Science.gov

Sample records for adult mammalian muscle

  1. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  2. Reciprocal regulation of acetylcholinesterase and butyrylcholinesterase in mammalian skeletal muscle.

    PubMed

    Berman, H A; Decker, M M; Jo, S

    1987-03-01

    Developmental regulation, from the fetal period to 11 months of age, and the influence of denervation on the appearance and disappearance of the molecular forms of acetylcholinesterase (AchE) and butyrylcholinesterase (BuchE) in rat skeletal muscle were examined. The enzyme forms were extracted from anterior tibialis in 0.01 M sodium phosphate buffer, pH 7.0, containing 1 N NaCl, 0.01 M EGTA, 1% Triton X-100, and a cocktail of antiproteases, and analyzed by velocity sedimentation on 5-20% linear sucrose gradients. Three principal forms, denoted by sedimentation coefficients of 4, 10.8, and 16 S, were observed in muscle from all age groups. The amounts of each of the molecular forms of AchE and BuchE in skeletal muscle exhibited distinct and reciprocal patterns of appearance and disappearance during pre- and postnatal development. In tissue derived from animals less than 2 weeks of age, BuchE represented the predominant component of activity in the 4 S form, was present equally with AchE in the 10.8 S form, and was subordinate to AchE in the 16 S form. Between 1 and 2 weeks of age a progressive increase in AchE activities coincident with a reduction in BuchE activities resulted in inversion in the amounts of the two enzymes present in adult muscle. Denervation of muscle caused a dramatic reduction in the presence of AchE molecular forms with no discernable influence on the presence of BuchE molecular forms. These results indicate that biosynthesis of BuchE is strictly regulated in a reciprocal manner with that of AchE, and that BuchE metabolism is independent of the state of muscle innervation. Increased synthesis of AchE and either reduced synthesis or increased degradation of BuchE can account for the reciprocal regulation of these enzymes. These characteristics of mammalian muscle contrast sharply with characteristics deduced for avian tissue (Silman et al. (1979) Nature (London) 280, 160-162). The innervation-independent metabolism of BuchE and the diverse modes

  3. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  4. Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system.

    PubMed

    DiFranco, Marino; Neco, Patricia; Capote, Joana; Meera, Pratap; Vergara, Julio L

    2006-05-01

    The production of mammalian proteins in sufficient quantity and quality for structural and functional studies is a major challenge in biology. Intrinsic limitations of yeast and bacterial expression systems preclude their use for the synthesis of a significant number of mammalian proteins. This creates the necessity of well-identified expression systems based on mammalian cells. In this paper, we demonstrate that adult mammalian skeletal muscle, transfected in vivo by electroporation with DNA plasmids, is an excellent heterologous mammalian protein expression system. By using the fluorescent protein EGFP as a model, it is shown that muscle fibers express, during the course of a few days, large amounts of authentic replicas of transgenic proteins. Yields of approximately 1mg/g of tissue were obtained, comparable to those of other expression systems. The involvement of adult mammalian cells assures an optimal environment for proper protein folding and processing. All these advantages complement a methodology that is universally accessible to biomedical investigators and simple to implement. PMID:16325422

  5. Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle.

    PubMed

    Barclay, C J

    2005-01-01

    The purpose of this study was to use A. V. Hill's equation describing diffusion of O(2) into cylindrical muscles to assess the adequacy of O(2) supply for commonly used isolated preparations of mammalian cardiac and skeletal muscles. The diffusion equation was solved numerically to give the maximum, steady state O(2) diffusion distances (i.e. the distance from the surface of the muscle to the radial location where P(O(2)) is 0) for both resting and contracting muscles and for a range of temperatures. Non-steady state solutions for the rest-to-work transition were also determined to estimate how long contractile activity could be continued before anoxia develops at the muscle centre. The influence on muscle oxygenation of myoglobin-facilitated O(2) diffusion was also assessed. The analysis was performed for typical sized, whole muscles from adult rats and mice, for frog sartorius muscle and for a range of temperatures. Muscle O(2) consumption rates were taken from the literature. The results indicated that (1) diffusive O(2) supply would be adequate to support resting metabolism of soleus and EDL muscles of rat and mouse but may not be adequate to support the transient high resting metabolic rate of papillary muscles shortly after dissection, (2) during steady contractile activity of soleus and EDL muscles, particularly those from the rat, over a reasonable range of duty cycles, adequate O(2) supply could only be ensured if the radii of preparations was substantially smaller than those of whole muscles and (3) for cardiac muscles, diffusive O(2) supply could only support steady-state metabolism at twitch frequencies <1 Hz for whole papillary muscles from rat and <3 Hz for those from mouse. Reducing experimental temperature markedly enhances O(2) supply to skeletal, but not cardiac, muscle. O(2) supply from myoglobin had only minimal effects on oxygenation under typical isolated muscle conditions. PMID:16322911

  6. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles.

    PubMed

    Banks, R W

    2006-06-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g(-1) of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  7. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    SciTech Connect

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  8. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    ERIC Educational Resources Information Center

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  9. Inward rectifier potassium currents in mammalian skeletal muscle fibres.

    PubMed

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-03-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface and the transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K(+)], and could be blocked by Ba(2+) or Rb(+). In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba(2+) (or Rb(+)) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K(+)] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10(-6 ) cm s(-1) and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K(+) depletion from the TTS lumen. Most importantly, aside from allowing an accurate

  10. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  11. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration.

    PubMed

    Nicklas, Sarah; Otto, Anthony; Wu, Xiaoli; Miller, Pamela; Stelzer, Sandra; Wen, Yefei; Kuang, Shihuan; Wrogemann, Klaus; Patel, Ketan; Ding, Hao; Schwamborn, Jens C

    2012-01-01

    Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H. PMID:22299041

  12. Towards regenerating the mammalian heart: challenges in evaluating experimentally induced adult mammalian cardiomyocyte proliferation.

    PubMed

    Zebrowski, David C; Becker, Robert; Engel, Felix B

    2016-05-01

    In recent years, there has been a dramatic increase in research aimed at regenerating the mammalian heart by promoting endogenous cardiomyocyte proliferation. Despite many encouraging successes, it remains unclear if we are any closer to achieving levels of mammalian cardiomyocyte proliferation for regeneration as seen during zebrafish regeneration. Furthermore, current cardiac regenerative approaches do not clarify whether the induced cardiomyocyte proliferation is an epiphenomena or responsible for the observed improvement in cardiac function. Moreover, due to the lack of standardized protocols to determine cardiomyocyte proliferation in vivo, it remains unclear if one mammalian regenerative factor is more effective than another. Here, we discuss current methods to identify and evaluate factors for the induction of cardiomyocyte proliferation and challenges therein. Addressing challenges in evaluating adult cardiomyocyte proliferation will assist in determining 1) which regenerative factors should be pursued in large animal studies; 2) if a particular level of cell cycle regulation presents a better therapeutic target than another (e.g., mitogenic receptors vs. cyclins); and 3) which combinatorial approaches offer the greatest likelihood of success. As more and more regenerative studies come to pass, progress will require a system that not only can evaluate efficacy in an objective manner but can also consolidate observations in a meaningful way. PMID:26921436

  13. Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus?

    PubMed Central

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as “bottom-up,” where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and “top-down,” where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions. PMID:24255101

  14. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation

    PubMed Central

    Zhang, Yichi; Aguilar, Oscar A.

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only

  15. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation.

    PubMed

    Zhang, Yichi; Aguilar, Oscar A; Storey, Kenneth B

    2016-01-01

    Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser(319) and Thr(24), as well as p-Foxo3a Thr(32) decreased by at least 45% throughout torpor. MyoG was

  16. Extradenticle and homothorax control adult muscle fiber identity in Drosophila.

    PubMed

    Bryantsev, Anton L; Duong, Sandy; Brunetti, Tonya M; Chechenova, Maria B; Lovato, TyAnna L; Nelson, Cloyce; Shaw, Elizabeth; Uhl, Juli D; Gebelein, Brian; Cripps, Richard M

    2012-09-11

    Here we identify a key role for the homeodomain proteins Extradenticle (Exd) and Homothorax (Hth) in the specification of muscle fiber fate in Drosophila. exd and hth are expressed in the fibrillar indirect flight muscles but not in tubular jump muscles, and manipulating exd or hth expression converts one muscle type into the other. In the flight muscles, exd and hth are genetically upstream of another muscle identity gene, salm, and are direct transcriptional regulators of the signature flight muscle structural gene, Actin88F. Exd and Hth also impact muscle identity in other somatic muscles of the body by cooperating with Hox factors. Because mammalian orthologs of exd and hth also contribute to muscle gene regulation, our studies suggest that an evolutionarily conserved genetic pathway determines muscle fiber differentiation. PMID:22975331

  17. Over-Expressing Mitofusin-2 in Healthy Mature Mammalian Skeletal Muscle Does Not Alter Mitochondrial Bioenergetics

    PubMed Central

    Lally, James S. V.; Herbst, Eric A. F.; Matravadia, Sarthak; Maher, Amy C.; Perry, Christopher G. R.; Ventura-Clapier, Renée; Holloway, Graham P.

    2013-01-01

    The role of mitofusin-2 (MFN-2) in regulating mitochondrial dynamics has been well-characterized in lower order eukaryotic cell lines through the complete ablation of MFN-2 protein. However, to support the contractile function of mature skeletal muscle, the subcellular architecture and constituent proteins of this tissue differ substantially from simpler cellular organisms. Such differences may also impact the role of MFN-2 in mature mammalian muscle, and it is unclear if minor fluctuations in MFN-2, as observed in response to physiological perturbations, has a functional consequence. Therefore, we have transiently transfected MFN-2 cDNA into rat tibialis anterior muscle to determine the effect of physiolgically relevant increases in MFN-2 protein on mitochondrial bioenergetics. Permeabilized muscle fibres generated from muscle following MFN-2-transfection were used for functional assessments of mitochondrial bioenergetics. In addition, we have further established a novel method for selecting fibre bundles that are positively transfected, and using this approach transient transfection increased MFN-2 protein ∼2.3 fold in selected muscle fibres. However, this did not alter maximal rates of oxygen consumption or the sensitivity for ADP-stimulated respiration. In addition, MFN-2 over-expression did not alter rates of H2O2 emission. Altogether, and contrary to evidence from lower order cell lines, our results indicate that over-expressing MFN-2 in healthy muscle does not influence mitochondrial bioenergetics in mature mammalian skeletal muscle. PMID:23383258

  18. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart

    PubMed Central

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D.; van den Hoff, Maurice J. B.; Butte, Manish J.; Yang, Phillip C.; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2016-01-01

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans. PMID:26375005

  19. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans. PMID:26375005

  20. Skeletal muscle mass and composition during mammalian hibernation.

    PubMed

    Cotton, Clark J

    2016-01-01

    Hibernation is characterized by prolonged periods of inactivity with concomitantly low nutrient intake, conditions that would typically result in muscle atrophy combined with a loss of oxidative fibers. Yet, hibernators consistently emerge from winter with very little atrophy, frequently accompanied by a slight shift in fiber ratios to more oxidative fiber types. Preservation of muscle morphology is combined with down-regulation of glycolytic pathways and increased reliance on lipid metabolism instead. Furthermore, while rates of protein synthesis are reduced during hibernation, balance is maintained by correspondingly low rates of protein degradation. Proposed mechanisms include a number of signaling pathways and transcription factors that lead to increased oxidative fiber expression, enhanced protein synthesis and reduced protein degradation, ultimately resulting in minimal loss of skeletal muscle protein and oxidative capacity. The functional significance of these outcomes is maintenance of skeletal muscle strength and fatigue resistance, which enables hibernating animals to resume active behaviors such as predator avoidance, foraging and mating immediately following terminal arousal in the spring. PMID:26792334

  1. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    PubMed

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-10-01

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization. PMID:26384869

  2. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    PubMed Central

    Baum, Jamie I.; Wolfe, Robert R.

    2015-01-01

    Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1). Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA) for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  3. Motor unit regulation of mammalian pharyngeal dilator muscle activity.

    PubMed Central

    van Lunteren, E; Dick, T E

    1989-01-01

    The present study examined the cellular regulation of one of the pharyngeal dilator muscles, the geniohyoid, by assessing its motor unit (MU) behavior in anesthetized cats. During spontaneous breathing, MU that (a) were active during inspiration only (I-MU) and (b) were active during both inspiration and expiration (I/E-MU) were identified. I-MU had a later inspiratory onset time and a shorter duration of inspiratory firing than did I/E-MU (P less than 0.002 and P less than 0.0001, respectively). I-MU were usually quiescent whereas I/E-MU were usually active during the last 20% of inspiration. I/E-MU fired more rapidly (P less than 0.00001) and for relatively longer periods of time (P less than 0.00001) during inspiration than during expiration. End-expiratory airway occlusion (preventing lung expansion during inspiration) augmented the inspiratory activity of both I-MU and I/E-MU. Conversely, end-expiratory airway occlusion reduced the absolute and relative firing durations (P less than 0.002 and P less than 0.00002, respectively) and the firing frequency (P less than 0.001) of I/E-MU activity during expiration. These results indicate that (a) the complex pattern of pharyngeal dilator muscle activity is due to the integrated activity of a heterogeneous group of MU, (b) changes in the degree to which pharyngeal dilator muscles are active result from combinations of MU recruitment/decruitment and modulations of the frequency and duration of MU firing, and (c) gating of lung-volume afferent information occurs during the respiratory cycle. PMID:2760202

  4. Preliminary evidence for a postsynaptic action of beta-bungarotoxin in mammalian skeletal muscle

    NASA Technical Reports Server (NTRS)

    Storella, R. J.; Schouchoff, A. L.; Fujii, M.; Hill, J.; Fletcher, J. E.; Jiang, M. S.; Smith, L. A.

    1992-01-01

    Two hours after treatment with beta-bungarotoxin (0.34-0.4 microM), when there was complete neuromuscular block, the peak contracture response to 50 microM succinylcholine was significantly reduced by about 35% in the mouse phrenic nerve-diaphragm preparation. Additionally, significant phospholipase A2 activity was detected on primary cell cultures from skeletal muscle which were incubated for 2 hr with concentrations of beta-bungarotoxin greater than or equal to 0.1 microM. Thus, beta-bungarotoxin appears to have pharmacologically and biochemically detectable postsynaptic actions in mammalian muscle systems.

  5. Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle.

    PubMed

    Lai, F A; Liu, Q Y; Xu, L; el-Hashem, A; Kramarcy, N R; Sealock, R; Meissner, G

    1992-08-01

    The ryanodine receptor (RyR)-Ca2+ release channels of frog skeletal muscle have been purified as 30S protein complexes comprised of two high molecular weight polypeptides. The upper and lower bands of the frog doublet comigrated on sodium dodecyl sulfate polyacylamide gels with the mammalian skeletal and cardiac RyR polypeptides, respectively. Immunoblot analysis showed that a polyclonal antiserum to the rat skeletal RyR preferentially cross-reacted with the upper band, whereas monoclonal antibodies to the canine cardiac RyR preferentially cross-reacted with the lower band of the frog receptor doublet. Immunoprecipitation studies indicated the presence of two homooligomer 30S RyR complexes comprised of either the lower or upper polypeptide band of the frog doublet, and immunocytochemical staining revealed their colocalization in frog gastrocnemius muscle. After planar lipid bilayer reconstitution of the 30S frog RyR, single-channel currents were observed that exhibited a Na+ and Ca2+ conductance and pharmacological characteristics similar to those of the mammalian skeletal and cardiac Ca2+ release channels. These results suggest that amphibian skeletal muscle expresses two distinct RyR isoforms that share epitopes in common with the mammalian skeletal or cardiac RyR. PMID:1325114

  6. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  7. The Drosophila Z-disc Protein Z(210) Is an Adult Muscle Isoform of Zasp52, Which Is Required for Normal Myofibril Organization in Indirect Flight Muscles*

    PubMed Central

    Chechenova, Maria B.; Bryantsev, Anton L.; Cripps, Richard M.

    2013-01-01

    The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology. PMID:23271733

  8. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism

    PubMed Central

    Moyer, Adam L.; Wagner, Kathryn R.

    2015-01-01

    Background The transforming growth factor β (TGF-β) signaling pathways modulate skeletal muscle growth, regeneration, and cellular metabolism. Several recent gene expression studies have shown that inhibition of myostatin and TGF-β1 signaling consistently leads to a significant reduction in expression of Mss51, also named Zmynd17. The function of mammalian Mss51 is unknown although a putative homolog in yeast is a mitochondrial translational activator. Objective The objective of this work was to characterize mammalian Mss51. Methods Quantitative RT-PCR and immunoblot of subcellular fractionation were used to determine expression patterns and localization of Mss51. The CRISPR/Cas9 system was used to reduce expression of Mss51 in C2C12 myoblasts and the function of Mss51 was evaluated in assays of proliferation, differentiation and cellular metabolism. Results Mss51 was predominantly expressed in skeletal muscle and in those muscles dominated by fast-twitch fibers. In vitro, its expression was upregulated upon differentiation of C2C12 myoblasts into myotubes. Expression of Mss51 was modulated in response to altered TGF-β family signaling. In human muscle, Mss51 localized to the mitochondria. Its genetic disruption resulted in increased levels of cellular ATP, β-oxidation, glycolysis, and oxidative phosphorylation. Conclusions Mss51 is a novel, skeletal muscle-specific gene and a key target of myostatin and TGF-β1 signaling. Unlike myostatin, TGF-β1 and IGF-1, Mss51 does not regulate myoblast proliferation or differentiation. Rather, Mss51 appears to be one of the effectors of these growth factors on metabolic processes including fatty acid oxidation, glycolysis and oxidative phosphorylation. PMID:26634192

  9. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  10. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  11. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type.

    PubMed Central

    McFarland, E W; Kushmerick, M J; Moerland, T S

    1994-01-01

    We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics. PMID:7858128

  12. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles

    PubMed Central

    Hirasawa, Tatsuya; Kuratani, Shigeru

    2013-01-01

    The evolutionary origin of the diaphragm remains unclear, due to the lack of a comparable structure in other extant taxa. However, recent researches into the developmental mechanism of this structure have yielded new insights into its origin. Here we summarize current understanding regarding the development of the diaphragm, and present a possible scenario for the evolutionary acquisition of this uniquely mammalian structure. Recent developmental analyses indicate that the diaphragm and forelimb muscles are derived from a shared cell population during embryonic development. Therefore, the embryonic positions of forelimb muscle progenitors, which correspond to the position of the brachial plexus, likely played an important role in the evolution of the diaphragm. We surveyed the literature to reexamine the position of the brachial plexus among living amniotes and confirmed that the cervico-thoracic transition in ribs reflects the brachial plexus position. Using this osteological correlate, we concluded that the anterior borders of the brachial plexuses in the stem synapsids were positioned at the level of the fourth spinal nerve, suggesting that the forelimb buds were laid in close proximity of the infrahyoid muscles. The topology of the phrenic and suprascapular nerves of mammals is similar to that of subscapular and supracoracoid nerves, respectively, of the other amniotes, suggesting that the diaphragm evolved from a muscle positioned medial to the pectoral girdle (cf. subscapular muscle). We hypothesize that the diaphragm was acquired in two steps: first, forelimb muscle cells were incorporated into tissues to form a primitive diaphragm in the stem synapsid grade, and second, the diaphragm in cynodonts became entrapped in the region controlled by pulmonary development. PMID:23448284

  13. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  14. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  15. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles.

    PubMed

    Tomas, J; Santafé, M; Fenoll, R; Mayayo, E; Batlle, J; Lanuza, A; Piera, V

    1992-01-01

    A silver impregnation method and a morphometric approach were used to define differences existing in the motor nerve terminal branching pattern between a fast-twitch muscle (extensor digitorum longus) and a slow-twitch one (soleus) of the normal adult rat. Because no single measure can describe precisely all geometrical properties (ie both topology and metrics) of the nerve terminals, we evaluated morphologic parameters defining length and angular characteristics in the different terminal segments classified according to their centrifugal order. The main results indicate that the distal free-end segments in the extensor digitorum longus muscle are shorter and less divergent than in the soleus nerve terminals. The endings in the two muscles have different fractal dimensions. Findings are discussed in the context of the hypothetical mechanisms governing motor nerve terminal size and complexity. PMID:1628112

  16. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  17. Muscle dissatisfaction in young adult men

    PubMed Central

    2006-01-01

    Backround Appearance concerns are of increasing importance in young men's lives. We investigated whether muscle dissatisfaction is associated with psychological symptoms, dietary supplement or anabolic steroid use, or physical activity in young men. Methods As a part of a questionnaire assessment of health-related behaviors in the population-based FinnTwin16 study, we assessed factors associated with muscle dissatisfaction in 1245 men aged 22–27 using logistic regression models. Results Of men, 30% experienced high muscle dissatisfaction, while 12% used supplements/steroids. Of highly muscle-dissatisfied men, 21.5% used supplements/steroids. Mean body mass index, waist circumference, or leisure aerobic activity index did not differ between individuals with high/low muscle dissatisfaction. Muscle dissatisfaction was significantly associated with a psychological and psychosomatic problems, alcohol and drug use, lower height satisfaction, sedentary lifestyle, poor subjective physical fitness, and lower life satisfaction. Conclusion Muscle dissatisfaction and supplement/steroid use are relatively common, and are associated with psychological distress and markers of sedentary lifestyle. PMID:16594989

  18. MICROARRAY GENE EXPRESSION ANALYSIS IN ATROPHYING RAINBOW TROUT MUSCLE: AN UNIQUE NON-MAMMALIAN MUSCLE DEGRADATION MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle atrophy is a physiological response to diverse physiological and pathological conditions that trigger muscle deterioration through distinct cellular stimuli. Despite different physiological signals, the resulting biochemical changes in atrophying muscle share many common cascades. Muscle dete...

  19. Differential effects of chronic overload-induced muscle hypertrophy on mTOR and MAPK signaling pathways in adult and aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined activation of the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways in adult (Y; 6 mo old; n = 16) and aged (O; 30 mo old; n = 16) male rats (Fischer 344 x Brown Norway) subjected to chronic overload-induced muscle hypertrophy of the plan...

  20. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle.

    PubMed Central

    Annex, B H; Williams, R S

    1990-01-01

    Mitochondrial DNA (mt DNA) in cells of vertebrate organisms can assume an unusual triplex DNA structure known as the displacement loop (D loop). This triplex DNA structure forms when a partially replicated heavy strand of mtDNA (7S mtDNA) remains annealed to the light strand, displacing the native heavy strand in this region. The D-loop region contains the promoters for both heavy- and light-strand transcription as well as the origin of heavy-strand replication. However, the distribution of triplex and duplex forms of mtDNA in relation to respiratory activity of mammalian tissues has not been systematically characterized, and the functional significance of the D-loop structure is unknown. In comparisons of specialized muscle subtypes within the same species and of the same muscle subtype in different species, the relative proportion of D-loop versus duplex forms of mtDNA in striated muscle tissues of several mammalian species demonstrated marked variation, ranging from 1% in glycolytic fast skeletal fibers of the rabbit to 65% in the mouse heart. There was a consistent and direct correlation between the ratio of triplex to duplex forms of mtDNA and the capacity of these tissues for oxidative metabolism. The proportion of D-loop forms likewise correlated directly with mtDNA copy number, mtRNA abundance, and the specific activity of the mtDNA (gamma) polymerase. The D-loop form of mtDNA does not appear to be transcribed at greater efficiency than the duplex form, since the ratio of mtDNA copy number to mtRNA was unrelated to the proportion of triplex mtDNA genomes. However, tissues with a preponderance of D-loop forms tended to express greater levels of cytochrome b mRNA relative to mitochondrial rRNA transcripts, suggesting that the triplex structure may be associated with variations in partial versus full-length transcription of the heavy strand. Images PMID:1700273

  1. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2016-05-01

    Striated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses. PMID:26982616

  2. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  3. Adult stem cells: the therapeutic potential of skeletal muscle.

    PubMed

    Saini, Amarjit; Stewart, Claire E H

    2006-05-01

    Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine. PMID:18220864

  4. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish.

    PubMed

    Saera-Vila, Alfonso; Kish, Phillip E; Kahana, Alon

    2016-09-01

    Fibroblast growth factors (Fgfs) regulate critical biological processes such as embryonic development, tissue homeostasis, wound healing, and tissue regeneration. In zebrafish, Fgf signaling plays an important role in the regeneration of the spinal cord, liver, heart, fin, and photoreceptors, although its exact mechanism of action is not fully understood. Utilizing an adult zebrafish extraocular muscle (EOM) regeneration model, we demonstrate that blocking Fgf receptor function using either a chemical inhibitor (SU5402) or a dominant-negative transgenic construct (dnFGFR1a:EGFP) impairs muscle regeneration. Adult zebrafish EOMs regenerate through a myocyte dedifferentiation process, which involves a muscle-to-mesenchyme transition and cell cycle reentry by differentiated myocytes. Blocking Fgf signaling reduced cell proliferation and active caspase 3 levels in the regenerating muscle with no detectable levels of apoptosis, supporting the hypothesis that Fgf signaling is involved in the early steps of dedifferentiation. Fgf signaling in regenerating myocytes involves the MAPK/ERK pathway: inhibition of MEK activity with U0126 mimicked the phenotype of the Fgf receptor inhibition on both muscle regeneration and cell proliferation, and activated ERK (p-ERK) was detected in injured muscles by immunofluorescence and western blot. Interestingly, following injury, ERK2 expression is specifically induced and activated by phosphorylation, suggesting a key role in muscle regeneration. We conclude that the critical early steps of myocyte dedifferentiation in EOM regeneration are dependent on Fgf signaling. PMID:27267062

  5. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  6. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  7. The head and neck muscles of the serval and tiger: homologies, evolution, and proposal of a mammalian and a veterinary muscle ontology.

    PubMed

    Diogo, Rui; Pastor, Francisco; De Paz, Felix; Potau, Josep M; Bello-Hellegouarch, Gaëlle; Ferrero, Eva M; Fisher, Rebecca E

    2012-12-01

    Here we describe the head and neck muscles of members of the two extant felid subfamilies (Leptailurus serval: Felinae; Panthera tigris: Pantherinae) and compare these muscles with those of other felids, other carnivorans (e.g., domestic dogs), other eutherian mammals (e.g., rats, tree-shrews and modern humans), and noneutherian mammals including monotremes. Another major goal of the article is to discuss and help clarify nomenclatural discrepancies found in the Nomina Anatomica Veterinaria and in veterinary atlases and textbooks that use cats and dogs as models to understand the anatomy of domestic mammals and to stress differences with modern humans. We propose a unifying nomenclature that is expanded to all the head and neck muscles and to all mammalian taxa in order to help build veterinary and mammalian muscle ontologies. Our observations and comparisons and the specific use of this nomenclature point out that felids such as tigers and servals and other carnivorans such as dogs have more facial muscle structures related to the mobility of both the auricular and orbital regions than numerous other mammals, including modern humans, which might be the result of an ancient adaptation related to the remarkable predatory capacities of carnivorans. Interestingly, the skeletal differences, mainly concerning the hyoid apparatus, pharynx, and larynx, that are likely associated with the different types of vocalizations seen in the Felinae (mainly purring) and Pantherinae (mainly roaring) are not accompanied by clear differences in the musculature connected to these structures in the feline L. serval and the pantherine P. tigris. PMID:22961868

  8. Child—Adult Differences in Muscle Activation — A Review

    PubMed Central

    Dotan, Raffy; Mitchell, Cameron; Cohen, Rotem; Klentrou, Panagiota; Gabriel, David; Falk, Bareket

    2013-01-01

    Children differ from adults in many muscular performance attributes such as size-normalized strength and power, endurance, fatigability and the recovery from exhaustive exercise, to name just a few. Metabolic attributes, such as glycolytic capacity, substrate utilization, and VO2 kinetics also differ markedly between children and adults. Various factors, such as dimensionality, intramuscular synchronization, agonist-antagonist coactivation, level of volitional activation, or muscle composition, can explain some, but not all of the observed differences. It is hypothesized that, compared with adults, children are substantially less capable of recruiting or fully employing their higher-threshold, type-II motor units. The review presents and evaluates the wealth of information and possible alternative factors in explaining the observations. Although conclusive evidence is still lacking, only this hypothesis of differential motor-unit activation in children and adults, appears capable of accounting for all observed child—adult differences, whether on its own or in conjunction with other factors. PMID:22433260

  9. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  10. PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer

    PubMed Central

    Lunde, Ida G; Ekmark, Merete; Rana, Zaheer A; Buonanno, Andres; Gundersen, Kristian

    2007-01-01

    The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca2+, hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARδ, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARδ protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARδ was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARδ was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARδ can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARδ in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARδ can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation–transcription coupling. PMID:17463039

  11. Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Bandman, Everett

    1985-02-01

    The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

  12. Muscle niche-driven Insulin-Notch-Myc cascade reactivates dormant Adult Muscle Precursors in Drosophila

    PubMed Central

    Aradhya, Rajaguru; Zmojdzian, Monika; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2015-01-01

    How stem cells specified during development keep their non-differentiated quiescent state, and how they are reactivated, remain poorly understood. Here, we applied a Drosophila model to follow in vivo behavior of adult muscle precursors (AMPs), the transient fruit fly muscle stem cells. We report that emerging AMPs send out thin filopodia that make contact with neighboring muscles. AMPs keep their filopodia-based association with muscles throughout their dormant state but also when they start to proliferate, suggesting that muscles could play a role in AMP reactivation. Indeed, our genetic analyses indicate that muscles send inductive dIlp6 signals that switch the Insulin pathway ON in closely associated AMPs. This leads to the activation of Notch, which regulates AMP proliferation via dMyc. Altogether, we report that Drosophila AMPs display homing behavior to muscle niche and that the niche-driven Insulin-Notch-dMyc cascade plays a key role in setting the activated state of AMPs. DOI: http://dx.doi.org/10.7554/eLife.08497.001 PMID:26650355

  13. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.

    PubMed Central

    Lois, C; Alvarez-Buylla, A

    1993-01-01

    Subventricular zone (SVZ) cells proliferate spontaneously in vivo in the telencephalon of adult mammals. Several studies suggest that SVZ cells do not differentiate after mitosis into neurons or glia but die. In the present work, we show that SVZ cells labeled in the brains of adult mice with [3H]thymidine differentiate directly into neurons and glia in explant cultures. In vitro labeling with [3H]thymidine shows that 98% of the neurons that differentiate from the SVZ explants are derived from precursor cells that underwent their last division in vivo. This report identifies the SVZ cells as neuronal precursors in an adult mammalian brain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8446631

  14. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-01-01

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases. PMID:27098178

  15. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.

    PubMed

    Isaeva, Elena V; Shkryl, Vyacheslav M; Shirokova, Natalia

    2005-06-15

    Intact skeletal muscle fibres from adult mammals exhibit neither spontaneous nor stimulated Ca(2+) sparks. Mechanical or chemical skinning procedures have been reported to unmask sparks. The present study investigates the mechanisms that determine the development of Ca(2+) spark activity in permeabilized fibres dissected from muscles with different metabolic capacity. Spontaneous Ca(2+) sparks were detected with fluo-3 and single photon confocal microscopy; mitochondrial redox potential was evaluated from mitochondrial NADH signals recorded with two-photon confocal microscopy, and Ca(2+) load of the sarcoplasmic reticulum (SR) was estimated from the amplitude of caffeine-induced Ca(2+) transients recorded with fura-2 and digital photometry. In three fibre types studied, there was a time lag between permeabilization and spark development. Under all experimental conditions, the delay was the longest in slow-twitch oxidative fibres, intermediate in fast-twitch glycolytic-oxidative fibres, and the shortest in fast-twitch glycolytic cells. The temporal evolution of Ca(2+) spark frequencies was bell-shaped, and the maximal spark frequency was reached slowly in mitochondria-rich oxidative cells but quickly in mitochondria-poor glycolytic fibres. The development of spontaneous Ca(2+) sparks did not correlate with the SR Ca(2+) content of the fibre, but did correlate with the redox potential of their mitochondria. Treatment of fibres with scavengers of reactive oxygen species (ROS), such as superoxide dismutase (SOD) and catalase, dramatically and reversibly reduced the spark frequency and also delayed their appearance. In contrast, incubation of fibres with 50 microm H(2)O(2) sped up the development of Ca(2+) sparks and increased their frequency. These results indicate that the appearance of Ca(2+) sparks in permeabilized skeletal muscle cells depends on the fibre's oxidative strength and that misbalance between mitochondrial ROS production and the fibre's ability to fight

  16. Skeletal muscle power: a critical determinant of physical functioning in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle power declines earlier and more precipitously with advancing age compared to muscle strength. Peak muscle power has also emerged as an important predictor of functional limitations in older adults. Our current working hypothesis is focused on examining lower extremity muscle power as a more d...

  17. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise

    PubMed Central

    Fry, Christopher S.; Glynn, Erin L.; Timmerman, Kyle L.; Dickinson, Jared M.; Walker, Dillon K.; Gundermann, David M.; Volpi, Elena; Rasmussen, Blake B.

    2011-01-01

    Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young (n = 13; 28 ± 2 yr) and older (n = 13; 68 ± 2 yr) subjects performed a bout of resistance exercise. Skeletal muscle biopsies (vastus lateralis) were obtained at basal and 3, 6, and 24 h postexercise and were analyzed for amino acid transporter mRNA and protein expression and regulators of amino acid transporter transcription utilizing real-time PCR and Western blotting. We found that basal amino acid transporter expression was similar in young and older adults (P > 0.05). Exercise increased L-type amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, sodium-coupled neutral amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, and cationic amino acid transporter 1/SLC7A1 mRNA expression in both young and older adults (P < 0.05). L-type amino acid transporter 1 and CD98 protein increased only in younger adults (P < 0.05). eukaryotic initiation factor 2 α-subunit (S52) increased similarly in young and older adults postexercise (P < 0.05). Ribosomal protein S6 (S240/244) and activating transcription factor 4 nuclear protein expression tended to be higher in the young, while nuclear signal transducer and activator of transcription 3 (STAT3) (Y705) was higher in the older subjects postexercise (P < 0.05). These results suggest that the rapid upregulation of amino acid transporter expression following resistance exercise may be regulated differently between the age groups, but involves a combination of mTORC1, activating transcription factor 4, eukaryotic initiation factor 2 α-subunit, and STAT3. We propose an increase in amino acid transporter expression may contribute to enhanced amino acid sensitivity following exercise in young and older

  18. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family

    PubMed Central

    Porrello, Enzo R.; Mahmoud, Ahmed I.; Simpson, Emma; Johnson, Brett A.; Grinsfelder, David; Canseco, Diana; Mammen, Pradeep P.; Rothermel, Beverly A.; Olson, Eric N.; Sadek, Hesham A.

    2013-01-01

    We recently identified a brief time period during postnatal development when the mammalian heart retains significant regenerative potential after amputation of the ventricular apex. However, one major unresolved question is whether the neonatal mouse heart can also regenerate in response to myocardial ischemia, the most common antecedent of heart failure in humans. Here, we induced ischemic myocardial infarction (MI) in 1-d-old mice and found that this results in extensive myocardial necrosis and systolic dysfunction. Remarkably, the neonatal heart mounted a robust regenerative response, through proliferation of preexisting cardiomyocytes, resulting in full functional recovery within 21 d. Moreover, we show that the miR-15 family of microRNAs modulates neonatal heart regeneration through inhibition of postnatal cardiomyocyte proliferation. Finally, we demonstrate that inhibition of the miR-15 family from an early postnatal age until adulthood increases myocyte proliferation in the adult heart and improves left ventricular systolic function after adult MI. We conclude that the neonatal mammalian heart can regenerate after myocardial infarction through proliferation of preexisting cardiomyocytes and that the miR-15 family contributes to postnatal loss of cardiac regenerative capacity. PMID:23248315

  19. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres

    PubMed Central

    Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel

    2015-01-01

    A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902

  20. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  1. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  2. [Proliferation of adult mammalian ventricular cardiomyocytes: a sporadic but feasible phenomenon].

    PubMed

    Vargas-González, Alvaro

    2014-01-01

    Proliferation of adult mammalian ventricular cardiomyocytes has been ruled out by some researchers, who have argued that these cells are terminally differentiated; however, this dogma has been rejected because other researchers have reported that these cells can present the processes necessary to proliferate, that is, DNA synthesis, mitosis and cytokinesis when the heart is damaged experimentally through pharmacological and surgical strategies or due to pathological conditions concerning the cardiovascular system. This review integrates some of the available works in the literature evaluating the DNA synthesis, mitosis and cytokinesis in these myocytes, when the myocardium is damaged, with the purpose of knowing if their proliferation can be considered as a feasible phenomenon. The review is concluded with a reflection about the perspectives of the knowledge generated in this area. PMID:24792902

  3. Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors.

    PubMed

    Voss, Andrew A

    2009-12-01

    ATP is released from skeletal muscle during exercise, a discovery dating back to 1969. Surprisingly, few studies have examined the effects of extracellular ATP on mature mammalian skeletal muscle. This electrophysiological study examined the effects of extracellular ATP on fully innervated rat levator auris longus using two intracellular microelectrodes. The effects of ATP were determined by measuring the relative changes of miniature endplate potentials (mEPPs) and voltage responses to step current pulses in individual muscle fibres. Exposure to ATP (20 microm) prolonged the mEPP falling phase by 31 +/- 7.5% (values +/- s.d., n = 3 fibres). Concurrently, the input resistance increased by 31 +/- 2.0% and the time course of the voltage responses increased by 59 +/- 3.0%. Analogous effects were observed using 2 and 5 microm ATP, and on regions distal from the neuromuscular junction, indicating that physiologically relevant levels of ATP enhanced electrical signalling over the entire muscle fibre. The effects of extracellular ATP were blocked by 200 microm anthracene-9-carboxylic acid, a chloride channel inhibitor, and reduced concentrations of extracellular chloride, indicating that ATP inhibited chloride channels. A high affinity agonist for P2Y receptors, 2-methylthioadenosine-5-O-diphosphate (2MeSADP), induced similar effects to ATP with an EC(50) of 160 +/- 30 nm. The effects of 250 nm2MeSADP were blocked by 500 nmMRS2179, a specific P2Y(1) receptor inhibitor, suggesting that ATP acts on P2Y(1) receptors to inhibit chloride channels. The inhibition of chloride channels by extracellular ATP has implications for muscle excitability and fatigue, and the pathophysiology of myotonias. PMID:19805741

  4. Mammalian muscle model for predicting force and energetics during physiological behaviors.

    PubMed

    Tsianos, George A; Rustin, Cedric; Loeb, Gerald E

    2012-03-01

    Muscles convert metabolic energy into mechanical work. A computational model of muscle would ideally compute both effects efficiently for the entire range of muscle activation and kinematic conditions (force and length). We have extended the original Virtual Muscle algorithm (Cheng , 2000) to predict energy consumption for both slow- and fast-twitch muscle fiber types, partitioned according to the activation process (E(a)), cross-bridge cycling (E(xb)) and ATP/PCr recovery (E(recovery)). Because the terms of these functions correspond to identifiable physiological processes, their coefficients can be estimated directly from the types of experiments that are usually performed and extrapolated to dynamic conditions of natural motor behaviors. We also implemented a new approach to lumped modeling of the gradually recruited and frequency modulated motor units comprising each fiber type, which greatly reduced computational time. The emergent behavior of the model has significant implications for studies of optimal motor control and development of rehabilitation strategies because its trends were quite different from traditional estimates of energy (e.g., activation, force, stress, work, etc.). The model system was scaled to represent three different human experimental paradigms in which muscle heat was measured during voluntary exercise; predicted and observed energy rate agreed well both qualitatively and quantitatively. PMID:21859633

  5. Intrinsic Ability of Adult Stem Cell in Skeletal Muscle: An Effective and Replenishable Resource to the Establishment of Pluripotent Stem Cells

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2013-01-01

    Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications. PMID:23818907

  6. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo.

    PubMed

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-09-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca(2+) imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca(2+) signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  7. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo

    PubMed Central

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-01-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  8. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  9. Effects of subacute pyridostigmine administration on mammalian skeletal muscle function. (Reannouncement with new availability information)

    SciTech Connect

    Adler, M.; Deshpande, S.S.; Foster, R.E.; Maxwell, D.M.; Albuquerque, E.X.

    1992-12-31

    The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude of successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.

  10. Muscle Size Not Density Predicts Variance in Muscle Strength and Neuromuscular Performance in Healthy Adult Men and Women.

    PubMed

    Weeks, Benjamin K; Gerrits, Tom A J; Horan, Sean A; Beck, Belinda R

    2016-06-01

    Weeks, BK, Gerrits, TAJ, Horan, SA, and Beck, BR. Muscle size not density predicts variance in muscle strength and neuromuscular performance in healthy adult men and women. J Strength Cond Res 30(6): 1577-1584, 2016-The purpose of this study was to determine the relationships between peripheral quantitative computed tomography (pQCT)-derived measures of muscle area and density and markers of muscle strength and performance in men and women. Fifty-two apparently healthy adults (26 men, 26 women; age 33.8 ± 12.0 years) volunteered to participate. Dual-energy x-ray absorptiometry (XR-800; Norland Medical Systems, Inc., Trumbull, CT, USA) was used to determine whole body and regional lean and fat tissue mass, whereas pQCT (XCT-3000; Stratec, Pforzheim, Germany) was used to determine muscle cross-sectional area (MCSA) and muscle density of the leg, thigh, and forearm. Ankle plantar flexor and knee extensor strengths were examined using isokinetic dynamometry, and grip strength was examined with dynamometry. Impulse generated during a maximal vertical jump was used as an index of neuromuscular performance. Thigh, forearm, and leg MCSA strongly predicted variance in knee extensor (R = 0.77, p < 0.001) and grip strength (R = 0.77, p < 0.001) and weakly predicted variance in ankle plantar flexor strength (R = 0.20, p < 0.001), respectively, whereas muscle density was only a weak predictor of variance in knee extensor strength (R = 0.18, p < 0.001). Thigh and leg MCSA accounted for 79 and 69% of the variance in impulse generated from a maximal vertical jump (p < 0.001), whereas thigh muscle density predicted only 18% of the variance (p < 0.002). In conclusion, we found that pQCT-derived muscle area is more strongly related to strength and neuromuscular performance than muscle density in adult men and women. PMID:26473521

  11. MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity.

    PubMed

    Punga, Anna R; Maj, Marcin; Lin, Shuo; Meinen, Sarina; Rüegg, Markus A

    2011-03-01

    Muscle-specific tyrosine kinase (MuSK) is involved in the formation and maintenance of the neuromuscular junction (NMJ), and is necessary for NMJ integrity. As muscle involvement is strikingly selective in pathological conditions in which MuSK is targeted, including congenital myasthenic syndrome with MuSK mutation and MuSK antibody-seropositive myasthenia gravis, we hypothesized that the postsynaptic response to MuSK-agrin signalling differs between adult muscles. Transcript levels of postsynaptic proteins were compared between different muscles in wild-type adult mice. MuSK expression was high in the soleus and sternomastoid muscles and low in the extensor digitorum longus (EDL) and omohyoid muscles. The acetylcholine receptor (AChR) α subunit followed a similar expression pattern, whereas expression of Dok-7, Lrp4 and rapsyn was comparable between the muscles. We subsequently examined muscles in mice that overexpressed a miniaturized form of neural agrin or MuSK. In these transgenic mice, the soleus and sternomastoid muscles responded with formation of ectopic AChR clusters, whereas such clusters were almost absent in the EDL and omohyoid muscles. Electroporation of Dok-7 revealed its important role as an activator of MuSK in AChR cluster formation in adult muscles. Together, our findings indicate for the first time that adult skeletal muscles harbour different endogenous levels of MuSK and that these levels determine the ability to form ectopic AChR clusters upon overexpression of agrin or MuSK. We believe that these findings are important for our understanding of adult muscle plasticity and the selective muscle involvement in neuromuscular disorders in which MuSK is diminished. PMID:21255125

  12. A new role for muscle segment homeobox genes in mammalian embryonic diapause

    PubMed Central

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D.; Renfree, Marilyn B.; Dey, Sudhansu K.

    2013-01-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice—it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  13. A new role for muscle segment homeobox genes in mammalian embryonic diapause.

    PubMed

    Cha, Jeeyeon; Sun, Xiaofei; Bartos, Amanda; Fenelon, Jane; Lefèvre, Pavine; Daikoku, Takiko; Shaw, Geoff; Maxson, Robert; Murphy, Bruce D; Renfree, Marilyn B; Dey, Sudhansu K

    2013-04-01

    Mammalian embryonic diapause is a phenomenon defined by the temporary arrest in blastocyst growth and metabolic activity within the uterus which synchronously becomes quiescent to blastocyst activation and implantation. This reproductive strategy temporally uncouples conception from parturition until environmental or maternal conditions are favourable for the survival of the mother and newborn. The underlying molecular mechanism by which the uterus and embryo temporarily achieve quiescence, maintain blastocyst survival and then resume blastocyst activation with subsequent implantation remains unknown. Here, we show that uterine expression of Msx1 or Msx2, members of an ancient, highly conserved homeobox gene family, persists in three unrelated mammalian species during diapause, followed by rapid downregulation with blastocyst activation and implantation. Mice with uterine inactivation of Msx1 and Msx2 fail to achieve diapause and reactivation. Remarkably, the North American mink and Australian tammar wallaby share similar expression patterns of MSX1 or MSX2 as in mice-it persists during diapause and is rapidly downregulated upon blastocyst activation and implantation. Evidence from mouse studies suggests that the effects of Msx genes in diapause are mediated through Wnt5a, a known transcriptional target of uterine Msx. These studies provide strong evidence that the Msx gene family constitutes a common conserved molecular mediator in the uterus during embryonic diapause to improve female reproductive fitness. PMID:23615030

  14. Activations of the Ca dependent K channel by Ca released from the sarcoplasmic reticulum of mammalian smooth muscles.

    PubMed

    Kitamura, K; Sakai, T; Kajioka, S; Kuriyama, H

    1989-01-01

    In mammalian smooth muscles, the outward K current recorded using the whole cell voltage clamp or patch clamp methods can be classified into the Ca-dependent and independent K currents. The former is sub-classified into the extra- and intra-cellular Ca dependent K current. The intra-cellular Ca dependent K current has a close relation to Ca released from the sarcoplasmic reticulum, i.e. Ca released by inositol 1,4,5-trisphosphate (InsP3), ryanodine or Ca ionophores (A23187 or ionomycin) modify the appearance of the K current. The transient (Ca dependent) outward current evoked by depolarization pulses, as measured using the whole cell voltage clamp method, is closely related with after-hyperpolarization of the action potential as recorded using the microelectrode method and is postulated to be due to activations of the Ca-induced Ca release mechanism in the sarcoplasmic reticulum. The oscillatory (Ca dependent) outward K current is closely related with the amount of Ca released from the sarcoplasmic reticulum during the long depolarization induced by electrical stimulation (command pulse) or applications of Ca releasers such as InsP3 or ryanodine. In this review, the Ca dependent K current recorded from smooth muscle cells is compared with the influx and release of Ca. PMID:2667516

  15. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  16. Muscle performance and physical function are associated with voluntary rate of neuromuscular activation in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Participants were recruited to three experimental groups: middle-aged healthy adults (MH), older healthy adults (OH), and older adults with mobility limitations (OML). OH and OML were primarily differentiated by performance on the Short Physical Performance Battery (SPPB). Muscle performance (accele...

  17. Muscle Weakness Thresholds for Prediction of Diabetes in Adults

    PubMed Central

    Peterson, Mark D.; Zhang, Peng; Choksi, Palak; Markides, Kyriakos S.; Al Snih, Soham

    2016-01-01

    Background Despite the known links between weakness and early mortality, what remains to be fully understood is the extent to which strength preservation is associated with protection from cardiometabolic diseases such as diabetes. Purpose The purposes of this study were to determine the association between muscle strength and diabetes among adults, and to identify age- and sex-specific thresholds of low strength for detection of risk. Methods A population-representative sample of 4,066 individuals, aged 20–85 years, was included from the combined 2011–2012 National Health and Nutrition Examination Survey datasets. Strength was assessed using a hand-held dynamometer, and the single largest reading from either hand was normalized to body mass. A logistic regression model was used to assess the association between normalized grip strength and risk of diabetes, as determined by hemoglobin A1c (HbA1c) levels (≥6.5% [≥48 mmol/mol]), while controlling for sociodemographic characteristics, anthropometric measures, and television viewing time. Results For every 0.05 decrement in normalized strength, there was a 1.26 times increased adjusted odds for diabetes in men and women. Women were at lower odds of having diabetes (OR: 0.49; 95% CI: 0.29–0.82), whereas age, waist circumference and lower income were inversely associated. Optimal sex- and age-specific weakness thresholds to detect diabetes were 0.56, 0.50, and 0.45 for men, and 0.42, 0.38, and 0.33 for women, for ages 20–39 years, 40–59 years, and 60–80 years. Conclusions and Clinical Relevance We present thresholds of strength that can be incorporated into a clinical setting for identifying adults that are at risk for developing diabetes, and that might benefit from lifestyle interventions to reduce risk. PMID:26744337

  18. Prevalence of reduced muscle strength in older U.S. adults: United States, 2011-2012.

    PubMed

    Looker, Anne C; Wang, Chia-Yih

    2015-01-01

    Five percent of adults aged 60 and over had weak muscle strength and 13% had intermediate muscle strength, as defined by the new FNIH criteria. Weak muscle strength is clinically relevant because it is associated with slow gait speed, an important mobility impairment. It is also linked to an increased risk of death. The prevalence of reduced muscle strength increased with age and was higher in non-Hispanic Asian and Hispanic persons than in non-Hispanic white or non-Hispanic black persons. Decreasing muscle strength was linked with increased difficulty in rising from an armless chair, which is another important type of mobility impairment. PMID:25633238

  19. Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle

    PubMed Central

    Lakatta, E. G.; Lappé, D. L.

    1981-01-01

    1. When coherent light was passed through isolated isometric cardiac muscles during the diastolic or resting period, intensity fluctuations were observed in the scattered field. The frequency of these intensity fluctuations (f½) varied with many experimental interventions known to enhance Ca2+ flux into the cell. 2. In rat muscles stimulated at low frequencies (0.1 ± 2.0 min-1) stepwise increases (0.4-10 mm) of [Ca2+] in the bathing fluid ([Ca2+]e), or addition of ouabain (10-6-6 × 10-4 m) to the perfusate caused stepwise increases in f½. These were paralleled by increments in resting force (RF) such that the changes in f½ and RF were highly correlated. Substitution of K+ for Na+ in the perfusate resulted in parallel transients in RF and f½. 3. In contrast to the rat, most cat muscles stimulated at low frequencies in the steady state exhibited neither diastolic intensity fluctuations nor Ca2+-dependent changes in RF in [Ca2+]e of 10 mm or less; when [Ca2+]e was increased to 12-32 mm, however, steady-state Ca2+-dependent f½ and RF were observed. In a given [Ca2+]e reduction of [Na+]e increased f½. In the transient state following cessation of regular stimulation at more rapid rates (12-96 min-1) intensity fluctuations were present in all [Ca2+]e and decayed with time (seconds to minutes); the f½ and time course of the decay of the fluctuations were determined by the rate of prior stimulation and [Ca2+]e. 4. Maximum potentiation of twitch force in response to the above inotropic interventions was associated with an optimal level of f½ which was similar in both species; when higher levels of f½ were produced by more intense inotropic intervention, twitch force declined. Over the range of inotropic intervention up to and including that at which maximum twitch potentiation occurred, the increase in diastolic f½ predicted the extent of twitch potentiation with a high degree of accuracy (r > 0.97) both in the transient and steady states. 5. In contrast to the

  20. Effects of pethidine and nalorphine on the mechanical and electrical activities of mammalian isolated ventricular muscle.

    PubMed

    Grundy, H F; Tritthart, H

    1972-09-01

    1. The strength of the isometric mechanical contraction of electricallydriven ventricular muscle has been recorded simultaneously with the resting and action potentials; the effects of pethidine and of nalorphine on these parameters have been studied.2. When lower concentrations of pethidine (0.22-6.5 mug/ml) were perfused, isometric peak tension was decreased in parallel with the maximum upstroke velocity of the action potential; these actions are considered to result from membrane stabilization. At higher concentrations (11.8-109 mug/ml) pethidine usually produced, in addition, a progressive decrease in the resting and action potentials associated with marked irregularities in, or even abolition of, the mechanical response. It is suggested that these effects of the higher doses might be due to a depression of ATPase activity in the myocardial membrane.3. Compared with pethidine, nalorphine had similar, but weaker, actions. PMID:4263795

  1. Muscle-Derived Extracellular Signal-Regulated Kinases 1 and 2 Are Required for the Maintenance of Adult Myofibers and Their Neuromuscular Junctions

    PubMed Central

    Seaberg, Bonnie; Henslee, Gabrielle; Wang, Shuo; Paez-Colasante, Ximena; Landreth, Gary E.

    2015-01-01

    The Ras–extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice. PMID:25605336

  2. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres.

    PubMed Central

    Dulhunty, A F

    1978-01-01

    1. The steady-state intracellular membrane potential of fibres in thin bundles dissected from mouse extensor digitorum longus or soleus muscles or rat sternomastoid muscles was measured with 3 M-KCl glass micro-electrodes. The steady-state membrane potential was found to depend on the extracellular concentrations of Na, K and Cl ions. 2. The resting membrane potential (3.5 mM-[K]o, 160 mM-[Cl]o) was -74 +/- 1 mV (mean +/- S.E.) and a reduction in [Cl]o to 3.5 mM caused a reversible steady-state hyperpolarization to -94 +/- 1 mV (mean +/- S.E.). 3. The steady-state membrane potentials recorded in fibres exposed to different [K]o and zero [Cl]o were consistent with potentials predicted by the Goldman, Hodgkin & Katz (GHK) equation for Na and K. The results of similar experiments done with Cl as the major external anion could not be fitted by the same equation. 4. The GHK equation for Na, K and Cl did fit data obtained from fibres in solutions containing different [K]o with Cl as the major external anion if the intracellular Cl concentration was allowed to be out of equilibrium with the steady-state membrane potential. 5. It is suggested that an active influx of Cl ions controls the intracellular Cl concentrations in these fibres and hence maintains the Cl equilibrium potential at a depolarized value with respect to the resting membrane potential. 6. The steady-state membrane potential of rat diaphragm fibres was independent of [Cl]o and it seems likely that the intracellular Cl concentration of these fibres is not controlled by active Cl transport. PMID:650497

  3. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. PMID:26610066

  4. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+

    PubMed Central

    Hakimjavadi, Hesamedin; Lingrel, Jerry B.

    2015-01-01

    The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles. PMID:26371210

  5. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults

    PubMed Central

    Herndon, David N.; Børsheim, Elisabet; Chao, Tony; Reidy, Paul T.; Borack, Michael S.; Rasmussen, Blake B.; Chondronikola, Maria; Saraf, Manish K.; Sidossis, Labros S.

    2014-01-01

    Elevated metabolic rate is a hallmark of the stress response to severe burn injury. This response is mediated in part by adrenergic stress and is responsive to changes in ambient temperature. We hypothesize that uncoupling of oxidative phosphorylation in skeletal muscle mitochondria contributes to increased metabolic rate in burn survivors. Here, we determined skeletal muscle mitochondrial function in healthy and severely burned adults. Indirect calorimetry was used to estimate metabolic rate in burn patients. Quadriceps muscle biopsies were collected on two separate occasions (11 ± 5 and 21 ± 8 days postinjury) from six severely burned adults (68 ± 19% of total body surface area burned) and 12 healthy adults. Leak, coupled, and uncoupled mitochondrial respiration was determined in permeabilized myofiber bundles. Metabolic rate was significantly greater than predicted values for burn patients at both time points (P < 0.05). Skeletal muscle oxidative capacity, citrate synthase activity, a marker of mitochondrial abundance, and mitochondrial sensitivity to oligomycin were all lower in burn patients vs. controls at both time points (P < 0.05). A greater proportion of maximal mitochondrial respiration was linked to thermogenesis in burn patients compared with controls (P < 0.05). Increased metabolic rate in severely burned adults is accompanied by derangements in skeletal muscle mitochondrial function. Skeletal muscle mitochondria from burn victims are more uncoupled, indicating greater heat production within skeletal muscle. Our findings suggest that skeletal muscle mitochondrial dysfunction contributes to increased metabolic rate in burn victims. PMID:25074988

  6. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers.

    PubMed

    Ranatunga, K W

    1996-10-01

    Isometric tension responses to rapid temperature jumps (T-jumps) of 3-7 degrees C were examined in single skinned fibers isolated from rabbit psoas (fast) and soleus (slow) muscles. T-jumps were induced by an infrared laser pulse (wavelength 1.32 microns, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fiber and bathing buffer solution in a 50-microliter trough. After a T-jump, the temperature near the fiber remained constant for approximately 0.5 s, and the temperature could be clamped for longer periods by means of Peltier units assembled on the back trough wall. A T-jump produced a step decrease in tension in both fast and slow muscle fibers in rigor, indicating thermal expansion. In maximally Ca-activated (pCa approximately 4) fibers, the increase of steady tension with heating (3-35 degrees C) was approximately sigmoidal, and a T-jump at any temperature induced a more complex tension transient than in rigor fibers. An initial (small amplitude) step decrease in tension followed by a rapid recovery (tau(1); see Davis and Harrington, 1993) was seen in some records from both fiber types, which presumably was an indirect consequence of thermal expansion. The net rise in tension after a T-jump was biexponential, and its time course was characteristically different in the two fibers. At approximately 12 degrees C the reciprocal time constants for the two exponential components (tau(2) and tau(3), respectively, were approximately 70.s(-1) and approximately 15.s(-1) in fast fibers and approximately 20.s(-1) and approximately 3.s(-1) in slow fibers. In both fibers, tau(2) ("endothermic force regeneration") became faster with an increase in temperature. Furthermore, tau(3) was temperature sensitive in slow fibers but not in fast fibers. The results are compared and contrasted with previous findings from T-jump experiments on fast fibers. It is observed that the fast/slow fiber difference in the rate of endothermic force generation (three- to

  7. Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate.

    PubMed

    Coupland, M E; Puchert, E; Ranatunga, K W

    2001-11-01

    1. The effect of added inorganic phosphate (P(i), range 3-25 mM) on active tension was examined at a range of temperatures (5-30 degrees C) in chemically skinned (0.5 % Brij) rabbit psoas muscle fibres. Three types of experiments were carried out. 2. In one type of experiment, a muscle fibre was maximally activated at low temperature (5 degrees C) and its tension change was recorded during stepwise heating to high temperature in approximately 60 s. As found in previous studies, the tension increased with temperature and the normalised tension-(reciprocal) temperature relation was sigmoidal, with a half-maximal tension at 8 degrees C. In the presence of 25 mM added P(i), the temperature for half-maximal tension of the normalised curve was approximately 5 degrees C higher than in the control. The difference in the slope was small. 3. In a second type of experiment, the tension increment during a large temperature jump (from 5 to 30 degrees C) was examined during an active contraction. The relative increase of active tension on heating was significantly higher in the presence of 25 mM added P(i) (30/5 degrees C tension ratio of 6-7) than in the control with no added P(i) (tension ratio of approximately 3). 4. In a third type of experiment, the effect on the maximal Ca(2+)-activated tension of different levels of added P(i) (3-25 mM) (and P(i) mop adequate to reduce contaminating P(i) to micromolar levels) was examined at 5, 10, 20 and 30 degrees C. The tension was depressed with increased [P(i)] in a concentration-dependent manner at all temperatures, and the data could be fitted with a hyperbolic relation. The calculated maximal tension depression in excess [P(i)] was approximately 65 % of the control at 5-10 degrees C, in contrast to a maximal depression of 40 % at 20 degrees C and 30 % at 30 degrees C. 5. These experiments indicate that the active tension depression induced by P(i) in psoas fibres is temperature sensitive, the depression becoming less marked at

  8. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.

    PubMed Central

    Ranatunga, K W

    1994-01-01

    Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH and in the presence of 10 mM inorganic phosphate; it was absent in rigor fibers in which the tension decreased with heating (a linear thermal expansion, alpha, of approximately 4 x 10(-5)/degree C). Below approximately 20 degrees C, the tension response after a approximately 1% length increase (complete < 0.5 ms) consisted of a fast decay (approximately 150.s-1 at 20 degrees C) and a slow decay (approximately 10.s-1) of tension. The rate of fast decay increased with temperature (Q10 approximately 2.4); at 35-40 degrees C, it was approximately 800.s-1, and it was followed by a delayed tension rise (stretch-activation) at 30-40.s-1. The linear rise of passive tension in warming to approximately 25 degrees C may be due to increase of thermal stress in titin (connectin)-myosin composite filament, whereas the extra tension above approximately 30 degrees C may arise from cycling cross-bridges; based on previous findings from regulated actomyosin in solution (Fuchs, 1975), it is suggested that heating reversibly inactivates the troponin-tropomyosin control mechanism and leads to Ca-independent thin filament activation at high temperatures. Additionally, we propose that the heating-induced increase of endo-sarcomeric stress within titin-myosin composite filament makes the

  9. Length-dependent Ca2+ activation in skeletal muscle fibers from mammalians.

    PubMed

    Rassier, Dilson E; Minozzo, Fábio C

    2016-08-01

    We tested the hypotheses that 1) a decrease in activation of skeletal muscles at short sarcomere lengths (SLs) is caused by an inhibition of Ca(2+) release from the sarcoplasmic reticulum (SR), and 2) the decrease in Ca(2+) would be caused by an inhibition of action potential conduction from the periphery to the core of the fibers. Intact, single fibers dissected from the flexor digitorum brevis from mice were activated at different SLs, and intracellular Ca(2+) was imaged with confocal microscopy. Force decreased at SLs shorter than 2.1 μm, while Ca(2+) concentration decreased at SLs below 1.9 μm. The concentration of Ca(2+) at short SL was lower at the core than at the peripheries of the fiber. When the external concentration of Na(+) was decreased in the experimental media, impairing action potential conduction, Ca(2+) gradients were observed in all SLs. When caffeine was used in the experimental media, the gradients of Ca(2+) were abolished. We concluded that there is an inhibition of Ca(2+) release from the sarcoplasmic reticulum (SR) at short SLs, which results from a decreased conduction of action potential from the periphery to the core of the fibers. PMID:27225655

  10. The effect of superficial trunk muscle exercise and deep trunk muscle exercise on the foot pressure of healthy adults

    PubMed Central

    Kim, Suzy; Shim, Jemyung; Kim, Sungjoong; Namkoong, Seung; Kim, Hwanhee

    2015-01-01

    [Purpose] The purpose of this study was to analyze the effect of superficial trunk muscle exercise and deep trunk muscle exercise on the foot pressure of healthy adults. [Subjects] The subjects were 30 healthy females and males who agreed to participate in this study. There were two groups, a superficial trunk muscle exercise group and a deep trunk muscle exercise group, with 15 participants in each. [Methods] The exercises were conducted 5 times a week for 4 weeks for both groups. A gait analyzer was used to measure foot plantar pressure while walking on a plate. Participants were measured before starting the exercise and after 4 weeks. The paired t-test was used to analyze the pre-and post-test results. [Results] There were no significant differences in foot pressure in any region in the superficial trunk muscle exercise group. In the deep trunk muscle exercise group, there were statistically significant increase in F1, F4, F5, R1 and R3. In addition, there were significant decreases in R2 and R4. [Conclusion] After the 4-week deep trunk muscle exercise group decreases in foot pressure on the inner foot and increases on the outside of the feet indicate normal and overall even distribution of body weight on the feet. PMID:25931714

  11. An In Vitro Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents

    PubMed Central

    Franco, Joy A.; Kloefkorn, Heidi E.; Hochman, Shawn; Wilkinson, Katherine A.

    2014-01-01

    Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice. PMID:25285602

  12. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults

    PubMed Central

    Dickinson, Jared M.; Fry, Christopher S.; Walker, Dillon K.; Gundermann, David M.; Reidy, Paul T.; Timmerman, Kyle L.; Markofski, Melissa M.; Paddon-Jones, Douglas; Rasmussen, Blake B.; Volpi, Elena

    2012-01-01

    Skeletal muscle atrophy during bed rest is attributed, at least in part, to slower basal muscle protein synthesis (MPS). Essential amino acids (EAA) stimulate mammalian target of rapamycin (mTORC1) signaling, amino acid transporter expression, and MPS and are necessary for muscle mass maintenance, but there are no data on the effect of inactivity on this anabolic mechanism. We hypothesized that bed rest decreases muscle mass in older adults by blunting the EAA stimulation of MPS through reduced mTORC1 signaling and amino acid transporter expression in older adults. Six healthy older adults (67 ± 2 yr) participated in a 7-day bed rest study. We used stable isotope tracers, Western blotting, and real-time qPCR to determine the effect of bed rest on MPS, muscle mTORC1 signaling, and amino acid transporter expression and content in the postabsorptive state and after acute EAA ingestion. Bed rest decreased leg lean mass by ∼4% (P < 0.05) and increased postabsorptive mTOR protein (P < 0.05) levels while postabsorptive MPS was unchanged (P > 0.05). Before bed rest acute EAA ingestion increased MPS, mTOR (Ser2448), S6 kinase 1 (Thr389, Thr421/Ser424), and ribosomal protein S6 (Ser240/244) phosphorylation, activating transcription factor 4, L-type amino acid transporter 1 and sodium-coupled amino acid transporter 2 protein content (P < 0.05). However, bed rest blunted the EAA-induced increase in MPS, mTORC1 signaling, and amino acid transporter protein content. We conclude that bed rest in older adults significantly attenuated the EAA-induced increase in MPS with a mechanism involving reduced mTORC1 signaling and amino acid transporter protein content. Together, our data suggest that a blunted EAA stimulation of MPS may contribute to muscle loss with inactivity in older persons. PMID:22338078

  13. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    PubMed

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish. PMID:26951149

  14. Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products.

    PubMed

    Zvereva, Elena A; Kovalev, Leonid I; Ivanov, Alexei V; Kovaleva, Marina A; Zherdev, Anatoly V; Shishkin, Sergey S; Lisitsyn, Andrey B; Chernukha, Irina M; Dzantiev, Boris B

    2015-07-01

    The skeletal muscle protein troponin I (TnI) has been characterized as a potential thermally stable and species-specific biomarker of mammalian muscle tissues in raw meat and meat products. This study proposed a technique for the quantification of TnI comprising protein extraction and sandwich enzyme-linked immunosorbent assay (ELISA). The technique is characterized by a TnI detection limit of 4.8 ng/ml with quantifiable concentrations ranging from 8.7 to 52 ng/ml. The method was shown to be suitable for detection of TnI in mammalian (beef, pork, lamb, and horse) meat but not in poultry (chicken, turkey, and duck) meat. In particular, the TnI content in beef was 0.40 3 ± 0.058 mg/g of wet tissue. The TnI estimations obtained for the pork and beef samples using ELISA were comparable to the proteomic analysis results. Thus, the quantitative study of TnI can be a convenient way to assess the mammalian muscle tissue content of various meat products. PMID:25777979

  15. Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts.

    PubMed Central

    Irintchev, A; Langer, M; Zweyer, M; Theisen, R; Wernig, A

    1997-01-01

    1. Myoblasts from expanded primary cultures were implanted into cryodamaged soleus muscles of adult BALB/c mice. One to four months later isometric tension recordings were performed in vitro, and the male donor cells implanted into female hosts were traced on histological sections using a Y-chromosome-specific probe. The muscles were either mildly or severely cryodamaged, which led to reductions in tetanic muscle force to 33% (n = 9 muscles, 9 animals) and 70% (n = 11) of normal, respectively. Reduced forces resulted from deficits in regeneration of muscle tissue as judged from the reduced desmin-positive cross-sectional areas (34 and 66% of control, respectively). 2. Implantation of 10(6) myogenic cells into severely cryodamaged muscles more than doubled muscle tetanic force (to 70% of normal, n = 14), as well as specific force (to 66% of normal). Absolute and relative amount of desmin-positive muscle cross-sectional areas were significantly increased indicating improved microarchitecture and less fibrosis. Newly formed muscle tissue was fully innervated since the tetanic forces resulting from direct and indirect (nerve-evoked) stimulation were equal. Endplates were found on numerous Y-positive muscle fibres. 3. As judged from their position under basal laminae of muscle fibres and the expression of M-cadherin, donor-derived cells contributed to the pool of satellite cells on small- and large-diameter muscle fibres. 4. Myoblast implantation after mild cryodamage and in undamaged muscles had little or no functional or structural effects; in both preparations only a few Y-positive muscle nuclei were detected. It is concluded that myoblasts from expanded primary cultures-unlike permanent cell lines-significantly contribute to muscle regeneration only when previous muscle damage is extensive and loss of host satellite cells is severe. Images Figure 1 Figure 2 Figure 3 PMID:9161990

  16. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species.

    PubMed

    Mascarello, Francesco; Toniolo, Luana; Cancellara, Pasqua; Reggiani, Carlo; Maccatrozzo, Lisa

    2016-09-01

    In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b). PMID:26970499

  17. Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus.

    PubMed

    Migaud, Martine; Butrille, Lucile; Batailler, Martine

    2015-04-01

    To cope with variations in the environment, most mammalian species exhibit seasonal cycles in physiology and behaviour. Seasonal plasticity during the lifetime contributes to seasonal physiology. Over the years, our ideas regarding adult brain plasticity and, more specifically, hypothalamic plasticity have greatly evolved. Along with the two main neurogenic regions, namely the hippocampal subgranular and lateral ventricle subventricular zones, the hypothalamus, which is the central homeostatic regulator of numerous physiological functions that comprise sexual behaviours, feeding and metabolism, also hosts neurogenic niches. Both endogenous and exogenous factors, including the photoperiod, modulate the hypothalamic neurogenic capacities. The present review describes the effects of season on adult morphological plasticity and neurogenesis in seasonal species, for which the photoperiod is a master environmental cue for the successful programming of seasonal functions. In addition, the potential functional significance of adult neurogenesis in the mediation of the seasonal control of reproduction and feeding is discussed. PMID:25462590

  18. Relationship Between Respiratory Muscle Strength and Conventional Sarcopenic Indices in Young Adults: A Preliminary Study

    PubMed Central

    Ro, Hee Joon; Lee, Sang Yoon; Seo, Kyung Mook; Kang, Si Hyun; Suh, Hoon Chang

    2015-01-01

    Objective To investigate the relationships between respiratory muscle strength and conventional sarcopenic indices such as skeletal muscle mass and limb muscle strength. Methods Eighty-nine young adult volunteers who had no history of medical or musculoskeletal disease were enrolled. Skeletal muscle mass was measured by bioelectrical impedance analysis and expressed as a skeletal muscle mass index (SMI). Upper and lower limb muscle strength were evaluated by hand grip strength (HGS) and isometric knee extensor muscle strength, respectively. Peak expiratory flow (PEF), maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were evaluated using a spirometer to demonstrate respiratory muscle strength. The relationships between respiratory muscle strength and sarcopenic indices were investigated using Pearson correlation coefficients and multiple linear regression analysis adjusted by age, height, and body mass index. Results MIP showed positive correlations with SMI (r=0.457 in men, r=0.646 in women; both p<0.01). MIP also correlated with knee extensor strength (p<0.01 in both sexes) and HGS (p<0.05 in men, p<0.01 in women). However, PEF and MEP had no significant correlations with these sarcopenic variables. In multivariate regression analysis, MIP was the only independent factor related to SMI (p<0.01). Conclusion Among the respiratory muscle strength variables, MIP was the only value associated with skeletal muscle mass. PMID:26798601

  19. Relationships between metabolic rate, muscle electromyograms, and swim performance of adult chinook salmon

    SciTech Connect

    Geist, David R. ); Brown, Richard S. ); Cullinan, Valerie I. ); Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A. )

    2003-10-01

    We measured oxygen consumption rates of adult spring Chinook salmon and compared these values to other species of Pacific salmon. Our results indicated that adult salmon achieve their maximum level of oxygen consumption at about their upper critical swim speed. It is also at this speed that the majority of the energy supplied to the swimming fish switches from red muscle (powered by aerobic metabolism) to white muscle (powered by anaerobic metabolism). Determining the swimming performance of adult salmon will assist managers in developing fishways and other means to safely pass fish over hydroelectric dams and other man-made structures.

  20. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension

    PubMed Central

    Kudryashova, Tatiana V.; Goncharov, Dmitry A.; Pena, Andressa; Ihida-Stansbury, Kaori; DeLisser, Horace; Kawut, Steven M.

    2015-01-01

    Abstract Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography–based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate–competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites—components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars—intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation. PMID:26697174

  1. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    SciTech Connect

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun; Song, Sang Heon; Shin, Hwa Kyoung; Bae, Sun Sik

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  2. Impact of nutrition on muscle mass, strength, and performance in older adults.

    PubMed

    Mithal, A; Bonjour, J-P; Boonen, S; Burckhardt, P; Degens, H; El Hajj Fuleihan, G; Josse, R; Lips, P; Morales Torres, J; Rizzoli, R; Yoshimura, N; Wahl, D A; Cooper, C; Dawson-Hughes, B

    2013-05-01

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has recently received increased attention. A review of the literature was undertaken to identify nutritional factors that contribute to loss of muscle mass. The role of protein, acid-base balance, vitamin D/calcium, and other minor nutrients like B vitamins was reviewed. Muscle wasting is a multifactorial process involving intrinsic and extrinsic alterations. A loss of fast twitch fibers, glycation of proteins, and insulin resistance may play an important role in the loss of muscle strength and development of sarcopenia. Protein intake plays an integral part in muscle health and an intake of 1.0-1.2 g/kg of body weight per day is probably optimal for older adults. There is a moderate [corrected] relationship between vitamin D status and muscle strength. Chronic ingestion of acid-producing diets appears to have a negative impact on muscle performance, and decreases in vitamin B12 and folic acid intake may also impair muscle function through their action on homocysteine. An adequate nutritional intake and an optimal dietary acid-base balance are important elements of any strategy to preserve muscle mass and strength during aging. PMID:23247327

  3. Slow early growers have more muscle in relation to adult activity: Evidence from Cebu, Philippines

    PubMed Central

    Workman, Megan; McDade, Thomas W.; Adair, Linda S.; Kuzawa, Christopher W.

    2015-01-01

    Background/objectives Adult skeletal muscle mass (SMM) protects against type 2 diabetes but little is known about its developmental antecedents. We examined whether pace of early weight gain predicted adult SMM in a birth cohort from Cebu City, Philippines. Additionally, we examined whether increases in SMM associated with adult muscle-building exercise varied according to early growth. Subjects/methods Data came from 1472 participants of the Cebu Longitudinal Health and Nutrition Survey. Weight was measured at birth and at 6-month intervals through age 24 months. Adult SMM was estimated from anthropometric measurements when participants were 20-22 years old. Interviews provided information on adult exercise/lifestyle habits. Results SMM (mean ± SD) was 20.8 ± 3.9 kg (men) and 13.6 ± 3.4 kg (women). Faster early weight gain predicted higher adult SMM. After adjustment for height and lifestyle factors, strongest associations with SMM were found for 6-12 months growth in men (β=0.17, p=0.001) and for birth weight in women (β=0.14, p=0.001). Individuals who had grown slowly displayed greater SMM in association with adult weight lifting, basketball playing, and physically demanding forms of employment (men) or household chores (women). Conclusions These results suggest heightened sensitivity of activity-induced muscle hypertrophy among adults who were born light or who gained weight slowly as infants. Future research should test this finding by comparing responses of muscle mass to an intervention in slow v. fast early growers. Findings suggest that adults who display reduced SMM following suboptimal early growth may be good candidates for new anti-diabetes interventions that promote muscle-building activities. PMID:25782430

  4. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers.

    PubMed

    Li, Chunyi; Yang, Fuhe; Sheppard, Allan

    2009-09-01

    Mammalian organ regeneration is the "Holy Grail" of modern regenerative biology and medicine. The most dramatic organ replacement is known as epimorphic regeneration. To date our knowledge of epimorphic regeneration has come from studies of amphibians. Notably, these animals have the ability to reprogram phenotypically committed cells at the amputation plane toward an embryonic-like cell phenotype (dedifferentiation). The capability of mammals to initiate analogous regeneration, and whether similar mechanisms would be involved if it were to occur, remain unclear. Deer antlers are the only mammalian appendages capable of full renewal, and therefore offer a unique opportunity to explore how nature has solved the problem of mammalian epimorphic regeneration. Following casting of old hard antlers, new antlers regenerate from permanent bony protuberances, known as pedicles. Studies through morphological and histological examinations, tissue deletion and transplantation, and cellular and molecular techniques have demonstrated that antler renewal is markedly different from that of amphibian limb regeneration (dedifferentiation-based), being a stem cell-based epimorphic process. Antler stem cells reside in the pedicle periosteum. We envisage that epimorphic regeneration of mammalian appendages, other than antler, could be made possible by recreating comparable milieu to that which supports the elaboration of that structure from the pedicle periosteum. PMID:19492976

  5. Mammalian Fetal Cardiac Regeneration Following Myocardial Infarction is Associated with Differential Gene Expression Compared to the Adult

    PubMed Central

    Zgheib, Carlos; Allukian, Myron W.; Xu, Junwang; Morris, Michael W.; Caskey, Robert C.; Herdrich, Benjamin J.; Hu, Junyi; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2014-01-01

    Background In adults, MI results in a brisk inflammatory response, myocardium loss and scar formation. We have recently reported the first mammalian large animal model of cardiac regeneration following MI in fetal sheep. We hypothesize that the fetus ability to regenerate functional myocardium following MI is due to differential gene expression regulating the response to MI in the fetus compared to the adult. Methods MI was created in adult (n=4) or early gestation fetal (n=4) sheep. Tissue harvested after 3 or 30 days, RNA extracted for microarray, followed by PCA and global gene expression analysis for the gene ontology (GO) terms: “response to wounding”, “inflammatory response”, “extracellular matrix”, “cell cycle”, “cell migration”, “cell proliferation” and “apoptosis”. Results PCA demonstrated that the global gene expression pattern in adult infarcts was distinctly different from uninfarcted region at 3 days and remained different 30 days post-MI. In contrast, gene expression in the fetal infarct was different from the uninfarcted region at 3 days, but by 30 days it returned to a baseline expression pattern similar to the uninfarcted region. 3 days post-MI there was an increase in the expression of genes related to all GO terms in fetal and adult infarcts, but this increase was much more pronounced in adults. By 30 days, the fetal gene expression returned to baseline, whereas in the adult remained significantly elevated. Conclusions These data demonstrate that the global gene expression pattern is dramatically different in the fetal regenerative response to MI compared to the adult response and may partly be responsible for the regeneration. PMID:24792251

  6. Prospective heterotopic ossification progenitors in adult human skeletal muscle.

    PubMed

    Downey, Jennifer; Lauzier, Dominique; Kloen, Peter; Klarskov, Klaus; Richter, Martin; Hamdy, Reggie; Faucheux, Nathalie; Scimè, Anthony; Balg, Frédéric; Grenier, Guillaume

    2015-02-01

    Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle. PMID:25445454

  7. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.

    PubMed

    Garza-Lombó, Carla; Gonsebatt, María E

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  8. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  9. Proprioceptive acuity predicts muscle co-contraction of the tibialis anterior and gastrocnemius medialis in older adults' dynamic postural control.

    PubMed

    Craig, C E; Goble, D J; Doumas, M

    2016-05-13

    Older adults use a different muscle strategy to cope with postural instability, in which they 'co-contract' the muscles around the ankle joint. It has been suggested that this is a compensatory response to age-related proprioceptive decline however this view has never been assessed directly. The current study investigated the association between proprioceptive acuity and muscle co-contraction in older adults. We compared muscle activity, by recording surface electromyography (EMG) from the bilateral tibialis anterior (TA) and gastrocnemius medialis (GM) muscles, in young (aged 18-34) and older adults (aged 65-82) during postural assessment on a fixed and sway-referenced surface at age-equivalent levels of sway. We performed correlations between muscle activity and proprioceptive acuity, which was assessed using an active contralateral matching task. Despite successfully inducing similar levels of sway in the two age groups, older adults still showed higher muscle co-contraction. A stepwise regression analysis showed that proprioceptive acuity measured using variable error was the best predictor of muscle co-contraction in older adults. However, despite suggestions from previous research, proprioceptive error and muscle co-contraction were negatively correlated in older adults, suggesting that better proprioceptive acuity predicts more co-contraction. Overall, these results suggest that although muscle co-contraction may be an age-specific strategy used by older adults, it is not to compensate for age-related proprioceptive deficits. PMID:26905952

  10. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults.

    PubMed

    Yoshino, Jun; Smith, Gordon I; Kelly, Shannon C; Julliand, Sophie; Reeds, Dominic N; Mittendorfer, Bettina

    2016-06-01

    Dietary fish oil-derived n-3 PUFA supplementation can increase muscle mass, reduce oxygen demand during physical activity, and improve physical function (muscle strength and power, and endurance) in people. The results from several studies conducted in animals suggest that the anabolic and performance-enhancing effects of n-3 PUFA are at least in part transcriptionally regulated. The effect of n-3 PUFA therapy on the muscle transcriptome in people is unknown. In this study, we used muscle biopsy samples collected during a recently completed randomized controlled trial that found that n-3 PUFA therapy increased muscle mass and function in older adults to provide a comprehensive assessment of the effect of n-3 PUFA therapy on the skeletal muscle gene expression profile in these people. Using the microarray technique, we found that several pathways involved in regulating mitochondrial function and extracellular matrix organization were increased and pathways related to calpain- and ubiquitin-mediated proteolysis and inhibition of the key anabolic regulator mTOR were decreased by n-3 PUFA therapy. However, the effect of n-3 PUFA therapy on the expression of individual genes involved in regulating mitochondrial function and muscle growth, assessed by quantitative RT-PCR, was very small. These data suggest that n-3 PUFA therapy results in small but coordinated changes in the muscle transcriptome that may help explain the n-3 PUFA-induced improvements in muscle mass and function. PMID:27252251

  11. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    PubMed

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P < 0.001). Compared to those not engaging in aerobic exercise and not meeting muscle-strengthening activity guidelines, those doing 1 (βadjusted = 3.7; 95% CI: 1.9-5.4; P < 0.001) and both (βadjusted = 6.6; 95% CI: 4.8-8.3; P < 0.001) of these behaviors had a significantly higher executive cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. PMID:27048445

  12. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. PMID:26041412

  13. Cholesterol removal from adult skeletal muscle impairs excitation–contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins

    PubMed Central

    Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia

    2015-01-01

    Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646

  14. A treadmill exercise reactivates the signaling of the mammalian target of rapamycin (mTor) in the skeletal muscles of starved mice.

    PubMed

    Zheng, Dong-Mei; Bian, Zehua; Furuya, Norihiko; Oliva Trejo, Juan Alejandro; Takeda-Ezaki, Mitsue; Takahashi, Katsuyuki; Hiraoka, Yuka; Mineki, Reiko; Taka, Hikari; Ikeda, Shin-Ichi; Komatsu, Masaaki; Fujimura, Tsutomu; Ueno, Takashi; Ezaki, Junji

    2015-01-01

    It has been well established that a starvation-induced decrease in insulin/IGF-I and serum amino acids effectively suppresses the mammalian target of rapamycin (mTor) signaling to induce autophagy, which is a major degradative cellular pathway in skeletal muscles. In this study, we investigated the systematic effects of exercise on the mTor signaling of skeletal muscles. Wild type C57BL/6J mice were starved for 24h under synchronous autophagy induction conditions. Under these conditions, endogenous LC3-II increased, while both S6-kinse and S6 ribosomal protein were dephosphorylated in the skeletal muscles, which indicated mTor inactivation. Using GFP-LC3 transgenic mice, it was also confirmed that fluorescent GFP-LC3 dots in the skeletal muscles increased, including soleus, plantaris, and gastrocnemius, which clearly showed autophagosomal induction. These starved mice were then subjected to a single bout of running on a treadmill (12m/min, 2h, with a lean of 10 degrees). Surprisingly, biochemical analyses revealed that the exercise elicited a decrease in the LC3-II/LC3-I ratio as well as an inversion from the dephosphorylated state to the rephosphorylated state of S6-kinase and ribosomal S6 in these skeletal muscles. Consistently, the GFP-LC3 dots of the skeletal muscles were diminished immediately after the exercise. These results indicated that exercise suppressed starvation-induced autophagy through a reactivation of mTor signaling in the skeletal muscles of these starved mice. PMID:25485704

  15. Myosin light chain phosphorylation in contraction of gastric antral smooth muscle from neonate and adult rabbits.

    PubMed

    Ierardi, J A; Paul, D A; Ryan, J P

    1996-01-01

    The decreased contractility of gastric antral smooth muscle in the neonate has been attributed to reduced levels of activator calcium. It is generally accepted that calcium-dependent myosin light chain phosphorylation (MLCP) is the key step in the initiation of force development in smooth muscle. In this study, we investigated the relationship between MLCP and force development in gastric antral smooth muscle from neonatal (4-6 d old) and adult rabbits. We tested the hypothesis that the reduced force development of circular smooth muscle from the neonate would be accompanied by decreased levels of MLCP, as compared with data from adult animals. Full thickness muscle strips oriented parallel to the circular muscle layer were examined for their contractile response to acetylcholine (ACh) (10(-8) M to 10(-3) M) or 10(-4) M ACh only. In the latter study, tissues were rapidly frozen in a dry ice-acetone slurry for subsequent MLCP determination. MLCP was determined at times corresponding to 5, 10, 15, 30, and 60 s of stimulation. For each age group, maximal active force developed at an ACh concentration of 10(-4) M and was significantly greater in tissues from adults (1.86 +/- 0.24 N/m2, adult; 0.95 +/- 0.05 N/m2, neonate; p < 0.05). In contrast, no significant differences were observed with respect to basal or agonist-stimulated levels of MLCP. The data suggest that factors other than levels of MLCP contribute to the reduced force-generating capacity of antral smooth muscle from the neonate. PMID:8825402

  16. Association of Muscle Mass, Area, and Strength With Incident Diabetes in Older Adults: The Health ABC Study.

    PubMed

    Larsen, Britta A; Wassel, Christina L; Kritchevsky, Stephen B; Strotmeyer, Elsa S; Criqui, Michael H; Kanaya, Alka M; Fried, Linda F; Schwartz, Ann V; Harris, Tamara B; Ix, Joachim H

    2016-04-01

    The role of muscle in development of metabolic conditions is poorly understood. The authors show that, while there was no overall association between muscle mass, area, and strength and incident diabetes in older adults, more muscle at baseline was protective against incident diabetes for normal weight women. PMID:26930180

  17. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  18. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration.

    PubMed

    Zhu, Han; Xiao, Fang; Wang, Gang; Wei, Xiuqing; Jiang, Lei; Chen, Yan; Zhu, Lin; Wang, Haixia; Diao, Yarui; Wang, Huating; Ip, Nancy Y; Cheung, Tom H; Wu, Zhenguo

    2016-08-23

    Recent studies have shown that STAT3 negatively regulates the proliferation of muscle satellite cells (MuSCs) and injury-induced muscle regeneration. These studies have been largely based on STAT3 inhibitors, which may produce off-target effects and are not cell type-specific in vivo. Here, we examine the role of STAT3 in MuSCs using two different mouse models: a MuSC-specific Stat3 knockout line and a Stat3 (MuSC-specific)/dystrophin (Dmd) double knockout (dKO) line. Stat3(-/-) MuSCs from both mutant lines were defective in proliferation. Moreover, in both mutant strains, the MuSC pool shrank, and regeneration was compromised after injury, with defects more pronounced in dKO mice along with severe muscle inflammation and fibrosis. We analyzed the transcriptomes of MuSCs from dKO and Dmd(-/-) control mice and identified multiple STAT3 target genes, including Pax7. Collectively, our work reveals a critical role of STAT3 in adult MuSCs that regulates their self-renewal during injury-induced muscle regeneration. PMID:27524611

  19. Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle.

    PubMed

    Jaramillo, Maryann S; Lovato, Candice V; Baca, Erica M; Cripps, Richard M

    2009-04-01

    Skeletal muscles are readily characterized by their location within the body and by the number and composition of their constituent muscle fibers. Here, we characterize a mutation that causes a severe reduction in the number of fibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions in the escape response of the Drosophila adult. The wild-type TDT comprises over 20 large muscle fibers and four small fibers. In crossveinless (cv) mutants, the number of large fibers is reduced by 50%, and the number of small fibers is also occasionally reduced. This reduction in fiber number arises from a reduction in the number of founder cells contributing to the TDT at the early pupal stage. Given the role of cv in TGFbeta signaling, we determined whether this pathway directly impacts TDT development. Indeed, gain- and loss-of-function manipulations in the TGFbeta pathway resulted in dramatic increases and decreases, respectively, in TDT fiber number. By identifying the origins of the TDT muscle, from founder cells specified in the mesothoracic leg imaginal disc, we also demonstrate that the TGFbeta pathway directly impacts the specification of founder cells for the jump muscle. Our studies define a new role for the TGFbeta pathway in the control of specific skeletal muscle characteristics. PMID:19244280

  20. Association between chronic hepatitis C virus infection and low muscle mass in U.S. adults

    PubMed Central

    Gowda, Charitha; Compher, Charlene; Amorosa, Valerianna K.; Re, Vincent Lo

    2014-01-01

    Given that low muscle mass can lead to worse health outcomes in patients with chronic infections, we assessed if chronic HCV infection was associated with low muscle mass among U.S. adults. We performed a cross-sectional study of the National Health Examination and Nutrition Study (1999-2010). Chronic HCV-infected patients had detectable HCV RNA. Low muscle mass was defined as <10th percentile for mid-upper arm circumference (MUAC). Multivariable logistic regression was used to determine adjusted odds ratios (aORs) with 95% confidence intervals (CIs) of low muscle mass associated with chronic HCV. Among 18,513 adults, chronic HCV-infected patients (n=303) had a higher prevalence of low muscle mass than uninfected persons (13.8% versus 6.7%; aOR, 2.22; 95% CI, 1.39-3.56), and this association remained when analyses were repeated among persons without significant liver fibrosis (aOR, 2.12; 95% CI, 1.30-3.47). This study demonstrates that chronic HCV infection is associated with low muscle mass, as assessed by MUAC measurements, even in the absence of advanced liver disease. PMID:24989435

  1. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype.

    PubMed

    Thyberg, J; Nilsson, J; Palmberg, L; Sjölund, M

    1985-01-01

    Smooth muscle cells were isolated enzymatically from adult human arteries, grown in primary culture in medium containing 10% whole blood serum, and studied by transmission electron microscopy and [3H]thymidine autoradiography. In the intact arterial wall and directly after isolation, each smooth muscle cell had a nucleus with a wide peripheral zone of condensed chromatin and a cytoplasm dominated by myofilament bundles with associated dense bodies. After 1-2 days of culture, the cells had attached to the substrate and started to spread out. At the same time, a characteristic fine-structural modification took place. It included nuclear enlargement, dispersion of the chromatin and formation of large nucleoli. Moreover, myofilament bundles disappeared and an extensive rough endoplasmic reticulum and a large Golgi complex were organized in the cytoplasm. This morphological transformation of the cells was completed in 3-4 days. It was accompanied by initiation of DNA replication and mitosis. The observations demonstrate that adult human arterial smooth muscle cells, when cultivated in vitro, pass through a phenotypic modulation of the same type as arterial smooth muscle cells from experimental animals. This modulation gives the cells morphological and functional properties resembling those of the modified smooth muscle cells found in fibroproliferative lesions of atherosclerosis. Further studies of the regulation of smooth muscle phenotype and growth may provide important clues for a better understanding of the pathogenesis of atherosclerosis. PMID:3967287

  2. Does force or velocity contribute more to maximal muscle power in older adults?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle power, the product of force and velocity, has been found to be more sensitive than strength for predicting functional status in older adults. Some investigators therefore advocate the use of high velocity contractions during resistance training to target power. However, the relative contribu...

  3. The specific contributions of force and velocity to muscle power in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates relative contributions of force and velocity on muscular power and function in middle-aged (MH), older healthy (OH), and older mobility-limited (OML) adults. Seventy-nine men and women underwent tests including leg muscle power at 180deg/sec (SPisok), isometric maximal torq...

  4. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults

    PubMed Central

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m2) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  5. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    PubMed

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  6. Secondary muscle pathology and metabolic dysregulation in adults with cerebral palsy

    PubMed Central

    Gordon, Paul M.; Hurvitz, Edward A.; Burant, Charles F.

    2012-01-01

    Cerebral palsy (CP) is caused by an insult to or malformation of the developing brain which affects motor control centers and causes alterations in growth, development, and overall health throughout the life span. In addition to the disruption in development caused by the primary neurological insult, CP is associated with exaggerated sedentary behaviors and a hallmark accelerated progression of muscle pathology compared with typically developing children and adults. Factors such as excess adipose tissue deposition and altered partitioning, insulin resistance, and chronic inflammation may increase the severity of muscle pathology throughout adulthood and lead to cardiometabolic disease risk and/or early mortality. We describe a model of exaggerated health risk represented in adults with CP and discuss the mechanisms and secondary consequences associated with chronic sedentary behavior, obesity, aging, and muscle spasticity. Moreover, we highlight novel evidence that implicates aberrant inflammation in CP as a potential mechanism linking both metabolic and cognitive dysregulation in a cyclical pattern. PMID:22912367

  7. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    PubMed Central

    Reid, Kieran F.; Pasha, Evan; Doros, Gheorghe; Clark, David J.; Patten, Carolynn; Phillips, Edward M.; Frontera, Walter R.; Fielding, Roger A.

    2013-01-01

    Purpose This longitudinal study examined the major physiological mechanisms that determine the age-related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~ 3 years of follow-up, mobility-limited older adults (mean age: 77.2 ± 4, n = 22, 12 females) would have significantly greater reductions in leg extensor muscle power compared to healthy older adults (74.1 ± 4, n = 26, 12 females). Methods Mid-thigh muscle size and composition were assessed using computed tomography. Neuromuscular activation was quantified using surface electromyography and vastus lateralis single muscle fibers were studied to evaluate intrinsic muscle contractile properties. Results At follow-up, the overall magnitude of muscle power loss was similar between groups: mobility-limited: −8.5% vs. healthy older: −8.8%, P > 0.8. Mobility-limited elders had significant reductions in muscle size (−3.8%, P< 0.01) and strength (−5.9%, P< 0.02), however, these parameters were preserved in healthy older (P ≥ 0.7). Neuromuscular activation declined significantly within healthy older but not in mobility-limited participants. Within both groups, the cross sectional areas of type I and type IIA muscle fibers were preserved while substantial increases in single fiber peak force ( > 30%), peak power (> 200%) and unloaded shortening velocity (>50%) were elicited at follow-up. Conclusion Different physiological mechanisms contribute to the loss of lower extremity muscle power in healthy older and mobility-limited older adults. Neuromuscular changes may be the critical early determinant of muscle power deficits with aging. In response to major whole muscle decrements, major compensatory mechanisms occur within the contractile properties of surviving single muscle fibers in an attempt to restore overall muscle power and function with advancing age. PMID:24122149

  8. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  9. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia.

    PubMed

    Fry, Christopher S; Lee, Jonah D; Mula, Jyothi; Kirby, Tyler J; Jackson, Janna R; Liu, Fujun; Yang, Lin; Mendias, Christopher L; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2015-01-01

    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis. PMID:25501907

  10. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD

    PubMed Central

    Stańczak, Paweł; Witecka, Joanna; Szydło, Anna; Gutmajster, Ewa; Lisik, Małgorzata; Auguściak-Duma, Aleksandra; Tarnowski, Maciej; Czekaj, Tomasz; Czekaj, Hanna; Sieroń, Aleksander L

    2009-01-01

    Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5′UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome. PMID:18830233

  11. A simple assessment model to quantifying the dynamic hippocampal neurogenic process in the adult mammalian brain.

    PubMed

    Choi, Minee L; Begeti, Faye; Barker, Roger A; Kim, Namho

    2016-04-01

    Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies. © 2015 Wiley Periodicals, Inc. PMID:26443687

  12. Effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity

    PubMed Central

    Zhao, Xiaoguang; Tsujimoto, Takehiko; Kim, Bokun; Katayama, Yasutomi; Wakaba, Kyousuke; Wang, Zhennan; Tanaka, Kiyoji

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity and to verify whether the rate of change in foot structure is related to that in ankle muscle strength. [Subjects and Methods] Twenty-seven adults with obesity completed a 12-week program in which the intensity of physical activity performed was gradually increased. Physical activity was monitored using a three-axis accelerometer. Foot structure was assessed using a three-dimensional foot scanner, while ankle muscle strength was measured using a dynamometry. [Results] With the increasing physical activity, the participants’ feet became thinner (the rearfoot width, instep height, and girth decreased) and the arch became higher (the arch height index increased) and stiffer (the arch stiffness index increased); the ankle muscle strength also increased after the intervention. Additionally, the changes in the arch height index and arch stiffness index were not associated with changes in ankle muscle strength. [Conclusion] Increasing physical activity may be one possible approach to improve foot structure and function in individuals with obesity.

  13. The effects of dual-tasking on arm muscle responses in young and older adults.

    PubMed

    Laing, Justin M; Tokuno, Craig D

    2016-04-01

    This study examined whether dual-tasking affects an individual's ability to generate arm muscle responses following a loss of balance. Nineteen young and 16 older adults recovered their balance in response to a surface translation. This balance task was either completed on its own or while counting backwards by 2's (easy counting difficulty) or 7's (hard counting difficulty). With increasing counting difficulty, less attentional resources were assumed to be available for balance recovery. The ability to generate arm muscle responses was quantified through the measurement of electromyographic (EMG) onset latencies and amplitudes from three arm muscles. Results indicated that the attentional requirements of the counting task did not greatly affect EMG onset latencies or amplitudes for both young and older adults. Even when an effect was observed, the magnitude of change was small (e.g., ∼3ms earlier EMG onset and ∼2.0%MVC smaller EMG amplitude during the dual- compared to the single-task conditions). Thus, the generation of arm muscle responses do not appear to require a significant amount of attentional resources and the decreased ability to cope with cognitive interference with ageing is unlikely to explain why older adults have difficulty in generating arm responses following a loss of balance. PMID:26784708

  14. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.

    PubMed

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E; Yang, Lin; Konhilas, John; Lawlor, Michael W; Ottenheijm, Coen; Granzier, Henk L

    2015-09-15

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  15. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype. PMID:23321639

  16. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly.

    PubMed

    Bhartiya, Deepa; Parte, Seema; Patel, Hiren; Sriraman, Kalpana; Zaveri, Kusum; Hinduja, Indira

    2016-01-01

    Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. PMID:26635884

  17. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly

    PubMed Central

    Bhartiya, Deepa; Parte, Seema; Patel, Hiren; Sriraman, Kalpana; Zaveri, Kusum; Hinduja, Indira

    2016-01-01

    Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. PMID:26635884

  18. The tetanic depression in fast motor units of mammalian skeletal muscle can be evoked by lengthening of one initial interpulse interval.

    PubMed

    Celichowski, J; Dobrzyńska, Z; Łochyński, D; Krutki, P

    2011-09-01

    A lower than expected tetanic force (the tetanic depression) is regularly observed in fast motor units (MUs) when a higher stimulation frequency immediately follows a lower one. The aim of the present study was to determine whether prolongation of only the first interpulse interval (IPI) resulted in tetanic depression. The experiments were carried out on fast MUs of the medial gastrocnemius muscle in cats and rats. The tetanic depression was measured in each case as the force decrease of a tetanus with one IPI prolonged in relation to the tetanic force at the respective constant stimulation frequency. Force depression was observed in all cases studied and was considerably greater in cats. For cats, the mean values of force depression amounted to 28.64% for FR and 10.86% for FF MUs whereas for rats 9.30 and 7.21% for FR and FF motor units, respectively. Since the phenomenon of tetanic depression in mammalian muscle is commonly observed even after a change in only the initial interpulse interval within a stimulation pattern, it can effectively influence processes of force regulation during voluntary activity of a muscle, when motoneurones progressively increase the firing rate. PMID:21800254

  19. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance

    PubMed Central

    Liu, Jiarong; Franklin, John L.; Messina, Joseph L.; Hill, Helliner S.; Moellering, Douglas R.; Walton, R. Grace; Martin, Mitchell; Garvey, W. Timothy

    2009-01-01

    Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes. PMID:19996382

  20. Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    PubMed Central

    Arbogast, Sandrine; Lainé, Jeanne; Vassilopoulos, Stéphane; Beuvin, Maud; Dubourg, Odile; Vignaud, Alban; Ferry, Arnaud; Krol, Alain; Allamand, Valérie; Guicheney, Pascale; Ferreiro, Ana; Lescure, Alain

    2011-01-01

    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process. PMID:21858002

  1. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.

    PubMed

    Logan, Samantha M; Tessier, Shannon N; Tye, Joann; Storey, Kenneth B

    2016-03-01

    Over the course of the torpor-arousal cycle, hibernators must make behavioral, physiological, and molecular rearrangements in order to keep a very low metabolic rate and retain organ viability. 13-lined ground squirrels (Ictidomys tridecemlineatus) remain immobile during hibernation, and although the mechanisms of skeletal muscle survival are largely unknown, studies have shown minimal muscle loss in hibernating organisms. Additionally, the ground squirrel heart undergoes cold-stress, reversible cardiac hypertrophy, and ischemia-reperfusion without experiencing fatal impairment. This study examines the role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in the regulation of cell stress in cardiac and skeletal muscles, comparing euthermic and hibernating ground squirrels. Immunoblots showed a fivefold decrease in JAK3 expression during torpor in skeletal muscle, along with increases in STAT3 and 5 phosphorylation and suppressors of cytokine signaling-1 (SOCS1) protein levels. Immunoblots also showed coordinated increases in STAT1, 3 and 5 phosphorylation and STAT1 inhibitor protein expression in cardiac muscle during torpor. PCR analysis revealed that the activation of these pro-survival signaling cascades did not result in coordinate changes in downstream genes such as anti-apoptotic B-cell lymphoma-2 (Bcl-2) family gene expression. Overall, these results indicate activation of the JAK-STAT pathway in both cardiac and skeletal muscles, suggesting a response to cellular stress during hibernation. PMID:26885984

  2. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow.

    PubMed

    Yeo, Jia Hao; McAllan, Bronwyn M; Fraser, Stuart T

    2016-04-01

    Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production. PMID:26898901

  3. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins.

    PubMed

    Schuijers, Jurian; Clevers, Hans

    2012-06-13

    After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp. PMID:22617424

  4. What is the Optimal Amount of Protein to Support Post-Exercise Skeletal Muscle Reconditioning in the Older Adult?

    PubMed

    Churchward-Venne, Tyler A; Holwerda, Andrew M; Phillips, Stuart M; van Loon, Luc J C

    2016-09-01

    Hyperaminoacidemia following protein ingestion enhances the anabolic effect of resistance-type exercise by increasing the stimulation of muscle protein synthesis and attenuating the exercise-mediated increase in muscle protein breakdown rates. Although factors such as the source of protein ingested and the timing of intake relative to exercise can impact post-exercise muscle protein synthesis rates, the amount of protein ingested after exercise appears to be the key nutritional factor dictating the magnitude of the muscle protein synthetic response during post-exercise recovery. In younger adults, muscle protein synthesis rates after resistance-type exercise respond in a dose-dependent manner to ingested protein and are maximally stimulated following ingestion of ~20 g of protein. In contrast to younger adults, older adults are less sensitive to smaller doses of ingested protein (less than ~20 g) after exercise, as evidenced by an attenuated increase in muscle protein synthesis rates during post-exercise recovery. However, older muscle appears to retain the capacity to display a robust stimulation of muscle protein synthesis in response to the ingestion of greater doses of protein (~40 g), and such an amount may be required for older adults to achieve a robust stimulation of muscle protein synthesis during post-exercise recovery. The aim of this article is to discuss the current state of evidence regarding the dose-dependent relationship between dietary protein ingestion and changes in skeletal muscle protein synthesis during recovery from resistance-type exercise in older adults. We provide recommendations on the amount of protein that may be required to maximize skeletal muscle reconditioning in response to resistance-type exercise in older adults. PMID:26894275

  5. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: an update of a systematic review.

    PubMed

    Geddes, E Lynne; O'Brien, Kelly; Reid, W Darlene; Brooks, Dina; Crowe, Jean

    2008-12-01

    The purpose was to update an original systematic review to determine the effect of inspiratory muscle training (IMT) on inspiratory muscle strength and endurance, exercise capacity, dyspnea and quality of life for adults with chronic obstructive pulmonary disease (COPD). The original MEDLINE and CINAHL search to August 2003 was updated to January 2007 and EMBASE was searched from inception to January 2007. Randomized controlled trials, published in English, with adults with stable COPD, comparing IMT to sham IMT or no intervention, low versus high intensity IMT, and different modes of IMT were included. Nineteen of 274 articles in the original search met the inclusion criteria. The updated search revealed 17 additional articles; 6 met the inclusion criteria, all of which compared targeted, threshold or normocapneic hyperventilation IMT to sham IMT. An update of the sub-group analysis comparing IMT versus sham IMT was performed with 10 studies from original review and 6 from the update. Sixteen meta-analyses are reported. Results demonstrated significant improvements in inspiratory muscle strength (PI(max), PI(max) % predicted, peak inspiratory flow rate), inspiratory muscle endurance (RMET, inspiratory threshold loading, MVV), exercise capacity (Ve(max), Borg Score for Respiratory Effort, 6MWT), Transitional Dyspnea Index (focal score, functional impairment, magnitude of task, magnitude of effort), and the Chronic Respiratory Disease Questionnaire (quality of life). Results suggest that targeted, threshold or normocapneic hyperventilation IMT significantly increases inspiratory muscle strength and endurance, improves outcomes of exercise capacity and one measure of quality of life, and decreases dyspnea for adults with stable COPD. PMID:18708282

  6. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  7. Regulatory Mechanism of Muscle Disuse Atrophy in Adult Rats

    NASA Technical Reports Server (NTRS)

    1993-01-01

    lowered levels of spermatid formation. Hormonal changes due to testes atrophy must be considered in future experiments where related effects may modify muscle, bone or other tissue changes. Also, some new assessments of past results (published by many researchers) may warrant revised interpretations. The blood pressure studies and the testicular function results were presented and reviewed during an invited lecture at the University of Bordeaux II during the Animals in Space Symposium in March 1993. In summary, each of these three projects complied with the objectives of the proposal and serve to demonstrate the utility of animal models in preparations and interpretations of space flight results. All funding has been expended in accordance with the approved budget.

  8. Diminished Foot and Ankle Muscle Volumes in Young Adults With Chronic Ankle Instability

    PubMed Central

    Feger, Mark A.; Snell, Shannon; Handsfield, Geoffrey G.; Blemker, Silvia S.; Wombacher, Emily; Fry, Rachel; Hart, Joseph M.; Saliba, Susan A.; Park, Joseph S.; Hertel, Jay

    2016-01-01

    Background: Patients with chronic ankle instability (CAI) have demonstrated altered neuromuscular function and decreased muscle strength when compared with healthy counterparts without a history of ankle sprain. Up to this point, muscle volumes have not been analyzed in patients with CAI to determine whether deficits in muscle size are present following recurrent sprain. Purpose: To analyze intrinsic and extrinsic foot and ankle muscle volumes and 4-way ankle strength in young adults with and without CAI. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Five patients with CAI (mean age, 23.0 ± 4 years; 1 male, 4 females) and 5 healthy controls (mean age, 23.8 ± 4.5 years; 1 male, 4 females) volunteered for this study. Novel fast-acquisition magnetic resonance imaging (MRI) was used to scan from above the femoral condyles through the foot and ankle. The perimeter of each muscle was outlined on each axial slice and then the 2-dimensional area was multiplied by the slice thickness (5 mm) to calculate the muscle volume. Plantar flexion, dorsiflexion, inversion, and eversion isometric strength were measured using a handheld dynamometer. Patients with CAI were compared with healthy controls on all measures of muscle volume and strength. Extrinsic muscle volumes of patients with CAI were also compared with a normative database of healthy controls (n = 24) by calculating z scores for each muscle individually for each CAI subject. Results: The CAI group had smaller total shank, superficial posterior compartment, soleus, adductor hallucis obliqus, and flexor hallucis brevis muscle volumes compared with healthy controls as indicated by group means and associated 90% CIs that did not overlap. Cohen d effect sizes for the significant group differences were all large and ranged from 1.46 to 3.52, with 90% CIs that did not cross zero. The CAI group had lower eversion, dorsiflexion, and 4-way composite ankle strength, all with group means and associated 90

  9. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity.

    PubMed

    Moretti, Irene; Ciciliot, Stefano; Dyar, Kenneth A; Abraham, Reimar; Murgia, Marta; Agatea, Lisa; Akimoto, Takayuki; Bicciato, Silvio; Forcato, Mattia; Pierre, Philippe; Uhlenhaut, N Henriette; Rigby, Peter W J; Carvajal, Jaime J; Blaauw, Bert; Calabria, Elisa; Schiaffino, Stefano

    2016-01-01

    The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia. PMID:27484840

  10. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults

    PubMed Central

    Coelho, Vinícius A.; Probst, Vanessa S.; Nogari, Bruna M.; Teixeira, Denilson C.; Felcar, Josiane M.; Santos, Denis C.; Gomes, Marcus Vinícius M.; Andraus, Rodrigo A. C.; Fernandes, Karen B. P.

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group − individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength. PMID:27065543

  11. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice.

    PubMed

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2015-09-01

    The data provides information in support of the research article, "Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging", Journal of Proteome Research, 2014, 13 (11), 2008-21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys) residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys) containing peptides was alkylated using N-ethylmalemide (d0-NEM). Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethyl)phosphine (TCEP) and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM). Label-free analysis of the global proteome of adult (n=5) and old (n=4) gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0) NEM labeled) and reversibly oxidized d(5)-NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. PMID:26217813

  12. The Human Adult Skeletal Muscle Transcriptional Profile Reconstructed by a Novel Computational Approach

    PubMed Central

    Bortoluzzi, Stefania; d'Alessi, Fabio; Romualdi, Chiara; Danieli, Gian Antonio

    2000-01-01

    By applying a novel software tool, information on 4080 UniGene clusters was retrieved from three adult human skeletal muscle cDNA libraries, which were selected for being neither normalized nor subtracted. Reconstruction of a transcriptional profile of the corresponding tissue was attempted by a computational approach, classifying each transcript according to its level of expression. About 25% of the transcripts accounted for about 80% of the detected transcriptional activity, whereas most genes showed a low level of expression. This in silico transcriptional profile was then compared with data obtained by a SAGE study. A fairly good agreement between the two methods was observed. About 400 genes, highly expressed in skeletal muscle or putatively skeletal muscle-specific, may represent the minimal set of genes needed to determine the tissue specificity. These genes could be used as a convenient reference to monitor major changes in the transcriptional profile of adult human skeletal muscle in response to different physiological or pathological conditions, thus providing a framework for designing DNA microarrays and initiating biological studies. PMID:10720575

  13. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity

    PubMed Central

    Moretti, Irene; Ciciliot, Stefano; Dyar, Kenneth A.; Abraham, Reimar; Murgia, Marta; Agatea, Lisa; Akimoto, Takayuki; Bicciato, Silvio; Forcato, Mattia; Pierre, Philippe; Uhlenhaut, N. Henriette; Rigby, Peter W. J.; Carvajal, Jaime J.; Blaauw, Bert; Calabria, Elisa; Schiaffino, Stefano

    2016-01-01

    The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia. PMID:27484840

  14. Muscle mechanical properties of adult and older rats submitted to exercise after immobilization

    PubMed Central

    Kodama, Fábio Yoshikazu; Camargo, Regina Celi Trindade; Job, Aldo Eloizo; Ozaki, Guilherme Akio Tamura; Koike, Tatiana Emy; Camargo Filho, José Carlos Silva

    2012-01-01

    Objectives To describe the effects of immobilization, free remobilization and remobilization by physical exercise about mechanical properties of skeletal muscle of rats of two age groups. Methods 56 Wistar rats divided into two groups according to age, an adult group (five months) and an older group (15 months). These groups were subdivided in: control, immobilized, free remobilized and remobilized by physical exercise. The pelvic limb of rats was immobilized for seven days. The exercise protocol consisted of five swimming sessions, once per day and 25 minutes per session. The gastrocnemius muscle was subjected to tensile tests, and evaluated the properties: load at the maximum limit, stretching at the maximum limit and stiffness. Results The immobilization reduced the values of load at the maximum limit and the remobilization protocols were not sufficient to restore control levels in adult group and older rats. The stretching at the maximum limit differs only in the older group. Conclusions The immobilization reduces the muscle's ability to bear loads and exercise protocol tends to restore the default at control values in adult and older rats. The age factor only interfered in the stretching at the maximum limit, inducing a reduction of this property in the post-immobilization. Level of Evidence II, Investigating the Results of Treatment. PMID:24453606

  15. Muscle Strength, Physical Activity, and Functional Limitations in Older Adults with Central Obesity

    PubMed Central

    Germain, Cassandra M.; Batsis, John A.; Vasquez, Elizabeth; McQuoid, Douglas R.

    2016-01-01

    Background. Obesity and muscle weakness are independently associated with increased risk of physical and functional impairment in older adults. It is unknown whether physical activity (PA) and muscle strength combined provide added protection against functional impairment. This study examines the association between muscle strength, PA, and functional outcomes in older adults with central obesity. Methods. Prevalence and odds of physical (PL), ADL, and IADL limitation were calculated for 6,388 community dwelling adults aged ≥ 60 with central obesity. Individuals were stratified by sex-specific hand grip tertiles and PA. Logistic models were adjusted for age, education, comorbidities, and body-mass index and weighted. Results. Overall prevalence of PL and ADL and IADL limitations were progressively lower by grip category. Within grip categories, prevalence was lower for individuals who were active than those who were inactive. Adjusted models showed significantly lower odds of PL OR 0.42 [0.31, 0.56]; ADL OR 0.60 [0.43, 0.84], and IADL OR 0.46 [0.35, 0.61] for those in the highest grip strength category as compared to those in the lowest grip category. Conclusion. Improving grip strength in obese elders who are not able to engage in traditional exercise is important for reducing odds of physical and functional impairment. PMID:27034833

  16. SKELETAL MUSCLE SODIUM GLUCOSE CO-TRANSPORTERS IN OLDER ADULTS WITH TYPE 2 DIABETES UNDERGOING RESISTANCE TRAINING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the expression of the sodium-dependent glucose co-transporter system (SGLT3) in skeletal muscle of Hispanic older adults with type 2 diabetes. Subjects (65+/-8 yr) were randomized to resistance training (3x/wk, n=13) or standard of care (controls, n=5) for 16 weeks. Skeletal muscle SGL...

  17. Improved Knee Extensor Strength with Resistance Training Associates with Muscle Specific miRNAs in Older Adults

    PubMed Central

    Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min; Messi, María L.; Marsh, Anthony P.; Leng, Iris; Nicklas, Barbara J.; Delbono, Osvaldo

    2015-01-01

    Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age = 70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, -206 may correlate with muscle TNNT1gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults. PMID:25560803

  18. Long-term, stable differentiation of human embryonic stem cell-derived neural precursors grafted into the adult mammalian neostriatum.

    PubMed

    Nasonkin, Igor; Mahairaki, Vasiliki; Xu, Leyan; Hatfield, Glen; Cummings, Brian J; Eberhart, Charles; Ryugo, David K; Maric, Dragan; Bar, Eli; Koliatsos, Vassilis E

    2009-10-01

    Stem cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months). NPs were derived from adherent monolayer cultures of HESCs exposed to noggin. After transplantation, NPs showed a drastic reduction in mitotic activity and an avid differentiation into neurons that projected via major white matter tracts to a variety of forebrain targets. A third of NP-derived neurons expressed the basal forebrain-neostriatal marker dopamine-regulated and cyclic AMP-regulated phosphoprotein. Graft-derived neurons formed mature synapses with host postsynaptic structures, including dendrite shafts and spines. NPs inoculated in white matter tracts showed a tendency toward glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin(+) precursors. Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular central nervous system (CNS) niches. PMID:19609935

  19. Long-Term, Stable Differentiation Of Human Embryonic Stem Cell-Derived Neural Precursors Grafted Into The Adult Mammalian Neostriatum

    PubMed Central

    Nasonkin, I.; Mahairaki, V.; Xu, L.; Hatfield, G.; Cummings, B.J.; Eberhart, C.; Ryugo, D.; Maric, D.; Bar, E.; Koliatsos, V.E.

    2010-01-01

    Stem-cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months). NPs were derived from adherent monolayer cultures of HESCs exposed to noggin. After transplantation, NPs showed a drastic reduction in mitotic activity and an avid differentiation into neurons that projected via major white matter tracts to a variety of forebrain targets. A third of NP-derived neurons expressed the basal forebrain-neostriatal marker Dopamine- and cyclic AMP-Regulated Phosphoprotein. Graft-derived neurons formed mature synapses with host post-synaptic structures, including dendrite shafts and spines. NPs inoculated in white matter tracts showed a tendency towards glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin (+) precursors. Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular CNS niches. PMID:19609935

  20. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain

    PubMed Central

    Guo, Junjie U.; Su, Yijing; Shin, Joo Heon; Shin, Jaehoon; Li, Hongda; Xie, Bin; Zhong, Chun; Hu, Shaohui; Le, Thuc; Fan, Guoping; Zhu, Heng; Chang, Qiang; Gao, Yuan; Ming, Guo-li; Song, Hongjun

    2014-01-01

    DNA methylation plays critical roles in the nervous system and has been traditionally considered to be restricted to CpG dinucleotides in metazoan genomes. Here we show that the single-base resolution DNA methylome from adult mouse dentate neurons consists of both CpG (~75%) and CpH (~25%) methylation (H = A/C/T). Neuronal CpH methylation is conserved in human brains, enriched in low CpG-density regions, depleted at protein-DNA interaction sites, and anti-correlated with gene expression. Functionally, both mCpGs and mCpHs can repress transcription in vitro and are recognized by MeCP2 in neurons in vivo. Unlike most CpG methylation, CpH methylation is established de novo during neuronal maturation and requires DNMT3A for active maintenance in post-mitotic neurons. These characteristics of CpH methylation suggest a significantly expanded proportion of the neuronal genome under cytosine methylation regulation and provide a new foundation for understanding the role of this key epigenetic modification in the nervous system. PMID:24362762

  1. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A.

    2016-01-01

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses. PMID:26861354

  2. An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres

    PubMed Central

    Roots, H.

    2008-01-01

    We examined, over a wide range of temperatures (10–35°C), the isometric tension and tension during ramp shortening at different velocities (0.2–4 L0/s) in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L0) was 2.2 mm and sarcomere length ~2.5 μm. During a ramp shortening, the tension change showed an initial inflection of small amplitude (P1), followed by a larger exponential decline towards an approximate steady level; the tension continued to decline slowly afterwards and the approximate steady tension at a given velocity was estimated as the tension (P2) at the point of intersection between two linear slopes, as previously described (Roots et al. 2007). At a given temperature, the tension P2 declined to a lower level and at a faster rate (from an exponential curve fit) as the shortening velocity was increased; the temperature sensitivity of the rate of tension decline during ramp shortening at different velocities was low (Q10 0.9–1.5). The isometric tension and the P2 tension at a given shortening velocity increased with warming so that the relation between tension and (reciprocal) temperature was sigmoidal in both. In isometric muscle, the temperature T0.5 for half-maximal tension was ~10°C, activation enthalpy change (∆H) was ~100 kJ mol−1 and entropy change (∆S) ~350 J mol−1 K−1. In shortening, these were increased with increase of velocity so that at a shortening velocity (~4 L0/s) producing maximal power at 35°C, T0.5 was ~28°C, ∆H was ~200 kJ mol−1 and ∆S ~ 700 J mol−1 K−1; the same trends were seen in the tension data from isotonic release experiments on intact muscle and in ramp shortening experiments on maximally Ca-activated skinned fibres. In general, our findings show that the sigmoidal relation between force and temperature can be extended from isometric to shortening muscle; the implications of the findings are discussed in relation to the crossbridge cycle

  3. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  4. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.

    PubMed

    You, Jae-Sung; Lincoln, Hannah C; Kim, Chan-Ran; Frey, John W; Goodman, Craig A; Zhong, Xiao-Ping; Hornberger, Troy A

    2014-01-17

    The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass. PMID:24302719

  5. Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera.

    PubMed

    Collet, Claude; Belzunces, Luc

    2007-02-01

    In the hive, a wide range of honeybees tasks such as cell cleaning, nursing, thermogenesis, flight, foraging and inter-individual communication (waggle dance, antennal contact and trophallaxy) depend on proper muscle activity. However, whereas extensive electrophysiological studies have been undertaken over the past ten years to characterize ionic currents underlying the physiological neuronal activity in honeybee, ionic currents underlying skeletal muscle fibre activity in this insect remain, so far, unexplored. Here, we show that, in contrast to many other insect species, action potentials in muscle fibres isolated from adult honeybee metathoracic tibia, are not graded but actual all-or-none responses. Action potentials are blocked by Cd(2+) and La(3+) but not by tetrodotoxin (TTX) in current-clamp mode of the patch-clamp technique, and as assessed under voltage-clamp, both Ca(2+) and K(+) currents are involved in shaping action potentials in single muscle fibres. The activation threshold potential for the voltage-dependent Ca(2+) current is close to -40 mV, its mean maximal amplitude is -8.5+/-1.9 A/F and the mean apparent reversal potential is near +40 mV. In honeybees, GABA does not activate any ionic membrane currents in muscle fibres from the tibia, but L-glutamate, an excitatory neurotransmitter at the neuromuscular synapse induces fast activation of an inward current when the membrane potential is voltage clamped close to its resting value. Instead of undergoing desensitization as is the case in many other preparations, a component of this glutamate-activated current has a sustained component, the reversal potential of which is close to 0 mV, as demonstrated with voltage ramps. Future investigations will allow extensive pharmacological characterization of membrane ionic currents and excitation-contraction coupling in skeletal muscle from honeybee, a useful insect that became a model to study many physiological phenomena and which plays a major role in

  6. Effects of chronic overload on muscle hypertrophy and mTOR signaling in adult and aged rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effect of 28 days of overload on mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling in young adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats subjected to bilateral synergist ablation (SA) of two-thirds of the gas...

  7. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: a systematic review.

    PubMed

    Geddes, E Lynne; Reid, W Darlene; Crowe, Jean; O'Brien, Kelly; Brooks, Dina

    2005-11-01

    The purpose of this study was to conduct a systematic review to determine the effect of inspiratory muscle training (IMT) on inspiratory muscle strength and endurance, exercise capacity, dyspnea and quality of life for adults with chronic obstructive pulmonary disease (COPD). A systematic review of the literature was conducted according the Cochrane Collaboration protocol using Medline and CINAHL. Nineteen of 274 extracted articles met the inclusion criteria and addressed comparisons of interest which included: IMT versus sham; IMT versus no intervention; low- versus high-intensity IMT; and two different modes of IMT. Thirteen meta-analyses were reported. Results indicate that targeted resistive or threshold IMT was associated with significant improvements in some outcomes of inspiratory muscle strength (PI(max) (cm H2O)) and endurance (Inspiratory Threshold Loading (kPa)), exercise capacity (Borg Scale for Respiratory Effort (modified Borg scale), Work Rate maximum (Watts)), and dyspnea (Transition Dyspnea Index), whereas IMT without a target or not using threshold training did not show improvement in these variables. There was no conclusive evidence regarding quality of life measures. IMT is effective for adults with COPD when using threshold or targeted devices that control or provide a target for training intensity. PMID:15894478

  8. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  9. MicroRNA-29a in Adult Muscle Stem Cells Controls Skeletal Muscle Regeneration During Injury and Exercise Downstream of Fibroblast Growth Factor-2.

    PubMed

    Galimov, Artur; Merry, Troy L; Luca, Edlira; Rushing, Elisabeth J; Mizbani, Amir; Turcekova, Katarina; Hartung, Angelika; Croce, Carlo M; Ristow, Michael; Krützfeldt, Jan

    2016-03-01

    The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling. Stem Cells 2016;34:768-780. PMID:26731484

  10. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.

    PubMed

    Ranatunga, K W; Coupland, M E; Pinniger, G J; Roots, H; Offer, G W

    2007-11-15

    We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) approximately 2 mm, sarcomere length 2.5 microm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature approximately 9 degrees C. A fibre was maximally Ca2+-activated in the isometric state and a approximately 3 degrees C, rapid (< 0.2 ms), laser T-jump applied when the tension was approximately steady in the isometric state, or during ramp shortening or ramp lengthening at a limited range of velocities (0-0.2 L0 s(-1)). The tension increased to 2- to 3 x P0 (isometric force) during ramp lengthening at velocities > 0.05 L0 s(-1), whereas the tension decreased to about < 0.5 x P0 during shortening at 0.1-0.2 L0 s(-1); the unloaded shortening velocity was approximately 1 L0 s(-1) and the curvature of the force-shortening velocity relation was high (a/P0 ratio from Hill's equation of approximately 0.05). In isometric state, a T-jump induced a tension rise of 15-20% to a new steady state; by curve fitting, the tension rise could be resolved into a fast (phase 2b, 40-50 s(-1)) and a slow (phase 3, 5-10 s(-1)) exponential component (as previously reported). During steady lengthening, a T-jump induced a small instantaneous drop in tension, followed by recovery, so that the final tension recorded with and without a T-jump was not significantly different; thus, a T-jump did not lead to a net increase of tension. During steady shortening, the T-jump induced a pronounced tension rise and both its amplitude and the rate (from a single exponential fit) increased with shortening velocity; at 0.1-0.2 L0 s(-1), the extent of fibre shortening during the T-jump tension rise was estimated to be approximately 1.2% L(0) and it was shorter at lower velocities. At a given shortening velocity and over the temperature range of 8-30 degrees C, the

  11. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres

    PubMed Central

    Ranatunga, K W; Coupland, M E; Pinniger, G J; Roots, H; Offer, G W

    2007-01-01

    We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) ∼2 mm, sarcomere length 2.5 μm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature ∼9°C. A fibre was maximally Ca2+-activated in the isometric state and a ∼3°C, rapid (< 0.2 ms), laser T-jump applied when the tension was approximately steady in the isometric state, or during ramp shortening or ramp lengthening at a limited range of velocities (0–0.2 L0 s−1). The tension increased to 2- to 3 × P0 (isometric force) during ramp lengthening at velocities > 0.05 L0 s−1, whereas the tension decreased to about < 0.5 × P0 during shortening at 0.1–0.2 L0 s−1; the unloaded shortening velocity was ∼1 L0 s−1 and the curvature of the force–shortening velocity relation was high (a/P0 ratio from Hill's equation of ∼0.05). In isometric state, a T-jump induced a tension rise of 15–20% to a new steady state; by curve fitting, the tension rise could be resolved into a fast (phase 2b, 40–50 s−1) and a slow (phase 3, 5–10 s−1) exponential component (as previously reported). During steady lengthening, a T-jump induced a small instantaneous drop in tension, followed by recovery, so that the final tension recorded with and without a T-jump was not significantly different; thus, a T-jump did not lead to a net increase of tension. During steady shortening, the T-jump induced a pronounced tension rise and both its amplitude and the rate (from a single exponential fit) increased with shortening velocity; at 0.1–0.2 L0 s−1, the extent of fibre shortening during the T-jump tension rise was estimated to be ∼1.2% L0 and it was shorter at lower velocities. At a given shortening velocity and over the temperature range of 8–30°C, the rate of T-jump tension rise increased with warming (Q10 ≈ 2.7), similar to

  12. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability

    PubMed Central

    Nam, Seung-min; Kim, Won-bok; Yun, Chang-kyo

    2016-01-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability. PMID:27313386

  13. Activation and propagation of Ca2+ release from inside the sarcoplasmic reticulum network of mammalian skeletal muscle

    PubMed Central

    Cully, Tanya R; Edwards, Joshua N; Launikonis, Bradley S

    2014-01-01

    Skeletal muscle fibres are large and highly elongated cells specialized for producing the force required for posture and movement. The process of controlling the production of force within the muscle, known as excitation–contraction coupling, requires virtually simultaneous release of large amounts of Ca2+ from the sarcoplasmic reticulum (SR) at the level of every sarcomere within the muscle fibre. Here we imaged Ca2+ movements within the SR, tubular (t-) system and in the cytoplasm to observe that the SR of skeletal muscle is a connected network capable of allowing diffusion of Ca2+ within its lumen to promote the propagation of Ca2+ release throughout the fibre under conditions where inhibition of SR ryanodine receptors (RyRs) was reduced. Reduction of cytoplasmic [Mg2+] ([Mg2+]cyto) induced a leak of Ca2+ through RyRs, causing a reduction in SR Ca2+ buffering power argued to be due to a breakdown of SR calsequestrin polymers, leading to a local elevation of [Ca2+]SR. The local rise in [Ca2+]SR, an intra-SR Ca2+ transient, induced a local diffusely rising [Ca2+]cyto. A prolonged Ca2+ wave lasting tens of seconds or more was generated from these events. Ca2+ waves were dependent on the diffusion of Ca2+ within the lumen of the SR and ended as [Ca2+]SR dropped to low levels to inactivate RyRs. Inactivation of RyRs allowed re-accumulation of [Ca2+]SR and the activation of secondary Ca2+ waves in the persistent presence of low [Mg2+]cyto if the threshold [Ca2+]SR for RyR opening could be reached. Secondary Ca2+ waves occurred without an abrupt reduction in SR Ca2+ buffering power. Ca2+ release and wave propagation occurred in the absence of Ca2+-induced Ca2+ release. These observations are consistent with the activation of Ca2+ release through RyRs of lowered cytoplasmic inhibition by [Ca2+]SR or store overload-induced Ca2+ release. Restitution of SR Ca2+ buffering power to its initially high value required imposing normal resting ionic conditions in the cytoplasm

  14. Sex hormones establish a reserve pool of adult muscle stem cells.

    PubMed

    Kim, Ji-Hoon; Han, Gi-Chan; Seo, Ji-Yun; Park, Inkuk; Park, Wookjin; Jeong, Hyun-Woo; Lee, Su Hyeon; Bae, Sung-Hwan; Seong, Jinwoo; Yum, Min-Kyu; Hann, Sang-Hyeon; Kwon, Young-Guen; Seo, Daekwan; Choi, Man Ho; Kong, Young-Yun

    2016-09-01

    Quiescent satellite cells, known as adult muscle stem cells, possess a remarkable ability to regenerate skeletal muscle following injury throughout life. Although they mainly originate from multipotent stem/progenitor cells of the somite, the mechanism underlying the establishment of quiescent satellite cell populations is unknown. Here, we show that sex hormones induce Mind bomb 1 (Mib1) expression in myofibres at puberty, which activates Notch signalling in cycling juvenile satellite cells and causes them to be converted into adult quiescent satellite cells. Myofibres lacking Mib1 fail to send Notch signals to juvenile satellite cells, leading to impaired cell cycle exit and depletion. Our findings reveal that the hypothalamic-pituitary-gonadal axis drives Mib1 expression in the myofibre niche. Moreover, the same axis regulates the re-establishment of quiescent satellite cell populations following injury. Our data show that sex hormones establish adult quiescent satellite cell populations by regulating the myofibre niche at puberty and re-establish them during regeneration. PMID:27548913

  15. Lower extremity muscle function after strength or power training in older adults.

    PubMed

    Marsh, Anthony P; Miller, Michael E; Rejeski, W Jack; Hutton, Stacy L; Kritchevsky, Stephen B

    2009-10-01

    It is unclear whether strength training (ST) or power training (PT) is the more effective intervention at improving muscle strength and power and physical function in older adults. The authors compared the effects of lower extremity PT with those of ST on muscle strength and power in 45 older adults (74.8 +/- 5.7 yr) with self-reported difficulty in common daily activities. Participants were randomized to 1 of 3 treatment groups: PT, ST, or wait-list control. PT and ST trained 3 times/wk for 12 wk using knee-extension (KE) and leg-press (LP) machines at approximately 70% of 1-repetition maximum (1RM). For PT, the concentric phase of the KE and LP was completed "as fast as possible," whereas for ST the concentric phase was 2-3 s. Both PT and ST paused briefly at the midpoint of the movement and completed the eccentric phase of the movement in 2-3 s. PT and ST groups showed significant improvements in KE and LP 1RM compared with the control group. Maximum KE and LP power increased approximately twofold in PT compared with ST. At 12 wk, compared with control, maximum KE and LP power were significantly increased for the PT group but not for the ST group. In older adults with compromised function, PT leads to similar increases in strength and larger increases in power than ST. PMID:19940322

  16. Adult patients are more catabolic than children during acute phase after burn injury: a retrospective analysis on muscle protein kinetics

    PubMed Central

    Tuvdendorj, Demidmaa; Chinkes, David L.; Zhang, Xiao-Jun; Ferrando, Arny A.; Elijah, Itoro E.; Mlcak, Ronald P.; Finnerty, Celeste C.; Wolfe, Robert R.; Herndon, David N.

    2011-01-01

    Purpose This study was performed to determine if there is an age-related specificity in the response of muscle protein metabolism to severe burn injury during acute hospitalization. This is a retrospective analysis of previously published data. Methods: Nineteen adult and 58 pediatric burn-injured patients (age 43.3 ± 14.3 vs. 7.2 ± 5.3 years, adult vs. children) participated in stable isotope [ring-2H5]phenylalanine (Phe) infusion studies. Femoral arterial and venous blood samples and muscle biopsy samples were collected throughout the study. Data are presented as means ± standard deviation (SD). A p value less than 0.05 was considered statistically significant. Results Muscle net protein balance (NB) was higher in children (adult vs. children, -43 ± 61 vs. 8 ± 68 nmol Phe/min/100 ml leg volume, p < 0.05). Muscle protein fractional synthesis rate (FSR) was higher in children (adult vs. children, 0.11 ± 0.05 vs. 0.16 ± 0.10 %/h, p < 0.05). Leg muscle protein breakdown was not different between the groups (adult vs. children, 179 ± 115 vs. 184 ± 124 nmol Phe/ min/100 ml leg volume, p < 0.05; synthesis rate was 134 ± 96 and 192 ± 128 nmol Phe/min/100 ml leg volume in adults and children, respectively (p = 0.07). Age significantly correlated with muscle protein NB (p = 0.01) and FSR (p = 0.02); but not with breakdown (p = 0.67) and synthesis (p = 0.07) rates measured by using a three-pool model. Conclusion In burn injury, the muscle protein breakdown may be affected to the same extent in adults and children, whereas synthesis may have age-related specificities, resulting in a better but still low NB in children. PMID:21647721

  17. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  18. Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults.

    PubMed

    McKinnon, Neal B; Montero-Odasso, Manuel; Doherty, Timothy J

    2015-10-01

    This study investigated the relationship between motor unit (MU) properties and the isometric strength and power of two lower limb muscles in healthy young and older adults. Twelve older adults (6 men, mean age, 77 ± 5 years) and twelve young adults (6 men, mean age, 24 ± 3 years) were studied. MU properties of the tibialis anterior (TA) and vastus medialis (VM) muscles were determined electrophysiologically using decomposition-enhanced spike-triggered averaging (DE-STA). Motor unit number estimates (MUNEs) of the TA were significantly reduced (p<0.05) in older adults (102 ± 76) compared to young adults (234 ± 109), primarily as a result of significantly larger surface-detected motor unit potentials (S-MUPs) in older adults (63 ± 29 μV) compared to young adults (27 ± 14 μV). Although VM S-MUP values were larger in older adults (60 ± 31 μV) compared to young (48 ± 42 μV), the difference was not significant. Maximal isometric strength was significantly larger in both the TA and knee extensors of young adults (TA: 0.56 Nm/kg, KE: 2.2 Nm/kg) compared to old (TA: 0.4 Nm/kg, KE: 1.3 Nm/kg). Similar reductions in peak muscle power were observed between young (TA: 33 W, KE: 35 7 W) and old adults (TA: 26 W, KE: 224 W). The greatest deficit between young and old subjects in peak power output occurred at 20% MVC for the TA and 40% MVC for the knee extensors. Results from this study indicate that there are changes in MU properties with age, and that this effect may be greater in the more distal TA muscle. Further, this study demonstrates that muscle power may be a sensitive marker of changes in neuromuscular function with aging. PMID:26190479

  19. Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl.

    PubMed

    Delvolvé, I; Bem, T; Cabelguen, J M

    1997-08-01

    We have investigated the patterns of activation of epaxial musculature during both swimming and overground stepping in an adult newt (Pleurodeles waltl) with the use of electromyographic (EMG) recordings from different sites of the myomeric muscle dorsalis trunci along the body axis. The locomotor patterns of some limb muscles have also been investigated. During swimming, the epaxial myomeres are rhythmically active, with a strict alternation between opposite myomeres located at the same longitudinal site. The pattern of intersegmental coordination consists of three successively initiated waves of EMG activity passing posteriorly along the anterior trunk, the midtrunk, and the posterior trunk, respectively. Swimming is also characterized by a tonic activation of forelimb (dorsalis scapulae and extensor ulnae) and hindlimb (puboischiotibialis and puboischiofemoralis internus) muscles and a rhythmic activation of muscles (latissimus dorsi and caudofemoralis) acting both on limb and body axis. The latter matched the activation pattern of epaxial myomeres at the similar vertebral level. During overground stepping, the midtrunk myomeres express single synchronous bursts whereas the myomeres of the anterior trunk and those of the posterior trunk display a double bursting pattern in the form of two waves of EMG activity propagating in opposite directions. During overground stepping, the limb muscles and muscles acting on both limb and body axis were found to be rhythmically active and usually displayed a double bursting pattern. The main conclusion of this investigation is that the patterns of intersegmental coordination during both swimming and overground stepping in the adult newt are related to the presence of limbs and that they can be considered as hybrid lampreylike patterns. Thus it is hypothesized that, in newt, a chain of coupled segmental oscillatory networks, similar to that which constitutes the central pattern generator (CPG) for swimming in the lamprey, can

  20. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002muscles. Co-activation was elevated in young adults for the trunk (0.001adults for the ankle (0.009muscle coordination patterns during all stance conditions at the ankle (0.06<ηp(2)<0.28) and the trunk (0.14<ηp(2)<0.23). Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. PMID:27451322

  1. Endoscopic-assisted minimally invasive resection of a papillary muscle blood cyst in an adult patient.

    PubMed

    Okamoto, Kazuma; Kudo, Mikihiko; Hayashi, Kanako; Shimizu, Hideyuki

    2016-02-01

    We describe endoscopic-assisted minimally invasive resection of a blood cyst originating from the papillary muscle that caused severe mitral regurgitation and necessitated mitral valve replacement in an active adult woman, as well as a review of the relevant literature. An endoscopic view increases the visibility of the surgical target and facilitates a precise observation of the tumour and dissection at the appropriate layer. The On-X mechanical valve was chosen for mitral valve repair to minimize thromboembolic risk. This patient additionally benefited from endoscopic-assisted right minithoracotomy in terms of both cosmetic and functional aspects. PMID:26586675

  2. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults.

    PubMed

    Mamerow, Madonna M; Mettler, Joni A; English, Kirk L; Casperson, Shanon L; Arentson-Lantz, Emily; Sheffield-Moore, Melinda; Layman, Donald K; Paddon-Jones, Douglas

    2014-06-01

    The RDA for protein describes the quantity that should be consumed daily to meet population needs and to prevent deficiency. Protein consumption in many countries exceeds the RDA; however, intake is often skewed toward the evening meal, whereas breakfast is typically carbohydrate rich and low in protein. We examined the effects of protein distribution on 24-h skeletal muscle protein synthesis in healthy adult men and women (n = 8; age: 36.9 ± 3.1 y; BMI: 25.7 ± 0.8 kg/m2). By using a 7-d crossover feeding design with a 30-d washout period, we measured changes in muscle protein synthesis in response to isoenergetic and isonitrogenous diets with protein at breakfast, lunch, and dinner distributed evenly (EVEN; 31.5 ± 1.3, 29.9 ± 1.6, and 32.7 ± 1.6 g protein, respectively) or skewed (SKEW; 10.7 ± 0.8, 16.0 ± 0.5, and 63.4 ± 3.7 g protein, respectively). Over 24-h periods on days 1 and 7, venous blood samples and vastus lateralis muscle biopsy samples were obtained during primed (2.0 μmol/kg) constant infusion [0.06 μmol/(kg⋅min)] of l-[ring-(13)C6]phenylalanine. The 24-h mixed muscle protein fractional synthesis rate was 25% higher in the EVEN (0.075 ± 0.006%/h) vs. the SKEW (0.056 ± 0.006%/h) protein distribution groups (P = 0.003). This pattern was maintained after 7 d of habituation to each diet (EVEN vs. SKEW: 0.077 ± 0.006 vs. 0.056 ± 0.006%/h; P = 0.001). The consumption of a moderate amount of protein at each meal stimulated 24-h muscle protein synthesis more effectively than skewing protein intake toward the evening meal. PMID:24477298

  3. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres.

    PubMed Central

    Metzger, J M

    1996-01-01

    1. The effects of troponin C (TnC) isoforms on the acidic pH-induced rightward shift in the tension-pCa (-log[Ca2+]) relationship were examined in slow soleus and fast psoas skeletal muscle fibers. Endogenous TnC was partially extracted from skinned single fibres and the extracted fibres were subsequently reconstituted with purified TnC. The pCa producing one-half maximal tension (pCa50) was determined at pH 7.00 and 6.20 in each fibre and then the pH-induced shift in pCa50 (delta pCa50) was calculated. 2. In control fast fibres which express fast skeletal TnC (sTnC), the delta pCa50 was 0.64 +/- 0.02 pCa units (n = 10), and this increased significantly to 0.78 +/- 0.04 pCa units (n = 8) following extraction and reconstitution with cardiac TnC (cTnC). In each fibre, the reconstituted delta pCa50 was subtracted from the control delta pCa50 which yielded a significant shift of -0.13 +/- 0.05 pCa units (n = 8; P < 0.05). Thus, the pH sensitivity of contraction was increased in the cTnC-reconstituted psoas fibres. 3. In extracted psoas fibres that were reconstituted with fast sTnC the pH sensitivity of contraction was unchanged, indicating that the above effects were related to the TnC isoform and not a non-specific effect of the extraction procedure. 4. In a second series of experiments cTnC was specifically extracted from slow soleus fibres which were subsequently reconstituted with purified fast sTnC. Skeletal TnC reconstituted soleus fibres demonstrated a significant decrease in pH sensitivity. In each fibre, the reconstituted delta pCa50 (mean, 0.58 +/- 0.02 pCa units) was subtracted from the control delta pCa50 (mean, 0.63 +/- 0.02 pCa units) which yielded a significant shift of 0.05 +/- 0.01 pCa units (n = 4; P < 0.05). The pH sensitivity was not altered in cTnC-reconstituted soleus fibres (-0.01 +/- 0.01 pCa units, n = 4). 5. These findings indicate that TnC isoforms alter the pH sensitivities of contraction in slow and fast skeletal muscle fibres. However, the

  4. Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity.

    PubMed

    Chenette, Devon M; Cadwallader, Adam B; Antwine, Tiffany L; Larkin, Lauren C; Wang, Jinhua; Olwin, Bradley B; Schneider, Robert J

    2016-08-01

    Following skeletal muscle injury, muscle stem cells (satellite cells) are activated, proliferate, and differentiate to form myofibers. We show that mRNA-decay protein AUF1 regulates satellite cell function through targeted degradation of specific mRNAs containing 3' AU-rich elements (AREs). auf1(-/-) mice undergo accelerated skeletal muscle wasting with age and impaired skeletal muscle repair following injury. Satellite cell mRNA analysis and regeneration studies demonstrate that auf1(-/-) satellite cell self-renewal is impaired due to increased stability and overexpression of ARE-mRNAs, including cell-autonomous overexpression of matrix metalloprotease MMP9. Secreted MMP9 degrades the skeletal muscle matrix, preventing satellite-cell-mediated regeneration and return to quiescence. Blocking MMP9 activity in auf1(-/-) mice restores skeletal muscle repair and maintenance of the satellite cell population. Control of ARE-mRNA decay by AUF1 represents a mechanism for adult stem cell regulation and is implicated in human skeletal muscle wasting diseases. PMID:27452471

  5. Recurrent adult-type rhabdomyoma: a rare differential diagnosis of "swellings in the masticatory muscle".

    PubMed

    Schlittenbauer, Tilo; Rieker, Ralf; Amann, Kerstin; Schmitt, Christian; Wehrhan, Falk; Mitsimponas, Konstantinos; Schlegel, Karl Andreas; Agaimy, Abbas

    2013-01-01

    Rhabdomyomas are rare benign mesenchymal tumors with skeletal muscle differentiation and a predilection for the head and neck area. A 38-year-old man presented with persistent, slowly growing, painless swelling in the left inner cheek for 2½ years. The lesion was detected during routine dental examination and was considered to represent a mucocele. The mass was removed via a transoral surgical approach, followed by a local recurrence 6 months later that was again surgically removed. The patient is alive and well 2 months after last surgery. Adult-type rhabdomyoma is a rare, occasionally recurring, benign mesenchymal tumor that should be included in the differential diagnosis of submucosal swellings in the oral cavity including the masticatory musculature. Adult-type rhabdomyoma of the cheek and masticatory area are exceptionally rare with no more than 3 cases reported to date. PMID:24163862

  6. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults.

    PubMed

    Drummond, Micah J; Timmerman, Kyle L; Markofski, Melissa M; Walker, Dillon K; Dickinson, Jared M; Jamaluddin, Mohammad; Brasier, Allan R; Rasmussen, Blake B; Volpi, Elena

    2013-08-01

    Bed rest induces significant loss of leg lean mass in older adults. Systemic and tissue inflammation also accelerates skeletal muscle loss, but it is unknown whether inflammation is associated to inactivity-induced muscle atrophy in healthy older adults. We determined if short-term bed rest increases toll-like receptor 4 (TLR4) signaling and pro-inflammatory markers in older adult skeletal muscle biopsy samples. Six healthy, older adults underwent seven consecutive days of bed rest. Muscle biopsies (vastus lateralis) were taken after an overnight fast before and at the end of bed rest. Serum cytokine expression was measured before and during bed rest. TLR4 signaling and cytokine mRNAs associated with pro- and anti-inflammation and anabolism were measured in muscle biopsy samples using Western blot analysis and qPCR. Participants lost ∼4% leg lean mass with bed rest. We found that after bed rest, muscle levels of TLR4 protein expression and interleukin-6 (IL-6), nuclear factor-κB1, interleukin-10, and 15 mRNA expression were increased after bed rest (P < 0.05). Additionally, the cytokines interferon-γ, and macrophage inflammatory protein-1β, were elevated in serum samples following bed rest (P < 0.05). We conclude that short-term bed rest in older adults modestly increased some pro- and anti-inflammatory cytokines in muscle samples while systemic changes in pro-inflammatory cytokines were mostly absent. Upregulation of TLR4 protein content suggests that bed rest in older adults increases the capacity to mount an exaggerated, and perhaps unnecessary, inflammatory response in the presence of specific TLR4 ligands, e.g., during acute illness. PMID:23761639

  7. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults

    PubMed Central

    Timmerman, Kyle L.; Markofski, Melissa M.; Walker, Dillon K.; Dickinson, Jared M.; Jamaluddin, Mohammad; Brasier, Allan R.; Rasmussen, Blake B.; Volpi, Elena

    2013-01-01

    Bed rest induces significant loss of leg lean mass in older adults. Systemic and tissue inflammation also accelerates skeletal muscle loss, but it is unknown whether inflammation is associated to inactivity-induced muscle atrophy in healthy older adults. We determined if short-term bed rest increases toll-like receptor 4 (TLR4) signaling and pro-inflammatory markers in older adult skeletal muscle biopsy samples. Six healthy, older adults underwent seven consecutive days of bed rest. Muscle biopsies (vastus lateralis) were taken after an overnight fast before and at the end of bed rest. Serum cytokine expression was measured before and during bed rest. TLR4 signaling and cytokine mRNAs associated with pro- and anti-inflammation and anabolism were measured in muscle biopsy samples using Western blot analysis and qPCR. Participants lost ∼4% leg lean mass with bed rest. We found that after bed rest, muscle levels of TLR4 protein expression and interleukin-6 (IL-6), nuclear factor-κB1, interleukin-10, and 15 mRNA expression were increased after bed rest (P < 0.05). Additionally, the cytokines interferon-γ, and macrophage inflammatory protein-1β, were elevated in serum samples following bed rest (P < 0.05). We conclude that short-term bed rest in older adults modestly increased some pro- and anti-inflammatory cytokines in muscle samples while systemic changes in pro-inflammatory cytokines were mostly absent. Upregulation of TLR4 protein content suggests that bed rest in older adults increases the capacity to mount an exaggerated, and perhaps unnecessary, inflammatory response in the presence of specific TLR4 ligands, e.g., during acute illness. PMID:23761639

  8. Systemic elevation of interleukin-15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats

    PubMed Central

    Pistilli, Emidio E.

    2008-01-01

    In this study, we tested the hypothesis that systemic elevation of IL-15 would attenuate apoptosis in skeletal muscles of aged rats. IL-15 was administered to young adult (n=6) and aged (n=6) rats for 14 days. Apoptosis was quantified using an ELISA assay and verified through TUNEL staining of muscle sections. As expected, apoptosis was greater in muscles from aged control rats, compared to age-matched control. Apoptosis was also greater in the muscles from young adult and aged rats treated with IL-15. These increases in apoptosis were associated with decreases in muscle mass of IL-15 treated rats. These data do not support our initial hypothesis and suggest that systemic elevation of IL-15 promotes apoptosis in skeletal muscle. The proposed anti-apoptotic property of IL-15 may be specific to cell-type and/or the degree of muscle pathology present; however, additional research is required to more clearly decipher its role in skeletal muscle. PMID:18555009

  9. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. PMID:27077819

  10. Relationships Between Metabolic Rate, Muscle Electromyograms and Swim Performance of Adult Chinook Salmon

    SciTech Connect

    Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A.

    2003-10-01

    In 2000 Pacific Northwest National Laboratory initiated a two-year study to investigate the metabolic rate and swimming performance and to estimate the total energy used (i.e., aerobic and anaerobic) by adult spring Chinook salmon migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study, reported here, were to (1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; (2) estimate the Ucrit of adult spring chinook salmon; and (3) monitor EMGs of red and white muscle in the salmon over a range of swimming speeds. Future papers will report on the results of the field study. Our results indicated that the rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. Active oxygen consumption increased linearly with swim speed before leveling off at speeds at or above Ucrit. This pattern was similar at each water temperature and indicated that fish were approaching their maximal aerobic oxygen consumption at higher swim speeds. Modeling showed that temperature, but not size or sex, influenced the relation between V02 and swim speed, thus a V02-swim speed model based on temperature (but independent of sex and size) should be a biologically relevant way of estimating the energy use of fish in the wild.

  11. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults

    PubMed Central

    Witard, Oliver C.; Wardle, Sophie L.; Macnaughton, Lindsay S.; Hodgson, Adrian B.; Tipton, Kevin D.

    2016-01-01

    Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS) and is a key factor that regulates skeletal muscle mass (SMM). The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions. PMID:27023595

  12. Effect of an Eight-Week Ballroom Dancing Program on Muscle Architecture in Older Adults Females.

    PubMed

    Cepeda, Christina C P; Lodovico, Angélica; Fowler, Neil; Rodacki, André L F

    2015-10-01

    Aging is related to a progressive remodeling of the neuromuscular system, which includes muscle mass, strength, and power reductions. This study investigated the effect of an eight-week dance program on fascicle pennation angle, fascicle length, and thickness of the vastus lateralis (VL), tibialis anterior (TA), biceps femoris (BF), and gastrocnemius medialis (GM) muscles using ultrasound images. Thirty-four healthy older women were randomly assigned to either a dancing (DG: n = 19, 69.1 ± 6.5 years, 72.5 ± 11.7 kg) or control group (CG: n = 15, 71.5 ± 7.4 years, 70.9 ± 9.3 kg). After training, the DG showed greater (p < .05) thickness for VL (16%), TA (17%), BF (19%), and GM (15%); pennation angle for VL (21%), TA (23%), BF (21%), and GM (17%); and fascicle length for VL (11%), TA (12%), BF (10%), and GM (10%). These findings suggest that dance training was effective to change the lower limb muscle architecture in older female adults. PMID:25642640

  13. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells.

    PubMed

    Yang, Zhan; Zheng, Bin; Zhang, Yu; He, Ming; Zhang, Xin-hua; Ma, Dong; Zhang, Ruo-nan; Wu, Xiao-li; Wen, Jin-kun

    2015-07-01

    In response to vascular injury, inflammation, oxidative stress, and cell proliferation often occur simultaneously in vascular tissues. We previously observed that microRNA-155 (miR-155), which is implicated in proliferation and inflammation is involved in neointimal hyperplasia; however, the molecular mechanisms by which it regulates these processes remain largely unknown. In this study, we observed that vascular smooth muscle cell (VSMC) proliferation and neointimal formation in wire-injured femoral arteries were reduced by the loss of miR-155 and increased by the gain of miR-155. The proliferative effect of miR-155 was also observed in cultured VSMCs. Notably, expression of the miR-155-target protein mammalian sterile 20-like kinase 2 (MST2) was increased in the injured arteries of miR-155-/- mice. miR-155 directly repressed MST2 and thus activated the extracellular signal-regulated kinase (ERK) pathway by promoting an interaction between RAF proto-oncogene serine/threonine-protein kinase (Raf-1) and mitogen-activated protein kinase kinase (MEK) and stimulating inflammatory and oxidative stress responses; together, these effects lead to VSMC proliferation and vascular remodeling. Our data reveal that MST2 mediates miR-155-promoted inflammatory and oxidative stress responses by altering the interaction of MEK with Raf-1 and MST2 in response to vascular injury. Therefore, suppression of endogenous miR-155 might be a novel therapeutic strategy for vascular injury and remodeling. PMID:25892184

  14. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults.

    PubMed

    Flack, Kyle D; Davy, Brenda M; DeBerardinis, Martin; Boutagy, Nabil E; McMillan, Ryan P; Hulver, Matthew W; Frisard, Madlyn I; Anderson, Angela S; Savla, Jyoti; Davy, Kevin P

    2016-07-01

    Whether resistance exercise training (RET) improves skeletal muscle substrate oxidative capacity and reduces mitochondrial production of reactive oxygen species in older adults remains unclear. To address this, 19 older males (≥60 years) were randomized to a RET (n = 11) or to a waitlist control group (n = 8) that remained sedentary for 12 weeks. RET was comprised of three upper body and four lower body movements on resistance machines. One set of 8-12 repetitions to failure of each movement was performed on three nonconsecutive days/week. Improvements in chest press and leg press strength were assessed using a three-repetition maximum (3 RM). Body composition was assessed via dual energy X-ray absorptiometry. Muscle biopsies were obtained from the vastus lateralis muscle at baseline and at both 3 weeks and 12 weeks. Palmitate and pyruvate oxidation rates were measured from the (14)CO2 produced from [1-(14)C] palmitic acid and [U-(14)C] pyruvate, respectively, during incubation of muscle homogenates. PGC-1α, TFAM, and PPARδ levels were quantified using qRT-PCR Citrate synthase (CS) and β-HAD activities were determined spectrophotometrically. Mitochondrial production of reactive oxygen species (ROS) were assessed using the Amplex Red Hydrogen Peroxide/Peroxidase assay. There were no significant changes in body weight or body composition following the intervention. Chest press and leg press strength (3RM) increased ~34% (both P < 0.01) with RET There were no significant changes in pyruvate or fatty acid oxidation or in the expression of target genes with the intervention. There was a modest increase (P < 0.05) in βHAD activity with RET at 12 weeks but the change in CS enzyme activity was not significant. In addition, there were no significant changes in ROS production in either group following RET Taken together, the findings of this study suggest that 12 weeks of low volume RET does not increase skeletal muscle oxidative capacity or reduce ROS

  15. Core muscle strengthening's improvement of balance performance in community-dwelling older adults: a pilot study.

    PubMed

    Kahle, Nicole; Tevald, Michael A

    2014-01-01

    To determine the effect of core muscle strengthening on balance in community-dwelling older adults, 24 healthy men and women between 65 and 85 years old were randomized to either exercise (EX; n = 12) or control (CON; n = 12) groups. The exercise group performed a core strengthening home exercise program thrice weekly for 6 wk. Core muscle (curl-up test), functional reach (FR) and Star Excursion Balance Test (SEBT) were assessed at baseline and follow-up. There were no group differences at baseline. At follow-up, EX exhibited significantly greater improvements in curl-up (Cohen's d = 4.4), FR (1.3), and SEBT (>1.9 for all directions) than CON. The change in curl-up was significantly correlated with the change in FR (r = .44, p = .03) and SEBT (r > .61, p ≤ .002). These results suggest that core strengthening should be part of a comprehensive balance-training program for older adults. PMID:23348043

  16. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults

    PubMed Central

    2010-01-01

    Background Muscle fatigue and dual-task walking (e.g., concurrent performance of a cognitive interference (CI) while walking) represent major fall risk factors in young and older adults. Thus, the objectives of this study were to examine the effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults and to determine the impact of muscle fatigue on dual-task costs while walking. Methods Thirty-two young (24.3 ± 1.4 yrs, n = 16) and old (71.9 ± 5.5 yrs, n = 16) healthy active adults participated in this study. Fatigue of the knee extensors/flexors was induced by isokinetic contractions. Subjects were tested pre and post fatigue, as well as after a 5 min rest. Tests included the assessment of gait velocity, stride length, and stride length variability during single (walking), and dual (CI+walking) task walking on an instrumented walkway. Dual-task costs while walking were additionally computed. Results Fatigue resulted in significant decreases in single-task gait velocity and stride length in young adults, and in significant increases in dual-task gait velocity and stride length in older adults. Further, muscle fatigue did not affect dual-task costs during walking in young and older adults. Performance in the CI-task was improved in both age groups post-fatigue. Conclusions Strategic and/or physiologic rationale may account for the observed differences in young and older adults. In terms of strategic rationale, older adults may walk faster with longer strides in order to overcome the feeling of fatigue-induced physical discomfort as quickly as possible. Alternatively, older adults may have learned how to compensate for age-related and/or fatigue-induced muscle deficits during walking by increasing muscle power of synergistic muscle groups (e.g., hip flexors). Further, a practice and/or learning effect may have occurred from pre to post testing. Physiologic rationale may comprise motor unit remodeling in old age

  17. Acute effects of whole-body vibration on trunk muscle functioning in young healthy adults.

    PubMed

    Ye, Jiajia; Ng, Gabriel; Yuen, Kenneth

    2014-10-01

    The purpose of this study was to explore the immediate effects of different frequencies of whole-body vibration (WBV) on the performance of trunk muscles of healthy young adults. A group of 30 healthy subjects (15 men; 15 women; age, 26.8 ± 3.74 years; body mass index, 21.9 ± 1.802) participated in the study. Each subject received 3 sessions of vibration exercise with different exercise parameters with frequencies of 25 Hz and 40 Hz and sham stimulation in a random order on different days. Before and after each WBV exercise session, subjects were assessed for trunk muscle strength/endurance tests and trunk proprioception tests. There was a significant increase in trunk extensor strength (p ≤ 0.05) after low-frequency (25 Hz) WBV exercise, but high-frequency (40 Hz) vibration exercise had resulted in a significant decrease in trunk extensor endurance (p ≤ 0.05). Statistical gender difference (p = 0.04) was found for trunk extensor endurance with lower WBV training. No change was noted in the trunk proprioception with different frequencies of WBV. In conclusions, the immediate response of the body to WBV was different for low and high frequencies. Low-frequency vibration enhanced trunk extensor strength, but high-frequency vibration would decrease endurance of the trunk extensor muscles. Males are more sensitive than females in trunk extensor endurance for lower frequency WBV exposure. These results indicated that short-term WBV with low frequency was effective to improve trunk extensor strength in healthy adults, and that could be helpful for relevant activities of trunk extensor performing and preventing sport injury. PMID:24714536

  18. Maternal protein restriction impairs the transcriptional metabolic flexibility of skeletal muscle in adult rat offspring.

    PubMed

    da Silva Aragão, Raquel; Guzmán-Quevedo, Omar; Pérez-García, Georgina; Manhães-de-Castro, Raul; Bolaños-Jiménez, Francisco

    2014-08-14

    Skeletal muscle exhibits a remarkable flexibility in the usage of fuel in response to the nutrient intake and energy demands of the organism. In fact, increased physical activity and fasting trigger a transcriptional programme in skeletal muscle cells leading to a switch from carbohydrate to lipid oxidation. Impaired metabolic flexibility has been reported to be associated with obesity and type 2 diabetes, but it is not known whether the disability to adapt to metabolic demands is a cause or a consequence of these pathological conditions. Inasmuch as a poor nutritional environment during early life is a predisposing factor for the development of metabolic diseases in adulthood, in the present study, we aimed to determine the long-term effects of maternal malnutrition on the metabolic flexibility of offspring skeletal muscle. To this end, the transcriptional responses of the soleus and extensor digitorum longus muscles to fasting were evaluated in adult rats born to dams fed a control (17 % protein) or a low-protein (8 % protein, protein restricted (PR)) diet throughout pregnancy and lactation. With the exception of reduced body weight and reduced plasma concentrations of TAG, PR rats exhibited a metabolic profile that was the same as that of the control rats. In the fed state, PR rats exhibited an enhanced expression of key regulatory genes of fatty acid oxidation including CPT1a, PGC-1α, UCP3 and PPARα and an impaired expression of genes that increase the capacity for fat oxidation in response to fasting. These results suggest that impaired metabolic inflexibility precedes and may contribute to the development of metabolic disorders associated with early malnutrition. PMID:24823946

  19. Evaluating the relationship between muscle and bone modeling response in older adults.

    PubMed

    Reider, Lisa; Beck, Thomas; Alley, Dawn; Miller, Ram; Shardell, Michelle; Schumacher, John; Magaziner, Jay; Cawthon, Peggy M; Barbour, Kamil E; Cauley, Jane A; Harris, Tamara

    2016-09-01

    Bone modeling, the process that continually adjusts bone strength in response to prevalent muscle-loading forces throughout an individual's lifespan, may play an important role in bone fragility with age. Femoral stress, an index of bone modeling response, can be estimated using measurements of DXA derived bone geometry and loading information incorporated into an engineering model. Assuming that individuals have adapted to habitual muscle loading forces, greater stresses indicate a diminished response and a weaker bone. The purpose of this paper was to evaluate the associations of lean mass and muscle strength with the femoral stress measure generated from the engineering model and to examine the extent to which lean mass and muscle strength account for variation in femoral stress among 2539 healthy older adults participating in the Health ABC study using linear regression. Mean femoral stress was higher in women (9.51, SD=1.85Mpa) than in men (8.02, SD=1.43Mpa). Percent lean mass explained more of the variation in femoral stress than did knee strength adjusted for body size (R(2)=0.187 vs. 0.055 in men; R(2)=0.237 vs. 0.095 in women). In models adjusted for potential confounders, for every percent increase in lean mass, mean femoral stress was 0.121Mpa lower (95% CI: -0.138, -0.104; p<0.001) in men and 0.139Mpa lower (95% CI: -0.158, -0.121; p<0.001) in women. The inverse association of femoral stress with lean mass and with knee strength did not differ by category of BMI. Results from this study provide insight into bone modeling differences as measured by femoral stress among older men and women and indicate that lean mass may capture elements of bone's response to load. PMID:27352990

  20. Measuring Changes in Ciliary Muscle Thickness with Accommodation in Young Adults

    PubMed Central

    Lossing, Laura Ashley; Sinnott, Loraine T.; Kao, Chiu-Yen; Richdale, Kathryn; Bailey, Melissa D.

    2012-01-01

    Purpose To develop a measurement protocol for changes in the shape and size of the ciliary muscle with accommodation using the Zeiss Visante™ Anterior Segment Optical Coherence Tomographer (AS-OCT) and to determine the test-retest repeatability of these measurements. Methods Subjects were 25 adults ages 23–28 years. The ciliary muscle was imaged at two visits with the Visante™ while accommodative response was monitored during imaging using the PowerRefractor. Ciliary muscle thickness was measured at 1 mm (CMT1), 2 mm (CMT2), and 3 mm (CMT3) posterior to the scleral spur and at the point of maximal thickness (CMTMAX). Thickness was measured at these locations while subjects viewed a target at distance and at a 4.00-D accommodative stimulus. Outcome measures were the change in thickness between distance and the 4.00-D stimulus and the change in thickness per diopter of accommodative response (PowerRefractor). Finally, the repeatability measurements between visit 1 and visit 2 were determined with a Bland-Altman analysis. Results The statistically significant modeled changes in ciliary muscle thickness were as follows: CMTMAX = 69.2 μm (4.00-D stimulus) and 18.1 μm (per diopter of accommodation); CMT1 = 45.2 μm (4.00-D stimulus) and 12.3 μm (per diopter of accommodation); and CMT3 = −45.9 μm (4.00-D stimulus) and −12.0 μm (per diopter of accommodation); p < 0.0001 for all. Conclusions The combination of the Visante™ and the PowerRefractor is a feasible tool for measuring thickening of ciliary muscle at more anterior locations and thinning at more posterior locations during accommodation. We noted a wide range of accommodative responses during the time of image capture in this study indicating that the most accurate estimates of the change in ciliary muscle dimensions with accommodation may be obtained by using accommodative response rather than stimulus values and by using measurements taken simultaneously with image capture. PMID:22504328

  1. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange.

    PubMed Central

    Ashida, T; Blaustein, M P

    1987-01-01

    1. The contraction and relaxation of rings of rat thoracic aorta and bovine tail artery were examined as a function of changes in the Na+ electrochemical gradient in order to determine the role of Na-Ca exchange in the control of contractility. 2. Inhibition of the Na+ pump in rat aorta by K+-free media or a low concentration (5 x 10(-5) M) of strophanthidin reversibly increased the contractile responses to caffeine and noradrenaline. These effects were dependent upon external Ca2+ and were observed even in the presence of a Ca2+ channel blocker (10 microM-verapamil or 10 microM-diltiazem) and an alpha-receptor blocker (10 microM-phentolamine). 3. Reduction of external Na+ concentration, [Na+]o (replaced by N-methylglucamine, tetramethylammonium or Tris), also caused an external Ca2+-dependent increase in tonic tension and, in rat aorta, an increase in the response to caffeine. These effects were also observed in the presence of verapamil and phentolamine. 4. Caffeine relaxed the bovine tail artery, but increased the sensitivity of the rat aorta to reduced [Na+]o. The latter effect was presumably due to block of Ca2+ sequestration in the sarcoplasmic reticulum, so that entering Ca2+ was more effective in raising the intracellular free Ca2+ level, [Ca2+]i. 5. Relaxation from K+-free or low-Na+ contractions, in Ca2+-free media, depended upon [Na+]o. Reduction of [Na+]o to 1.2 or 7.5 mM slowed the relaxation of rat aorta (5 mM-caffeine present) 3- to 5-fold, and the relaxation of bovine tail artery (without caffeine) 5- to 10-fold. These effects were seen in the presence of verapamil and phentolamine. 6. These observations are all consistent with an Na-Ca exchange transport system that can move Ca2+ either into or out of the arterial smooth muscle cells. Ca2+ entry is enhanced by raising [Na+]i (by Na+ pump inhibition) and/or lowering [Na+]o. Ca2+ extrusion from the contracted muscles is largely dependent upon external Na+. The latter observation implies that, when

  2. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Quinonez, Marbella

    2012-01-01

    A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV

  3. The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.

    PubMed

    DiFranco, Marino; Vergara, Julio L

    2011-10-01

    understanding of the radial and longitudinal propagation of the action potential, which ultimately govern the mechanical activation of muscle in normal and diseased conditions. PMID:21948948

  4. Constitutive Expression of Yes-Associated Protein (Yap) in Adult Skeletal Muscle Fibres Induces Muscle Atrophy and Myopathy

    PubMed Central

    Judson, Robert N.; Gray, Stuart R.; Walker, Claire; Carroll, Andrew M.; Itzstein, Cecile; Lionikas, Arimantas; Zammit, Peter S.; De Bari, Cosimo; Wackerhage, Henning

    2013-01-01

    The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1) in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A) to test whether the over expression of constitutively active Yap (hYAP1 S127A) is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5–7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20–25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34–40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7) and muscle protein degradation (atrogin-1, MuRF1) were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration. PMID:23544078

  5. Fish oil–derived n–3 PUFA therapy increases muscle mass and function in healthy older adults1

    PubMed Central

    Smith, Gordon I; Julliand, Sophie; Reeds, Dominic N; Sinacore, David R; Klein, Samuel; Mittendorfer, Bettina

    2015-01-01

    Background: Age-associated declines in muscle mass and function are major risk factors for an impaired ability to carry out activities of daily living, falls, prolonged recovery time after hospitalization, and mortality in older adults. New strategies that can slow the age-related loss of muscle mass and function are needed to help older adults maintain adequate performance status to reduce these risks and maintain independence. Objective: We evaluated the efficacy of fish oil–derived n–3 (ω-3) PUFA therapy to slow the age-associated loss of muscle mass and function. Design: Sixty healthy 60–85-y-old men and women were randomly assigned to receive n–3 PUFA (n = 40) or corn oil (n = 20) therapy for 6 mo. Thigh muscle volume, handgrip strength, one-repetition maximum (1-RM) lower- and upper-body strength, and average power during isokinetic leg exercises were evaluated before and after treatment. Results: Forty-four subjects completed the study [29 subjects (73%) in the n–3 PUFA group; 15 subjects (75%) in the control group]. Compared with the control group, 6 mo of n–3 PUFA therapy increased thigh muscle volume (3.6%; 95% CI: 0.2%, 7.0%), handgrip strength (2.3 kg; 95% CI: 0.8, 3.7 kg), and 1-RM muscle strength (4.0%; 95% CI: 0.8%, 7.3%) (all P < 0.05) and tended to increase average isokinetic power (5.6%; 95% CI: −0.6%, 11.7%; P = 0.075). Conclusion: Fish oil–derived n–3 PUFA therapy slows the normal decline in muscle mass and function in older adults and should be considered a therapeutic approach for preventing sarcopenia and maintaining physical independence in older adults. This study was registered at clinicaltrials.gov as NCT01308957. PMID:25994567

  6. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy.

    PubMed

    Barber, Lee; Barrett, Rod; Lichtwark, Glen

    2012-10-11

    Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle-tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion. PMID:22867763

  7. Concordance between measured and estimated appendicular muscle mass in adult females.

    PubMed

    Lekamwasam, S; Nanayakkara, J

    2015-09-01

    This study assessed the accuracy of a selected formula used to estimate the appendicular muscle mass (AMM) which is linked with many clinical outcomes. A group of community-dwelling adult women (n=80) had their AMM measured using dual energy x-ray absorptiometry (DXA). The same was estimated using a formula already published {Skeletal muscle mass = (0.244 × BW in kg) + (7.80 × Ht in meters) + (6.6 × Sex) - (0.098 × Age) + race - 3.3} (sex=0 for female and 1 for male, race =-1.2 for Asian, 1.4 for African American and 0 for White and Hispanic).The two datasets were compared for accuracy and precision. Mean AMM measured by DXA and estimated by the formula were very close (14.8 and 14.5 kg) and the difference ranged from -1.2 to 3.6 kg. Correlation between the two datasets was high (r=0.92) and the Bland-Altman plot showed an acceptable measurement agreement between the two methods. Results were independent of age and BMI. The formula used in this analysis gave an accurate estimation of the absolute AMM in women included in this study. PMID:26520864

  8. Range of motion, muscle length, and balance performance in older adults with normal, pronated, and supinated feet

    PubMed Central

    Justine, Maria; Ruzali, Dhiya; Hazidin, Ezzaty; Said, Aisyah; Bukry, Saiful Adli; Manaf, Haidzir

    2016-01-01

    [Purpose] To compare the lower limb joint range of motion and muscle length between different types of foot posture, and determine the correlation of range of motion and muscle length with balance performance. [Subjects and Methods] Ninety individuals (age, 65.2±4.6 years) were assessed using the Foot Posture Index to determine their type of foot (Normal [0 to +5], pronated [+6 to +9], and supinated [−1 to −4]; n=30 per group). The range of motion (goniometer), muscle length (goniometer and tape measure), and balance performance (functional reach test and four square step test) were measured for each participant. Data were analyzed using the Kruskal-Wallis test and Spearman’s rank-order correlation. [Results] No significant differences were found in range of motion, muscle length, and balance performance among different types of foot posture, except for right and left ankle dorsiflexion range of motion. Balance performance was significantly correlated with selected muscle length and range of motion, especially in the supinated foot. [Conclusion] Range of motion and muscle length of the lower limb may be associated with balance performance in older adults with foot deformities. These findings may guide physiotherapists in choosing intervention based on specific assessments for older adults with foot deformity. PMID:27134384

  9. Effects of Vibration Training and Detraining on Balance and Muscle Strength in Older Adults

    PubMed Central

    Marín, Pedro J.; Martín-López, Aurora; Vicente-Campos, Davinia; Angulo-Carrere, MT; García-Pastor, Teresa; Garatachea, Nuria; Chicharro, José L.

    2011-01-01

    The purpose of this study was to analyze the effects of 2 days/week versus 4 days/week of Whole Body Vibration (WBV) during eight weeks of WBV training on health-related quality of life (SF-36), balance and lower body strength, as well as short-term detraining (3 weeks) on balance and lower body strength among older adults. Thirty-four older adults were randomly assigned to a control group (Control; n = 11) or to one of the vibration training groups: WBV 2 days/week (WBV_2d; n = 11) or WBV 4 days/week (WBV_4d; n = 12). The WBV groups exercised for 8 weeks, following 3 weeks of detraining. Lower body strength increased significantly (p < 0.05) for both groups, WBV_2d and WBV_4d, after 8-week training. A significant reduction in strength was observed following 3 weeks of detraining only in WBV_2d group (p < 0.05). All variables of the SF-36 and the balance test did not change after intervention in any group. 2 days/week and 4 days/week of WBV during 8 weeks showed the same improvements on muscle strength. 3 weeks of detraining did not reverse the gains in strength made during 32 sessions of WBV. Key points 2 days and 4 days per week of WBV training during 8 weeks showed the same improvements on muscle strength. 3 weeks of detraining did not reverse the gains in strength made during 32 sessions of WBV exercise. 3 weeks of detraining did reverse the gains in strength made during 16 sessions of WBV exercise. PMID:24150633

  10. Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

    PubMed Central

    2013-01-01

    Background. Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Methods. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). Results. In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Conclusions. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age. PMID:23051977

  11. Relationships between metabolic rate, muscle electromyograms and swim performance of adult chinook salmon

    USGS Publications Warehouse

    Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.

    2003-01-01

    Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s-1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168.2 cm s-1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ???80% of the Ucrit. ?? 2003 The Fisheries Society of the British Isles.

  12. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  13. Disrupted Membrane Structure and Intracellular Ca2+ Signaling in Adult Skeletal Muscle with Acute Knockdown of Bin1

    PubMed Central

    Tjondrokoesoemo, Andoria; Park, Ki Ho; Ferrante, Christopher; Komazaki, Shinji; Lesniak, Sebastian; Brotto, Marco; Ko, Jae-Kyun; Zhou, Jingsong; Weisleder, Noah; Ma, Jianjie

    2011-01-01

    Efficient intracellular Ca2+ ([Ca2+]i) homeostasis in skeletal muscle requires intact triad junctional complexes comprised of t-tubule invaginations of plasma membrane and terminal cisternae of sarcoplasmic reticulum. Bin1 consists of a specialized BAR domain that is associated with t-tubule development in skeletal muscle and involved in tethering the dihydropyridine receptors (DHPR) to the t-tubule. Here, we show that Bin1 is important for Ca2+ homeostasis in adult skeletal muscle. Since systemic ablation of Bin1 in mice results in postnatal lethality, in vivo electroporation mediated transfection method was used to deliver RFP-tagged plasmid that produced short –hairpin (sh)RNA targeting Bin1 (shRNA-Bin1) to study the effect of Bin1 knockdown in adult mouse FDB skeletal muscle. Upon confirming the reduction of endogenous Bin1 expression, we showed that shRNA-Bin1 muscle displayed swollen t-tubule structures, indicating that Bin1 is required for the maintenance of intact membrane structure in adult skeletal muscle. Reduced Bin1 expression led to disruption of t-tubule structure that was linked with alterations to intracellular Ca2+ release. Voltage-induced Ca2+ released in isolated single muscle fibers of shRNA-Bin1 showed that both the mean amplitude of Ca2+ current and SR Ca2+ transient were reduced when compared to the shRNA-control, indicating compromised coupling between DHPR and ryanodine receptor 1. The mean frequency of osmotic stress induced Ca2+ sparks was reduced in shRNA-Bin1, indicating compromised DHPR activation. ShRNA-Bin1 fibers also displayed reduced Ca2+ sparks' amplitude that was attributed to decreased total Ca2+ stores in the shRNA-Bin1 fibers. Human mutation of Bin1 is associated with centronuclear myopathy and SH3 domain of Bin1 is important for sarcomeric protein organization in skeletal muscle. Our study showing the importance of Bin1 in the maintenance of intact t-tubule structure and ([Ca2+]i) homeostasis in adult skeletal muscle

  14. Increases in muscle strength and balance using a resistance training program administered via a telecommunications system in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Resistance training programs have been found to improve muscle strength, physical function, and depressive symptoms in middle-aged and older adults. These programs have typically been provided in clinical facilities, health clubs, and senior centers, which may be inconvenient and/or cos...

  15. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  16. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability

    PubMed Central

    Ahmed, Naghia; Ronchi, Dario; Comi, Giacomo Pietro

    2015-01-01

    Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability. PMID:26251896

  17. Enhanced Myogenesis in adult skeletal muscle by transgenic expression of Myostatin Propeptide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle growth and maintenance are essential for human health. One of the muscle regulatory genes, namely myostatin, a member of transforming growth factor-ß, plays a dominant role in the genetic control of muscle mass. Transgenic expression of myostatin propeptide in skeletal muscle showed ...

  18. Botulinum toxin in masticatory muscles: Short- and long-term effects on muscle, bone, and craniofacial function in adult rabbits

    PubMed Central

    Rafferty, Katherine L.; Liu, Zi Jun; Ye, Wenmin; Navarrete, Alfonso L.; Nguyen, Thao Tuong; Salamati, Atriya; Herring, Susan W.

    2012-01-01

    Paralysis of the masticatory muscles using botulinum toxin (BTX) is a common treatment for cosmetic reduction of the masseters as well as for conditions involving muscle spasm and pain. The effects of this treatment on mastication have not been evaluated, and claims that the treatment unloads the jaw joint and mandible have not been validated. If BTX treatment does decrease mandibular loading, osteopenia might ensue as an adverse result. Rabbits received a single dose of BTX or saline into one randomly chosen masseter muscle and were followed for 4 or 12 weeks. Masticatory muscle activity was assessed weekly, and incisor bite force elicited by stimulation of each masseter was measured periodically. At the endpoint, strain gages were installed on the neck of the mandibular condyle and on the molar area of the mandible for in vivo bone strain recording during mastication and muscle stimulation. After termination, muscles were weighed and mandibular segments were scanned with micro CT. BTX paralysis of one masseter did not alter chewing side or rate, in part because of compensation by the medial pterygoid muscle. Masseter-induced bite force was dramatically decreased. Analysis of bone strain data suggested that at 4 weeks, the mandibular condyle of the BTX-injected side was underloaded, as were both sides of the molar area. Bone quantity and quality were severely decreased specifically at these underloaded locations, especially the injection-side condylar head. At 12 weeks, most functional parameters were near their pre-injection levels, but the injected masseter still exhibited atrophy and percent bone area was still low in the condylar head. In conclusion, although the performance of mastication was only minimally harmed by BTX paralysis of the masseter, the resulting underloading was sufficient to cause notable and persistent bone loss, particularly at the temporomandibular joint. PMID:22155510

  19. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  20. Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function

    PubMed Central

    Callahan, Damien M.; Tourville, Timothy W.; Miller, Mark S.; Hackett, Sarah B.; Sharma, Himani; Cruickshank, Nicholas C.; Slauterbeck, James R.; Savage, Patrick D.; Ades, Philip A.; Maughan, David W.; Beynnon, Bruce D.

    2015-01-01

    In older adults, we examined the effect of chronic muscle disuse on skeletal muscle structure at the tissue, cellular, organellar, and molecular levels and its relationship to muscle function. Volunteers with advanced-stage knee osteoarthritis (OA, n = 16) were recruited to reflect the effects of chronic lower extremity muscle disuse and compared with recreationally active controls (n = 15) without knee OA but similar in age, sex, and health status. In the OA group, quadriceps muscle and single-fiber cross-sectional area were reduced, with the largest reduction in myosin heavy chain IIA fibers. Myosin heavy chain IIAX fibers were more prevalent in the OA group, and their atrophy was sex-specific: men showed a reduction in cross-sectional area, and women showed no differences. Myofibrillar ultrastructure, myonuclear content, and mitochondrial content and morphology generally did not differ between groups, with the exception of sex-specific adaptations in subsarcolemmal (SS) mitochondria, which were driven by lower values in OA women. SS mitochondrial content was also differently related to cellular and molecular functional parameters by sex: greater SS mitochondrial content was associated with improved contractility in women but reduced function in men. Collectively, these results demonstrate sex-specific structural phenotypes at the cellular and organellar levels with chronic disuse in older adults, with novel associations between energetic and contractile systems. PMID:25810256

  1. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands

    PubMed Central

    Hubel, Tatjana Y.; Usherwood, James R.

    2015-01-01

    ABSTRACT Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the ‘cost of muscle force’ approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds – adult humans – accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds – children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits. PMID:26400978

  2. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults.

    PubMed

    Yasuda, T; Fukumura, K; Fukuda, T; Uchida, Y; Iida, H; Meguro, M; Sato, Y; Yamasoba, T; Nakajima, T

    2014-10-01

    Previous studies have shown that blood flow-restricted low-intensity resistance training (BFR-RT) causes muscle hypertrophy while maintaining arterial function in young adults. We examined the effects of BFR-RT on muscle size and arterial stiffness in older adults. Healthy subjects (ages 61-84 years) were divided into BFR-RT (n = 9) or non-training control (CON; n = 10) groups. The BFR-RT group performed 20% and 30%, respectively, of one-repetition maximal (1-RM) knee extension and leg press exercises, 2 days/wk for 12 weeks. The BFR-RT group wore elastic cuffs (120-270 mmHg) on both legs during training. Magnetic resonance imaging-measured muscle cross-sectional area (CSA), 1-RM strength, chair stand (CS) test, and cardio-ankle vascular index testing (CAVI), an index of arterial stiffness, were measured before and 3-5 days after the final training session. Muscle CSA of the quadriceps (8.0%), adductors (6.5%), and gluteus maximus (4.4%), leg extension and leg press 1-RM strength (26.1% and 33.4%), and CS performance (18.3%) improved (P < 0.05) in the BFR-RT group, but not in the CON group. In CAVI testing, there were no changes in both two groups. In conclusion, BFR-RT improves muscle CSA as well as maximal muscle strength, but does not negatively affect arterial stiffness or humeral coagulation factors in older adults. PMID:23730848

  3. Correlation between vitamin D levels and muscle fatigue risk factors based on physical activity in healthy older adults

    PubMed Central

    Al-Eisa, Einas S; Alghadir, Ahmad H; Gabr, Sami A

    2016-01-01

    Purpose The purpose of this study was to investigate the relationship of serum vitamin D levels with physical activity, obesity, muscle fatigue biomarkers, and total antioxidant capacity (TAC) in healthy older adults. Methods A total of 85 healthy older subjects aged 64–96 years were recruited in this study. Based on estimated energy expenditure scores, the participants were classified into three groups: inactive (n=25), moderate (n=20), and physically active (n=35). Serum 25(OH)D (25-hydroxy vitamin D) levels, metabolic syndrome parameters, TAC activity, muscle fatigue biomarkers (Ca, creatine kinase, lactic acid dehydrogenase, troponin I, hydroxyproline), physical activity, body fatness, and fatigue score (visual analog scale) were estimated using immunoassay techniques and prevalidated questionnaires, respectively. Results Physical activity was estimated in 64.6% of the participants. Males showed higher physical activity (42.5%) compared to females (26.25%). Compared to participants with lower activity, significant reduction in body mass index, waist circumference, hips, fasting blood sugar, triglycerides, total cholesterol, HDL-cholesterol, and LDL-cholesterol were observed in moderate and physically active participants. Also, significant increase in the levels of serum 25(OH)D concentrations, calcium, and TAC activity along with reduction in the levels of muscle fatigue biomarkers: creatine kinase, lactic acid dehydrogenase, troponin I, hydroxyproline, and fatigue scores (visual analog scale) were reported in physically active participants compared to those of lower physical activity. In all participants, serum 25(OH)D concentrations correlated positively with Ca, TAC, physical activity scores, and negatively with body mass index, lipid profile, fatigue scores (visual analog scale), and muscle fatigue biomarkers. Stepwise regression analysis showed that serum 25(OH)D concentrations, physical activity, Ca, TAC, and demographic parameters explained

  4. Comparison of pulmonary function and back muscle strength according to the degree of spinal curvature of healthy adults

    PubMed Central

    You, Jae Eung; Lee, Hye Young; Kim, Kyoung

    2015-01-01

    [Purpose] Degree of curvature on the spine is known to affect respiratory function and back muscle activation. We compared pulmonary function and back muscle strength according to the degree of curvature of the spine of healthy adults. [Subjects and Methods] Twenty-three healthy volunteers were enrolled. They were divided into two groups according to the degree of curvature of the spine: the below 2° group, and the above 2° group. The degree of curvature was assessed using the Adams forward bending test and a scoliometer. A pulmonary function test (PFT) was conducted, and back muscle strength was measured. [Results] No significant differences in PFT were found between the below 2° group and the above 2° group, in terms of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC), or peak expiratory flow (PEF). However, back muscle strength in the below 2 group was significantly higher than that of the above 2 group. [Conclusion] Our findings indicate that the degree of curvature of the spine is associated with back muscle strength in subjects who have spinal curvature within the normal range. Therefore, evaluation and treatment of back muscle strength might be helpful for preventing the progress of curvature of the spine in adolescents with potential scoliosis. PMID:26180321

  5. Comparison of pulmonary function and back muscle strength according to the degree of spinal curvature of healthy adults.

    PubMed

    You, Jae Eung; Lee, Hye Young; Kim, Kyoung

    2015-06-01

    [Purpose] Degree of curvature on the spine is known to affect respiratory function and back muscle activation. We compared pulmonary function and back muscle strength according to the degree of curvature of the spine of healthy adults. [Subjects and Methods] Twenty-three healthy volunteers were enrolled. They were divided into two groups according to the degree of curvature of the spine: the below 2° group, and the above 2° group. The degree of curvature was assessed using the Adams forward bending test and a scoliometer. A pulmonary function test (PFT) was conducted, and back muscle strength was measured. [Results] No significant differences in PFT were found between the below 2° group and the above 2° group, in terms of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC), or peak expiratory flow (PEF). However, back muscle strength in the below 2 group was significantly higher than that of the above 2 group. [Conclusion] Our findings indicate that the degree of curvature of the spine is associated with back muscle strength in subjects who have spinal curvature within the normal range. Therefore, evaluation and treatment of back muscle strength might be helpful for preventing the progress of curvature of the spine in adolescents with potential scoliosis. PMID:26180321

  6. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    PubMed Central

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  7. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults

    PubMed Central

    Abe, Takashi; Tayashiki, Kota; Nakatani, Miyuki; Watanabe, Hironori

    2016-01-01

    [Purpose] To investigate the relationships between toe flexor muscle strength with (TFS-5-toes) and without (TFS-4-toes) the contribution of the great toe, anatomical and physiological muscle cross-sectional areas (CSA) of intrinsic toe flexor muscle and physical performance were measured. [Subjects] Seventeen men (82% sports-active) and 17 women (47% sports-active), aged 20 to 35 years, volunteered. [Methods] Anatomical CSA was measured in two intrinsic toe flexor muscles (flexor digitorum brevis [FDB] and abductor hallucis) by ultrasound. Muscle volume and muscle length of the FDB were also estimated, and physiological CSA was calculated. [Results] Both TFS-5-toes and TFS-4-toes correlated positively with walking speed in men (r=0.584 and r=0.553, respectively) and women (r=0.748 and r=0.533, respectively). Physiological CSA of the FDB was significantly correlated with TFS-5-toes (r=0.748) and TFS-4-toes (r=0.573) in women. In men, physiological CSA of the FDB correlated positively with TFS-4-toes (r=0.536), but not with TFS-5-toes (r=0.333). [Conclusion] Our results indicate that physiological CSA of the FDB is moderately associated with TFS-4-toes while toe flexor strength correlates with walking performance. PMID:26957721

  8. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans

    PubMed Central

    Miller, Mark S.; Callahan, Damien M.; Toth, Michael J.

    2014-01-01

    Skeletal muscle contractile function declines with aging, disease, and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease, and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment. PMID:25309456

  9. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults - A randomized controlled trial.

    PubMed

    Hvid, Lars G; Strotmeyer, Elsa S; Skjødt, Mathias; Magnussen, Line V; Andersen, Marianne; Caserotti, Paolo

    2016-07-01

    Incomplete voluntary muscle activation may contribute to impaired muscle mechanical function and physical function in older adults. Exercise interventions have been shown to increase voluntary muscle activation, although the evidence is sparse for mobility-limited older adults, particularly in association with physical function. This study examined the effects of 12weeks of power training on outcomes of voluntary muscle activation and gait speed in mobility-limited older adults from the Healthy Ageing Network of Competence (HANC) study. We included 37 older men and women with a usual gait speed of <0.9m/s in the per-protocol analysis: n=16 in the training group (TG: 12weeks of progressive high-load power training, 2 sessions per week; age: 82.3±1.3years, 56% women) and n=21 in the control group (CG: no interventions; age: 81.6±1.1years, 67% women). Knee extensor muscle thickness (ultrasonography), strength (isokinetic dynamometry), voluntary activation (interpolated twitch technique), and gait speed (2-min maximal walking test) were assessed at baseline and post-intervention. At baseline, TG and CG were comparable for all measures. Post-intervention, significant between-group changes (TG vs. CG; p<0.05) were observed for voluntary muscle activation (+6.2%), muscle strength (+13.4Nm), and gait speed (+0.12m/s), whereas the between-group change in muscle thickness was non-significant (+0.08cm). Improvements in voluntary muscle activation were associated with improvements in gait speed in TG (r=0.67, p<0.05). Importantly, voluntary muscle activation is improved in mobility-limited older adults following 12-weeks of progressive power training, and is associated with improved maximal gait speed. Incomplete voluntary muscle activation should be considered one of the key mechanisms influencing muscle mechanical function and gait speed in older adults. PMID:27090485

  10. Effect of Channel Blockers on the Smooth Muscle of the Adult Crop of the Queen Blowfly, Phormia regina

    PubMed Central

    Stoffolano, John G.; Danai, Laura; Chambers, James

    2013-01-01

    Few studies have examined the various factors affecting the rate of contraction of the supercontractile muscles of the crop lobes of adult Phormia regina Meigen (Diptera: Calliphoridae). Using an in situ bioassay of the crop organ, various ion channel blockers were tested and it was demonstrated that in all cases the blockers (i.e., against the following conductances: Cl- , Ca2+ , Na+, and a FMRF-amide action) significantly reduced the contraction rates of the crop lobes, which were filled with 4.5 µL of 1.0 M sucrose containing 10 mM of the dye amaranth. Benzyltrimethylammonium chloride, never before reported for its effect on insect muscle, was as effective in suppressing crop muscle contraction as benzethonium chloride, which is a reported agonist of dromyosuppressin. PMID:24205919

  11. The Muscle Appearance Satisfaction Scale: A factorial analysis of validity and reliability for its use on adult Chinese male weightlifters.

    PubMed

    Jin, Xinhong; Jin, Yahong; Zhou, Shi; Li, Xinhao; Yang, Shun-Nan; Yang, Donglin; Nieuwoudt, Johanna E; Yao, Jiaxin

    2015-06-01

    Muscle dysmorphia (MD) is the distorted perception of men's own muscle appearance. The increasing popularity of weightlifting in Chinese men suggests the presence of MD. The study assessed the validity and reliability of the Muscle Appearance Satisfaction Scale (MASS) for its use on adult Chinese males. Exploratory and confirmatory factor analyses of responses from 225 and 592 participants confirmed the same five factors for the 17-item Chinese version as the original MASS (CFI=.931, RMSEA=.052). The internal consistency for all factors were acceptable (Cronbach's α=.636 to .737). Correlation levels of its subscales with converging measurements indicated that the revised MASS is effective in assessing MD in Chinese male weightlifters. Differences in the importance of the factors suggest an influence of Chinese culture in the symptoms of MD and the need of assessing the MASS with populations from distinct demographics in China and from different cultures. PMID:25939132

  12. Time to Maximal Voluntary Isometric Contraction (MVC) for Five Different Muscle Groups in College Adults.

    ERIC Educational Resources Information Center

    Morris, A. F.; And Others

    1983-01-01

    College men and women were studied to ascertain the force-time components of a rapid voluntary muscle contraction for five muscle groups. Researchers found that the time required for full contraction differs: (1) in men and women; and (2) among the five muscle groups. (Authors/PP)

  13. Muscle-Strengthening Activities and Participation among Adults in the United States

    ERIC Educational Resources Information Center

    Loustalot, Fleetwood; Carlson, Susan A.; Kruger, Judy; Buchner, David M.; Fulton, Janet E.

    2013-01-01

    Purpose: To describe those who reported meeting the "2008 Physical Activity Guidelines for Americans" ("2008 Guidelines") muscle-strengthening standard of 2 or more days per week, including all seven muscle groups, and to assess the type and location of muscle-strengthening activities performed. Method: Data from HealthStyles…

  14. Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults

    ERIC Educational Resources Information Center

    Dietsch, Angela M.; Clark, Heather M.; Steiner, Jessica N.; Solomon, Nancy Pearl

    2015-01-01

    Purpose: Quantification of tissue stiffness may facilitate identification of abnormalities in orofacial muscle tone and thus contribute to differential diagnosis of dysarthria. Tissue stiffness is affected by muscle tone as well as age-related changes in muscle and connective tissue. Method: The Myoton-3 measured tissue stiffness in 40 healthy…

  15. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.

    PubMed

    Cho, Yoshitake; Hazen, Bethany C; Gandra, Paulo G; Ward, Samuel R; Schenk, Simon; Russell, Aaron P; Kralli, Anastasia

    2016-02-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40-80%). Moreover, AAV1-Perm1-transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise. PMID:26481306

  16. Native myosin from adult rabbit skeletal muscle: isoenzymes and states of aggregation.

    PubMed

    Morel, J E; D'hahan, N; Taouil, K; Francin, M; Aguilar, A; Dalbiez, J P; Merah, Z; Grussaute, H; Hilbert, B; Ollagnon, F; Selva, G; Piot, F

    1998-04-21

    The globular heads of skeletal muscle myosin have been shown to exist as isoenzymes S1 (A1) and S1 (A2), and there are also isoforms of the heavy chains. Using capillary electrophoresis, we found two dominant isoenzymes of the whole native myosin molecule, in agreement with what has previously been found by various techniques for native and nondenatured myosin from adult rabbits. Findings about possible states of aggregation of myosin and its heads are contradictory. By analytical ultracentrifugation, we confirmed the existence of a tail-tail dimer. By laser light scattering, we found a head-head dimer in the presence of MgATP. Capillary electrophoresis coupled with analytical ultracentrifugation and laser light scattering led us to refine these results. We found tail-tail dimers in a conventional buffer. We found tail-tail and head-head dimers in the presence of 0.5 mM MgATP and pure head-head dimers in the presence of 6 mM MgATP. All the dimers were homodimers. Naming the dominant isoenzymes of myosin a and b, we observed tail-tail dimers with isoenzyme a (TaTa) and with isoenzyme b (TbTb) and also head-head dimers with isoenzyme a (HaHa) and with isoenzyme b (HbHb). PMID:9548927

  17. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.

    PubMed

    Le Guen, Marie; Chaté, Valérie; Hininger-Favier, Isabelle; Laillet, Brigitte; Morio, Béatrice; Pieroni, Gérard; Schlattner, Uwe; Pison, Christophe; Dubouchaud, Hervé

    2016-02-01

    Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P < 0.05) compared with control animals. Permeabilized myofibers from soleus muscle showed higher O2 consumptions (P < 0.05) in the DHA group compared with the control group, with glutamate-malate as substrates, both in basal conditions (i.e., state 2) and under maximal conditions (i.e., state 3, using ADP), along with a higher apparent Km for ADP (P < 0.05). Calcium retention capacity of isolated mitochondria was lower in DHA group compared with the control group (P < 0.05). Phospho-AMPK/AMPK ratio and PPARδ mRNA content were higher in the DHA group compared with the control group (P < 0.05). Results showed that DHA enhanced endurance capacity in adult animals, a beneficial effect potentially resulting from improvement in mitochondrial function, as suggested by our results on permeabilized fibers. DHA supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio. PMID:26646102

  18. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    PubMed

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  19. A Novel Approach to Collecting Satellite Cells From Adult Skeletal Muscles on the Basis of Their Stress Tolerance

    PubMed Central

    Kuroda, Yasumasa; Wakao, Shohei

    2013-01-01

    Stem cells are generally collected using flow cytometry, but this method is not applicable when the cell surface marker is not well determined. Satellite cells, which are skeletal muscle stem cells, have the ability to regenerate damaged muscles and are expected to be applicable for treatment of muscle degeneration. Although the transcription factor Pax7 is a known specific marker of satellite cells, it is not located on the cell surface and therefore flow cytometry is not directly applicable. In the present study, we turned our attention to the stress tolerance of adult stem cells, and we propose long-term trypsin incubation (LTT) as a novel approach to collecting satellite cells from mouse and human skeletal muscles. LTT led to a remarkable increase in the ratio of Pax7(+) cells that retain normal myogenic stem cell function. In particular, human Pax7(+) cells made up approximately 30% of primary cultured cells, whereas after LTT, the ratio of Pax7(+) cells increased up to ∼80%, and the ratio of Pax7(+) and/or MyoD(+) myogenic cells increased to ∼95%. Once transplanted, LTT-treated cells contributed to subsequent muscle regeneration following repetitive muscle damage without additional cell transplantation. The stress tolerance of Pax7(+) cells is related to heat shock protein 27 and αB-crystallin, members of the small heat shock protein family. This approach, based on the stress resistance of adult stem cells, is a safe and inexpensive method of efficiently collecting human satellite cells and may also be used for collecting other tissue stem cells whose surface marker is unknown. PMID:23748608

  20. Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: a cross-sectional study.

    PubMed

    Trevisan, Maria Elaine; Boufleur, Jalusa; Soares, Juliana Corrêa; Haygert, Carlos Jesus Pereira; Ries, Lilian Gerdi Kittel; Corrêa, Eliane Castilhos Rodrigues

    2015-06-01

    The purpose of this study was to evaluate the electromyographic activity of the accessory inspiratory muscles and the diaphragmatic amplitude (DA) in nasal and mouth-breathing adults. The study evaluated 38 mouth-breathing (MB group) and 38 nasal-breathing (NB group) adults, from 18 to 30years old and both sexes. Surface electromyography (sEMG) was used to evaluate the amplitude and symmetry (POC%) of the sternocleidomastoid (SCM) and upper trapezius (UT) muscles at rest, during nasal slow inspiration at Lung Total Capacity (LTC) and, during rapid and abrupt inspiration: Sniff, Peak Nasal Inspiratory Flow (PNIF) and Maximum Inspiratory Pressure (MIP). M-mode ultrasonography assessed the right diaphragm muscle amplitude in three different nasal inspirations: at tidal volume (TV), Sniff and inspiration at LTC. The SCM activity was significantly lower in the MB group during Sniff, PNIF (p<0.01, Mann-Whitney test) and MIP (p<0.01, t-test). The groups did not differ during rest and inspiration at LTC, regarding sEMG amplitude and POC%. DA was significantly lower in the MB group at TV (p<0.01, Mann-Whitney) and TLC (p=0.03, t-test). Mouth breathing reflected on lower recruitment of the accessory inspiratory muscles during fast inspiration and lower diaphragmatic amplitude, compared to nasal breathing. PMID:25900327

  1. Whole-body vibration increases upper and lower body muscle activity in older adults: potential use of vibration accessories.

    PubMed

    Marín, Pedro J; Santos-Lozano, Alejandro; Santin-Medeiros, Fernanda; Vicente-Rodriguez, German; Casajús, Jose A; Hazell, Tom J; Garatachea, Nuria

    2012-06-01

    The current study examined the effects of whole-body vibration (WBV) on upper and lower body muscle activity during static muscle contractions (squat and bicep curls). The use of WBV accessories such as hand straps attached to the platform and a soft surface mat were also evaluated. Surface electromyography (sEMG) was measured for the medial gastrocnemius (MG), vastus lateralis (VL), and biceps brachii (BB) muscles in fourteen healthy older adults (74.8±4.5 years; mean±SD) with a WBV stimulus at an acceleration of 40 m s(-2) (30 Hz High, 2.5 mm or 46 Hz Low, 1.1 mm). WBV increased lower body (VL and MG) sEMG vs baseline (no WBV) though this was decreased with the use of the soft mat. The addition of the bicep curl with hand straps had no effect on lower body sEMG. WBV also increased BB sEMG vs baseline which was further increased when using the hand straps. There was no upper body effect of the soft mat. This study demonstrates WBV increases both lower and upper body muscle activity in healthy older adults. Moreover, WBV accessories such as hand straps attached to the platform or a soft surface mat may be used to alter exercise intensity. PMID:22406015

  2. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System.

    PubMed

    Geoffroy, Cédric G; Hilton, Brett J; Tetzlaff, Wolfram; Zheng, Binhai

    2016-04-12

    How aging impacts axon regeneration after CNS injury is not known. We assessed the impact of age on axon regeneration induced by Pten deletion in corticospinal and rubrospinal neurons, two neuronal populations with distinct innate regenerative abilities. As in young mice, Pten deletion in older mice remains effective in preventing axotomy-induced decline in neuron-intrinsic growth state, as assessed by mTOR activity, neuronal soma size, and axonal growth proximal to a spinal cord injury. However, axonal regeneration distal to injury is greatly diminished, accompanied by increased expression of astroglial and inflammatory markers at the injury site. Thus, the mammalian CNS undergoes an age-dependent decline in axon regeneration, as revealed when neuron-intrinsic growth state is elevated. These results have important implications for developing strategies to promote axonal repair after CNS injuries or diseases, which increasingly affect middle-aged to aging populations. PMID:27050519

  3. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. PMID:26264580

  4. Timing of Muscle Response to a Sudden Leg Perturbation: Comparison between Adolescents and Adults with Down Syndrome

    PubMed Central

    Valle, Maria Stella; Cioni, Matteo; Pisasale, Mariangela; Pantò, Maria Rosita; Casabona, Antonino

    2013-01-01

    Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test). In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability. PMID:24278374

  5. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  6. Myosin heavy chain composition of the human lateral pterygoid and digastric muscles in young adults and elderly.

    PubMed

    Monemi, M; Liu J-X; Thornell, L E; Eriksson, P O

    2000-05-01

    The myosin heavy chain (MyHC) content in different parts of, two jaw opening muscle, the human lateral pterygoid and the digastric muscles of five young adult and five elderly subjects (mean age 22 and 73 years, respectively) was determined, using gel electrophoresis and immunohistochemical methods. The lateral pterygoid of both young and elderly contained predominantly slow MyHC, and fast A MyHC was the major fast isoform. In contrast, the digastric was composed of slow, fast A and fast X MyHCs in about equal proportions in both age groups. About half of the lateral pterygoid fibres contained mixtures of slow and fast MyHCs, often together with alpha-cardiac MyHC. In the digastric, co-existence of slow and fast MyHCs was rare, and alpha-cardiac MyHC was lacking. On the other hand, co-expression of fast A and fast X MyHCs was found more often in the digastric than in the lateral pterygoid. In both age groups about half of the digastric IIB fibres contained solely fast X MyHC. In the lateral pterygoid, type IIB fibres with pure fast X MyHC was found in only one subject. The lateral pterygoid in elderly showed a significant amount of fibres with solely fast A MyHC, which were occasionally found in young adults. In the digastric, no significant differences were found between young and elderly, although the muscles of elderly contained lower mean value of slow MyHC, as compared to that of young muscles. It is concluded that the lateral pterygoid and the digastric muscles differ not only in the MyHC composition but also in modifications of the MyHC phenotypes during aging, suggesting that they have separate roles in jaw opening function. PMID:11032341

  7. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs

    PubMed Central

    Chechenova, Maria B.; Maes, Sara; Cripps, Richard M.

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation. PMID:26641463

  8. Pumping Iron in Australia: Prevalence, Trends and Sociodemographic Correlates of Muscle Strengthening Activity Participation from a National Sample of 195,926 Adults

    PubMed Central

    Pedisic, Zeljko; van Uffelen, Jannique G. Z.; Charity, Melanie J.; Harvey, Jack T.; Banting, Lauren K.; Vergeer, Ineke; Biddle, Stuart J. H.; Eime, Rochelle M.

    2016-01-01

    Objective The current Australian Physical Activity Guidelines recommend that adults engage in regular muscle-strengthening activity (e.g. strength or resistance training). However, public health surveillance studies describing the patterns and trends of population-level muscle-strengthening activity participation are sparse. The aim of this study is to examine the prevalence, trends and sociodemographic correlates of muscle-strengthening activity participation in a national-representative sample of Australians aged 15 years and over. Methods Between 2001 and 2010, quarterly cross-sectional national telephone surveys were conducted as part of the Australian Sports Commission's 'Exercise, Recreation and Sport Survey'. Pooled population-weighted proportions were calculated for reporting: [i] no muscle-strengthening activity; [ii] insufficient muscle-strengthening activity, and [iii] sufficient muscle-strengthening activity. Associations with sociodemographic variables were assessed using multiple logistic regression analyses. Results Out of 195,926 participants, aged 15–98 years, only 10.4% (95% CI: 10.1–10.7) and 9.3% (95% CI: 9.1–9.5) met the muscle-strengthening activity recommendations in the past two weeks and in the past year, respectively. Older adults (50+ years), and those living in socioeconomically disadvantaged, outer regional/remote areas and with lower education were less likely to report sufficient muscle-strengthening activity (p<0.001). Over the 10-year monitoring period, there was a significant increase in the prevalence of sufficient muscle-strengthening activity (6.4% to 12.0%, p-value for linear trend <0.001). Conclusions A vast majority of Australian adults did not engage in sufficient muscle-strengthening activity. There is a need for public health strategies to support participation in muscle-strengthening activity in this population. Such strategies should target older and lower educated adults, and those living in socioeconomically

  9. Adult Bone Marrow-Derived Stem Cells in Muscle Connective Tissue and Satellite Cell Niches

    PubMed Central

    Dreyfus, Patrick A.; Chretien, Fabrice; Chazaud, Bénédicte; Kirova, Youlia; Caramelle, Philippe; Garcia, Luis; Butler-Browne, Gillian; Gherardi, Romain K.

    2004-01-01

    Skeletal muscle includes satellite cells, which reside beneath the muscle fiber basal lamina and mainly represent committed myogenic precursor cells, and multipotent stem cells of unknown origin that are present in muscle connective tissue, express the stem cell markers Sca-1 and CD34, and can differentiate into different cell types. We tracked bone marrow (BM)-derived stem cells in both muscle connective tissue and satellite cell niches of irradiated mice transplanted with green fluorescent protein (GFP)-expressing BM cells. An increasing number of GFP+ mononucleated cells, located both inside and outside of the muscle fiber basal lamina, were observed 1, 3, and 6 months after transplantation. Sublaminal cells expressed unambiguous satellite cell markers (M-cadherin, Pax7, NCAM) and fused into scattered GFP+ muscle fibers. In muscle connective tissue there were GFP+ cells located close to blood vessels that expressed the ScaI or CD34 stem-cell antigens. The rate of settlement of extra- and intralaminal compartments by BM-derived cells was compatible with the view that extralaminal cells constitute a reservoir of satellite cells. We conclude that both muscle satellite cells and stem cell marker-expressing cells located in muscle connective tissue can derive from BM in adulthood. PMID:14982831

  10. Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle.

    PubMed

    Smythe, Gayle

    2016-01-01

    Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle. PMID:27003400

  11. Regulatory mechanisms and the role of calcium and potassium channels controlling supercontractile crop muscles in adult Phormia regina.

    PubMed

    Solari, Paolo; Stoffolano, John G; Fitzpatrick, Joanna; Gelperin, Alan; Thomson, Alan; Talani, Giuseppe; Sanna, Enrico; Liscia, Anna

    2013-09-01

    Bioassays and electrophysiological recordings were conducted in the adult blowfly Phormia regina to provide new insights into the regulatory mechanisms governing the crop filling and emptying processes of the supercontractile crop muscles. The cibarial pump drives ingestion. Simultaneous multisite extracellular recordings show that crop lobe (P5) distension during ingestion of a 4.7 μl sugar meal does not require muscle activity by any of the other pumps of the system. Conversely, pumping of fluids toward the anterior of the crop system during crop emptying is brought about by active muscle contraction, in the form of a highly coordinated peristaltic wave starting from P5 and progressively propagating to P6, P4 and P3 pumps, with P5 contracting with a frequency about 3.4 times higher than the other pumps. The crop contraction rate is also modulated by hemolymph-borne factors such as sugars, through ligand recognition at a presumptive receptor site rather than by an osmotic effect, as assessed by both behavioural and electrophysiological experiments. In this respect, sugars of equal osmolarity produce different effects, glucose being inhibitory and mannose ineffective for crop muscles, while trehalose enhances crop activity. Finally, voltage and current clamp experiments show that the muscle action potentials (mAPs) at the P4 pump are sustained by a serotonin-sensitive calcium conductance. Serotonin enhances calcium entry into the muscle cells and this could lead, as an indirect modulatory effect, to activation of a Ca(2+)-activated K(+) conductance (IK(Ca)), which sustains the following mAP repolarization phase in such a way that further mAPs can be generated early and the frequency consequently increased. PMID:23834826

  12. Skeletal muscle wasting occurs in adult rats under chronic treatment with paracetamol when glutathione-dependent detoxification is highly activated.

    PubMed

    Mast, C; Joly, C; Savary-Auzeloux, I; Remond, D; Dardevet, D; Papet, I

    2014-10-01

    The use of glutathione (GSH) and sulfate for the detoxification of paracetamol (acetaminophen, APAP) could occur at the expense of the physiological uses of cysteine (Cys). Indeed GSH and sulfate both originate from Cys. Significant APAP-induced Cys loss could generate alterations in GSH and protein metabolisms leading to muscle wasting. The study aimed to investigate the effects of chronic treatment with APAP on whole-body and tissue homeostasis (mass, GSH, proteins, and nitrogen balance) in relation to sulfur losses through APAP-detoxification pathways. Adult male Wistar rats were fed 0% APAP, 0.5% APAP or 1% APAP diets for 17 days. APAP doses were respectively around and largely above the threshold of sulfation saturation for rats. During the last days, the rats were placed in metabolic cages in order to quantify N balance and urinary APAP metabolites. Gastrocnemius muscle mass, protein and GSH contents, N balance and plasma free cyst(e)ine were 8% (P=0.02), 7% (P=0.03), 26% (P=0.01), 37% (P=0.01), and 33% (P=0.003) lower in the 1% APAP group than in the 0% APAP group, respectively. There was no significant difference in these parameters between the 0.5% APAP group and the 0% APAP group. Muscle wasting occurred when the detoxification of APAP through the GSH-dependent pathway was highly activated. Muscle protein synthesis could have been reduced due to a shortage in Cys and/or an increase in protein degradation in response to intra-muscular oxidative stress. Hence, without dietary sulphur amino acid increase, peripheral bioavailability of Cys and muscle GSH are potential players in the control of muscle mass under chronic treatment with APAP, an analgesic medication of widespread use, especially in the elderly. PMID:25371521

  13. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults.

    PubMed

    Kim, Seong-Yeol; Koo, Sung-Ja

    2016-06-01

    [Purpose] The effect of duration of smartphone use on neck and shoulder muscle fatigue and pain was investigated in adults with forward head posture. [Subjects and Methods] Thirty-four adults with forward head posture were classified into groups by duration of smartphone use: 11 used a smartphone for 10 minutes each (group 1), 12 for 20 minutes each (group 2), and 11 for 30 minutes each (group 3). Fatigue cervical erector spinae and upper trapezius muscles was measured by electromyography, and pain before and after the experiment was evaluated using Visual Analog Scale (VAS) scores. [Results] There was a significant difference in the degree of fatigue in the left upper trapezius muscles in group 2 and left cervical erector spinae and bilateral upper trapeziuses group 3. There was a significant difference in fatigue in the left upper trapezius in groups 1 and 3. The VAS showed significant differences in all groups before and after the experiment and between groups 1 and 3. [Conclusion] Pain and fatigue worsened with longer smartphone use. This study provided data on the proper duration of smartphone use. Correct posture and breaks of at least 20 minutes are recommend when using smartphones. PMID:27390391

  14. Flight capacity of Bactrocera dorsalis (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure.

    PubMed

    Chen, Min; Chen, Peng; Ye, Hui; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. PMID:26450591

  15. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults

    PubMed Central

    Kim, Seong-Yeol; Koo, Sung-Ja

    2016-01-01

    [Purpose] The effect of duration of smartphone use on neck and shoulder muscle fatigue and pain was investigated in adults with forward head posture. [Subjects and Methods] Thirty-four adults with forward head posture were classified into groups by duration of smartphone use: 11 used a smartphone for 10 minutes each (group 1), 12 for 20 minutes each (group 2), and 11 for 30 minutes each (group 3). Fatigue cervical erector spinae and upper trapezius muscles was measured by electromyography, and pain before and after the experiment was evaluated using Visual Analog Scale (VAS) scores. [Results] There was a significant difference in the degree of fatigue in the left upper trapezius muscles in group 2 and left cervical erector spinae and bilateral upper trapeziuses group 3. There was a significant difference in fatigue in the left upper trapezius in groups 1 and 3. The VAS showed significant differences in all groups before and after the experiment and between groups 1 and 3. [Conclusion] Pain and fatigue worsened with longer smartphone use. This study provided data on the proper duration of smartphone use. Correct posture and breaks of at least 20 minutes are recommend when using smartphones. PMID:27390391

  16. Flight Capacity of Bactrocera dorsalis (Diptera: Tephritidae) Adult Females Based on Flight Mill Studies and Flight Muscle Ultrastructure

    PubMed Central

    Chen, Peng; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. PMID:26450591

  17. Impact on nutrition on muscle strength and performance in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has rec...

  18. Resistance training alters cytokine gene expression in skeletal muscle of adults with type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training results in muscle hypertrophy and improves glycemic control in patients with type 2 diabetes. Whether resistance training modulates inflammation in muscles of diabetic patients remains unknown. We examined the expression of genes encoding the cytokines, tumor necrosis factor-al...

  19. Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions.

    PubMed

    Liu, Wenxuan; Wei-LaPierre, Lan; Klose, Alanna; Dirksen, Robert T; Chakkalakal, Joe V

    2015-01-01

    Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous. We employed mice with an inducible Cre, and conditionally expressed DTA to deplete or GFP to track SCs. We found SC depletion exacerbated muscle atrophy and type transitions connected to neuromuscular disruption. Also, elevated fibrosis and further declines in force generation were specific to SC depletion and neuromuscular disruption. Fate analysis revealed SC activity near regenerating NMJs. Moreover, SC depletion aggravated deficits in reinnervation and post-synaptic morphology at regenerating NMJs. Therefore, our results propose a mechanism whereby further NMJ and skeletal muscle decline ensues upon SC depletion and neuromuscular disruption. PMID:26312504

  20. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice.

    PubMed

    Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R; Parvathareddy, Jyothi; Peloquin, Matthew J; Saravia, Jordy; Han, Joan C; Cormier, Stephania A; Bridges, Dave

    2016-06-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle. PMID:27117006

  1. Effects of Nordic walking on pelvis motion and muscle activities around the hip joints of adults with hip osteoarthritis

    PubMed Central

    Homma, Daisuke; Jigami, Hirofumi; Sato, Naritoshi

    2016-01-01

    [Purpose] Increased compensatory pelvic movement is remarkable in limping patients with hip osteoarthritis (OA). However, a method of improving limping has not been established. The purpose of this study was to identify the effects of two types of Nordic walking by analyzing the pelvic movement and muscle activities of adults with hip OA. [Subjects and Methods] Ten patients with OA of the hip performed Japanese-style Nordic walking (JS NW), European-style Nordic walking (ES NW), and Ordinary walking (OW), and the muscle activities around the hip joint and pelvic movements were analyzed. [Results] The pelvic rotation angle was significantly larger in ES NW than in JS NW. In the stance phase, hip abductor muscle activity was significantly decreased in JS NW compared to both OW and ES NW. In the swing phase, rectus abdominis muscle activity was significantly increased in both JS NW and ES NW compared to OW and lumbar erector spinae activity was significantly lower in JS NW than in OW. [Conclusion] JS NW style may reduce the compensatory pelvic rotation in patients with hip OA. JS NW might be better for joint protection and prevention of secondary disorders of the hip in OA patients. PMID:27190455

  2. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice

    PubMed Central

    Stephenson, Erin J.; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R.; Parvathareddy, Jyothi; Peloquin, Matthew J.; Saravia, Jordy; Han, Joan C.; Cormier, Stephania A.

    2016-01-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle. PMID:27117006

  3. Influence of skin-to-muscle and muscle-to-bone thickness on depth of needle penetration in adults at the deltoid intramuscular injection site

    PubMed Central

    Shankar, Nachiket; Saxena, Deepali; Lokkur, Pooja P.; Kumar, Nikhil M.; William, Neena Chris; Vijaykumar, Nirupama

    2014-01-01

    Background The objectives of the study were to estimate the following in adults of Indian origin: a) Gender and side differences in the skin-to-muscle (SM) and muscle-to-bone thickness (MB) at the deltoid intramuscular injection site; b) Correlation of SM thickness with the BMI, age and gender; c) The prevalence of under and over-penetration assuming a standard needle length of 25 mm and following prescribed guidelines for IM injection. Methods The SM, MB and skin-to-bone (SB) thicknesses were bilaterally estimated in two hundred adult Indian subjects (100 male and 100 female) using an ultrasound probe at a pre-determined point on the upper arms of the subjects. The BMI of each subject was calculated. The unpaired sample ‘t’ test and paired ‘t’ test were used to analyse differences between groups. Pearson's correlation coefficient was used in correlation analysis and suitable linear regression equations were generated. Results Females had a significantly higher SM thickness and lower MB thickness. The SM thickness was significantly greater on the left side, while the SB and MB thickness were significantly greater on the right. Multiple linear regression equations for both the dominant and non-dominant arms had good model fit properties. Under-penetration would have occurred in 2 (1%) subjects while over-penetration would have occurred in 50% of the subjects. Conclusion Over-penetration of deltoid IM injections is likely to be more prevalent as compared to under-penetration. Therefore, the technique of IM injection needs to be modified based on the body type of the individual patient. PMID:25382907

  4. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration.

    PubMed

    Hernandez-Morato, Ignacio; Sharma, Sansar; Pitman, Michael J

    2016-10-01

    Injury to the recurrent laryngeal nerve (RLN) leads to the loss of ipsilateral laryngeal fold movement, with dysphonia, and occasionally dysphagia. Functional movement of the vocal folds is never restored due to misrouting of regenerating axons to agonist and antagonist laryngeal muscles. Changes of neurotrophic factor expression within denervated muscles occur after nerve injury and may influence nerve regeneration, axon guidance and muscle reinnervation. This study investigates the expression of certain neurotrophic factors in the laryngeal muscles during the course of axonal regeneration using RT-PCR. The timing of neurotrophic factor expression was correlated to the reinnervation of the laryngeal muscles by motor axons. Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Netrin-1 (NTN-1) increased their expression levels in laryngeal muscles after nerve section and during regeneration of RLN. The upregulation of trophic factors returned to control levels following regeneration of RLN. The expression levels of the neurotrophic factors were correlated with the innervation of regenerating axons into the denervated muscles. The results suggest that certain neurotrophic factor expression is strongly correlated to the reinnervation pattern of the regenerating RLN. These factors may be involved in guidance and neuromuscular junction formation during nerve regeneration. In the future, their manipulation may enhance the selective reinnervation of the larynx. PMID:27421227

  5. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    PubMed Central

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  6. In Vivo Neural Tissue Engineering: Cylindrical Biocompatible Hydrogels That Create New Neural Tracts in the Adult Mammalian Brain.

    PubMed

    Clark, Amanda R; Carter, Arrin B; Hager, Lydia E; Price, Elmer M

    2016-08-01

    Individuals with neurodegenerative disorders or brain injury have few treatment options and it has been proposed that endogenous adult neural stem cells can be harnessed to repopulate dysfunctional nonneurogenic regions of the brain. We have accomplished this through the development of rationally designed hydrogel implants that recruit endogenous cells from the adult subventricular zone to create new relatively long tracts of neuroblasts. These implants are biocompatible and biodegradable cylindrical hydrogels consisting of fibrin and immobilized neurotrophic factors. When implanted into rat brain such that the cylinder intersected the migratory path of endogenous neural progenitors (the rostral migratory stream) and led into the nonneurogenic striatum, we observed a robust neurogenic response in the form of migrating neuroblasts with long (>100 μm) complex neurites. The location of these new neural cells in the striatum was directly coincident with the original track of the fibrin implant, which itself had completely degraded, and covered a significant area and distance (>2.5 mm). We also observed a significant number of neuroblasts in the striatal region between the implant track and the lateral ventricle. When these fibrin cylinders were implanted into hemiparkinson rats, correction of parkinsonian behavior was observed. There were no obvious behavioral, inflammatory or tumorigenic sequelae as a consequence of the implants. In conclusion, we have successfully engineered neural tissue in vivo, using neurogenic biomaterials cast into a unique cylindrical architecture. These results represent a novel approach to efficiently induce neurogenesis in a controlled and targeted manner, which may lead toward a new therapeutic modality for neurological disorders. PMID:27295980

  7. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Prober, R. J.; de Guzman, C. P.; de Leon, R.

    1992-01-01

    The neural circuitry of the lumbar spinal cord can generate alternating extension and flexion of the hindlimbs. The hindlimbs of adult cats with complete transection of the spinal cord at a low thoracic level (T12-T13) can perform full weight-supporting locomotion on a treadmill belt moving at a range of speeds. Some limitations in the locomotor capacity can be associated with a deficit in the recruitment level of the fast extensors during the stance phase and the flexors during the swing phase of a step cycle. The level of locomotor performance, however, can be enhanced by daily training on a treadmill while emphasizing full weight-support stepping and by providing appropriately timed sensory stimulation, loading, and/or pharmacologic stimulation of the hindlimb neuromuscular apparatus. Furthermore, there appears to be an interactive effect of these interventions. For example, the maximum treadmill speed that a spinal adult cat can attain and maintain is significantly improved with daily full weight-supporting treadmill training, but progressive recruitment of fast extensors becomes apparent only when the hindlimbs are loaded by gently pulling down on the tail during the stepping. Stimulation of the sural nerve at the initiation of the flexion phase of the step cycle can likewise markedly improve the locomotor capability. Administration of clonidine, in particular in combination with an elevated load, resulted in the most distinct and consistent alternating bursts of electromyographic activity during spinal stepping. These data indicate that the spinal cord has the ability to execute alternating activation of the extensor and flexor musculature of the hindlimbs (stepping) and that this ability can be improved by several interventions such as training, sensory stimulation, and use of some pharmacologic agents. Thus, it appears that the spinal cord, without supraspinal input, is highly plastic and has the potential to "learn," that is, to acquire and improve its

  8. The Interscutularis Muscle Connectome

    PubMed Central

    Lu, Ju; Tapia, Juan Carlos; White, Olivia L; Lichtman, Jeff W

    2009-01-01

    The complete connectional map (connectome) of a neural circuit is essential for understanding its structure and function. Such maps have only been obtained in Caenorhabditis elegans. As an attempt at solving mammalian circuits, we reconstructed the connectomes of six interscutularis muscles from adult transgenic mice expressing fluorescent proteins in all motor axons. The reconstruction revealed several organizational principles of the neuromuscular circuit. First, the connectomes demonstrate the anatomical basis of the graded tensions in the size principle. Second, they reveal a robust quantitative relationship between axonal caliber, length, and synapse number. Third, they permit a direct comparison of the same neuron on the left and right sides of the same vertebrate animal, and reveal significant structural variations among such neurons, which contrast with the stereotypy of identified neurons in invertebrates. Finally, the wiring length of axons is often longer than necessary, contrary to the widely held view that neural wiring length should be minimized. These results show that mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form. This variability may arise from the dominant role of synaptic competition in establishing the final circuit. PMID:19209956

  9. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity.

    PubMed

    Harris-Love, Michael O; Seamon, Bryant A; Teixeira, Carla; Ismail, Catheeja

    2016-01-01

    Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R (2)). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97-.99, p < .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54-1.21], p < .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods

  10. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity

    PubMed Central

    Seamon, Bryant A.; Teixeira, Carla; Ismail, Catheeja

    2016-01-01

    Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R2). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97–.99, p < .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54–1.21], p < .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods

  11. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  12. Tourniquet Use During Knee Replacement Surgery May Contribute to Muscle Atrophy in Older Adults.

    PubMed

    Dreyer, Hans C

    2016-04-01

    Muscle atrophy after total knee arthroplasty (TKA) occurs at a rate of 1% per day for the first 2 wk. Our hypothesis is that tourniquet-induced ischemia-reperfusion injury occurring during TKA influences metabolism and may contribute to atrophy. Identifying pathways that are upregulated during this critical "14-d window" after surgery may help us delineate therapeutic approaches to avoid muscle loss. PMID:26829246

  13. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young Holstein calves.

    PubMed

    Wang, P; Drackley, J K; Stamey-Lanier, J A; Keisler, D; Loor, J J

    2014-01-01

    The molecular mechanisms by which level of nutrient intake enhances skeletal muscle growth in young ruminants are not fully understood. We examined mammalian target of rapamycin (mTOR), insulin, and insulin-like growth factor-1 (IGF-1) gene network expression in semitendinosus muscle tissue of young male Holstein calves fed a conventional milk replacer plus conventional starter (CON) or an enhanced milk replacer plus high-protein starter (ENH) for 5 wk followed by a conventional starter or a high-protein starter until 10 wk of age. Feeding ENH led to greater concentration of plasma IGF-1 and leptin and greater carcass protein and fat mass throughout the study. Despite the greater plasma IGF-1 and protein mass at wk 5, calves fed ENH had lower expression of IGF1R, INSR, and RPS6KB1 but greater expression of IRS1 and PDPK1 in muscle tissue. Except for IGF1R expression, which did not differ at wk 10, these differences persisted at wk 10, suggesting a long-term effect of greater nutrient intake on physiological and molecular mechanisms. Components of mTOR complex (mTORC)1 and mTORC2 (RICTOR and RPTOR) and FOXO1 expression decreased by wk 10 regardless of diet. Overall, the present data revealed that greater nutrient intake throughout the milk-fed and early postweaning phase alters body mass composition partly by altering hormonal and molecular profiles of genes associated with glucose and amino acid signaling. Those networks may play a crucial role in coordinating neonatal muscle growth and metabolism in response to level of nutrient intake. PMID:24210480

  14. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  15. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain

    PubMed Central

    Kaltschmidt, Barbara; Kaltschmidt, Christian

    2015-01-01

    The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system. PMID:26635522

  16. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows.

    PubMed

    Sadri, H; Giallongo, F; Hristov, A N; Werner, J; Lang, C H; Parys, C; Saremi, B; Sauerwein, H

    2016-08-01

    The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis, whereas the ubiquitin-proteasome system (UPS) is regarded as the main proteolytic pathway in skeletal muscle. The objective of the current study was to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet on the abundance of key components of the mTOR pathway and of the UPS in skeletal muscle of dairy cows. Sixty Holstein cows were blocked based on days in milk and milk yield and were randomly assigned within block to 1 of 5 diets in a 10-wk experiment (including the first 2 wk as covariate period) as follows: (1) MP-adequate diet (AMP; 107% of MP requirements, based on the National Research Council requirements); (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Muscle biopsies were collected from longissimus dorsi during the last week of the experiment. The mRNA abundance of key mTOR signaling genes was not affected by the treatments. The phosphorylated (P)-mTOR protein was or tended to be greater for DMP compared with DMPU and AMP, respectively. The P-mTOR protein in DMPUMH was decreased when compared against DMPUM. The P-ribosomal protein S6 tended to be increased by DMPUM compared with DMPU. The abundance of total-S6 was or tended to be greater for DMP compared with AMP and DMPU, respectively. The mRNA abundance of ubiquitin activating and conjugating enzymes was not affected by the treatments, whereas that of muscle ring-finger protein 1 (MuRF-1) was greater in DMP than DMPU. The increased abundance of mTOR-associated signaling proteins and MuRF-1 mRNA abundance indicates a higher rate of protein turnover in muscle of DMP-fed cows. The reduced abundance of P-mTOR by supplementation of RPHis may suggest that His is likely partitioned to the

  17. The Effects of the KCNQ Openers Retigabine and Flupirtine on Myotonia in Mammalian Skeletal Muscle Induced by a Chloride Channel Blocker.

    PubMed

    Su, Tzu-Rong; Zei, Wen-Shan; Su, Ching-Chyuan; Hsiao, George; Lin, Min-Jon

    2012-01-01

    The purpose of this study was to investigate the effect of KCNQ (potassium channel, voltage-gated, KQT-like subfamily) openers in preventing myotonia caused by anthracene-9-carboxylic acid (9-AC, a chloride channel blocker). An animal model of myotonia can be elicited in murine skeletal muscle by 9-AC treatment. KCNQ openers, such as retigabine and flupirtine, can inhibit the increased twitch amplitude (0.1 Hz stimulation) and reduce the tetanic fade (20 Hz stimulations) observed in the presence of 9-AC. Furthermore, the prolonged twitch duration of skeletal muscle was also inhibited by retigabine or flupirtine. Lamotrigine (an anticonvulsant drug) has a lesser effect on the muscle twitch amplitude, tetanic fade, and prolonged twitch duration as compared with KCNQ openers. In experiments using intracellular recordings, retigabine and flupirtine clearly reduced the firing frequencies of repetitive action potentials induced by 9-AC. These data suggested that KCNQ openers prevent the myotonia induced by 9-AC, at least partly through enhancing potassium conductance in skeletal muscle. Taken together, these results indicate that KCNQ openers are potential alternative therapeutic agents for the treatment of myotonia. PMID:22536291

  18. The Influence of Emotional State on the Masticatory Muscles Function in the Group of Young Healthy Adults

    PubMed Central

    Anna, Stocka; Joanna, Kuc; Teresa, Sierpinska; Maria, Golebiewska; Aneta, Wieczorek

    2015-01-01

    Stress may affect the function of all the components of the masticatory system and may ultimately lead to differentiated symptoms and finally to systemic and structural dysfunctions. Objective. To determine the effect of stress on the masticatory muscles function in young healthy adults. Material and Methods. A total of 201 young, Angle's first class, healthy volunteers, 103 female and 98 male, in the age between 18 and 21 years were recruited into the study. All the participants underwent clinical examination according to the Slavicek scheme, questionnaire survey according to Perceived Stress Scale, and assessment of masticatory muscles function in central occlusion. Results. Symptoms of masticatory system dysfunction were found in the group of 86 subjects (46,24%). All the muscles activity in central occlusion was comparable in female and male groups. Mean values of masseters activities in the group of low stress subjects (75,52 µV ± 15,97) were statistically different from the groups with medium (82,43 µV ± 15,04) and high (81,33 ± 12,05) perceived stress (P < 0.05). Conclusion. Chronic stress may reveal or exacerbate symptoms of masticatory dysfunction. PMID:25883942

  19. Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions

    PubMed Central

    Liu, Wenxuan; Wei-LaPierre, Lan; Klose, Alanna; Dirksen, Robert T; Chakkalakal, Joe V

    2015-01-01

    Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous. We employed mice with an inducible Cre, and conditionally expressed DTA to deplete or GFP to track SCs. We found SC depletion exacerbated muscle atrophy and type transitions connected to neuromuscular disruption. Also, elevated fibrosis and further declines in force generation were specific to SC depletion and neuromuscular disruption. Fate analysis revealed SC activity near regenerating NMJs. Moreover, SC depletion aggravated deficits in reinnervation and post-synaptic morphology at regenerating NMJs. Therefore, our results propose a mechanism whereby further NMJ and skeletal muscle decline ensues upon SC depletion and neuromuscular disruption. DOI: http://dx.doi.org/10.7554/eLife.09221.001 PMID:26312504

  20. Determine the effect of neck muscle fatigue on dynamic visual acuity in healthy young adults

    PubMed Central

    Al Saif, Amer A.; Al Senany, Samira

    2015-01-01

    [Purpose] The aim of this study was to determine whether neck muscle fatigue affects dynamic visual acuity in healthy young participants. [Subjects and Methods] This study was a double-blinded, prospective, randomized, controlled trial. Thirty healthy young subjects (ages 21 to 30 years) participated in the study. Participants were randomly divided into an experimental group (n=15) and a control group (n=15). The experimental group performed an exercise designed to induce neck muscle fatigue and the control group preformed non-fatiguing sham exercises. [Results] There were significant differences in mean dynamic visual acuity between the two groups (0.26±0.11 LogMar versus 0.003±0.02 LogMar). Subjects in the experimental group showed a significant decline in their dynamic visual acuity compared with the control group. Dynamic visual acuity strongly correlated with neck muscle fatigue (r = 0.79). No significant differences in joint position error were observed between the two groups and no significant correlations between joint position error and neck muscle fatigue were observed (r = 0.23). [Conclusion] The results of this study suggest that neck muscle fatigue negatively impacts dynamic visual acuity. Although not statistically significant, cervical spine proprioception as measured by the joint position error in the experimental group was diminished after fatigue. PMID:25642087

  1. Prior swimming exercise favors muscle recovery in adult female rats after joint immobilization

    PubMed Central

    Petrini, Ana Claudia; Ramos, Douglas Massoni; Gomes de Oliveira, Luana; Alberto da Silva, Carlos; Pertille, Adriana

    2016-01-01

    [Purpose] To evaluate the efficacy of pre-exercise on immobilization and subsequent recovery of white gastrocnemius (WG) and soleus (SOL) muscles of female rats. [Subjects and Methods] Thirty, 8-month-old, female Wistar rats were randomly and evenly allocated to six groups: sedentary (S); immobilized sedentary (IS); immobilized/rehabilitated sedentary (IRS); trained (T); immobilized trained (IT); and immobilized/rehabilitated trained (IRT). For four months, T, IT and IRT group animals performed swimming exercise (three sessions per week, 60 minutes per session), while S, IS and IRS groups animals remained housed in cages. After this period, the left hindlimb of the animals from the IS, IRS, IT and IRT groups was immobilized for five days, with the ankle at 90°. After removal of the orthosis, animals from the IRS and IRT groups followed a rehabilitation program based on swimming (five sessions per week, 60 minutes per session) for two weeks. [Results] Immobilization significantly reduced the cross-sectional area of the white gastrocnemius muscle; no changes were observed in the soleus muscles of the trained animals. Transforming growth factor-β1 protein levels were similar among the trained groups. [Conclusion] Prior swimming prevents hypotrophy of the soleus muscle after immobilization, and protein levels reflected the adaptive capacity of the skeletal muscle. PMID:27512267

  2. The role of the sarcoplasmic reticulum in neonatal uterine smooth muscle: enhanced role compared to adult rat

    PubMed Central

    Noble, Karen; Wray, Susan

    2002-01-01

    Little is known about contractile activity, response to agonists or excitation-contraction coupling in neonatal smooth muscle. We have therefore investigated 10-day rat uterus to better understand these processes, and compared it to adult uterus to elucidate how control of contractility develops. Spontaneous contractions are present in the 10-day neonatal uterus, although they are not as large or as regular as those present in adult tissues. External Ca2+ entry via L-type Ca2+ channels is the sole source of Ca2+ and is essential for the spontaneous activity. The neonatal uterus was responsive to carbachol or prostaglandin F2α application; it showed a marked stimulation and a clear dissociation between the force and Ca2+ changes. Such sensitization was not apparent in adult rat myometrium. The sarcoplasmic reticulum (SR) had more releasable Ca2+ and contributed more to the response to agonists in neonatal compared to adult tissues. Thus, Ca2+ entry as opposed to SR Ca2+ release contributed much less to the uterine response to agonists in the neonatal, compared to adult tissues. Inhibition of the SR by cyclopiazonic acid also caused a more vigorous increase in Ca2+ and contractile activity, particularly frequency, in the neonatal compared to the adult uterus. Taken together these data suggest that: (1) spontaneous activity is already present by day 10, (2) receptor-coupling and excitation-contraction signalling pathways are functional, (3) the SR and Ca2+ sensitization mechanisms play a more prominent role in the neonate, and (4) there is a shift to a greater reliance on Ca2+ entry and excitability with development of the myometrium. PMID:12456834

  3. The Association between Muscle Mass Deficits Estimated from Bioelectrical Impedance Analysis and Lumbar Spine Bone Mineral Density in Korean Adults

    PubMed Central

    Jang, Hye-Yeon; Lee, Kye-Bong; Cho, Sul-Bit; Im, In Jae; Kim, Hee Jin

    2016-01-01

    Background Bone mineral density (BMD) is influenced by many factors. Despite the reported association between body components and BMD, most of these studies investigated the relationship between absolute muscle mass or fat mass and BMD in postmenopausal women or elderly subjects. The aim of this study is to investigate the association between muscle mass deficits (MMD) estimated from bioelectrical impedance analysis (BIA) and lumbar spinal BMD in Korean adults 20 to 49 years of age. Methods This cross-sectional study included 1,765 men and women who visited a health promotion center for a routine checkup. The lumbar spinal BMD was measured by dual energy X-ray absorptiometry. Body composition analysis was performed using BIA. Results The mean age of the subjects was 40.2±6.3 years. Ten thousand subjects (56.7%) were males and 126 subjects (7.1%) belonged to the low BMD (Z-score ≤-2.0). MMD had the strongest influence on BMD after adjusting for all covariates. The adjusted odds ratio of Group 3 (MDD >2.6 kg) for low BMD was 2.74 (95% CI, 1.46-5.15) after adjusting for age, gender, body mass index, height, and smoking. Conclusions MMD estimated by BIA showed a significant association with BMD and could be regarded as an independent risk factor for low BMD in adults 20 to 49 years of age. These findings support that interventions such as physical activity or lifestyle changes may simultaneously modify both muscle and bone health in this age group. PMID:27294081

  4. Mammalian pheromones.

    PubMed

    Liberles, Stephen D

    2014-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  5. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  6. Effect of Virtual Reality Exercise Using the Nintendo Wii Fit on Muscle Activities of the Trunk and Lower Extremities of Normal Adults

    PubMed Central

    Park, Jungseo; Lee, Daehee; Lee, Sangyong

    2014-01-01

    [Purpose] The present study aimed to determine the effect of virtual reality exercise using the Nintendo Wii Fit on the muscle activities of the trunk and lower extremities of normal adults. [Subjects] The subjects of the study were 24 normal adults who were divided into a virtual reality exercise group (VREG, n=12) and a stable surface exercise group (SEG, n=12). [Methods] The exercises of the VREG using the Nintendo Wii Fit and the SEG using a stable surface were conducted three times a week for six weeks. Electromyography was used to measure the muscle activities of the tibialis anterior (TA), medial gastrocnemius (MG), erector spinae (ES), and rectus abdominal (RA) muscles. [Results] VREG showed significant within group differences in TA and MG muscle activities, while the SEG showed a significant difference in the muscle activity of the MG. [Conclusion] Virtual reality exercise using the Nintendo Wii Fit was an effective intervention for the muscle activities of the TA and MG of normal adults. PMID:24648647

  7. Ascaridole-less infusions of Chenopodium ambrosioides contain a nematocide(s) that is(are) not toxic to mammalian smooth muscle.

    PubMed

    MacDonald, D; VanCrey, K; Harrison, P; Rangachari, P K; Rosenfeld, J; Warren, C; Sorger, G

    2004-06-01

    Infusions of Chenopodium ambrosioides (L.) have been used for centuries in the Americas as a popular remedy against intestinal worm infections. The essential oil of Chenopodium ambrosioides contains high levels of ascaridole, which is a potent anthelmintic, but which has also been responsible for human fatalities, leading to its disuse. Almost 90% of the nematocidal activity of Chenopodium ambrosioides infusions was due to a hydrophilic component different from ascaridole. Synthetic ascaridole and the ascaridole from infusions, extracted into hexane, caused a reduction of carbachol-induced contractions in rat gastrointestinal smooth muscle at concentrations required to kill Caenorhabditis elegans (L.). The herbal infusion and the ascaridole-free hexane-extracted aqueous residue of the above infusion, at nematocidal concentrations, had no detectable effect on smooth muscle contraction in the above system. It would appear that the traditional form of usage of Chenopodium ambrosioides infusions as a vermifuge is safer than the use of the herb's essential oil. PMID:15138003

  8. Impaired neural activation limits muscle power in mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declines in functional mobility are common with advancing age, though the physiological determinants underlying this problem are not fully understood. Accumulating evidence indicates that muscle power, the product of force and velocity, is an independent predictor of mobility function in older adul...

  9. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    PubMed Central

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  10. Validity of muscle-to-fat ratio as a predictor of adult metabolic syndrome

    PubMed Central

    Park, Jongsuk; Kim, Sangho

    2016-01-01

    [Purpose] This study was aimed at determining the validity of the muscle-to-fat ratio as an indicator for the prevention and management of metabolic syndrome by establishing an optimal cutoff value. [Subjects and Methods] Data from the first and second year of the fifth Korea National Health Nutrition Examination Survey, conducted by the Korean Ministry of Health and Welfare and Korean Centers for Disease Control and Prevention, were used. A total of 6,256 subjects were included in the study. Diagnostic accuracy was measured by using the area under the receiver operating characteristic curve. [Results] The receiver operating characteristic curve for the muscle-to-fat ratio, which represents the diagnostic power for predicting metabolic syndrome, was 0.713 in men and 0.721 in women. The optimal cutoff value for the prediction and diagnosis of metabolic syndrome was 3.09 kg/kg in men and 1.83 kg/kg in women. Intergroup differences based on the muscle-to-fat ratio indicated that the low-ratio group had higher values for all indicators of metabolic syndrome than the high-ratio group. [Conclusion] The muscle-to-fat ratio can be used as an indicator for the prediction and diagnosis of metabolic syndrome, and early prevention and management of metabolic syndrome can help in improving public health. PMID:27134408

  11. Analytes and metabolites associated with muscle quality in young, healthy adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Identification of mechanisms that underlie lower extremity muscle quality (leg press one repetition maximum/total lean mass; LP/Lean) may be important for individuals interested in optimizing fitness and sport performance. The purpose of the current study was to provide observational insigh...

  12. Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage.

    PubMed

    Retailleau, Kevin; Arhatte, Malika; Demolombe, Sophie; Jodar, Martine; Baudrie, Véronique; Offermanns, Stefan; Feng, Yuanyi; Patel, Amanda; Honoré, Eric; Duprat, Fabrice

    2016-07-01

    Human mutations in the X-linked FLNA gene are associated with a remarkably diverse phenotype, including severe arterial morphological anomalies. However, the role for filamin A (FlnA) in vascular cells remains partially understood. We used a smooth muscle (sm)-specific conditional mouse model to delete FlnA at the adult stage, thus avoiding the developmental effects of the knock-out. Inactivation of smFlnA in adult mice significantly lowered blood pressure, together with a decrease in pulse pressure. However, both the aorta and carotid arteries showed a major outward hypertrophic remodeling, resistant to losartan, and normally occurring in hypertensive conditions. Notably, arterial compliance was significantly enhanced in the absence of smFlnA. Moreover, reactivity of thoracic aorta rings to a variety of vasoconstrictors was elevated, while basal contractility in response to KCl depolarization was reduced. Enhanced reactivity to the thromboxane A2 receptor agonist U46619 was fully reversed by the ROCK inhibitor Y27632. We discuss the possibility that a reduction in arterial stiffness upon smFlnA inactivation might cause a compensatory increase in conduit artery diameter for normalization of parietal tension, independently of the ROCK pathway. In conclusion, deletion of smFlnA in adult mice recapitulates the vascular phenotype of human bilateral periventricular nodular heterotopia, culminating in aortic dilatation. PMID:27023351

  13. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.

    PubMed Central

    Williams, D A; Head, S I; Lynch, G S; Stephenson, D G

    1993-01-01

    1. Single muscle fibres were enzymatically isolated from the soleus and extensor digitorum longus (EDL) muscles of genetically dystrophic mdx and normal (C57BL/10) mice aged 3-6 or 17-23 weeks. 2. Fibres of both muscles were chemically skinned with the non-ionic detergent Triton X-100 (2% v/v). Ca(2+)- and Sr(2+)-activated contractile responses were recorded and comparisons were made between several contractile parameters of various fibre types of normal and dystrophic mice of similar age. 3. There were no significant differences in the following contractile parameters of skinned fibres of normal and mdx mice of the same age: sensitivity to activating Ca2+ (pCa50) or Sr2+ (pSr50) and differential sensitivity to the activating ions (pCa50-pSr50). However the maximum isometric tension (Po) and the frequency of myofibrillar force oscillations in EDL fast-twitch fibres of young mdx mice were significantly lower than those of soleus fast-twitch fibres of the same animals, or fast-twitch fibres (EDL or soleus) of normal mice. 4. Age-related differences were apparent in some contractile parameters of both normal and mdx mice. In particular the steepness of force-pCa and force-pSr curves increased with age in normal mice, yet decreased with age in fibres of mdx mice. 5. A fluorescent probe, ethidium bromide, which interchelates with DNA, was used with laser-scanning confocal microscopy to determine the distribution of myonuclei in fibres. Fibres isolated from either muscle type of normal animals displayed a characteristic peripheral spiral of myonuclei. Fibres from muscles of mdx mice displayed three major patterns of nuclear distribution; the normal peripheral spiral, long central strands of nuclei, and a mixture of these two patterns. 6. The contractile characteristics of mdx fibres were not markedly influenced by the nuclear distribution pattern in that there were no discernible differences in the major contractile parameters (the Hill coefficients nCa and nSr, which

  14. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits

    PubMed Central

    Santalla, Alfredo; Munguía-Izquierdo, Diego; Brea-Alejo, Lidia; Pagola-Aldazábal, Itziar; Díez-Bermejo, Jorge; Fleck, Steven J.; Ara, Ignacio; Lucia, Alejandro

    2014-01-01

    We analyzed the effects of a 4-month resistance (weight lifting) training program followed by a 2-month detraining period in 7 adult McArdle patients (5 female) on: muscle mass (assessed by DXA), strength, serum creatine kinase (CK) activity and clinical severity. Adherence to training was ≥84% in all patients and no major contraindication or side effect was noted during the training or strength assessment sessions. The training program had a significant impact on total and lower extremities’ lean mass (P < 0.05 for the time effect), with mean values increasing with training by +855 g (95% confidence interval (CI): 30, 1679) and +547 g (95%CI: 116, 978), respectively, and significantly decreasing with detraining. Body fat showed no significant changes over the study period. Bench press and half-squat performance, expressed as the highest value of average muscle power (W) or force (N) in the concentric-repetition phase of both tests showed a consistent increase over the 4-month training period, and decreased with detraining. Yet muscle strength and power detraining values were significantly higher than pre-training values, indicating that a training effect was still present after detraining. Importantly, all the participants, with no exception, showed a clear gain in muscle strength after the 4-month training period, e.g., bench press: +52 W (95% CI: 13, 91); half-squat: +173 W (95% CI: 96, 251). No significant time effect (P > 0.05) was noted for baseline or post strength assessment values of serum CK activity, which remained essentially within the range reported in our laboratory for McArdle patients. All the patients changed to a lower severity class with training, such that none of them were in the highest disease severity class (3) after the intervention and, as such, they did not have fixed muscle weakness after training. Clinical improvements were retained, in all but one patient, after detraining, such that after detraining all patients were classed as

  15. [An Adult Case of Transperineal Repair of Congenital Rectourethral Fistula Using Gracilis Muscle Flap Interposition].

    PubMed

    Yo, Toeki; Kanematsu, Akihiro; Hanasaki, Takeshi; Nakanishi, Yukako; Togo, Yoshikazu; Suzuki, Toru; Higuchi, Yoshihide; Nojima, Michio; Yamamoto, Shingo; Okuyama, Hiroomi

    2015-07-01

    A man in his 50s was referred to our hospital after recurrent severe urinary tract infection. He had undergone anoplasty for anorectal malformation during early infancy. He noticed urinary leakage from the anus for a long time. Under diagnosis of congenital rectourethral fistula, we performed fistula closure. The fistula was transsected via transperineal incision and each stump was closed. A gracilis muscle flap approximately 30 cm long was harvested from the left thigh, brought into the deepest part between the separated rectum and urethra through a subcutaneous tunnel and fixed there. The urinary leakage from the anus disappeared, and the infection resolved. Application of gracilis muscle flap for congenital diseases is rare, but was useful in the present case. PMID:26278215

  16. The Relationship between Balance, Muscles, and Anthropomorphic Features in Young Adults.

    PubMed

    Zagyapan, Ragıba; Iyem, Cihan; Kurkcuoglu, Ayla; Pelin, Can; Tekindal, Mustafa Agah

    2012-01-01

    Posture can be defined as the form of the body when sitting, walking, or standing. There would be no problem if muscles interact in harmony with musculoskeletal system or nervous system. Posture analysis is crucial for clinical assessments in physical medicine and rehabilitation. However, studies into this issue are limited. In this study, the relationship between static standing balance and anthropomorphic features in healthy subjects was investigated. The study was carried out with a total of 240 students at Baskent University (116 females, 124 males) aged between 18 and 25 years. Type of balance of the subjects was determined with lateral posture analysis. Additionally, muscle shortness tests, subcutaneous fat thickness, and waist and thigh circumference were measured. As the results of lateral posture analysis, 107 subjects (71 males, 36 females) were detected to have anterior balance, 89 (41 males, 48 females) posterior balance, and 44 (12 males, 32 girls) neutral balance. Values of waist circumference, thigh circumference, and waist/thigh ratio were compared with all three balance types. A statistically significant difference was detected between these values in the subjects who had anterior balance (P < 0.05). In conclusion, a significant relationship was detected between muscle shortness, waist and thigh circumferences, and postural balance type. PMID:22567305

  17. Characterization of ion channels on the surface membrane of adult rat skeletal muscle.

    PubMed Central

    Chua, M; Betz, W J

    1991-01-01

    The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system. PMID:1714780

  18. The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine

    PubMed Central

    Maconochie, David J; Steinbach, Joe Henry

    1998-01-01

    In this paper, we examine acetylcholine (ACh)-induced currents in quail fibroblast cell lines expressing either the fetal (Q-F18) or the adult (Q-A33) complement of nicotinic acetylcholine receptor subunits derived from mouse skeletal muscle. Pulses of ACh were applied to outside-out patches of cell membrane by means of a fast perfusion system, at concentrations from 100 nM to 10 mM. We obtained current records with intracellular potentials of -60 and +40 mV. The goal of this study was to estimate the channel opening rate.By fitting sums of exponentials to averaged responses, we estimated the rate of development of the current on the application of acetylcholine. The rate constant of the predominant exponential component (the on-rate) ranges over 3 orders of magnitude, from around 100 s−1 (fetal) at low concentrations of ACh to over 100 000 s−1 (fetal and adult) at the highest concentrations.We establish that our measurement of the on-rate is not limited by technical constraints, and can therefore be related to the rate constants of a kinetic scheme. Our observations are consistent with a model having a rate-limiting channel opening step with a forwards rate constant (β) of 80 000 s−1 on average for adult receptors and 60 000 s−1 for fetal receptors, and a minimum opening to closing ratio (β/α) of around 33 (adult) or 50 (fetal). The channel opening rate, β, varies from around 30 000 s−1 to well over 100 000 s−1 for different patches. The large variation cannot all be ascribed to errors of measurement, but indicates patch to patch variation. PMID:9481672

  19. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  20. Symptoms of muscle dysmorphia, body dysmorphic disorder, and eating disorders in a nonclinical population of adult male weightlifters in Australia.

    PubMed

    Nieuwoudt, Johanna E; Zhou, Shi; Coutts, Rosanne A; Booker, Ray

    2015-05-01

    The current study aimed to (a) determine the rates of symptoms of muscle dysmorphia (MD), body dysmorphic disorder (BDD), and eating disorder; (b) determine the relationships among symptoms of MD, BDD, and eating disorders; and (c) provide a comprehensive comparison of symptoms of MD, BDD, and eating disorders in a nonclinical population of adult male weightlifters in Australia. The participants (N = 648, mean age = 29.5 years, SD = 10.1) participated in an online survey, consisting of Muscle Appearance Satisfaction Scale, the Body Dysmorphic Disorder Questionnaire, and the Eating Attitude Test-26. Results indicated that 110 participants (17%) were at risk of having MD, 69 participants (10.6%) were at risk of having BDD, and 219 participants (33.8%) were at risk of having an eating disorder. Furthermore, 36 participants (5.6%) were found at risk of having both MD and BDD, and 60 participants (9.3%) were at risk of having both MD and an eating disorder. Significant correlations and associations were found between symptoms of MD and BDD, and symptoms of MD and eating disorders. Support was provided for the comorbidity of, and symptomatic similarities between, symptoms of MD and BDD, and symptoms of MD and eating disorders. This may reflect a shared pathogenesis between symptoms of MD, BDD, and eating disorders. Strength and conditioning professionals, exercise scientists, athletic trainers, and personal trainers should be aware that adult males who are working out with weights (i.e., free weights or machines) may be at increased risk of having MD, BDD, and eating disorders. PMID:25909960

  1. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension.

    PubMed

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E; Arons, Elena; Zaman, Paula; Polach, Kevin J; Matar, Majed; Yung, Lai-Ming; Yu, Paul B; Bowman, Frederick P; Opotowsky, Alexander R; Waxman, Aaron B; Loscalzo, Joseph; Leopold, Jane A; Maron, Bradley A

    2016-07-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10(-9) to 10(-7) M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor-small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.-Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth

  2. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  3. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. PMID:25857689

  4. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse

    PubMed Central

    Galvan, Elfego; Arentson-Lantz, Emily; Lamon, Séverine; Paddon-Jones, Douglas

    2016-01-01

    Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical inactivity have the potential to negatively impact the health of older adults more than their younger counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or energy consumption is a well-intentioned, but often impractical strategy to protect muscle health. Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function and metabolic homeostasis. PMID:27376322

  5. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse.

    PubMed

    Galvan, Elfego; Arentson-Lantz, Emily; Lamon, Séverine; Paddon-Jones, Douglas

    2016-01-01

    Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical inactivity have the potential to negatively impact the health of older adults more than their younger counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or energy consumption is a well-intentioned, but often impractical strategy to protect muscle health. Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function and metabolic homeostasis. PMID:27376322

  6. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype.

    PubMed

    Grifone, Raphaelle; Laclef, Christine; Spitz, François; Lopez, Soledad; Demignon, Josiane; Guidotti, Jacques-Emmanuel; Kawakami, Kiyoshi; Xu, Pin-Xian; Kelly, Robert; Petrof, Basil J; Daegelen, Dominique; Concordet, Jean-Paul; Maire, Pascal

    2004-07-01

    Muscle fibers show great differences in their contractile and metabolic properties. This diversity enables skeletal muscles to fulfill and adapt to different tasks. In this report, we show that the Six/Eya pathway is implicated in the establishment and maintenance of the fast-twitch skeletal muscle phenotype. We demonstrate that the MEF3/Six DNA binding element present in the aldolase A pM promoter mediates the high level of activation of this promoter in fast-twitch glycolytic (but not in slow-twitch) muscle fibers. We also show that among the Six and Eya gene products expressed in mouse skeletal muscle, Six1 and Eya1 proteins accumulate preferentially in the nuclei of fast-twitch muscles. The forced expression of Six1 and Eya1 together in the slow-twitch soleus muscle induced a fiber-type transition characterized by the replacement of myosin heavy chain I and IIA isoforms by the faster IIB and/or IIX isoforms, the activation of fast-twitch fiber-specific genes, and a switch toward glycolytic metabolism. Collectively, these data identify Six1 and Eya1 as the first transcriptional complex that is able to reprogram adult slow-twitch oxidative fibers toward a fast-twitch glycolytic phenotype. PMID:15226428

  7. Scanning electron-microscopic studies on the three-dimensional structure of mitochondria in the mammalian red, white and intermediate muscle fibers.

    PubMed

    Ogata, T; Yamasaki, Y

    1985-01-01

    The three-dimensional structure and arrangement of mitochondria in the red, white and intermediate striated muscle fibers of the rat were examined under a field-emission type scanning electron microscope after removal of cytoplasmic matrices by means of the Osmium-DMSO-Osmium procedure. Beneath the sarcolemma, spherical or ovoid subsarcolemmal mitochondria show accumulations. The mitochondria are numerous and large in size in the red fibers, intermediate in the intermediate fibers, and few and small in the white fibers. Paired, slender I-band-limited mitochondria were located on both sides of the Z-line and partly embraced the myofibrils at the I-band level; they occurred in all three types of fibers. In the intermyofibrillar spaces, numerous mitochondria formed mitochondrial columns. These columns were classified into two types: 1) thick mitochondrial columns, formed by multiple mitochondria each with an intermyofibrillar space corresponding to one sarcomere in length, and 2) thin mitochondrial columns, established by single mitochondria corresponding to one sarcomere in length. In the red fibers mitochondrial columns were abundant and the ratio of the thick and thin columns was almost the same, while in the intermediate fibers most of the columns belonged to the thin type. The white fibers displayed rare, very thin columns. PMID:4028126

  8. DNA methylation dynamics in muscle development and disease

    PubMed Central

    Carrió, Elvira; Suelves, Mònica

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis. PMID:25798107

  9. Psychological Factors Predict Local and Referred Experimental Muscle Pain: A Cluster Analysis in Healthy Adults

    PubMed Central

    Lee, Jennifer E.; Watson, David; Frey-Law, Laura A.

    2012-01-01

    Background Recent studies suggest an underlying three- or four-factor structure explains the conceptual overlap and distinctiveness of several negative emotionality and pain-related constructs. However, the validity of these latent factors for predicting pain has not been examined. Methods A cohort of 189 (99F; 90M) healthy volunteers completed eight self-report negative emotionality and pain-related measures (Eysenck Personality Questionnaire-Revised; Positive and Negative Affect Schedule; State-Trait Anxiety Inventory; Pain Catastrophizing Scale; Fear of Pain Questionnaire; Somatosensory Amplification Scale; Anxiety Sensitivity Index; Whiteley Index). Using principal axis factoring, three primary latent factors were extracted: General Distress; Catastrophic Thinking; and Pain-Related Fear. Using these factors, individuals clustered into three subgroups of high, moderate, and low negative emotionality responses. Experimental pain was induced via intramuscular acidic infusion into the anterior tibialis muscle, producing local (infusion site) and/or referred (anterior ankle) pain and hyperalgesia. Results Pain outcomes differed between clusters (multivariate analysis of variance and multinomial regression), with individuals in the highest negative emotionality cluster reporting the greatest local pain (p = 0.05), mechanical hyperalgesia (pressure pain thresholds; p = 0.009) and greater odds (2.21 OR) of experiencing referred pain compared to the lowest negative emotionality cluster. Conclusion Our results provide support for three latent psychological factors explaining the majority of the variance between several pain-related psychological measures, and that individuals in the high negative emotionality subgroup are at increased risk for (1) acute local muscle pain; (2) local hyperalgesia; and (3) referred pain using a standardized nociceptive input. PMID:23165778

  10. The effect of nitrate supplementation on muscle contraction in healthy adults.

    PubMed

    Hoon, Matthew W; Fornusek, Ché; Chapman, Phillip G; Johnson, Nathan A

    2015-01-01

    This study examined the effect of dietary supplementation with inorganic nitrate ([Formula: see text] ) on markers of contractile function in human knee extensors. In a double-blinded, randomized cross-over design, 18 (12 M) healthy participants undertook four days of supplementation with either nitrate-rich beetroot juice (NITRATE; days 1-3: 525 mg [Formula: see text], day 4: 1050 mg [Formula: see text]) or nitrate-depleted beetroot juice (PLACEBO). On the fourth day, isometric knee extension force was assessed during a series of voluntary and electrically evoked (stimulation) tests. In addition, muscular fatigue was examined in two separate continuous-stimulation (0.8 s tetanus with a 1:1 work:rest ratio for 102.4 s) fatigue tests, one with and one without blood flow restriction. There were no differences for maximum voluntary contraction, peak twitch force, half-relaxation time and the force-frequency relationship for stimulations up to 100 Hz between the NITRATE and PLACEBO trials. No differences between trials were observed in the non-restricted fatigue test, however NITRATE was found to attenuate the decline in force during the restricted test, such that the force at the 80 s mark (PLACEBO: 66 ± 11 vs. NITRATE 74 ± 9% of initial force; P = .01) and 102 s mark (PLACEBO: 47 ± 8% vs. NITRATE 55 ± 8%; P < .01) were significantly higher. These results suggest that four days of [Formula: see text] supplementation elicits peripheral responses in muscle that attenuate muscular fatigue during exhaustive exercise under hypovolemic conditions. This ergogenic action is likely attributable to improved Ca(2+) handling in the muscle, or enhanced perfusion during ischemia. PMID:26681629

  11. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    SciTech Connect

    Krasin, Matthew J.; Wiese, Kristin M.; Spunt, Sheri L.; Hua, Chia-ho; Daw, Najat; Navid, Fariba; Davidoff, Andrew M.; McGregor, Lisa; Merchant, Thomas E.; Kun, Larry E.; McCrarey, Lola; and others

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  12. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults.

    PubMed

    Arentson-Lantz, Emily J; English, Kirk L; Paddon-Jones, Douglas; Fry, Christopher S

    2016-04-15

    Bed rest, a ground-based spaceflight analog, induces robust atrophy of skeletal muscle, an effect that is exacerbated with increasing age. We examined the effect of 14 days of bed rest on skeletal muscle satellite cell content and fiber type atrophy in middle-aged adults, an understudied age demographic with few overt signs of muscle aging that is representative of astronauts who perform long-duration spaceflight. Muscle biopsies were obtained from the vastus lateralis of healthy middle-aged adults [n= 7 (4 male, 3 female); age: 51 ± 1 yr] before (Pre-BR) and after (Post-BR) 14 days of bed rest. Immunohistochemical analyses were used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area (CSA), satellite cell and myonuclear content, and capillary density. Peak oxygen consumption, knee extensor strength, and body composition were also measured Pre-BR and Post-BR. Post-BR MyHC type 2a fiber percentage was reduced, and mean CSA decreased in all fiber types (-24 ± 5%;P< 0.05). Satellite cell content was also reduced Post-BR (-39 ± 9%;P< 0.05), and the change in satellite cell content was significantly correlated with the change in mean fiber CSA (r(2)= 0.60;P< 0.05). A decline in capillary density was observed Post-BR (-23 ± 6%;P< 0.05), and Post-BR capillary content was significantly associated with Post-BR peak aerobic capacity (r(2)= 0.59;P< 0.05). A subtle decline in myonuclear content occurred during bed rest (-5 ± 1%;P< 0.05). The rapid maladaptation of skeletal muscle to 14 days of mechanical unloading in middle-aged adults emphasizes the need for robust countermeasures to preserve muscle function in astronauts. PMID:26796754

  13. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: a multi‐continent study

    PubMed Central

    Koyanagi, Ai; Olaya, Beatriz; Ayuso‐Mateos, Jose Luis; Miret, Marta; Chatterji, Somnath; Tobiasz‐Adamczyk, Beata; Koskinen, Seppo; Leonardi, Matilde; Haro, Josep Maria

    2015-01-01

    Abstract Background The aim of this study was to evaluate the factors associated with low skeletal muscle mass (SMM), sarcopenia, and sarcopenic obesity using nationally representative samples of people aged ≥65 years from diverse geographical regions of the world. Methods Data were available for 18 363 people aged ≥65 years who participated in the Collaborative Research on Ageing in Europe survey conducted in Finland, Poland, and Spain, and the World Health Organization Study on global AGEing and adult health survey conducted in China, Ghana, India, Mexico, Russia, and South Africa, between 2007 and 2012. A skeletal muscle mass index (SMI) was created to reflect SMM. SMM, SMI, and percent body fat (%BF) were calculated with specific indirect population formulas. These estimates were based on age, sex, weight, height, and race. Sarcopenia and sarcopenic obesity were defined with specific cut‐offs. Results The prevalence of sarcopenia ranged from 12.6% (Poland) to 17.5% (India), and that of sarcopenic obesity ranged from 1.3% (India) to 11.0% (Spain). Higher %BF was associated with lower SMM in all countries, and with sarcopenia in five countries (p < 0.001). Compared to high levels of physical activity, low levels were related with higher odds for sarcopenia [OR 1.36 (95%CI 1.11–1.67)] and sarcopenic obesity [OR 1.80 (95%CI 1.23–2.64)] in the overall sample. Also, a dose‐dependent association between higher numbers of chronic diseases and sarcopenic obesity was observed. Conclusions Physical activity and body composition changes such as high %BF are key factors for the prevention of sarcopenia syndrome. PMID:27239412

  14. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5× in cold and by 1.3× with exercise (P < 0.05). Cytochrome c oxidase (COx) was increased by 1.2× following exercise training (P < 0.05) and 1.2× (P = 0.07) with cold acclimatization. However, only cold acclimatization increased β-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3×) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3× in cold-acclimatized and 4× in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-α mRNA levels were decreased in both experimental groups while PPAR-β1 declined in exercise training only. Moreover, PPAR-γ coactivator (PGC)-1α mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses

  15. Mammalian aromatases.

    PubMed

    Conley, A; Hinshelwood, M

    2001-05-01

    Aromatase is the enzyme complex that catalyses the synthesis of oestrogens from androgens, and therefore it has unique potential to influence the physiological balance between the sex steroid hormones. Both aromatase cytochrome P450 (P450arom) and NADPH-cytochrome P450 reductase (reductase), the two essential components of the enzyme complex, are highly conserved among mammals and vertebrates. Aromatase expression occurs in the gonads and brain, and is essential for reproductive development and fertility. Of interest are the complex mechanisms involving alternative promoter utilization that have evolved to control tissue-specific expression in these tissues. In addition, in a number of species, including humans, expression of aromatase has a broader tissue distribution, including placenta, adipose and bone. The relevance of oestrogen synthesis and possibly androgen metabolism in these peripheral sites of expression is now becoming clear from studies in P450arom knockout (ArKO) mice and from genetic defects recognized recently in both men and women. Important species differences in the physiological roles of aromatase expression are also likely to emerge, despite the highly conserved nature of the enzyme system. The identification of functionally distinct, tissue-specific isozymes of P450arom in at least one mammal, pigs, and several species of fish indicates that there are additional subtle, but physiologically significant, species-specific roles for aromatase. Comparative studies of mammalian and other vertebrate aromatases will expand understanding of the role played by this ancient enzyme system in the evolution of reproduction and the adaptive influence of oestrogen synthesis on general health and well being. PMID:11427156

  16. mTOR Complexes Repress Hypertrophic Agonist-Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells.

    PubMed

    Sundararaj, Kamala; Pleasant, Dorea L; Moschella, Phillip C; Panneerselvam, Kavin; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2016-02-01

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that promotes fibrosis in various organs. In the heart, both cardiomyocytes (CM) and cardiac fibroblasts have been reported as a source of CTGF expression, aiding cardiac fibrosis. Although the mammalian target of rapamycin (mTOR) forms 2 distinct complexes, mTORC1 and mTORC2, and plays a central role in integrating biochemical signals for protein synthesis and cellular homeostasis, we explored its role in CTGF expression in adult feline CM. CM were stimulated with 10 μM phenylephrine (PE), 200 nM angiotensin (Ang), or 100 nM insulin for 24 hours. PE and Ang, but not insulin, caused an increase in CTGF mRNA expression with the highest expression observed with PE. Inhibition of mTOR with torin1 but not rapamycin significantly enhanced PE-stimulated CTGF expression. Furthermore, silencing of raptor and rictor using shRNA adenoviral vectors to suppress mTORC1 and mTORC2, respectively, or blocking phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 (LY) or Akt signaling by dominant-negative Akt expression caused a substantial increase in PE-stimulated CTGF expression as measured by both mRNA and secreted protein levels. However, studies with dominant-negative delta isoform of protein kinase C demonstrate that delta isoform of protein kinase C is required for both agonist-induced CTGF expression and mTORC2/Akt-mediated CTGF suppression. Finally, PE-stimulated CTGF expression was accompanied with a corresponding increase in Smad3 phosphorylation and pretreatment of cells with SIS3, a Smad3 specific inhibitor, partially blocked the PE-stimulated CTGF expression. Therefore, a PI3K/mTOR/Akt axis plays a suppressive role on agonist-stimulated CTGF expression where the loss of this mechanism could be a contributing factor for the onset of cardiac fibrosis in the hypertrophying myocardium. PMID:26371948

  17. Regulation of gene expression mediating indeterminate muscle growth in teleosts.

    PubMed

    Ahammad, A K Shakur; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo; Kinoshita, Shigeharu

    2015-08-01

    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth. PMID:25842264

  18. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres.

    PubMed Central

    Metzger, J M; Moss, R L

    1990-01-01

    1. The pH dependence of the Ca2+ sensitivities of isometric tension and stiffness was investigated at 10 and 15 degrees C in skinned single fibres from rat and rabbit fast- and slow-twitch skeletal muscles. Stiffness was determined by recording the tension responses to sinusoidal length changes (3.3 kHz); peak-to-peak amplitude of the length change was monitored by laser diffraction and averaged approximately 1.3 nm (half-sarcomere)-1. We have assumed that stiffness provides a measure of the number of cross-bridge attachments to actin. 2. At maximal Ca2+ activation, stiffness was depressed by 22 +/- 2% (mean +/- S.E.M.) in fast-twitch fibres but was unchanged in slow-twitch fibres when pH was lowered from 7.00 to 6.20. As reported previously, maximum tension was depressed by 20-45% at low pH, with the effect being greater in fast-twitch compared to slow-twitch fibres. 3. In fast-twitch fibres at 10 and 15 degrees C the Ca2+ concentrations for half-maximal activation of tension and stiffness were increased at low pH. In slow-twitch fibres, similar effects were observed at 15 degrees C, but at 10 degrees C there were no changes in the Ca2+ sensitivities of tension and stiffness when pH was lowered. 4. Linear relationships between relative tension and relative stiffness were obtained at all temperatures, with slopes of 1.04 +/- 0.01 at pH 7.00 and 0.76 +/- 0.01 at pH 6.20 in fast- and slow-twitch fibres, indicating that force per cross-bridge attachment is similarly reduced at low pH in both types of fibres. 5. In both fast- and slow-twitch fibres, rigor tension (no added ATP or creatine phosphate; pCa 9.0) was depressed by 35 +/- 7% and stiffness by 12 +/- 4% when pH was reduced from 7.00 to 6.20. Since cross-bridge cycling is inhibited in rigor the effect of low pH to depress rigor tension suggests that pH directly modulates the strength of the bond formed between actin and myosin. 6. The effect of low pH to reduce the apparent number of cross-bridge attachments

  19. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  20. Effects of low-energy He-Ne laser irradiation on posttraumatic degeneration of adult rabbit optic nerve

    SciTech Connect

    Schwartz, M.; Doron, A.; Erlich, M.; Lavie, V.; Benbasat, S.; Belkin, M.; Rochkind, S.

    1987-01-01

    Axons of the mammalian peripheral and central nervous systems degenerate after nerve injury. We have recently found that He-Ne laser irradiation may prevent some of the consequences of the injury in peripheral nerves of mammals. In the present study, the efficacy of the laser in treating injured neurons of the mammalian CNS was tested. Optic nerves of adult rabbits were exposed daily for 8-14 days to He-Ne laser irradiation (14 min, 15 mW) through the overlying muscles and skin. As a result of this treatment, the injured nerves maintained their histological integrity, which is invariably lost in injured mammalian CNS neurons.

  1. Effects of Low-Load, Elastic Band Resistance Training Combined With Blood Flow Restriction on Muscle Size and Arterial Stiffness in Older Adults.

    PubMed

    Yasuda, Tomohiro; Fukumura, Kazuya; Uchida, Yusuke; Koshi, Hitomi; Iida, Haruko; Masamune, Ken; Yamasoba, Tatsuya; Sato, Yoshiaki; Nakajima, Toshiaki

    2015-08-01

    We examined the effect of low-load, elastic band resistance training with blood flow restriction (BFR) on muscle size and arterial stiffness in older adults. Healthy older adults (aged 61-85 years) were divided into BFR training (BFR-T, n = 9) or non-BFR training (CON-T, n = 8) groups. Both groups performed low-load arm curl and triceps down exercises (four sets, total 75 repetitions for each) using an elastic band, 2 d/wk for 12 weeks. The BFR-T group wore inflated pneumatic elastic cuffs (120-270 mm Hg) on both arms during training. Magnetic resonance imaging-measured muscle cross-sectional area of the upper arm, maximum voluntary isometric contraction of the elbow flexors and extensors, cardio-ankle vascular index testing, and ankle-brachial pressure index were measured before and 3-5 days after the final training session. Muscle cross-sectional area of the elbow flexors (17.6%) and extensors (17.4%) increased, as did elbow flexion and elbow extension maximum voluntary isometric contraction (7.8% and 16.1%, respectively) improved (p < .05) in the BFR-T group, but not in the CON-T group. In cardio-ankle vascular index and ankle-brachial pressure index testing, there were no changes between pre- and post-results in either group. In conclusion, elastic band BFR-T improves muscle cross-sectional area as well as maximal muscle strength but does not negatively affect arterial stiffness in older adults. PMID:24917178

  2. MicroRNA transcriptome profiles during swine skeletal muscle development

    PubMed Central

    McDaneld, Tara G; Smith, Timothy PL; Doumit, Matthew E; Miles, Jeremy R; Coutinho, Luiz L; Sonstegard, Tad S; Matukumalli, Lakshmi K; Nonneman, Dan J; Wiedmann, Ralph T

    2009-01-01

    Background MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells, three stages of fetal growth, day-old neonate, and the adult. Results Twelve potential novel miR were detected that did not match previously reported sequences. In addition, a number of miR previously reported to be expressed in mammalian muscle were detected, having a variety of abundance patterns through muscle development. Muscle-specific miR-206 was nearly absent in proliferating satellite cells in culture, but was the highest abundant miR at other time points evaluated. In addition, miR-1 was moderately abundant throughout developmental stages with highest abundance in the adult. In contrast, miR-133 was moderately abundant in adult muscle and either not detectable or lowly abundant throughout fetal and neonate development. Changes in abundance of ubiquitously expressed miR were also observed. MiR-432 abundance was highest at the earliest stage of fetal development tested (60 day-old fetus) and decreased throughout development to the adult. Conversely, miR-24 and miR-27 exhibited greatest abundance in proliferating satellite cells and the adult, while abundance of miR-368, miR-376, and miR-423-5p was greatest in the neonate. Conclusion These data present a complete set of transcriptome profiles to evaluate miR abundance at specific stages of skeletal muscle growth in swine. Identification of these miR provides an initial group of miR that may play a vital role in muscle development and growth. PMID:19208255

  3. Lumbar paraspinal muscle morphometry and its correlations with demographic and radiological factors in adult isthmic spondylolisthesis: a retrospective review of 120 surgically managed cases.

    PubMed

    Thakar, Sumit; Sivaraju, Laxminadh; Aryan, Saritha; Mohan, Dilip; Sai Kiran, Narayanam Anantha; Hegde, Alangar S

    2016-05-01

    OBJECTIVE The objective of this study was to assess the cross-sectional areas (CSAs) of lumbar paraspinal muscles in adults with isthmic spondylolisthesis (IS), to compare them with those in the normative population, and to evaluate their correlations with demographic factors and MRI changes in various spinal elements. METHODS The authors conducted a retrospective study of patients who had undergone posterior lumbar interbody fusion for IS, and 2 of the authors acting as independent observers calculated the CSAs of various lumbar paraspinal muscles (psoas, erector spinae [ES], multifidus [MF]) on preoperative axial T2-weighted MR images from the L-3 to L-5 vertebral levels and computed the CSAs as ratios with respect to the corresponding vertebral body areas. These values were then compared with those in an age- and sex-matched normative population and were analyzed with respect to age, sex, duration of symptoms, grade of listhesis, and various MRI changes at the level of the listhesis (pedicle signal change, disc degeneration, and facetal arthropathy). RESULTS Compared with values in normative controls, the mean CSA value for the ES muscle was significantly higher in the study cohort of 120 patients (p = 0.002), whereas that for the MF muscle was significantly lower (p = 0.009), and more so in the patients with PSC (p = 0.002). Magnetic resonance imaging signal change in the pedicle was seen in half of the patients, all of whom demonstrated a Type 2 change. Of the variables tested in a multivariate analysis, age independently predicted lower area values for all 3 muscles (p ≤ 0.001), whereas female sex predicted a lower mean psoas area value (p < 0.001). None of the other variables significantly predicted any of the muscle area values. A decrease in the mean MF muscle area value alone was associated with a significantly increased likelihood of a PSC (p = 0.039). CONCLUSIONS Compared with normative controls, patients with IS suffer selective atrophy of their MF

  4. Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner

    PubMed Central

    Callahan, Damien M; Miller, Mark S; Sweeny, Andrew P; Tourville, Timothy W; Slauterbeck, James R; Savage, Patrick D; Maugan, David W; Ades, Philip A; Beynnon, Bruce D; Toth, Michael J

    2014-01-01

    Physical inactivity that accompanies ageing and disease may hasten disability by reducing skeletal muscle contractility. To characterize skeletal muscle functional adaptations to muscle disuse, we compared contractile performance at the molecular, cellular and whole-muscle levels in healthy active older men and women (n = 15) and inactive older men and women with advanced-stage, symptomatic knee osteoarthritis (OA) (n = 16). OA patients showed reduced (P < 0.01) knee extensor function. At the cellular level, single muscle fibre force production was reduced in OA patients in myosin heavy chain (MHC) I and IIA fibres (both P < 0.05) and differences in IIA fibres persisted after adjustments for fibre cross-sectional area (P < 0.05). Although no group differences in contractile velocity or power output were found for any fibre type, sex was found to modify the effect of OA, with a reduction in MHC IIA power output and a trend towards reduced shortening velocity in women, but increases in both variables in men (P < 0.05 and P = 0.07, respectively). At the molecular level, these adaptations in MHC IIA fibre function were explained by sex-specific differences (P ≤ 0.05) in myosin–actin cross-bridge kinetics. Additionally, cross-bridge kinetics were slowed in MHC I fibres in OA patients (P < 0.01), attributable entirely to reductions in women with knee OA (P < 0.05), a phenotype that could be reproduced in vitro by chemical modification of protein thiol residues. Our results identify molecular and cellular functional adaptations in skeletal muscle that may contribute to reduced physical function with knee OA-associated muscle disuse, with sex-specific differences that may explain a greater disposition towards disability in women. PMID:25038243

  5. Growth and immobilization effects on sarcomeres: a comparison between gastrocnemius and soleus muscles of the adult rat.

    PubMed

    Heslinga, J W; te Kronnie, G; Huijing, P A

    1995-01-01

    The effects of growth and limb immobilization on muscle mass, total physiological cross-section (PC), the number of sarcomeres in series and the length of sarcomere components were investigated in the soleus muscle (SOL) and compared to previously obtained data on gastrocnemius (GM) muscles of rats between age 10 and 16 weeks. For SOL this period of growth was reflected in an increased muscle mass and PC. No such increases were found for GM. In contrast, immobilization caused severe atrophy of fibres of both muscles. Compared to the value at the start of the immobilization, it was found that the fast twitch muscle (GM) atrophied more than the typically slow twitch one (SOL). The number of sarcomeres in series within fibres increased after growth and decreased after immobilization of SOL. For fibres of GM no such changes were observed. Muscle architecture is proposed as an important factor for the explanation of the results concerning the number of sarcomeres in series and those arranged in parallel. Due to the difference in muscle architecture, GM being more pennate than SOL, during growth, it is thought that increases in bone length affect the length of fibres of SOL more than those of GM. During immobilization, atrophy of fibres of GM was sufficient for the muscle length adaptation to meet the muscle length change induced by immobilization but in SOL, atrophy had to be accompanied by decreases in the number of sarcomeres in series to achieve adequate muscle length adaptation. PMID:7729438

  6. Periexercise coingestion of branched-chain amino acids and carbohydrate in men does not preferentially augment resistance exercise-induced increases in phosphatidylinositol 3 kinase/protein kinase B-mammalian target of rapamycin pathway markers indicative of muscle protein synthesis.

    PubMed

    Ferreira, Maria Pontes; Li, Rui; Cooke, Matthew; Kreider, Richard B; Willoughby, Darryn S

    2014-03-01

    The effects of a single bout of resistance exercise (RE) in conjunction with periexercise branched-chain amino acid (BCAA) and carbohydrate (CHO) ingestion on skeletal muscle signaling markers indicative of muscle protein synthesis were determined. It was hypothesized that CHO + BCAA would elicit a more profound effect on these signaling markers compared with CHO. Twenty-seven males were randomly assigned to CHO, CHO + BCAA, or placebo (PLC) groups. Four sets of leg presses and leg extensions were performed at 80% 1 repetition maximum. Supplements were ingested 30 minutes and immediately before and after RE. Venous blood and muscle biopsy samples were obtained immediately before supplement ingestion and 0.5, 2, and 6 hours after RE. Serum insulin and glucose and phosphorylated levels of muscle insulin receptor substrate 1 (IRS-1), protein kinase B, mammalian target of rapamycin, phosphorylated 70S6 kinase, and 4E binding protein 1 were assessed. Data were analyzed by 2-way repeated-measures analysis of variance. Significant group × time interactions were observed for glucose and insulin (P < .05) showing that CHO and CHO + BCAA were significantly greater than PLC. Significant time main effects were observed for IRS-1 (P = .001), protein kinase B (P = .031), mammalian target of rapamycin (P = .003), and phosphorylated 70S6 kinase (P = .001). Carbohydrate and CHO + BCAA supplementation significantly increased IRS-1 compared with PLC (P = .002). However, periexercise coingestion of CHO and BCAA did not augment RE-induced increases in skeletal muscle signaling markers indicative of muscle protein synthesis when compared with CHO. PMID:24655485

  7. Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation

    PubMed Central

    Fong, Shirley S. M.; Tam, Y. T.; Macfarlane, Duncan J.; Ng, Shamay S. M.; Bae, Young-Hyeon; Chan, Eleanor W. Y.; Guo, X.

    2015-01-01

    This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP. PMID:26185520

  8. Nitric oxide stimulates matrix synthesis and deposition by adult human aortic smooth muscle cells within three-dimensional cocultures.

    PubMed

    Simmers, Phillip; Gishto, Arsela; Vyavahare, Narendra; Kothapalli, Chandrasekhar R

    2015-04-01

    Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell-cell and cell-matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0-100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1-10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC

  9. Nitric Oxide Stimulates Matrix Synthesis and Deposition by Adult Human Aortic Smooth Muscle Cells Within Three-Dimensional Cocultures

    PubMed Central

    Simmers, Phillip; Gishto, Arsela; Vyavahare, Narendra

    2015-01-01

    Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell–cell and cell–matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0–100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1–10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC

  10. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage.

    PubMed

    Dubois, Vanessa; Simitsidellis, Ioannis; Laurent, Michaël R; Jardi, Ferran; Saunders, Philippa T K; Vanderschueren, Dirk; Claessens, Frank

    2015-12-01

    Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens. PMID:26393303

  11. Elevated Serum Uric Acid Is Associated with Greater Bone Mineral Density and Skeletal Muscle Mass in Middle-Aged and Older Adults

    PubMed Central

    He, Juan; Wang, Chen; Qiu, Rui; Chen, Yu-ming

    2016-01-01

    Background and objective Previous studies have suggested a positive link between serum uric acid (UA) and bone mineral density (BMD). In this study, we re-examined the association between UA and BMD and further explored whether this was mediated by skeletal muscle mass in a general Chinese population. Method This community-based cross-sectional study was conducted among 3079 (963 men and 2116 women) Chinese adults aged 40–75 years. Face-to-face interviews and laboratory analyses were performed to determine serum UA and various covariates. Dual-energy X-ray absorptiometry was used to assess the BMD and appendicular skeletal muscle mass. The skeletal muscle mass index (SMI = ASM/Height2, kg/m2) for the total limbs, arms, and legs was then calculated. Results The serum UA was graded and, in general, was significantly and positively associated with the BMD and muscle mass, after adjustment for multiple covariates in the total sample. Compared with participants in lowest quartile of UA, those participants in highest quartile showed a 2.3%(whole body), 4.1%(lumbar spine), 2.4%(total hip), and 2.0% (femoral neck) greater BMDs. The mean SMIs in the highest (vs. lowest) quartile increased by 2.7% (total), 2.5% (arm), 2.7% (leg) respectively. In addition, path analysis suggested that the favorable association between UA and BMD might be mediated by increasing SMI. Conclusion The elevated serum UA was associated with a higher BMD and a greater muscle mass in a middle-aged and elderly Chinese population and the UA-BMD association was partly mediated by muscle mass. PMID:27144737

  12. Inspiratory muscle training compared with other rehabilitation interventions in adults with chronic obstructive pulmonary disease: a systematic literature review and meta-analysis.

    PubMed

    Crowe, Jean; Reid, W Darlene; Geddes, E Lynne; O'Brien, Kelly; Brooks, Dina

    2005-09-01

    The purpose of this systematic review was to determine the effect of inspiratory muscle training (IMT) (alone or combined with exercise and/or pulmonary rehabilitation) compared to other rehabilitation interventions such as: exercise, education, other breathing techniques or exercise and/or pulmonary rehabilitation among adults with chronic obstructive pulmonary disease (COPD). A systematic review of the literature on IMT and COPD was conducted according to the Cochrane Collaboration protocol. Inclusion criteria for the review included randomized controlled trials, published in English, comparing IMT or combined IMT and exercise/pulmonary rehabilitation with other rehabilitation interventions such as general exercise, education, other breathing techniques or exercise/pulmonary rehabilitation among adults with COPD. 274 articles were retrieved, and 16 met the inclusion criteria. Seven meta-analyses were performed that compared targeted or threshold IMT to exercise (n = 3) or to education (n = 4). Results showed significant improvements in inspiratory muscle strength and endurance, and in the dyspnea scale on a quality of life measure, for participants in the IMT versus education group. In other instances where meta-analyses could not be performed, a qualitative review was performed. IMT results in improved inspiratory muscle strength and endurance compared to education. Further trials are required to investigate the effect of IMT (or combined IMT) compared to other rehabilitation inventions for outcomes such as dyspnea, exercise tolerance, and quality of life. PMID:17146997

  13. The effects of squatting with visual feedback on the muscle activation of the vastus medialis oblique and the vastus lateralis in young adults with an increased quadriceps angle

    PubMed Central

    Hwangbo, Pil-Neo

    2015-01-01

    [Purpose] The purpose of this study was to identify the effects of performing squat exercises with visual feedback on the activation of the vastus medialis oblique (VMO) and vastus lateralis (VL) muscles in young adults with an increased quadriceps angle (Q-angle). [Subjects] This study used a motion analysis program (Dartfish, Switzerland) to select 20 young adults with an increased Q-angle, who were then divided into a squat group that received visual feedback (VSG, n=10) and a squat group that received no visual feedback (SG, n=10). [Methods] The intensity of exercises was increased every two weeks over a six-week exercise period in both groups. A visual marker was attached to the patella of the subjects in the VSG, and they then performed squat exercises with a maximum of 90° of knee flexion within a route marked on a mirror. The SG performed squat exercises with a maximum 90° of knee flexion without attaching a visual feedback device. [Results] Analysis of the muscle activation due to 90° squat exercises indicated that both groups had statistically significant increases in activation of the VL. The VSG exhibited statistically significant increases in activation of the VMO. [Conclusion] This study confirmed that squat exercises with visual feedback are effective in activation of the VMO and VL muscles. The findings are meaningful in terms of preventing the occurrence of patellofemoral pain. PMID:26157251

  14. Determination of malachite green residues in the eggs, fry, and adult muscle-tissue of rainbow-trout (Oncorhynchus-mykiss)

    USGS Publications Warehouse

    Allen, John L.; Gofus, J.E.; Meinertz, Jeffery R.

    1994-01-01

    Malachite green, an effective antifungal therapeutant used in fish culture, is a known teratogen. We developed a method to simultaneously detect both the chromatic and leuco forms of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (oncorhynchus mykiss). Homogenates of these tissues were fortified with [c-14] malachite green chloride and extracted with 1% (v/v) acetic acid in acetonitrile or in methanol. The extracts were partitioned with chloroform, dried, redissolved in mobile phase, and analyzed by liquid chromatography (lc) with postcolumn oxidation of leuco malachite green to the chromatic form. Lc fractions were collected every 30 s for quantitation by scintillation counting. Recoveries of total [c-14] malachite green chloride residue were 85 and 98% in eggs fortified with labeled malachite green at concentrations of 0.5 And 1.00 Mug/g, respectively; 68% in fry similarly fortified at a concentration of 0.65 Mug/g; and 66% in muscle homogenate similarly fortified at a level of 1.00 Mug/g. The method was tested under operational conditions by exposing adult rainbow trout to 1.00 Mg/l [c-14] malachite green chloride bath for 1 h. Muscle samples analyzed by sample oxidation and scintillation counting contained 1.3 And 0.5 Mug/g total malachite green chloride residues immediately after exposure and after a 5-day withdrawal period, respectively.

  15. Selective expression of the type 3 isoform of ryanodine receptor Ca{sup 2+} release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    SciTech Connect

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo . E-mail: v.sorrentino@unisi.it

    2005-11-11

    The expression pattern of the RyR3 isoform of Ca{sup 2+} release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.

  16. Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscles of old laboratory rodents experience exaggerated force losses after eccentric contractile activity. We extended this line of inquiry to humans and investigated the influence of fiber myosin heavy chain (MHC) isoform content on the injury process. Skinned muscle fiber segments, prepared from ...

  17. The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle.

    PubMed

    Racca, Alice W; Beck, Anita E; McMillin, Margaret J; Korte, F Steven; Bamshad, Michael J; Regnier, Michael

    2015-06-15

    Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general. PMID:25740846

  18. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  19. Influence of gender on muscle strength, power and body composition in healthy subjects and mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To explore the influence of gender on the cross-sectional differences in lower-limb strength, power and body composition among 31 healthy middle-aged adults (mean age: 47.2 +/- 5 yrs, 17 females), 28 healthy older adults (74 +/- 4 yrs, 12 females), and 34 older adults with mobility impair...

  20. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring.

    PubMed

    Pileggi, C A; Segovia, S A; Markworth, J F; Gray, C; Zhang, X D; Milan, A M; Mitchell, C J; Barnett, M P G; Roy, N C; Vickers, M H; Reynolds, C M; Cameron-Smith, D

    2016-03-01

    A high-saturated-fat diet (HFD) during pregnancy and lactation leads to metabolic disorders in offspring concomitant with increased adiposity and a proinflammatory phenotype in later life. During the fetal period, the impact of maternal diet on skeletal muscle development is poorly described, despite this tissue exerting a major influence on life-long metabolic health. This study investigated the effect of a maternal HFD on skeletal muscle anabolic, catabolic, and inflammatory signaling in adult rat offspring. Furthermore, the actions of maternal-supplemented conjugated linoleic acid (CLA) on these measures of muscle phenotype were investigated. A purified control diet (CD; 10% kcal fat), a CD supplemented with CLA (CLA; 10% kcal fat, 1% total fat as CLA), a high-fat (HFD; 45% kcal fat from lard), or a HFD supplemented with CLA (HFCLA; 45% kcal fat from lard, 1% total fat as CLA) was fed ad libitum to female Sprague-Dawley rats for 10 days before mating and throughout gestation and lactation. Male offspring received a standard chow diet from weaning, and the gastrocnemius was collected for analysis at day 150. Offspring from HF and HFCLA mothers displayed lower muscular protein content accompanied by elevated monocyte chemotactic protein-1, IL-6, and IL-1β concentrations. Phosphorylation of NF-κBp65 (Ser(536)) and expression of the catabolic E3 ligase muscle ring finger 1 (MuRF1) were increased in HF offspring, an effect reversed by maternal CLA supplementation. The present study demonstrates the importance of early life interventions to ameliorate the negative effects of poor maternal diet on offspring skeletal muscle development. PMID:26632603

  1. The lymphocyte secretome from young adults enhances skeletal muscle proliferation and migration, but effects are attenuated in the secretome of older adults

    PubMed Central

    Al-Dabbagh, Sarah; McPhee, Jamie S; Murgatroyd, Christopher; Butler-Browne, Gillian; Stewart, Claire E; Al-Shanti, Nasser

    2015-01-01

    Older people experience skeletal muscle wasting, in part due to impaired proliferative capacity of quiescent skeletal muscle satellite cells which can be reversed by exposure to young blood. To investigate the role of immune cells in muscle regeneration, we isolated lymphocytes from whole blood of young and older healthy volunteers and cultured them with, or without, anti-CD3/CD28 activators to induce release of cytokines, interleukins, and growth factors into the media. The secreted proteins were collected to prepare a conditioned media, which was subsequently used to culture C2C12 myoblasts. The conditioned media from the activated young lymphocytes increased the rate of proliferation of myoblasts by around threefold (P < 0.005) and caused an approximate fourfold (P < 0.005) increase in migration compared with nonactivated lymphocyte control media. These responses were characterized by minimal myotube formation (2%), low fusion index (5%), low myosin heavy chain content, and substantial migration. In contrast, myoblasts treated with conditioned media from activated old lymphocytes exhibited a high degree of differentiation, and multi-nucleated myotube formation that was comparable to control conditions, thus showing no effect on proliferation or migration of myoblasts. These results indicate that secreted proteins from lymphocytes of young people enhance the muscle cell proliferation and migration, whereas secreted proteins from lymphocytes of older people may contribute to the attenuated skeletal muscle satellite cell proliferation and migration. PMID:26603449

  2. Mammalian Carboxylesterase 5: Comparative Biochemistry and Genomics

    PubMed Central

    Holmes, Roger S; Cox, Laura A; VandeBerg, John L

    2008-01-01

    Carboxylesterase 5 (CES5) (also called cauxin or CES7) is one of at least five mammalian CES gene families encoding enzymes of broad substrate specificity and catalysing hydrolytic and transesterification reactions. In silico methods were used to predict the amino acid sequences, secondary structures and gene locations for CES5 genes and gene products. Amino acid sequence alignments of mammalian CES5 enzymes enabled identification of key CES sequences previously reported for human CES1, as well as other sequences that are specific to the CES5 gene family, which were consistent with being monomeric in subunit structure and available for secretion into body fluids. Predicted secondary structures for mammalian CES5 demonstrated significant conservation with human CES1 as well as distinctive mammalian CES5 like structures. Mammalian CES5 genes are located in tandem with the CES1 gene(s), are transcribed on the reverse strand and contained 13 exons. CES5 has been previously reported in high concentrations in the urine (cauxin) of adult male cats, and within a protein complex of mammalian male epididymal fluids. Roles for CES5 may include regulating urinary levels of male cat pheromones; catalysing lipid transfer reactions within mammalian male reproductive fluids; and protecting neural tissue from drugs and xenobiotics. PMID:19727319

  3. Smad2 and 3 transcription factors control muscle mass in adulthood.

    PubMed

    Sartori, Roberta; Milan, Giulia; Patron, Maria; Mammucari, Cristina; Blaauw, Bert; Abraham, Reimar; Sandri, Marco

    2009-06-01

    Loss of muscle mass occurs in a variety of diseases, including cancer, chronic heart failure, aquired immunodeficiency syndrome, diabetes, and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis, and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover, recent results confirm that other transforming growth factor-beta (TGF-beta) members control muscle mass. Using genetic tools, we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF-beta and induce an atrophy program that is muscle RING-finger protein 1 (MuRF1) independent. Furthermore, Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mammalian target of rapamycin (mTOR) signaling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation, especially when they are combined with IGF-1-Akt activators. PMID:19357234

  4. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A

    2015-07-15

    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P < 0.05) and V̇o2 (26 ± 2 vs. 34 ± 3 ml/min and 43 ± 4 vs. 50 ± 5 ml/min; P < 0.05) at both 15 and 25% MVC, respectively. The increased FBF was due to elevations in forearm vascular conductance (FVC). In protocol 2 (n = 10; 63 ± 2 yr), following AA, FBF was similarly elevated during 15% MVC (∼ 20%); however, vasoconstriction to reflex increases in sympathetic activity during -40 mmHg lower-body negative pressure at rest (ΔFVC: -16 ± 3 vs. -16 ± 2%) or during 15% MVC (ΔFVC: -12 ± 2 vs. -11 ± 4%) was unchanged. Our collective results indicate that acute oral ingestion of AA improves muscle blood flow and V̇o2 during exercise in older adults via local vasodilation. PMID:25980023

  5. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  6. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult Berkshire and Jeju Native Pig.

    PubMed

    Sodhi, Simrinder Singh; Song, Ki-Duk; Ghosh, Mrinmoy; Sharma, Neelesh; Lee, Sung Jin; Kim, Jeong Hyun; Kim, Nameun; Mongre, Raj Kumar; Adhikari, Pradeep; Kim, Jin Young; Hong, Sang Pyo; Oh, Sung Jong; Jeong, Dong Kee

    2014-08-10

    RNA-seq is being rapidly adopted for the profiling of the transcriptomes in different areas of biology, especially in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds of Sus scrofa, is of particular interest for the current study. For the better understanding of the gene expression profiles of the liver and longissimus dorsi muscle, DEGs were identified via RNA-seq. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the pig reference genome (Sscrofa10.2) using Tophat2. We identified 169 and 39 DEGs in the liver and muscle of JNP respectively, by comparison with Berkshire breed. Out of all identified genes, 41 genes in the liver and 9 genes in the muscle have given significant expression. Gene ontology (GO) terms of developmental process and KEGG pathway analysis showed that metabolic, immune response and protein binding were commonly enriched pathways in the two tissues. Further the heat map analysis by ArrayStar has shown the different levels of expression in JNP with respect to the Berkshire breed. The validation through real time PCR and western blotting also confirmed the differential expression of genes in both breeds. Genes pertaining to metabolic process and inflammatory and immune system are more enriched in Berkshire breed. This comparative transcriptome analysis of two tissues suggests a subset of novel marker genes which expressed differently between the JNP and Berkshire. PMID:24910116

  7. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness.

    PubMed

    Suh, Jaehong; Moncaster, Juliet A; Wang, Lirong; Hafeez, Imran; Herz, Joachim; Tanzi, Rudolph E; Goldstein, Lee E; Guénette, Suzanne Y

    2015-06-01

    FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans. PMID:25757569

  8. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  9. Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: a randomized controlled trial

    PubMed Central

    Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu

    2015-01-01

    Objective To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. Methods This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Results Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Conclusion Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention. PMID:25926725

  10. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy

    PubMed Central

    Gusso, Silmara; Munns, Craig F; Colle, Patrícia; Derraik, José G B; Biggs, Janene B; Cutfield, Wayne S; Hofman, Paul L

    2016-01-01

    We performed a clinical trial on the effects of whole-body vibration training (WBVT) on muscle function and bone health of adolescents and young adults with cerebral palsy. Forty participants (11.3–20.8 years) with mild to moderate cerebral palsy (GMFCS II–III) underwent 20-week WBVT on a vibration plate for 9 minutes/day 4 times/week at 20 Hz (without controls). Assessments included 6-minute walk test, whole-body DXA, lower leg pQCT scans, and muscle function (force plate). Twenty weeks of WBVT were associated with increased lean mass in the total body (+770 g; p = 0.0003), trunk (+410 g; p = 0.004), and lower limbs (+240 g; p = 0.012). Bone mineral content increased in total body (+48 g; p = 0.0001), lumbar spine (+2.7 g; p = 0.0003), and lower limbs (+13 g; p < 0.0001). Similarly, bone mineral density increased in total body (+0.008 g/cm2; p = 0.013), lumbar spine (+0.014 g/cm2; p = 0.003), and lower limbs (+0.023 g/cm2; p < 0.0001). Participants reduced the time taken to perform the chair test, and improved the distance walked in the 6-minute walk test by 11% and 35% for those with GMFCS II and III, respectively. WBVT was associated with increases in muscle mass and bone mass and density, and improved mobility of adolescents and young adults with cerebral palsy. PMID:26936535

  11. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy.

    PubMed

    Gusso, Silmara; Munns, Craig F; Colle, Patrícia; Derraik, José G B; Biggs, Janene B; Cutfield, Wayne S; Hofman, Paul L

    2016-01-01

    We performed a clinical trial on the effects of whole-body vibration training (WBVT) on muscle function and bone health of adolescents and young adults with cerebral palsy. Forty participants (11.3-20.8 years) with mild to moderate cerebral palsy (GMFCS II-III) underwent 20-week WBVT on a vibration plate for 9 minutes/day 4 times/week at 20 Hz (without controls). Assessments included 6-minute walk test, whole-body DXA, lower leg pQCT scans, and muscle function (force plate). Twenty weeks of WBVT were associated with increased lean mass in the total body (+770 g; p = 0.0003), trunk (+410 g; p = 0.004), and lower limbs (+240 g; p = 0.012). Bone mineral content increased in total body (+48 g; p = 0.0001), lumbar spine (+2.7 g; p = 0.0003), and lower limbs (+13 g; p < 0.0001). Similarly, bone mineral density increased in total body (+0.008 g/cm(2); p = 0.013), lumbar spine (+0.014 g/cm(2); p = 0.003), and lower limbs (+0.023 g/cm(2); p < 0.0001). Participants reduced the time taken to perform the chair test, and improved the distance walked in the 6-minute walk test by 11% and 35% for those with GMFCS II and III, respectively. WBVT was associated with increases in muscle mass and bone mass and density, and improved mobility of adolescents and young adults with cerebral palsy. PMID:26936535

  12. Effects of priming exercise on the speed of adjustment of muscle oxidative metabolism at the onset of moderate-intensity step transitions in older adults.

    PubMed

    De Roia, Gabriela; Pogliaghi, Silvia; Adami, Alessandra; Papadopoulou, Christina; Capelli, Carlo

    2012-05-15

    Aging is associated with a functional decline of the oxidative metabolism due to progressive limitations of both O(2) delivery and utilization. Priming exercise (PE) increases the speed of adjustment of oxidative metabolism during successive moderate-intensity transitions. We tested the hypothesis that such improvement is due to a better matching of O(2) delivery to utilization within the working muscles. In 21 healthy older adults (65.7 ± 5 yr), we measured contemporaneously noninvasive indexes of the overall speed of adjustment of the oxidative metabolism (i.e., pulmonary Vo(2) kinetics), of the bulk O(2) delivery (i.e., cardiac output), and of the rate of muscle deoxygenation (i.e., deoxygenated hemoglobin, HHb) during moderate-intensity step transitions, either with (ModB) or without (ModA) prior PE. The local matching of O(2) delivery to utilization was evaluated by the ΔHHb/ΔVo(2) ratio index. The overall speed of adjustment of the Vo(2) kinetics was significantly increased in ModB compared with ModA (P < 0.05). On the contrary, the kinetics of cardiac output was unaffected by PE. At the muscle level, ModB was associated with a significant reduction of the "overshoot" in the ΔHHb/ΔVo(2) ratio compared with ModA (P < 0.05), suggesting an improved O(2) delivery. Our data are compatible with the hypothesis that, in older adults, PE, prior to moderate-intensity exercise, beneficially affects the speed of adjustment of oxidative metabolism due to an acute improvement of the local matching of O(2) delivery to utilization. PMID:22422668

  13. Relation of serum 25-hydroxyvitamin D status with skeletal muscle mass by sex and age group among Korean adults.

    PubMed

    Ko, Min Jung; Yun, Sungha; Oh, Kyungwon; Kim, Kirang

    2015-12-14

    The objective of this study was to examine whether high serum 25-hydroxyvitamin D (25(OH)D) concentration was associated with high skeletal muscle mass, taking into account the effects of sex and age among the participants of the Korea National Health and Nutrition Examination Survey (KNHANES) aged 40 years or older. This was a cross-sectional study using data from the 2009 to 2010 KNHANES; a total of 8406 subjects (3671 men and 4735 women) were included. The appendicular skeletal muscle mass index (ASMMI, kg/m2) was estimated to measure the skeletal muscle mass. Hypovitaminosis was classified when the level of serum 25(OH)D was <20 ng/ml. The general linear model adjusted for confounding factors was used to determine differences in means of ASMMI by 25(OH)D status. The mean values of ASMMI were higher for men when compared with women. Women had a greater proportion of hypovitaminosis (71·1%) compared with men (53·2%). After adjusting for multiple factors, men were seen to have significant differences in ASMMI based on 25(OH)D status regardless of age, showing a lower mean value of ASSMI in those with hypovitaminosis. However, there was no difference in ASMMI by 25(OH)D status among women in both younger and older age groups. In conclusion, we found that there might be a positive relationship between 25(OH)D and skeletal muscle mass in men, indicating that interventions to improve 25(OH)D levels that are aimed at increasing muscle mass could be beneficial for men with more rapid decreased rate of skeletal muscle mass. PMID:26420417

  14. Effects of Neuromuscular Electrical Stimulation on the Masticatory Muscles and Physiologic Sleep Variables in Adults with Cerebral Palsy: A Novel Therapeutic Approach

    PubMed Central

    Giannasi, Lilian Chrystiane; Matsui, Miriam Yumi; Freitas, Sandra Regina Batista; Caldas, Bruna F.; Grossmann, Eduardo; Amorim, José Benedito O.; dos Santos, Israel dos Reis; Oliveira, Luis Vicente Franco; Oliveira, Claudia Santos; Gomes, Monica Fernandes

    2015-01-01

    Cerebral palsy (CP) is a term employed to define a group of non-progressive neuromotor disorders caused by damage to the immature or developing brain, with consequent limitations regarding movement and posture. CP may impair orapharygeal muscle tone, leading to a compromised chewing function and to sleep disorders (such as obstructive sleep apnea). Thirteen adults with CP underwent bilateral masseter and temporalis neuromuscular electrical stimulation (NMES) therapy. The effects on the masticatory muscles and sleep variables were evaluated using electromyography (EMG) and polysomnography (PSG), respectively, prior and after 2 months of NMES. EMG consisted of 3 tests in different positions: rest, mouth opening and maximum clenching effort (MCE). EMG values in the rest position were 100% higher than values recorded prior to therapy for all muscles analyzed (p < 0.05); mean mouth opening increased from 38.0 ± 8.0 to 44.0 ± 10.0 cm (p = 0.03). A significant difference in MCE was found only for the right masseter. PSG revealed an improved in the AHI from 7.2±7.0/h to 2.3±1.5/h (p < 0.05); total sleep time improved from 185 min to 250 min (p = 0.04) and minimun SaO2 improved from 83.6 ± 3.0 to 86.4 ± 4.0 (p = 0.04). NMES performed over a two-month period led to improvements in the electrical activity of the masticatory muscles at rest, mouth opening, isometric contraction and sleep variables, including the elimination of obstructive sleep apnea events in patients with CP. Trial Registration ReBEC RBR994XFS http://www.ensaiosclinicos.gov.br PMID:26247208

  15. Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype

    NASA Technical Reports Server (NTRS)

    Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene

    1991-01-01

    Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying

  16. Effects of vitamin D and quercetin, alone and in combination, on cardiorespiratory fitness and muscle function in physically active male adults

    PubMed Central

    Scholten, Shane D; Sergeev, Igor N; Song, Qingming; Birger, Chad B

    2015-01-01

    Introduction Vitamin D and the antioxidant quercetin, are promising agents for improving physical performance because of their possible beneficial effects on muscular strength and cardiorespiratory fitness. Purpose The purpose of this study was to determine the effects of increased intakes of vitamin D, quercetin, and their combination on antioxidant status, the steroid hormone regulators of muscle function, and measures of physical performance in apparently healthy male adults engaged in moderate-to-vigorous-intensity exercise training. Methods A total of 40 adult male participants were randomized to either 4,000 IU vitamin D/d, 1,000 mg/d quercetin, vitamin D plus quercetin, or placebo for 8 weeks. Measures of cardiorespiratory fitness and muscle function, blood markers for antioxidant and vitamin D status, and hormones 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and testosterone were measured pre- and postsupplementation. Results At enrollment, 88.6% of participants were vitamin D sufficient (serum 25-hydroxyvitamin D >50 nmol/L) and had normal serum testosterone levels. Supplementation with vitamin D significantly increased serum 25(OH)D concentration (by 87.3% in the vitamin D group, P<0.001) and was associated with an increasing trend of testosterone concentration. There were no changes in concentration of 1,25(OH)2D3 and markers of antioxidant status associated with vitamin D or quercetin supplementation. No improvements in physical performance measures associated with vitamin D and quercetin supplementation were found. Conclusion The findings obtained demonstrate that long-term vitamin D and quercetin supplementation, alone or in combination, does not improve physical performance in male adults with adequate vitamin D, testosterone, and antioxidant status. PMID:26244032

  17. Adult neuron addition to the zebra finch song motor pathway correlates with the rate and extent of recovery from botox-induced paralysis of the vocal muscles

    PubMed Central

    Pytte, Carolyn; Yu, Yi-Lo; Wildstein, Sara; George, Shanu; Kirn, John

    2011-01-01

    In adult songbirds, neurons are continually incorporated into the telencephalic nucleus HVC, a pre-motor region necessary for the production of learned vocalizations. Previous studies have demonstrated that neuron addition to HVC is highest when song is most variable: in juveniles during song learning, in seasonally singing adults during peaks in plasticity that precede the production of new song components, or during seasonal re-establishment of a previously learned song. These findings suggest that neuron addition provides motor flexibility for the transition from a variable song to a target song. Here we test the association between the quality of song structure and HVC neuron addition by experimentally manipulating syringeal muscle control with botox, which produces a transient partial paralysis. We show that the quality of song structure co-varies with new neuron addition to HVC. Both the magnitude of song distortion and the rate of song recovery following syringeal botox injections were correlated with the number of new neurons incorporated into HVC. We suggest that the quality of song structure is either a cause or consequence of the number of new neurons added to HVC. Birds with naturally high rates of neuron addition may have had the greatest success in recovering song. Alternatively, or in addition, new neuron survival in the song motor pathway may be regulated by the quality of song-generated feedback as song regains its original stereotyped structure. Present results are the first to show a relationship between peripheral muscle control and adult neuron addition to cortical pre-motor circuits. PMID:22114266

  18. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  19. Surgical Treatment Guidelines for Digital Deformity Associated With Intrinsic Muscle Spasticity (Intrinsic Plus Foot) in Adults With Cerebral Palsy.

    PubMed

    Boffeli, Troy J; Collier, Rachel C

    2015-01-01

    Intrinsic plus foot deformity has primarily been associated with cerebral palsy and involves spastic contracture of the intrinsic musculature with resultant toe deformities. Digital deformity is caused by a dynamic imbalance between the intrinsic muscles in the foot and extrinsic muscles in the lower leg. Spastic contracture of the toes frequently involves curling under of the lesser digits or contracture of the hallux into valgus or plantarflexion deformity. Patients often present with associated pressure ulcers, deformed toenails, shoe or brace fitting challenges, and pain with ambulation or transfers. Four different patterns of intrinsic plus foot deformity have been observed by the authors that likely relate to the different patterns of muscle involvement. Case examples are provided of the 4 patterns of intrinsic plus foot deformity observed, including global intrinsic plus lesser toe deformity, isolated intrinsic plus lesser toe deformity, intrinsic plus hallux valgus deformity, and intrinsic plus hallux flexus deformity. These case examples are presented to demonstrate each type of deformity and our approach for surgical management according to the contracture pattern. The surgical approach has typically involved tenotomy, capsulotomy, or isolated joint fusion. The main goals of surgical treatment are to relieve pain and reduce pressure points through digital realignment in an effort to decrease the risk of pressure sores and allow more effective bracing to ultimately improve the patient's mobility. PMID:25154656

  20. MICROSURGICAL TRANSFER OF THE GRACILIS MUSCLE FOR ELBOW FLEXION IN BRACHIAL PLEXUS INJURY IN ADULTS: RETROSPECTIVE STUDY OF EIGHT CASES

    PubMed Central

    Kimura, Luiz Koiti; do Nascimento, Alexandre Tadeu; Capócio, Roberto; Mattar, Rames; Rezende, Marcelo Rosa; Wei, Teng Hsiang; Torres, Luciano Ruiz; Moya, Fernando Munhoz

    2015-01-01

    Objective: Treating brachial plexus injuries is a major challenge, especially lesions that are presented late, with more than 12 months of evolution. We retrospectively analyzed patients who underwent one of the possibilities for attempting to restore the function of upper limbs affected under such conditions: microsurgical transfer of the gracilis muscle for elbow flexion. Methods: Eight patients were included, divided into two groups: one in which the procedure consisted of neurorrhaphy of the muscle flap with sural nerve grafting and anastomosis more distally; and the other, in which the neurorrhaphy was performed directly on the spinal accessory nerve, with anastomosis in thoracoacromial vessels. Results: We found a significant difference between the groups. A greater number of satisfactory results (75% M4) were found among patients who underwent direct neurorrhaphy, whereas the procedure using grafts for neurorrhaphy was less successful (25% M4). Conclusion: Patients who underwent microsurgical functional transfer of the gracilis muscle in which vascular anastomoses were performed in thoracoacromial vessels presented better functional outcomes than shown by those whose anastomoses were in the brachial artery with subsequent use of a nerve graft. PMID:27027050

  1. Adult Strabismus

    MedlinePlus

    ... will likely improve the double vision and depth perception. Also, strabismus affects adults in emotional, social, and ... muscle surgery is usually not severe. Headache, pulling sensation with eye movement and foreign body sensation in ...

  2. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults.

    PubMed

    Kelly, James; Fulford, Jonathan; Vanhatalo, Anni; Blackwell, Jamie R; French, Olivia; Bailey, Stephen J; Gilchrist, Mark; Winyard, Paul G; Jones, Andrew M

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation has been shown to reduce resting blood pressure and alter the physiological response to exercise in young adults. We investigated whether these effects might also be evident in older adults. In a double-blind, randomized, crossover study, 12 healthy, older (60-70 yr) adults supplemented their diet for 3 days with either nitrate-rich concentrated beetroot juice (BR; 2 × 70 ml/day, ∼9.6 mmol/day NO(3)(-)) or a nitrate-depleted beetroot juice placebo (PL; 2 × 70 ml/day, ∼0.01 mmol/day NO(3)(-)). Before and after the intervention periods, resting blood pressure and plasma [nitrite] were measured, and subjects completed a battery of physiological and cognitive tests. Nitrate supplementation significantly increased plasma [nitrite] and reduced resting systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg; P < 0.05) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 mmHg; P < 0.05) blood pressure. Nitrate supplementation resulted in a speeding of the Vo(2) mean response time (BR: 25 ± 7 vs. PL: 28 ± 7 s; P < 0.05) in the transition from standing rest to treadmill walking, although in contrast to our hypothesis, the O(2) cost of exercise remained unchanged. Functional capacity (6-min walk test), the muscle metabolic response to low-intensity exercise, brain metabolite concentrations, and cognitive function were also not altered. Dietary nitrate supplementation reduced resting blood pressure and improved Vo(2) kinetics during treadmill walking in healthy older adults but did not improve walking or cognitive performance. These results may have implications for the enhancement of cardiovascular health in older age. PMID:23174856

  3. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults.

    PubMed

    Burke, Darren G; Candow, Darren G; Chilibeck, Philip D; MacNeil, Lauren G; Roy, Brian D; Tarnopolsky, Mark A; Ziegenfuss, Tim

    2008-08-01

    The purpose of this study was to compare changes in muscle insulin-like growth factor-I (IGF-I) content resulting from resistance-exercise training (RET) and creatine supplementation (CR). Male (n=24) and female (n=18) participants with minimal resistance-exercise-training experience (=1 year) who were participating in at least 30 min of structured physical activity (i.e., walking, jogging, cycling) 3-5 x/wk volunteered for the study. Participants were randomly assigned in blocks (gender) to supplement with creatine (CR: 0.25 g/kg lean-tissue mass for 7 days; 0.06 g/kg lean-tissue mass for 49 days; n=22, 12 males, 10 female) or isocaloric placebo (PL: n=20, 12 male, 8 female) and engage in a whole-body RET program for 8 wk. Eighteen participants were classified as vegetarian (lacto-ovo or vegan; CR: 5 male, 5 female; PL: 3 male, 5 female). Muscle biopsies (vastus lateralis) were taken before and after the intervention and analyzed for IGF-I using standard immunohistochemical procedures. Stained muscle cross-sections were examined microscopically and IGF-I content quantified using image-analysis software. Results showed that RET increased intramuscular IGF-I content by 67%, with greater accumulation from CR (+78%) than PL (+54%; p=.06). There were no differences in IGF-I between vegetarians and nonvegetarians. These findings indicate that creatine supplementation during resistance-exercise training increases intramuscular IGF-I concentration in healthy men and women, independent of habitual dietary routine. PMID:18708688

  4. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat

    SciTech Connect

    Srinivasan, Chinnapaiyan; Khan, Adam Ismail; Balaji, Venkataraman; Selvaraj, Jayaraman; Balasubramanian, Karundevi

    2011-12-15

    Diethyl hexyl phthalate (DEHP) is an endocrine disruptor, it influences various organ systems in human beings and experimental animals. DEHP reduced the serum testosterone and increased the blood glucose, estradiol, T{sub 3} and T{sub 4} in rats. However, the effect of DEHP on insulin signaling and glucose oxidation in skeletal muscle is not known. Adult male albino rats were divided into four groups: Group I: Control; Groups II and III: DEHP treated (dissolved in olive oil at a dose of 10 and 100 mg/kg body weight, respectively, once daily through gastric intubation for 30 days); and Group IV: DEHP (100 mg/kg body weight) plus vitamins E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubation for 30 days. On completion of treatment, animals were euthanized and perfused (whole body); gastrocnemius muscle was dissected out and subjected to assessment of various parameters. DEHP treatment increased the H{sub 2}O{sub 2}, hydroxyl radical levels and lipid peroxidation which disrupt the membrane integrity and insulin receptor. DEHP impaired the insulin signal transduction, glucose uptake and oxidation through decreased expression of plasma membrane GLUT4, which may partly be responsible for the elevation of fasting blood glucose level. The present study suggests that DEHP exposure affects glucose oxidation in skeletal muscle and is mediated through enhanced lipid peroxidation, impaired insulin signaling and GLUT4 expression in plasma membrane. Antioxidant vitamins (C and E) have a protective role against the adverse effect of DEHP. -- Highlights: Black-Right-Pointing-Pointer DEHP treatment significantly decreased serum insulin and testosterone levels. Black-Right-Pointing-Pointer Increased ROS and decreased glucose uptake were observed in DEHP treated animals. Black-Right-Pointing-Pointer Impaired insulin signaling in gastrocnemius muscle was observed in DEHP treatment. Black

  5. Ultrasound-Derived Forearm Muscle Thickness Is a Powerful Predictor for Estimating DXA-Derived Appendicular Lean Mass in Japanese Older Adults.

    PubMed

    Abe, Takashi; Fujita, Eiji; Thiebaud, Robert S; Loenneke, Jeremy P; Akamine, Takuya

    2016-09-01

    To test the validity of published equations, anterior forearm muscle thickness (MT-ulna) of 158 Japanese older adults (72 men and 86 women) aged 50-79 y was measured with ultrasound. Appendicular lean soft tissue mass (aLM) was estimated from MT-ulna using two equations (body height without [eqn 1] and with [eqn 2]) previously published in the literature. Appendicular lean mass was measured using dual-energy X-ray absorption (DXA), and this method served as the reference criterion. There was a strong correlation between DXA-derived and ultrasound-estimated aLM in both equations (r = 0.882 and r = 0.944). Total error was 2.60 kg for eqn (1) and 1.38 kg for eqn (2). A Bland-Altman plot revealed that there was no systematic bias between DXA-derived and ultrasound-estimated aLM; however, eqn (1) overestimated aLM compared with DXA-derived aLM. Our results suggest that an ultrasound MT-ulna equation that includes body height is appropriate and useful for estimating aLM in Japanese adults. PMID:27321173

  6. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women

    PubMed Central

    Markofski, Melissa M.; Dickinson, Jared M.; Drummond, Micah J.; Fry, Christopher S.; Fujita, Satoshi; Gundermann, David M.; Glynn, Erin L.; Jennings, Kristofer; Paddon-Jones, Douglas; Reidy, Paul T.; Sheffield-Moore, Melinda; Timmerman, Kyle L.; Rasmussen, Blake B.; Volpi, Elena

    2015-01-01

    The rate of muscle loss with aging is higher in men than women. However, women have smaller muscles throughout the adult life. Protein content is a major determinant of skeletal muscle size. This study was designed to determine if age and sex differentially impact basal muscle protein synthesis and mammalian/mechanistic Target Of Rapamycin Complex 1 (mTORC1) signaling. We performed a secondary data analysis on a cohort of 215 healthy, non-obese (BMI <30 kg·m−2) young (18–40 y; 74 men, 52 women) and older (60–87 y; 57 men, 32 women) adults. The database contained information on physical characteristics, basal muscle protein fractional synthetic rate (FSR; n=215; stable isotope methodology) and mTORC1 signaling (n=125, Western blotting). FSR and mTORC1 signaling were measured at rest and after an overnight fast. mTORC1 and S6K1 phosphorylation were higher (P<0.05) in older subjects with no sex differences. However, there were no age or sex differences or interaction for muscle FSR (p>0.05). Body mass index, fat free mass, or body fat were not significant covariates and did not influence the results. We conclude that age and sex do not influence basal muscle protein synthesis. However, basal mTORC1 hyperphosphorylation in the elderly may contribute to insulin resistance and the age-related anabolic resistance of skeletal muscle protein metabolism to nutrition and exercise. PMID:25735236

  7. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women.

    PubMed

    Markofski, Melissa M; Dickinson, Jared M; Drummond, Micah J; Fry, Christopher S; Fujita, Satoshi; Gundermann, David M; Glynn, Erin L; Jennings, Kristofer; Paddon-Jones, Douglas; Reidy, Paul T; Sheffield-Moore, Melinda; Timmerman, Kyle L; Rasmussen, Blake B; Volpi, Elena

    2015-05-01

    The rate of muscle loss with aging is higher in men than women. However, women have smaller muscles throughout the adult life. Protein content is a major determinant of skeletal muscle size. This study was designed to determine if age and sex differentially impact basal muscle protein synthesis and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling. We performed a secondary data analysis on a cohort of 215 healthy, non-obese (BMI<30kg·m(-2)) young (18-40y; 74 men, 52 women) and older (60-87y; 57 men, 32 women) adults. The database contained information on physical characteristics, basal muscle protein fractional synthetic rate (FSR; n=215; stable isotope methodology) and mTORC1 signaling (n=125, Western blotting). FSR and mTORC1 signaling were measured at rest and after an overnight fast. mTORC1 and S6K1 phosphorylation were higher (p<0.05) in older subjects with no sex differences. However, there were no age or sex differences or interaction for muscle FSR (p>0.05). Body mass index, fat free mass, or body fat was not a significant covariate and did not influence the results. We conclude that age and sex do not influence basal muscle protein synthesis. However, basal mTORC1 hyperphosphorylation in the elderly may contribute to insulin resistance and the age-related anabolic resistance of skeletal muscle protein metabolism to nutrition and exercise. PMID:25735236

  8. Effects of Pilates on muscle strength, postural balance and quality of life of older adults: a randomized, controlled, clinical trial

    PubMed Central

    Campos de Oliveira, Laís; Gonçalves de Oliveira, Raphael; Pires-Oliveira, Deise Aparecida de Almeida

    2015-01-01

    [Purpose] The aim of the present study was to determine the effects of Pilates on lower leg strength, postural balance and the health-related quality of life (HRQoL) of older adults. [Subjects and Methods] Thirty-two older adults were randomly allocated either to the experimental group (EG, n = 16; mean age, 63.62 ± 1.02 years), which performed two sessions of Pilates per week for 12 weeks, or to the control group (CG, n = 16; mean age, 64.21 ± 0.80), which performed two sessions of static stretching per week for 12 weeks. The following evaluations were performed before and after the interventions: isokinetic torque of knee extensors and flexors at 300°/s, the Timed Up and Go (TUG) test, the Berg Balance Scale, and the Health Survey assessment (SF-36). [Results] In the intra-group analysis, the EG demonstrated significant improvement in all variables. In the inter-group analysis, the EG demonstrated significant improvement in most variables. [Conclusion] Pilates exercises led to significant improvement in isokinetic torque of the knee extensors and flexors, postural balance and aspects of the health-related quality of life of older adults. PMID:25931749

  9. Effects of Pilates on muscle strength, postural balance and quality of life of older adults: a randomized, controlled, clinical trial.

    PubMed

    Campos de Oliveira, Laís; Gonçalves de Oliveira, Raphael; Pires-Oliveira, Deise Aparecida de Almeida

    2015-03-01

    [Purpose] The aim of the present study was to determine the effects of Pilates on lower leg strength, postural balance and the health-related quality of life (HRQoL) of older adults. [Subjects and Methods] Thirty-two older adults were randomly allocated either to the experimental group (EG, n = 16; mean age, 63.62 ± 1.02 years), which performed two sessions of Pilates per week for 12 weeks, or to the control group (CG, n = 16; mean age, 64.21 ± 0.80), which performed two sessions of static stretching per week for 12 weeks. The following evaluations were performed before and after the interventions: isokinetic torque of knee extensors and flexors at 300°/s, the Timed Up and Go (TUG) test, the Berg Balance Scale, and the Health Survey assessment (SF-36). [Results] In the intra-group analysis, the EG demonstrated significant improvement in all variables. In the inter-group analysis, the EG demonstrated significant improvement in most variables. [Conclusion] Pilates exercises led to significant improvement in isokinetic torque of the knee extensors and flexors, postural balance and aspects of the health-related quality of life of older adults. PMID:25931749

  10. Development of the Mammalian Kidney.

    PubMed

    McMahon, Andrew P

    2016-01-01

    The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine. PMID:26969971

  11. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  12. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  13. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  14. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  15. FAST CP: protocol of a randomised controlled trial of the efficacy of a 12-week combined Functional Anaerobic and Strength Training programme on muscle properties and mechanical gait deficiencies in adolescents and young adults with spastic-type cerebral palsy

    PubMed Central

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2015-01-01

    Introduction Individuals with cerebral palsy (CP) have muscles that are smaller, weaker and more resistant to stretch compared to typically developing people. Progressive resistance training leads to increases in muscle size and strength. In CP, the benefits of resistance training alone may not transfer to improve other activities such as walking; however, the transfer of strength improvements to improved mobility may be enhanced by performing training that involves specific functional tasks or motor skills. This study aims to determine the efficacy of combined functional anaerobic and strength training in (1) influencing muscle strength, structure and function and (2) to determine if any changes in muscle strength and structure following training impact on walking ability and gross motor functional capacity and performance in the short (following 3 months of training) and medium terms (a further 3 months post-training). Methods and analysis 40 adolescents and young adults with CP will be recruited to undertake a 12-week training programme. The training programme will consist of 3×75 min sessions per week, made up of 5 lower limb resistance exercises and 2–3 functional anaerobic exercises per session. The calf muscles will be specifically targeted, as they are the most commonly impacted muscles in CP and are a key muscle group involved in walking. If, as we believe, muscle properties change following combined strength and functional training, there may be long-term benefits of this type of training in slowing the deterioration of muscle function in people with spastic-type CP. Ethics and dissemination Ethical approval has been obtained from the ethics committees at The University of Queensland (2014000066) and Children's Health Queensland (HREC/15/QRCH/30). The findings will be disseminated by publications in peer-reviewed journals, conferences and local research organisations’ media. Trial registration number Australian and New Zealand Clinical Trials

  16. Glia in mammalian development and disease.

    PubMed

    Zuchero, J Bradley; Barres, Ben A

    2015-11-15

    Glia account for more than half of the cells in the mammalian nervous system, and the past few decades have witnessed a flood of studies that detail novel functions for glia in nervous system development, plasticity and disease. Here, and in the accompanying poster, we review the origins of glia and discuss their diverse roles during development, in the adult nervous system and in the context of disease. PMID:26577203

  17. Effect of diet-induced weight loss on muscle strength in adults with overweight or obesity - a systematic review and meta-analysis of clinical trials.

    PubMed

    Zibellini, J; Seimon, R V; Lee, C M Y; Gibson, A A; Hsu, M S H; Sainsbury, A

    2016-08-01

    We conducted a systematic review and meta-analysis to identify how diet-induced weight loss in adults with overweight or obesity impacts on muscle strength. Twenty-seven publications, including 33 interventions, most of which were 8-24 weeks in duration, were included. Meta-analysis of seven interventions measuring knee extensor strength by isokinetic dynamometry in 108 participants found a significant decrease following diet-induced weight loss (-9.0 [95% confidence interval: -13.8, -4.1] N/m, P < 0.001), representing a 7.5% decrease from baseline values. Meta-analysis of handgrip strength from 10 interventions in 231 participants showed a non-significant decrease (-1.7 [-3.6, 0.1] kg, P = 0.070), with significant heterogeneity (I(2)  = 83.9%, P < 0.001). This heterogeneity may have been due to diet type, because there was a significant decrease in handgrip strength in seven interventions in 169 participants involving moderate energy restriction (-2.4 [-4.8, -0.0] kg, P = 0.046), representing a 4.6% decrease from baseline values, but not in three interventions in 62 participants involving very-low-energy diet (-0.4 [-2.0, 1.2] kg, P = 0.610). Because of variability in methodology and muscles tested, no other data could be meta-analyzed, and qualitative assessment of the remaining interventions revealed mixed results. Despite varying methodologies, diets and small sample sizes, these findings suggest a potential adverse effect of diet-induced weight loss on muscle strength. While these findings should not act as a deterrent against weight loss, due to the known health benefits of losing excess weight, they call for strategies to combat strength loss - such as weight training and other exercises - during diet-induced weight loss. © 2016 World Obesity. PMID:27126087

  18. Mammalian cardiolipin biosynthesis.

    PubMed

    Mejia, Edgard M; Nguyen, Hieu; Hatch, Grant M

    2014-04-01

    Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed. PMID:24144810

  19. Effects of Tetrodotoxin on the Mammalian Cardiovascular System

    PubMed Central

    Zimmer, Thomas

    2010-01-01

    The human genome encodes nine functional voltage-gated Na+ channels. Three of them, namely Nav1.5, Nav1.8, and Nav1.9, are resistant to nanomolar concentrations of tetrodotoxin (TTX; IC50 ≥ 1 μM). The other isoforms, which are predominantly expressed in the skeletal muscle and nervous system, are highly sensitive to TTX (IC50 ~ 10 nM). During the last two decades, it has become evident that in addition to the major cardiac isoform Nav1.5, several of those TTX sensitive isoforms are expressed in the mammalian heart. Whereas immunohistochemical and electrophysiological methods demonstrated functional expression in various heart regions, the physiological importance of those isoforms for cardiac excitation in higher mammals is still debated. This review summarizes our knowledge on the systemic cardiovascular effects of TTX in animals and humans, with a special focus on cardiac excitation and performance at lower concentrations of this marine drug. Altogether, these data strongly suggest that TTX sensitive Na+ channels, detected more recently in various heart tissues, are not involved in excitation phenomena in the healthy adult heart of higher mammals. PMID:20411124

  20. Digit (2D:4D) ratio is associated with muscle mass (MM) and strength (MS) in older adults: possible effect of in utero androgen exposure.

    PubMed

    Halil, Meltem; Gurel, Esin Ileri; Kuyumcu, Mehmet Emin; Karaismailoglu, Serkan; Yesil, Yusuf; Ozturk, Zeynel Abidin; Yavuz, Burcu Balam; Cankurtaran, Mustafa; Ariogul, Servet

    2013-01-01

    Decline in MM and MS with aging, defined as sarcopenia, is related with physical disability, poor quality of life and death. Its mechanisms are not fully understood. Testosterone increases muscle protein synthesis. However, the effects of in utero androgen exposure to MM and MS in older adults have not been studied. In utero androgen exposure is inversely related with 2D:4D ratio. The aim of this study was to investigate the relationship between 2D:4D ratio as an indicator of in utero androgen exposure and MM and MS in elderly patients. A total of 151 older adults were included. Calf-circumference (CC) and skeletal muscle mass index (SMI) were used for the assessment of MM and hand grip strength for the assessment of MS. Mean age ± SD of the patients was 73.72 ± 6.23. Fifty-two (34.4%) of patients were male, 99 (65.6%) were female. Right and left 2D:4D were significantly and negatively correlated with hand grip strength (r=-0.365, p=0.018 and r=-0.434, p=0.005, respectively), CC (r=-0.422, p=0.002 and r=-0.459, p=0.001, respectively) and SMI (r=-0.354, p=0.018 and r=-0.348, p=0.022, respectively) in men. In women, right and left 2D:4D were significantly and negatively correlated with hand grip strength (r=-0.252, p=0.022 and r=-0.234, p=0.033, respectively), CC (r=-0.229, p=0.024 and r=-0.302, p=0.003, respectively) and SMI (r=-0.382, p<0.001 and r=-0.431, p<0.001, respectively). In this study, we found that 2D:4D ratio was significantly and negatively correlated with parameters depicting MM and MS which may suggest the possible role of in utero androgen exposure in the development of MM and MS loss in the elderly. PMID:23219021

  1. Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris.

    PubMed

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2009-06-01

    Red-toothed (soricine) shrews are consummate predators exhibiting the highest energy turnovers and shortest life spans (ca. 18 months) of any mammal, yet virtually nothing is known regarding their physiological aging. We assessed the emerging pattern of skeletal muscle senescence (contractile/connective tissue components) in sympatric species, the semi-aquatic water shrew (WS), Sorex palustris, and the terrestrial short-tailed shrew (STS), Blarina brevicauda, to determine if muscle aging occurs in wild, short-lived mammals (H(0): shrews do not survive to an age where senescence occurs), and if so, whether these alterations are species-specific. Gracilis muscles were collected from first-year (n=17) and second-year (n=17) field-caught shrews. Consistent with typical mammalian aging, collagen content (% area) increased with age in both species (S. palustris: approximately 50%; B. brevicauda: approximately 60%). Muscle was dominated by stiffer Type I collagen, and the ratio of collagen Type I:Type III more than doubled with age. The area ratio of muscle:collagen decreased with age in both species, but was considerably lower in adult STS, suggesting species-specificity of senescence. Extracellular space was age-elevated in B. brevicauda, but was preserved in S. palustris ( approximately 50 vs. 10% elevation). Though juvenile interspecific comparisons revealed no significance, adult WS myocytes had 68% larger cross-sectional area and occurred at 28% lower fibers/area than those of adult STS. We demonstrate that age-related muscle senescence does occur in wild-caught, short-lived mammals, and we therefore reject this classic aging theory tenet. Our findings moreover illustrate that differential age adjustments in contractile/connective tissue components of muscle occur in the two species of wild-caught shrews. PMID:19296507

  2. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  3. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  4. The combined effects of diet quality and physical activity on maintenance of muscle strength among diabetic older adults from the NuAge cohort.

    PubMed

    Rahi, Berna; Morais, José A; Dionne, Isabelle J; Gaudreau, Pierrette; Payette, Hélène; Shatenstein, Bryna

    2014-01-01

    Diabetic older adults are at a higher risk of muscle strength (MS) decline than their non-diabetic counterparts. Adequate protein and energy intakes and physical activity (PA) may preserve MS during aging. However, the role of diet quality (DQ) in MS maintenance is still unknown. This study aimed to determine the association between DQ - alone or combined with PA - and changes in MS over 3 years in diabetic participants aged 67 to 84 years at recruitment in a secondary analysis of the longitudinal observational NuAge study. Changes in handgrip, knee extensor and elbow flexor strengths were calculated as the difference between recruitment (T1) and after 3 years (T4) in 156 diabetic older adults. Baseline DQ was calculated from 3 non-consecutive 24-hour dietary recalls collected at T1 using the validated Canadian Healthy Eating Index (C-HEI). Change in PA was calculated from Physical Activity Scale for the Elderly (PASE) as PASE T4-PASE T1. Four combinations of variables were created: C-HEI<70 with PASE change either < or > median and C-HEI ≥ 70 with PASE change either < or > median. The association between these four categories and MS maintenance was evaluated using General Linear Modeling (GLM). Analyses were stratified by sex and controlled for covariates. Baseline DQ alone was not associated with MS maintenance. Baseline DQ combined with PASE change showed associations with crude and baseline adjusted handgrip strength (p=0.031, p=0.018) and crude and baseline adjusted elbow flexor change (p=0.028, p=0.017) in males only; no significant results were found for knee extensor strength in either males or females. While findings for females were inconclusive, results demonstrate that better adherence to dietary guidelines combined with a more active lifestyle may prevent MS decline among diabetic older males. Additional research is needed on a larger sample since generalization of these results is limited by the small sample size. PMID:24269377

  5. Effects of 96 Weeks of Rosuvastatin on Bone, Muscle, and Fat in HIV-Infected Adults on Effective Antiretroviral Therapy.

    PubMed

    Erlandson, Kristine M; Jiang, Ying; Debanne, Sara M; McComsey, Grace A

    2016-04-01

    Heightened inflammation and immune activation are associated with lower bone mineral density (BMD) and lean body mass (LBM) among HIV-infected persons. We hypothesized that a reduction in inflammation with rosuvastatin would be associated with improvements in BMD and LBM. HIV-infected participants on stable antiretroviral therapy without statin indication and with heightened immune activation (≥19% CD8(+)CD38(+)HLA-DR(+) T cells) or inflammation (hsCRP ≥2 mg/liter) were randomized to rosuvastatin 10 mg daily or placebo for 96 weeks. Among 72 participants randomized to rosuvastatin and 75 to placebo, there were no significant differences in the relative changes in BMD (p > 0.29) or in fat (p ≥ 0.19). A trend toward increased LBM (p = 0.059) was seen in the rosuvastatin arm without differences in creatinine kinase or self-reported physical activity (p ≥ 0.10). In a multivariable regression model, rosuvastatin was associated with a significant positive effect on LBM after adjusting for age, sex, race, smoking status, and detectable HIV-1 viral load. Higher baseline sCD163 correlated with increases in LBM from weeks 0 to 96 (p = 0.023); greater changes in total and leg lean mass were seen among statin users with higher compared to lower baseline IP-10 levels (LBM 1.8 vs. -0.3%; p = 0.028 and leg lean mass 2.9 vs. -1.7%; p = 0.012). Rosuvastatin is associated with an absence of toxicity on BMD and a potential benefit on LBM over 96 weeks of therapy. The preservation of LBM in the rosuvastatin arm over the 2 years of the study is of major clinical relevance in delaying loss of muscle mass with aging. PMID:26477698

  6. Short-term exposure to formaldehyde promotes oxidative damage and inflammation in the trachea and diaphragm muscle of adult rats.

    PubMed

    Lima, Luiza Fagundes; Murta, Giselle Luciane; Bandeira, Ana Carla Balthar; Nardeli, Clarissa Rodrigues; Lima, Wanderson Geraldo; Bezerra, Frank Silva

    2015-11-01

    Formaldehyde (FA) is an environmental pollutant widely used in industry. Exposure to FA causes irritation of the respiratory mucosa and is associated with inflammation and oxidative stress in the airways. This study aimed at investigating the oxidative effects on the inflammatory response in the trachea and the diaphragm muscle (DM) of rats exposed to different concentrations of formaldehyde. Twenty-eight Fischer male rats were divided into four groups: control group (CG) exposed to the ambient air; and three groups exposed to the following formaldehyde concentrations of 1% (FA1), 5% (FA5) and 10% (FA10), respectively. The exposure occurred for twenty minutes, three times a day for five days. Oxidative stress analyses were performed by carbonyl protein, lipid peroxidation and catalase activity. The assessment of inflammatory cell influx in both organs and the mucus production in the trachea was carried out. There was an increase of lipid peroxidation in the trachea and the DM of FA1 and FA5 groups compared to the CG and FA10. The oxidation of DM proteins increased in FA10 group compared to CG, FA1 and FA5. The catalase enzyme activity in the DM was reduced in FA1, FA5 and FA10 compared to the CG. Meanwhile, there was a reduction in the enzymatic activity of FA10 compared to the CG in the trachea. The morphometric analysis in the DM demonstrated an influx of inflammatory cells in FA10 compared to the CG. In FA10 group, the tracheal epithelium showed metaplasia and ulceration. In addition, the tracheal epithelium showed more mucus deposits in FA5 compared to CG, FA1 and FA10. The results demonstrated that the exposure to formaldehyde at different concentrations in a short period of time promotes oxidative damage and inflammation in the DM and the trachea and causes metaplasia, ulceration and increased mucus at the latter. PMID:26342159

  7. Mammalian development in space

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  8. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster

    PubMed Central

    Mensah, Lawrence B.; Davison, Claire; Fan, Shih-Jung; Morris, John F.; Goberdhan, Deborah C. I.; Wilson, Clive

    2015-01-01

    Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K’s direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles

  9. Isolation of Skeletal Muscle Stem Cells by Fluorescence-Activated Cell Sorting

    PubMed Central

    Liu, Ling; Cheung, Tom H.; Charville, Gregory W.; Rando, Thomas A.

    2016-01-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology and has been a major focus of research across tissues in different organisms. Muscle stem cells are now among the most intensely studied stem cell populations in mammalian systems and the prospective isolation of these cells has allowed cellular and molecular characterizations not dreamed of a decade ago. In this protocol, we describe how to isolate muscle stem cells from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential to maximize cell yield. We then describe a FACS-based method for obtaining exquisitely pure populations of either quiescent or activated muscle stem cells (VCAM+/CD31−/CD45−/Sca1−). The protocol also allows for the isolation of endothelial cells, hematopoietic cells, and mesenchymal stem cells from muscle tissue. PMID:26401916

  10. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  11. The association between social participation and lower extremity muscle strength, balance, and gait speed in US adults.

    PubMed

    Warren, Meghan; Ganley, Kathleen J; Pohl, Patricia S

    2016-12-01

    Social participation is associated with healthy aging, and although associations have been reported between social participation and demographics, no published studies have examined a relationship between social participation and measures amenable to intervention. The purpose was to explore the association between self-reported social participation and lower extremity strength, balance, and gait speed. A cross-sectional analysis of US adults (n = 2291; n = 1,031 males; mean ± standard deviation age 63.5 ± 0.3 years) from the 2001-2 National Health and Nutrition Examination Survey was conducted. Two questions about self-reported difficulty with social participation were categorized into limited (yes/no). The independent variables included knee extension strength (n = 1537; classified as tertiles of weak, normal, and strong), balance (n = 1813; 3 tests scored as pass/fail), and gait speed (n = 2025; dichotomized as slow [less than 1.0 m/s] and fast [greater than or equal to 1.0 m/s]). Logistic regression, accounting for the complex survey design and adjusting for age, sex, physical activity, and medical conditions, was used to estimate the odds of limitation in social participation with each independent variable. Alpha was decreased to 0.01 due to multiple tests. Slower gait speed was significantly associated with social participation limitation (odds ratio = 3.1; 99% confidence interval: 1.5-6.2). No significant association was found with social participation and lower extremity strength or balance. The odds of having limitation in social participation were 3 times greater in those with slow gait speed. Prospective studies should examine the effect of improved gait speed on levels of social participation. PMID:27413675

  12. Effects of Ving Tsun Chinese Martial Art Training on Upper Extremity Muscle Strength and Eye-Hand Coordination in Community-Dwelling Middle-Aged and Older Adults: A Pilot Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Cheng, Yoyo T Y; Wong, Janet Y H; Yu, Esther Y T; Chow, Gary C C; Chak, Yvonne T C; Chan, Ivy K Y; Zhang, Joni; Macfarlane, Duncan; Chung, Louisa M Y

    2016-01-01

    Objectives. To evaluate the effects of Ving Tsun (VT) martial art training on the upper extremity muscle strength and eye-hand coordination of middle-aged and older adults. Methods. This study used a nonequivalent pretest-posttest control group design. Forty-two community-dwelling healthy adults participated in the study; 24 (mean age ± SD = 68.5 ± 6.7 years) underwent VT training for 4 weeks (a supervised VT session twice a week, plus daily home practice), and 18 (mean age ± SD = 72.0 ± 6.7 years) received no VT training and acted as controls. Shoulder and elbow isometric muscle strength and eye-hand coordination were evaluated using the Lafayette Manual Muscle Test System and a computerized finger-pointing test, respectively. Results. Elbow extensor peak force increased by 13.9% (P = 0.007) in the VT group and the time to reach peak force decreased (9.9%) differentially in the VT group compared to the control group (P = 0.033). For the eye-hand coordination assessment outcomes, reaction time increased by 2.9% in the VT group and decreased by 5.3% in the control group (P = 0.002). Conclusions. Four weeks of VT training could improve elbow extensor isometric peak force and the time to reach peak force but not eye-hand coordination in community-dwelling middle-aged and older adults. PMID:27525020

  13. Effects of Ving Tsun Chinese Martial Art Training on Upper Extremity Muscle Strength and Eye-Hand Coordination in Community-Dwelling Middle-Aged and Older Adults: A Pilot Study

    PubMed Central

    Ng, Shamay S. M.; Cheng, Yoyo T. Y.; Yu, Esther Y. T.; Chow, Gary C. C.; Chak, Yvonne T. C.; Chan, Ivy K. Y.; Zhang, Joni; Macfarlane, Duncan

    2016-01-01

    Objectives. To evaluate the effects of Ving Tsun (VT) martial art training on the upper extremity muscle strength and eye-hand coordination of middle-aged and older adults. Methods. This study used a nonequivalent pretest-posttest control group design. Forty-two community-dwelling healthy adults participated in the study; 24 (mean age ± SD = 68.5 ± 6.7 years) underwent VT training for 4 weeks (a supervised VT session twice a week, plus daily home practice), and 18 (mean age ± SD = 72.0 ± 6.7 years) received no VT training and acted as controls. Shoulder and elbow isometric muscle strength and eye-hand coordination were evaluated using the Lafayette Manual Muscle Test System and a computerized finger-pointing test, respectively. Results. Elbow extensor peak force increased by 13.9% (P = 0.007) in the VT group and the time to reach peak force decreased (9.9%) differentially in the VT group compared to the control group (P = 0.033). For the eye-hand coordination assessment outcomes, reaction time increased by 2.9% in the VT group and decreased by 5.3% in the control group (P = 0.002). Conclusions. Four weeks of VT training could improve elbow extensor isometric peak force and the time to reach peak force but not eye-hand coordination in community-dwelling middle-aged and older adults. PMID:27525020

  14. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    PubMed Central

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Sandri, Marco; Chamberlain, Jeffrey; James, David E.; Gregorevic, Paul

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  15. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  16. Mammalian Septins Nomenclature

    PubMed Central

    Macara, Ian G.; Baldarelli, Richard; Field, Christine M.; Glotzer, Michael; Hayashi, Yasuhide; Hsu, Shu-Chan; Kennedy, Mary B.; Kinoshita, Makoto; Longtine, Mark; Low, Claudia; Maltais, Lois J.; McKenzie, Louise; Mitchison, Timothy J.; Nishikawa, Toru; Noda, Makoto; Petty, Elizabeth M.; Peifer, Mark; Pringle, John R.; Robinson, Phillip J.; Roth, Dagmar; Russell, S.E. Hilary; Stuhlmann, Heidi; Tanaka, Manami; Tanaka, Tomoo; Trimble, William S.; Ware, Jerry; Zeleznik-Le, Nancy J.; Zieger, Barbara

    2002-01-01

    There are 10 known mammalian septin genes, some of which produce multiple splice variants. The current nomenclature for the genes and gene products is very confusing, with several different names having been given to the same gene product and distinct names given to splice variants of the same gene. Moreover, some names are based on those of yeast or Drosophila septins that are not the closest homologues. Therefore, we suggest that the mammalian septin field adopt a common nomenclature system, based on that adopted by the Mouse Genomic Nomenclature Committee and accepted by the Human Genome Organization Gene Nomenclature Committee. The human and mouse septin genes will be named SEPT1–SEPT10 and Sept1–Sept10, respectively. Splice variants will be designated by an underscore followed by a lowercase “v” and a number, e.g., SEPT4_v1. PMID:12475938

  17. Mammalian sweet taste receptors.

    PubMed

    Nelson, G; Hoon, M A; Chandrashekar, J; Zhang, Y; Ryba, N J; Zuker, C S

    2001-08-10

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery. PMID:11509186

  18. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  19. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  20. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  1. Ballistic transfection of mammalian cells in vivo

    SciTech Connect

    Kolesnikov, V.A.; Zelenin, A.V.; Zelenina, I.A.

    1995-11-01

    The method of ballistic transfection initially proposed for genetic transformation of plants was used for animal cells in vitro and in situ. The method consists in bombarding the transfected cells with microparticles of heavy metals carrying foreign DNA. Penetrating the cell nucleus, the microparticles transport the introduced gene. Successful genetic transformation of the cultured mouse cells and fish embryos was realized, and this allowed the study of mammalian cells in situ. The performed studies allowed us to demonstrate expression of the reporter genes of chloramphenicol acetyltransferase, galactosidase, and neomycin phosphotransferase in the mouse liver, mammary gland and kidney explants, in the liver and cross-striated muscle of mouse and rat in situ, and in developing mouse embryos at the stages of two-cell embryo, morula, and blastocyst. All these genes were introduced by ballistic transfection. In the liver and cross-striated muscle the transgene activity was detected within two to three months after transfection. Thus, the ballistic introduction of the foreign genes in the cells in situ was demonstrated, and this opens possibilities for the use of this method in gene therapy. Methodical aspects of the bombarding and transfection are considered in detail, and the published data on transfection and genetic transformation of mammalian cells are discussed. 41 refs., 13 figs., 1 tab.

  2. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  3. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae.

    PubMed

    Martin, Brit L; Gallagher, Thomas L; Rastogi, Neha; Davis, Jonathan P; Beattie, Christine E; Amacher, Sharon L; Janssen, Paul M L

    2015-10-01

    The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input. PMID:26251513

  4. Rheotaxis guides mammalian sperm

    PubMed Central

    Miki, Kiyoshi; Clapham, David E

    2013-01-01

    Background In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH to progesterone, but these factors are not necessarily taxic. Currently, chemotaxis, thermotaxis, and rheotaxis have not been definitively established in mammals. Results Here, we show that positive rheotaxis, the ability of organisms to orient and swim against the flow of surrounding fluid, is a major taxic factor for mouse and human sperm. This flow is generated within 4 hours of sexual stimulation and coitus in female mice; prolactin-triggered oviductal fluid secretion clears the oviduct of debris, lowers viscosity, and generates the stream that guides sperm migration in the oviduct. Rheotaxic movement is demonstrated in capacitated and uncapacitated spermatozoa in low and high viscosity medium. Finally, we show that a unique sperm motion we quantify using the sperm head's rolling rate reflects sperm rotation that generates essential force for positioning the sperm in the stream. Rotation requires CatSper channels, presumably by enabling Ca2+ influx. Conclusions We propose that rheotaxis is a major determinant of sperm guidance over long distances in the mammalian female reproductive tract. Coitus induces fluid flow to guide sperm in the oviduct. Sperm rheotaxis requires rotational motion during CatSper channel-dependent hyperactivated motility. PMID:23453951

  5. Expression of the muscular dystrophy-associated caveolin-3(P104L) mutant in adult mouse skeletal muscle specifically alters the Ca(2+) channel function of the dihydropyridine receptor.

    PubMed

    Weiss, Norbert; Couchoux, Harold; Legrand, Claude; Berthier, Christine; Allard, Bruno; Jacquemond, Vincent

    2008-11-01

    Caveolins are plasma-membrane-associated proteins potentially involved in a variety of signalling pathways. Different mutations in CAV3, the gene encoding for the muscle-specific isoform caveolin-3 (Cav-3), lead to muscle diseases, but the underlying molecular mechanisms remain largely unknown. Here, we explored the functional consequences of a Cav-3 mutation (P104L) inducing the 1C type limb-girdle muscular dystrophy (LGMD 1C) in human on intracellular Ca(2+) regulation of adult skeletal muscle fibres. A YFP-tagged human Cav-3(P104L) mutant was expressed in vivo in muscle fibres from mouse. Western blot analysis revealed that expression of this mutant led to an approximately 80% drop of the level of endogenous Cav-3. The L-type Ca(2+) current density was found largely reduced in fibres expressing the Cav-3(P104L) mutant, with no change in the voltage dependence of activation and inactivation. Interestingly, the maximal density of intramembrane charge movement was unaltered in the Cav-3(P104L)-expressing fibres, suggesting no change in the total amount of functional voltage-sensing dihydropyridine receptors (DHPRs). Also, there was no obvious alteration in the properties of voltage-activated Ca(2+) transients in the Cav-3(P104L)-expressing fibres. Although the actual role of the Ca(2+) channel function of the DHPR is not clearly established in adult skeletal muscle, its specific alteration by the Cav-3(P104L) mutant suggests that it may be involved in the physiopathology of LGMD 1C. PMID:18509671

  6. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    PubMed Central

    Paves, Heiti; Truve, Erkki

    2004-01-01

    Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area. PMID:15102327

  7. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  8. Variations of CT-Based Trunk Muscle Attenuation by Age, Sex, and Specific Muscle

    PubMed Central

    Anderson, Dennis E.

    2013-01-01

    Background. Fat accumulation in muscle may contribute to age-related declines in muscle function and is indicated by reduced attenuation of x-rays by muscle tissue in computed tomography scans. Reduced trunk muscle attenuation is associated with poor physical function, low back pain, and increased hyperkyphosis in older adults. However, variations in trunk muscle attenuation with age, sex and between specific muscles have not been investigated. Methods. A cross-sectional examination of trunk muscle attenuation in computed tomography scans was performed in 60 younger (35–50 years) and 60 older (75–87 years) adults randomly selected from participants in the Framingham Heart Study Offspring and Third Generation Multidetector Computed Tomography Study. Computed tomography attenuation of 11 trunk muscles was measured at vertebral levels T8 and L3, and the effects of age, sex, and specific muscle on computed tomography attenuation of trunk muscles were determined. Results. Muscle attenuation varied by specific muscle (p < .001), was lower in older adults (p < .001), and was generally lower in women than in men (p < .001), although not in all muscles. Age-related differences in muscle attenuation varied with specific muscle (p < .001), with the largest age differences occurring in the paraspinal and abdominal muscles. Conclusions. Trunk muscle attenuation is lower in older adults than in younger adults in both women and men, but such age-related differences vary widely between muscle groups. The reasons that some muscles exhibit larger age-related differences in fat content than others should be further explored to better understand age-related changes in functional capacity and postural stability. PMID:22904095

  9. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  10. Intrafusal muscle fibre types in frog spindles.

    PubMed Central

    Diwan, F H; Ito, F

    1989-01-01

    Muscle spindles from bullfrog semitendinosus, iliofibularis and sartorius muscles were examined with light and electron microscopy. Four types of intrafusal muscle fibre were identified according to their diameter, central nucleation and reticular zone arrangement: a large nuclear bag fibre, a medium nuclear bag fibre, and two types of small nuclear chain fibres with and without a reticular zone, respectively. It is suggested that they are comparable to the nuclear bag1, bag2 and chain fibres in mammalian muscle spindles. Images Fig. 7 PMID:2532636

  11. Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats.

    PubMed

    Andrews, Colin G; Pagliardini, Silvia

    2015-11-01

    Breathing is more vulnerable to apneas and irregular breathing patterns during rapid eye movement (REM) sleep in both humans and rodents. We previously reported that robust and recurrent recruitment of expiratory abdominal (ABD) muscle activity is present in rats during REM epochs despite ongoing REM-induced muscle atonia in skeletal musculature. To develop a further understanding of the characteristics of ABD recruitment during REM epochs and their relationship with breathing patterns and irregularities, we sought to compare REM epochs that displayed ABD muscle recruitment with those that did not, within the same rats. Specifically, we investigated respiratory characteristics that preceded and followed recruitment. We hypothesized that ABD muscle recruitment would be likely to occur following respiratory irregularities and would subsequently contribute to respiratory stability and the maintenance of good ventilation following recruitment. Our data demonstrate that epochs of REM sleep containing ABD recruitments (REM(ABD+)) were characterized by increased respiratory rate variability and increased presence of spontaneous brief central apneas. Within these epochs, respiratory events that displayed ABD muscle activation were preceded by periods of increased respiratory rate variability. Onset of ABD muscle activity increased tidal volume, amplitude of diaphragmatic contractions, and minute ventilation compared with the periods preceding ABD muscle activation. These results show that expiratory muscle activity is more likely recruited when respiration is irregular and its recruitment is subsequently associated with an increase in minute ventilation and a more regular respiratory rhythm. PMID:26338455

  12. Muscle specific kinase: organiser of synaptic membrane domains.

    PubMed

    Ghazanfari, Nazanin; Fernandez, Kristine J; Murata, Yui; Morsch, Marco; Ngo, Shyuan T; Reddel, Stephen W; Noakes, Peter G; Phillips, William D

    2011-03-01

    Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ. PMID:20974278

  13. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?

    PubMed

    Zhou, Jingsong; Launikonis, Bradley S; Ríos, Eduardo; Brum, Gustavo

    2004-10-01

    Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which

  14. Mammalian Endogenous Retroviruses.

    PubMed

    Mager, Dixie L; Stoye, Jonathan P

    2015-02-01

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles. PMID:26104559

  15. Compartmental Innervation of the Superior Oblique Muscle in Mammals

    PubMed Central

    Le, Alan; Poukens, Vadims; Ying, Howard; Rootman, Daniel; Goldberg, Robert A.; Demer, Joseph L.

    2015-01-01

    Purpose Intramuscular innervation of mammalian horizontal rectus extraocular muscles (EOMs) is compartmental. We sought evidence of similar compartmental innervation of the superior oblique (SO) muscle. Methods Three fresh bovine orbits and one human orbit were dissected to trace continuity of SO muscle and tendon fibers to the scleral insertions. Whole orbits were also obtained from four humans (two adults, a 17-month-old child, and a 33-week stillborn fetus), two rhesus monkeys, one rabbit, and one cow. Orbits were formalin fixed, embedded whole in paraffin, serially sectioned in the coronal plane at 10-μm thickness, and stained with Masson trichrome. Extraocular muscle fibers and branches of the trochlear nerve (CN4) were traced in serial sections and reconstructed in three dimensions. Results In the human, the lateral SO belly is in continuity with tendon fibers inserting more posteriorly on the sclera for infraducting mechanical advantage, while the medial belly is continuous with anteriorly inserting fibers having mechanical advantage for incycloduction. Fibers in the monkey superior SO insert more posteriorly on the sclera to favor infraduction, while the inferior portion inserts more anteriorly to favor incycloduction. In all species, CN4 bifurcates prior to penetrating the SO belly. Each branch innervates a nonoverlapping compartment of EOM fibers, consisting of medial and lateral compartments in humans and monkeys, and superior and inferior compartments in cows and rabbits. Conclusions The SO muscle of humans and other mammals is compartmentally innervated in a manner that could permit separate CN4 branches to selectively influence vertical versus torsional action. PMID:26426404

  16. Effect of core muscle thickness and static or dynamic balance on prone bridge exercise with sling by shoulder joint angle in healthy adults

    PubMed Central

    Park, Mi Hwa; Yu, Jae Ho; Hong, Ji Heon; Kim, Jin Seop; Jung, Sang Woo; Lee, Dong Yeop

    2016-01-01

    [Purpose] To date, core muscle activity detected using ultrasonography during prone bridge exercises has not been reported. Here we investigated the effects of core muscle thickness and balance on sling exercise efficacy by shoulder joint angle in healthy individuals. [Subjects and Methods] Forty-three healthy university students were enrolled in this study. Ultrasonography thickness of external oblique, internal oblique, and transversus abdominis during sling workouts was investigated. Muscle thickness was measured on ultrasonography imaging before and after the experiment. Dynamic balance was tested using a functional reaching test. Static balance was tested using a Tetrax Interactive Balance System. [Results] Different muscle thicknesses were observed during the prone bridge exercise with the shoulder flexed at 60°, 90° or 120°. Shoulder flexion at 60° and 90° in the prone bridge exercise with a sling generated the greatest thickness of most transversus abdominis muscles. Shoulder flexion at 120° in the prone bridge exercise with a sling generated the greatest thickness of most external oblique muscles. [Conclusion] The results suggest that the prone bridge exercise with shoulder joint angle is an effective method of increasing global and local muscle strength. PMID:27134390

  17. Optimal cutoffs for low skeletal muscle mass related to cardiovascular risk in adults: The Korea National Health and Nutrition Examination Survey 2009-2010.

    PubMed

    Kim, Yirang; Han, Byoung-Duck; Han, Kyungdo; Shin, Koh Eun; Lee, Halla; Kim, Tae Ri; Cho, Kyung Hwan; Kim, Do Hoon; Kim, Yang Hyun; Kim, Hyunjin; Nam, Ga Eun

    2015-11-01

    The possible association between low skeletal muscle mass and cardiovascular disease (CVD) risk factors necessitates estimation of muscle mass even in subjects with normal body mass index (BMI). This study was aimed to investigate optimal cutoffs for skeletal muscle mass reflecting CVD risk factors and to evaluate the relationship between skeletal muscle mass and CVD risk factors in the general population and in subjects with normal BMI using these cutoffs. This cross-sectional study analyzed data from the Korea National Health and Nutrition Examination Survey 2009-2010. We enrolled 5120 men and 6559 women aged ≥20 years. Skeletal muscle index (SMI) was defined as the weight-adjusted appendicular skeletal muscle mass measured by dual-energy X-ray absorptiometry. Using receiver operating characteristic curve analyses, SMI cutoffs associated with CVD risk factors were determined. Lower SMI was significantly associated with an increased prevalence of CVD risk factors. The first cutoffs in men and women were 32 and 25%, respectively, and the second cutoffs were 30 and 23.5%. Subjects in stage I and stage II SMI categories showed increased prevalence and risk for several CVD risk factors. These tendencies persisted in the association between cardiometabolic characteristics and SMI even in subjects with normal BMI. Using cutoffs of low skeletal muscle mass reflecting CVD risk factors, lower skeletal muscle mass was associated with increased prevalence and risk of several CVD risk factors. A higher prevalence of cardiometabolic abnormalities was observed among subjects with normal BMI but low skeletal muscle mass. PMID:25862070

  18. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  19. The mammalian blastocyst.

    PubMed

    Frankenberg, Stephen R; de Barros, Flavia R O; Rossant, Janet; Renfree, Marilyn B

    2016-01-01

    The blastocyst is a mammalian invention that carries the embryo from cleavage to gastrulation. For such a simple structure, it exhibits remarkable diversity in its mode of formation, morphology, longevity, and intimacy with the uterine endometrium. This review explores this diversity in the light of the evolution of viviparity, comparing the three main groups of mammals: monotremes, marsupials, and eutherians. The principal drivers in blastocyst evolution were loss of yolk coupled with evolution of the placenta. An important outcome of blastocyst development is differentiation of two extraembryonic lineages (trophoblast and hypoblast) that contribute to the placenta. While in many species trophoblast segregation is often coupled with blastocyst formation, in marsupials and at least some Afrotherians, these events do not coincide. Thus, many questions regarding the conservation of molecular mechanisms controlling these events are of great interest but currently unresolved. For further resources related to this article, please visit the WIREs website. PMID:26799266

  20. Mammalian phospholipase C.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2013-01-01

    Phospholipase C (PLC) converts phosphatidylinositol 4,5-bisphosphate (PIP(2)) to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol (DAG). DAG and IP(3) each control diverse cellular processes and are also substrates for synthesis of other important signaling molecules. PLC is thus central to many important interlocking regulatory networks. Mammals express six families of PLCs, each with both unique and overlapping controls over expression and subcellular distribution. Each PLC also responds acutely to its own spectrum of activators that includes heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca(2+), and phospholipids. Mammalian PLCs are autoinhibited by a region in the catalytic TIM barrel domain that is the target of much of their acute regulation. In combination, the PLCs act as a signaling nexus that integrates numerous signaling inputs, critically governs PIP(2) levels, and regulates production of important second messengers to determine cell behavior over the millisecond to hour timescale. PMID:23140367

  1. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds. PMID:26629627

  2. The effects of bridge exercise with the abdominal drawing-in maneuver on an unstable surface on the abdominal muscle thickness of healthy adults

    PubMed Central

    Cho, Misuk

    2015-01-01

    [Purpose] The purpose of this study was to determine the impact of a bridge exercise with an abdominal drawing-in maneuver (ADIM) performed with different surface conditions on abdominal muscle thickness. [Subjects] Thirty subjects were randomly divided into an unstable bridge exercise group (UBE group, n=15) and a stable bridge exercise group (SBE group, n=15). [Methods] After 6 weeks of performing bridge exercises accompanied by ADIM, the change in the muscle thicknesses of the transverse abdominis (TrA) and internal oblique abdominis (IOA) muscles was assessed using ultrasonography. [Results] After 6 weeks of exercise, the TrA was significantly altered in the SBEG, and the TrA and IOA were both significantly changed in the UBEG. [Conclusion] When performing bridge exercises to increase the Tra and the IO muscle thicknesses, exercising on an unstable surface is recommended. PMID:25642086

  3. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate

  4. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing. PMID:23100084

  5. The initial effects of an upper extremity neural mobilization technique on muscle fatigue and pressure pain threshold of healthy adults: a randomized control trial

    PubMed Central

    Kim, Myoung-Kwon; Cha, Hyun-Gyu; Ji, Sang Gu

    2016-01-01

    [Purpose] The purpose of this study was to determine the effects of an upper extremity neural mobilization technique on delayed onset muscle soreness. [Subjects] Forty-five healthy subjects were randomly assigned to two groups: a nerve mobilization group (experimental) and a control group. [Methods] The subjects of the experimental group were administered a median nerve mobilization technique and ultrasound for the biceps brachii muscle. The subjects in the control group were only administered ultrasound for the biceps brachii muscle. Muscle fatigue and the pressure pain threshold were assessed before and after the intervention. [Results] The experimental group showed significant improvements in all variables, compared to pre-intervention. Furthermore, the control group showed significant improvements in the pressure pain threshold, compared to pre-intervention. Significant differences in the post-intervention gains in muscle fatigue and pressure pain threshold were found between the experimental group and the control group. [Conclusion] Application of the upper extremity neural mobilization technique is considered to have a positive effect on recovery from delayed onset muscle soreness. PMID:27134351

  6. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  7. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  8. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  9. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  10. Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults.

    PubMed

    Trappe, Todd A; Standley, Robert A; Jemiolo, Bozena; Carroll, Chad C; Trappe, Scott W

    2013-02-01

    Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid synthesis: cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α) synthesis: PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2) synthesis: PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1β, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase β (IKKβ)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1β, IL-8, and IKKβ. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups: 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout

  11. A comparison of the properties of the phosphofructokinases of the fat body and flight muscle of the adult male desert locust

    PubMed Central

    Walker, P. R.; Bailey, E.

    1969-01-01

    1. Phosphofructokinase was isolated, and partially purified by ammonium sulphate fractionation, from the fat body and flight muscle of the desert locust. 2. Ammonium sulphate appears to stabilize the enzymes, but does not activate them. 3. Both flight-muscle and fat-body enzymes give sigmoidal hexose monophosphate concentration–activity curves, which are characteristic of regulatory enzymes. 4. At low ATP concentrations both the enzyme activities increase rapidly with increasing ATP concentrations, but above an optimum concentration ATP becomes inhibitory. This optimum concentration is 0·2mm for the fat-body enzyme and 0·1mm for the flight-muscle enzyme. 5. AMP activates both the enzymes; half-maximal activation occurs at 10μm in each case, the effect being independent of substrate concentration. 6. 3′,5′-(cyclic)-AMP (0·5mm) and Pi (1mm) activate the flight-muscle enzyme, but have no effect on the fat-body enzyme. 7. FDP (1mm) inhibits both enzymes, and with the flight-muscle enzyme this inhibition is increased by increasing the ATP concentration. 8. Citrate, phosphoenolpyruvate and α-glycerophosphate have no effect on either enzyme under the assay conditions used. 9. The properties of phosphofructokinases from the locust are compared with those of phosphofructokinases from other sources. PMID:4304161

  12. Mammalian Wax Biosynthesis

    PubMed Central

    Cheng, Jeffrey B.; Russell, David W.

    2009-01-01

    Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349

  13. Structure of mammalian metallothionein

    SciTech Connect

    Kaegi, J.H.R.; Vasak, M.; Lerch, K.; Gilg, D.E.O.; Hunziker, P.; Bernhard, W.R.; Good, M.

    1984-03-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me/sub 7/(Cys/sup -/)/sub 20/ stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. /sup 1/H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in ..beta..-type conformation. 79 references, 11 figures, 4 tables.

  14. Mammalian Sirtuins and Energy Metabolism

    PubMed Central

    Li, Xiaoling; Kazgan, Nevzat

    2011-01-01

    Sirtuins are highly conserved NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that can extend the lifespan of several lower model organisms including yeast, worms and flies. The seven mammalian sirtuins, SIRT1 to SIRT7, have emerged as key metabolic sensors that directly link environmental signals to mammalian metabolic homeostasis and stress response. Recent studies have shed light on the critical roles of sirtuins in mammalian energy metabolism in response to nutrient signals. This review focuses on the involvement of two nuclear sirtuins, SIRT1 and SIRT6, and three mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, in regulation of diverse metabolic processes. PMID:21614150

  15. Analysis of vastus lateralis and vastus medialis oblique muscle activation during squat exercise with and without a variety of tools in normal adults

    PubMed Central

    Lee, Tae-kyung; Park, So-mi; Yun, Sae-bom; Lee, Ae-ran; Lee, Yun-seob; Yong, Min-sik

    2016-01-01

    [Purpose] The present study investigated the effects of squat exercises with and without a variety of tools including a gym ball, wedge, and elastic band on the vastus lateralis and vastus medialis oblique muscles. [Subjects and Methods] A total of twenty healthy subjects with no history of neurological, musculoskeletal injury, or pain in the lower extremities were recruited. All subjects performed four types of exercise (conventional squat exercise, squat exercise with a gym ball, squat exercise with a wedge, squat exercise with an elastic band). [Results] There were no significant differences between exercises in comparison of the vastus lateralis muscle activity. In the squat exercise with a wedge, significantly higher activity of the vastus medialis oblique muscle was found compared with in the squat exercise with an elastic band. [Conclusion] The present study suggests that the conventional squat exercise can be one of the useful interventions for patients with patellofemoral pain syndrome. PMID:27134414

  16. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  17. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria.

    PubMed

    Chicco, Adam J; Le, Catherine H; Schlater, Amber; Nguyen, Alex; Kaye, Spencer; Beals, Joseph W; Scalzo, Rebecca L; Bell, Christopher; Gnaiger, Erich; Costa, Daniel P; Crocker, Daniel E; Kanatous, Shane B

    2014-08-15

    Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment. PMID:24902742

  18. Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery

    PubMed Central

    Jia, Zhiheng; Valiunas, Virginijus; Lu, Zongju; Bien, Harold; Liu, Huilin; Wang, Hong-Zhang; Rosati, Barbara; Brink, Peter R.; Cohen, Ira S.; Entcheva, Emilia

    2011-01-01

    Background After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience; and a non-viral, non-embryogenesis based strategy for optogenetics has not been shown before. Methods and Results We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, where non-excitable cells carry exogenous light-sensitive ion channels, and when electrically coupled to cardiomyocytes, produce optically-excitable heart tissue. A stable channelrhodopsin2 (ChR2) expressing cell line was developed, characterized and used as a cell delivery system. The TCU strategy was validated in vitro in cell pairs with adult canine myocytes (for a wide range of coupling strengths) and in cardiac syncytium with neonatal rat cardiomyocytes. For the first time, we combined optical excitation and optical imaging to capture light-triggered muscle contractions and high-resolution propagation maps of light-triggered electrical waves, found to be quantitatively indistinguishable from electrically-triggered waves. Conclusions Our results demonstrate feasibility to control excitation and contraction in cardiac muscle by light using the TCU approach. Optical pacing in this case uses less energy, offers superior spatiotemporal control, remote access and can serve not only as an elegant tool in arrhythmia research, but may form the basis for a new generation of light-driven cardiac pacemakers and muscle actuators. The TCU strategy is extendable to (non-viral) stem cell therapy and is directly relevant to in vivo applications. PMID:21828312

  19. Mammalian Interphase Cdks

    PubMed Central

    2012-01-01

    Cyclin-dependent kinases (Cdks) drive cell cycle progression in all eukaryotes. Yeasts have a single major Cdk that mediates distinct cell cycle transitions via association with different cyclins. The closest homolog in mammals, Cdk1, drives mitosis. Mammals have additional Cdks—Cdk2, Cdk4, and Cdk6—that represent the major Cdks activated during interphase (iCdks). A large body of evidence has accrued that suggests that activation of iCdks dictates progression though interphase. In apparent contradiction, deficiency in each individual iCdk, respectively, in knockout mice proved to be compatible with live birth and in some instances fertility. Moreover, murine embryos could be derived with Cdk1 as the only functional Cdk. Thus, none of the iCdks is strictly essential for mammalian cell cycle progression, raising the possibility that Cdk1 is the dominant regulator in interphase. However, an absence of iCdks has been accompanied by major shifts in cyclin association to Cdk1, suggesting gain in function. After considerable tweaking, a chemical genetic approach has recently been able to examine the impact of acute inhibition of Cdk2 activity without marked distortion of cyclin/Cdk complex formation. The results suggest that, when expressed at its normal levels, Cdk2 performs essential roles in driving human cells into S phase and maintaining genomic stability. These new findings appear to have restored order to the cell cycle field, bringing it full circle to the view that iCdks indeed play important roles. They also underscore the caveat in knockdown and knockout approaches that protein underexpression can significantly perturb a protein interaction network. We discuss the implications of the new synthesis for future cell cycle studies and anti–Cdk-based therapy of cancer and other diseases. PMID:23634250

  20. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  1. Handgrip strength, quadriceps muscle power, and optimal shortening velocity roles in maintaining functional abilities in older adults living in a long-term care home: a 1-year follow-up study

    PubMed Central

    Kozicka, Izabela; Kostka, Tomasz

    2016-01-01

    Purpose To assess the relative role of handgrip strength (HGS), quadriceps muscle power (Pmax), and optimal shortening velocity (υopt) in maintaining functional abilities (FAs) in older adults living in a long-term care home over a 1-year follow-up. Subjects and methods Forty-one inactive older institutionalized adults aged 69.8±9.0 years participated in this study. HGS, Pmax, υopt, cognitive function using the Mini-Mental State Examination, depressive symptoms using the Geriatric Depression Scale, nutritional status using the Mini Nutritional Assessment (MNA), and physical activity (PA) using the Seven-Day Physical Activity Recall Questionnaire were assessed at baseline and at 1-year follow-up. FAs were assessed with activities of daily living (ADL), instrumental ADL, and Timed Up & Go test. Results Both at baseline and at follow-up, FAs were related to age, HGS, Pmax/kg, υopt, MNA, and PA. These associations were generally similar in both sexes. As revealed in multiple regression analysis, υopt was the strongest predictor of FA, followed by Pmax/kg, PA, and MNA. FA deteriorated after 1 year as measured by ADL and Timed Up & Go test. Pmax and υopt, but not HGS, also decreased significantly after 1 year. Nevertheless, 1-year changes in FAs were not related to changes in HGS, Pmax, υopt, or PA. Conclusion The 1-year period of physical inactivity among older institutionalized adults was found to have a negative effect on their FAs, Pmax, and υopt. The present study demonstrates that Pmax and, especially, υopt correlated with FAs of older adults more than HGS, both at baseline and at follow-up. Despite this, 1-year natural fluctuations of PA, Pmax, and υopt are not significant enough to influence FAs in inactive institutionalized older adults. PMID:27307720

  2. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation.

    PubMed

    Stark, Danny A; Coffey, Nathan J; Pancoast, Hannah R; Arnold, Laura L; Walker, J Peyton D; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L; Cornelison, D D W

    2015-12-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  3. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation

    PubMed Central

    Stark, Danny A.; Coffey, Nathan J.; Pancoast, Hannah R.; Arnold, Laura L.; Walker, J. Peyton D.; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L.

    2015-01-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  4. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial

    PubMed Central

    Kemmler, Wolfgang; von Stengel, Simon

    2013-01-01

    Background The primary aim of this study was to determine the effect of 12 months of whole-body electromyostimulation (WB-EMS) exercise on appendicular muscle mass and abdominal fat mass in subjects specifically at risk for sarcopenia and abdominal obesity, but unable or unwilling to exercise conventionally. Methods Forty-six lean, nonsportive (<60 minutes of exercise per week), elderly women (aged 75 ± 4 years) with abdominal obesity according to International Diabetes Federation criteria were randomly assigned to either a WB-EMS group (n=23) which performed 18 minutes of intermittent, bipolar WB-EMS (85 Hz) three sessions in 14 days or an “active” control group (n=23). Whole-body and regional body composition was assessed by dual energy X-ray absorptiometry to determine appendicular muscle mass, upper leg muscle mass, abdominal fat mass, and upper leg fat mass. Maximum strength of the leg extensors was determined isometrically by force plates. Results After 12 months, significant intergroup differences were detected for the primary end-points of appendicular muscle mass (0.5% ± 2.0% for the WB-EMS group versus −0.8% ± 2.0% for the control group, P=0.025) and abdominal fat mass (−1.2% ± 5.9% for the WB-EMS group versus 2.4% ± 5.8% for the control group, P=0.038). Further, upper leg lean muscle mass changed favorably in the WB-EMS group (0.5% ± 2.5% versus −0.9% ± 1.9%, in the control group, P=0.033), while effects for upper leg fat mass were borderline nonsignificant (−0.8% ± 3.5% for the WB-EMS group versus 1.0% ± 2.6% for the control group, P=0.050). With respect to functional parameters, the effects for leg extensor strength were again significant, with more favorable changes in the WB-EMS group (9.1% ± 11.2% versus 1.0% ± 8.1% in the control group, P=0.010). Conclusion In summary, WB-EMS showed positive effects on the parameters of sarcopenia and regional fat accumulation. Further, considering the good acceptance of this technology by

  5. Muscle stem cells at a glance.

    PubMed

    Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2014-11-01

    Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment. PMID:25300792

  6. Syndecans in skeletal muscle development, regeneration and homeostasis

    PubMed Central

    Pisconti, Addolorata; Bernet, Jennifer D.; Olwin, Bradley B.

    2012-01-01

    Summary Skeletal muscle is a highly dynamic tissue that can change in size in response to physiological demands and undergo successful regeneration even upon extensive injury. A population of resident stem cells, termed satellite cells, accounts for skeletal muscle plasticity, maintenance and regeneration. Mammalian satellite cells, generated from muscle precursor cells during development, are maintained quiescent in the musculature throughout a lifespan, but ready to activate, proliferate and differentiate into myocytes upon demand. Syndecans are transmembrane heparan sulfate proteoglycans expressed in muscle precursors during embryonic development and in satellite cells during postnatal life. In the last decades a number of crucial functions for syndecans in myogenesis and muscle disease have been described. Here we review the current knowledge of the multiple roles played by syndecans in the skeletal muscle of several animal models and explore future perspectives for human muscle health, with a focus on muscle aging and muscular dystrophy. PMID:23738267

  7. Employment of adult mammalian primary cells in toxicology: In vivo and in vitro genotoxic effects of environmentally significant N-nitrosodialkylamines in cells of the liver, lung, and kidney

    SciTech Connect

    Pool, B.L.; Brendler, S.Y.; Liegibel, U.M.; Schmezer, P. ); Tompa, A. )

    1990-01-01

    This report focuses on the use of freshly isolated primary mammalian cells from different tissues and organs of the rat for the rapid and efficient analysis of toxic and genotoxic chemicals. The cells are either treated in vitro or they are isolated from treated animals. Viability by trypan blue exclusion and DNA damage as single-strand breaks are monitored in either case. Therefore, it is possible to compare in vitro and in vivo results directly. N-nitrosamines with unique organ-specific modes in carcinogenesis were studied in vitro using hepatocytes derived from three species (rat, hamster, and pig) and in rat lung and kidney cells. The sensitive detection of all carcinogenic nitrosamines was achieved, although a pattern of cell-specific activation was not observable. The new modification of the in vivo approach allowed the sensitive detection of NDMA genotoxicity in hepatic and in extrahepatic tissues. It is important to point out that the method is an efficient tool for toxicokinetic studies with genotoxic carcinogens in vivo.

  8. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    PubMed Central

    Yun, Maximina H.; Gates, Phillip B.; Brockes, Jeremy P.

    2014-01-01

    Summary In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species. PMID:25068118

  9. Effects of a Diet Enriched with Polyunsaturated, Saturated, or Trans Fatty Acids on Cytokine Content in the Liver, White Adipose Tissue, and Skeletal Muscle of Adult Mice

    PubMed Central

    dos Santos, Bruno; Estadella, Debora; Hachul, Ana Cláudia Losinskas; Okuda, Marcos Hiromu; Moreno, Mayara Franzoi; Oyama, Lila Missae; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha

    2013-01-01

    This study analyzed the effect of diet enriched with 30% lipids on cytokines content in different tissues. Swiss male mice were distributed into four groups treated for 8 weeks with control (C, normolipidic diet); soybean oil (S); lard (L); and hydrogenated vegetable fat (H). We observed an increase in carcass fat in groups S and L, and the total amount of fatty deposits was only higher in group L compared with C group. The serum levels of free fatty acids were lower in the L group, and insulin, adiponectin, lipid profile, and glucose levels were similar among the groups. IL-10 was lower in group L in mesenteric and retroperitoneal adipose tissues. H reduced IL-10 only in retroperitoneal adipose tissue. There was an increase in IL-6 in the gastrocnemius muscle of the L group, and a positive correlation between TNF-α and IL-10 was observed in the livers of groups C, L, and H and in the muscles of all groups studied. The results suggested relationships between the quantity and quality of lipids ingested with adiposity, the concentration of free fatty acids, and cytokine production in white adipose tissue, gastrocnemius muscle, and liver. PMID:24027356

  10. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    NASA Astrophysics Data System (ADS)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  11. Muscle cramps.

    PubMed

    Miller, Timothy M; Layzer, Robert B

    2005-10-01

    Muscle cramps are a common problem characterized by a sudden, painful, involuntary contraction of muscle. These true cramps, which originate from peripheral nerves, may be distinguished from other muscle pain or spasm. Medical history, physical examination, and a limited laboratory screen help to determine the various causes of muscle cramps. Despite the "benign" nature of cramps, many patients find the symptom very uncomfortable. Treatment options are guided both by experience and by a limited number of therapeutic trials. Quinine sulfate is an effective medication, but the side-effect profile is worrisome, and other membrane-stabilizing drugs are probably just as effective. Patients will benefit from further studies to better define the pathophysiology of muscle cramps and to find more effective medications with fewer side-effects. PMID:15902691

  12. Progressive Hyperglycemia across the Glucose Tolerance Continuum in Older Obese Adults Is Related to Skeletal Muscle Capillarization and Nitric Oxide Bioavailability

    PubMed Central

    Solomon, Thomas P. J.; Haus, Jacob M.; Li, Yanjun

    2011-01-01

    Context: Reduced tissue nutrient exposure may aid in the progression of glucose intolerance. Objective: The aim of the study was to examine peripheral tissue glucose disposal in relation to muscle capillarization and plasma nitric oxide bioavailability. Design: Participants were carefully matched for age, adiposity, and lipid status and stratified into normal (n = 20), impaired (n = 20), and type 2 diabetic (n = 20) glucose-tolerant groups. Setting: The study was conducted in an outpatient setting at a Clinical Research Unit. Participants: Older, obese men and women (n = 60; age, 65 ± 1 yr; body mass index, 32.7 ± 0.5 kg/m2) participated in the study. Intervention: We performed a cross-sectional study. Main Outcome Measures: Body composition, energy metabolism, aerobic fitness (maximum oxygen consumption), insulin sensitivity (glucose clamp), vastus lateralis muscle morphology, and plasma nitric oxide were assessed. Results: Although subjects were identical with respect to age, body composition, energy expenditure, and lipid status, insulin-stimulated glucose disposal and maximum oxygen consumption showed progressive decline with increasing glucose intolerance. Muscle fiber type composition and mitochondrial density were not different between groups. However, capillary density markedly declined with advancing glucose intolerance (1.86 ± 0.31, 1.70 ± 0.28, 1.42 ± 0.24 capillary/fiber; P < 0.05), a trend that was mirrored by fasting plasma nitric oxide concentrations (26.3 ± 3.6, 19.8 ± 2.3, 15.2 ± 2.1 μmol/liter; P < 0.05). Furthermore, skeletal muscle capillary density correlated with insulin sensitivity (r = 0.65; P < 0.001). Conclusions: Impaired muscle capillarization and reduced nutrient exposure to the metabolizing tissue may play a major role in the progression of insulin resistance across the glucose tolerance continuum, independent of age, adiposity, lipid status, and resting energy metabolism. These data also highlight plasma nitric oxide as a

  13. Engineered Skeletal Muscle Units for Repair of Volumetric Muscle Loss in the Tibialis Anterior Muscle of a Rat

    PubMed Central

    VanDusen, Keith W.; Syverud, Brian C.; Williams, Michael L.; Lee, Jonah D.

    2014-01-01

    Volumetric muscle loss (VML) is the traumatic, degenerative, or surgical loss of muscle tissue, which may result in function loss and physical deformity. To date, clinical treatments for VML—the reflected muscle flap or transferred muscle graft—are limited by tissue availability and donor site morbidity. To address the need for more innovative skeletal muscle repair options, our laboratory has developed scaffoldless tissue-engineered skeletal muscle units (SMUs), multiphasic tissue constructs composed of engineered skeletal muscle with engineered bone-tendon ends, myotendinous junctions, and entheses, which in vitro can produce force both spontaneously and in response to electrical stimulation. Though phenotypically immature in vitro, we have shown that following 1 week of implantation in an ectopic site, our muscle constructs develop vascularization and innervation, an epimysium-like outer layer of connective tissue, an increase in myosin protein content, formation of myofibers, and increased force production. These findings suggest that our engineered muscle tissue survives implantation and develops the interfaces necessary to advance the phenotype toward adult muscle. The purpose of this study was to evaluate the potential of our SMUs to restore muscle tissue to sites of acute VML. Our results indicate that our SMUs continue to mature in vivo with longer recovery times and have the potential to repair VML sites by providing additional muscle fibers to damaged muscles. We conclude from this study that our SMUs have the potential to restore lost tissue volume in cases of acute VML. PMID:24813922

  14. Mechanoaccumulative Elements of the Mammalian Actin Cytoskeleton.

    PubMed

    Schiffhauer, Eric S; Luo, Tianzhi; Mohan, Krithika; Srivastava, Vasudha; Qian, Xuyu; Griffis, Eric R; Iglesias, Pablo A; Robinson, Douglas N

    2016-06-01

    To change shape, divide, form junctions, and migrate, cells reorganize their cytoskeletons in response to changing mechanical environments [1-4]. Actin cytoskeletal elements, including myosin II motors and actin crosslinkers, structurally remodel and activate signaling pathways in response to imposed stresses [5-9]. Recent studies demonstrate the importance of force-dependent structural rearrangement of α-catenin in adherens junctions [10] and vinculin's molecular clutch mechanism in focal adhesions [11]. However, the complete landscape of cytoskeletal mechanoresponsive proteins and the mechanisms by which these elements sense and respond to force remain to be elucidated. To find mechanosensitive elements in mammalian cells, we examined protein relocalization in response to controlled external stresses applied to individual cells. Here, we show that non-muscle myosin II, α-actinin, and filamin accumulate to mechanically stressed regions in cells from diverse lineages. Using reaction-diffusion models for force-sensitive binding, we successfully predicted which mammalian α-actinin and filamin paralogs would be mechanoaccumulative. Furthermore, a "Goldilocks zone" must exist for each protein where the actin-binding affinity must be optimal for accumulation. In addition, we leveraged genetic mutants to gain a molecular understanding of the mechanisms of α-actinin and filamin catch-bonding behavior. Two distinct modes of mechanoaccumulation can be observed: a fast, diffusion-based accumulation and a slower, myosin II-dependent cortical flow phase that acts on proteins with specific binding lifetimes. Finally, we uncovered cell-type- and cell-cycle-stage-specific control of the mechanosensation of myosin IIB, but not myosin IIA or IIC. Overall, these mechanoaccumulative mechanisms drive the cell's response to physical perturbation during proper tissue development and disease. PMID:27185555

  15. Myonuclear domains in muscle adaptation and disease

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    1999-01-01

    Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.

  16. Mammalian Tribbles Homologs at the Crossroads of Endoplasmic Reticulum Stress and Mammalian Target of Rapamycin Pathways

    PubMed Central

    Cunard, Robyn

    2013-01-01

    In 2000, investigators discovered Tribbles, a Drosophila protein that coordinates morphogenesis by inhibiting mitosis. Further work has delineated Xenopus (Xtrb2), Nematode (Nipi-3), and mammalian homologs of Drosophila tribbles, which include TRB1, TRB2, and TRB3. The sequences of tribbles homologs are highly conserved, and despite their protein kinase structure, to date they have not been shown to have kinase activity. TRB family members play a role in the differentiation of macrophages, lymphocytes, muscle cells, adipocytes, and osteoblasts. TRB isoforms also coordinate a number of critical cellular processes including glucose and lipid metabolism, inflammation, cellular stress, survival, apoptosis, and tumorigenesis. TRB family members modulate multiple complex signaling networks including mitogen activated protein kinase cascades, protein kinase B/AKT signaling, mammalian target of rapamycin, and inflammatory pathways. The following review will discuss metazoan homologs of Drosophila tribbles, their structure, expression patterns, and functions. In particular, we will focus on TRB3 function in the kidney in podocytes. This review will also discuss the key signaling pathways with which tribbles proteins interact and provide a rationale for developing novel therapeutics that exploit these interactions to provide better treatment options for both acute and chronic kidney disease. PMID:24490110

  17. Sirtuins: Guardians of Mammalian Healthspan

    PubMed Central

    Giblin, William; Skinner, Mary E.; Lombard, David B.

    2014-01-01

    The first link between sirtuins and longevity was made 15 years ago in yeast. These initial studies sparked efforts by many laboratories working in diverse model organisms to elucidate the relationships between sirtuins, lifespan, and age-associated dysfunction. Here we discuss the current understanding of how sirtuins relate to aging. We focus primarily on mammalian sirtuins SIRT1, SIRT3, and SIRT6, the three sirtuins for which the most relevant data are available. Strikingly, a large body of evidence now indicates that these and other mammalian sirtuins suppress a variety of age-related pathologies and promote healthspan. Moreover, increased expression of SIRT1 or SIRT6 extends mouse lifespan. Overall, these data point to important roles for sirtuins in promoting mammalian health, and perhaps in modulating the aging process. PMID:24877878

  18. Electroporation into Cultured Mammalian Embryos

    NASA Astrophysics Data System (ADS)

    Nomura, Tadashi; Takahashi, Masanori; Osumi, Noriko

    Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

  19. Motoneurons of the adult marmoset can grow axons and reform motor endplates through a peripheral nerve bridge joining the locally injured cervical spinal cord to the denervated biceps brachii muscle.

    PubMed

    Emery, E; Rhrich-Haddout, F; Kassar-Duchossoy, L; Lyoussi, B; Tadié, M; Horvat, J C

    2000-12-15

    Reconnection of the injured spinal cord (SC) of the marmoset with the denervated biceps brachii muscle (BB) was obtained by using a peripheral nerve (PN) bridge. In 13 adult males, a 45 mm segment of the peroneal nerve was removed: one end was implanted unilaterally into the cervical SC of the same animal (autograft), determining a local injury, although the other end was either directly inserted into the BB (Group A) or, alternatively, sutured to its transected motor nerve, the musculocutaneous nerve (Group B). From 2-4 months post-surgery, eight out of the 10 surviving animals responded by a contraction of the BB to electrical stimulations of the PN bridge. All ten were then processed for a morphological study. As documented by retrograde axonal tracing studies using horse radish peroxidase or Fast Blue (FB), a mean number of 314 (Group A) or 45 (Group B) spinal neurons, mainly located close to the site of injury and grafting, re-expressed a capacity to grow and extend axons into the PN bridge. Most of these regenerated axons were able to grow up to the BB and form or reform functional motor endplates. Many of the spinal neurons that were retrogradely labeled with FB simultaneously displayed immunoreactivity for choline acetyl-transferase and consequently were assumed to be motoneurons. Reinnervation and regeneration of the BB were documented by methods revealing axon terminals, endplates and myofibrillary ATPase activity. Our results indicate that motoneurons of the focally injured SC of a small-sized primate can, following the example of the adult rat, re-establish a lost motor function by extending new axons all the way through a PN bridge connected to a denervated skeletal muscle. PMID:11107167

  20. Mammalian homologues of the Drosophila eye specification genes.

    PubMed

    Hanson, I M

    2001-12-01

    The Drosophila compound eye is specified by the simultaneous and interdependent activity of transcriptional regulatory genes from four families: PAX6 (eyeless, twin of eyeless, eyegone), EYA (eyes absent), SIX (sine oculis, Optix) and DACH (dachshund). Mammals have homologues of all these genes, and many of them are expressed in the embryonic or adult eye, but the functional relationships between them are currently much less clear than in Drosophila. Nevertheless, mutations in the mammalian genes highlight their requirement both within and outside the eye in embryos and