    Remahl, Sten; Angeria, Maria; Remahl, Ingela Nilsson; Carlstedt, Thomas; Risling, Mårten

    2010-01-01

    Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. However, no study with a focus on how such sprouts behave when they reach the border between the central and peripheral nervous system (CNS-PNS border) has been published. In this study we have in detail examined the CNS-PNS border of ventral roots in kittens with light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury. Thus, in this first detailed study on the behavior of recurrent sprouts at the CNS-PNS border.

  4. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line. PMID:19533721

  5. Hacking the genetic code of mammalian cells.

    PubMed

    Schwarzer, Dirk

    2009-07-01

    A genetic shuttle: The highlighted article, which was recently published by Schultz, Geierstanger and co-workers, describes a straightforward scheme for enlarging the genetic code of mammalian cells. An orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for a new amino acid can be evolved in E. coli and subsequently transferred into mammalian cells. The feasibility of this approach was demonstrated by adding a photocaged lysine derivative to the genetic repertoire of a human cell line.

  6. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  7. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  8. Armies of pestilence: CNS infections as potential weapons of mass destruction.

    PubMed

    Hart, B L; Ketai, L

    2015-06-01

    Infectious agents have been investigated, developed, and used by both governments and terrorist groups as weapons of mass destruction. CNS infections, though traditionally considered less often than respiratory diseases in this scenario, may be very important. Viruses responsible for encephalitides can be highly infectious in aerosol form. CNS involvement in anthrax is ominous but should change treatment. Brucellosis, plague, Q fever, and other bacteria can uncommonly manifest with meningoencephalitis and other findings. Emerging diseases may also pose threats. We review infectious agents of particular concern for purposes of biowarfare with respect to CNS manifestations and imaging features.

  9. The impact of neural stem cell biology on CNS carcinogenesis and tumor types.

    PubMed

    Kurian, K M

    2011-01-01

    The incidence of gliomas is on the increase, according to epidemiological data. This increase is a conundrum because the brain is in a privileged protected site behind the blood-brain barrier, and therefore partially buffered from environmental factors. In addition the brain also has a very low proliferative potential compared with other parts of the body. Recent advances in neural stem cell biology have impacted on our understanding of CNS carcinogenesis and tumor types. This article considers the cancer stem cell theory with regard to CNS cancers, whether CNS tumors arise from human neural stem cells and whether glioma stem cells can be reprogrammed.

  10. Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration.

    PubMed

    Dirks, P B

    2001-06-01

    Neural stem cells have recently come to the forefront in neurobiology because of the possibilities for CNS repair by transplantation. Further understanding of the biology of these cells is critical for making their use in CNS repair possible. It is likely that these discoveries will also have spin-offs for neuro-oncology as primary brain tumors may arise from a CNS progenitor cell. An understanding of the normal migratory ability of these cells is also likely to have a very important impact on the knowledge of brain tumor invasion.

  11. Non-human primate models of SIV infection and CNS neuropathology.

    PubMed

    Williams, Kenneth; Lackner, Andrew; Mallard, Jaclyn

    2016-08-01

    Non-human primate models of AIDS and neuroAIDS are the premiere model of HIV infection of the CNS and neuropathogenesis. This review discusses current SIV infection models of neuroAIDS emphasizing findings in the last two years. Consistent in these findings is the interplay between host factors that regulate immune responses to virus and viral replication. Several rapid models of AIDS with consistent CNS pathogenesis exist, each of which modulates by antibody treatment or viruses that cause rapid immune suppression and replicate well in macrophages. Consistent in all of these models are data underscoring the importance of monocyte and macrophage activation, infection and accumulation in the CNS. PMID:27544476

  12. A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology.

    PubMed

    Mei, Hongkang; Feng, Gang; Zhu, Jason; Lin, Simon; Qiu, Yang; Wang, Yue; Xia, Tian

    2016-01-01

    Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning.

  13. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.

    PubMed

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. PMID:26247711

  14. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.

    PubMed

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-08-06

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart.

  15. ECM Functions During Neuronal Migration and Lamination in the Mammalian Central Nervous System

    PubMed Central

    Franco, Santos J.; Müller, Ulrich

    2012-01-01

    Extracellular matrix (ECM) glycoproteins are expressed in the central nervous system (CNS) in complex and developmentally regulated patterns. The ECM provides a number of critical functions in the CNS, contributing both to the overall structural organization of the CNS and to control of individual cells. At the cellular level, the ECM effects its functions by a wide range of mechanisms, including providing structural support to cells, regulating the activity of second messenger systems, and controlling the distribution and local concentration of growth and differentiation factors. Perhaps the most well known role of the ECM is as a substrate on which motile cells can migrate. Genetic, cell biological and biochemical studies provide strong evidence that ECM glycoproteins such as laminins, tenascins and proteoglycans control neuronal migration and positioning in several regions of the developing and adult brain. Recent findings have also shed important new insights into the cellular and molecular mechanisms by which reelin regulates migration. Here we will summarize these findings, emphasizing the emerging concept that ECM glycoproteins promote different modes of neuronal migration such as radial, tangential and chain migration. We also discuss several studies demonstrating that mutations in ECM glycoproteins can alter neuronal positioning by cell non-autonomous mechanisms that secondarily affect migrating neurons. PMID:21739613

  16. How common is the lipid body-containing interstitial cell in the mammalian lung?

    PubMed

    Tahedl, Daniel; Wirkes, André; Tschanz, Stefan A; Ochs, Matthias; Mühlfeld, Christian

    2014-09-01

    Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.

  17. Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS

    SciTech Connect

    Qingfeng Yu; Quanke Feng

    2006-07-01

    A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

  18. Young Aphids Avoid Erroneous Dropping when Evading Mammalian Herbivores by Combining Input from Two Sensory Modalities

    PubMed Central

    Gish, Moshe; Dafni, Amots; Inbar, Moshe

    2012-01-01

    Mammalian herbivores may incidentally ingest plant-dwelling insects while foraging. Adult pea aphids (Acyrthosiphon pisum) avoid this danger by dropping off their host plant after sensing the herbivore's warm and humid breath and the vibrations it causes while feeding. Aphid nymphs may also drop (to escape insect enemies), but because of their slow movement, have a lower chance of finding a new plant. We compared dropping rates of first-instar nymphs with those of adults, after exposing pea aphids to different combinations of simulated mammalian breath and vibrations. We hypothesized that nymphs would compensate for the greater risk they face on the ground by interpreting more conservatively the mammalian herbivore cues they perceive. Most adults dropped in response to breath alone, but nymphs rarely did so. Breath stimulus accompanied by one concurrent vibrational stimulus, caused a minor rise in adult dropping rates. Adding a second vibration during breath had no additional effect on adults. The nymphs, however, relied on a combination of the two types of stimuli, with a threefold increase in dropping rates when the breath was accompanied by one vibration, and a further doubling of dropping rates when the second vibration was added. The age-specificity of the aphids' herbivore detection mechanism is probably an adaptation to the different cost of dropping for the different age groups. Relying on a combination of stimuli from two sensory modalities enables the vulnerable nymphs to avoid costly mistakes. Our findings emphasize the importance of the direct trophic effect of mammalian herbivory for plant-dwelling insects. PMID:22496734

  19. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome.

    PubMed

    Pohl, Daniela; Alper, Gulay; Van Haren, Keith; Kornberg, Andrew J; Lucchinetti, Claudia F; Tenembaum, Silvia; Belman, Anita L

    2016-08-30

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating CNS disorder with predilection to early childhood. ADEM is generally considered a monophasic disease. However, recurrent ADEM has been described and defined as multiphasic disseminated encephalomyelitis. ADEM often occurs postinfectiously, although a causal relationship has never been established. ADEM and multiple sclerosis are currently viewed as distinct entities, generally distinguishable even at disease onset. However, pathologic studies have demonstrated transitional cases of yet unclear significance. ADEM is clinically defined by acute polyfocal neurologic deficits including encephalopathy. MRI typically demonstrates reversible, ill-defined white matter lesions of the brain and often also the spinal cord, along with frequent involvement of thalami and basal ganglia. CSF analysis may reveal a mild pleocytosis and elevated protein, but is generally negative for intrathecal oligoclonal immunoglobulin G synthesis. In the absence of a specific diagnostic test, ADEM is considered a diagnosis of exclusion, and ADEM mimics, especially those requiring a different treatment approach, have to be carefully ruled out. The role of biomarkers, including autoantibodies like anti-myelin oligodendrocyte glycoprotein, in the pathogenesis and diagnosis of ADEM is currently under debate. Based on the presumed autoimmune etiology of ADEM, the current treatment approach consists of early immunotherapy. Outcome of ADEM in pediatric patients is generally favorable, but cognitive deficits have been reported even in the absence of other neurologic sequelae. This review summarizes the current knowledge on epidemiology, pathology, clinical presentation, neuroimaging features, CSF findings, differential diagnosis, therapy, and outcome, with a focus on recent advances and controversies. PMID:27572859

  20. Bupropion and bupropion analogs as treatments for CNS disorders.

    PubMed

    Carroll, F Ivy; Blough, Bruce E; Mascarella, S Wayne; Navarro, Hernán A; Lukas, Ronald J; Damaj, M Imad

    2014-01-01

    Bupropion, introduced as an antidepressant in the 1980s, is also effective as a smoking cessation aid and is beneficial in the treatment of methamphetamine addiction, cocaine dependence, addictive behaviors such as pathological gambling, and attention deficit hyperactivity disorder. (2S,3S)-hydroxybupropion is an active metabolite of bupropion produced in humans that contributes to antidepressant and smoking cessation efficacy and perhaps benefits in other CNS disorders. Mechanisms underlying its antidepressant and smoking abstinence remain elusive. However, it seems likely that efficacy is due to a combination of the effects of bupropion and/or its active metabolite (2S,3S)-hydroxybupropion involving the inhibition of reuptake of dopamine (DA) and NE in reward centers of the brain and the noncompetitive antagonism of α4β2- and α3β4*-nAChRs. These combined effects of bupropion and its active metabolite may be responsible for its ability to decrease nicotine reward and withdrawal. Studies directed toward development of a bupropion analog for treatment of cocaine addiction led to compounds, typified by 2-(N-cyclopropylamino)-3'-chloropropiophenone (RTI-6037-39), thought to act as indirect DA agonists. In addition, (2S,3S)-hydroxybupropion analogs were developed, which had varying degrees of DA and NE uptake inhibition and antagonism of nAChRs. These compounds will be valuable tools for animal behavioral studies and as clinical candidates. Here, we review the (1) early studies leading to the development of bupropion, (2) bupropion metabolism and the identification of (2S,3R)-hydroxybupropion as an active metabolite, (3) mechanisms of bupropion and metabolite action, (4) effects in animal behavioral studies, (5) results of clinical studies, and (6) development of bupropion analogs as potential pharmacotherapies for treating nicotine and cocaine addiction.

  1. Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction

    SciTech Connect

    Xu, Jiajun; Yang, Ming; Kosterin, Paul; Salzberg, Brian M.; Milovanova, Tatyana N.; Bhopale, Veena M.; Thom, Stephen R.

    2013-12-01

    We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm for 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.

  2. Adult ADHD Medications and Their Cardiovascular Implications

    PubMed Central

    Lewis, O.

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a chronic neurobiological disorder exhibited by difficulty maintaining attention, as well as hyperactivity and impulsive behavior. Central nervous system (CNS) stimulants are the first line of treatment for ADHD. With the increase in number of adults on CNS stimulants, the question that arises is how well do we understand the long-term cardiovascular effects of these drugs. There has been increasing concern that adults with ADHD are at greater risk for developing adverse cardiovascular events such as sudden death, myocardial infarction, and stroke as compared to pediatric population. Cardiovascular response attributed to ADHD medication has mainly been observed in heart rate and blood pressure elevations, while less is known about the etiology of rare cardiovascular events like acute myocardial infarction (AMI), arrhythmia, and cardiomyopathy and its long-term sequelae. We present a unique case of AMI in an adult taking Adderall (mixed amphetamine salts) and briefly discuss the literature relevant to the cardiovascular safety of CNS stimulants for adult ADHD. PMID:27579185

  3. Adult ADHD Medications and Their Cardiovascular Implications.

    PubMed

    Sinha, A; Lewis, O; Kumar, R; Yeruva, S L H; Curry, B H

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a chronic neurobiological disorder exhibited by difficulty maintaining attention, as well as hyperactivity and impulsive behavior. Central nervous system (CNS) stimulants are the first line of treatment for ADHD. With the increase in number of adults on CNS stimulants, the question that arises is how well do we understand the long-term cardiovascular effects of these drugs. There has been increasing concern that adults with ADHD are at greater risk for developing adverse cardiovascular events such as sudden death, myocardial infarction, and stroke as compared to pediatric population. Cardiovascular response attributed to ADHD medication has mainly been observed in heart rate and blood pressure elevations, while less is known about the etiology of rare cardiovascular events like acute myocardial infarction (AMI), arrhythmia, and cardiomyopathy and its long-term sequelae. We present a unique case of AMI in an adult taking Adderall (mixed amphetamine salts) and briefly discuss the literature relevant to the cardiovascular safety of CNS stimulants for adult ADHD. PMID:27579185

  4. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  5. Compartmentalization, Viral Evolution, and Viral Latency of HIV in the CNS.

    PubMed

    Bednar, Maria M; Sturdevant, Christa Buckheit; Tompkins, Lauren A; Arrildt, Kathryn Twigg; Dukhovlinova, Elena; Kincer, Laura P; Swanstrom, Ronald

    2015-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body and can have dramatic physical effects, such as neurocognitive impairment in the central nervous system (CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as macrophages and microglia, to be infected. Treatment must also cross the blood-brain barrier adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected cell types and treatment barriers may affect functional cure strategies in people on highly active antiretroviral therapy (HAART). PMID:25914150

  6. Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

    ClinicalTrials.gov

    2016-08-15

    Ewing's Family Tumors; Renal Tumors; Hepatoblastoma; Rhabdomyosarcoma; Soft Tissue Sarcoma; Primary Malignant Brain Neoplasms; Retinoblastoma; Medulloblastoma; Supra-tentorial Primative Neuro-Ectodermal Tumor (PNET); Atypical Teratoid/Rhabdoid Tumor (AT/RT); CNS Tumors; Germ Cell Tumors

  7. Dealing with Danger in the CNS: The Response of the Immune System to Injury

    PubMed Central

    Gadani, Sachin P.; Walsh, James T.; Lukens, John R.; Kipnis, Jonathan

    2015-01-01

    Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account. PMID:26139369

  8. Computational models of adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  9. Mutagenicity of hydralazine in mammalian cells and bacteria.

    PubMed

    McQueen, C A; Way, B M; Queener, S M

    1993-01-01

    The genotoxicity of hydralazine (HDZ), an antihypertensive agent, was evaluated in mammalian cells and bacteria. The formation of mutants at the hypoxanthine guanine phosphoribosyl transferase locus in an adult rat liver cell line ARL 18 was determined. Bacterial mutagenicity was assessed in Salmonella typhimurium strains TA100 and TA102. The latter strain was chosen because it has A:T bases at the reversion site and HDZ has been reported to interact with thymidine. HDZ was mutagenic to ARL 18 cells with a concentration-dependent increase in mutants observed at 5 x 10(-6) to 5 x 10(-4) M. At 5 x 10(-4) M HDZ, there were 110 mutants/10(6) colony-forming cells compared to 129 for cells exposed to 10(-4) M benzo(a)pyrene, a known genotoxin. Bacterial mutants were observed with HDZ in both strains in the absence of an activating system. HDZ also induced mutants in the presence of S-9 from Aroclor-induced rat liver or uninduced rabbit liver. These results were consistent with previous reports of the mutagenicity of HDZ in TA100 and extend the observations to TA102, a strain designed to detect oxidative damage. This study also provides the first evidence of the mutagenicity of HDZ in mammalian cells. These data support the genotoxicity of HDZ in in vitro systems.

  10. The gateway theory: bridging neural and immune interactions in the CNS

    PubMed Central

    Kamimura, Daisuke; Yamada, Moe; Harada, Masaya; Sabharwal, Lavannya; Meng, Jie; Bando, Hidenori; Ogura, Hideki; Atsumi, Toru; Arima, Yasunobu; Murakami, Masaaki

    2013-01-01

    The central nervous system (CNS) is considered an immune-privileged tissue protected by a specific vessel structure, the blood-brain barrier (BBB). Upon infection or traumatic injury in the CNS, the BBB is breached, and various immune cells are recruited to the affected area. In the case of autoimmune diseases in the CNS like multiple sclerosis (MS), autoreactive T cells against some CNS-specific antigens can theoretically attack neurons throughout the CNS. The affected CNS regions in MS patients can be detected as multiple focal plaques in the cerebrum, thoracic cord, and other regions. Vision problems are often associated with the initial phase of MS, suggesting a disturbance in the optic nerves. These observations raise the possibility that there exist specific signals that direct autoreactive T cells past the BBB and into particular sites of the CNS. Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we recently defined the mechanism of the pathogenesis in which regional neural stimulations modulate the status of the blood vessel endothelium to allow the invasion of autoreactive T cells into specific sites of the CNS via the fifth lumbar cord. This gate for autoreactive T cells can be artificially manipulated by removing gravity forces on the hind legs or by electric pulses to the soleus muscles, quadriceps, and triceps of mice, resulting in an accumulation of autoreactive T cells in the intended regions via the activation of regional neurons. Gating blood vessels by regional neural stimulations, a phenomenon we call the gateway theory, has potential therapeutic value not only in preventing autoimmunity, but also in augmenting the effects of cancer immunotherapies. PMID:24194696

  11. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  12. Archetype, adaptation and the mammalian heart.

    PubMed

    Meijler, F L; Meijler, T D

    2011-03-01

    Forty years ago, we started our quest for 'The Holy Grail' of understanding ventricular rate control and rhythm in atrial fibrillation (AF). We therefore studied the morphology and function of a wide range of mammalian hearts. From mouse to whale, we found that all hearts show similar structural and functional characteristics. This suggests that the mammalian heart remained well conserved during evolution and in this aspect it differs from other organs and parts of the mammalian body. The archetype of the mammalian heart was apparently so successful that adaptation by natural selection (evolution) caused by varying habitat demands, as occurred in other organs and many other aspects of mammalian anatomy, bypassed the heart. The structure and function of the heart of placental mammals have thus been strikingly conserved throughout evolution. The changes in the mammalian heart that did take place were mostly adjustments (scaling), to compensate for variations in body size and shape. A remarkable scaling effect is, for instance, the difference in atrioventricular (AV) conduction time, which is vital for optimal cardiac function in all mammals, small and large. Scaling of AV conduction takes place in the AV node (AVN), but its substrate is unknown. This sheds new light on the vital role of the AVN in health and disease. The AVN is master and servant of the heart at the same time and is of salient importance for our understanding of supraventricular arrhythmias in humans, especially AF. In Information Technology a software infra-structure called 'enterprise service bus' (ESB) may provide understanding of the mammalian heart's conservation during evolution. The ESB is quite unspecific (and thus general) when compared with the specialised components it has to support. For instance, one of the functions of an ESB is the routing of messages between system nodes. This routing is independent and unaware of the content of the messages. The function of the heart is likewise

  13. Immunosuppression promotes CNS remyelination in chronic virus-induced demyelinating disease.

    PubMed

    Rodriguez, M; Lindsley, M D

    1992-02-01

    Immunosuppression using cyclophosphamide or anti-T cell monoclonal antibodies (mAbs) directed at CD4 or CD8 promoted remyelination of CNS axons in the spinal cords of mice infected chronically with Theiler's virus. Treatment with a mAb directed at class II major histocompatibility gene products did not increase the extent of CNS remyelination. Following immunosuppressive treatment, quantitative morphometry revealed a five- to sevenfold increase in new myelin synthesis. Proliferating nervous system cells were identified at the edges of remyelinated lesions by their incorporation of [3H]thymidine. CNS remyelination occurred in mice depleted of selected subsets of T lymphocytes despite the local persistence of viral antigen. These findings indicate that CNS remyelination occurs as a normal consequence of primary myelin injury, but factors associated with immune T cells somehow impair remyelination. Interference with the function of immune T cells enhances CNS remyelination by oligodendrocytes. Similar depletion of immune T cells may allow for enhanced remyelination in the CNS of patients with chronic multiple sclerosis.

  14. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis.

    PubMed

    Shevtsova, Zinayida; Garrido, Manuel; Weishaupt, Jochen; Saftig, Paul; Bähr, Mathias; Lühder, Fred; Kügler, Sebastian

    2010-07-01

    Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS. PMID:20489146

  15. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  16. Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons

    PubMed Central

    Chen, Meifan; Geoffroy, Cédric G.; Wong, Hetty N.; Tress, Oliver; Nguyen, Mallorie T.; Holzman, Lawrence B.; Jin, Yishi; Zheng, Binhai

    2016-01-01

    Leucine Zipper-bearing Kinase (LZK/MAP3K13) is a member of the mixed lineage kinase family with high sequence identity to Dual Leucine Zipper Kinase (DLK/MAP3K12). While DLK is established as a key regulator of axonal responses to injury, the role of LZK in mammalian neurons is poorly understood. By gain- and loss-of-function analyses in neuronal cultures, we identify LZK as a novel positive regulator of axon growth. LZK signals specifically through MKK4 and JNKs among MAP2Ks and MAPKs respectively in neuronal cells, with JNK activity positively regulating LZK protein levels. Neuronal maturation or activity deprivation activates the LZK-MKK4-JNK pathway. LZK and DLK share commonalities in signaling, regulation, and effects on axon extension. Furthermore, LZK-dependent regulation of DLK protein expression and the lack of additive effects on axon growth upon co-manipulation suggest complex functional interaction and cross-regulation between these two kinases. Together, our data support the possibility for two structurally related MAP3Ks to work in concert to mediate axonal responses to external insult or injury in mammalian CNS neurons. PMID:27511108

  17. Mammalian cloning: possibilities and threats.

    PubMed

    Mitalipov, S M; Wolf, D P

    2000-10-01

    The cloning of mammals originated with the production of limited numbers of genetically identical offspring by blastomere separation or embryo splitting. In the past few years, remarkable progress has been reported in cloning by nuclear transfer (NT) with donor nuclei recovered from embryonic, fetal or adult cells. Factors that contribute to the successful reprogramming of the transferred nucleus and the normal term development of the newly reconstructed embryo include the cell cycle stage of both the donor nucleus and recipient cytoplast, the timing of fusion and cytoplast activation, and the source of donor nuclei. The possibility of producing live offspring by somatic cell NT carries potential applications in animal husbandry, biotechnology, transgenic and pharmaceutical production, biomedical research, and the preservation of endangered species. However, the low efficiencies of cloning by NT coupled with high embryonic, fetal and neonatal losses may restrict immediate commercial applications in agriculture. These limitations notwithstanding, the greatest benefits and practical implications of this new technology could be in transplantation medicine and therapeutic cloning.

  18. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  19. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  20. Synthetic therapeutic gene circuits in mammalian cells.

    PubMed

    Ye, Haifeng; Fussenegger, Martin

    2014-08-01

    In the emerging field of synthetic biology, scientists are focusing on designing and creating functional devices, systems, and organisms with novel functions by engineering and assembling standardised biological building blocks. The progress of synthetic biology has significantly advanced the design of functional gene networks that can reprogram metabolic activities in mammalian cells and provide new therapeutic opportunities for future gene- and cell-based therapies. In this review, we describe the most recent advances in synthetic mammalian gene networks designed for biomedical applications, including how these synthetic therapeutic gene circuits can be assembled to control signalling networks and applied to treat metabolic disorders, cancer, and immune diseases. We conclude by discussing the various challenges and future prospects of using synthetic mammalian gene networks for disease therapy.

  1. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  2. Synthetic mammalian gene circuits for biomedical applications.

    PubMed

    Ye, Haifeng; Aubel, Dominique; Fussenegger, Martin

    2013-12-01

    Synthetic biology is the science of reassembling cataloged and standardized biological items in a systematic and rational manner to create and engineer functional biological designer devices, systems and organisms with novel and useful, preferably therapeutic functions. Synthetic biology has significantly advanced the design of complex genetic networks that can reprogram metabolic activities in mammalian cells and provide novel therapeutic strategies for future gene-based and cell-based therapies. Synthetic biology-inspired therapeutic strategies provide new opportunities for improving human health in the 21st century. This review covers the most recent synthetic mammalian circuits designed for therapy of diseases such as metabolic disorders, cancer, and immune disorders. We conclude by discussing current challenges and future perspectives for biomedical applications of synthetic mammalian gene networks.

  3. Involvement of opsins in mammalian sperm thermotaxis

    PubMed Central

    Pérez-Cerezales, Serafín; Boryshpolets, Sergii; Afanzar, Oshri; Brandis, Alexander; Nevo, Reinat; Kiss, Vladimir; Eisenbach, Michael

    2015-01-01

    A unique characteristic of mammalian sperm thermotaxis is extreme temperature sensitivity, manifested by the capacity of spermatozoa to respond to temperature changes of <0.0006 °C as they swim their body-length distance. The identity of the sensing system that confers this exceptional sensitivity on spermatozoa is not known. Here we show that the temperature-sensing system of mammalian spermatozoa involves opsins, known to be G-protein-coupled receptors that act as photosensors in vision. We demonstrate by molecular, immunological, and functional approaches that opsins are present in human and mouse spermatozoa at specific sites, which depend on the species and the opsin type, and that they are involved in sperm thermotaxis via two signalling pathways—the phospholipase C and the cyclic-nucleotide pathways. Our results suggest that, depending on the context and the tissue, mammalian opsins act not only as photosensors but also as thermosensors. PMID:26537127

  4. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    SciTech Connect

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  5. Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS

    PubMed Central

    Wang, Hui; Matise, Michael P.

    2016-01-01

    The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS) requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC) proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tissues. However, although HDAC proteins have shown to be expressed in the developing vertebrate neural tube, their specific role in CNS neural progenitor fate specification remains unclear. Prior work from our lab showed that the Tcf7l2/Tcf4 transcription factor plays a key role in ventral progenitor lineage segregation by differential repression of two key specification factors, Nkx2.2 and Olig2. In this study, we found that administration of HDAC inhibitors (Valproic Acid (VPA), Trichostatin-A (TSA), or sodium butyrate) in chick embryos in ovo disrupted normal progenitor gene segregation in the developing neural tube, indicating that HDAC activity is required for this process. Further, using functional and pharmacological approaches in vivo, we found that HDAC activity is required for the differential repression of Nkx2.2 and Olig2 by Tcf7l2/Tcf4. Finally, using dominant-negative functional assays, we provide evidence that Tcf7l2/Tcf4 repression also requires Gro/TLE/Grg co-repressor factors. Together, our data support a model where the transcriptional repressor activity of Tcf7l2/Tcf4 involves functional interactions with both HDAC and Gro/TLE/Grg co-factors at specific target gene regulatory elements in the developing neural tube, and that this activity is required for the proper segregation of the Nkx2.2 (p3) and Olig2 (pMN) expressing cells from a common progenitor pool. PMID:27668865

  6. Structure and diversity in mammalian accessory olfactory bulb.

    PubMed

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  7. Odor Coding by a Mammalian Receptor Repertoire

    PubMed Central

    Saito, Harumi; Chi, Qiuyi; Zhuang, Hanyi; Matsunami, Hiro; Mainland, Joel D.

    2009-01-01

    Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of over 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and unraveling mammalian odor coding. PMID:19261596

  8. Autofluorescence of viable cultured mammalian cells.

    PubMed

    Aubin, J E

    1979-01-01

    The autofluorescence other than intrinsic protein emission of viable cultured mammalian cells has been investigated. The fluorescence was found to originate in discrete cytoplasmic vesicle-like regions and to be absent from the nucleus. Excitation and emission spectra of viable cells revealed at least two distinct fluorescent species. Comparison of cell spectra with spectra of known cellular metabolites suggested that most, if not all, of the fluorescence arises from intracellular nicotinamide adenine dinucleotide (NADH) and riboflavin and flavin coenzymes. Various changes in culture conditions did not affect the observed autofluorescence intensity. A multiparameter flow system (MACCS) was used to compare the fluorescence intensities of numerous cultured mammalian cells.

  9. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  10. Building mammalian signalling pathways with RNAi screens.

    PubMed

    Moffat, Jason; Sabatini, David M

    2006-03-01

    Technological advances in mammalian systems are providing new tools to identify the molecular components of signalling pathways. Foremost among these tools is the ability to knock down gene function through the use of RNA interference (RNAi). The fact that RNAi can be scaled up for use in high-throughput techniques has motivated the creation of genome-wide RNAi reagents. We are now at the brink of being able to harness the power of RNAi for large-scale functional discovery in mammalian cells.

  11. Medical and experimental mammalian genetics: A perspective

    SciTech Connect

    McKusick, V.A.; Roderick, T.H.; Mori, J.; Paul, N.W.

    1987-01-01

    This book contains 14 papers. Some of the titles are: Structure and Organization of Mammalian Chromosomes: Normal and Abnormal; Globin Gene Structure and the Nature of Mutation; Retroviral DNA Content of the Mouse Genome; Maternal Genes: Mitochondrial Diseases; Human Evolution; and Prospects for Gene Replacement Therapy.

  12. Ticks Take Cues from Mammalian Interferon.

    PubMed

    de Silva, Aravinda M

    2016-07-13

    Interferons are considered a first line of immune defense restricted to vertebrates. In this issue of Cell Host & Microbe, Smith et al. (2016) demonstrate that mammalian interferon γ activates an antimicrobial response within ticks feeding on blood. The study suggests that arthropods have a parallel interferon-like defense system. PMID:27414493

  13. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  14. Structure of mammalian respiratory complex I.

    PubMed

    Zhu, Jiapeng; Vinothkumar, Kutti R; Hirst, Judy

    2016-08-18

    Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis. PMID:27509854

  15. Genomics in mammalian cell culture bioprocessing

    PubMed Central

    Wuest, Diane M.; Harcum, Sarah W.; Lee, Kelvin H.

    2013-01-01

    Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised. PMID:22079893

  16. [Placental developmental defects in cloned mammalian animals].

    PubMed

    Ao, Zheng; Liu, Dewu; Cai, Gengyuan; Wu, Zhenfang; Li, Zicong

    2016-05-01

    The cloning technique, also called somatic cell nuclear transfer (SCNT), has been successfully established and gradually applied to various mammalian species. However, the developmental rate of SCNT mammalian embryos is very low, usually at 1% to 5%, which limits the application of SCNT. Placental developmental defects are considered as the main cause of SCNT embryo development inhibition. Almost all of SCNT-derived mammalian placentas exhibit various abnormalities, such as placental hyperplasia, vascular defects and umbilical cord malformation. Mechanistically, these abnormalities result from failure of establishment of correct epigenetic modification in the trophectoderm genome, which leads to erroneous expression of important genes for placenta development-related, particularly imprinted genes. Consequently, aberrant imprinted gene expression gives rise to placental morphologic abnormalities and functional defects, therefore decreases developmental competence of cloned embryos. Currently, although numerous methods that can improve the developmental ability of SCNT-derived embryos have been reported, most of them are unable to substantially enhance the success rate of SCNT due to failure to eliminate the placental development defects. In this review, we summarize placental abnormalities and imprinted gene expression in mammalian cloning, and propose directions for the future research aiming to improve the cloning efficiency. PMID:27232488

  17. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  18. A promoter-level mammalian expression atlas

    PubMed Central

    2015-01-01

    Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research. PMID:24670764

  19. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  20. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    PubMed

    Kegler, Kristel; Spitzbarth, Ingo; Imbschweiler, Ilka; Wewetzer, Konstantin; Baumgärtner, Wolfgang; Seehusen, Frauke

    2015-01-01

    Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR)-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas with p75NTR/Sox2

  1. Functional development of the CNS in pupils aged 7 to 19 years.

    PubMed

    Schalow, G

    2006-01-01

    In pupils aged 7 to 19 years, the functioning of the central nervous system (CNS) improved by a factor of 3 during their development. The CNS functioning was quantified in the framework of the dynamical system theory of pattern formation by the value of coordination dynamics. A transient increase in the optimal rate of arm and leg movements was observed in the pupils within 8 and 14 years of age. This high-speed moving is interpreted as a mean how the immature CNS tries to improve its functioning with respect to coordination and symmetry. Moreover, in very young pupils a lack of continuous drive of the CNS was observed; in other words, the concentration upon a certain task was not continuous. Some pupils were able to concentrate for only approximately 10 s. It was difficult for young pupils to simultaneously concentrate on two different tasks like moving and speaking or moving and thinking. It is concluded that concentration problems observed in young pupils are due to their immature CNS. PMID:16918200

  2. Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1.

    PubMed

    Kesari, S; Lee, V M; Brown, S M; Trojanowski, J Q; Fraser, N W

    1996-09-15

    Herpes simplex viruses that lack ICP34.5 are neuroattenuated and are presently being considered for cancer and gene therapy in the nervous system. Previously, we documented the focal presence of the latency-associated transcripts (LATs) in the hippocampi of immunocompromised mice after intracranial (IC) inoculation of an ICP34.5-deficient virus called strain 1716. To characterize further the biological properties of strain 1716 in the CNS of immunocompetent mice, we determined the extent of viral gene expression in different cell types and regions of the CNS after stereotactic IC inoculation of this virus. At survival times of > 30 d after inoculation, we found that (1) infectious virus was not detectable by titration and immunohistochemical studies; (2) neurons harbored virus as demonstrated by the detection of the LATs by in situ hybridization (ISH); (3) transcripts expressed during the lytic cycle of infection were not detected by ISH; and (4) subsets of neurons were selectively vulnerable to latent infection, depending on the site of inoculation. These results suggest that the absence of ICP34.5 does not abrogate latent infection of the CNS by strain 1716. Additional studies of strain 1716 in the model system described here will facilitate the elucidation of the mechanisms that regulate the selective vulnerability of CNS cells to latent viral infection and lead to the development of ICP34.5 mutant viruses as therapeutic vectors for CNS diseases.

  3. Immune privilege of the CNS is not the consequence of limited antigen sampling

    NASA Astrophysics Data System (ADS)

    Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna

    2014-03-01

    Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.

  4. Matrine protects neuro-axon from CNS inflammation-induced injury.

    PubMed

    Kan, Quan-Cheng; Lv, Peng; Zhang, Xiao-Jian; Xu, Yu-Ming; Zhang, Guang-Xian; Zhu, Lin

    2015-02-01

    Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.

  5. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.

  6. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology.

    PubMed

    Accardi, Michael V; Pugsley, Michael K; Forster, Roy; Troncy, Eric; Huang, Hai; Authier, Simon

    2016-01-01

    Adverse CNS effects account for a sizeable proportion of all drug attrition cases. These adverse CNS effects are mediated predominately by off-target drug activity on neuronal ion-channels, receptors, transporters and enzymes - altering neuronal function and network communication. In response to these concerns, there is growing support within the pharmaceutical industry for the requirement to perform more comprehensive CNS safety testing prior to first-in-human trials. Accordingly, CNS safety pharmacology commonly integrates several in vitro assay methods for screening neuronal targets in order to properly assess therapeutic safety. One essential assay method is the in vitro electrophysiological technique - the 'gold standard' ion channel assay. The in vitro electrophysiological method is a useful technique, amenable to a variety of different tissues and cell configurations, capable of assessing minute changes in ion channel activity from the level of a single receptor to a complex neuronal network. Recent advances in automated technology have further expanded the usefulness of in vitro electrophysiological methods into the realm of high-throughput, addressing the bottleneck imposed by the manual conduct of the technique. However, despite a large range of applications, manual and automated in vitro electrophysiological techniques have had a slow penetrance into the field of safety pharmacology. Nevertheless, developments in throughput capabilities and in vivo applicability have led to a renewed interest in in vitro electrophysiological techniques that, when complimented by more traditional safety pharmacology methods, often increase the preclinical predictability of potential CNS liabilities.

  7. Aberrant dendritic excitability: a common pathophysiology in CNS disorders affecting memory?

    PubMed Central

    Nestor, Michael W.; Hoffman, Dax A.

    2012-01-01

    Discovering the etiology of pathophysiologies and aberrant behavior in many central nervous system (CNS) disorders has proven elusive because susceptibility to these diseases can be a product of multiple factors such as genetics, epigenetics, and environment. Advances in molecular biology and wide-scale genomics have shown that a large heterogeneity of genetic mutations are potentially responsible for the neuronal pathologies and dysfunctional behaviors seen in CNS disorders. (Need to distinguish between pure genetic forms which are rare, and what most people get which is probable combination of genetic susceptibility and environmental insults). Despite this seemingly complex array of genetic and physiological factors, many disorders of the CNS converge on common dysfunctions in memory. In this review, we propose that mechanisms underlying the development of many CNS diseases may share an underlying cause involving abnormal dendritic integration of synaptic signals. Through understanding the relationship between molecular genetics and dendritic computation, future research may uncover important links between neuronal physiology at the cellular level and higher-order circuit and network abnormalities observed in CNS diseases, and their subsequent affect on memory. PMID:22528602

  8. Influenza Vaccine-Induced CNS Demyelination in a 50-Year-Old Male

    PubMed Central

    Sacheli, Aaron; Bauer, Raymond

    2014-01-01

    Patient: Male, 50 Final Diagnosis: Acute post-vaccination CNS demyelinating disorder Symptoms: Blurred vision • hemiparesis • hemiplegia • hypertonia • itching • paresthesia Medication: — Clinical Procedure: MRI Specialty: Neurology Objective: Rare disease Background: There are several categories of primary inflammatory demyelinating disorders, which comprise clinically similar neurologic sequelae. Of interest, clinically isolated syndrome (CIS) and acute disseminated encephalomyelitis (ADEM) are 2 demyelinating conditions of the central nervous system (CNS), whose clinical similarity pose a significant challenge to definitive diagnosis. Yet, both remain important clinical considerations in patients with neurologic signs and symptoms in the context of recent vaccination. Case Report: We report a case of a 50-year-old Caucasian male with a course of progressive, focal, neurologic deficits within 24 h after receiving the influenza vaccine. Subsequent work-up revealed the possibility of an acute central nervous system (CNS) demyelinating episode secondary to the influenza vaccine, best described as either CIS or ADEM. Conclusions: Case reports of CNS demyelination following vaccinations have been previously noted, most often occurring in the context of recent influenza vaccination. This report serves to document a case of CNS demyelination occurring 24 h after influenza vaccination in a middle-aged patient, and will describe some salient features regarding the differential diagnosis of CIS and ADEM, as well as their potential management. PMID:25175754

  9. The microglial ATP-gated ion channel P2X7 as a CNS drug target.

    PubMed

    Bhattacharya, Anindya; Biber, Knut

    2016-10-01

    Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787. PMID:27219534

  10. Coagulase-negative staphylococci (CNS) as an aetiological factor of mastitis in cows.

    PubMed

    Bochniarz, M; Wawron, W; Szczubiał, M

    2013-01-01

    The aim of the present study was to determine the proportions of individual coagulase-negative Staphylococcus species in clinical and subclinical mastitis. The material consisted of 100 CNS isolates obtained from 223 milk samples collected from cows with clinical and subclinical mastitis. Coagulase-negative staphylococci constituted 44.8% of all isolated microorganisms. CNS were isolated from the mammary gland secretions of 86 cows from farms in the Lublin region (Poland). Clinical mastitis was found in 20 whereas subclinical mastitis in 66 study cows (23.3% and 76.7%, respectively). The symptoms of clinical mastitis were mild. The clinical forms of mastitis concerned mainly the first or second lactation. Subclinical mastitis was most commonly observed during the second lactation. Four CNS species (S. xylosus, S. chromogenes, S. haemolyticus and S. sciuri) were isolated from clinical and subclinical mastitis. S. xylosus was the commonest CNS species isolated from cows with clinical mastitis whereas S. chromogenes was the most prevalent one in subclinical mastitis cases. The three CNS species (S. warneri, S. hominis and S. saprophyticus) caused only subclinical mastitis. PMID:24195283

  11. Adult Books for Young Adults.

    ERIC Educational Resources Information Center

    Carter, Betty

    1997-01-01

    Considers the differences between young adult and adult books and maintains that teachers must be familiar with young adults' tastes for both. Suggests that traffic between these publishing divisions is a two-way street, with young adults reading adult books and adults reading young adult books. (TB)

  12. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL.

    PubMed

    Savage, Kerry J; Slack, Graham W; Mottok, Anja; Sehn, Laurie H; Villa, Diego; Kansara, Roopesh; Kridel, Robert; Steidl, Christian; Ennishi, Daisuke; Tan, King L; Ben-Neriah, Susana; Johnson, Nathalie A; Connors, Joseph M; Farinha, Pedro; Scott, David W; Gascoyne, Randy D

    2016-05-01

    Dual expression of MYC and BCL2 by immunohistochemistry (IHC) is associated with poor outcome in diffuse large B-cell lymphoma (DLBCL). Dual translocation of MYC and BCL2, so-called "double-hit lymphoma," has been associated with a high risk of central nervous system (CNS) relapse; however, the impact of dual expression of MYC and BCL2 (dual expressers) on the risk of CNS relapse remains unknown. Pretreatment formalin-fixed paraffin-embedded DLBCL biopsies derived from patients subsequently treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) were assembled on tissue microarrays from 2 studies and were evaluated for expression of MYC and BCL2 by IHC. In addition, cell of origin was determined by IHC and the Lymph2Cx gene expression assay in a subset of patients. We identified 428 patients who met the inclusion criteria. By the recently described CNS risk score (CNS-International Prognostic Index [CNS-IPI]), 34% were low risk (0 to 1), 45% were intermediate risk (2 to 3), and 21% were high risk (4 or greater). With a median follow-up of 6.8 years, the risk of CNS relapse was higher in dual expressers compared with non-dual expressers (2-year risk, 9.7% vs 2.2%; P = .001). Patients with activated B-cell or non-germinal center B-cell type DLBCL also had an increased risk of CNS relapse. However, in multivariate analysis, only dual expresser status and CNS-IPI were associated with CNS relapse. Dual expresser MYC(+) BCL2(+) DLBCL defines a group at high risk of CNS relapse, independent of CNS-IPI score and cell of origin. Dual expresser status may help to identify a high-risk group who should undergo CNS-directed evaluation and consideration of prophylactic strategies.

  13. Control levels of acetylcholinesterase expression in the mammalian skeletal muscle.

    PubMed

    Grubic, Z; Zajc-Kreft, K; Brank, M; Mars, T; Komel, R; Miranda, A F

    1999-05-14

    Protein expression can be controled at different levels. Understanding acetylcholinesterase (EC. 3.1.1.7, AChE) expression in the living organisms therefore necessitates: (1) determination and mapping of control levels of AChE metabolism; (2) identification of the regulatory factors acting at these levels; and (3) detailed insight into the mechanisms of action of these factors. Here we summarize the results of our studies on the regulation of AChE expression in the mammalian skeletal muscle. Three experimental models were employed: in vitro innervated human muscle, mechanically denervated adult fast rat muscle, and the glucocorticoid treated fast rat muscle. In situ hybridization of AChE mRNA, combined with AChE histochemistry, revealed that different distribution patterns of AChE, observed during in vitro ontogenesis and synaptogenesis of human skeletal muscle, reflect alterations in the distribution of AChE mRNA (Z. Grubic, R. Komel, W.F. Walker, A.F. Miranda, Myoblast fusion and innervation with rat motor nerve alter the distribution of acetylcholinesterase and its mRNA in human muscle cultures, Neuron 14 (1995) 317-327). To study the mechanisms of AChE mRNA loss in denervated adult rat skeletal muscle, we exposed deproteinated AChE mRNA to various subcellular fractions in vitro. Fractions were isolated from the normal and denervated rat sternomastoideus muscle. We found significantly increased, but non-specific AChE mRNA degradation capacities in the three fractions studied, suggesting that increased susceptibility of muscle mRNA to degradation might be at least partly responsible for the decreased AChE mRNA observed under such conditions (K. Zajc-Kreft, S. Kreft, Z. Grubic, Degradation of AChE mRNA in the normal and denervated rat skeletal muscle, Book of Abstracts, The Sixth International Meeting on Cholinesterases, La Jolla, CA, March 20-24, 1998, p. A3.). In adult fast rat muscle, treated chronically with glucocorticoids, we found the fraction of early

  14. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  15. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. PMID:27133743

  16. Preclinical assessment of CNS drug action using eye movements in mice

    PubMed Central

    Cahill, Hugh; Rattner, Amir; Nathans, Jeremy

    2011-01-01

    The drug development process for CNS indications is hampered by a paucity of preclinical tests that accurately predict drug efficacy in humans. Here, we show that a wide variety of CNS-active drugs induce characteristic alterations in visual stimulus–induced and/or spontaneous eye movements in mice. Active compounds included sedatives and antipsychotic, antidepressant, and antiseizure drugs as well as drugs of abuse, such as cocaine, morphine, and phencyclidine. The use of quantitative eye-movement analysis was demonstrated by comparing it with the commonly used rotarod test of motor coordination and by using eye movements to monitor pharmacokinetics, blood-brain barrier penetration, drug-receptor interactions, heavy metal toxicity, pharmacologic treatment in a model of schizophrenia, and degenerative CNS disease. We conclude that eye-movement analysis could complement existing animal tests to improve preclinical drug development. PMID:21821912

  17. IDS crossing of the blood-brain barrier corrects CNS defects in MPSII mice.

    PubMed

    Polito, Vinicia Assunta; Cosma, Maria Pia

    2009-08-01

    Mucopolysaccharidosis type II (MPSII), or Hunter syndrome, arises from a deficiency in iduronate 2-sulfatase (IDS), and it is characterized by progressive somatic and neurological involvement. The MPSII mouse model reproduces the features of MPSII patients. Systemic administration of the AAV2/5CMV-hIDS vector in MPSII mouse pups results in the full correction of glycosaminoglycan (GAG) accumulation in visceral organs and in the rescue of the defects and GAG accumulation in the central nervous system (CNS). Remarkably, in treated MPSII animals, this CNS correction arises from the crossing of the blood-brain barrier by the IDS enzyme itself, not from the brain transduction. Thus, we show here that early treatment of MPSII mice with one systemic injection of AAV2/5CMV-hIDS results in prolonged and high levels of circulating IDS that can efficiently and simultaneously rescue both visceral and CNS defects for up to 18 months after therapy.

  18. Optimizing early Go/No Go decisions in CNS drug development.

    PubMed

    Potter, William Z

    2015-03-01

    Go/No Go decisions concerning development of any single compound determine investment in increasingly costly studies from Phases I-III. Such decisions are problematic for CNS drug development where the variety of molecular targets in the brain have stimulated decades of studies without major therapeutic advances. Many costly studies do not even yield interpretable results as to whether the mechanism being pursued has therapeutic potential. Therefore, both industry and the public sector have implemented a decision making strategy based on whether a compound can test a molecular hypothesis of drug action. One requires, at a minimum, compelling evidence in humans that a compound both interacts with its presumed molecular targets in brain and ideally documents a CNS functional consequence of the interaction prior to efficacy studies. This strategy will much more quickly rule out ineffective mechanisms although it does not address the problem of poorly predictive models of novel CNS drug efficacy.

  19. Awards, lectures, and fellowships sponsored by the AANS/CNS Section on Tumors.

    PubMed

    Lau, Darryl; Barker, Fred G; Aghi, Manish K

    2014-09-01

    A major goal of the Section on Tumors of the American Association of Neurological Surgery (AANS) and Congress of Neurological Surgeons (CNS) since it was founded in 1984 has been to foster both education and research in the field of brain tumor treatment and development. In support of this goal, the Section sponsors a number of awards, named lectures, and fellowships at the annual meetings of the AANS and CNS. In this article, we describe the awards given by the AANS/CNS Section on Tumors since its foundation, the recipients of the awards, and their philanthropic donors. The subsequent history of awardees and their work is briefly examined. Specifically for the Preuss and Mahaley Awards, this article also examines the rates of publication among the award-winning abstracts and achievement of grant funding by awardees.

  20. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?

    PubMed

    Glaser, Kirsten; Speer, Christian P

    2015-02-01

    Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability. PMID:25578885

  1. Biochemical and electrophysiological characteristics of mammalian GABA receptors.

    PubMed

    Enna, S J; Gallagher, J P

    1983-01-01

    The concept that GABA is a neurotransmitter in the mammalian CNS is supported by both electrophysiological and biochemical data. Whereas the electrophysiological studies are essential for demonstrating a specific functional response to GABA, the biochemical approach is useful for characterizing the molecular properties of this site. As a result of these studies the concept of the GABA receptor has progressed from a simple model of a single recognition site associated with a chloride channel to a more complex structure having a variety of interacting components. Thus, both electrophysiological and biochemical data support the existence of at least two pharmacologically distinct types of GABA receptors, based on the sensitivity to bicuculline. Also, anatomically, there appear to be two different types of receptors, those located postsynaptically on the soma or dendrites of a neighboring cell and those found presynaptically on GABAergic and other neurotransmitter terminals. From biochemical studies it appears that the GABA receptor may be composed of at least three distinct interacting components. One of these, the recognition site, may exist in two conformations, with one preferring agonists and the other having a higher affinity for antagonists. Ion channels may be considered a second component, with some of these regulating the passage of chloride ion, whereas others may be associated with calcium transport. The third major element of GABA receptors appears to be a benzodiazepine recognition site, although only a certain population of GABA receptors may be endowed with this property. In addition to these, the GABA receptor complex appears to contain substances that modulate the recognition site by influencing the availability of higher affinity binding proteins. It would appear therefore that changes affecting any one of these constituents can influence the characteristics of the others. While increasing the complexity of the system, this arrangement makes for a

  2. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?

    PubMed Central

    Borsook, David; Hargreaves, Richard; Becerra, Lino

    2011-01-01

    Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857

  3. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  4. Biocompatability of carbon nanotubes with stem cells to treat CNS injuries

    PubMed Central

    Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J

    2013-01-01

    Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research. PMID:23869255

  5. Expression and function of organic cation and anion transporters (SLC22 family) in the CNS.

    PubMed

    Farthing, Christine A; Sweet, Douglas H

    2014-01-01

    A major function of the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSFB) is to exert selective control over the flux of organic cations and anions into and out of the CNS compartment. These barriers are dynamic tissues that accomplish this task by expressing dozens of transporter proteins representing numerous transporter families. One such family, belonging to the Solute Carrier (SLC) superfamily, is the organic cation/anion/zwitterion (SLC22) family of transporters, which includes the organic cation transporters (OCTs/OCTNs) and organic anion transporters (OATs). SLC22 transporters interact with a broad range of compounds that include drugs of abuse, environmental toxins/toxicants, opioid analgesics, antidepressant and anxiolytic agents and neurotransmitters and their metabolites. Defining the transport mechanisms controlling the CNS penetration, disposition and clearance of such compounds is fundamental to advancing our understanding of the underlying mechanisms that regulate CNS homeostasis and impact neuronal health. Such information might help direct efforts to improve the efficacy and clinical outcomes of current and future therapeutic agents used in the treatment of CNS disorders. This review focuses on highlighting the identification of the SLC22 transporter family, current knowledge of OCT and OAT expression within the CNS (including brain capillaries, choroid plexus and brain regions relevant to monoaminergic neuronal signaling), and recent data regarding behavioral changes related to mood and anxiety disorders and altered responses to stimulants and antidepressants in SLC22 loss of functions models (knockout/knockdown). In vitro and in vivo evidence of SLC22 localization and transport characteristics within the CNS compartment are summarized.

  6. Functional neurogenesis in the adult hippocampus

    NASA Astrophysics Data System (ADS)

    van Praag, Henriette; Schinder, Alejandro F.; Christie, Brian R.; Toni, Nicolas; Palmer, Theo D.; Gage, Fred H.

    2002-02-01

    There is extensive evidence indicating that new neurons are generated in the dentate gyrus of the adult mammalian hippocampus, a region of the brain that is important for learning and memory. However, it is not known whether these new neurons become functional, as the methods used to study adult neurogenesis are limited to fixed tissue. We use here a retroviral vector expressing green fluorescent protein that only labels dividing cells, and that can be visualized in live hippocampal slices. We report that newly generated cells in the adult mouse hippocampus have neuronal morphology and can display passive membrane properties, action potentials and functional synaptic inputs similar to those found in mature dentate granule cells. Our findings demonstrate that newly generated cells mature into functional neurons in the adult mammalian brain.

  7. Central Nervous System Involvement in Adult Acute Lymphoblastic Leukemia: Diagnostic Tools, Prophylaxis, and Therapy

    PubMed Central

    Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Sconocchia, Giuseppe; Cefalo, Mariagiovanna; De Santis, Giovanna; Di Veroli, Ambra; Ditto, Concetta; Nasso, Daniela; Postorino, Massimiliano; Refrigeri, Marco; Attrotto, Cristina; Del Poeta, Giovanni; Lo-Coco, Francesco; Amadori, Sergio; Venditti, Adriano

    2014-01-01

    In adult patients with acute lymphoblastic leukemia (ALL), Central Nervous System (CNS) involvement is associated with a very poor prognosis. The diagnostic assessment of this condition relies on the use of neuroradiology, conventional cytology (CC) and flow cytometry (FCM). Among these approaches, which is the gold standard it is still a matter of debate. Neuroradiology and CC have a limited sensitivity with a higher rate of false negative results. FCM demonstrated a superior sensitivity over CC, particularly when low levels of CNS infiltrating cells are present. Although prospective studies of a large series of patients are still awaited, a positive finding by FCM appears to anticipate an adverse outcome even if CC shows no infiltration. Current strategies for adult ALL CNS-directed prophylaxis or therapy involve systemic and intrathecal chemotherapy and radiation therapy. An early and frequent intrathecal injection of cytostatic combined with systemic chemotherapy is the most effective strategy to reduce the frequency of CNS involvement. In patients with CNS overt ALL, at diagnosis or upon relapse, allogeneic hematopoietic stem cell transplantation might be considered. This review discusses risk factors, diagnostic techniques for identification of CNS infiltration and modalities of prophylaxis and therapy to manage it. PMID:25408861

  8. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study

    PubMed Central

    Dittrich, Sabine; Rattanavong, Sayaphet; Lee, Sue J; Panyanivong, Phonepasith; Craig, Scott B; Tulsiani, Suhella M; Blacksell, Stuart D; Dance, David A B; Dubot-Pérès, Audrey; Sengduangphachanh, Amphone; Phoumin, Phonelavanh; Paris, Daniel H; Newton, Paul N

    2015-01-01

    Summary Background Scrub typhus (caused by Orientia tsutsugamushi), murine typhus (caused by Rickettsia typhi), and leptospirosis are common causes of febrile illness in Asia; meningitis and meningoencephalitis are severe complications. However, scarce data exist for the burden of these pathogens in patients with CNS disease in endemic countries. Laos is representative of vast economically poor rural areas in Asia with little medical information to guide public health policy. We assessed whether these pathogens are important causes of CNS infections in Laos. Methods Between Jan 10, 2003, and Nov 25, 2011, we enrolled 1112 consecutive patients of all ages admitted with CNS symptoms or signs requiring a lumbar puncture at Mahosot Hospital, Vientiane, Laos. Microbiological examinations (culture, PCR, and serology) targeted so-called conventional bacterial infections (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, S suis) and O tsutsugamushi, Rickettsia typhi/Rickettsia spp, and Leptospira spp infections in blood or cerebrospinal fluid (CSF). We analysed and compared causes and clinical and CSF characteristics between patient groups. Findings 1051 (95%) of 1112 patients who presented had CSF available for analysis, of whom 254 (24%) had a CNS infection attributable to a bacterial or fungal pathogen. 90 (35%) of these 254 infections were caused by O tsutsugamushi, R typhi/Rickettsia spp, or Leptospira spp. These pathogens were significantly more frequent than conventional bacterial infections (90/1051 [9%] vs 42/1051 [4%]; p<0·0001) by use of conservative diagnostic definitions. CNS infections had a high mortality (236/876 [27%]), with 18% (13/71) for R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp combined, and 33% (13/39) for conventional bacterial infections (p=0·076). Interpretation Our data suggest that R typhi/Rickettsia spp, O tsutsugamushi, and Leptospira spp infections are important causes of CNS infections in Laos

  9. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery

    PubMed Central

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V.

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  10. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery. PMID:25729356

  11. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases

    PubMed Central

    Hocquemiller, Michaël; Giersch, Laura; Audrain, Mickael; Parker, Samantha; Cartier, Nathalie

    2016-01-01

    Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery. PMID:27267688

  12. A coupled cluster study of the structures, spectroscopic properties, and isomerization path of NCS - and CNS -

    NASA Astrophysics Data System (ADS)

    Pak, Youngshang; Woods, R. Claude; Peterson, Kirk A.

    1995-12-01

    Three-dimensional near-equilibrium potential energy surfaces and dipole moment functions have been calculated for the X 1Σ+ ground states of NCS- and CNS-, using the coupled cluster method with single and double substitutions augmented by a perturbative estimate of triple excitations [CCSD(T)] with a set of 154 contracted Gaussian-type orbitals. The corresponding equilibrium bond lengths at their linear geometries are re(NC)=1.1788 Å and re(CS)=1.6737 Å for NCS-, and re(CN)=1.1805 Å and re(NS)=1.6874 Å for CNS-. The predicted equilibrium rotational constants Be of NCS- and CNS- are 5918.2 and 6282.7 MHz, respectively. The former agrees very well with the known experimental value (5919.0 MHz). Full three-dimensional variational calculations have also been carried out using the CCSD(T) potential energy and dipole moment functions to determine the rovibrational energy levels and dipole moment matrix elements for both NCS- and CNS-. The corresponding fundamental band origins (cm-1) ν1, ν2, and ν3 and their absolute intensities (km/mol) at the CCSD(T) level are 2060.9/306.1, 451.5/2.2, and 707.5/12.8, respectively, for NCS- and 2011.4/6.6, 343.7/2.3, and 624.9/0.2 for CNS-. The calculated ν1 (CN stretching) value for NCS- is in very good agreement with the experimental result, 2065.9 cm-1. The calculated dipole moments of NCS- and CNS- in their ground vibrational states are 1.427 and 1.347 D, respectively. The transition state geometry (saddle point) for the isomerization of NCS-→CNS- is predicted at the CCSD(T) level to be r(NC)=1.2044 Å, R(CS)=1.9411 Å and θ(∠NCS)=86.8°. Its calculated energy is 62.6 and 26.5 kcal/mol above the minima of NCS- and CNS-, respectively, including zero-point energy corrections. The structure of the NCS radical was also optimized at the same level of theory, yielding ion to neutral bond length shifts in excellent agreement with those derived from recent photoelectron spectroscopy experiments.

  13. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.

    PubMed

    Stewart, Adam Michael; Gerlai, Robert; Kalueff, Allan V

    2015-01-01

    The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.

  14. A history of the AANS/CNS Section on Tumors Biennial Satellite Symposium.

    PubMed

    Lang, Frederick F; Barker, Fred G

    2014-09-01

    The Biennial Satellite Tumor Symposium is the flagship meeting of the AANS/CNS Section on Tumors. The year 2013 marked the 10th Tumor Section Biennial Satellite Tumor Symposium, a significant milestone warranting retrospection on the origin and development of the Satellite Tumor Symposium. This article provides a brief history of the Section on Tumors Biennial Satellite Tumor Symposium, including insights into the structure and evolution of the meeting, and recognizes some of the members of the AANS/CNS Section on Tumors who have contributed to Satellite meetings over the years.

  15. Verruculogen: a new substance for decreasing of GABA levels in CNS.

    PubMed

    Hotujac, L; Muftić, R H; Filipović, N

    1976-01-01

    In our previous work we examined the mechanism of action of the new tremorogenic substance verruculogen isolated by Cole and coworkers. Examining the effect of various substances with known mechanisms of action on verruculogen-induced tremor, we concluded that this tremor was probably related to decrease of GABA levels in CNS. In order to further define the mechanisms of action of verruculogen, we determined brain GABA levels in animals in which tremor was produced by verruculogen administration. Verruculogen administration produced a decrease in GABA levels in mouse CNS. This finding substantiates our earlier suggestion that verruculogen-induced tremor is mediated by a loss of inhibitory GABA function. PMID:935244

  16. Assessment of cognitive performance using CNS vital signs after electroconvulsive treatment of schizophrenia.

    PubMed

    Wysokiński, Adam; Dzienniak, Małgorzata; Kłoszewska, Iwona

    2014-03-01

    Little is known how electroconvulsive therapy (ECT) affects cognitive functions in subjects with schizophrenia. Assessment of cognitive functions in subjects with schizophrenia treated with ECT was performed using CNS Vital Signs computerized battery of tests. Thirteen patients treated with ECT plus antipsychotics were assessed before and after 12 to 15 bilateral ECT sessions. We did not find any important changes between pre-ECT and post-ECT cognitive performance. We also found that CNS Vital Signs is a useful computerized battery test for assessing cognitive functions of subjects treated with ECT.

  17. Problems of allometric scaling analysis: examples from mammalian reproductive biology.

    PubMed

    Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K

    2005-05-01

    Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best

  18. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    PubMed

    Watzlawik, Jens O; Kahoud, Robert J; O'Toole, Ryan J; White, Katherine A M; Ogden, Alyssa R; Painter, Meghan M; Wootla, Bharath; Papke, Louisa M; Denic, Aleksandar; Weimer, Jill M; Carey, William A; Rodriguez, Moses

    2015-01-01

    Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by

  19. Abbreviated Exposure to Hypoxia Is Sufficient to Induce CNS Dysmyelination, Modulate Spinal Motor Neuron Composition, and Impair Motor Development in Neonatal Mice

    PubMed Central

    Watzlawik, Jens O.; Kahoud, Robert J.; O’Toole, Ryan J.; White, Katherine A. M.; Ogden, Alyssa R.; Painter, Meghan M.; Wootla, Bharath; Papke, Louisa M.; Denic, Aleksandar; Weimer, Jill M.; Carey, William A.; Rodriguez, Moses

    2015-01-01

    Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by

  20. Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders.

    PubMed

    Chong, Zhao Zhong; Shang, Yan Chen; Zhang, Lijie; Wang, Shaohui; Maiese, Kenneth

    2010-01-01

    The mammalian target of rapamycin (mTOR) and its associated cell signaling pathways have garnered significant attention for their roles in cell biology and oncology. Interestingly, the explosion of information in this field has linked mTOR to neurological diseases with promising initial studies. mTOR, a 289 kDa serine/threonine protein kinase, plays an important role in cell growth and proliferation and is activated through phosphorylation in response to growth factors, mitogens, and hormones. Growth factors, amino acids, cellular nutrients, and oxygen deficiency can down-regulate mTOR activity. The function of mTOR signaling is mediated primarily through two mTOR complexes: mTORC1 and mTORC2. mTORC1 initiates cap-dependent protein translation, a rate-limiting step of protein synthesis, through the phosphorylation of the targets eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and p70 ribosomal S6 kinase (p70S6K). In contrast, mTORC2 regulates development of the cytoskeleton and also controls cell survival. Although closely tied to tumorigenesis, mTOR and the downstream signaling pathways are significantly involved in the central nervous system (CNS) with synaptic plasticity, memory retention, neuroendocrine regulation associated with food intake and puberty, and modulation of neuronal repair following injury. The signaling pathways of mTOR also are believed to be a significant component in a number of neurological diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, tuberous sclerosis, neurofibromatosis, fragile X syndrome, epilepsy, traumatic brain injury, and ischemic stroke. Here we describe the role of mTOR in the CNS and illustrate the potential for new strategies directed against neurological disorders.

  1. DNA replication and transcription in mammalian mitochondria.

    PubMed

    Falkenberg, Maria; Larsson, Nils-Göran; Gustafsson, Claes M

    2007-01-01

    The mitochondrion was originally a free-living prokaryotic organism, which explains the presence of a compact mammalian mitochondrial DNA (mtDNA) in contemporary mammalian cells. The genome encodes for key subunits of the electron transport chain and RNA components needed for mitochondrial translation. Nuclear genes encode the enzyme systems responsible for mtDNA replication and transcription. Several of the key components of these systems are related to proteins replicating and transcribing DNA in bacteriophages. This observation has led to the proposition that some genes required for DNA replication and transcription were acquired together from a phage early in the evolution of the eukaryotic cell, already at the time of the mitochondrial endosymbiosis. Recent years have seen a rapid development in our molecular understanding of these machineries, but many aspects still remain unknown.

  2. Synthesis of phycocyanobilin in mammalian cells.

    PubMed

    Müller, Konrad; Engesser, Raphael; Timmer, Jens; Nagy, Ferenc; Zurbriggen, Matias D; Weber, Wilfried

    2013-10-11

    The chromophore 3-Z phycocyanobilin (PCB, (2R,3Z)-8,12-bis(2-carboxyethyl)-18-ethyl-3-ethylidene-2,7,13,17-tetramethyl-2,3-dihydrobilin-1,19(21H,24H)-dione) mediates red and far-red light perception in natural and synthetic biological systems. Here we describe a PCB synthesis strategy in mammalian cells. We optimize the production by co-localizing the biocatalysts to the substrate source, by coordinating the availability of the biocatalysts and by reducing the degradation of the reaction product. We show that the resulting PCB levels of 2 μM are sufficient to sustain the functionality of red light-responsive optogenetic tools suitable for the light-inducible control of gene expression in mammalian cells. PMID:23963496

  3. Freezing mammalian cells for production of biopharmaceuticals.

    PubMed

    Seth, Gargi

    2012-03-01

    Cryopreservation techniques utilize very low temperatures to preserve the structure and function of living cells. Various strategies have been developed for freezing mammalian cells of biological and medical significance. This paper highlights the importance and application of cryopreservation for recombinant mammalian cells used in the biopharmaceutical industry to produce high-value protein therapeutics. It is a primer that aims to give insight into the basic principles of cell freezing for the benefit of biopharmaceutical researchers with limited or no prior experience in cryobiology. For the more familiar researchers, key cell banking parameters such as the cell density and hold conditions have been reviewed to possibly help optimize their specific cell freezing protocols. It is important to understand the mechanisms underlying the freezing of complex and sensitive cellular entities as we implement best practices around the techniques and strategies used for cryopreservation. PMID:22226818

  4. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  5. Mammalian Sirtuins: Biological Insights and Disease Relevance

    PubMed Central

    Haigis, Marcia C.; Sinclair, David A.

    2010-01-01

    Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years. PMID:20078221

  6. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  7. Cell-surface remodelling during mammalian erythropoiesis.

    PubMed

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  8. Mammalian Evolution May not Be Strictly Bifurcating

    PubMed Central

    Hallström, Björn M.; Janke, Axel

    2010-01-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845

  9. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  10. Mammalian evolution may not be strictly bifurcating.

    PubMed

    Hallström, Björn M; Janke, Axel

    2010-12-01

    The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.

  11. Pediatric acquired CNS demyelinating syndromes: Features associated with multiple sclerosis.

    PubMed

    Hintzen, Rogier Q; Dale, Russell C; Neuteboom, Rinze F; Mar, Soe; Banwell, Brenda

    2016-08-30

    Approximately one-third of children with an acquired demyelinating syndrome (ADS) will be diagnosed with multiple sclerosis (MS), either at onset according to the 2010 McDonald criteria, or on the basis of clinical or MRI evidence of relapsing disease, in the majority of patients within 2-4 years. ADS in adolescents, female patients, and patients with polyfocal deficits is associated with the highest likelihood of MS, while children with acute disseminated encephalomyelitis, those with documented preceding infection, and ADS presentation in young children more commonly portends a monophasic outcome. While pediatric MS associates with similar genetic risk alleles as have been documented in adult-onset MS, such associations are not diagnostically valuable at the individual level. The presence of antibodies directed against aquaporin-4 strongly supports a diagnosis of neuromyelitis optica, and should be assayed in children manifesting with severe optic neuritis, longitudinally extensive myelitis, or brainstem/hypothalamic syndromes. Further research will determine whether other antibody signatures are indicative of relapsing demyelination distinct from MS. PMID:27572864

  12. [Opioid receptors of the CNS: function, structure and distribution].

    PubMed

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  13. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    SciTech Connect

    Reiner, O. |; Gal-Gerber, O.; Sapir, T.

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  14. [Telomere Recombination in Normal Mammalian Cells].

    PubMed

    Zhdanova, N S; Rubtsov, N B

    2016-01-01

    Two mechanisms of telomere length maintenance are known to date. The first includes the use of a special enzymatic telomerase complex to solve the problems that arise during the replication of linear DNA in a normal diploid and part of tumor cells. Alternative lengthening of telomeres (ALT), which is based on the homologous recombination of telomere DNA, represents the second mechanism. Until recently, ALT was assumed to be expressed only in 15-20% of tumors lacking active telomerase and, together with telomerase reactivation represented one of two possibilities to overcome the replicative senescence observed in somatic mammalian cells due to aging or during cell culturing in vitro. Previously described sporadic cases of combinations of the two mechanisms of telomere length maintenance in several cell lines in vitro were attributed to the experimental design rather than to a real biological phenomenon, since active cellular division without active telomerase was considered to be the "gold standard" of ALT. The present review describes the morphological and functional reorganizations of mammalian telomeres observed with ALT activation, as well as recently observed,and well-documented cases of combinations between ALT-like and telomerase-dependent mechanisms in mammalian cells. The possible role of telomere recombination in telomerase-dependent cells is discussed.

  15. Inkjet printing of viable mammalian cells.

    PubMed

    Xu, Tao; Jin, Joyce; Gregory, Cassie; Hickman, J J James J; Boland, Thomas

    2005-01-01

    The purpose of this study was to explore the use of a commercial thermal printer to deposit Chinese Hamster Ovary (CHO) and embryonic motoneuron cells into pre-defined patterns. These experiments were undertaken to verify the biocompatibility of thermal inkjet printing of mammalian cells and the ability to assemble them into viable constructs. Using a modified Hewlett Packard (HP) 550C computer printer and an HP 51626a ink cartridge, CHO cells and rat embryonic motoneurons were suspended separately in a concentrated phosphate buffered saline solution (3 x). The cells were subsequently printed as a kind of "ink" onto several "bio-papers" made from soy agar and collagen gel. The appearance of the CHO cells and motoneurons on the bio-papers indicated an healthy cell morphology. Furthermore, the analyses of the CHO cell viability showed that less than 8% of the cells were lysed during printing. These data indicate that mammalian cells can be effectively delivered by a modified thermal inkjet printer onto biological substrates and that they retain their ability to function. The computer-aided inkjet printing of viable mammalian