Science.gov

Sample records for adult melanocyte stem

  1. [Melanocyte stem cells in adults].

    PubMed

    Aubin-Houzelstein, Geneviève; Djian-Zaouche, Johanna; Panthier, Jean-Jacques

    2008-01-01

    Melanocyte stem cells have been recently localized in mice, in the outer root sheath of the lower permanent portion of the hair follicle. Specific depletion of melanocyte stem cell population is responsible for natural hair greying in aging mice and humans. Melanocyte stem cells also seem to drive the growth of malignant melanomas. A few mutations, either spontaneous or genetically engineered, accelerate the natural process of hair greying with age. These mutations allowed the identification of genes and signalling pathways controlling emergence, maintenance and/or differentiation of melanocyte stem cells. This review summarizes recent studies on the melanocyte stem cells and defines a few major unanswered questions in the field.

  2. Defects in ErbB-dependent establishment of adult melanocyte stem cells reveal independent origins for embryonic and regeneration melanocytes.

    PubMed

    Hultman, Keith A; Budi, Erine H; Teasley, Daniel C; Gottlieb, Andrew Y; Parichy, David M; Johnson, Stephen L

    2009-07-01

    Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre-MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult

  3. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells.

    PubMed

    Koludrovic, Dana; Laurette, Patrick; Strub, Thomas; Keime, Céline; Le Coz, Madeleine; Coassolo, Sebastien; Mengus, Gabrielle; Larue, Lionel; Davidson, Irwin

    2015-10-01

    MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes.

  4. Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells

    PubMed Central

    Koludrovic, Dana; Laurette, Patrick; Strub, Thomas; Keime, Céline; Le Coz, Madeleine; Coassolo, Sebastien; Mengus, Gabrielle; Larue, Lionel; Davidson, Irwin

    2015-01-01

    MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. We show that MITF associates the NURF chromatin-remodelling factor in melanoma cells. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf-mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. PMID:26440048

  5. Melanocytes, melanocyte stem cells, and melanoma stem cells.

    PubMed

    Lang, Deborah; Mascarenhas, Joseph B; Shea, Christopher R

    2013-01-01

    Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Clonal analyses reveal roles of organ founding stem cells, melanocyte stem cells and melanoblasts in establishment, growth and regeneration of the adult zebrafish fin.

    PubMed

    Tu, Shu; Johnson, Stephen L

    2010-12-01

    In vertebrates, the adult form emerges from the embryo by mobilization of precursors or adult stem cells. What different cell types these precursors give rise to, how many precursors establish the tissue or organ, and how they divide to establish and maintain the adult form remain largely unknown. We use the pigment pattern of the adult zebrafish fin, with a variety of clonal and lineage analyses, to address these issues. Early embryonic labeling with lineage-marker-bearing transposons shows that all classes of fin melanocytes (ontogenetic, regeneration and kit-independent melanocytes) and xanthophores arise from the same melanocyte-producing founding stem cells (mFSCs), whereas iridophores arise from distinct precursors. Additionally, these experiments show that, on average, six and nine mFSCs colonize the caudal and anal fin primordia, and daughters of different mFSCs always intercalate to form the adult pattern. Labeled clones are arrayed along the proximal-distal axis of the fin, and melanocyte time-of-differentiation lineage assays show that although most of the pigment pattern growth is at the distal edge of the fin, significant growth also occurs proximally. This suggests that leading edge melanocyte stem cells (MSCs) divide both asymmetrically to generate new melanocytes, and symmetrically to expand the MSCs and leave quiescent MSCs in their wake. Clonal labeling in adult stages confirms this and reveals different contributions of MSCs and transient melanoblasts during growth. These analyses build a comprehensive picture for how MSCs are established and grow to form the pigment stripes of the adult zebrafish fins.

  7. Clonal analyses reveal roles of organ founding stem cells, melanocyte stem cells and melanoblasts in establishment, growth and regeneration of the adult zebrafish fin

    PubMed Central

    Tu, Shu; Johnson, Stephen L.

    2010-01-01

    In vertebrates, the adult form emerges from the embryo by mobilization of precursors or adult stem cells. What different cell types these precursors give rise to, how many precursors establish the tissue or organ, and how they divide to establish and maintain the adult form remain largely unknown. We use the pigment pattern of the adult zebrafish fin, with a variety of clonal and lineage analyses, to address these issues. Early embryonic labeling with lineage-marker-bearing transposons shows that all classes of fin melanocytes (ontogenetic, regeneration and kit-independent melanocytes) and xanthophores arise from the same melanocyte-producing founding stem cells (mFSCs), whereas iridophores arise from distinct precursors. Additionally, these experiments show that, on average, six and nine mFSCs colonize the caudal and anal fin primordia, and daughters of different mFSCs always intercalate to form the adult pattern. Labeled clones are arrayed along the proximal-distal axis of the fin, and melanocyte time-of-differentiation lineage assays show that although most of the pigment pattern growth is at the distal edge of the fin, significant growth also occurs proximally. This suggests that leading edge melanocyte stem cells (MSCs) divide both asymmetrically to generate new melanocytes, and symmetrically to expand the MSCs and leave quiescent MSCs in their wake. Clonal labeling in adult stages confirms this and reveals different contributions of MSCs and transient melanoblasts during growth. These analyses build a comprehensive picture for how MSCs are established and grow to form the pigment stripes of the adult zebrafish fins. PMID:20980402

  8. The biology of melanocyte and melanocyte stem cell.

    PubMed

    Li, Ang

    2014-04-01

    The melanocyte stem cells of the hair follicle provide an attractive system for the study of the stem cells. Successful regeneration of a functional organ relies on the organized and timely orchestration of molecular events among distinct stem/progenitor cell populations. The stem cells are regulated by communication with their specialized microenvironment known as the niche. Despite remarkable progress in understanding stem cell-intrinsic behavior, the molecular nature of the extrinsic factors provided to the stem cells by the niche microenvironment remains poorly understood. In this regard, the bulge niche of the mammalian hair follicle offers an excellent model for study. It holds two resident populations of SCs: epidermal stem cells and melanocyte stem cells. While their behavior is tightly coordinated, very little of the crosstalk involved is known. This review summarized the recent development in trying to understand the regulation of melanocyte and melanocyte stem cells. A better understanding of the normal regulation and behaviors of the melanocytes and the melanocyte stem cells will help to improve the clinical applications in regenerative medicine, cancer therapy, and aging.

  9. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche.

    PubMed

    Chang, Chiung-Ying; Pasolli, H Amalia; Giannopoulou, Eugenia G; Guasch, Géraldine; Gronostajski, Richard M; Elemento, Olivier; Fuchs, Elaine

    2013-03-07

    Adult stem cells reside in specialized niches where they receive environmental cues to maintain tissue homeostasis. In mammals, the stem cell niche within hair follicles is home to epithelial hair follicle stem cells and melanocyte stem cells, which sustain cyclical bouts of hair regeneration and pigmentation. To generate pigmented hairs, synchrony is achieved such that upon initiation of a new hair cycle, stem cells of each type activate lineage commitment. Dissecting the inter-stem-cell crosstalk governing this intricate coordination has been difficult, because mutations affecting one lineage often affect the other. Here we identify transcription factor NFIB as an unanticipated coordinator of stem cell behaviour. Hair follicle stem-cell-specific conditional targeting of Nfib in mice uncouples stem cell synchrony. Remarkably, this happens not by perturbing hair cycle and follicle architecture, but rather by promoting melanocyte stem cell proliferation and differentiation. The early production of melanin is restricted to melanocyte stem cells at the niche base. Melanocyte stem cells more distant from the dermal papilla are unscathed, thereby preventing hair greying typical of melanocyte stem cell differentiation mutants. Furthermore, we pinpoint KIT-ligand as a dermal papilla signal promoting melanocyte stem cell differentiation. Additionally, through chromatin-immunoprecipitation with high-throughput-sequencing and transcriptional profiling, we identify endothelin 2 (Edn2) as an NFIB target aberrantly activated in NFIB-deficient hair follicle stem cells. Ectopically induced Edn2 recapitulates NFIB-deficient phenotypes in wild-type mice. Conversely, endothelin receptor antagonists and/or KIT blocking antibodies prevent precocious melanocyte stem cell differentiation in the NFIB-deficient niche. Our findings reveal how melanocyte and hair follicle stem cell behaviours maintain reliance upon cooperative factors within the niche, and how this can be uncoupled in

  10. NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche

    PubMed Central

    Chang, Chiung-Ying; Pasolli, H. Amalia; Giannopoulou, Eugenia G.; Guasch, Géraldine; Gronostajski, Richard M.; Elemento, Olivier; Fuchs, Elaine

    2013-01-01

    Adult stem cells reside in specialized niches where they receive environmental cues to maintain tissue homeostasis. In mammals, the stem cell niche within hair follicles is home to epithelial hair follicle stem cells and melanocyte stem cells, which sustain cyclical bouts of hair regeneration and pigmentation1–4. To generate pigmented hairs, synchrony is achieved such that upon initiation of a new hair cycle, stem cells of each type activate lineage commitment2,5. Dissecting the inter-stem-cell crosstalk governing this intricate coordination has been difficult, because mutations affecting one lineage often affect the other. Here we identify transcription factor NFIB as an unanticipated coordinator of stem cell behaviour. Hair follicle stem-cell-specific conditional targeting of Nfib in mice uncouples stem cell synchrony. Remarkably, this happens not by perturbing hair cycle and follicle architecture, but rather by promoting melanocyte stem cell proliferation and differentiation. The early production of melanin is restricted to melanocyte stem cells at the niche base. Melanocyte stem cells more distant from the dermal papilla are unscathed, thereby preventing hair greying typical of melanocyte stem cell differentiation mutants. Furthermore, we pinpoint KIT-ligand as a dermal papilla signal promoting melanocyte stem cell differentiation. Additionally, through chromatin-immunoprecipitation with high-throughput-sequencing and transcriptional profiling, we identify endothelin 2 (Edn2) as an NFIB target aberrantly activated in NFIB-deficient hair follicle stem cells. Ectopically induced Edn2 recapitulates NFIB-deficient phenotypes in wild-type mice. Conversely, endothelin receptor antagonists and/or KIT blocking antibodies prevent precocious melanocyte stem cell differentiation in the NFIB-deficient niche. Our findings reveal how melanocyte and hair follicle stem cell behaviours maintain reliance upon cooperative factors within the niche, and how this can be uncoupled

  11. Immunohistochemical study of melanocyte-melanocyte stem cell lineage in vitiligo; a clue to interfollicular melanocyte stem cell reservoir.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-05-01

    There has been a long lasting controversy over whether melanocytes (MCs) in vitiligo are actually lost or still present but functionally inactive. We aimed to evaluate the MC cell lineage in follicular and interfollicular vitiliginous epidermis through immunohistochemical localization of Human Melanoma Black-45 (HMB-45) and Tyrosinase Related Protein 2 (TRP2) and to correlate it with clinicopathologic parameters. Using immunohistochemical techniques, skin biopsies from 50 vitiligo patients and 20 age- and gender-matched healthy subjects were examined. Differentiated active MCs were detected in 44% of interfollicular epidermis (IFE) and 46.7% of follicular epidermis (FE) in lesional skin. Melanocyte precursors/stem cells were detected in 54% of IFE and 63.3% of FE in lesional skin. Melanocyte precursors/stem cells of IFE were significantly associated with residual melanin pigment (p = 0.007) and with absence of angiogenesis (p = 0.05). HMB-45 percentage of expression in IFE was positively correlated with MC precursors/stem cells percentage in FE (r = +0.65, p < 0.001) and IFE (r = +0.33, p = 0.01). Melanocyte precursors/stem cells positivity (p < 0.001) was progressively decreasing with advanced histopathologic grading. There was no significant association between interfollicular or follicular expression of HMB-45, TRP2 or MC precursors/stem cells and the clinical type of vitiligo or its duration. In conclusion, functioning MCs may exist in vitiligo. The presence of MC precursors/stem cells in IFE may provide an additional reservoir needed for repigmentation.

  12. EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt signaling

    PubMed Central

    Takeo, Makoto; Lee, Wendy; Rabbani, Piul; Sun, Qi; Hu, Hai; Lim, Chae Ho; Manga, Prashiela; Ito, Mayumi

    2017-01-01

    Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants. PMID:27134165

  13. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation.

    PubMed

    Nishimura, Emi K

    2011-06-01

    Most mammals are coated with pigmented hair. Melanocytes in each hair follicle produce melanin pigments for the hair during each hair cycle. The key to understanding the mechanism of cyclic melanin production is the melanocyte stem cell (MelSC) population, previously known as 'amelanotic melanocytes'. The MelSCs directly adhere to hair follicle stem cells, the niche cells for MelSCs and reside in the hair follicle bulge-subbulge area, the lower permanent portion of the hair follicle, to serve as a melanocyte reservoir for skin and hair pigmentation. MelSCs form a stem cell system within individual hair follicles and provide a 'hair pigmentary unit' for each cycle of hair pigmentation. This review focuses on the identification of MelSCs and their characteristics and explains the importance of the MelSC population in the mechanisms of hair pigmentation, hair greying, and skin repigmentation. 2011 John Wiley & Sons A/S.

  14. Lineage relationship of direct-developing melanocytes and melanocyte stem cells in the zebrafish.

    PubMed

    Tryon, Robert C; Higdon, Charles W; Johnson, Stephen L

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1-2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50-60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC-derived development

  15. Lineage Relationship of Direct-Developing Melanocytes and Melanocyte Stem Cells in the Zebrafish

    PubMed Central

    Tryon, Robert C.; Higdon, Charles W.; Johnson, Stephen L.

    2011-01-01

    Previous research in zebrafish has demonstrated that embryonic and larval regeneration melanocytes are derived from separate lineages. The embryonic melanocytes that establish the larval pigment pattern do not require regulative melanocyte stem cell (MSC) precursors, and are termed direct-developing melanocytes. In contrast, the larval regeneration melanocytes that restore the pigment pattern after ablation develop from MSC precursors. Here, we explore whether embryonic melanocytes and MSCs share bipotent progenitors. Furthermore, we explore when fate segregation of embryonic melanocytes and MSCs occurs in zebrafish development. In order to achieve this, we develop and apply a novel lineage tracing method. We first demonstrate that Tol2-mediated genomic integration of reporter constructs from plasmids injected at the 1–2 cell stage occurs most frequently after the midblastula transition but prior to shield stage, between 3 and 6 hours post-fertilization. This previously uncharacterized timing of Tol2-mediated genomic integration establishes Tol2-mediated transposition as a means for conducting lineage tracing in zebrafish. Combining the Tol2-mediated lineage tracing strategy with a melanocyte regeneration assay previously developed in our lab, we find that embryonic melanocytes and larval regeneration melanocytes are derived from progenitors that contribute to both lineages. We estimate 50–60 such bipotent melanogenic progenitors to be present in the shield-stage embryo. Furthermore, our examination of direct-developing and MSC-restricted lineages suggests that these are segregated from bipotent precursors after the shield stage, but prior to the end of convergence and extension. Following this early fate segregation, we estimate approximately 100 embryonic melanocyte and 90 MSC-restricted lineages are generated to establish or regenerate the zebrafish larval pigment pattern, respectively. Thus, the dual strategies of direct-development and MSC

  16. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications.

    PubMed

    Mull, Amber N; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-12-21

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs.

  17. Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications

    PubMed Central

    Mull, Amber N.; Zolekar, Ashwini; Wang, Yu-Chieh

    2015-01-01

    Melanocytes in the skin play an indispensable role in the pigmentation of skin and its appendages. It is well known that the embryonic origin of melanocytes is neural crest cells. In adult skin, functional melanocytes are continuously repopulated by the differentiation of melanocyte stem cells (McSCs) residing in the epidermis of the skin. Many preceding studies have led to significant discoveries regarding the cellular and molecular characteristics of this unique stem cell population. The alteration of McSCs has been also implicated in several skin abnormalities and disease conditions. To date, our knowledge of McSCs largely comes from studying the stem cell niche of mouse hair follicles. Suggested by several anatomical differences between mouse and human skin, there could be distinct features associated with mouse and human McSCs as well as their niches in the skin. Recent advances in human pluripotent stem cell (hPSC) research have provided us with useful tools to potentially acquire a substantial amount of human McSCs and functional melanocytes for research and regenerative medicine applications. This review highlights recent studies and progress involved in understanding the development of cutaneous melanocytes and the regulation of McSCs. PMID:26703580

  18. Kit signaling is involved in melanocyte stem cell fate decisions in zebrafish embryos

    PubMed Central

    O’Reilly-Pol, Thomas; Johnson, Stephen L.

    2013-01-01

    Adult stem cells are crucial for growth, homeostasis and repair of adult animals. The melanocyte stem cell (MSC) and melanocyte regeneration is an attractive model for studying regulation of adult stem cells. The process of melanocyte regeneration can be divided into establishment of the MSC, recruitment of the MSC to produce committed daughter cells, and the proliferation, differentiation and survival of these daughter cells. Reduction of Kit signaling results in dose-dependent reduction of melanocytes during larval regeneration. Here, we use clonal analysis techniques to develop assays to distinguish roles for these processes during zebrafish larval melanocyte regeneration. We use these clonal assays to investigate which processes are affected by the reduction in Kit signaling. We show that the regeneration defect in kita mutants is not due to defects in MSC recruitment or in the proliferation, differentiation or survival of the daughter cells, but is instead due to a defect in stem cell establishment. Our analysis suggests that the kit MSC establishment defect results from inappropriate differentiation of the MSC lineage. PMID:23364331

  19. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes.

    PubMed

    Schneider, Marie; Dieckmann, Christina; Rabe, Katrin; Simon, Jan-Christoph; Savkovic, Vuk

    2014-01-01

    Bench-to-Bedside concepts for regenerative therapy place significant weight on noninvasive approaches, with harvesting of the starting material as a header. This is particularly important in autologous treatments, which use one's bodily constituents for therapy. Precisely the stretch between obtaining therapeutic elements invasively and noninvasively places non-intrusive "sampling" rather than "biopsy" in the center of the road map of developing an autologous regenerative therapy. We focus on such a noninvasively available source of adult stem cells that we carry with us throughout our life, available at our fingertips-or shall we say hair roots, by a simple plucking of hair: the human hair follicle. This chapter describes an explant procedure for cultivating melanocytes differentiated from the stem cell pool of the hair follicle Outer Root Sheath (ORS). In vivo, the most abundant derivatives of the heterogeneous ORS stem cell pool are epidermal cells-melanocytes and keratinocytes which complete their differentiation-either spontaneously or upon picking up regenerative cues from damaged skin-and migrate from the ORS towards the adjacent regenerating area of the epidermis. We have taken advantage of the ORS developmental potential by optimizing explant primary culture, expansion and melanogenic differentiation of resident ORS stem cells towards end-stage melanocytes in order to obtain functional melanocytes noninvasively for the purposes of transplantation and use them for the treatment of depigmentation disorders. Our protocol specifies sampling of hair with their ORS, follicle medium-air interface primary culture, stimulation of cell outgrowth, adherent culture and differentiation of ORS stem cells and precursors towards fully functional melanocytes. Along with cultivation, we describe selection techniques for establishing and maintaining a pure melanocyte population and methods suitable for determining melanocyte identity.

  20. Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders

    PubMed Central

    Lee, Ju Hee; Fisher, David E.

    2015-01-01

    Introduction Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSC) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation, and proliferation of MelSC are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSC and their niche may lead to use of MelSC in new treatments for various pigmentation disorders. Areas covered We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration, and proliferation of melanocytes and factors involved in the survival, maintenance, and regeneration of MelSC are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. Expert Opinion MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSC would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSC it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying. PMID:25104310

  1. Melanocyte stem cells as potential therapeutics in skin disorders.

    PubMed

    Lee, Ju Hee; Fisher, David E

    2014-11-01

    Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSCs) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation and proliferation of MelSCs are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSCs and their niche may lead to use of MelSCs in new treatments for various pigmentation disorders. We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration and proliferation of melanocytes and factors involved in the survival, maintenance and regeneration of MelSCs are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSCs would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSCs, it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying.

  2. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling.

    PubMed

    Takeo, Makoto; Lee, Wendy; Rabbani, Piul; Sun, Qi; Hu, Hai; Lim, Chae Ho; Manga, Prashiela; Ito, Mayumi

    2016-05-10

    Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here, we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. In Vitro Dedifferentiation of Melanocytes from Adult Epidermis

    PubMed Central

    Kormos, Bernadett; Belső, Nóra; Bebes, Attila; Szabad, Gábor; Bacsa, Sarolta; Széll, Márta; Kemény, Lajos; Bata-Csörgő, Zsuzsanna

    2011-01-01

    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation. PMID:21383848

  4. In vitro dedifferentiation of melanocytes from adult epidermis.

    PubMed

    Kormos, Bernadett; Belso, Nóra; Bebes, Attila; Szabad, Gábor; Bacsa, Sarolta; Széll, Márta; Kemény, Lajos; Bata-Csörgo, Zsuzsanna

    2011-02-23

    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation.

  5. Ectopic differentiation of melanocyte stem cells is influenced by genetic background

    PubMed Central

    Harris, Melissa L.; Levy, Denise J.; Watkins-Chow, Dawn E.; Pavan, William J.

    2015-01-01

    Summary Hair graying in mouse is attributed to the loss of melanocyte stem cell function and the progressive depletion of the follicular melanocyte population. Single-gene, hair graying mouse models have pointed to a number of critical pathways involved in melanocyte stem cell biology; however, the broad range of phenotypic variation observed in human hair graying suggests that additional genetic variants involved in this process may yet be discovered. Using a sensitized approach, we ask here whether natural genetic variation influences a predominant cellular mechanism of hair graying in mouse, melanocyte stem cell differentiation. We developed an innovative method to quantify melanocyte stem cell differentiation by measuring ectopically pigmented melanocyte stem cells in response to the melanocyte-specific transgene Tg(Dct-Sox10). We make the novel observation that the production of ectopically pigmented melanocyte stem cells varies considerably across strains. The success of sensitizing for melanocyte stem cell differentiation by Tg(Dct-Sox10) sets the stage for future investigations into the genetic basis of strain-specific contributions to melanocyte stem cell biology. PMID:25495036

  6. Ectopic differentiation of melanocyte stem cells is influenced by genetic background.

    PubMed

    Harris, Melissa L; Levy, Denise J; Watkins-Chow, Dawn E; Pavan, William J

    2015-03-01

    Hair graying in mouse is attributed to the loss of melanocyte stem cell function and the progressive depletion of the follicular melanocyte population. Single-gene, hair graying mouse models have pointed to a number of critical pathways involved in melanocyte stem cell biology; however, the broad range of phenotypic variation observed in human hair graying suggests that additional genetic variants involved in this process may yet be discovered. Using a sensitized approach, we ask here whether natural genetic variation influences a predominant cellular mechanism of hair graying in mouse, melanocyte stem cell differentiation. We developed an innovative method to quantify melanocyte stem cell differentiation by measuring ectopically pigmented melanocyte stem cells in response to the melanocyte-specific transgene Tg(Dct-Sox10). We make the novel observation that the production of ectopically pigmented melanocyte stem cells varies considerably across strains. The success of sensitizing for melanocyte stem cell differentiation by Tg(Dct-Sox10) sets the stage for future investigations into the genetic basis of strain-specific contributions to melanocyte stem cell biology. Published 2014. This article is a US Government work and is in the public domain in the US.

  7. Targeting melanocyte and melanoma stem cells by 8-hydroxy-2-dipropylaminotetralin.

    PubMed

    Bonchak, Jonathan G; Eby, Jonathan M; Willenborg, Kristin A; Chrobak, David; Henning, Steven W; Krzywiec, Anna; Johnson, Steven L; Le Poole, I Caroline

    2014-12-01

    Monobenzyl ether of hydroquinone (MBEH) is cytotoxic towards melanocytes. Its treatment efficacy is limited by an inability to eradicate stem cells. By contrast, 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-DPAT) affects melanocyte stem cell survival. MBEH and 8-DPAT were added to melanocytes and melanoma cells to compare cytotoxicity. Stem cell content among viable cells was determined by fluorocytometry using markers CD34, Pax3, and CD271. Immunostaining was used to identify stem cells in skin explants treated with MBEH or 8-DPAT ex vivo. Mice were exposed to MBEH or 8-DPAT and scanned for depigmentation before harvesting skin. MBEH exposure prompted a relative increase in stem cells among cultured melanocytes and melanoma cells, as treatment preferentially eliminated differentiated cells and spared the stem cells. Viability of this remaining, enriched stem cell population was however rapidly reduced by exposure to 8-DPAT within melanocyte and melanoma cell cultures. In human skin explants, the abundance of melanocyte stem cells was also visibly reduced after 8-DPAT treatment, in contrast to tissue exposed to MBEH. Meanwhile, significant depigmentation of the mouse pelage and loss of differentiated melanocytes was observed in vivo in response to topical application of MBEH, but not 8-DPAT. Prolonged application of the latter agent instead appeared to effectively reduce the abundance of melanocyte stem cells in the dermis. This furthers the idea that MBEH and 8-DPAT target complementary cell populations. Results indicate that combination treatment may demonstrate superior therapeutic activity by eliminating both differentiated and tumor initiating populations.

  8. Glabrous lesional stem cells differentiated into functional melanocytes: new hope for repigmentation.

    PubMed

    Kumar, R; Parsad, D; Rani, S; Bhardwaj, S; Srivastav, N

    2016-09-01

    Vitiligo is characterized by the loss of pigment-producing cells, melanocytes and one of the important goals of treatment is replenishing the melanocytes from existing reservoirs. Reservoir for melanocyte stem cell has been reported to be present in the skin hair follicles, but glabrous skin does not have hair follicles. Therefore, repigmentation of glabrous lesional skin is very difficult and almost rare. There is no explanation for melanocyte reservoir in the glabrous lesional skin of vitiligo patients. This study is designed to check the glabrous lesional skin for the presence of stem cells as source of melanocytes for repigmentation. Skin grafts were collected from glabrous lesional skin of vitiligo patients. Immunohistochemistry of glabrous lesional skin was performed to check for the presence of stem cells. These glabrous lesional stem cells were isolated, cultured and characterized. After characterization, glabrous lesional stem cells were differentiated into melanocytes. Our results demonstrate that NGFRp75-positive stem cells are present in the glabrous lesional skin of vitiligo patients and can be differentiated into melanocytes. These dermal stem cells showed self-renewal capacity and were capable of differentiating into melanocytes which are required for the repigmentation. Presence of stem cells in the glabrous lesional skin which are capable of self-renewal and differentiating into melanocytes gives new hope for vitiligo patients having lesion on the glabrous skin. However, still repigmentation of glabrous lesional skin is very difficult and rare with current available treatments. This clearly means that treatments available till date are not effective enough to activate these dermal stem cells differentiation and their migration to the lesional epidermis. Stimulating these stem cells to differentiate into melanocytes and migrate to lesional epidermis can be ideal for repigmentation of the glabrous lesions. © 2016 European Academy of Dermatology and

  9. Adipose-derived stem cells inhibit epidermal melanocytes through an interleukin-6-mediated mechanism.

    PubMed

    Kim, Deok-Woo; Jeon, Byung-Joon; Hwang, Na-Hyun; Kim, Min-Sook; Park, Seung-Ha; Dhong, Eun-Sang; Yoon, Eul-Sik; Lee, Byung-Il

    2014-09-01

    Several investigators have postulated that human adipose-derived stem cells can be used for skin rejuvenation, but there have been few reports about their direct effects on human epidermal melanocytes. The authors studied the effects on melanocytes, and the causative agent of those effects was further investigated in this study. Human epidermal melanocytes were divided into three groups and cultured in adipose-derived stem cell-conditioned medium, human dermal fibroblast-conditioned medium, or control medium. Concentrations of melanogenic cytokines in these media were measured using enzyme-linked immunosorbent assay kits. After 3 and 7 days of incubation, cell proliferation, melanin content, tyrosinase activity, and melanogenic gene expression were measured. Interleukin-6-neutralizing antibodies were mixed with adipose-derived stem cell-conditioned medium in which human epidermal melanocytes were cultured, and melanocyte growth and melanogenesis were measured again. Interleukin-6 concentrations in adipose-derived stem cell- and human epidermal melanocyte-conditioned media were 1373 and 495 pg/ml, respectively. Both types of medium suppressed melanocyte proliferation and melanin synthesis (p < 0.05), but adipose-derived stem cell-conditioned medium was more effective than human dermal fibroblast-conditioned medium in inhibition of human epidermal melanocyte proliferation, melanin synthesis, and tyrosinase activity (p < 0.05). Interleukin-6-neutralizing antibody sufficiently reversed the antimelanogenic effects of adipose-derived stem cell-conditioned medium such that human epidermal melanocyte proliferation, melanin content, tyrosinase activity, and tyrosinase mRNA levels were restored (p < 0.05). Adipose-derived stem cell-conditioned medium inhibited melanocyte proliferation and melanin synthesis by down-regulating melanogenic enzymes. Interleukin-6 plays a pivotal role in inhibition of melanocytes.

  10. Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin

    PubMed Central

    Lim, Won-Suk; Kim, Chang-Hyun; Kim, Ji-Young; Do, Byung-Rok; Kim, Eo Jin; Lee, Ai-Young

    2014-01-01

    Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and short-term safety was examined in the nude mouse and Sprague-Dawley rat after grafting of primary cultured human melanocytes, with or without different ratios of primary cultured human ADSCs. Simultaneous grafting of melanocytes and ADSCs, which were separately cultured and mixed on grafting at the ratios of 1:1, 1:2, or 1:3, showed better efficacy than that of pure melanocytes. Grafting of melanocytes cocultured with ADSCs resulted in a similar outcome as the grafting of cell mixtures. Skin pigmentation by melanocytes : ADSCs at the ratios of 1:1 and 1:2 was better than at 1:3. No significant difference was observed between the 1-week and 2-week durations in coculturing. Time-course microscopic examination showed that the grafted melanocytes remained a little longer than 6-week post-grafting. No inflammatory cell infiltration was observed in the grafted skin and no melanocytes were detectable in other organs. Collectively, grafting of melanocytes and ADSCs was equally safe and more effective than grafting of melanocytes alone. Despite the absence of significant differences in efficacy between the group of 1:1 and that of 1:2 ratio, 1:2 ratio for 1-week coculturing may be better for clinical use from the cost-benefit viewpoint. PMID:25143812

  11. Targeting melanocyte and melanoma stem cells by 8-hydroxy-2-dipropylaminotetralin

    PubMed Central

    Bonchak, Jonathan G.; Eby, Jonathan M.; Willenborg, Kristin A.; Chrobak, David; Henning, Steven W.; Krzywiec, Anna; Johnson, Steven L.; Le Poole, I. Caroline

    2014-01-01

    Monobenzyl ether of hydroquinone (MBEH) is cytotoxic towards melanocytes. Its treatment efficacy is limited by an inability to eradicate stem cells. By contrast, 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-DPAT) affects melanocyte stem cell survival. MBEH and 8-DPAT were added to melanocytes and melanoma cells to compare cytotoxicity. Stem cell content among viable cells was determined by fluorocytometry using markers CD34, Pax3, and CD271. Immunostaining was used to identify stem cells in skin explants treated with MBEH or 8-DPAT ex vivo. Mice were exposed to MBEH or 8-DPAT and scanned for depigmentation before harvesting skin. MBEH exposure prompted a relative increase in stem cells among cultured melanocytes and melanoma cells, as treatment preferentially eliminated differentiated cells and spared the stem cells. Viability of this remaining, enriched stem cell population was however rapidly reduced by exposure to 8-DPAT within melanocyte and melanoma cell cultures. In human skin explants, the abundance of melanocyte stem cells was also visibly reduced after 8-DPAT treatment, in contrast to tissue exposed to MBEH. Meanwhile, significant depigmentation of the mouse pelage and loss of differentiated melanocytes was observed in vivo in response to topical application of MBEH, but not 8-DPAT. Prolonged application of the latter agent instead appeared to effectively reduce the abundance of melanocyte stem cells in the dermis. This furthers the idea that MBEH and 8-DPAT target complementary cell populations. Results indicate that combination treatment may demonstrate superior therapeutic activity by eliminating both differentiated and tumor initiating populations. PMID:25132642

  12. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.

    PubMed

    Birlea, Stanca A; Costin, Gertrude-E; Roop, Dennis R; Norris, David A

    2017-07-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. © 2016 Wiley Periodicals, Inc.

  13. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization

    PubMed Central

    Birlea, Stanca A.; Costin, Gertrude-E.; Roop, Dennis R.; Norris, David A.

    2017-01-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. PMID:28029168

  14. A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter.

    PubMed

    Woods, Susan L; Bishop, J Michael

    2011-04-01

    We have generated a novel transgenic mouse to direct inducible and reversible transgene expression in the melanocytic compartment. The Dopachrome tautomerase (Dct) control sequences we used are active early in the development of melanocytes and so this system was designed to enable the manipulation of transgene expression during development in utero and in the melanocyte stem cells as well as mature melanocytes. We observed inducible lacZ and GFP reporter transgene activity specifically in melanocytes and melanocyte stem cells in mouse skin. This mouse model will be a useful tool for the pigment cell community to investigate the contribution of candidate genes to normal melanocyte and/or melanoma development in vivo. Deregulated expression of the proto-oncogene MYC has been observed in melanoma, however whether MYC is involved in tumorigenesis in pigment cells has yet to be directly investigated in vivo. We have used our system to over-express MYC in the melanocytic compartment and show for the first time that increased MYC expression can indeed promote melanocytic tumor formation.

  15. Maintenance of distinct melanocyte populations in the interfollicular epidermis.

    PubMed

    Glover, James D; Knolle, Stefan; Wells, Kirsty L; Liu, Dianbo; Jackson, Ian J; Mort, Richard L; Headon, Denis J

    2015-07-01

    Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis. © 2015 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.

  16. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts.

    PubMed

    Tsuchiyama, Kenichiro; Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Nojima, Makoto; Sawaya, Natsue; Yamasaki, Kenshi; Aiba, Setsuya; Dezawa, Mari

    2013-10-01

    The induction of melanocytes from easily accessible stem cells has attracted attention for the treatment of melanocyte dysfunctions. We found that multilineage-differentiating stress-enduring (Muse) cells, a distinct stem cell type among human dermal fibroblasts, can be readily reprogrammed into functional melanocytes, whereas the remainder of the fibroblasts do not contribute to melanocyte differentiation. Muse cells can be isolated as cells positive for stage-specific embryonic antigen-3, a marker for undifferentiated human embryonic stem cells, and differentiate into cells representative of all three germ layers from a single cell, while also being nontumorigenic. The use of certain combinations of factors induces Muse cells to express melanocyte markers such as tyrosinase and microphthalmia-associated transcription factor and to show positivity for the 3,4-dihydroxy-L-phenylalanine reaction. When Muse cell-derived melanocytes were incorporated into three-dimensional (3D) cultured skin models, they localized themselves in the basal layer of the epidermis and produced melanin in the same manner as authentic melanocytes. They also maintained their melanin production even after the 3D cultured skin was transplanted to immunodeficient mice. This technique may be applicable to the efficient production of melanocytes from accessible human fibroblasts by using Muse cells, thereby contributing to autologous transplantation for melanocyte dysfunctions, such as vitiligo.

  17. Follicle and melanocyte stem cells, and their application in neuroscience: A Web of Science-based literature analysis.

    PubMed

    Wu, Weifu

    2012-12-05

    To identify global research trends of follicle and melanocyte stem cells, and their application in neuroscience. We performed a bibliometric analysis of studies from 2002 to 2011 on follicle and melanocyte stem cells, and their application in neuroscience, which were retrieved from the Web of Science, using the key words follicle stem cell or melanocyte stem cell, and neural, neuro or nerve. (a) peer-reviewed published articles on follicle and melanocyte stem cells, and their application in neuroscience, which were indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles. (1) Distribution of publications on follicle and melanocyte stem cells by years, journals, countries, institutions, institutions in China, and most cited papers. (2) Distribution of publications on the application of follicle and melanocyte stem cells in neuroscience by years, journals, countries, institutions, and most cited papers. Of the 348 publications from 2002 to 2011 on follicle and melanocyte stem cells, which were retrieved from the Web of Science, more than half were from American authors and institutes. The most prolific institutions in China for publication of papers on follicle and melanocyte stem cells were the Fourth Military Medical University and Third Military Medical University. The most prolific journals for publication of papers on follicle and melanocyte stem cells were the Journal of Investigative Dermatology, Pigment Cell & Melanoma Research. Of the 63 publications from 2002 to 2011 on the application of follicle and melanocyte stem cells in neuroscience, which were retrieved from the Web of Science, more than half were from American authors and institutes, and no papers were

  18. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.

    PubMed

    Dziasko, Marc A; Tuft, Stephen J; Daniels, Julie T

    2015-09-01

    Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche.

  19. Risk of melanocytic nevi and nonmelanoma skin cancer in children after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Song, J S; London, W B; Hawryluk, E B; Guo, D; Sridharan, M; Fisher, D E; Lehmann, L E; Duncan, C N; Huang, J T

    2017-04-03

    There is a known increased risk of skin cancer in the adult population after hematopoietic stem cell transplantation (HSCT). However, late dermatologic effects that children may experience after HSCT have not been well described. The primary objective of this study was to characterize nevi and skin cancers affecting children after allogeneic HSCT. A cross-sectional cohort study of 85 pediatric HSCT recipients and 85 controls matched for age, sex and skin phototype was performed at a single institution. All participants underwent a full skin examination. Median age at study visit was 13.8 years in HSCT patients with median time post-HSCT of 3.6 years. HSCT patients had significantly more nevi than control patients (median (range): 44 (0-150) vs 11 (0-94), P<0.0001). HSCT patients also had significantly more nevi >5 mm in diameter and atypical nevi than controls. Factors associated with increased nevus count included malignant indication for HSCT, pretransplant chemotherapy, TBI exposure and myeloablative conditioning. A total of 16.5% of HSCT patients developed cancerous, precancerous lesions and/or lentigines. Our study suggests that pediatric HSCT recipients have an increased risk of benign and atypical melanocytic proliferations and nonmelanoma skin cancer that can manifest even during childhood.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.57.

  20. Pigmentation PAX-ways: The role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease

    PubMed Central

    Kubic, Jennifer D.; Young, Kacey P.; Plummer, Rebecca S.; Ludvik, Anton E.; Lang, Deborah

    2010-01-01

    Transcription factors initiate a program of gene expression and are catalysts in downstream molecular cascades that modulate a variety of cellular processes. Pax3 is a transcription factor that is important in the melanocyte and influences melanocytic proliferation, resistance to apoptosis, migration, lineage specificity and differentiation. In this review, we focus on Pax3 and the molecular pathways that Pax3 is a part of during melanogenesis and in the melanocyte stem cell. These roles of Pax3 are emphasized during the development of diseases and syndromes resulting from either too much or too little Pax3 function. Due to its key task in melanocyte stem cells and tumors, the Pax3 pathway may provide an ideal target for either stem cell or cancer therapies. PMID:18983540

  1. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin.

  2. A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors

    PubMed Central

    Harris, Melissa L.; Buac, Kristina; Shakhova, Olga; Hakami, Ramin M.; Wegner, Michael; Sommer, Lukas; Pavan, William J.

    2013-01-01

    During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10fl; Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitfvga9) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitfvga9 does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage. PMID:23935512

  3. Management considerations for giant congenital melanocytic nevi in adults.

    PubMed

    Green, Margaret C; Mitchum, Marsha D; Marquart, Jason D; Bingham, Jonathan L

    2014-04-01

    Giant congenital melanocytic nevi (GCMN) are a rare type of melanocytic nevus that covers a large body surface, often with satellite nevi scattered on the rest of the skin. There are several complications associated with GCMN, including malignant melanoma and neurocutaneous melanosis. The management of GCMN is very complex because of the cosmetic appearance and the associated psychological distress, the risk of severe complications, and the need for long-term follow-up. We report a case of a 43-year-old active-duty female with a GCMN reporting new and symptomatic satellite lesions with atypical features on dermoscopy.

  4. Accelerated differentiation of melanocyte stem cells contributes to the formation of hyperpigmented maculae.

    PubMed

    Yamada, Takaaki; Hasegawa, Seiji; Inoue, Yu; Date, Yasushi; Arima, Masaru; Yagami, Akiko; Iwata, Yohei; Takahashi, Masayuki; Yamamoto, Naoki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2014-09-01

    It has been reported that the abnormal regulation of melanocyte stem cells (McSCs) causes hair greying; however, little is known about the role of McSCs in skin hyperpigmentation such as solar lentigines (SLs). To investigate the involvement of McSCs in SLs, the canonical Wnt signalling pathway that triggers the differentiation of McSCs was analysed in UVB-induced delayed hyperpigmented maculae in mice and human SL lesions. After inducing hyperpigmented maculae on dorsal skin of F1 mice of HR-1× HR/De, which was formed long after repeated UVB irradiation, the epidermal Wnt1 expression and the number of nuclear β-catenin-positive McSCs were increased as compared to non-irradiated control mice. Furthermore, the expression of dopachrome tautomerase (Dct), a downstream target of β-catenin, was significantly upregulated in McSCs of UVB-irradiated mice. The Wnt1 expression and the number of nuclear β-catenin-positive McSCs were also higher in human SL lesions than in normal skin. Recombinant Wnt1 protein induced melanocyte-related genes including Dct in early-passage normal human melanocytes (NHEMs), an in vitro McSC model. These results demonstrate that the canonical Wnt signalling pathway is activated in SL lesions and strongly suggest that the accelerated differentiation of McSCs is involved in SL pathogenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Treatment of a giant congenital melanocytic nevus in the adult: review of the current management of giant congenital melanocytic nevus.

    PubMed

    Su, Jeannie J; Chang, Daniel K; Mailey, Brian; Gosman, Amanda

    2015-05-01

    Giant congenital melanocytic nevi (GCMNs) create cosmetic disfigurements and pose risk for malignant transformation. Adult GCMN cases are uncommon because most families opt for surgical treatment during childhood. We review the current literature on GCMN and present an interesting case of an adult with a GCMN encompassing the entire back with painful nodules exhibiting gross involvement of his back musculature, without pathologic evidence of malignancy. Surgical management was deferred in childhood because of parental desires to allow the patient to make his own decision, and treatment in adulthood was pursued on the basis of the significant impairment of the patient's quality of life and self-esteem due to the massive size and deforming nature of the nevus. The treatment strategy used for this young adult male patient involved a massive en bloc excision of the GCMN with partial resection of the latissimus dorsi, followed by a 5-week staged reconstructive process using dermal regenerative matrices and split-thickness skin grafting. Because of the shift in GCMN management from early surgical management to more conservative management, we may see an increase in adult cases of GCMN. Thus, it is critical to better understand the controversy surrounding early versus delayed management of GCMN.

  6. Metastatic melanoma in association with a giant congenital melanocytic nevus in an adult: controversial CGH findings.

    PubMed

    Machan, Salma; Molina-Ruiz, Ana M; Fernández-Aceñero, Maria J; Encabo, Beatriz; LeBoit, Philip; Bastian, Boris C; Requena, Luis

    2015-06-01

    Giant congenital melanocytic nevi (GCMNs) represent a distress to patients for 2 reasons: one is disfigurement, and the other is the increased risk of developing secondary melanocytic tumors, such as benign proliferative nodules (BPNs) and malignant melanoma (MM). BPN present as a rapid growth nodule arising within a congenital melanocytic nevus (CMN) that often ulcerates, occurs in children younger than 2 years of age. BPNs arising within a CMN are exceedingly rare after childhood, and very few cases have been described in adults. Despite the worrisome clinical and histologic findings of BPN, most laboratory investigations seem to support their benignity. The distinction between MM and BPN is extremely important, but the histopathology of BPN of GCMN can be a challenge to differentiate from MM. In the recent years, molecular tests that investigate DNA copy number alterations such as fluorescence in situ hybridization and comparative genomic hybridization have shown promise to help guide the diagnosis of ambiguous melanocytic proliferations arising within CMNs. We report the case of a 22-year-old woman with a nodule arising in a GCMN and with an axillary mass suggesting a nodal metastasis of melanoma, and discuss the unusual clinical, histopathologic, and molecular findings that make this case particularly interesting.

  7. Keratinocyte stem cells but not melanocyte stem cells are the primary target for radiation-induced hair graying.

    PubMed

    Aoki, Hitomi; Hara, Akira; Motohashi, Tsutomu; Kunisada, Takahiro

    2013-09-01

    Ionizing radiation (IR)-induced hair graying is caused by the ectopic differentiation of melanocyte stem cells (MSCs) in their niche located at the bulge region of the hair follicle. Keratinocyte stem cells (KSCs) in the bulge region are an important component of that niche. However, little is known about the relationship between MSC differentiation and the KSC niche during IR-induced hair graying. We found that both follicular MSCs and KSCs were affected by IR by using immunohistochemical detection of γH2AX as a genotoxicity marker. We also found that KSCs prepared from irradiated mice were functionally affected by IR as indicated by their reduced colony-forming activity in culture and the delayed hair cycle in vivo. However, these effects of IR on KSCs were temporal. The MSC population, which proliferated and differentiated to melanocytes, was persistently maintained after irradiation. In addition to the loss of colony-forming activity, irradiated keratinocytes including KSCs suppressed the colony formation of MSCs in vitro. Furthermore, pigmented hairs were not reconstituted in vivo in the presence of irradiated KSCs or keratinocytes. These results provide a previously unreported insight that the primary target of IR during the induction of hair graying is follicular KSCs rather than MSCs.

  8. Differential PAX3 functions in normal skin melanocytes and melanoma cells

    SciTech Connect

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.

  9. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  10. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes.

    PubMed

    Mou, Yi; Jiang, Xian; Du, Yu; Xue, Li

    2012-12-01

    Vitiligo is a common, incurable skin disease with a prevalence of about 1%. Although many vitiligo therapies are available in clinics, there is almost no one method that causes significant improvement in all vitiligo patients. Some have hypothesized that melanocyte dysfunction or deficiency underlies the loss of skin pigmentation observed in vitiligo. The autoimmune-mediated apoptosis of melanocytes might be an important part of the etiology of vitiligo, which prevents the formation of melanocytes in the skin. Here we propose a novel hypothesis for vitiligo treatment using in situ melanocyte regeneration induced by melanocyte-lineage-specific genes (MLSGs). This may serve as an intelligent bioengineering prototype. The hypothesis is based on the fact that MLSGs regulate melanocyte differentiation through epigenetic reprogramming, which includes microphthalmia-associated transcription factor (MITF), paired box 3 (PAX3), and Notch signaling. MITF directs the terminal differentiation of melanocytes, and PAX3 helps to establish the properties of the melanocyte stem cells. Notch signaling promotes adult stem cell proliferation and self-renewal. This process could be mimicked by Notch intracellular domain (NICD). MLSGs could also stimulate anti-apoptotic gene expression. Recent improvements in relevant biotechniques allow the transdermal delivery of MLSG proteins into the patient, where they enter cells through protein transduction. This process may promote melanocyte regeneration in situ with little impact on the hair follicular cycle or on carcinogenesis. This simple and efficient treatment may have significant impact on the treatment of vitiligo patients.

  11. In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells.

    PubMed

    Allouche, Jennifer; Bellon, Nathalia; Saidani, Manoubia; Stanchina-Chatrousse, Laure; Masson, Yolande; Patwardhan, Anand; Gilles-Marsens, Floriane; Delevoye, Cédric; Domingues, Sophie; Nissan, Xavier; Martinat, Cécile; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2015-07-21

    "Café-au-lait" macules (CALMs) and overall skin hyperpigmentation are early hallmarks of neurofibromatosis type 1 (NF1). One of the most frequent monogenic diseases, NF1 has subsequently been characterized with numerous benign Schwann cell-derived tumors. It is well established that neurofibromin, the NF1 gene product, is an antioncogene that down-regulates the RAS oncogene. In contrast, the molecular mechanisms associated with alteration of skin pigmentation have remained elusive. We have reassessed this issue by differentiating human embryonic stem cells into melanocytes. In the present study, we demonstrate that NF1 melanocytes reproduce the hyperpigmentation phenotype in vitro, and further characterize the link between loss of heterozygosity and the typical CALMs that appear over the general hyperpigmentation. Molecular mechanisms associated with these pathological phenotypes correlate with an increased activity of cAMP-mediated PKA and ERK1/2 signaling pathways, leading to overexpression of the transcription factor MITF and of the melanogenic enzymes tyrosinase and dopachrome tautomerase, all major players in melanogenesis. Finally, the hyperpigmentation phenotype can be rescued using specific inhibitors of these signaling pathways. These results open avenues for deciphering the pathological mechanisms involved in pigmentation diseases, and provide a robust assay for the development of new strategies for treating these diseases.

  12. In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells

    PubMed Central

    Allouche, Jennifer; Bellon, Nathalia; Saidani, Manoubia; Stanchina-Chatrousse, Laure; Masson, Yolande; Patwardhan, Anand; Gilles-Marsens, Floriane; Delevoye, Cédric; Domingues, Sophie; Nissan, Xavier; Martinat, Cécile; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2015-01-01

    “Café-au-lait” macules (CALMs) and overall skin hyperpigmentation are early hallmarks of neurofibromatosis type 1 (NF1). One of the most frequent monogenic diseases, NF1 has subsequently been characterized with numerous benign Schwann cell-derived tumors. It is well established that neurofibromin, the NF1 gene product, is an antioncogene that down-regulates the RAS oncogene. In contrast, the molecular mechanisms associated with alteration of skin pigmentation have remained elusive. We have reassessed this issue by differentiating human embryonic stem cells into melanocytes. In the present study, we demonstrate that NF1 melanocytes reproduce the hyperpigmentation phenotype in vitro, and further characterize the link between loss of heterozygosity and the typical CALMs that appear over the general hyperpigmentation. Molecular mechanisms associated with these pathological phenotypes correlate with an increased activity of cAMP-mediated PKA and ERK1/2 signaling pathways, leading to overexpression of the transcription factor MITF and of the melanogenic enzymes tyrosinase and dopachrome tautomerase, all major players in melanogenesis. Finally, the hyperpigmentation phenotype can be rescued using specific inhibitors of these signaling pathways. These results open avenues for deciphering the pathological mechanisms involved in pigmentation diseases, and provide a robust assay for the development of new strategies for treating these diseases. PMID:26150484

  13. VITILIGO AND THE MELANOCYTE RESERVOIR

    PubMed Central

    Falabella, Rafael

    2009-01-01

    Repigmentation of vitiligo depends on available melanocytes from three possible sources: from the hair follicle unit which is the main provider of pigment cells, from the border of vitiligo lesions, and from unaffected melanocytes within depigmented areas; pigment cells at these locations originate a perifollicular, border spreading and a diffuse repigmentation pattern. In order for repigmentation to take place under stimulation with diverse therapies, melanocytes should be present in appropriate numbers. Melanocyte tissue stem cells located in the niche at the bulge region of the hair follicle are the most important sources for providing immature pigment cells that undergo terminal differentiation and originate repigmentation, but cytokines, UVR and other molecules acting in melanogenesis with adequate regulation mechanisms contribute to successful recovery in vitiligo. The presence of keratinocyte stem cells in the interfollicular epidermis raises the question on the possibility of melanocyte stem cells in a similar location and the development of future strategies for therapeutic purposes. PMID:20101329

  14. Adult stem cell therapy: dream or reality?

    PubMed

    Moraleda, Jose M; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Ruiz, Francisco; Bonilla, Sonia; Cabanes, Carmen; Tabares, Lucía; Martinez, Salvador

    2006-12-01

    Adult stem cells may be an invaluable source of plastic cells for tissue regeneration. The bone marrow contains different subpopulations of adult stem cells easily accessible for transplantation. However the therapeutic value of adult stem cell is a question of debate in the scientific community. We have investigated the potential benefits of adult hematopoietic stem cell transplantation in animal models of demyelinating and motor neuron diseases. Our results suggest that transplantation of HSC have direct and indirect neuroregenerative and neuroprotective effects.

  15. Acral melanocytic nevi: prevalence and distribution of gross morphologic features in white and black adults.

    PubMed

    Palicka, Gary A; Rhodes, Arthur R

    2010-10-01

    To determine prevalence and morphologic features of acral melanocytic nevi in white and black adults. Point prevalence survey. Outpatient dermatology clinic. Convenience sample of subjects 18 years or older. Prevalence and morphologic features based on ethnicity, sex, and age. Palmar or plantar nevi were detected in 42.0% of blacks (50 of 119) vs 23.0% of whites (79 of 343) (P < .001). Palmar or plantar nevi of 6-mm diameter or larger were detected in 3.4% of blacks (4 of 119) vs 0.6% of whites (2 of 343) (P = .04). Diffusely black acral nevi were uncommon in whites (0 of 343) and blacks (1 of 119). The prevalence of palmar or plantar nevi increased directly with degree of skin pigmentation (P < .001). In whites, this prevalence was greater in women (27.1%, 51 of 188) than in men (18.1%, 28 of 155) (P = .047); in subjects younger than 50 years (30.8%, 57 of 185) than in those 50 years or older (13.9%, 22 of 158) (P < .001); in subjects with a history of atypical nevus removal than in those without (odds ratio [OR], 3.6; 95% confidence interval [CI], 1.9-6.9); in those with at least 1 extant atypical nevus than in those without (OR, 3.2; 95% CI, 1.7-6.0); and in those with at least 20 nevi of 2-mm diameter or larger than in those without (OR, 3.0; 95% CI, 1.6-5.6). Acral nevi appear to be associated with ethnicity, pigmentation, age, and cutaneous melanoma (CM) risk factors. While relatively large and/or very darkly pigmented acral nevi appear to be more common in blacks than in whites, diffusely black acral nevi are uncommon in both groups. These findings are relevant to the assessment of pigmented lesions in the differential diagnosis of acral CM.

  16. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    PubMed

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  17. Melanocytes: the new Black.

    PubMed

    Goding, Colin R

    2007-01-01

    Melanocytes, pigment-producing cells residing primarily in the hair follicle, epidermis and eye, are responsible for skin hair and eye pigmentation. Pigmentation is achieved by the highly regulated manufacture of the pigment melanin in specialised organelles, melanosomes that are transported along dendritic processes before being transferred to growing hair, or keratinocytes where melanin protects from UV-induced DNA damage. Because loss of melanocytes gives a clear pigmentation phenotype yet is non-lethal, over 130 genes implicated in the development or function of this cell type have been identified to date, and in humans the loss of melanocytes or their ability to produce pigment, or transport or transfer melanosomes is associated with several diseases such as vitiligo, albinism and Hermansky-Pudlak syndrome. Importantly, the effective combination of genetics, cell and molecular biology possible with this cell type is attracting an increasing number of researchers focussed on understanding how cells coordinate survival, proliferation, differentiation and stem cell maintenance.

  18. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  19. Basal cell carcinoma arising in a congenital melanocytic naevus in an adult.

    PubMed

    Cooper, Lillian; Srinivasan, Karthik; Nugent, Nora

    2017-02-13

    Congenital melanocytic naevi (CMN) are common skin lesions. They harbour a risk of malignant transformation, and various lesions have been described as developing within them. A basal cell cancer occurring within a CMN has never previously been described. A case is described of a woman aged 52 years presenting with a slow-growing, symptomatic 3 cm lesion in the centre of a 10×5 cm CMN on her right upper back. Diagnostic core biopsy revealed an ulcerated, infiltrative basal cell carcinoma which was then further excised. The scar has healed with no evidence of local recurrence at 1-year follow-up.

  20. Dermal Mesenchymal Stem Cells (DMSCs) Inhibit Skin-Homing CD8+ T Cell Activity, a Determining Factor of Vitiligo Patients’ Autologous Melanocytes Transplantation Efficiency

    PubMed Central

    Wu, Ji-long; Lin, Fu-quan; Fu, Li-fang; Wang, Sui-quan; Guan, Cui-ping; Wang, Hong-lin; Xu, Aie

    2013-01-01

    We here investigated the efficiency of autologous melanocyte transplantation of 23 vitiligo patients by focusing on perilesional skin homing CD8+ T lymphocytes, and studied the potential effect of dermal mesenchymal stem cells (DMSCs) on CD8+ T cell activities in vitro. Out of 23 patients with the autologous melanocyte transplantation, 12 patients (52.17%) had an excellent re-pigmentation, 6 patients (26.09%) had a good re-pigmentation, 5 patients (21.74%) had a fair or poor re-pigmentation. CD8+ T cells infiltrating was observed in the perilesional vitiligo area of all patients. Importantly, the efficiency of the transplantation was closely associated with skin-homing CD8+ T cell activities. The patients with high number of perilesional CD8+ T cells or high level of cytokines/chemokines were associated with poor re-pigmentation efficiency. For in-vitro experiments, we successfully isolated and characterized human DMSCs and skin-homing CD8+ T cells. We established DMSCs and CD8+ T cell co-culture system, where DMSCs possessed significant inhibitory effects against skin homing CD8+ T lymphocytes. DMSCs inhibited CD8+ T cells proliferation, induced them apoptosis and regulated their cytokines/chemokines production. Our results suggest that vitiligo patients’ autologous melanocytes transplantation efficiency might be predicted by perilesional skin-homing CD8+ T cell activities, and DMSCs might be used as auxiliary agent to improve transplantation efficacy. PMID:23577097

  1. Uncovering the Role of BMP Signaling in Melanocyte Development and Melanoma Tumorigenesis

    DTIC Science & Technology

    2014-07-01

    gain and loss of function studies in zebrafish embryos and mammalian cultured cells to determine if GDF6 antagonizes melanocyte development. In...C.E. and Zon. L.I. (2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2, 183-9. 7. Langenau, D.M

  2. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells.

  3. The melanocyte lineage in development and disease

    PubMed Central

    Mort, Richard L.; Jackson, Ian J.; Patton, E. Elizabeth

    2015-01-01

    Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. PMID:25670789

  4. The melanocyte lineage in development and disease.

    PubMed

    Mort, Richard L; Jackson, Ian J; Patton, E Elizabeth

    2015-02-15

    Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. © 2015. Published by The Company of Biologists Ltd.

  5. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  6. Comparison of high-intensity ultraviolet and NB-UVB on the maturation of melanocytes derived from hair follicle neural crest stem cells.

    PubMed

    Dong, Dake; Chen, Shujun; Zhang, Xiaoli; Jin, Cheng; Zheng, Yuan; Yang, Lijia

    2014-09-01

    Both high-intensity ultraviolet and narrowband ultraviolet B (NB-UVB) are important therapeutic options for vitiligo management, but high-intensity ultraviolet is more effective than NB-UVB. However, the underlying mechanisms have not been well investigated. Herein, we compare the effects of high-intensity ultraviolet and NB-UVB on the pigmentation of melanocytes derived from hair follicle-derived neural crest stem cells (HF-NCSCs) in vitro and study the underlying mechanisms. The HF-NCSCs were isolated from mouse whisker follicles. After radiation with high-intensity ultraviolet and NB-UVB, respectively, the cell viability by the CCK-8 assay showed gradual inhibitory effects in a dose-dependent manner, which has no apparent difference between the two modalities. The mRNA for melanogenesis factors such as tyrosinase and tyrp1 of the differentiated melanocytes increased significantly with high-intensity ultraviolet compared to the same dose of NB-UVB exposure. Furthermore, the expression of Mc1r was significantly increased by high-intensity ultraviolet in contrast to NB-UVB at the dosage of 0.5 J. By and large, these data suggest that high-intensity ultraviolet exhibited greater efficiency on the maturation of the melanocyte lineage differentiated from HF-NCSCs compared to NB-UVB with the same dose, which was probably due to the stronger stimulatory action of Mc1r. This may provide new insights into the different efficacies of high-intensity ultraviolet and NB-UVB in the treatment of vitiligo repigmentation.

  7. Clinical grade adult stem cell banking.

    PubMed

    Thirumala, Sreedhar; Goebel, W Scott; Woods, Erik J

    2009-07-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.

  8. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  9. [Application prospect of adult stem cells in male infertility].

    PubMed

    Yang, Rui-Feng; Xiong, Cheng-Liang

    2013-05-01

    The study on stem cells is a hot field in biomedical science in recent years, and has furthered from laboratory to clinical application. Stem cells, according to their developmental stage and differential properties, can be divided into embryonic stem cells, induced PS cells and adult stem cells, among which, adult stem cells have already been applied to the clinical treatment of many systemic diseases. Currently, the study of spermatogonial stem cells and adult stem cells is in the front of the basic researches on the treatment of male infertility, but the time has not yet arrived for their clinical application. This paper outlines the application prospect of adult stem cells in male infertility.

  10. Sox proteins in melanocyte development and melanoma

    PubMed Central

    Harris, Melissa L.; Baxter, Laura L.; Loftus, Stacie K.; Pavan, William J.

    2010-01-01

    Over ten years has passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma. PMID:20444197

  11. Prevalence of common and atypical melanocytic nevi in young adults and its relationship with sun protection and exposure habits.

    PubMed

    Lopez-Ravello, Bárbara Mariela; Arias-Santiago, Salvador; Fernandez-Pugnaire, Maria Antonia; Ortega, Salvio Serrano; Buendía-Eisman, Agustín

    2015-01-01

    Background: The incidence of melanoma in young adults is rising. The design of appropriate preventive measures requires the analysis of risk factors, including the prevalence of common and atypical melanocytic nevi (MN) and sun protection and exposure habits. To establish the prevalence and density of common and atypical MN in young adults (18-25 yrs) and their relationship with sun exposure and protection habits. Cross-sectional descriptive study was undertaken in 535 university students from southern Spain to gather data on: the number, density, body localization, and characteristics of common and atypical nevi; phototype; sunburn history; sun protection and exposure habits; and family history of skin cancer. Means of 94.28 common MN and 0.06 atypical MN were detected; most MN were ≤2 mm in diameter; MN were more frequently detected on upper (p<0.01) and lower (p<0.0001 limbs in females versus males and on the trunk (p = 0.08) in males versus females. Nevus density was higher in females in all body areas. Sunburns (in the previous summer) were reported by 88.2% of participants, while cream with SPF ≥15 was not used by 75.8%. Mean number of atypical MN was higher in those with low phototypes and a family history of skin cancer. Mean number of common MN was elevated and atypical MN were associated with a low phototype and a family history of skin cancer. Sunburn history was significantly associated with younger age and with sun exposure between mid-day and 6 pm.

  12. Investigation of the effect of α-melanocyte-stimulating hormone on proliferation and early stages of differentiation of human induced pluripotent stem cells.

    PubMed

    Novosadova, E V; Manuilova, E S; Arsenyeva, E L; Andreeva, L A; Lebedeva, O S; Grivennikov, I A; Myasoedov, N F

    2016-03-01

    We have studied the influence of α-melanocyte-stimulating hormone (α-MSH) on proliferation and early stages of differentiation of human induced pluripotent stem cells (iPSc). We have demonstrated that α-MSH receptor genes are expressed in undifferentiated iPSc. The expression levels of MCR1, MCR2, and MCR3 increased at the embryoid body (EB) formation stage. The formation of neural progenitors was accompanied by elevation of MCR2, MCR3, and MCR4 expression. α-MSH had no effect on EB generation and iPSc proliferation at concentrations ranging from 1 nM to 10 μM. At the same time, α-MSH increased the generation of neural rosettes in human iPSc cultures more than twice.

  13. Differential PAX3 functions in normal skin melanocytes and melanoma cells.

    PubMed

    Medic, Sandra; Rizos, Helen; Ziman, Mel

    2011-08-12

    The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if its function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as "stem" cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated "stem" cell like phenotype, PAX3 may contribute to melanoma development and progression.

  14. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  15. Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes.

    PubMed

    Aoki, Hitomi; Yamada, Yasuhiro; Hara, Akira; Kunisada, Takahiro

    2009-08-01

    Unlike the thoroughly investigated melanocyte population in the hair follicle of the epidermis, the growth and differentiation requirements of the melanocytes in the eye, harderian gland and inner ear - the so-called non-cutaneous melanocytes - remain unclear. In this study, we investigated the in vitro and in vivo effects of the factors that regulate melanocyte development on the stem cells or the precursors of these non-cutaneous melanocytes. In general, a reduction in KIT receptor tyrosine kinase signaling leads to disordered melanocyte development. However, melanocytes in the eye, ear and harderian gland were revealed to be less sensitive to KIT signaling than cutaneous melanocytes. Instead, melanocytes in the eye and harderian gland were stimulated more effectively by endothelin 3 (ET3) or hepatocyte growth factor (HGF) signals than by KIT signaling, and the precursors of these melanocytes expressed the lowest amount of KIT. The growth and differentiation of these non-cutaneous melanocytes were specifically inhibited by antagonists for ET3 and HGF. In transgenic mice induced to express ET3 or HGF in their skin and epithelial tissues from human cytokeratin 14 promoters, the survival and differentiation of non-cutaneous and dermal melanocytes, but not epidermal melanocytes, were enhanced, apparently irrespective of KIT signaling. These results provide a molecular basis for the clear discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes, a difference that might be important in the pathogenesis of melanocyte-related diseases and melanomas.

  16. Atypical dermoscopic presentation of an acral congenital melanocytic nevus in an adult: parallel ridge pattern and its histologic correlation

    PubMed Central

    Roldán-Marín, Rodrigo; González-de-Cossío-Hernández, Ana Cecilia; Lammoglia-Ordiales, Lorena; Martínez-Luna, Eduwiges; Toussaint-Caire, Sonia; Ferrara, Gerardo

    2015-01-01

    Acral melanoma is the most frequent subtype in the Asian and Mexican mestizo populations. Dermoscopy is a noninvasive diagnostic technique that helps the differential diagnosis of pigmented skin lesions on acral volar skin. We, herein, present a case of acral congenital melanocytic nevus with a parallel ridge dermoscopic pattern. Since the parallel ridge pattern in a melanocytic lesion of the acral skin is classically ascribed to melanoma, the present case can be definitely labeled as “atypical” and worth of being elucidated in its histopathological correlates. PMID:26693085

  17. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  18. Adult Stem Cell Therapy for Stroke: Challenges and Progress.

    PubMed

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-09-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke.

  19. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  20. Immunological control of adult neural stem cells

    PubMed Central

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many pathological and inflammatory conditions significantly affect NSC niches. Even more, increasing evidence indicates that chemokines and cytokines play an important role in regulating proliferation, cell fate choices, migration and survival of NSCs under physiological conditions. Hence, the immune system is emerging is an important regulator of neurogenic niches in the adult brain, which may have clinical relevance in several brain diseases. PMID:20861925

  1. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  2. Modeling neural crest induction, melanocyte specification and disease-related pigmentation defects in hESCs and patient-specific iPSCs

    PubMed Central

    Mica, Yvonne; Lee, Gabsang; Chambers, Stuart M.; Tomishima, Mark; Studer, Lorenz

    2013-01-01

    SUMMARY Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Subsequent maturation of hESC-derived melanocytes yields pure populations matching the molecular and functional properties of adult melanocytes. Melanocytes from Hermansky-Pudlak and Chediak-Higashi Syndrome patient-specific iPSCs faithfully reproduce the ultrastructural features of disease-associated pigmentation defects. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. PMID:23583175

  3. Elements of the niche for adult stem cell expansion.

    PubMed

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.

  4. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  5. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    PubMed

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  6. Zebrafish adult pigment stem cells are multipotent and form pigment cells by a progressive fate restriction process: Clonal analysis identifies shared origin of all pigment cell types.

    PubMed

    Kelsh, Robert N; Sosa, Karen C; Owen, Jennifer P; Yates, Christian A

    2017-03-01

    Skin pigment pattern formation is a paradigmatic example of pattern formation. In zebrafish, the adult body stripes are generated by coordinated rearrangement of three distinct pigment cell-types, black melanocytes, shiny iridophores and yellow xanthophores. A stem cell origin of melanocytes and iridophores has been proposed although the potency of those stem cells has remained unclear. Xanthophores, however, seemed to originate predominantly from proliferation of embryonic xanthophores. Now, data from Singh et al. shows that all three cell-types derive from shared stem cells, and that these cells generate peripheral neural cell-types too. Furthermore, clonal compositions are best explained by a progressive fate restriction model generating the individual cell-types. The numbers of adult pigment stem cells associated with the dorsal root ganglia remain low, but progenitor numbers increase significantly during larval development up to metamorphosis, likely via production of partially restricted progenitors on the spinal nerves. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines.

    PubMed

    Chang, Chung-Hsing; Tsai, Rong-Kung; Tsai, Ming-Hsien; Lin, Yi-Hsiung; Hirobe, Tomohisa

    2014-08-01

    Wnt3a and Frizzled-3 are both expressed in the dorsal neural tube that gives rise to the neural crest in Xenopus, zebrafish and mice. Melanocytes originate from the neural crest (NC) and postnatally, melanocyte stem cells reside in the hair follicle bulge and in the dermis. However, the roles of Wnt3a and Frizzled-3 in melanocyte development have not been clarified. The aim of this study was to delineate the expression of Frizzled-3 in murine melanocyte lineage and human melanocytes, and to study the effects of Wnt3a on melanocyte development at various stages. Murine NC explant cultures and three NC-derived melanocyte lineage cell lines, including NCCmelb4M5 (Kit(-) melanocyte precursors), NCCmelb4 (Kit(+) melanoblasts) and NCCmelan5 (differentiated melanocytes), and human epidermal melanocytes were treated with pure recombinant Wnt3a protein and their cell behaviors were analyzed including their proliferation, Kit expression, tyrosinase (Tyr) activity, melanin production, dendrite formation and migration. Frizzled-3 was expressed in Tyr-related protein (TRP)-1(+) cells in NC explant cultures, in all 3 melanocyte precursor cell lines and in human melanocytes. Wnt3a increased the population of TRP-1(+) cells, the number of L-3,4-dihydroxyphenylalanine (DOPA)(+) cells and dendrite formation in NC explant cultures. Wnt3a stimulated the proliferation of all 3 melanocyte precursor cell lines in a dose-dependent manner and also stimulated human melanocyte proliferation. Moreover, Wnt3a increased Tyr activity and melanin content of differentiated melanocytes, but did not activate Tyr activity in melanoblasts. Wnt3a stimulated dendrite formation in differentiated melanocytes, but not in melanoblasts. Wnt3a did not affect melanoblast or melanocyte migration. Wnt3a did not induce c-Kit expression in Kit(-) NCCmelb4M5 cells and did not affect c-Kit expression in any cell line tested. Frizzled-3 is constitutively expressed in murine melanocyte precursors, melanocytes and

  8. Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles.

    PubMed

    Randall, Valerie A; Jenner, Tracey J; Hibberts, Nigel A; De Oliveira, Isabel O; Vafaee, Tayyebeh

    2008-04-01

    Androgens stimulate many hair follicles to alter hair colour and size via the hair growth cycle; in androgenetic alopecia tiny, pale hairs gradually replace large, pigmented ones. Since stem cell factor (SCF) is important in embryonic melanocyte migration and maintaining adult rodent pigmentation, we investigated SCF/c-Kit signalling in human hair follicles to determine whether this was altered in androgenetic alopecia. Quantitative immunohistochemistry detected three melanocyte-lineage markers and c-Kit in four focus areas: the epidermis, infundibulum, hair bulb (where pigment is formed) and mid-follicle outer root sheath (ORS). Colocalisation confirmed melanocyte c-Kit expression; cultured follicular melanocytes also exhibited c-Kit. Few ORS cells expressed differentiated melanocyte markers or c-Kit, but NKI/beteb antibody, which also recognises early melanocyte-lineage antigens, identified fourfold more cells, confirmed by colocalisation. Occasional similar bulbar cells were seen. Melanocyte distribution, concentration and c-Kit expression were unaltered in balding follicles. Androgenetic alopecia cultured dermal papilla cells secreted less SCF, measured by ELISA, than normal cells. This identifies three types of melanocyte-lineage cells in human follicles. The c-Kit expression by dendritic, pigmenting, bulbar melanocytes and rounded, differentiated, non-pigmenting ORS melanocytes implicate SCF in maintaining pigmentation and migration into regenerating hair bulbs. Less differentiated, c-Kit-independent cells in the mid-follicle ORS stem cell niche and occasionally in the bulb, presumably a local reserve for long scalp hair growth, implicate other factors in activating stem cells. Androgens appear to reduce alopecia hair colour by inhibiting dermal papilla SCF production, impeding bulbar melanocyte pigmentation. These results may facilitate new treatments for hair colour changes in hirsutism, alopecia or greying.

  9. Adult stem cells: hopes and hypes of regenerative medicine.

    PubMed

    Dulak, Józef; Szade, Krzysztof; Szade, Agata; Nowak, Witold; Józkowicz, Alicja

    2015-01-01

    Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.

  10. Therapeutics from Adult Stem Cells and the Hype Curve.

    PubMed

    Maguire, Greg

    2016-05-12

    The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment.

  11. Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf

    PubMed Central

    Taylor, Kerrie L.; Lister, James A.; Zeng, Zhiqiang; Ishizaki, Hironori; Anderson, Caroline; Kelsh, Robert N.; Jackson, Ian J.; Patton, E. Elizabeth

    2011-01-01

    Coordination of cell proliferation and differentiation is crucial for tissue formation, repair and regeneration. Some tissues, such as skin and blood, depend on differentiation of a pluripotent stem cell population, whereas others depend on the division of differentiated cells. In development and in the hair follicle, pigmented melanocytes are derived from undifferentiated precursor cells or stem cells. However, differentiated melanocytes may also have proliferative capacity in animals, and the potential for differentiated melanocyte cell division in development and regeneration remains largely unexplored. Here, we use time-lapse imaging of the developing zebrafish to show that while most melanocytes arise from undifferentiated precursor cells, an unexpected subpopulation of differentiated melanocytes arises by cell division. Depletion of the overall melanocyte population triggers a regeneration phase in which differentiated melanocyte division is significantly enhanced, particularly in young differentiated melanocytes. Additionally, we find reduced levels of Mitf activity using an mitfa temperature-sensitive line results in a dramatic increase in differentiated melanocyte cell division. This supports models that in addition to promoting differentiation, Mitf also promotes withdrawal from the cell cycle. We suggest differentiated cell division is relevant to melanoma progression because the human melanoma mutation MITF4TΔ2B promotes increased and serial differentiated melanocyte division in zebrafish. These results reveal a novel pathway of differentiated melanocyte division in vivo, and that Mitf activity is essential for maintaining cell cycle arrest in differentiated melanocytes. PMID:21771814

  12. Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf.

    PubMed

    Taylor, Kerrie L; Lister, James A; Zeng, Zhiqiang; Ishizaki, Hironori; Anderson, Caroline; Kelsh, Robert N; Jackson, Ian J; Patton, E Elizabeth

    2011-08-01

    Coordination of cell proliferation and differentiation is crucial for tissue formation, repair and regeneration. Some tissues, such as skin and blood, depend on differentiation of a pluripotent stem cell population, whereas others depend on the division of differentiated cells. In development and in the hair follicle, pigmented melanocytes are derived from undifferentiated precursor cells or stem cells. However, differentiated melanocytes may also have proliferative capacity in animals, and the potential for differentiated melanocyte cell division in development and regeneration remains largely unexplored. Here, we use time-lapse imaging of the developing zebrafish to show that while most melanocytes arise from undifferentiated precursor cells, an unexpected subpopulation of differentiated melanocytes arises by cell division. Depletion of the overall melanocyte population triggers a regeneration phase in which differentiated melanocyte division is significantly enhanced, particularly in young differentiated melanocytes. Additionally, we find reduced levels of Mitf activity using an mitfa temperature-sensitive line results in a dramatic increase in differentiated melanocyte cell division. This supports models that in addition to promoting differentiation, Mitf also promotes withdrawal from the cell cycle. We suggest differentiated cell division is relevant to melanoma progression because the human melanoma mutation MITF(4T)(Δ)(2B) promotes increased and serial differentiated melanocyte division in zebrafish. These results reveal a novel pathway of differentiated melanocyte division in vivo, and that Mitf activity is essential for maintaining cell cycle arrest in differentiated melanocytes.

  13. Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines.

    PubMed

    Yamada, Takaaki; Hasegawa, Seiji; Inoue, Yu; Date, Yasushi; Arima, Masaru; Yagami, Akiko; Iwata, Yohei; Abe, Masamichi; Takahashi, Masayuki; Yamamoto, Naoki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2014-03-01

    Solar lentigines (SLs) are characterized by hyperpigmented macules, commonly seen on sun-exposed areas of the skin. Although it has been reported that an increase in the number of melanocytes and epidermal melanin content was observed in the lesions, the following questions remain to be answered: (1) Is acceleration of melanogenesis in the epidermis caused by an increased number of melanocytes or the high melanogenic potential of each melanocyte? (2) Why does the number of melanocytes increase? To elucidate the pathogenic mechanism of SLs by investigating the number, melanogenic potential and proliferation status of the melanocyte lineage in healthy skin and SL lesions. Immunostaining for melanocyte lineage markers (tyrosinase, MART-1, MITF, and Frizzled-4) and a proliferation marker, Ki67, was performed on skin sections, and the obtained images were analyzed by image analysis software. The expression level of tyrosinase to MART-1 of each melanocyte was significantly higher in SL lesions than healthy skin. The numbers of melanocytes in the epidermis, melanoblasts in the hair follicular infundibulum and melanocyte stem cells in the bulge region were increased in SL; however, no significant difference was observed in the Ki67-positive rate of these cells. The melanogenic potential of each melanocyte was elevated in SL lesions. It was suggested that the increased number of melanocytes in the SL epidermis might be attributed to the abnormal increase of melanocyte stem cells in the bulge. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Uveal melanocytes do not respond to or express receptors for alpha-melanocyte-stimulating hormone.

    PubMed

    Li, Li; Hu, Dan-Ning; Zhao, Huiquan; McCormick, Steven A; Nordlund, James J; Boissy, Raymond E

    2006-10-01

    Whereas cutaneous pigmentation increases after exposure to ultraviolet (UV) irradiation, ocular pigmentation does not. This study was designed to examine the evidence that alpha-melanocyte-stimulating hormone (alpha-MSH), which is thought to be the mediator of UV response in the skin, has any role to play in uveal melanocytes. Human uveal melanocytes derived from the choroid and the iris were cultivated by using eyes harvested from adult cadaveric donors and were assessed by Northern blot analysis for growth and melanogenic response to alpha-MSH and expression of the receptor for alpha-MSH (MC1-R). In addition, expression of alpha-MSH was evaluated in ocular tissue by immunocytochemistry. Uveal melanocytes, unlike cutaneous melanocytes in vitro, exhibited no stimulation of proliferation in response to alpha-MSH at dosages ranging from 0.1 to 100 muM. In addition, tyrosine hydroxylase, DOPA oxidase, and protein levels for tyrosinase, TRP-1, and TRP-2 were not influenced by alpha-MSH. Associated with the lack of alpha-MSH response in cultured uveal melanocytes was the absence of expression of the receptor for alpha-MSH (MC1-R), as assessed by Northern blot analysis. Also in contrast to the skin, pigmented ocular tissue lacked expression of the alpha-MSH ligand, as assessed by immunocytochemistry. In conclusion, ocular pigmentation does not appear to be regulated by melanocyte stimulating hormone.

  15. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Spoelstra, Nicole S; Kechris, Katerina J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2015-08-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization.

  16. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors

    PubMed Central

    Goldstein, Nathaniel B.; Koster, Maranke I.; Hoaglin, Laura G.; Spoelstra, Nicole S.; Kechris, Katerina J.; Robinson, Steven E.; Robinson, William A.; Roop, Dennis R.; Norris, David A.; Birlea, Stanca A.

    2015-01-01

    In vitiligo, the autoimmune destruction of epidermal melanocytes produces white spots that can be repigmented by melanocyte precursors from the hair follicles, following stimulation with UV light. We examined by immunofluorescence the distribution of melanocyte markers (C-KIT, DCT, PAX3, and TYR) coupled with markers of proliferation (KI-67) and migration (MCAM) in precursors and mature melanocytes from the hair follicle and the epidermis of untreated and narrow band UVB (NBUVB)-treated human vitiligo skin. NBUVB was associated with a significant increase in the number of melanocytes in the infundibulum and with restoration of the normal melanocyte population in the epidermis, which was lacking in the untreated vitiligo. We identified several precursor populations (melanocyte stem cells, melanoblasts, and other immature phenotypes), and progressively differentiating melanocytes, some with putative migratory and/or proliferative abilities. The primary melanocyte germ was present in the untreated and treated hair follicle bulge, whereas a possible secondary melanocyte germ composed of C-KIT+ melanocytes was found in the infundibulum and interfollicular epidermis of UV-treated vitiligo. This is an exceptional model for studying the mobilization of melanocyte stem cells in human skin. Improved understanding of this process is essential for designing better treatments for vitiligo, ultimately based on melanocyte stem cell activation and mobilization. PMID:25822579

  17. Alternative sources of adult stem cells: a possible solution to the embryonic stem cell debate.

    PubMed

    Moore, Kim E; Mills, Jeanette F; Thornton, Melissa M

    2006-09-01

    The complex moral and ethical debate surrounding the definition of the origins of human life, together with conflicting current and proposed legislation on state and federal levels, is hindering the course of research into the therapeutic uses of human embryonic stem cells. However, newly identified sources of adult stem cells, free from many of the ethical and legal concerns attached to embryonic stem cell research, may offer great promise for the advancement of medicine. These alternative sources may alleviate the need to resolve the stem cell debate before further therapeutic benefits of stem cell research can be realized. While legislation and ethics evolve to address the legal and moral issues of embryonic stem cell research, innovative researchers will continue to search for and find real and present solutions for cell-based therapies using adult stem cells.

  18. Engineering of the Embryonic and Adult Stem Cell Niches

    PubMed Central

    Hosseinkhani, Mohsen; Shirazi, Reza; Rajaei, Farzad; Mahmoudi, Masoud; Mohammadi, Navid; Abbasi, Mahnaz

    2013-01-01

    Context Stem cells have the potential to generate a renewable source of cells for regenerative medicine due to their ability to self-renew and differentiate to various functional cell types of the adult organism. The extracellular microenvironment plays a pivotal role in controlling stem cell fate responses. Therefore, identification of appropriate environmental stimuli that supports cellular proliferation and lineage-specific differentiation is critical for the clinical application of the stem cell therapies. Evidence Acquisition Traditional methods for stem cells culture offer limited manipulation and control of the extracellular microenvironment. Micro engineering approaches are emerging as powerful tools to control stem cell-microenvironment interactions and for performing high-throughput stem cell experiments. Results In this review, we provided an overview of the application of technologies such as surface micropatterning, microfluidics, and engineered biomaterials for directing stem cell behavior and determining the molecular cues that regulate cell fate decisions. Conclusions Stem cells have enormous potential for therapeutic and pharmaceutical applications, because they can give rise to various cell types. Despite their therapeutic potential, many challenges, including the lack of control of the stem cell microenvironment remain. Thus, a greater understanding of stem cell biology that can be used to expand and differentiate embryonic and adult stem cells in a directed manner offers great potential for tissue repair and regenerative medicine. PMID:23682319

  19. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  20. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  1. Giant congenital melanocytic nevus.

    PubMed

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion.

  2. Giant congenital melanocytic nevus*

    PubMed Central

    Viana, Ana Carolina Leite; Gontijo, Bernardo; Bittencourt, Flávia Vasques

    2013-01-01

    Giant congenital melanocytic nevus is usually defined as a melanocytic lesion present at birth that will reach a diameter ≥ 20 cm in adulthood. Its incidence is estimated in <1:20,000 newborns. Despite its rarity, this lesion is important because it may associate with severe complications such as malignant melanoma, affect the central nervous system (neurocutaneous melanosis), and have major psychosocial impact on the patient and his family due to its unsightly appearance. Giant congenital melanocytic nevus generally presents as a brown lesion, with flat or mammilated surface, well-demarcated borders and hypertrichosis. Congenital melanocytic nevus is primarily a clinical diagnosis. However, congenital nevi are histologically distinguished from acquired nevi mainly by their larger size, the spread of the nevus cells to the deep layers of the skin and by their more varied architecture and morphology. Although giant congenital melanocytic nevus is recognized as a risk factor for the development of melanoma, the precise magnitude of this risk is still controversial. The estimated lifetime risk of developing melanoma varies from 5 to 10%. On account of these uncertainties and the size of the lesions, the management of giant congenital melanocytic nevus needs individualization. Treatment may include surgical and non-surgical procedures, psychological intervention and/or clinical follow-up, with special attention to changes in color, texture or on the surface of the lesion. The only absolute indication for surgery in giant congenital melanocytic nevus is the development of a malignant neoplasm on the lesion. PMID:24474093

  3. Adult stem cels and their niches.

    PubMed

    Ferraro, Francesca; Celso, Cristina Lo; Scadden, David

    2010-01-01

    Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging.

  4. ADULT STEM CELLS AND THEIR NICHES

    PubMed Central

    Ferraro, Francesca; Celso, Cristina Lo; Scadden, David

    2014-01-01

    Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging. PMID:21222205

  5. Maturing from embryonic to adult policy on stem cell therapeutics.

    PubMed

    Maguire, Greg

    2014-12-11

    The National Institutes of Health (NIH) closure of the agency's Center for Regenerative Medicine (CRM), which focused on therapeutic development of induced pluripotent stem cells (iPS), was caused by the lack of progress in practical development of the iPSs for use in human therapies. As the NIH evaluates priorities in future stem cell therapeutic development, adult stem cell processes in the human body need to be prioritized for a number of key reasons, including (1) adult stem cells release many types of molecules that provide much of the therapeutic benefit of stem cells and (2) adult stem cells and somatic cells exist in a state of dynamic transition between different potency levels and can be naturally driven by the microenvironment to a state of pluripotency. Thus, the study and development of adult stems for therapeutic use can include naturally induced pluripotent stem cells (NiPSs) that lack the problematic genetic and epigenetic reprogramming errors found in iPSs.

  6. Characterization of two novel small molecules targeting melanocyte development in zebrafish embryogenesis.

    PubMed

    Chen, Lu; Ren, Xi; Liang, Fang; Li, Song; Zhong, Hanbing; Lin, Shuo

    2012-07-01

    Melanocytes are pigment cells that are closely associated with many skin disorders, such as vitiligo, piebaldism, Waardenburg syndrome, and the deadliest skin cancer, melanoma. Through studies of model organisms, the genetic regulatory network of melanocyte development during embryogenesis has been well established. This network also seems to be shared with adult melanocyte regeneration and melanoma formation. To identify chemical regulators of melanocyte development and homeostasis, we screened a small-molecule library of 6000 compounds using zebrafish embryos and identified five novel compounds that inhibited pigmentation. Here we report characterization of two compounds, 12G9 and 36E9, which disrupted melanocyte development. TUNEL assay indicated that these two compounds induced apoptosis of melanocytes. Furthermore, compound 12G9 specifically inhibited the viability of mammalian melanoma cells in vitro. These two compounds should be useful as chemical biology tools to study melanocytes and could serve as drug candidates against melanocyte-related diseases. © 2012 John Wiley & Sons A/S.

  7. Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin

    PubMed Central

    Kretzschmar, Kai; Watt, Fiona M.

    2014-01-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties. PMID:24993676

  8. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  9. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  10. Genetics of Melanocytic Nevi

    PubMed Central

    Roh, Mi Ryung; Eliades, Philip; Gupta, Sameer; Tsao, Hensin

    2015-01-01

    Melanocytic nevi are a benign clonal proliferation of cells expressing the melanocytic phenotype, with heterogeneous clinical and molecular characteristics. In this review, we discuss the genetics of nevi by salient nevi subtypes: congenital melanocytic nevi, acquired melanocytic nevi, blue nevi, and Spitz nevi. While the molecular etiology of nevi has been less thoroughly studied than melanoma, it is clear that nevi and melanoma share common driver mutations. Acquired melanocytic nevi harbor oncogenic mutations in BRAF, which is the predominant oncogene associated with melanoma. Congenital melanocytic nevi and blue nevi frequently harbor NRAS mutations and GNAQ mutations, respectively, while Spitz and atypical Spitz tumors often exhibit HRAS and kinase rearrangements. These initial “driver” mutations are thought to trigger the establishment of benign nevi. After this initial phase of cell proliferation, a senescence program is executed, causing termination of nevi growth. Only upon the emergence of additional tumorigenic alterations, which may provide an escape from oncogene-induced senescence, can malignant progression occur. Here, we review the current literature on the pathobiology and genetics of nevi in the hope that additional studies of nevi promise to inform our understanding of the transition from benign neoplasm to malignancy. PMID:26300491

  11. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  12. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  13. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  14. Potential of adult neural stem cells in stroke therapy.

    PubMed

    Andres, Robert H; Choi, Raymond; Steinberg, Gary K; Guzman, Raphael

    2008-11-01

    Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.

  15. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  16. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  17. Medical perspectives of adults and embryonic stem cells.

    PubMed

    Cavazzana-Calvo, Marina; André-Schmutz, Isabelle; Lagresle, Chantal; Fischer, Alain

    2002-10-01

    In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data.

  18. Site-specific migration of human fetal melanocytes in volar skin.

    PubMed

    Nakamura, Motoki; Fukunaga-Kalabis, Mizuho; Yamaguchi, Yuji; Furuhashi, Takuya; Nishida, Emi; Kato, Hiroshi; Mizuno, Toshihiko; Sugiura, Mayumi; Morita, Akimichi

    2015-05-01

    Melanocytes originate from the neural crest and migrate ventrally from the dorsal neural tube during embryogenesis. How human melanocytes locate at their suitable positions during embryogenesis, however, is unclear. Although a growing body of evidence indicates that melanocytes, melanoblasts, and melanocyte stem cells are closely related to hair follicles, little is known about volar skin. The aim of this study was to observe skin development during human fetal period and clarify the site-specific migration process of human fetal sole melanocytes. We obtained 4-mm punch biopsies from the scalp, back, abdomen, and right sole of 36 aborted fetuses (gestational age 12-21 weeks). We compared the migration process between hairly areas and volar areas by immunohistochemical staining. Immunohistochemical examination revealed that gp100 (HMB-45) sensitively detects human melanocytes in embryogenesis. Melanocytes were present at the epidermal base, where hair placodes/buds form at 12-15 weeks gestation. Fetal melanocytes in hair follicles are supplied from the epidermis. In volar skin, melanocytes originally localize only in the acrosyringium, where they migrate deeper into with gland development at 16-18 weeks gestation. Palmoplantar melanocyte migration and maturation processes differ considerably from those of the other hairy skin sites. Eccrine sweat glands seem to have a central role in the palmoplantar melanocyte migration process, similar to the role of hair follicles in hairy sites. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2013-09-01

    derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5, 610–623 (2009). 53. Morrison, S. J., White...potential therapeutic target of vascular diseases. MVSCs in arteries and veins may have different developmental origins. Wnt1 lineage-tracing experiments...and may lead to new therapies using MVSCs as a therapeutic target . Methods Generation of transgenic mice and genotyping. Animal studies were approved

  20. Adult stem cells underlying lung regeneration.

    PubMed

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  1. [Dysplastic melanocytic nevus].

    PubMed

    Bierhoff, E

    2015-02-01

    Dysplastic nevus is still a controversial entity both clinically and histologically. The occurrence of dysplastic nevus especially in the context of dysplastic nevus cell syndrome is associated with an increased risk for melanoma. The following minimal histological criteria should be fulfilled: nests of melanocytes varying in size and shape, bridging and confluent, proliferation of single melanocytes basal and suprabasal, cytoplasmic and nuclear atypia of melanocytes and subepidermal fibroplasia. The biological behavior (common nevus variant or precursor of melanoma?) is difficult to evaluate by presently available methods. The further development of new molecular biology techniques may allow a better prognosis of dysplastic nevi in an objective and reproducible manner. Against this background complete excision followed by clinical surveillance has to be recommended for the routine practice.

  2. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    PubMed

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  3. Isolating RNA from precursor and mature melanocytes from human vitiligo and normal skin using laser capture microdissection.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Wright, Michael J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2016-10-01

    To characterize the gene expression profile of regenerated melanocytes in the narrow band UVB (NBUVB)-treated vitiligo epidermis and their precursors in the hair follicle, we present here a strategy of RNA isolation from in situ melanocytes using human frozen skin. We developed a rapid immunostaining protocol using the NKI-beteb antibody, which labels differentiated and precursor melanocytes, followed by fluorescent laser capture microdissection. This technique enabled the direct isolation, from melanocyte and adjacent keratinocyte populations, of satisfactory quality RNA that was successfully amplified and analysed by qRT-PCR. The melanocyte-specific gene transcripts TYR, DCT, TYRP1 and PMEL were significantly upregulated in our NBUVB-treated melanocyte samples as compared with the keratinocyte samples, while keratinocyte-specific genes (KRT5 and KRT14) were expressed significantly higher in the keratinocyte samples as compared with the melanocyte samples. Furthermore, in both NBUVB-treated vitiligo skin and normal skin, when bulge melanocytes were compared with epidermal melanocytes, we found significantly lower expression of melanocyte-specific genes and significantly higher expression of three melanocytic stem cell genes (SOX9, WIF1 and SFRP1), while ALCAM and ALDH1A1 transcripts did not show significant variation. We found significantly higher expression of melanocyte-specific genes in the epidermis of NBUVB-treated vitiligo, as compared to the normal skin. When comparing bulge melanocyte samples from untreated vitiligo, NBUVB-treated vitiligo and normal skin, we did not find significant differences in the expression of melanocyte-specific genes or melanocytic stem cell genes. These techniques offer valuable opportunities to study melanocytes and their precursors in vitiligo and other pigmentation disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Concise Review: Adult Mesenchymal Stem Cells, Adult Neural Crest Stem Cells, and Therapy of Neurological Pathologies: A State of Play

    PubMed Central

    Neirinckx, Virginie; Coste, Cécile; Rogister, Bernard

    2013-01-01

    Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions. PMID:23486833

  5. Comparative aspects of adult neural stem cell activity in vertebrates.

    PubMed

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  6. Adult stem cells and their ability to differentiate.

    PubMed

    Tarnowski, Maciej; Sieron, Aleksander L

    2006-08-01

    This is a review of the current status of knowledge on adult stem cells as well as the criteria and evidence for their potential to transform into different cell types and cell lineages. Reports on stem cell sources, focusing on tissues from adult subjects, were also investigated. Numerous reports have been published on the search for early markers of both stem cells and the precursors of various cell lineages. The question is still open about the characteristics of the primary stem cell. The existing proofs and hypotheses have not yielded final solutions to this problem. From a practical point of view it is also crucial to find a minimal set of markers determining the phenotypes of the precursor cells of a particular cell lineage. Several lines of evidence seem to bring closer the day when we will be able to detect the right stem cell niche and successfully isolate precursor cells that are needed for the treatment of a particular disorder. Recent reports on cases of cancer in patients subjected to stem cell therapy are yet another controversial issue looked into in this review, although the pros and cons emerging from the results of published studies still do not provide satisfying evidence to fully understand this issue.

  7. Adherent neural stem (NS) cells from fetal and adult forebrain.

    PubMed

    Pollard, Steven M; Conti, Luciano; Sun, Yirui; Goffredo, Donato; Smith, Austin

    2006-07-01

    Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

  8. Skin melanocytes: biology and development

    PubMed Central

    Wachulska, Małgorzata; Stasiewicz, Aneta; Tymińska, Agata

    2013-01-01

    In the human skin, melanocytes are present in the epidermis and hair follicles. The basic features of these cells are the ability to melanin production and the origin from neural crest cells. This last element is important because there are other cells able to produce melanin but of different embryonic origin (pigmented epithelium of retina, some neurons, adipocytes). The life cycle of melanocyte consists of several steps including differentiation of melanocyte lineage/s from neural crest, migration and proliferation of melanoblasts, differentiation of melanoblasts into melanocytes, proliferation and maturation of melanocytes at the target places (activity of melanogenic enzymes, melanosome formation and transport to keratinocytes) and eventual cell death (hair melanocytes). Melanocytes of the epidermis and hair are cells sharing some common features but in general they form biologically different populations living in unique niches of the skin. PMID:24278043

  9. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types.

    PubMed

    Reemann, Paula; Reimann, Ene; Ilmjärv, Sten; Porosaar, Orm; Silm, Helgi; Jaks, Viljar; Vasar, Eero; Kingo, Külli; Kõks, Sulev

    2014-01-01

    Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.

  10. Melanocytes in the Skin – Comparative Whole Transcriptome Analysis of Main Skin Cell Types

    PubMed Central

    Reemann, Paula; Reimann, Ene; Ilmjärv, Sten; Porosaar, Orm; Silm, Helgi; Jaks, Viljar; Vasar, Eero; Kingo, Külli; Kõks, Sulev

    2014-01-01

    Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma. PMID:25545474

  11. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  12. Small molecule-based approaches to adult stem cell therapies.

    PubMed

    Lairson, Luke L; Lyssiotis, Costas A; Zhu, Shoutian; Schultz, Peter G

    2013-01-01

    There is considerable interest in the development of stem cell-based strategies for the treatment of a broad range of human diseases, including neurodegenerative, autoimmune, cardiovascular, and musculoskeletal diseases. To date, such regenerative approaches have focused largely on the development of cell transplantation therapies using cells derived from pluripotent embryonic stem cells (ESCs). Although there have been exciting preliminary reports describing the efficacy of ESC-derived replacement therapies, approaches involving ex vivo manipulated ESCs are hindered by issues of mutation, immune rejection, and ethical controversy. An alternative approach involves direct in vivo modulation or ex vivo expansion of endogenous adult stem cell populations using drug-like small molecules. Here we describe chemical approaches to the regulation of somatic stem cell biology that are yielding new biological insights and that may ultimately lead to innovative new medicines.

  13. Paracrine Secreted Frizzled-Related Protein 4 Inhibits Melanocytes Differentiation in Hair Follicle

    PubMed Central

    Guo, Haiying; Lei, Mingxing; Li, Yuhong; Liu, Yingxin; Tang, Yinhong; Xing, Yizhan; Deng, Fang

    2017-01-01

    Wnt signaling plays crucial role in regulating melanocyte stem cells/melanocyte differentiation in the hair follicle. However, how the Wnt signaling is balanced to be overactivated to control follicular melanocytes behavior remains unknown. Here, by using immunofluorescence staining, we showed that secreted frizzled-related protein 4 (sFRP4) is preferentially expressed in the skin epidermal cells rather than in melanocytes. By overexpression of sFRP4 in skin cells in vivo and in vitro, we found that sFRP4 attenuates activation of Wnt signaling, resulting in decrease of melanocytes differentiation in the regenerating hair follicle. Our findings unveiled a new regulator that involves modulating melanocytes differentiation through a paracrine mechanism in hair follicle, supplying a hope for potential therapeutic application to treat skin pigmentation disorders. PMID:28337220

  14. Cellular origin and developmental mechanisms during the formation of skin melanocytes

    SciTech Connect

    Ernfors, Patrik

    2010-05-01

    Melanocytes are derived from the neural crest (NC), which are transient multipotent cells arising by delamination from the developing dorsal neural tube. During recent years, signaling systems and molecular mechanisms of melanocyte development have been studied in detail, but the exact diversification of the NC into melanocytes and how they migrate, expand and disperse in the skin have not been fully understood. The recent finding that Schwann cell precursors (SCPs) of the growing nerve represents a stem cell niche from which various cell types, including Schwann cells, endoneural fibroblasts and melanocytes arise has exposed new knowledge on the cellular basis for melanocyte development. This opens for the identification of new factors and reinterpretation of old data on cell fate instructive, proliferative, survival and cell homing factors participating in melanocyte development.

  15. Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies

    PubMed Central

    Parmesar, Kevon; Raj, Kavita

    2016-01-01

    Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients. PMID:27313619

  16. MITF accurately highlights epidermal melanocytes in atypical intraepidermal melanocytic proliferations.

    PubMed

    Nybakken, Grant E; Sargen, Michael; Abraham, Ronnie; Zhang, Paul J; Ming, Michael; Xu, Xiaowei

    2013-02-01

    Atypical intraepidermal melanocytic proliferations (AIMP) have random cytologic atypia and other histologic features that are concerning for malignancy and often require immunohistochemistry to differentiate from melanoma in situ. Immunostaining with S100, Melan-A, and microphthalmia-associated transcription factor (MITF) was performed for 49 morphologically well-characterized AIMP lesions. The percentage of cells in the basal layer of the epidermis that were identified as melanocytes by immunohistochemistry was compared with the percentage observed by morphology on hematoxylin and eosin staining, which is the gold standard stain for identifying cytologic atypia within an AIMP. Melan-A estimated the highest percentage of melanocytes and S100 the fewest in 47 of the 49 lesions examined. The estimated percentage of melanocytes was 23.3% (95% confidence interval: 18.6-28.1; P < 0.001) higher for Melan-A compared with hematoxylin and eosin staining. Melanocyte estimates were similar for hematoxylin and eosin and MITF (P = 0.15) although S100 estimated 21.8% (95% confidence interval: -27.2 to -16.4; P < 0.001) fewer melanocytes than hematoxylin and eosin. Melan-A staining produces higher estimates of epidermal melanocytes than S100 and MITF, which may increase the likelihood of diagnosing melanoma in situ. In contrast, melanoma in situ may be underdiagnosed with the use of S100, which results in lower estimates of melanocytes than the other 2 immunostains. Therefore, the best immunohistochemical marker for epidermal melanocytes is MITF.

  17. Melanocytes and Their Diseases

    PubMed Central

    Yamaguchi, Yuji; Hearing, Vincent J.

    2014-01-01

    Human melanocytes are distributed not only in the epidermis and in hair follicles but also in mucosa, cochlea (ear), iris (eye), and mesencephalon (brain) among other tissues. Melanocytes, which are derived from the neural crest, are unique in that they produce eu-/pheo-melanin pigments in unique membrane-bound organelles termed melanosomes, which can be divided into four stages depending on their degree of maturation. Pigmentation production is determined by three distinct elements: enzymes involved in melanin synthesis, proteins required for melanosome structure, and proteins required for their trafficking and distribution. Many genes are involved in regulating pigmentation at various levels, and mutations in many of them cause pigmentary disorders, which can be classified into three types: hyperpigmentation (including melasma), hypopigmentation (including oculocutaneous albinism [OCA]), and mixed hyper-/hypopigmentation (including dyschromatosis symmetrica hereditaria). We briefly review vitiligo as a representative of an acquired hypopigmentation disorder. PMID:24789876

  18. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  19. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-09-01

    Circulation 103, 882–888 (2001). 52. Biernaskie, J. et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells...identification of MVSC in human arteries makes MVSC a potential therapeutic target of vascular diseases. MVSCs in arteries and veins may have different...transforma- tive impact on vascular biology and diseases, and may lead to new therapies using MVSCs as a therapeutic target . Methods Generation of

  20. Autologous stem cell transplantation for adult acute leukemia.

    PubMed

    Gorin, Norbert-Claude

    2002-03-01

    Autologous stem cell transplantation using marrow or peripheral blood is routinely used to consolidate patients with acute myelocytic leukemia in complete remission. The situation is less clear for adult acute lymphocytic leukemia in which results achieved with all strategies are disappointing. In acute myelocytic leukemia, autografts should be done in patients with good and standard risk factors. Patients with high-risk acute myelocytic leukemia defined by poor cytogenetics or failure to achieve remission with the first induction course, should proceed to allogeneic stem cell transplantation with the best available human leukocyte antigen-identical donor (family or unrelated), and the nature of the conditioning regimen (myelo-ablative or non-myelo-ablative) should be decided in relation to age, and the patient's clinical condition. Results of autografting in acute myelocytic leukemia rely strongly on the quality of the graft. Higher doses of infused stem cells translate into lower relapse rates. Marrow purging with cyclophosphamide derivatives also diminishes the relapse incidence. Autologous stem cell transplantations using peripheral blood are presently preferred to marrow as the source of stem cells, but an aggressive prior in vivo purge (high-dose consolidation course(s) before cytaphereses) is then mandatory. In good-risk acute myelocytic leukemia, autografting is superior to high-dose ARA-C; in standard-risk acute myelocytic leukemia, both are supposedly equivalent. There is no prospective randomized study testing the two approaches in the good-standard-risk population. We presently test the combination of marrow and blood both purged by mafosfamide. In adult acute lymphocytic leukemia, good-risk patients get the best benefit from autografting over conventional chemotherapy. Maintenance chemotherapy after transplant is likely to bring benefit. Research in progress aims at facilitating access of the largest number of patients to autografting and at

  1. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  2. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  3. Clinical Trials of Adult Stem Cell Therapy in Patients with Ischemic Stroke.

    PubMed

    Bang, Oh Young

    2016-01-01

    Stem cell therapy is considered a potential regenerative strategy for patients with neurologic deficits. Studies involving animal models of ischemic stroke have shown that stem cells transplanted into the brain can lead to functional improvement. With current advances in the understanding regarding the effects of introducing stem cells and their mechanisms of action, several clinical trials of stem cell therapy have been conducted in patients with stroke since 2005, including studies using mesenchymal stem cells, bone marrow mononuclear cells, and neural stem/progenitor cells. In addition, several clinical trials of the use of adult stem cells to treat ischemic stroke are ongoing. This review presents the status of our understanding of adult stem cells and results from clinical trials, and introduces ongoing clinical studies of adult stem cell therapy in the field of stroke.

  4. Endothelin-1 is a transcriptional target of p53 in epidermal keratinocytes and regulates UV induced melanocyte homeostasis

    PubMed Central

    Hyter, Stephen; Coleman, Daniel J.; Ganguli-Indra, Gitali; Merrill, Gary F.; Ma, Steven; Yanagisawa, Masashi; Indra, Arup K.

    2013-01-01

    Summary Keratinocytes contribute to melanocyte activity by influencing their microenvironment, in part, through secretion of paracrine factors. Here we discovered that p53 directly regulates Edn1 expression in epidermal keratinocytes and controls UV-induced melanocyte homeostasis. Selective ablation of EDN1 in murine epidermis (EDN1ep−/−) does not alter melanocyte homeostasis in newborn skin but decreases dermal melanocytes in adult skin. Results showed that keratinocytic EDN1 in a non-cell autonomous manner controls melanocyte proliferation, migration, DNA damage and apoptosis after UVB irradiation. Expression of other keratinocyte derived paracrine factors did not compensate for the loss of EDN1. Topical treatment with EDN1 receptor (EDNRB) antagonist BQ788 abrogated UV induced melanocyte activation and recapitulated the phenotype seen in EDN1ep−/− mice. Altogether, present studies establish an essential role of EDN1 in epidermal keratinocytes to mediate UV induced melanocyte homeostasis in vivo. PMID:23279852

  5. A signet-ring cell melanoma arising from a medium-sized congenital melanocytic nevus in an adult: A case report and literature review.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-07-01

    Patients with congenital nevus, especially giant congenital melanocytic nevus (CMN) measuring >20 cm, are known to be at elevated risk of developing melanomas, especially during the first and second decades of life. Melanomas rarely develop in patients with small and medium-sized CMNs, but if they do, they occur during the fourth and fifth decades of life. We present a case of a rapidly enlarging signet-ring cell melanoma (over 3 months) that arose from a medium-sized CMN in a 57-year-old Japanese man. Only 11 other cases of signet-ring cell melanomas at the primary site have been reported. On the basis of morphology alone, it is difficult to diagnose a nodule appearing in a CMN as a signet-ring cell melanoma, because even a benign melanocytic nevus can appear as signet-ring cell morphology. Moreover, a rapidly growing proliferative nodule (PN) more often develops in a CMN than melanoma; PNs may at times exhibit enough atypia to be comparable to melanomas. In our case, loss of p16 expression in the melanoma distinguished it from the nevus cells and was helpful in making the correct diagnosis. Clinical information, such as the patient's age, was also useful in establishing the diagnosis.

  6. Immune Influence on Adult Neural Stem Cell Regulation and Function

    PubMed Central

    Carpentier, Pamela A.; Palmer, Theo D.

    2009-01-01

    Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs. PMID:19840551

  7. Pirin Inhibits Cellular Senescence in Melanocytic Cells

    PubMed Central

    Licciulli, Silvia; Luise, Chiara; Scafetta, Gaia; Capra, Maria; Giardina, Giuseppina; Nuciforo, Paolo; Bosari, Silvano; Viale, Giuseppe; Mazzarol, Giovanni; Tonelli, Chiara; Lanfrancone, Luisa; Alcalay, Myriam

    2011-01-01

    Cellular senescence has been widely recognized as a tumor suppressing mechanism that acts as a barrier to cancer development after oncogenic stimuli. A prominent in vivo model of the senescence barrier is represented by nevi, which are composed of melanocytes that, after an initial phase of proliferation induced by activated oncogenes (most commonly BRAF), are blocked in a state of cellular senescence. Transformation to melanoma occurs when genes involved in controlling senescence are mutated or silenced and cells reacquire the capacity to proliferate. Pirin (PIR) is a highly conserved nuclear protein that likely functions as a transcriptional regulator whose expression levels are altered in different types of tumors. We analyzed the expression pattern of PIR in adult human tissues and found that it is expressed in melanocytes and has a complex pattern of regulation in nevi and melanoma: it is rarely detected in mature nevi, but is expressed at high levels in a subset of melanomas. Loss of function and overexpression experiments in normal and transformed melanocytic cells revealed that PIR is involved in the negative control of cellular senescence and that its expression is necessary to overcome the senescence barrier. Our results suggest that PIR may have a relevant role in melanoma progression. PMID:21514450

  8. Robust G2 pausing of adult stem cells in Hydra.

    PubMed

    Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte

    2014-01-01

    Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  9. Retentive multipotency of adult dorsal root ganglia stem cells.

    PubMed

    Singh, Rabindra P; Cheng, Ying-Hua; Nelson, Paul; Zhou, Feng C

    2009-01-01

    Preservation of neural stem cells (NSCs) in the adult peripheral nervous system (PNS) has recently been confirmed. However, it is not clear whether peripheral NSCs possess predestined, bona fide phenotypes or a response to innate developmental cues. In this study, we first demonstrated the longevity, multipotency, and high fidelity of sensory features of postmigrating adult dorsal root ganglia (aDRG) stem cells. Derived from aDRG and after 4-5 years in culture without dissociating, the aDRG NSCs were found capable of proliferation, expressing neuroepithelial, neuronal, and glial markers. Remarkably, these aDRG NSCs expressed sensory neuronal markers vesicular glutamate transporter 2 (VGluT2--glutamate terminals), transient receptor potential vanilloid 1 (TrpV1--capsaicin sensitive), phosphorylated 200 kDa neurofilaments (pNF200--capsaicin insensitive, myelinated), and the serotonin transporter (5-HTT), which normally is transiently expressed in developing DRG. Furthermore, in response to neurotrophins, the aDRG NSCs enhanced TrpV1 expression upon exposure to nerve growth factor (NGF), but not to brain-derived neurotrophic factor (BDNF). On the contrary, BDNF increased the expression of NeuN. Third, the characterization of aDRG NSCs was demonstrated by transplantation of red fluorescent-expressing aDRG NSCs into injured spinal cord. These cells expressed nestin, Hu, and beta-III-tubulin (immature neuronal markers), GFAP (astrocyte marker) as well as sensory neural marker TrpV1 (capsaicin sensitive) and pNF200 (mature, capsaicin insensitive, myelinated). Our results demonstrated that the postmigrating neural crest adult DRG stem cells not only preserved their multipotency but also were retentive in sensory potency despite the age and long-term ex vivo status.

  10. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  11. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  12. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    PubMed

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  13. Positional identity of adult stem cells in salamander limb regeneration.

    PubMed

    Kumar, Anoop; Gates, Phillip B; Brockes, Jeremy P

    2007-01-01

    Limb regeneration in larval and adult salamanders proceeds from a mound of mesenchymal stem cells called the limb blastema. The blastema gives rise just to those structures distal to its level of origin, and this property of positional identity is reset to more proximal values by treatment with retinoic acid. We have identified a cell surface protein, called Prod1/CD59, which appears to be a determinant of proximodistal identity. Prod1 is expressed in an exponential gradient in an adult limb as determined by detection of both mRNA and immunoreactive protein. Prod1 protein is up-regulated after treatment of distal blastemas with RA and this is particularly marked in cells of the dermis. These cells have previously been implicated in pattern formation during limb regeneration.

  14. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  15. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  16. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.

    PubMed

    Tai, Mei-Hui; Chang, Chia-Cheng; Kiupel, Matti; Webster, Joshua D; Olson, L Karl; Trosko, James E

    2005-02-01

    The Oct3/4 gene, a POU family transcription factor, has been noted as being specifically expressed in embryonic stem cells and in tumor cells but not in cells of differentiated tissues. With the ability to isolate adult human stem cells it became possible to test for the expression of Oct3/4 gene in adult stem cells and to test the stem cell theory of carcinogenesis. Using antibodies and PCR primers we tested human breast, liver, pancreas, kidney, mesenchyme and gastric stem cells, the cancer cell lines HeLa and MCF-7 and human, dog and rat tumors for Oct4 expression. The results indicate that adult human stem cells, immortalized non-tumorigenic cells and tumor cells and cell lines, but not differentiated cells, express Oct4. Oct4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that adult stem cells maintain expression of Oct4, consistent with the stem cell hypothesis of carcinogenesis.

  17. Constitutive gray hair in mice induced by melanocyte-specific deletion of c-Myc

    PubMed Central

    Pshenichnaya, Irina; Schouwey, Karine; Armaro, Marzia; Larue, Lionel; Knoepfler, Paul S.; Eisenman, Robert N.; Trumpp, Andreas; Delmas, Véronique; Beermann, Friedrich

    2012-01-01

    Summary c-Myc is involved in the control of diverse cellular processes and implicated in the maintenance of different tissues including the neural crest. Here, we report that c-Myc is particularly important for pigment cell development and homeostasis. Targeting c-Myc specifically in the melanocyte lineage using the floxed allele of c-Myc and Tyr::Cre transgenic mice results in a congenital gray hair phenotype. The gray coat color is associated with a reduced number of functional melanocytes in the hair bulb and melanocyte stem cells in the hair bulge. Importantly, the gray phenotype does not progress with time, suggesting that maintenance of the melanocyte through the hair cycle does not involve c-Myc function. In embryos, at E13.5, c-Myc-deficient melanocyte precursors are affected in proliferation in concordance with a reduction in numbers, showing that c-Myc is required for the proper melanocyte development. Interestingly, melanocytes from c-Myc-deficient mice display elevated levels of the c-Myc paralog N-Myc. Double deletion of c-Myc and N-Myc results in nearly complete loss of the residual pigmentation, indicating that N-Myc is capable of compensating for c-Myc loss of function in melanocytes. PMID:22420299

  18. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  19. Stirred bioreactors for the expansion of adult pancreatic stem cells.

    PubMed

    Serra, Margarida; Brito, Catarina; Leite, Sofia B; Gorjup, Erwin; von Briesen, Hagen; Carrondo, Manuel J T; Alves, Paula M

    2009-01-01

    Adult pluripotent stem cells are a cellular resource representing unprecedented potential for cell therapy and tissue engineering. Complementary to this promise, there is a need for efficient bioprocesses for their large scale expansion and/or differentiation. With this goal in mind, our work focused on the development of three-dimensional (3-D) culture systems for controlled expansion of adult pancreatic stem cells (PSCs). For this purpose, two different culturing strategies were evaluated, using spinner vessels: cell aggregated cultures versus microcarrier technology. The use of microcarrier supports (Cytodex 1 and Cytodex 3) rendered expanded cell populations which retained their self-renewal ability, cell marker, and the potential to differentiate into adipocytes. This strategy surmounted the drawbacks of aggregates in culture which were demonstrably unfeasible as cells clumped together did not proliferate and lost PSC marker expression. Furthermore, the results obtained showed that although both microcarriers tested here were suitable for sustaining cell expansion, Cytodex 3 provided a better substrate for the promotion of cell adherence and growth. For the latter approach, the potential of bioreactor technology was combined with the efficient Cytodex 3 strategy under controlled environmental conditions (pH-7.2, pO2-30% and temperature-37 degrees C); cell growth was more efficient, as shown by faster doubling time, higher growth rate and higher fold increase in cell concentration, when compared to spinner cultures. This study describes a robust bioprocess for the controlled expansion of adult PSC, representing an efficient starting point for the development of novel technologies for cell therapy.

  20. Comparative Study of Efficacy of Epidermal Melanocyte Transfer Versus Hair Follicular Melanocyte Transfer in Stable Vitiligo

    PubMed Central

    Donaparthi, Navya; Chopra, Ajay

    2016-01-01

    Background: Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHFORSCS) transplantation. The progressive development from one technique to the other is always on a quest for the best. In the latest development, EHFORSCS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitiligo. However, it needs to be explored further in larger, clinical trials. Methodology: A total of 11 patients with sixty stable vitiligo sites attending dermatology outpatient department were included for the open-labeled, prospective, comparative study. The sites were sequentially distributed into two groups of thirty each. Sites of one group were subjected to epidermal melanocyte transfer (EMT) and the others to hair follicular melanocyte transfer (HFMT). Response to treatment was evaluated on the basis of degree of repigmentation; final evaluation of area of involvement was done after completion of 6 months. Results: At the end of 6 months, repigmentation >90% was observed in 83.33% patches of EMT group and 43.33% in HFMT group. Repigmentation >75% was observed in 90% of patches in Group A and 43.34% of patches in Group B, respectively. There was statistically significant difference in the overall pigmentation between these two groups. Conclusion: Both noncultured autologous epidermal cell suspension transfer and noncultured EHFORSCS transfer are safe and effective surgical modalities in the management of stable vitiligo though EMT has shown a better response in the present study. Outer root sheath cell suspension transfer is a novel, minimally invasive technique in its nascent stage in the surgical management of vitiligo which requires further larger clinical trials for evaluation of its efficacy. PMID:27904182

  1. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].

    PubMed

    Dupin, Elisabeth

    2011-01-01

    Melanocytes, the pigmented cells of the skin, and the glial Schwann cells lining peripheral nerves are developmentally derived from an early and transient ectodermal structure of the vertebrate embryo, the neural crest, which is also at the origin of multiple neural and non-neural cell types. Besides melanocytes and neural cells of the peripheral nervous system, the neural crest cells give rise to mesenchymal cell types in the head, which form most of the craniofacial skeleton, dermis, fat tissue and vascular musculo-connective components. How such a wide diversity of differentiation fates is established during embryogenesis and is later maintained in adult tissues are among key questions in developmental and stem cell biology. The analysis of the developmental potentials of single neural crest cells cultured in vitro led to characterizing multipotent stem/progenitor cells as well as more restricted precursors in the early neural crest of avian and mammalian embryos. Data support a hierarchical model of the diversification of neural crest lineages through progressive restrictions of multipotent stem cell potentials driven by local environmental factors. In particular, melanocytes and glial Schwann cells were shown to arise from a common bipotent progenitor, which depends upon the peptide endothelin-3 for proliferation and self-renewal ability. In vivo, signaling by endothelin-3 and its receptor is also required for the early development of melanocytes and proper pigmentation of the vertebrate body. It is generally assumed that, after lineage specification and terminal differentiation, specialized cell types, like the melanocytes and Schwann cells, do not change their identity. However, this classic notion that somatic cell differentiation is a stable and irreversible process has been challenged by emerging evidence that dedifferentiation can occur in different biological systems through nuclear transfer, cell fusion, epigenetic modifications and ectopic gene

  2. Detailed histological structure of human hair follicle bulge region at different ages: a visible niche for nesting adult stem cells.

    PubMed

    Wang, Xiong; Shi, Ying; Zhou, Qiong; Liu, Xiaoming; Xu, Shizheng; Lei, Tiechi

    2012-10-01

    In the bulge region of the hair follicle, a densely and concentrically packed cell mass is encircled by the arrector pili muscle (APM), which offers a specilized microenvironment (niche) for housing heterogeneous adult stem cells. However, the detailed histological architecture and the cellular composition of the bulge region warrants intensive study and may have implications for the regulation of hair follicle growth regulation. This study was designed to define the gene-expression profiles of putative stem cells and lineage-specific precursors in the mid-portions of plucked hair follicles prepared according to the presence of detectable autofluorescence. The structure was also characterized by using a consecutive sectioning technique. The bulge region of the hair follicle with autofluorescence was precisely excised by employing a micro-dissection procedure. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to identify the gene expression profiles specific for epithelial, melanocyte and stromal stem cells in the bulge region of the hair follicle visualized by autofluorescence. The morphology and its age-dependent changes of bulge region of the hair follicles with autofluorescence segment were also examined in 9 scalp skin specimens collected from patients aged 30 weeks to 75 years, by serial sectioning and immuno-staining. Gene expression profile analysis revealed that there were cells with mRNA transcripts of Dct(Hi)Tyrase(Lo)-Tyrp1(Lo)MC1R(Lo)MITF(Lo)/K15(Hi)/NPNT(Hi) in the bulge region of the hair follicle with autofluorescence segments, which differed from the patterns in hair bulbs. Small cell-protrusions that sprouted from the outer root sheath (ORS) were clearly observed at the APM inserting level in serial sections of hair follicles by immunohistological staining, which were characteristically replete with K15+/K19+expressing cells. Likewise, the muscle bundles of APM positive for smooth muscle actin intimately

  3. Visualization of adult stem cells within their niches using the Drosophila germline as a model system.

    PubMed

    König, Annekatrin; Shcherbata, Halyna R

    2013-01-01

    The germaria of the fruit fly Drosophila melanogaster present an excellent model to study germline stem cell-niche interactions. Two to three adult stem cells are surrounded by a number of somatic cells that form the niche. Here we describe how Drosophilae germaria can be dissected and specifically immuno-stained to allow for identification and analysis of both the adult stem cells and their somatic niche cells.

  4. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  5. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-03

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  7. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    SciTech Connect

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular and subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.

  8. Genetics Home Reference: giant congenital melanocytic nevus

    MedlinePlus

    ... noncancerous skin patch (nevus) that is composed of pigment-producing cells called melanocytes . It is present from ... called neurocutaneous melanosis, which is the presence of pigment-producing skin cells (melanocytes) in the tissue that ...

  9. An Iterative Genetic and Dynamical Modelling Approach Identifies Novel Features of the Gene Regulatory Network Underlying Melanocyte Development

    PubMed Central

    Greenhill, Emma R.; Rocco, Andrea; Vibert, Laura; Nikaido, Masataka; Kelsh, Robert N.

    2011-01-01

    The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the

  10. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-08

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  11. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells.

    PubMed

    Silva-Vargas, Violeta; Lo Celso, Cristina; Giangreco, Adam; Ofstad, Tyler; Prowse, David M; Braun, Kristin M; Watt, Fiona M

    2005-07-01

    Using K14deltaNbeta-cateninER transgenic mice, we show that short-term, low-level beta-catenin activation stimulates de novo hair follicle formation from sebaceous glands and interfollicular epidermis, while only sustained, high-level activation induces new follicles from preexisting follicles. The Hedgehog pathway is upregulated by beta-catenin activation, and inhibition of Hedgehog signaling converts the low beta-catenin phenotype to wild-type epidermis and the high phenotype to low. beta-catenin-induced follicles contain clonogenic keratinocytes that express bulge markers; the follicles induce dermal papillae and provide a niche for melanocytes, and they undergo 4OHT-dependent cycles of growth and regression. New follicles induced in interfollicular epidermis are derived from that cellular compartment and not through bulge stem cell migration or division. These results demonstrate the remarkable capacity of adult epidermis to be reprogrammed by titrating beta-catenin and Hedgehog signal strength and establish that cells from interfollicular epidermis can acquire certain characteristics of bulge stem cells.

  12. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration.

  13. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  14. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed Central

    2013-01-01

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed. PMID:24476362

  15. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization

    PubMed Central

    Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song

    2017-01-01

    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739

  16. Adult stem cel diferentiation and trafficking and their implications in disease.

    PubMed

    Zhuge, Ying; Liu, Zhao-Jun; Velazquez, Omaida C

    2010-01-01

    Stem cells are unspecialized precursor cells that mainly reside in the bone marrow and have important roles in the establishment of embryonic tissue. They also have critical functions during adulthood, where they replenish short-lived mature effector cells and regeneration of injured tissue. They have three main characteristics: self-renewal, differentiation and homeostatic control. In order to maintain a pool of stem cells that support the production of blood cells, stromal elements and connective tissue, stem cells must be able to constantly replenish their own number. They must also possess the ability to differentiate and give rise to a heterogeneous group of functional cells. Finally, stem cells must possess the ability to modulate and balance differentiation and self-renewal according to environmental stimuli and whole-organ needs to prevent the production of excessive number of effector cells.(1) In addition to formation of these cells, regulated movement of stem cells is critical for organogenesis, homeostasis and repair in adulthood. Stem cells require specific inputs from particular environments in order to perform their various functions. Some similar trafficking mechanisms are shared by leukocytes, adult and fetal stem cells, as well as cancer stem cells.(1,2) Achieving proper trafficking of stem cells will allow increased efficiency of targeted cell therapy and drug delivery.(2) In addition, understanding similarities and differences in homing and migration of malignant cancer stem cells will also clarify molecular events of tumor progression and metastasis.(2) This chapter focuses on the differentiation, trafficking and homing of the major types of adult bone marrow stem cells: hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) and the term"stem cell" will refer to "adult stem cells" unless otherwise specified.

  17. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  18. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  19. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  20. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  1. NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model.

    PubMed

    Larribere, Lionel; Wu, Huizi; Novak, Daniel; Galach, Marta; Bernhardt, Mathias; Orouji, Elias; Weina, Kasia; Knappe, Nathalie; Sachpekidis, Christos; Umansky, Ludmila; Beckhove, Philipp; Umansky, Viktor; De Schepper, Sofie; Kaufmann, Dieter; Ballotti, Robert; Bertolotto, Corine; Utikal, Jochen

    2015-07-01

    Neurofibromatosis type 1 (NF1) is a frequent genetic disease leading to the development of Schwann cell-derived neurofibromas or melanocytic lesions called café-au-lait macules (CALMs). The molecular mechanisms involved in CALMs formation remain largely unknown. In this report, we show for the first time pathophysiological mechanisms of abnormal melanocyte differentiation in a human NF1(+/-) -induced pluripotent stem cell (iPSC)-based model. We demonstrate that NF1 patient-derived fibroblasts can be successfully reprogrammed in NF1(+/-) iPSCs with active RAS signaling and that NF1 loss induces senescence during melanocyte differentiation as well as in patient's-derived CALMs, revealing a new role for NF1 in the melanocyte lineage.

  2. Classification of melanocytic skin lesions from non-melanocytic lesions.

    PubMed

    Iyatomi, Hitoshi; Norton, Kerri-Ann; Celebi, M; Schaefer, Gerald; Tanaka, Masaru; Ogawa, Koichi

    2010-01-01

    In this paper, we present a classification method of dermoscopy images between melanocytic skin lesions (MSLs) and non-melanocytic skin lesions (NoMSLs). The motivation of this research is to develop a pre-processor of an automated melanoma screening system. Since NoMSLs have a wide variety of shapes and their border is often ambiguous, we developed a new tumor area extraction algorithm to account for these difficulties. We confirmed that this algorithm is capable of handling different dermoscopy images not only those of NoMSLs but also MSLs as well. We determined the tumor area from the image using this new algorithm, calculated a total 428 features from each image, and built a linear classifier. We found only two image features, "the skewness of bright region in the tumor along its major axis" and "the difference between the average intensity in the peripheral part of the tumor and that in the normal skin area using the blue channel" were very efficient at classifying NoMSLs and MSLs. The detection accuracy of MSLs by our classifier using only the above mentioned image feature has a sensitivity of 98.0% and a specificity of 86.6% in a set of 107 non-melanocytic and 548 melanocytic dermoscopy images using a cross-validation test.

  3. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells.

    PubMed

    Emsley, Jason G; Mitchell, Bartley D; Kempermann, Gerd; Macklis, Jeffrey D

    2005-04-01

    Recent work in neuroscience has shown that the adult central nervous system contains neural progenitors, precursors, and stem cells that are capable of generating new neurons, astrocytes, and oligodendrocytes. While challenging previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them future possibilities for the development of novel neural repair strategies. The purpose of this review is to present current knowledge about constitutively occurring adult mammalian neurogenesis, to highlight the critical differences between "neurogenic" and "non-neurogenic" regions in the adult brain, and to describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system, and the dentate gyrus of the hippocampus. We also provide an overview of currently used models for studying neural precursors in vitro, mention some precursor transplantation models, and emphasize that, in this rapidly growing field of neuroscience, one must take caution with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims toward molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what the function might be of newly generated neurons in the adult brain and provide a summary of current thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.

  4. Dermoscopic features of congenital melanocytic nevus and Becker nevus in an adult male population: an analysis with a 10-fold magnification.

    PubMed

    Ingordo, Vito; Iannazzone, Silvia S; Cusano, Francesco; Naldi, Luigi

    2006-01-01

    Dermoscopic features of congenital melanocytic nevi (CMN) have been mostly assessed by high-resolution video-dermoscopy. However, optical dermoscopy with the 10-fold magnification is largely available. In some instances, the differential diagnosis between large CMN and Becker nevus (BN) may be difficult. The aims of this work were: (1) to assess by dermoscopy with the 10-fold magnification the morphological features which have been previously suggested as useful for the identification of CMN in high-resolution video-dermoscopy; (2) to search and point out the dermoscopic features of BN; (3) to explore dermoscopic differences between CMN and BN. The subjects were observed among about 23,000 consecutive young men assessed at the Draft Council's Medical Unit of the Italian Navy in Taranto for compulsory recruitment and referred to the Department of Dermatology of the Italian Navy Hospital for dermatological examination. Lesions were examined by the same observer using a dermatoscope with a 10-fold magnification, and both the dermoscopic criteria stated by the international Consensus Net Meeting on Dermoscopy and dermoscopic features previously suggested as useful for the identification of CMN by video-dermoscopy were recorded in a predisposed patient's card. There were 127 male subjects, median age 19 years, with 127 CMN, measuring > or = 1.5 to < or = 19.9 cm in 78% and > or = 20 cm in 22% of cases, and 64 male subjects, median age 19 years, with 64 BN. In the sample of medium-sized and large CMN, dermoscopic features previously identified as characteristic of congenital lesions (i.e. target network, focal thickening of network lines, target globules, skin furrow hypopigmentation, focal hypopigmentation, hair follicles, perifollicular hypopigmentation, vessels and target vessels) were observed in sufficiently high rates. In the BN group, network, focal hypopigmentation, skin furrow hypopigmentation, hair follicles, perifollicular hypopigmentation and vessels were the

  5. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    PubMed Central

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  6. Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations

    PubMed Central

    Harris, Lachlan; Genovesi, Laura A.; Gronostajski, Richard M.; Wainwright, Brandon J.; Piper, Michael

    2014-01-01

    Nuclear factor one (NFI) transcription factors are a group of site-specific DNA-binding proteins that are emerging as critical regulators of stem cell biology. During development NFIs promote the production of differentiated progeny at the expense of stem cell fate, with Nfi null mice exhibiting defects such as severely delayed brain and lung maturation, skeletomuscular defects and renal abnormalities, phenotypes that are often consistent with patients with congenital Nfi mutations. Intriguingly, recent research suggests that in adult tissues NFI factors play a qualitatively different role than during development, with NFIs serving to promote the survival and maintenance of slow-cycling adult stem cell populations rather than their differentiation. Here we review the role of NFI factors in development, largely focusing on their role as promoters of stem cell differentiation, and attempt to reconcile this with the emerging role of NFIs in adult stem cell niches. PMID:25156673

  7. Isolation and cultivation of canine uveal melanocytes.

    PubMed

    Dawson-Baglien, Ethan M; Winkler, Paige A; Bruewer, Ashlee R; Petersen-Jones, Simon M; Bartoe, Joshua T

    2015-07-01

    To establish a method for isolation and culture of canine uveal melanocytes. Uveal explants from five mixed-breed dogs. Donor globes were dissected, and the anterior uvea removed. The uveal explants were placed in trypsin solution for enzymatic digestion. Extracted cells were cultured in modified F12 media. Immunocytochemistry was performed to confirm the identity of the extracted cells. Melanocytes were successfully isolated from uveal explants. Contaminating cell types were not observed. Repeated passaging of the melanocytes resulted in a gradual decrease in intracellular pigment. Melanocyte cell lines could be cryopreserved, thawed, and cultures successfully reestablished. This extraction technique allows for generation of large populations of canine uveal melanocytes in a relatively short period of time. This technique could be a useful tool for future studies investigating both normal cellular characteristics and alterations found in melanocytes from dogs with ocular melanocytic disorders. © 2014 American College of Veterinary Ophthalmologists.

  8. Neuroendocrine activity of the melanocyte

    PubMed Central

    Slominski, Andrzej

    2009-01-01

    More than 15 years ago, we have proposed that melanocytes are sensory and regulatory cells with computing capability, which transform external and/or internal signals/energy into organized regulatory network(s) for the maintenance of the cutaneous homeostasis. This concept is substantiated by accumulating evidence that melanocytes produce classical stress neurotransmitters, neuropeptides and hormones, express corresponding receptors and these processes are modified and/or regulated by ultraviolet radiation, biological factors or stress. Examples of the above are catecholamines, serotonin, N-acetyl-serotonin, melatonin, proopiomelanocortin-derived adrenocorticotropic hormone, β-endorphin or melanocyte-stimulating hormone peptides, corticotropin releasing factor, related urocortins and corticosteroids including cortisol and corticosterone as well as their precursors. Furthermore, their production is not random, but hierarchical and follows the structures of classical neuroendocrine organizations such as hypothalamic-pituitary-adrenal axis, serotoninergic, melatoninergic and catecholaminergic systems. An example of an intrinsic but overlooked neuroendocrine activity is production and secretion of melanogenesis intermediates including L-DOPA or its derivatives that could enter circulation and act on distant sites. Such capabilities have defined melanocytes as neuroendocrine cells that not only coordinate cutaneous but also can affect a global homeostasis. PMID:19558501

  9. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  10. Adult stem cells in neural repair: Current options, limitations and perspectives.

    PubMed

    Mariano, Eric Domingos; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi; Lepski, Guilherme

    2015-03-26

    Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.

  11. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms.

    PubMed

    Prockop, Darwin J

    2009-06-01

    Research on stem cells has progressed at a rapid pace and, as might be anticipated, the results have generated several controversies, a few myths and a change in a major paradigm. Some of these issues will be reviewed in this study with special emphasis on how they can be applied to the adult stem/progenitor cells from bone marrow, referred to as MSCs.

  12. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.

  13. Epistatic adult plant resistance in wheat to stem rust cosegregates with Sr12 seedling resistance

    USDA-ARS?s Scientific Manuscript database

    Wheat adult plant resistance (APR) to stem rust is desirable. Researchers have characterized the inheritance of APR in cultivar Thatcher as complex. In order to identify the loci providing APR in Thatcher, we evaluated 160 RILs derived from Thatcher/McNeal for stem rust reaction in the field in Keny...

  14. Therapy of melanocytic conjunctival tumors.

    PubMed

    Halas, Jr M; Svetlosakova, Z; Babal, P

    2013-01-01

    Clinical experience of our single center in dealing with pigmented epibulbar lesions - melanocytic conjunctival tumors is presented. Since 2008 we use the topical treatment with mitomycin C (MMC) as an alternative or adjunctive method for excision in the treatment of melanocytic neoplasia of the conjunctiva. The retrospective case series of 85 patients with pigmented lesions of the conjunctiva - melanocytic conjunctival tumors, histopathologically examined in the period 2001-2010 is presented. Since 2008 we started to apply MMC in the treatment of primary acquired melanosis (PAM) and dysplastic nevi. We apply MMC topically directly after an excision as 2-times five minutes application. In 85 patients with pigmented lesions of the conjunctiva histopathological findings after excision of the lesion showed in 68 (80 %) cases melanocytic nevocelullar nevus, out of which 55 cases were combined and 13 cases were junctional nevi. In 60 (80 %) cases of melanocytic nevi atypia was found in 25 patients (42 %), nevus without atypia was present in 35 cases (58 %). PAM with atypia was found in 16 patients (classified since 2000). During the period of application of MMC we diagnosed only one patient with primary conjunctival melanoma. There was no presence of relapse of the pigmented lesion either after primary excision or after excision with MMC. Resection of more than one quadrant of bulbar conjunctiva in patients with pigmented lesions of the conjunctiva in cases of conjunctival nevus with atypia and PAM with atypia combined with topical MMC chemotherapy is an alternative therapy for residual pigmented lesions. There was no presence of relapse of pigmentation in area of excision with or without using MMC during the surgery in patients with PAM. The number of our patients is not sufficient yet to draw a conclusion (Fig. 6, Ref. 21).

  15. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders

    PubMed Central

    Nixon, K.; Morris, S.A.; Liput, D.J.; Kelso, M.L.

    2009-01-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescent. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders, the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently between the age groups. And finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an alcohol use disorder. PMID:20113873

  16. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders.

    PubMed

    Nixon, Kimberly; Morris, Stephanie A; Liput, Daniel J; Kelso, Matthew L

    2010-02-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.

  17. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM.

    PubMed

    Ng, Chee Ping; Sharif, Abdul Rahim Mohamed; Heath, Daniel E; Chow, John W; Zhang, Claire B Y; Chan-Park, Mary B; Hammond, Paula T; Chan, Jerry K Y; Griffith, Linda G

    2014-04-01

    Large-scale expansion of highly functional adult human mesenchymal stem cells (aMSCs) remains technologically challenging as aMSCs lose self renewal capacity and multipotency during traditional long-term culture and their quality/quantity declines with donor age and disease. Identification of culture conditions enabling prolonged expansion and rejuvenation would have dramatic impact in regenerative medicine. aMSC-derived decellularized extracellular matrix (ECM) has been shown to provide such microenvironment which promotes MSC self renewal and "stemness". Since previous studies have demonstrated superior proliferation and osteogenic potential of human fetal MSCs (fMSCs), we hypothesize that their ECM may promote expansion of clinically relevant aMSCs. We demonstrated that aMSCs were more proliferative (∼ 1.6 ×) on fMSC-derived ECM than aMSC-derived ECMs and traditional tissue culture wares (TCPS). These aMSCs were smaller and more uniform in size (median ± interquartile range: 15.5 ± 4.1 μm versus 17.2 ± 5.0 μm and 15.5 ± 4.1 μm for aMSC ECM and TCPS respectively), exhibited the necessary biomarker signatures, and stained positive for osteogenic, adipogenic and chondrogenic expressions; indications that they maintained multipotency during culture. Furthermore, fMSC ECM improved the proliferation (∼ 2.2 ×), size (19.6 ± 11.9 μm vs 30.2 ± 14.5 μm) and differentiation potential in late-passaged aMSCs compared to TCPS. In conclusion, we have established fMSC ECM as a promising cell culture platform for ex vivo expansion of aMSCs.

  18. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi.

    PubMed

    Margaryan, Naira V; Gilgur, Alina; Seftor, Elisabeth A; Purnell, Chad; Arva, Nicoleta C; Gosain, Arun K; Hendrix, Mary J C; Strizzi, Luigi

    2016-03-22

    Expression of Nodal, a Transforming Growth Factor-beta (TGF-β) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro

  19. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine.

  20. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Isolation, cultivation, and characterization of adult murine prostate stem cells

    PubMed Central

    Lukacs, Rita U.; Goldstein, Andrew S.; Lawson, Devon A.; Cheng, Donghui; Witte, Owen N.

    2010-01-01

    ABSTRACT/SUMMARY The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; the cultivation of prostate stem cells in vitro; and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally it will take approximately 8 hours to harvest prostate cells, isolate the stem cell enriched population, and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo. PMID:20360765

  2. Isolation, cultivation and characterization of adult murine prostate stem cells.

    PubMed

    Lukacs, Rita U; Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Witte, Owen N

    2010-04-01

    The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.

  3. CRIPTO/GRP78 Signaling Maintains Fetal and Adult Mammary Stem Cells Ex Vivo

    PubMed Central

    Spike, Benjamin T.; Kelber, Jonathan A.; Booker, Evan; Kalathur, Madhuri; Rodewald, Rose; Lipianskaya, Julia; La, Justin; He, Marielle; Wright, Tracy; Klemke, Richard; Wahl, Geoffrey M.; Gray, Peter C.

    2014-01-01

    Summary Little is known about the extracellular signaling factors that govern mammary stem cell behavior. Here, we identify CRIPTO and its cell-surface receptor GRP78 as regulators of stem cell behavior in isolated fetal and adult mammary epithelial cells. We develop a CRIPTO antagonist that promotes differentiation and reduces self-renewal of mammary stem cell-enriched populations cultured ex vivo. By contrast, CRIPTO treatment maintains the stem cell phenotype in these cultures and yields colonies with enhanced mammary gland reconstitution capacity. Surface expression of GRP78 marks CRIPTO-responsive, stem cell-enriched fetal and adult mammary epithelial cells, and deletion of GRP78 from adult mammary epithelial cells blocks their mammary gland reconstitution potential. Together, these findings identify the CRIPTO/GRP78 pathway as a developmentally conserved regulator of fetal and adult mammary stem cell behavior ex vivo, with implications for the stem-like cells found in many cancers. PMID:24749068

  4. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.

  5. Arsenic, Stem Cells, and the Developmental Basis of Adult Cancer

    PubMed Central

    Tokar, Erik J.; Qu, Wei; Waalkes, Michael P.

    2011-01-01

    That chemical insults or nutritive changes during in utero and/or postnatal life can emerge as diseases much later in life are now being accepted as a recurring phenomenon. In this regard, inorganic arsenic is a multisite human carcinogen found at high levels in the drinking water of millions of people, although it has been difficult until recently to produce tumors in rodents with this metalloid. A mouse transplacental model has been developed where maternal exposure to inorganic arsenic either acts as a complete carcinogen or enhances carcinogenic response to other agents given subsequently in the offspring, producing tumors during adulthood. Similarly, human data now have emerged showing that arsenic exposure during the in utero period and/or in early life is associated with cancer in adulthood. The mouse arsenic transplacental model produces tumors or enhances response to other agents in multiple strains and tissues, including sites concordant with human targets of arsenic carcinogenesis. It is now believed that cancer often is a stem cell (SC)–based disease, and there is no reason to think cancer induced by developmental chemical exposure is any different. Indeed, arsenic impacts human SC population dynamics in vitro by blocking exit into differentiation pathways and whereby creating more key targets for transformation. In fact, during in vitro malignant transformation, arsenic causes a remarkable survival selection of SCs, creating a marked overabundance of cancer SCs (CSCs) compared with other carcinogens once a cancer phenotype is obtained. In addition, skin cancers produced following in utero arsenic exposure in mice are highly enriched in CSCs. Thus, arsenic impacts key, long-lived SC populations as critical targets to cause or facilitate later oncogenic events in adulthood as a possible mechanism of developmental basis of adult disease. PMID:21071725

  6. Does the adult human ciliary body epithelium contain "true" retinal stem cells?

    PubMed

    Frøen, Rebecca; Johnsen, Erik O; Nicolaissen, Bjørn; Facskó, Andrea; Petrovski, Goran; Moe, Morten C

    2013-01-01

    Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.

  7. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    PubMed

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  8. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  9. Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes.

    PubMed

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2013-01-01

    Hydroquinone (HQ) is a chemical compound that inhibits the functions of melanocytes and has long been known for its skin-whitening effect. According to previous studies, the Tyrosinase (Tyr) activity inhibitory effect and melanocyte-specific cell toxicity are known depigmenting mechanisms; however, details of the underlying mechanisms are unknown. Arbutin (Arb) is also known for its Tyr activity inhibitory effect and is commonly used as a skin-whitening agent. However, the detailed depigmenting mechanism of Arb is also not yet fully understood. Few studies have attempted to elucidate the effects of HQ and Arb on undifferentiated melanocytes. In this study, we examined the effects of HQ and Arb throughout each stage of differentiation of melanocytes using a mouse embryonic stem cell (ESC) culture system to induce melanocytes. The results showed that HQ in particular downregulated the early stage of differentiation, in which neural crest cells were generated, and the late stage of differentiation, in which melanogenesis became active. On the other hand, Arb had no effect on the differentiation of melanocytes, and only suppressed melanogenesis by specifically suppressing elevations in Tyr expression in the late stage of differentiation.

  10. Adult-derived stem cells and their potential for use in tissue repair and molecular medicine.

    PubMed

    Young, Henry E; Duplaa, Cecile; Katz, Ryan; Thompson, Tina; Hawkins, Kristina C; Boev, Angel N; Henson, Nicholas L; Heaton, Matthew; Sood, Rajiv; Ashley, Dennis; Stout, Christopher; Morgan, Joe H; Uchakin, Peter N; Rimando, Marylen; Long, Gypsy F; Thomas, Crystal; Yoon, Jee-In; Park, Ji Eun; Hunt, Darren J; Walsh, Nancy M; Davis, Josh C; Lightner, Joel E; Hutchings, Anna M; Murphy, Meredith L; Boswell, Elizabeth; McAbee, Jessica A; Gray, Brandon M; Piskurich, Janet; Blake, Lisa; Collins, Julie A; Moreau, Catherine; Hixson, Douglas; Bowyer, Frank P; Black, Asa C

    2005-01-01

    This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine.

  11. Sox10 regulates skin melanocyte proliferation by activating the DNA replication licensing factor MCM5.

    PubMed

    Su, Zhongyuan; Zheng, Xiaozi; Zhang, Xiaobo; Wang, Yipin; Zhu, Shanpu; Lu, Fan; Qu, Jia; Hou, Ling

    2017-03-01

    The control of cell proliferation is a fundamental aspect of tissue formation in development and regeneration. A cell type that illustrates this point particularly well is the neural crest-derived melanocyte, the pigment cell of vertebrates, as melanocytes can be followed easily during development and their pigment is directly visible in the integument of the adult. In mammals, melanocytes undergo physiological cycles of loss and proliferative regeneration during the hair cycle, and their proliferation is also critical during wound healing, repigmentation of depigmented lesions, and in melanoma formation and progression. Hence, a thorough analysis of the molecular parameters controlling melanocyte proliferation is crucial for our understanding of the physiology of this cell type both in health and disease. SOX10 is a critical regulator in melanocytes and melanoma cells, but its specific role in their proliferation is far from clear. In this study we analyze the role of SOX10 in regulating mammalian melanocyte proliferation in a mouse model. The role of SOX10 in melanoblast proliferation was analyzed in Sox10/+ mice by co-staining for melanocyte-specific markers and cell proliferation. In vitro, the role of SOX10 was studied by manipulating its levels using RNAi and analyzing the effects on DNA synthesis and cell growth and on gene expression at the RNA and protein levels. Reduction of Sox10 gene dose led to a reduction in the number of melanoblasts. Knockdown of Sox10 in melanocytes led to inhibition of cell proliferation and a decrease in the expression of the minichromosome maintenance complex component 5 (MCM5). In fact, SOX10 directly activated MCM5 transcription by binding to conserved SOX10 consensus DNA sequences in the MCM5 promoter. Furthermore, the defect in cell proliferation could be rescued partially by overexpression of MCM5 in Sox10 knockdown melanocytes. The results suggest that the SOX10-MCM5 axis plays an important role in controlling melanocyte

  12. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study.

    PubMed

    McNulty, Margaret A; Virdi, Amarjit S; Christopherson, Kent W; Sena, Kotaro; Frank, Robin R; Sumner, Dale R

    2012-09-01

    Stem cell mobilization, which is defined as the forced egress of stem cells from the bone marrow to the peripheral blood (PB) using chemokine receptor agonists, is an emerging concept for enhancing tissue regeneration. However, the effect of stem cell mobilization by a single injection of the C-X-C chemokine receptor type 4 (CXCR4) antagonist AMD3100 on intramembranous bone regeneration is unclear. We therefore asked: Does AMD3100 mobilize adult stem cells in C57BL/6 mice? Are stem cells mobilized to the PB after marrow ablation? And does AMD3100 enhance bone regeneration? Female C57BL/6 mice underwent femoral marrow ablation surgery alone (n = 25), systemic injection of AMD3100 alone (n = 15), or surgery plus AMD3100 (n = 57). We used colony-forming unit assays, flow cytometry, and micro-CT to investigate mobilization of mesenchymal stem cells, endothelial progenitor cells, and hematopoietic stem cells to the PB and bone regeneration. AMD3100 induced mobilization of stem cells to the PB, resulting in a 40-fold increase in mesenchymal stem cells. The marrow ablation injury mobilized all three cell types to the PB over time. Administration of AMD3100 led to a 60% increase in bone regeneration at Day 21. A single injection of a CXCR4 antagonist lead to stem cell mobilization and enhanced bone volume in the mouse marrow ablation model of intramembranous bone regeneration.

  13. ADULT NEURAL STEM CELLS: RESPONSE TO STROKE INJURY AND POTENTIAL FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Barkho, Basam Z.; Zhao, Xinyu

    2011-01-01

    The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries. PMID:21466483

  14. Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in Menstrual Blood

    PubMed Central

    Allickson, Julie G.; Sanchez, Anthony; Yefimenko, Natalie; Borlongan, Cesar V.; Sanberg, Paul R.

    2011-01-01

    We are in the beginning of the era of regenerative medicine and many researchers are testing adult stem cells to be used for tissue repair and regeneration in the human body. Many adult stem cells have been discovered since the late 1990’s with more recently a novel adult stem cell described in menstrual blood. The menstrual blood is derived from shedding of the endometrial lining, specifically the functionalis layer, which contains highly proliferative cells used to prepare the female body for implementation of a fertilized egg. Cell characterization experiments of stromal stem cells discovered in menstrual blood have demonstrated cells to be multipotent which can successfully differentiate in vitro into cell lineages derived from the mesoderm and the ectoderm. When menstrual blood cells were seeded in culture the average number of adherent cells was 8.50 % with a range of 0.48% to 47.76%. Demonstrating longevity one cell line allowed to grow was subcultured 47 times before complete senescence and death. The menstrual blood stromal stem cell phenotypic analysis incorporates mesenchymal cell markers such as CD13, CD29, CD44, CD49f, CD73, CD90, CD105, CD166, MHC Class I and pluripotent embryonic stem cell markers SSEA-4, Nanog and Oct-4. Karyotypic analysis demonstrated the maintenance of diploid cells without chromosomal abnormalities. In conclusion preliminary studies have demonstrated menstrual stem cells are easily expandable to clinical relevance. Pivotal pre-clinical studies are now underway to test the safety and efficacy of menstrual stem cells in several different animal models including one for neuroprotection following transplantation into an experimental stroke model. The study demonstrates menstrual stem cells are a novel cell population that may be routinely and safely isolated to provide a renewable source of stem cells from child-bearing women. PMID:21686032

  15. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver.

    PubMed

    Lee, J-H; Park, H-J; Kim, Y-A; Lee, D-H; Noh, J-K; Kwon, C H D; Jung, S-M; Lee, S-K

    2012-05-01

    Liver transplantation is the only effective treatment for end-stage liver disease. Because of the limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult liver contains hepatic stem cells is highly controversial. Several studies have suggested the presence of stem cells in the adult normal human liver. However, a population with stem cell properties has not yet been isolated. The purpose of this study was to identify and characterize progenitor cells in normal adult human liver. We isolated and expanded human liver stem cells (HLSCs) from a donated liver not suitable for liver transplantation or characterizing them by fluorescence-activated cell sorter, polymerase chain reaction, and immunofluorescence assay. HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, CD90, CD105, and CD166 but not the hematopoietic stem cell markers CD34, CD45, and CD117. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed CD26, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. We concluded that HLSCs expressed several mesenchymal but not hematopoietic stem cell markers as well as CD26 and CK18, indicating a partial commitment to hepatic cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  17. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    PubMed

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  18. Adult stem cell therapies for neurological disorders: benefits beyond neuronal replacement?

    PubMed

    Boucherie, Cédric; Hermans, Emmanuel

    2009-05-15

    The modest capacity of endogenous repair processes in the central nervous system (CNS) justifies the broad interest in the development of effective stem cell based therapies for neurodegenerative disorders and other acute or chronic lesions. Motivated by the ambitious expectation to achieve functional neuronal replacement, several studies have already evidenced a potential benefit of stem cell grafts in animal models of human disorders. Nevertheless, growing evidence suggests that the effects orchestrated by stem cells, in most experimental cases, are not necessarily associated with the generation of new neurons. This hypothesis correlates with the versatile properties of adult and embryonic stem cells. When introduced into the lesioned CNS, nondifferentiated stem cells can have a positive influence through intrinsic neuroprotective capacities related to the production of neurotrophic factors, stimulation of endogenous neurogenesis, and modulation of neuroinflammation. Stem cells are also endowed with a multipotent differentiation profile, suggesting that a positive outcome could result from the replacement of nonneuronal cell types, in particular astrocytes and oligodendrocytes. Focusing on adult stem cells, this Review aims at summarizing experimental observations supporting the concept that, in cell-based therapies, stem cells operate not through a unidirectional mechanism (e.g., generating neurons) but rather as cellular mediators of a multitude of biological activities that could provide a favorable outcome for diverse nervous disorders. Copyright 2008 Wiley-Liss, Inc.

  19. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages

    PubMed Central

    Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal. PMID:20040488

  20. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies.

    PubMed

    Mimeault, Murielle; Batra, Surinder K

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.

  1. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila.

    PubMed

    Ma, Meifang; Zhao, Hang; Zhao, Hanfei; Binari, Richard; Perrimon, Norbert; Li, Zhouhua

    2016-03-15

    Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.

  2. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  3. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    PubMed

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.

  4. Intrinsic Ability of Adult Stem Cell in Skeletal Muscle: An Effective and Replenishable Resource to the Establishment of Pluripotent Stem Cells

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2013-01-01

    Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications. PMID:23818907

  5. Induction of steroidogenic cells from adult stem cells and pluripotent stem cells [Review].

    PubMed

    Yazawa, Takashi; Imamichi, Yoshitaka; Miyamoto, Kaoru; Khan, Md Rafiqul Islam; Uwada, Junsuke; Umezawa, Akihiro; Taniguchi, Takanobu

    2016-11-30

    Steroid hormones are mainly produced in adrenal glands and gonads. Because steroid hormones play vital roles in various physiological processes, replacement of deficient steroid hormones by hormone replacement therapy (HRT) is necessary for patients with adrenal and gonadal failure. In addition to HRT, tissue regeneration using stem cells is predicted to provide novel therapy. Among various stem cell types, mesenchymal stem cells can be differentiated into steroidogenic cells following ectopic expression of nuclear receptor (NR) 5A subfamily proteins, steroidogenic factor-1 (also known as adrenal 4 binding protein) and liver receptor homolog-1, with the aid of cAMP signaling. Conversely, these approaches cannot be applied to pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, because of poor survival following cytotoxic expression of NR5A subfamily proteins. However, if pluripotent stem cells are first differentiated through mesenchymal lineage, they can also be differentiated into steroidogenic cells via NR5A subfamily protein expression. This approach offers a potential suitable cells for future regenerative medicine and gene therapy for diseases caused by steroidogenesis deficiencies. It represents a powerful tool to investigate the molecular mechanisms involved in steroidogenesis. This article highlights our own and current research on the induction of steroidogenic cells from various stem cells. We also discuss the future direction of their clinical application.

  6. Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells.

    PubMed

    Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C

    2015-11-01

    Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  7. Adult stem cell-based tissue engineered blood vessels: a review.

    PubMed

    Krawiec, Jeffrey T; Vorp, David A

    2012-04-01

    With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for a small-diameter (<6 mm inner diameter) vascular graft that can provide long-term patency. Tissue engineering provides a very promising solution to this need. Approaches utilizing adult stem cells can address limitations previously realized in the use of terminally differentiated vascular cells, without introducing the ethical concerns that continue to limit the exploration and use of embryonic stem cells. This review summarizes the exciting work that has been reported on the application of adult stem cells to tissue engineered vascular grafts. Work in this area to date has employed bone marrow mononuclear progenitor cells, mesenchymal stem cells from various sources, and endothelial precursor cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Typography manipulations can affect priming of word stem completion in older and younger adults.

    PubMed

    Gibson, J M; Brooks, J O; Friedman, L; Yesavage, J A

    1993-12-01

    The experiments reported here investigated whether changes of typography affected priming of word stem completion performance in older and younger adults. Across all experiments, the typeface in which a word appeared at presentation either did or did not match that of its 3-letter stem at test. In Experiment 1, no significant evidence of a typography effect was found when words were presented with a sentence judgment or letter judgment task. However, subsequent experiments revealed that, in both older and younger adults, only words presented with a syllable judgment task gave rise to the typography effect (Experiments 2-4). Specifically, performance was greater, when the presentation and test typeface matched than when they did not. Experiment 5, which used stem-cued recall, did not reveal a difference between syllable and letter judgment tasks. These findings highlight the complex nature of word stem completion performance.

  9. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  10. Adult stem cell and mesenchymal progenitor theories of aging.

    PubMed

    Fukada, So-Ichiro; Ma, Yuran; Uezumi, Akiyoshi

    2014-01-01

    Advances in medical science and technology allow people live longer lives, which results in age-related problems. Humans cannot avoid the various aged-related alterations of aging; in other words, humans cannot remain young at molecular and cellular levels. In 1956, Harman proposed the "free radical theory of aging" to explain the molecular mechanisms of aging. Telomere length, and accumulation of DNA or mitochondrial damage are also considered to be mechanisms of aging. On the other hand, stem cells are essential for maintaining tissue homeostasis by replacing parenchymal cells; therefore, the stem cell theory of aging is also used to explain the progress of aging. Importantly, the stem cell theory of aging is likely related to other theories. In addition, recent studies have started to reveal the essential roles of tissue-resident mesenchymal progenitors/stem cells/stromal cells in maintaining tissue homeostasis, and some evidence of their fundamental roles in the progression of aging has been presented. In this review, we discuss how stem cell and other theories connect to explain the progress of aging. In addition, we consider the mesenchymal progenitor theory of aging to describing the process of aging.

  11. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft.

    PubMed

    Pelus, L M; Fukuda, S

    2008-03-01

    Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.

  12. GI tract tumors with melanocytic differentiation.

    PubMed

    Karamchandani, Dipti M; Patil, Deepa T; Goldblum, John R

    2013-11-01

    Gastrointestinal (GI) tract tumors with melanocytic differentiation may present significant diagnostic challenges both for the pathologist and the clinician. This comprehensive review discusses the relatively common as well as rare entities that have melanocytic differentiation in the GI tract. Clinical, histologic, immunohistochemical and molecular features are discussed along with prognosis and differential diagnosis.

  13. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse.

  14. Melanocytic naevi clustered on normal background skin.

    PubMed

    Torchia, D

    2015-04-01

    Several types of maculopapular melanocytic naevi can occur in a multiple form, and be arranged in a nonrandom fashion on the skin. The most frequently reported segmentally grouped naevi are lentigines. Two types of segmentally arranged lentigines probably exist. The first is associated with neurofibromatosis (NF)1 or NF1 signs, features scattered light-brown lesions and can be considered a type of mosaic NF1. By contrast, non-NF1 associated lesions are characterized by densely packed, dark lesions, and can be defined as 'non-NF1 checkerboard-arranged lentigines'. Blue naevi, Spitz naevi and common acquired melanocytic naevi can occur, clustered in an agminated (or cannonball) shape. However, if large enough, they always follow a checkerboard pattern. Hence, such mosaic conditions should be termed 'checkerboard-arranged blue naevi', 'checkerboard-arranged Spitz naevi' and 'checkerboard-arranged common acquired melanocytic naevi'. Segmentally arranged dysplastic melanocytic naevi probably represent a mosaic form of dysplastic naevus syndrome. Dysplastic melanocytic naevi confined to a cutaneous segment could be defined as 'isolated segmental dysplastic naevus syndrome', while segmentally arranged dysplastic melanocytic naevi co-occurring with widespread, nonsegmental dysplastic melanocytic naevi might configure a 'superimposed segmental dysplastic naevus syndrome'. Small congenital melanocytic naevi are always grouped along Blaschko lines. The only other instances following Blaschko lines are the so-called 'linear lentiginous naevus' and a unique case of multiple deep penetrating naevi.

  15. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  16. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    PubMed

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration.

  17. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development.

    PubMed

    Matsuda, Hiroki; Shi, Yun-Bo

    2010-11-01

    Organ-specific adult stem cells are critical for the homeostasis of adult organs and organ repair and regeneration. Unfortunately, it has been difficult to investigate the origins of these stem cells and the mechanisms of their development, especially in mammals. Intestinal remodeling during frog metamorphosis offers a unique opportunity for such studies. During the transition from an herbivorous tadpole to a carnivorous frog, the intestine is completely remodeled as the larval epithelial cells undergo apoptotic degeneration and are replaced by adult epithelial cells developed de novo. The entire metamorphic process is under the control of thyroid hormone, making it possible to control the development of the adult intestinal stem cells. Here, we show that the thyroid hormone receptor-coactivator protein arginine methyltransferase 1 (PRMT1) is upregulated in a small number of larval epithelial cells and that these cells dedifferentiate to become the adult stem cells. More importantly, transgenic overexpression of PRMT1 leads to increased adult stem cells in the intestine, and conversely, knocking down the expression of endogenous PRMT1 reduces the adult stem cell population. In addition, PRMT1 expression pattern during zebrafish and mouse development suggests that PRMT1 may play an evolutionally conserved role in the development of adult intestinal stem cells throughout vertebrates. These findings are not only important for the understanding of organ-specific adult stem cell development but also have important implications in regenerative medicine of the digestive tract.

  18. In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art

    PubMed Central

    Snykers, Sarah; De Kock, Joery; Rogiers, Vera; Vanhaecke, Tamara

    2009-01-01

    Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells. PMID:19056906

  19. Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body.

    PubMed

    Annese, Valentina; Navarro-Guerrero, Elena; Rodríguez-Prieto, Ismael; Pardal, Ricardo

    2017-04-18

    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Phases I–III Clinical Trials Using Adult Stem Cells

    PubMed Central

    Sanz-Ruiz, Ricardo; Gutiérrez Ibañes, Enrique; Arranz, Adolfo Villa; Fernández Santos, María Eugenia; Fernández, Pedro L. Sánchez; Fernández-Avilés, Francisco

    2010-01-01

    First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomized clinical trials and their limitations, discuss the key points in the design of future trials, and depict new directions of research in this fascinating field. PMID:21076533

  1. [Molecular diagnosis of melanocytic tumors].

    PubMed

    Bauer, J

    2016-01-01

    Melanoma therapy has undergone a paradigm shift. Classic chemotherapies with poor treatment responses have been replaced by modern immune checkpoint blockades and targeted therapies with excellent responses. The latter require precise diagnosis of mutations in the melanoma genome as molecular targets for the small molecules. The diagnosis of melanomas has also been supplemented by molecular techniques. Differential diagnosis of melanoma and melanoma simulators such as atypical Spitz nevi can be supported by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). Here we review the indications and methods for molecular diagnosis of melanocytic tumors.

  2. SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation.

    PubMed

    Qiu, Weiming; Yang, Ke; Lei, Mingxing; Yan, Hongtao; Tang, Hui; Bai, Xiufeng; Yang, Guihong; Lian, Xiaohua; Wu, Jinjin

    2015-05-01

    Hair follicle melanocyte stem cells (McSCs) are responsible for hair pigmentation and also function as a major melanocyte reservoir for epidermal pigmentation. However, the molecular mechanism promoting McSCs for epidermal pigmentation remains elusive. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics key signaling involved in melanocyte growth, migration and differentiation. We therefore investigated the molecular basis for the contribution of hair follicle McSCs to epidermal pigmentation using the TPA induction model. We found that repetitive TPA treatment of female C57BL/6 mouse dorsal skin induced epidermal pigmentation by increasing the number of epidermal melanocytes. Particularly, TPA treatment induced McSCs to initiate proliferation, exit the stem cell niche and differentiate. We also demonstrated that TPA promotes melanoblast migration and differentiation in vitro. At the molecular level, TPA treatment induced robust expression of stem cell factor (SCF) in keratinocytes and c-kit in melanoblasts and melanocytes. Administration of ACK2, a neutralizing antibody against the Kit receptor, suppressed mouse epidermal pigmentation, decreased the number of epidermal melanocytes, and inhibited melanoblast migration. Taken together, our data demonstrate that TPA promotes the expansion, migration and differentiation of hair follicle McSCs for mouse epidermal pigmentation. SCF/c-kit signaling was required for TPA-induced migration and differentiation of hair follicle melanocytes. Our findings may provide an excellent model to investigate the signaling mechanisms regulating epidermal pigmentation from mouse hair follicle McSCs, and a potential therapeutic option for skin pigmentation disorders.

  3. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  4. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps

    PubMed Central

    Broughton, Kathleen; Sussman, Mark A.

    2016-01-01

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells four years ago (Mohsin et al., Empowering adult stem cells for myocardial regeneration. Circ Res. 2011; 109(12):1415–1428) [1]. The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathologic injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating “state of affairs” in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: “Success will never be a big step in the future. Success is a small step taken just now.” PMID:26941423

  5. The role of DNA damage repair in aging of adult stem cells.

    PubMed

    Kenyon, Jonathan; Gerson, Stanton L

    2007-01-01

    DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.

  6. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain.

    PubMed

    Steib, Kathrin; Schäffner, Iris; Jagasia, Ravi; Ebert, Birgit; Lie, D Chichung

    2014-05-07

    Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.

  7. Sox2+ adult stem/progenitor cells are important for tissue regeneration and survival of mice

    PubMed Central

    Arnold, Katrin; Sarkar, Abby; Yram, Mary Anna; Polo, Jose M.; Bronson, Rod; Sengupta, Sumitra; Seandel, Marco; Geijsen, Niels; Hochedlinger, Konrad

    2012-01-01

    Summary The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We here show that Sox2 marks adult cells in several epithelial tissues where its expression has not previously been characterized, including the stomach, cervix, anus, testes, lens and multiple glands. Genetic lineage tracing and transplantation experiments demonstrate that Sox2-expressing cells continuously give rise to mature cell types within these tissues, documenting their self-renewal and differentiation potentials. Consistent with these findings, ablation of Sox2+ cells in mice results in a disruption of epithelial tissue homeostasis and lethality. Developmental fate mapping reveals that Sox2+ adult stem cells originate from fetal Sox2+ tissue progenitors. Thus, our results identify Sox2 expression in numerous adult ectodermal and endodermal stem cell compartments, which are critical for normal tissue regeneration and survival. PMID:21982232

  8. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  9. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    PubMed

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  10. Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge.

    PubMed

    Lin, S J; Foley, J; Jiang, T X; Yeh, C Y; Wu, P; Foley, A; Yen, C M; Huang, Y C; Cheng, H C; Chen, C F; Reeder, B; Jee, S H; Widelitz, R B; Chuong, C M

    2013-06-21

    Color patterns of bird plumage affect animal behavior and speciation. Diverse patterns are present in different species and within the individual. Here, we study the cellular and molecular basis of feather pigment pattern formation. Melanocyte progenitors are distributed as a horizontal ring in the proximal follicle, sending melanocytes vertically up into the epithelial cylinder, which gradually emerges as feathers grow. Different pigment patterns form by modulating the presence, arrangement, or differentiation of melanocytes. A layer of peripheral pulp further regulates pigmentation via patterned agouti expression. Lifetime feather cyclic regeneration resets pigment patterns for physiological needs. Thus, the evolution of stem cell niche topology allows complex pigment patterning through combinatorial co-option of simple regulatory mechanisms.

  11. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis.

    PubMed

    Rim, Jong-Seop; Mynatt, Randall L; Gawronska-Kozak, Barbara

    2005-07-01

    Adipocytes arise from multipotent stem cells of mesodermal origin, which also give rise to the muscle, bone, and cartilage lineages. However, signals and early molecular events that commit multipotent stem cells into the adipocyte lineage are not well established mainly due to lack of an adequate model system. We have identified a novel source of adult stem cells from the external murine ears referred to here as an ear mesenchymal stem cells (EMSC). EMSC have been isolated from several standard and mutant strains of mice. They are self-renewing, clonogenic, and multipotent, since they give rise to osteocytes, chondrocytes, and adipocytes. The in vitro characterization of EMSC indicates very facile adipogenic differentiation. Morphological, histochemical, and molecular analysis after the induction of differentiation showed that EMSC maintain adipogenic potentials up to fifth passage. A comparison of EMSC to the stromal-vascular (S-V) fraction of fat depots, under identical culture conditions (isobutyl-methylxanthine, dexamethasone, and insulin), revealed much more robust and consistent adipogenesis in EMSC than in the S-V fraction. In summary, we show that EMSC can provide a novel, easily obtainable, primary culture model for the study of adipogenesis.

  12. Repression of genes involved in melanocyte differentiation in uveal melanoma

    PubMed Central

    Bergeron, Marjorie-Allison; Champagne, Sophie; Gaudreault, Manon; Deschambeault, Alexandre

    2012-01-01

    Purpose Uveal melanoma (UM) has been the subject of intense interest due to its distinctive metastatic pattern, which involves hematogenous dissemination of cancerous cells toward the liver in 50% of patients. To search for new UM prognostic markers, the Suppressive Subtractive Hybridization (SSH) technique was used to isolate genes that are differentially expressed between UM primary tumors and normal uveal melanocytes (UVM). Methods A subtracted cDNA library was prepared using cDNA from uncultured UM primary tumors and UVM. The expression level of selected genes was further validated by cDNA microarray, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence analyses. Results One hundred-fifteen genes were identified using the SSH technique. Microarray analyses comparing the gene expression profiles of UM primary tumors to UVM validated a significant differential expression for 48% of these genes. The expression pattern of selected genes was then analyzed by semi-quantitative RT–PCR and was found to be consistent with the SSH and cDNA microarray findings. A down-regulation of genes associated with melanocyte differentiation was confirmed in UM primary tumors. Presence of undifferentiated cells in the UM was demonstrated by the expression of stem cell markers ATP-binding cassette sub-family G member 2 (ABCG2) and octamer-binding protein 4 (OCT4). Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes between UM and UVM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. In addition, deregulation of the melanocyte differentiation pathway revealed the presence of UM cells exhibiting a stem cell-like phenotype. PMID:22815634

  13. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  14. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  15. Identification of multipotent stem cells from adult dog periodontal ligament.

    PubMed

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease.

  16. Isolation, culture, and transfection of melanocytes.

    PubMed

    Godwin, Lauren S; Castle, Joanna T; Kohli, Jaskaren S; Goff, Philip S; Cairney, Claire J; Keith, W Nicol; Sviderskaya, Elena V; Bennett, Dorothy C

    2014-06-03

    Located in the basal epidermis and hair follicles, melanocytes of the integument are responsible for its coloration through production of melanin pigments. Melanin is produced in lysosomal-like organelles called melanosomes. In humans, this skin pigmentation acts as an ultraviolet radiation filter. Abnormalities in the division of melanocytes are quite common, with potentially oncogenic growth usually followed by cell senescence producing benign naevi (moles), or occasionally melanoma. Therefore, melanocytes are a useful model for studying melanoma, as well as pigmentation and organelle transport and the diseases affecting these mechanisms. This chapter focuses on the isolation, culture, and transfection of human and murine melanocytes. The first basic protocol describes the primary culture of melanocytes from human skin and the maintenance of growing cultures. The second basic protocol details the subculture and preparation of mouse keratinocyte feeder cells. The primary culture of melanocytes from mouse skin is described in the third basic protocol, and, lastly, the fourth basic protocol outlines a technique for transfecting melanocytes and melanoma cells.

  17. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients

    PubMed Central

    Delaney, Colleen; Ratajczak, Mariusz Z; Laughlin, Mary J

    2010-01-01

    Umbilical cord blood (UCB) has been used successfully as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation in children and adults in the treatment of hematologic diseases. However, compared with marrow or mobilized peripheral blood stem cell grafts from adult donors, significant delays in the rates and kinetics of neutrophil and platelet engraftment are noted after UCB transplant. These differences relate in part to the reduced numbers of HSCs in UCB grafts. To improve the rates and kinetics of engraftment of UCB HSC, several strategies have been proposed, including ex vivo expansion of UCB HSCs, addition of third-party mesenchymal cells, intrabone delivery of HSCs, modulation of CD26 expression, and infusion of two UCB grafts. This article will focus on ex vivo expansion of UCB HSCs and strategies to enhance UCB homing as potential solutions to overcome the problem of low stem cell numbers in a UCB graft. PMID:20835351

  18. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish.

    PubMed

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I; Poss, Kenneth D

    2013-12-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology.

  19. Genomic selection for quantitative adult plant stem rust resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  20. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    SciTech Connect

    Khalifa, Shaden A.M.; Medina, Philippe de; Erlandsson, Anna; El-Seedi, Hesham R.; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  1. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation☆

    PubMed Central

    Jaber-Hijazi, Farah; Lo, Priscilla J.K.P.; Mihaylova, Yuliana; Foster, Jeremy M.; Benner, Jack S.; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A.

    2013-01-01

    Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. PMID:24063805

  2. Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation.

    PubMed

    Jaber-Hijazi, Farah; Lo, Priscilla J K P; Mihaylova, Yuliana; Foster, Jeremy M; Benner, Jack S; Tejada Romero, Belen; Chen, Chen; Malla, Sunir; Solana, Jordi; Ruzov, Alexey; Aziz Aboobaker, A

    2013-12-01

    Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5(m)C) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse.

    PubMed

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction.

  4. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  5. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    PubMed

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  6. How electromagnetic fields can influence adult stem cells: positive and negative impacts.

    PubMed

    Maziarz, Aleksandra; Kocan, Beata; Bester, Mariusz; Budzik, Sylwia; Cholewa, Marian; Ochiya, Takahiro; Banas, Agnieszka

    2016-04-18

    The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering.

  7. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  8. Endothelin-1 is a transcriptional target of p53 in epidermal keratinocytes and regulates ultraviolet-induced melanocyte homeostasis.

    PubMed

    Hyter, Stephen; Coleman, Daniel J; Ganguli-Indra, Gitali; Merrill, Gary F; Ma, Steven; Yanagisawa, Masashi; Indra, Arup K

    2013-03-01

    Keratinocytes contribute to melanocyte activity by influencing their microenvironment, in part, through secretion of paracrine factors. Here, we discovered that p53 directly regulates Edn1 expression in epidermal keratinocytes and controls UV-induced melanocyte homeostasis. Selective ablation of endothelin-1 (EDN1) in murine epidermis (EDN1(ep-/-) ) does not alter melanocyte homeostasis in newborn skin but decreases dermal melanocytes in adult skin. Results showed that keratinocytic EDN1 in a non-cell autonomous manner controls melanocyte proliferation, migration, DNA damage, and apoptosis after ultraviolet B (UVB) irradiation. Expression of other keratinocyte-derived paracrine factors did not compensate for the loss of EDN1. Topical treatment with EDN1 receptor (EDNRB) antagonist BQ788 abrogated UV-induced melanocyte activation and recapitulated the phenotype seen in EDN1(ep-/-) mice. Altogether, the present studies establish an essential role of EDN1 in epidermal keratinocytes to mediate UV-induced melanocyte homeostasis in vivo. © 2012 John Wiley & Sons A/S.

  9. Apple ethanol extract promotes proliferation of human adult stem cells, which involves the regenerative potential of stem cells.

    PubMed

    Lee, Jienny; Shin, Moon Sam; Kim, Mi Ok; Jang, Sunghee; Oh, Sae Woong; Kang, Mingyeong; Jung, Kwangseon; Park, Yong Seek; Lee, Jongsung

    2016-09-01

    Tissue regeneration using adult stem cells (ASCs) has significant potential as a novel treatment for many degenerative diseases. Previous studies have established that age negatively affects the proliferation status and differentiation potential of ASCs, suggesting a possible limitation in their potential therapeutic use. Therefore, we hypothesized that apple extract might exert beneficial effects on ASCs. The specific objectives were to investigate the proliferative effect of apple ethanol extract on human adipose tissue-derived mesenchymal stem cells (ADSCs) and human cord blood-derived mesenchymal stem cells (CB-MSCs), and identify the possible molecular mechanisms. Apple extract promoted proliferation of ADSCs and CB-MSCs as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Click-iT 5-ethynyl-2'-deoxyuridine flow cytometry assays. In addition, phosphorylation of p44/42 MAPK (ERK), mammalian target of rapamycin (mTOR), p70 S6 kinase (p70S6K), S6 ribosomal protein (S6RP), eukaryotic initiation factor (eIF) 4B and eIF4E was induced stepwise in ADSCs. Furthermore, apple extract significantly induced the production of vascular endothelial growth factor and interleukin-6 in both ADSCs and CB-MSCs. Similarly, apple extract-induced phosphorylation of the mTOR/p70S6K/S6RP/eIF4B/eIF4E pathway was blocked by pretreatment with PD98059, a specific ERK inhibitor. These results indicate that apple extract-induced proliferation of ADSCs under serum-free conditions is mediated by ERK-dependent cytokine production. Moreover, the beneficial effect of apple extract on proliferation of ASCs may overcome the limitation in therapeutic use of stem cells in tissue regeneration and maintenance of stem cell homeostasis.

  10. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging.

    PubMed

    Tauc, Helen M; Tasdogan, Alpaslan; Pandur, Petra

    2014-12-16

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells' (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging.

  11. Large-scale live imaging of adult neural stem cells in their endogenous niche.

    PubMed

    Dray, Nicolas; Bedu, Sébastien; Vuillemin, Nelly; Alunni, Alessandro; Coolen, Marion; Krecsmarik, Monika; Supatto, Willy; Beaurepaire, Emmanuel; Bally-Cuif, Laure

    2015-10-15

    Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters.

  12. Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes.

    PubMed

    Wu, Ching-Shuang; Lan, Cheng-Che E; Chiou, Min-Hsi; Yu, Hsin-Su

    2006-01-01

    Vitiligo is an acquired pigmentary disorder characterized by depigmentation of skin and hair. Melanocyte migration is an important event in re-pigmentation of vitiligo. We have demonstrated that narrow-band ultraviolet B (UVB) irradiation stimulated cultured keratinocytes to release a significant amount of basic fibroblast growth factor (bFGF). Furthermore, narrow-band UVB enhanced migration of melanocytes via increased expression of phosphorylated focal adhesion kinase (p125(FAK)) on melanocytes. The aim of this study was to investigate the effect of recombinant human bFGF (rhbFGF) on melanocyte migration. The relationship between the expression of p125(FAK) and melanocyte migration induced by rhbFGF was also studied. Our results demonstrated that rhbFGF significantly enhanced migration of melanocytes and p125(FAK) expression on melanocytes. Herbimycin A, a potent p125(FAK) inhibitor, effectively abolished rhbFGF-induced melanocyte migration. The combined results indicated that p125(FAK) plays an important role in the signal transduction pathway of melanocyte migration induced by bFGF.

  13. A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues.

    PubMed

    Ratajczak, M Z; Machalinski, B; Wojakowski, W; Ratajczak, J; Kucia, M

    2007-05-01

    Accumulating evidence demonstrates that adult tissues contain a population of stem cells that express early developmental markers such as stage-specific embryonic antigen and transcription factors Oct-4 and Nanog. These are the markers characteristic for embryonic stem cells, epiblast stem cells and primordial germ cells. The presence of these stem cells in adult tissues including bone marrow, epidermis, bronchial epithelium, myocardium, pancreas and testes supports the concept that adult tissues contain some population of pluripotent stem cells that is deposited in embryogenesis during early gastrulation. In this review we will discuss these data and present a hypothesis that these cells could be direct descendants of the germ lineage. The germ lineage in order to pass genes on to the next generations creates soma and thus becomes a 'mother lineage' for all somatic cell lineages present in the adult body.

  14. Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells

    PubMed Central

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-01-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446

  15. Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

    PubMed Central

    Kwon, Dae-Woo; Im, Insook; Kim, Yong-Deok; Hwang, Dae-Seok; Holliday, L Shannon; Donatelli, Richard E; Son, Woo-Sung; Jun, Eun-Sook

    2012-01-01

    Objective The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results An average of 152.8 ± 27.6 colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About 5.6 ± 4.5% of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications. PMID:23323245

  16. Micropatterning control of tubular commitment in human adult renal stem cells.

    PubMed

    Sciancalepore, Anna G; Portone, Alberto; Moffa, Maria; Persano, Luana; De Luca, Maria; Paiano, Aurora; Sallustio, Fabio; Schena, Francesco P; Bucci, Cecilia; Pisignano, Dario

    2016-07-01

    The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.

  17. Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

    PubMed

    Stanley, Erin L; Johnston, Daniel S; Fan, Jinjiang; Papadopoulos, Vassilios; Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R; Jelinsky, Scott A

    2011-12-01

    Leydig cells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.

  18. 2010 Nicolas Andry Award: Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering.

    PubMed

    Guilak, Farshid; Estes, Bradley T; Diekman, Brian O; Moutos, Franklin T; Gimble, Jeffrey M

    2010-09-01

    Cell-based therapies such as tissue engineering provide promising therapeutic possibilities to enhance the repair or regeneration of damaged or diseased tissues but are dependent on the availability and controlled manipulation of appropriate cell sources. The goal of this study was to test the hypothesis that adult subcutaneous fat contains stem cells with multilineage potential and to determine the influence of specific soluble mediators and biomaterial scaffolds on their differentiation into musculoskeletal phenotypes. We reviewed recent studies showing the stem-like characteristics and multipotency of adipose-derived stem cells (ASCs), and their potential application in cell-based therapies in orthopaedics. Under controlled conditions, ASCs show phenotypic characteristics of various cell types, including chondrocytes, osteoblasts, adipocytes, neuronal cells, or muscle cells. In particular, the chondrogenic differentiation of ASCs can be induced by low oxygen tension, growth factors such as bone morphogenetic protein-6 (BMP-6), or biomaterial scaffolds consisting of native tissue matrices derived from cartilage. Finally, focus is given to the development of a functional biomaterial scaffold that can provide ASC-based constructs with mechanical properties similar to native cartilage. Adipose tissue contains an abundant source of multipotent progenitor cells. These cells show cell surface marker profiles and differentiation characteristics that are similar to but distinct from other adult stem cells, such as bone marrow mesenchymal stem cells (MSCs). The availability of an easily accessible and reproducible cell source may greatly facilitate the development of new cell-based therapies for regenerative medicine applications in the musculoskeletal system.

  19. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    PubMed

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  20. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    PubMed

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  1. The C. elegans adult male germline: stem cells and sexual dimorphism

    PubMed Central

    Morgan, Dyan E.; Crittenden, Sarah L.; Kimble, Judith

    2010-01-01

    The hermaphrodite C. elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence, lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate. PMID:20659446

  2. Inflammatory cues acting on the adult intestinal stem cells and the early onset of cancer (Review)

    PubMed Central

    DE LERMA BARBARO, A.; PERLETTI, G.; BONAPACE, I.M.; MONTI, E.

    2014-01-01

    The observation that cancer often arises at sites of chronic inflammation has prompted the idea that carcinogenesis and inflammation are deeply interwoven. In fact, the current literature highlights a role for chronic inflammation in virtually all the steps of carcinogenesis, including tumor initiation, promotion and progression. The aim of the present article is to review the current literature on the involvement of chronic inflammation in the initiation step and in the very early phases of tumorigenesis, in a type of cancer where adult stem cells are assumed to be the cells of origin of neoplasia. Since the gastrointestinal tract is regarded as the best-established model system to address the liaison between chronic inflammation and neoplasia, the focus of this article will be on intestinal cancer. In fact, the anatomy of the intestinal epithelial lining is uniquely suited to study adult stem cells in their niche, and the bowel crypt is an ideal developmental biology system, as proliferation, differentiation and cell migration are all distributed linearly along the long axis of the crypt. Moreover, crypt stem cells are regarded today as the most likely targets of neoplastic transformation in bowel cancer. More specifically, the present review addresses the molecular mechanisms whereby a state of chronic inflammation could trigger the neoplastic process in the intestine, focusing on the generation of inflammatory cues evoking enhanced proliferation in cells not initiated but at risk of neoplastic transformation because of their stemness. Novel experimental approaches, based on triggering an inflammatory stimulus in the neighbourhood of adult intestinal stem cells, are warranted to address some as yet unanswered questions. A possible approach, the targeted transgenesis of Paneth cells, may be aimed at ‘hijacking’ the crypt stem cell niche from a status characterized by the maintenance of homeostasis to local chronic inflammation, with the prospect of initiating

  3. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review

    PubMed Central

    Nguyen, Patricia K.; Rhee, June-Wha; Wu, Joseph C.

    2017-01-01

    Importance Stem cell therapy is a promising treatment strategy for patients with heart failure, which accounts for over 10% of deaths in the U.S. annually. Despite over a decade of research, further investigation is still needed to determine whether stem cell regenerative therapy is clinically effective and can be routinely implemented in clinical practice. Objective The purpose of this review is to describe the current progress in cardiac stem cell regenerative therapy using adult stem cells and highlight the merits and limitations of clinical trials performed to date. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English language studies published between January 1, 2000 and April 20, 2016. Twenty-nine randomized clinical trials and 7 systematic reviews and meta-analyses were included in this review. Findings Although adult stem cells were once believed to have the ability to create new heart tissue or grow blood vessels, preclinical studies suggest instead that these cells release cardio-protective paracrine factors that activate endogenous pathways, leading to myocardial repair. Subsequent randomized controlled clinical trials, the majority of which used autologous bone marrow mononuclear cells, have found only a modest benefit in patients receiving stem cell therapy. The lack of a significant benefit may result from variations in trial methodology, discrepancies in reporting, and an over-reliance on surrogate endpoints. Conclusions and Relevance Although stem cell therapy for cardiovascular disease is not yet ready for routine clinical application, significant progress continues to be made. Physicians should be aware of the current status of this treatment so that they can better inform their patients who may be in search of alternative therapies. PMID:27557438

  4. Transposon-mediated gene transfer into adult and induced pluripotent stem cells.

    PubMed

    Belay, Eyayu; Dastidar, Sumitava; VandenDriessche, Thierry; Chuah, Marinee K L

    2011-10-01

    Transposon technology is a particularly attractive non-viral gene delivery paradigm that allows for efficient genomic integration into a variety of different cell types. In particular, transposon-mediated gene transfer is a promising tool for stem cell research, by virtue of its ability to efficiently and stably transfer genes into adult and induced pluripotent stem (iPS) cells. Moreover, transposons open up new perspectives for non-viral-mediated stem cell-based gene therapy. Several transposon systems, especially the Sleeping Beauty (SB), the piggyBac (PB) and Tol2, have been optimized for gene transfer into mammalian cells. In particular, SB resulted in stable gene transfer into various adult stem cells including human CD34(+) hematopoietic stem cells (HSCs), myoblasts and mesenchymal stem cells (MSCs). This has been confirmed with PB, yielding stable gene transfer in human CD34(+) HSCs. Recently, PB transposons were used to deliver the genes encoding the reprogramming factors into somatic cells making it an attractive technology for generating iPS cells. Subsequent de novo expression of the PB transposase resulted in traceless excision of the reprogramming cassette. This prevented inadvertent re-expression of the reprogramming factors obviating some of the concerns associated with the use of integrating vectors. Transposons have also been used as a novel non-viral paradigm to coax differentiation of iPS cells into their desired target cells by forced expression of specific differentiation factors. This review focuses on the emerging potential of transposons for gene transfer into stem cells and its implications for gene therapy and regenerative medicine.

  5. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  6. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    PubMed

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  7. Stem Cell Transplant into Preimplantation Embryo Yields Myocardial Infarction-Resistant Adult Phenotype

    PubMed Central

    Yamada, Satsuki; Nelson, Timothy J.; Behfar, Atta; Crespo-Diaz, Ruben J.; Fraidenraich, Diego; Terzic, Andre

    2009-01-01

    Stem cells are an emerging strategy for treatment of myocardial infarction, limited however to postinjury intervention. Preventive stem cell-based therapy to augment stress tolerance has yet to be considered for lifelong protection. Here, pluripotent stem cells were microsurgically introduced at the blastocyst stage of murine embryo development to ensure stochastic integration and sustained organ contribution. Engineered chimera displayed excess in body weight due to increased fat deposits, but were otherwise devoid of obesity-related morbidity. Remarkably, and in sharp contrast to susceptible nonchimeric offspring, chimera was resistant to myocardial infarction induced by permanent coronary occlusion. Infarcted nonchimeric adult hearts demonstrated progressive deterioration in ejection fraction, while age-matched 12–14-months-old chimera recovered from equivalent ischemic insult to regain within one-month preocclusion contractile performance. Electrical remodeling and ventricular enlargement with fibrosis, prominent in failing nonchimera, were averted in the chimeric cohort characterized by an increased stem cell load in adipose tissue and upregulated markers of biogenesis Ki67, c-Kit, and stem cell antigen-1 in the myocardium. Favorable outcome in infarcted chimera translated into an overall benefit in workload capacity and survival. Thus, prenatal stem cell transplant yields a cardioprotective phenotype in adulthood, expanding cell-based indications beyond traditional postinjury applications to include pre-emptive therapy. PMID:19544428

  8. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.

    PubMed

    Gayraud-Morel, Barbara; Chrétien, Fabrice; Jory, Aurélie; Sambasivan, Ramkumar; Negroni, Elisa; Flamant, Patricia; Soubigou, Guillaume; Coppée, Jean-Yves; Di Santo, James; Cumano, Ana; Mouly, Vincent; Tajbakhsh, Shahragim

    2012-04-01

    Skeletal muscle stem cell fate in adult mice is regulated by crucial transcription factors, including the determination genes Myf5 and Myod. The precise role of Myf5 in regulating quiescent muscle stem cells has remained elusive. Here we show that most, but not all, quiescent satellite cells express Myf5 protein, but at varying levels, and that resident Myf5 heterozygous muscle stem cells are more primed for myogenic commitment compared with wild-type satellite cells. Paradoxically however, heterotypic transplantation of Myf5 heterozygous cells into regenerating muscles results in higher self-renewal capacity compared with wild-type stem cells, whereas myofibre regenerative capacity is not altered. By contrast, Pax7 haploinsufficiency does not show major modifications by transcriptome analysis. These observations provide a mechanism linking Myf5 levels to muscle stem cell heterogeneity and fate by exposing two distinct and opposing phenotypes associated with Myf5 haploinsufficiency. These findings have important implications for how stem cell fates can be modulated by crucial transcription factors while generating a pool of responsive heterogeneous cells.

  9. Isolation and culture of hair follicle pluripotent stem (hfPS) cells and their use for nerve and spinal cord regeneration.

    PubMed

    Amoh, Yasuyuki; Hoffman, Robert M

    2010-01-01

    The hair follicle is dynamic, cycling between growth (anagen), regression (catagen), and resting (telogen) phases throughout life. We have demonstrated that nestin-expressing hair follicle stem cells give rise to follicle structures during early anagen or growth phase of the hair follicle. Nestin-expressing hair follicle stem cells appear in the hair follicular stem cell area, the permanent upper hair follicle immediately below the sebaceous glands and above the bulge area. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Furthermore, the hair follicle stem cells promote the recovery of peripheral nerve and spinal cord injury. We have termed these cells hair follicle pluripotent stem (hfPS) cells. These results suggest that hfPS cells provide an important accessible, autologous source of adult stem cells with potential for use in regenerative medicine.

  10. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps.

    PubMed

    Broughton, Kathleen M; Sussman, Mark A

    2016-03-04

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now."

  11. Plastic adult stem cells: will they graduate from the school of hard knocks?

    PubMed

    Alison, Malcolm R; Poulsom, Richard; Otto, William R; Vig, Pamela; Brittan, Mairi; Direkze, Natalie C; Preston, Sean L; Wright, Nicholas A

    2003-02-15

    Notwithstanding the fact that adult bone marrow cell engraftment to epithelial organs seems a somewhat uncommon event, there is no doubt it does occur, and under appropriate conditions of a strong and positive selection pressure these cells will expand clonally and make a significant contribution to tissue replacement. Likewise, bone-marrow-derived cells can be amplified in vitro and differentiated into a multitude of tissues. These in essence are the goals of regenerative medicine using any source of stem cells, be it embryonic or adult. Despite such irrefutable evidence of what is possible, a veritable chorus of detractors of adult stem cell plasticity has emerged, some doubting its very existence, motivated perhaps by more than a little self-interest. The issues that have led to this state of affairs have included the inability to reproduce certain widely quoted data, one case where the apparent transdifferentiation was due to contamination of the donor tissue with haematopoietic cells and, most notoriously, extrapolating from the behaviour of embryonic stem cells to suggest that adult bone marrow cells simply fuse with other cells and adopt their phenotype. While these issues need resolving, slamming this whole new field because not everything is crystal clear is not good science. The fact that a phenomenon is quite rare in no way mitigates against its very existence: asteroid collisions with the Earth are rare, but try telling the dinosaurs they do not occur! When such events do occur (transdifferentiation or collision), they certainly can make an impact.

  12. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation

    PubMed Central

    Encinas, Juan M.; Vazquez, Marcelo E.; Switzer, Robert C.; Chamberland, Dennis W.; Nick, Harry; Levine, Howard G.; Scarpa, Philip J.; Enikolopov, Grigori; Steindler, Dennis A.

    2012-01-01

    Generation of new neurons in the adult brain, a process that is likely to be essential for learning, memory, and mood regulation, is impaired by radiation. Therefore, radiation exposure might have not only such previously expected consequences as increased probability of developing cancer, but might also impair cognitive function and emotional stability. Radiation exposure is encountered in settings ranging from cancer therapy to space travel; evaluating the neurogenic risks of radiation requires identifying the at-risk populations of stem and progenitor cells in the adult brain. Here we have used a novel reporter mouse line to find that early neural progenitors are selectively affected by conditions simulating the space radiation environment. This is reflected both in a decrease in the number of these progenitors in the neurogenic regions and in an increase in the number of dying cells in these regions. Unexpectedly, we found that quiescent neural stem cells, rather than their rapidly dividing progeny, are most sensitive to radiation. Since these stem cells are responsible for adult neurogenesis, their death would have a profound impact on the production of new neurons in the irradiated adult brain. Our finding raises an important concern about cognitive and emotional risks associated with radiation exposure. PMID:18076878

  13. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    PubMed Central

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  14. UVB represses melanocyte cell migration and acts through β-catenin.

    PubMed

    Bertrand, Juliette U; Petit, Valérie; Hacker, Elke; Berlin, Irina; Hayward, Nicholas K; Pouteaux, Marie; Sage, Evelyne; Whiteman, David C; Larue, Lionel

    2017-02-13

    The exposure of skin to ultraviolet (UV) radiation can have both beneficial and deleterious effects: it can lead, for instance, to increased pigmentation and vitamin D synthesis but also to inflammation and skin cancer. UVB may induce genetic and epigenetic alterations, and have reversible effects associated with post-translational and gene regulation modifications. β-catenin is a main driver in melanocyte development; although infrequently mutated in melanoma, its cellular localization and activity is frequently altered. Here, we evaluate the consequence of UVB on β-catenin in the melanocyte lineage. We report that in vivo, UVB induces cytoplasmic/nuclear relocalization of β-catenin in melanocytes of newborn mice and adult human skin. In mouse melanocyte and human melanoma cell lines in vitro, UVB increases β-catenin stability, accumulation in the nucleus, and co-transcriptional activity, leading to the repression of cell motility and velocity. The activation of the β-catenin signaling pathway and its effect on migration by UVB are increased by an inhibitor of GSK3β, and decreased by an inhibitor of β-catenin. In conclusion, UVB represses melanocyte migration and does so by acting through the GSK3-β-catenin axis. This article is protected by copyright. All rights reserved.

  15. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers

    PubMed Central

    Levin, Mark D.; Lu, Min Min; Petrenko, Nataliya B.; Hawkins, Brian J.; Gupta, Tara H.; Lang, Deborah; Buckley, Peter T.; Jochems, Jeanine; Liu, Fang; Spurney, Christopher F.; Yuan, Li J.; Jacobson, Jason T.; Brown, Christopher B.; Huang, Li; Beermann, Friedrich; Margulies, Kenneth B.; Madesh, Muniswamy; Eberwine, James H.; Epstein, Jonathan A.; Patel, Vickas V.

    2009-01-01

    Atrial fibrillation is the most common clinical cardiac arrhythmia. It is often initiated by ectopic beats arising from the pulmonary veins and atrium, but the source and mechanism of these beats remains unclear. The melanin synthesis enzyme dopachrome tautomerase (DCT) is involved in intracellular calcium and reactive species regulation in melanocytes. Given that dysregulation of intracellular calcium and reactive species has been described in patients with atrial fibrillation, we investigated the role of DCT in this process. Here, we characterize a unique DCT-expressing cell population within murine and human hearts that populated the pulmonary veins, atria, and atrioventricular canal. Expression profiling demonstrated that this population expressed adrenergic and muscarinic receptors and displayed transcriptional profiles distinct from dermal melanocytes. Adult mice lacking DCT displayed normal cardiac development but an increased susceptibility to atrial arrhythmias. Cultured primary cardiac melanocyte-like cells were excitable, and those lacking DCT displayed prolonged repolarization with early afterdepolarizations. Furthermore, mice with mutations in the tyrosine kinase receptor Kit lacked cardiac melanocyte-like cells and did not develop atrial arrhythmias in the absence of DCT. These data suggest that dysfunction of melanocyte-like cells in the atrium and pulmonary veins may contribute to atrial arrhythmias. PMID:19855129

  16. Adult palatum as a novel source of neural crest-related stem cells.

    PubMed

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-08-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies.

  17. Reversal of developmental restrictions in neural crest lineages: Transition from Schwann cells to glial-melanocytic precursors in vitro

    PubMed Central

    Dupin, Elisabeth; Real, Carla; Glavieux-Pardanaud, Corinne; Vaigot, Pierre; Le Douarin, Nicole M.

    2003-01-01

    In vertebrate embryos, diversification of the lineages arising from the neural crest (NC) is controlled to a large extent by environmental factors. In previous work, we showed that endothelin 3 (ET3) peptide favors the development of glial and melanocytic NC precursors in vitro. This factor is also capable of inducing proliferation of cultured epidermal pigment cells and their conversion to glia. ET3 therefore strongly promotes the emergence of melanocytic and glial phenotypes from precursors and acts on the maintenance of these phenotypes. In the present work, we explored the capacity of ET3 to reprogram glial cells into melanocytes. Schwann cells expressing glial-specific markers [such as the Schwann cell myelin protein (SMP)] were isolated from sciatic nerves of quail embryos and cultured in vitro. We found that ET3 promotes cell growth and sequential expression of melanocyte differentiation markers in cultures of purified SMP-expressing cells, whereas it had no significant effect on SMP-negative cells from the same nerves. Moreover, we provide evidence for the transition of differentiated Schwann cells to melanocytes in clonal cultures. This transition involves the production of a mixed progeny of melanoblasts/melanocytes, glia, and cells bearing differentiation markers of both phenotypes. Therefore, Schwann cells exposed to ET3 transdifferentiate to melanocytes through reversion to the stage of bipotent glial-melanocytic NC precursors. These findings show that NC-derived pigment and glial cells are phenotypically unstable in vitro and may undergo reversal of precursor hierarchy to function as bipotent stem cells. PMID:12702775

  18. "Melanocytic Nests Arising in Lichenoid Inflammation": Reappraisal of the Terminology "Melanocytic Pseudonests".

    PubMed

    Chung, Hye Jin; Simkin, A David; Bhawan, Jag; Wolpowitz, Deon

    2015-12-01

    Pseudonests or pseudomelanocytic nests represent aggregates of cells and cell fragments, including keratinocytes, macrophages, lymphocytes, and occasional melanocytes. Pseudomelanocytic nests in the setting of lichenoid inflammation can mimic atypical melanocytic proliferations. Several reports documented nonspecific staining of pseudonests with melanoma antigen recognized by T cells-1/Melan-A, which can be detected in the cytoplasm of nonmelanocytic cells. In contrast, nuclear stains, such as MITF and SOX10, avoid this nonmelanocyte cytoplasmic staining. The authors have previously proposed the term melanocytic pseudonests to describe junctional nests with numerous (>2) true melanoma antigen recognized by T cells-1/Melan-A, SOX10, and MITF in a nonmelanocytic lesion with lichenoid inflammation (unilateral lichen planus pigmentosus/erythema dyschromicum perstans). In this study, the authors report another case of this phenomenon arising in a different lichenoid inflammatory dermatitis (lichen planus). The immunophenotype and number of clustered true melanocytes indicate that these dermoepidermal aggregates represent true melanocytic nests and not pseudonests of any type. Therefore, the authors propose the revised terminology of "melanocytic nests arising in lichenoid inflammation" to describe this novel pattern of benign melanocytic reorganization or proliferation in a subset of lichenoid dermatitides. Because this phenomenon can mimic atypical melanocytic proliferations, clinicopathologic correlation is essential for the correct diagnosis.

  19. Melanocytic Nests Arising in Lichenoid Inflammation”: Reappraisal of the Terminology “Melanocytic Pseudonests”

    PubMed Central

    Chung, Hye Jin; Simkin, A. David; Bhawan, Jag

    2015-01-01

    Abstract: Pseudonests or pseudomelanocytic nests represent aggregates of cells and cell fragments, including keratinocytes, macrophages, lymphocytes, and occasional melanocytes. Pseudomelanocytic nests in the setting of lichenoid inflammation can mimic atypical melanocytic proliferations. Several reports documented nonspecific staining of pseudonests with melanoma antigen recognized by T cells-1/Melan-A, which can be detected in the cytoplasm of nonmelanocytic cells. In contrast, nuclear stains, such as MITF and SOX10, avoid this nonmelanocyte cytoplasmic staining. The authors have previously proposed the term melanocytic pseudonests to describe junctional nests with numerous (>2) true melanoma antigen recognized by T cells-1/Melan-A, SOX10, and MITF in a nonmelanocytic lesion with lichenoid inflammation (unilateral lichen planus pigmentosus/erythema dyschromicum perstans). In this study, the authors report another case of this phenomenon arising in a different lichenoid inflammatory dermatitis (lichen planus). The immunophenotype and number of clustered true melanocytes indicate that these dermoepidermal aggregates represent true melanocytic nests and not pseudonests of any type. Therefore, the authors propose the revised terminology of “melanocytic nests arising in lichenoid inflammation” to describe this novel pattern of benign melanocytic reorganization or proliferation in a subset of lichenoid dermatitides. Because this phenomenon can mimic atypical melanocytic proliferations, clinicopathologic correlation is essential for the correct diagnosis. PMID:26588340

  20. Isolation and culture of neural crest stem cells from human hair follicles.

    PubMed

    Yang, Ruifeng; Xu, Xiaowei

    2013-04-06

    Hair follicles undergo lifelong growth and hair cycle is a well-controlled process involving stem cell proliferation and quiescence. Hair bulge is a well-characterized niche for adult stem cells. This segment of the outer root sheath contains a number of different types of stem cells, including epithelial stem cells, melanocyte stem cells and neural crest like stem cells. Hair follicles represent an accessible and rich source for different types of human stem cells. We and others have isolated neural crest stem cells (NCSCs) from human fetal and adult hair follicles. These human stem cells are label-retaining cells and are capable of self-renewal through asymmetric cell division in vitro. They express immature neural crest cell markers but not differentiation markers. Our expression profiling study showed that they share a similar gene expression pattern with murine skin immature neural crest cells. They exhibit clonal multipotency that can give rise to myogenic, melanocytic, and neuronal cell lineages after in vitro clonal single cell culture. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. In addition, these NCSCs show differentiation potential toward mesenchymal lineages. Differentiated neuronal cells can persist in mouse brain and retain neuronal differentiation markers. It has been shown that hair follicle derived NCSCs can help nerve regrowth, and they improve motor function in mice transplanted with these stem cells following transecting spinal cord injury. Furthermore, peripheral nerves have been repaired with stem cell grafts, and implantation of skin-derived precursor cells adjacent to crushed sciatic nerves has resulted in remyelination. Therefore, the hair follicle/skin derived NCSCs have already shown promising results for regenerative therapy in preclinical models. Somatic cell reprogramming to induced pluripotent stem (iPS) cells has shown enormous potential for

  1. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    PubMed

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  2. Intensive care outcomes in adult hematopoietic stem cell transplantation patients.

    PubMed

    Bayraktar, Ulas D; Nates, Joseph L

    2016-02-10

    Although outcomes of intensive care for patients undergoing hematopoietic stem cell transplantation (HSCT) have improved in the last two decades, the short-term mortality still remains above 50% among allogeneic HSCT patients. Better selection of HSCT patients for intensive care, and consequently reduction of non-beneficial care, may reduce financial costs and alleviate patient suffering. We reviewed the studies on intensive care outcomes of patients undergoing HSCT published since 2000. The risk factors for intensive care unit (ICU) admission identified in this report were primarily patient and transplant related: HSCT type (autologous vs allogeneic), conditioning intensity, HLA mismatch, and graft-versus-host disease (GVHD). At the same time, most of the factors associated with ICU outcomes reported were related to the patients' functional status upon development of critical illness and interventions in ICU. Among the many possible interventions, the initiation of mechanical ventilation was the most consistently reported factor affecting ICU survival. As a consequence, our current ability to assess the benefit or futility of intensive care is limited. Until better ICU or hospital mortality prediction models are available, based on the available evidence, we recommend practitioners to base their ICU admission decisions on: Patient pre-transplant comorbidities, underlying disease status, GVHD diagnosis/grade, and patients' functional status at the time of critical illness.

  3. Adult Adipose-Derived Stem Cell Attachment to Biomaterials

    PubMed Central

    Prichard, Heather L; Reichert, William M; Klitzman, Bruce

    2007-01-01

    Attachment of adipose-derived stem cells (ASC) to biomaterials prior to implantation is a possible strategy for mediating inflammation and wound healing. In this study, the ASC percent coverage was measured on common medical grade biosensor materials subjected to different surface treatments. Cell coverage on silicone elastomer (poly dimethylsiloxane) was below 20% for all surface treatments. Polyimide (Kapton), polyurethane (Pellethane) and tissue culture polystyrene all exhibited >50% coverage for surfaces treated with fibronectin (Fn), fibronectin plus avidin/biotin (dual ligand), and oxygen plasma plus fibronectin treatments (Fn O2). The fibronectin treatment performed as well or better on polyimide, polyurethane, and tissue culture polystyrene compared to the dual ligand and fibronectin oxygen plasma treated surfaces. Cell detachment with increasing shear stresses was <25% for each attachment method on both polyimide and polyurethane. The effects of attachment methods on the basic cell functions of proliferation, metabolism, ATP concentration, and caspase-3 activity were analyzed yielding proliferation profiles that were very similar among all of the materials. No significant differences in metabolism, intracellular ATP, or intracellular caspase-3 activity were observed for any of the attachment methods on either polyimide or polyurethane. PMID:17074385

  4. A reverse transfection technology to genetically engineer adult stem cells.

    PubMed

    Okazaki, Arimichi; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2007-02-01

    A new non-viral method of gene transfection was designed to enhance the level of gene expression for rat mesenchymal stem cells (MSCs). Pullulan was cationized using chemical introduction of spermine to prepare cationized pullulan of non-viral carrier (spermine-pullulan). The spermine-pullulan was complexed with a plasmid deoxyribonucleic acid (DNA) of luciferase and coated on the surface of culture substrate together with Pronectin of artificial cell adhesion protein. MSCs were cultured and transfected on the complex-coated substrate (reverse transfection), and the level and duration of gene expression were compared with those of MSCs transfected by culturing in the medium containing the plasmid DNA-spermine-pullulan complex (conventional method). The reverse transfection method enhanced and prolonged gene expression significantly more than did the conventional method. The reverse method permitted the transfection culture of MSCs in the presence of serum, in contrast to the conventional method, which gave cells a good culture condition to lower cytotoxicity. The reverse transfection was carried out for a non-woven fabric of polyethylene terephthalate (PET) coated with the complex and Pronectin using agitation and stirring culture methods. The two methods enhanced the level and duration of gene expression for MSCs significantly more than did the static method. It is possible that medium circulation improves the culture conditions of cells in terms of oxygen and nutrition supply and waste excretion, resulting in enhanced gene expression.

  5. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    PubMed

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  6. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand.

    PubMed

    Rizzoti, Karine; Akiyama, Haruhiko; Lovell-Badge, Robin

    2013-10-03

    Pituitary hormone deficiencies, with Growth Hormone deficiency being most frequent (1 in 3,500-10,000 births), cause significant morbidity. Regeneration of missing endocrine cells would be a significant improvement over hormone replacement therapies, which incur side effects and do not mimic physiological secretion patterns. Recent in vitro studies have identified a population of adult pituitary progenitors that express the HMG box transcription factors SOX2 and SOX9. Here, we apply cell-lineage tracing analysis to demonstrate that SOX2- and SOX9-expressing progenitors can self-renew and give rise to endocrine cells in vivo, suggesting that they are tissue stem cells. Moreover, we show that they can become mobilized and differentiate into the appropriate endocrine cell types in response to physiological stress. Our results highlight the pituitary as a model for exploring how physiological changes influence stem cell behavior and suggest that manipulation of endogenous pituitary stem cells is a potential therapeutic strategy for pituitary deficiencies.

  7. The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Drosophila Testis

    PubMed Central

    Fuller, Margaret T.

    2013-01-01

    Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages. PMID:24244183

  8. Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    PubMed Central

    Ulloa-Montoya, Fernando; Kidder, Benjamin L; Pauwelyn, Karen A; Chase, Lucas G; Luttun, Aernout; Crabbe, Annelies; Geraerts, Martine; Sharov, Alexei A; Piao, Yulan; Ko, Minoru SH; Hu, Wei-Shou; Verfaillie, Catherine M

    2007-01-01

    Background Recently, several populations of postnatal stem cells, such as multipotent adult progenitor cells (MAPCs), have been described that have broader differentiation ability than classical adult stem cells. Here we compare the transcriptome of pluripotent embryonic stem cells (ESCs), MAPCs, and lineage-restricted mesenchymal stem cells (MSCs) to determine their relationship. Results Applying principal component analysis, non-negative matrix factorization and k-means clustering algorithms to the gene-expression data, we identified a unique gene-expression profile for MAPCs. Apart from the ESC-specific transcription factor Oct4 and other ESC transcripts, some of them associated with maintaining ESC pluripotency, MAPCs also express transcripts characteristic of early endoderm and mesoderm. MAPCs do not, however, express Nanog or Sox2, two other key transcription factors involved in maintaining ESC properties. This unique molecular signature was seen irrespective of the microarray platform used and was very similar for both mouse and rat MAPCs. As MSC-like cells isolated under MAPC conditions are virtually identical to MSCs, and MSCs cultured in MAPC conditions do not upregulate MAPC-expressed transcripts, the MAPC signature is cell-type specific and not merely the result of differing culture conditions. Conclusion Multivariate analysis techniques clustered stem cells on the basis of their expressed gene profile, and the genes determining this clustering reflected the stem cells' differentiation potential in vitro. This comparative transcriptome analysis should significantly aid the isolation and culture of MAPCs and MAPC-like cells, and form the basis for studies to gain insights into genes that confer on these cells their greater developmental potency. PMID:17683608

  9. [Regeneration of vertebrate appendage: an old experimental model to study stem cells in the adult].

    PubMed

    Tawk, Marcel; Vriz, Sophie

    2003-04-01

    The application of stem cell therapy to cure degenerative diseases offers immense possibilities, but the research in this field is the subject of ethical debates raised by the question of destructive research on early human embryos. Stem cells taken in the adult constitute an alternative to human embryonic stem cells, but our knowledge on totipotent or pluripotent cells is currently insufficient. Furthermore, many questions must be solved before selection and differentiation of these cells in a given cellular type can be controlled on a routine basis. What are the molecular characteristics of an adult stem cell? What are the mechanisms involved in cell reprogramming? Which signals control stem cell replication and differentiation? Basic research activities must be carried out in order to clarify all these points. In this context, the regeneration of vertebrate appendages provides a model for this type of research. The regeneration process is defined by both the morphological and functional reconstruction of a part of a living organism, which has previously been destroyed. But why are some vertebrates able to regenerate complex structures and others apparently not? Among most vertebrates, the capacity to regenerate is limited to some tissues. It is however possible to observe the regeneration of appendages (limb, tail, fin, jaw, etc.) among several amphibians and fish. This regeneration leads to re-forming of the amputated part with a complete restoration of its shape, segmentation and function. Why is the amputation of limbs not followed by regeneration in mammals and birds: absence of stem cells, absence of recruitment signals for these cells, or absence of signal receptivity? This review constitutes a report on the current understanding of the basis of on regeneration of legs in tetrapods and of fins in fish with an emphasis in the role of the nervous system in this process.

  10. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells.

    PubMed

    Goulas, Spyros; Conder, Ryan; Knoblich, Juergen A

    2012-10-05

    The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.

  11. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres.

    PubMed

    Kim, MiJung; Choi, Yu Suk; Yang, Seung Hye; Hong, Hea-Nam; Cho, Sung-Woo; Cha, Sang Myun; Pak, Jhang Ho; Kim, Chan Wha; Kwon, Seog Woon; Park, Chan Jeoung

    2006-09-22

    The [corrected] use of adult stem cells for cell-based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. We have evaluated the combination of adipose tissue-derived adult stem cells (ADSCs) obtained from autologous liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for muscle regeneration. ADSCs attached to PLGA spheres and PLGA spheres alone were cultured in myogenic medium for 21 days and injected subcutaneously into the necks of nude mice. After 30 and 60 days, the mice were sacrificed, and newly formed tissues were analyzed by immunostaining, H and E staining, and RT-PCR. We found that ADSCs attached to PLGA spheres, but not PLGA spheres alone, were able to generate muscle tissue. These findings suggest that ADSCs and PLGA spheres are useful materials for muscle tissue engineering and that their combination can be used in clinical settings for muscle regeneration.

  12. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration.

    PubMed

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia Mc; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-10

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.

  13. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process.

    PubMed

    Choi, Hyunjung; Jin, Sun Hee; Han, Mi Hwa; Lee, Jinyoung; Ahn, Seyeon; Seong, Minjeong; Choi, Hyun; Han, Jiyeon; Cho, Eun-Gyung; Lee, Tae Ryong; Noh, Minsoo

    2014-10-01

    The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Adult marrow-derived very small embryonic-like stem cells and tissue engineering.

    PubMed

    Kucia, Magda; Zuba-Surma, Ewa K; Wysoczynski, Marcin; Wu, Wan; Ratajczak, Janina; Machalinski, Boguslaw; Ratajczak, Mariusz Z

    2007-10-01

    A population of CXCR4(+) lin(-) CD45(-) cells that express SSEA, Oct-4 and Nanog has been identified in adult bone marrow. These cells are very small and display several features typical for primary embryonic stem cells such as: i) a large nuclei surrounded by a narrow rim of cytoplasm; ii) open-type chromatin (euchromatin); and iii) high telomerase activity. These cells were named very small embryonic-like stem cells (VSEL-SC). The authors hypothesized that they are direct descendants of the germ lineage. Germ lineage, in order to pass genes on to the next generation, has to create soma and thus becomes a 'mother lineage' for all somatic cell lineages present in the adult body. Germ potential is established after conception in a totipotent zygote and retained subsequently during development in blastomers of morula, cells form the inner cell mass of blastocyst, epiblast and population of primordial germ cells. The authors envision that VSEL-SC are epiblast-derived pluripotent stem cells and could potentially become a less-controversial source of stem cells for regeneration.

  15. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  16. Characterization of age-related changes of tendon stem cells from adult human tendons.

    PubMed

    Ruzzini, Laura; Abbruzzese, Franca; Rainer, Alberto; Longo, Umile Giuseppe; Trombetta, Marcella; Maffulli, Nicola; Denaro, Vincenzo

    2014-11-01

    The present study evaluated the presence of stem cells in hamstring tendons from adult subjects of different ages. The aim was to isolate, characterize and expand these cells in vitro, and to evaluate whether cell activities are influenced by age. Tendon stem cells (TSCs) were isolated through magnetic sorting from the hamstring tendons of six patients. TSC percentage, morphology and clonogenic potential were evaluated, as well as the expression of specific surface markers. TSC multi-potency was also investigated as a function of age, and quantitative polimerase chain reaction was used to evaluate gene expression of TSCs cultured in suitable differentiating media. The presence of easily harvestable stem cell population within adult human hamstring tendons was demonstrated. These cells exhibit features such as clonogenicity, multi-potency and mesenchymal stem cells markers expression. The age-related variations in human TSCs affect the number of isolated cells and their self-renewal potential, while multi-potency assays are not influenced by tendon ageing, even though cells from younger individuals expressed higher levels of osteogenic and adipogenic genes, while chondrogenic genes were highly expressed in cells from older individuals. These results may open new opportunities to study TSCs to better understand tendon physiology, healing and pathological processes such as tendinopathy and degenerative age-related changes opening new frontiers in the management of tendinopathy and tendon ruptures.

  17. Effects of addictive drugs on adult neural stem/progenitor cells

    PubMed Central

    Xu, Chi; Loh, Horace H.; Law, Ping-Yee

    2015-01-01

    Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area. PMID:26468052

  18. Organoids from adult liver and pancreas: Stem cell biology and biomedical utility.

    PubMed

    Hindley, Christopher J; Cordero-Espinoza, Lucía; Huch, Meritxell

    2016-12-15

    The liver and pancreas are critical organs maintaining whole body metabolism. Historically, the expansion of adult-derived cells from these organs in vitro has proven challenging and this in turn has hampered studies of liver and pancreas stem cell biology, as well as being a roadblock to disease modelling and cell replacement therapies for pathologies in these organs. Recently, defined culture conditions have been described which allow the in vitro culture and manipulation of adult-derived liver and pancreatic material. Here we review these systems and assess their physiological relevance, as well as their potential utility in biomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Autologous Transplantation of Bone Marrow Adult Stem Cells for the Treatment of Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Westphal, Ricardo João; Bueno, Ronaldo Rocha Loures; Galvão, Paulo Bezerra de Araújo; Zanis Neto, José; Souza, Juliano Mendes; Guérios, Ênio Eduardo; Senegaglia, Alexandra Cristina; Brofman, Paulo Roberto; Pasquini, Ricardo; da Cunha, Claudio Leinig Pereira

    2014-01-01

    Background Morbimortality in patients with dilated idiopathic cardiomyopathy is high, even under optimal medical treatment. Autologous infusion of bone marrow adult stem cells has shown promising preliminary results in these patients. Objective Determine the effectiveness of autologous transplantation of bone marrow adult stem cells on systolic and diastolic left ventricular function, and on the degree of mitral regurgitation in patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Methods We administered 4,54 x 108 ± 0,89 x 108 bone marrow adult stem cells into the coronary arteries of 24 patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Changes in functional class, systolic and diastolic left ventricular function and degree of mitral regurgitation were assessed after 3 months, 6 months and 1 year. Results During follow-up, six patients (25%) improved functional class and eight (33.3%) kept stable. Left ventricular ejection fraction improved 8.9%, 9.7% e 13.6%, after 3, 6 and 12 months (p = 0.024; 0.017 and 0.018), respectively. There were no significant changes neither in diastolic left ventricular function nor in mitral regurgitation degree. A combined cardiac resynchronization and implantable cardioversion defibrillation was implanted in two patients (8.3%). Four patients (16.6%) had sudden death and four patients died due to terminal cardiac failure. Average survival of these eight patients was 2.6 years. Conclusion Intracoronary infusion of bone marrow adult stem cells was associated with an improvement or stabilization of functional class and an improvement in left ventricular ejection fraction, suggesting the efficacy of this intervention. There were no significant changes neither in left ventricular diastolic function nor in the degree of mitral regurgitation. PMID:25590932

  20. Anatomical location and culture of equine corneal epithelial stem cells.

    PubMed

    Moriyama, Hidekazu; Kasashima, Yoshinori; Kuwano, Atsutoshi; Wada, Shinya

    2014-03-01

    To identify morphologically the locations of equine corneal epithelial stem cells (CESCs) and to culture these cells. We studied the eyes of 12 adult thoroughbred horses. Eye tissues were immunostained for two positive stem cell markers (p63, CK14) and one negative marker (CK3) to identify the locations of CESCs, so we could compare their immunostaining patterns with those of human stem cells previously reported. We compared the proliferation rates and morphological features of epithelial cells isolated from the corneal limbus and central cornea. Undifferentiated cells expressing the same immunostaining pattern as human CESCs were present in the equine corneal limbus. Cultured epithelial cells isolated from the limbus expressed the same immunostaining pattern that CESCs show histologically, but cells isolated from the central cornea did not proliferate and could not be evaluated. Equine CESCs were localized in the epithelial basal layer of the corneal limbus, where melanocytes reside. They could be cultured without loss of their undifferentiated nature. When collecting such stem cells, it may be useful to harvest and culture corneal epithelial tissues in the limbus where melanocytes serve as an indicator of the collecting area. © 2013 American College of Veterinary Ophthalmologists.

  1. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila.

    PubMed

    Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Liu, Ying; Hou, Gerald; Liu, Hanhan; Hou, Steven X

    2016-10-06

    Cancer stem cells (CSCs) may be responsible for tumour dormancy, relapse and the eventual death of most cancer patients. In addition, these cells are usually resistant to cytotoxic conditions. However, very little is known about the biology behind this resistance to therapeutics. Here we investigated stem-cell death in the digestive system of adult Drosophila melanogaster. We found that knockdown of the coat protein complex I (COPI)-Arf79F (also known as Arf1) complex selectively killed normal and transformed stem cells through necrosis, by attenuating the lipolysis pathway, but spared differentiated cells. The dying stem cells were engulfed by neighbouring differentiated cells through a draper-myoblast city-Rac1-basket (also known as JNK)-dependent autophagy pathway. Furthermore, Arf1 inhibitors reduced CSCs in human cancer cell lines. Thus, normal or cancer stem cells may rely primarily on lipid reserves for energy, in such a way that blocking lipolysis starves them to death. This finding may lead to new therapies that could help to eliminate CSCs in human cancers.

  2. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    PubMed

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  3. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death.

    PubMed

    Garcia-Lavandeira, Montserrat; Diaz-Rodriguez, Esther; Bahar, Dilek; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Dieguez, Carlos; Alvarez, Clara V

    2015-01-01

    The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.

  4. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  5. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.

    PubMed

    Rocheteau, Pierre; Gayraud-Morel, Barbara; Siegl-Cachedenier, Irene; Blasco, Maria A; Tajbakhsh, Shahragim

    2012-01-20

    Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically.

  6. Loss of DNA Mismatch Repair Imparts a Selective Advantage in Planarian Adult Stem Cells

    PubMed Central

    Hollenbach, Jessica P.; Resch, Alissa M.; Palakodeti, Dasaradhi; Graveley, Brenton R.; Heinen, Christopher D.

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960

  7. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  8. Adult neurogenesis, neural stem cells and Alzheimer's disease: developments, limitations, problems and promises.

    PubMed

    Taupin, Philippe

    2009-12-01

    Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease, leading to severe incapacity and death. It is the most common form of dementia among older people. AD is characterized in the brain by amyloid plaques, neurofibrillary tangles, neuronal degeneration, aneuploidy and enhanced neurogenesis and by cognitive, behavioral and physical impairments. Inherited mutations in several genes and genetic, acquired and environmental risk factors have been reported as causes for developing the disease, for which there is currently no cure. Current treatments for AD involve drugs and occupational therapies, and future developments involve early diagnosis and stem cell therapy. In this manuscript, we will review and discuss the recent developments, limitations, problems and promises on AD, particularly related to aneuploidy, adult neurogenesis, neural stem cells (NSCs) and cellular therapy. Though adult neurogenesis may be beneficial for regeneration of the nervous system, it may underly the pathogenesis of AD. Cellular therapy is a promising strategy for AD. Limitations in protocols to establish homogeneous populations of neural progenitor and stem cells and niches for neurogenesis need to be resolved and unlocked, for the full potential of adult NSCs to be realized for therapy.

  9. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  10. Autophagy for the quality control of adult hippocampal neural stem cells.

    PubMed

    Hong, Caroline Jeeyeon; Park, Hyunhee; Yu, Seong-Woon

    2016-10-15

    Autophagy plays an important role in neurodegeneration, as well as in normal brain development and function. Recent studies have also implicated autophagy in the regulation of stemness and neurogenesis in neural stem cells (NSCs). However, little is known regarding the roles of autophagy in NSC biology. It has been shown that in addition to cytoprotective roles of autophagy, pro-death autophagy, or ׳autophagic cell death (ACD),' regulates the quantity of adult NSCs. A tight regulation of survival and death of NSCs residing in the neurogenic niches through programmed cell death (PCD) is critical for maintenance of adult neurogenesis. ACD plays a primary role in the death of adult hippocampal neural stem (HCN) cells following insulin withdrawal. Despite the normal apoptotic capability of HCN cells, they are committed to death by autophagy following insulin withdrawal, suggesting the existence of a unique regulatory program that controls the mode of cell death. We propose that dual roles of autophagy for maintenance of NSC pluripotency, as well as for elimination of defective NSCs, may serve as a combined NSC quality control mechanism. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Hyaluronic Acid-Rich Node and Duct System in Which Pluripotent Adult Stem Cells Circulate.

    PubMed

    Rai, Rajani; Chandra, Vishal; Kwon, Byoung S

    2015-10-01

    Regenerative medicine is in demand of adult pluripotent stem cells (PSCs). The "Bonghan System (BHS)" was discovered and suggested to contain cells with regenerative capacity in the early 1960s. It had been ignored for a long time due to the lack of sufficient details of experiments, but about 37 years after the initial report, the BHS was rediscovered and named as the "primo vascular system." Recently, we have discovered a similar structure, which contained a high level of hyaluronic acid, and hence, named the structure as hyaluronic acid-rich node and duct system (HAR-NDS). Here we discuss the HAR-NDS concept starting from the discovery of BHS, and findings pointing to its importance in regenerative medicine. This HAR-NDS contained adult PSCs, called node and duct stem cells (NDSCs), which appeared to circulate in it. We describe the evidence that NDSCs can differentiate into hemangioblasts that further produced differentiated blood cells. The NDSCs had a potential to differentiate into neuronal cells and hepatocytes; thus, NDSCs had a capability to become cells from all three germ layers. This system appears to be a promising alternative source of adult stem cells that can be easily delivered to their target tissues and participate in tissue regeneration.

  12. Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in Breast Cancer Patients

    DTIC Science & Technology

    2008-09-01

    Therapy for Lymphedema inBreast Cancer Patients PRINCIPAL INVESTIGATOR: Young Kwon Hong, Ph.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in... lymphedema patients. The key significance of our proposal is to utilize the elusive circulating adult stem cells to avoid the ethical and immunological

  13. Human adult stem cells as the target cells for the initiation of carcinogenesis and for the generation of "cancer stem cells".

    PubMed

    Trosko, James E

    2008-11-01

    The inference to stem cells has been found in ancient myths and the concept of stem cells has existed in the fields of plant biology, developmental biology and embryology for decades. In the field of cancer research, the stem cell theory was one of the earliest hypotheses on the origin of a cancer from a single cell. However, an opposing hypothesis had it that an adult differentiated somatic cell could "de-differentiate" to become a cancer cell. Only within the last decade, via the "cloning" of Dolly, the sheep, did the field of stem cell biology really trigger an exciting revolution in biological research. The isolation of human embryonic stem cells has created a true revolution in the life sciences that has led to the hope that these human stem cells could lead to (a) basic science understanding of gene regulation during differentiation and development; (b) stem cell therapy; (c) gene therapy via stem cells; (d) the use of stem cells for drug discovery; (e) screening for toxic effects of chemicals; and (f) understand the aging and diseases of aging processes.

  14. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    PubMed

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  15. Developmental and adult phenotyping directly from mutant embryonic stem cells

    PubMed Central

    George, Sophia H. L.; Gertsenstein, Marina; Vintersten, Kristina; Korets-Smith, Ella; Murphy, John; Stevens, Mary E.; Haigh, Jody J.; Nagy, Andras

    2007-01-01

    Tetraploid embryo complementation assay has shown that mouse ES cells alone are capable of supporting embryonic development and adult life of mice. Newly established F1 hybrid ES cells allow the production of ES cell-derived animals at a high enough efficiency to directly make ES cell-based genetics feasible. Here we report the establishment and characterization of 12 new F1 hybrid ES cell lines and the use of one of the best (G4) in a gain- and loss-of-function genetic study, where the in vivo phenotypes were assessed directly from ES cell-derived embryos. We found the generation of G4 ES cell-derived animals to be very efficient. Furthermore, even after two consecutive rounds of genetic modifications, the majority of transgenic lines retained the original potential of the parental lines; with 10–40% of chimeras producing ES cell-derived animals/embryos. Using these genetically altered ES cells, this success rate, in most cases, permitted the derivation of a sufficient number of mutants for initial phenotypic analyses only a few weeks after the establishment of the cell lines. Although the experimental design has to take into account a moderate level of uncontrolled damage on ES cell lines, our proof-of-principle experiment provides useful data to assist future designs harnessing the power of this technology to accelerate our understanding of gene function. PMID:17360545

  16. Simultaneous control of stemness and differentiation by the transcription factor Escargot in adult stem cells: How can we tease them apart?

    PubMed Central

    Loza-Coll, Mariano A.; Jones, D. Leanne

    2016-01-01

    ABSTRACT The homeostatic turnover of adult organs and their regenerative capacity following injury depend on a careful balance between stem cell self-renewal (to maintain or enlarge the stem cell pool) and differentiation (to replace lost tissue). We have recently characterized the role of the Drosophila Snail family transcription factor escargot (esg) in testis cyst stem cells (CySCs)1,2 and intestinal stem cells (ISCs). 3,4 CySCs mutant for esg are not maintained as stem cells, but they remain capable of differentiating normally along the cyst cell lineage. In contrast, esg mutant CySCs that give rise to a closely related lineage, the apical hub cells, cannot maintain hub cell identity. Similarly, Esg maintains stemness of ISCs while regulating the terminal differentiation of progenitor cells into absorptive enterocytes or secretory enteroendocrine cells. Therefore, our findings suggest that Esg may play a conserved and pivotal regulatory role in adult stem cells, controlling both their maintenance and terminal differentiation. Here we propose that this dual regulatory role is due to simultaneous control by Esg of overlapping genetic programs and discuss the exciting challenges and opportunities that lie ahead to explore the underlying mechanisms experimentally. PMID:27077690

  17. Links between Schwann cells and melanocytes in development and disease.

    PubMed

    Van Raamsdonk, Catherine D; Deo, Mugdha

    2013-09-01

    Melanocytes are pigment-producing cells that reside in the skin, eyes, ears, heart, and central nervous system meninges of mammals. Schwann cells are glial cells, which closely associate with peripheral nerves, myelinating, and sheathing them. Melanocytes and Schwann cells both arise from the neural crest during development, and some melanocytes arise directly from Schwann cell precursors lining developing spinal nerves. In this review, we explore the connections between melanocytes and Schwann cells in development and transformation.

  18. Adult neural stem cells: Long-term self-renewal, replenishment by the immune system, or both?

    PubMed

    Beltz, Barbara S; Cockey, Emily L; Li, Jingjing; Platto, Jody F; Ramos, Kristina A; Benton, Jeanne L

    2015-05-01

    The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.

  19. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system.

    PubMed

    Horie, Takeo; Shinki, Ryoko; Ogura, Yosuke; Kusakabe, Takehiro G; Satoh, Nori; Sasakura, Yasunori

    2011-01-27

    In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.

  20. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee

    PubMed Central

    Cheng, Pei-Hsun; Snyder, Brooke; Fillos, Dimitri; Ibegbu, Chris C; Huang, Anderson Hsien-Cheng; Chan, Anthony WS

    2008-01-01

    Background Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. Results ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4) and osteogenic (Osteonectin, osteocalcin, osteopontin) markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs), hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. Conclusion These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates. PMID:18430234

  1. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures.

  2. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  3. The ultrastructure of conjunctival melanocytic tumors.

    PubMed Central

    Jakobiec, F A

    1984-01-01

    The ultrastructure of conjunctival melanocytic lesions in 49 patients was evaluated to find significant differences between benign and malignant cells. The patients studied included 9 with benign epithelial (racial) melanosis, 2 with pigmented squamous cell papillomas, 16 with conjunctival nevi, 18 with primary acquired melanosis, and 11 with invasive nodules of malignant melanoma. In benign epithelial melanosis, dendritic melanocytes were situated along the basement membrane region of the conjunctival epithelium, with one basilar dendritic melanocyte lodged among every five or six basilar keratinocytes. The dendritic melanocytes extended arborizing cellular processes between the basilar and among the suprabasilar keratinocytes, which manifested considerable uptake of melanin granules into their cytoplasm. The benign dendritic melanocytes possessed nuclei with clumped heterochromatin at the nuclear membrane, small, tightly wound nucleoli, and large, elongated, fully melaninized melanin granules. In two patients with benign hyperplasia of the dendritic melanocytes, occasional dendritic melanocytes were located in a suprabasilar position, but were always separated from each other by keratinocytes or their processes. In the two black patients with benign pigmented squamous papillomas, the benign dendritic melanocytes were located hapharzardly at all levels of the acanthotic epithelium and not just along the basement membrane region. Melanin uptake by the proliferating keratinocytes was minimal. In benign melanocytic nevi of the conjunctiva, nevus cells within the intraepithelial junctional nests displayed a more rounded cellular configuration; short villi and broader cellular processes suggestive of abortive dendrites were found. The nuclear chromatin pattern was clumped at the nuclear membrane, but the nucleoli were somewhat larger than those of benign dendritic melanocytes in epithelial melanosis. The melanosomes were smaller and rounder than those in dendritic

  4. Congenital Melanocytic Nevus Syndrome: A Case Series.

    PubMed

    Recio, A; Sánchez-Moya, A I; Félix, V; Campos, Y

    2017-01-19

    Congenital melanocytic nevus syndrome (CMNS) is the result of an abnormal proliferation of melanocytes in the skin and central nervous system caused by progenitor-cell mutations during embryonic development. Mutations in the NRAS gene have been detected in many of these cells. We present 5 cases of giant congenital melanocytic nevus, 3 of them associated with CMNS; NRAS gene mutation was studied in these 3 patients. Until a few years ago, surgery was the treatment of choice, but the results have proved unsatisfactory because aggressive interventions do not improve cosmetic appearance and only minimally reduce the risk of malignant change. In 2013, trametinib was approved for use in advanced melanoma associated with NRAS mutations. This drug, which acts on the intracellular RAS/RAF/MEK/pERK/MAPK cascade, could be useful in pediatric patients with CMNS. A better understanding of this disease will facilitate the development of new strategies.

  5. The Relationship of Psoriasis and Melanocytic Nevi

    PubMed Central

    Cengiz, Fatma Pelin; Emiroglu, Nazan; Bahali, Anil Gulsel; Ozkaya, Dilek Biyik; Su, Ozlem; Onsun, Nahide

    2016-01-01

    Background: There is limited data about the relationship between psoriasis and melanocytic lesions and melanoma. Immunologic pathways which were implicated in psoriasis induce a reduction in the number of melanocytic nevi. Aims and Objectives: To investigate the number of melanocytic nevi in psoriatic patients compared with controls and its relationship with disease severity and type of treatment. Methods: We performed a prospective study in 100 psoriatic patients and 100 controls. Clinical data were recorded for all participants. Results: As compared with controls, patients had overall fewer nevi congenital nevi. Among psoriatic patients, biologic agents and disease severity did not correlate with the number of nevi. Conclusions: Psoriatic patients have fewer nevi than controls. Frequency of nevi in psoriatic patients is not related to treatment and disease severity. PMID:27904187

  6. UV light phototransduction depolarizes human melanocytes.

    PubMed

    Bellono, Nicholas W; Oancea, Elena

    2013-01-01

    Exposure of human skin to low doses of solar UV radiation (UVR) causes increased pigmentation, while chronic exposure is a powerful risk factor for skin cancers. The mechanisms mediating UVR detection in skin, however, remain poorly understood. Our recent studies revealed that UVR activates a retinal-dependent G protein-coupled signaling pathway in melanocytes. This phototransduction pathway leads to the activation of transient receptor potential A1 (TRPA1) ion channels, elevation of intracellular calcium (Ca( 2+)) and rapid increase in cellular melanin content. Here we report that physiological doses of solar-like UVR elicit a retinal-dependent membrane depolarization in human epidermal melanocytes. This transient depolarization correlates with delayed inactivation time of the UVR-evoked photocurrent and with sustained Ca( 2+) responses required for early melanin synthesis. Thus, the cellular depolarization induced by UVR phototransduction in melanocytes is likely to be a critical signaling mechanism necessary for the protective response represented by increased melanin content.

  7. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  8. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  9. Congenital agminated melanocytic nevus - case report*

    PubMed Central

    da Rocha, Camila Roos Mariano; Grazziotin, Thaís Corsetti; Rey, Maria Carolina Widholzer; Luzzatto, Laura; Bonamigo, Renan Rangel

    2013-01-01

    Agminated nevus is a cluster group of melanocytic nevi confined to a localized area of the body. There are many pigmented lesions described in the literature as agminated, such as blue nevi, multiple lentigines and Spitz nevi, but only a few cases of congenital agminated melanocytic nevi have been described. We report a case of a male child who presented with congenital agminated nevi, emphasizing the importance of physical examination, dermoscopy, histopathological evaluation, differential diagnosis and follow up to rule out the possibility of dysplastic or malignant changes. PMID:24346910

  10. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly

    PubMed Central

    Parte, Seema; Patel, Hiren; Sriraman, Kalpana; Zaveri, Kusum; Hinduja, Indira

    2016-01-01

    Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. PMID:26635884

  11. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells1

    PubMed Central

    Mandon, Marion; Hermo, Louis; Cyr, Daniel G.

    2015-01-01

    There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells. PMID:26400399

  12. Progerin expression disrupts critical adult stem cell functions involved in tissue repair

    PubMed Central

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-01-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell–mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs). Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  13. Child-rearing and adult leukemia: Epidemiologic evidence in support of competing hematopoietic stem cell differentiation

    SciTech Connect

    Steven, R.G. ); Severson, R.K. . Japan-Hawaii Cancer Study); Heuser, L. )

    1988-05-01

    The hypothesis that lack of child-rearing increases the risk of acute non-lymphocytic leukemia (ANLL) in adults was examined in a case-control study in western Washington State. Among 159 study subjects over age 50 in 1985, there were 76 cases of ANLL and 83 controls. The crude odds ratio associated with lack of child-rearing was 1.8, with a 95% confidence range of 0.7 to 5.0. The average total number of children ever living with cases was 2.6 and with controls was 3.1 (p = 0.06). The mean total number of years living with a child, or children, under age 18 was 17.6 in cases and 20.2 in controls (p = 0.05). These results were not materially altered after adjustment for age, smoking, race, income, and sex. The data provide evidence that cases of ANLL were less likely to ever have had children and that fewer years were spent rearing children than were spent by controls. The hypothesis was based on the competing stem cell'' theory of hematopoietic ontogeny. If valid, then exposure to children would increase exposure to infection, leading to increased lymphocytic stem cell turnover, and decreased non-lymphocytic stem cell turnover. This, in turn, may reduce risk of ANLL in adults. 18 refs., 3 tabs.

  14. Influence of coping style on symptom interference among adult recipients of hematopoietic stem cell transplantation.

    PubMed

    Schoulte, Joleen C; Lohnberg, Jessica A; Tallman, Benjamin; Altmaier, Elizabeth M

    2011-09-01

    To investigate the influence of coping style on interference caused by a variety of common post-treatment symptoms after hematopoietic stem cell transplantation. Longitudinal; secondary analysis of data from the original study that examined health-related quality-of-life variables (e.g., depression, well-being) in adult patients treated with conventional bone marrow transplantation or depleted T-cell bone marrow transplantation. Fifteen university medical centers in the United States. 105 adult recipients of hematopoietic stem cell transplantation. Patients were assessed via telephone-based interviews for coping style at baseline and for symptom interference in daily living six months post-treatment. Coping style and symptom interference. Neither age nor gender predicted symptom interference, with the exception of chronic graft-versus-host disease, where older patients experienced more interference at six months, and breathing symptoms, for which women experienced more interference than men at six months. Avoidant coping style at baseline predicted increased interference from symptoms, but emotion-focused and instrumental coping styles did not predict decreased interference. A generalized avoidant coping style before treatment increased interference from common cancer symptoms six months after hematopoietic stem cell transplantation. An intervention to teach alternate coping strategies should be implemented prior to treatment and tested for prevention of symptom-related life interference.

  15. An RbAp48-like gene regulates adult stem cells in planarians.

    PubMed

    Bonuccelli, Lucia; Rossi, Leonardo; Lena, Annalisa; Scarcelli, Vittoria; Rainaldi, Giuseppe; Evangelista, Monica; Iacopetti, Paola; Gremigni, Vittorio; Salvetti, Alessandra

    2010-03-01

    Retinoblastoma-associated proteins 46 and 48 (RbAp46 and RbAp48) are factors that are components of different chromatin-modelling complexes, such as polycomb repressive complex 2, the activity of which is related to epigenetic gene regulation in stem cells. To date, no direct findings are available on the in vivo role of RbAp48 in stem-cell biology. We recently identified DjRbAp48 - a planarian (Dugesia japonica) homologue of human RBAP48 - expression of which is restricted to the neoblasts, the adult stem cells of planarians. In vivo silencing of DjRbAp48 induces lethality and inability to regenerate, even though neoblasts proliferate and accumulate after wounding. Despite a partial reduction in neoblast number, we were always able to detect a significant number of these cells in DjRbAp48 RNAi animals. Parallel to the decrease in neoblasts, a reduction in the number of differentiated cells and the presence of apoptotic-like neoblasts were detectable in RNAi animals. These findings suggest that DjRbAp48 is not involved in neoblast maintenance, but rather in the regulation of differentiation of stem-cell progeny. We discuss our data, taking into account the possibility that DjRbAp48 might control the expression of genes necessary for cell differentiation by influencing chromatin architecture.

  16. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function.

    PubMed

    Middendorp, Sabine; Schneeberger, Kerstin; Wiegerinck, Caroline L; Mokry, Michal; Akkerman, Ronald D L; van Wijngaarden, Simone; Clevers, Hans; Nieuwenhuis, Edward E S

    2014-05-01

    Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.

  17. Growth and differentiation of adult hippocampal arctic ground squirrel neural stem cells.

    PubMed

    Drew, Kelly L; McGee, Rebecca C; Wells, Matthew S; Kelleher-Andersson, Judith A

    2011-01-07

    Arctic ground squirrels (Urocitellus parryii, AGS) are unique in their ability to hibernate with a core body temperature near or below freezing. These animals also resist ischemic injury to the brain in vivo and oxygen-glucose deprivation in vitro. These unique qualities provided the impetus to isolate AGS neurons to examine inherent neuronal characteristics that could account for the capacity of AGS neurons to resist injury and cell death caused by ischemia and extremely cold temperatures. Identifying proteins or gene targets that allow for the distinctive properties of these cells could aid in the discovery of effective therapies for a number of ischemic indications and for the study of cold tolerance. Adult AGS hippocampus contains neural stem cells that continue to proliferate, allowing for easy expansion of these stem cells in culture. We describe here methods by which researchers can utilize these stem cells and differentiated neurons for any number of purposes. By closely following these steps the AGS neural stem cells can be expanded through two passages or more and then differentiated to a culture high in TUJ1-positive neurons (~50%) without utilizing toxic chemicals to minimize the number of dividing cells. Ischemia induces neurogenesis and neurogenesis which proceeds via MEK/ERK and PI3K/Akt survival signaling pathways contributes to ischemia resistance in vivo and in vitro (Kelleher-Anderson, Drew et al., in preparation). Further characterization of these unique neural cells can advance on many fronts, using some or all of these methods.

  18. Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes.

    PubMed Central

    Imokawa, G; Yada, Y; Kimura, M

    1996-01-01

    To understand the signalling mechanisms involved in the dual stimulatory effects of endothelin-1 (ET-1) on DNA synthesis and melanization in cultured human melanocytes, we analysed the biological profile of ET-1 receptor and determined the effects of ET-1 on the protein kinase C, cyclic AMP system and mitogen-activated protein kinase (MAP kinase) in comparison with their relevant stimulants. The photoaffinity labelling of ET-1 receptors with Denny-Jaff reagents revealed an ET-1 receptor with a molecular mass of 51 kDa in human melanocytes. The ET(A) receptor subtype-sensitive antagonist BQ123(50 nM) or pertussis toxin (100 ng/ml) significantly suppressed the ET-1-induced intracellular calcium mobilization, indicating the presence of pertussis toxin-sensitive G-protein-coupled ET(A) receptors. An assay of protein kinase C activity revealed that 10nM ET-1 translocated cytosolic protein kinase C to membrane-bound protein kinase C within 5 min of the start of incubation. In contrast, receptor-mediated melanocyte activation by ET-1 was accompanied by an elevated level of cyclic AMP (4-fold over control) after 10-60 min of incubation, whereas 60 min of incubation of human melanocytes with c-Kit or c-Met ligands such as stem cell factor (10 nM) or basic fibroblast growth factor (10 nM) did not elevate the cyclic AMP level. We have also demonstrated that a specific tyrosine kinase inhibitor, tyrphostin B-42 (10 microM), inhibited the ET-1-induced growth stimulation, suggesting the involvement of the tyrosine kinase pathway in growth stimulation. Consistently, an assay of MAP kinase revealed that ET-1 caused a 10-fold activation of MAP kinase after 5 min of incubation with human melanocytes in a similar way to tyrosine kinase ligands such as stem cell factor and hepatocyte growth factor. Further, the DNA synthesis stimulated by the c-Kit ligand stem cell factor at a concentration of 1 nM was synergistically enhanced by 5 nM ET-1. These results suggest that ET-induced dual

  19. Sirt1 Protects Stressed Adult Hematopoietic Stem Cells | Center for Cancer Research

    Cancer.gov

    The immune system relies on a stable pool of hematopoietic stem and progenitor cells (HSPCs) to respond properly to injury or stress. Maintaining genomic integrity and appropriate gene expression is essential for HSPC homeostasis, and dysregulation can result in myeloproliferative disorders or loss of immune function. Sirt1 is a histone deacetylase that can protect embryonic stem (ES) cells from accumulating DNA damage and has been linked to hematopoietic differentiation of ES cells. Satyendra Singh, Ph.D., a postdoctoral fellow working with Philipp Oberdoerffer, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and their colleagues set out to determine whether Sirt1 could play a similar protective role in adult HSPCs.

  20. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells

    PubMed Central

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G.; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta–gonad–mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso–ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  1. Adult stem cells, scaffolds for in vivo and in vitro myocardial tissue engineering.

    PubMed

    Di Felice, Valentina; De Luca, Angela; Serradifalco, Claudia; Di Marco, Patrizia; Verin, Lucia; Motta, Antonella; Guercio, Annalisa; Zummo, Giovanni

    2010-01-01

    The main goal in the last few years in cardiac research has been to isolate cardiac potential stem cells from adult myocardium and to demonstrate their differentiation potential. We have previously demonstrated that c-Kit positive cardiac stem cells are able to organize themselves into a tissue-like cell mass. In this 3D mass, they can produce a high concentration of natural extracellular matrix, can create vessels, a capsule and, with the help of an Open-pore Polylactic Acid scaffold, many cells can organize an elementary myocardium. Drawing from this background, we decided to design and use poly-lactic scaffolds and the model of the athymic Nude-Foxn1(nu) mouse to evaluate the extent of the myogenic vs endothelial differentiation in vivo, and to evaluate the presence or the absence of a foreign body reaction.

  2. Endometrial adult/progenitor stem cells: pathogenetic theory and new antiangiogenic approach for endometriosis therapy.

    PubMed

    Pittatore, G; Moggio, A; Benedetto, C; Bussolati, B; Revelli, A

    2014-03-01

    The cyclical arrival of endometrial cells into the abdominal cavity through retrograde flux at menstruation represents the etiopathogenetic basis of endometriosis. The endometrium has peculiar regenerative properties linked to the presence of adult stem cells similar to mesenchymal stem cells (MSCs). Once in the abdominal cavity, these MSCs could proliferate, invade, and differentiate into endometrial cells, finally generating ectopic implants. As only differentiated endometrial cells, and not endometrial MSCs, possess steroid hormone receptors, MSCs could be responsible for the high rate of persistence/recurrence of the disease after hypoestrogenism-inducing therapies. Even angiogenesis promoted by MSCs could play an important role, as survival and proliferation of endometriotic tissue depend on the formation of new blood vessels. Inhibition of angiogenesis represents, in fact, a new, promising therapeutic approach for the disease. Further, medications directly targeting endometriosis MSCs could be effective, alone or in association with hormonal treatments, in increasing the success of medical treatment.

  3. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath.

    PubMed

    Commo, S; Gaillard, O; Bernard, B A

    2004-03-01

    Although hair greying is a very common phenomenon characterized by loss of pigment in the hair shaft, the events that cause and control natural hair whitening with age in humans are still unclear. To decipher the origin of natural hair whitening. Human hair melanocytes were immunohistochemically characterized at different stages of whitening. Loss of hair shaft melanin was found to be associated with a decrease in both bulb melanin content and bulb melanocyte population. Although few melanocytes were present in the bulbs of grey hair, they still expressed tyrosinase and tyrosinase-related protein-1, synthesized and transferred melanins to cortical keratinocytes as seen by the presence of melanin granules. In white hair bulbs, no melanocytes could be detected either with pMel-17 or vimentin labelling. Pigmented hair follicles are known to contain inactive melanocytes in the outer root sheath (ORS), and grey and white hairs were also found to contain some of these quiescent melanocytes. However, their population was decreased compared with pigmented hair follicles, ranging from small to nil. This depletion of melanocytes in the different areas of white hairs was detected throughout the hair cycle, namely at telogen and early anagen stages. In contrast, the infundibulum and sebaceous gland of both pigmented and white hairs showed a similar distribution of melanocytes. Furthermore, other distinct cell populations located in the ORS, namely putative stem cells, Merkel cells and Langerhans cells were equivalently identified in pigmented and white hairs. Thus, hair greying appears to be a consequence of an overall and specific depletion of bulb and ORS melanocytes of human hair.

  4. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes.

    PubMed

    Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided

  5. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche.

    PubMed

    Balmer, Gemma M; Riley, Paul R

    2012-10-01

    Across biomedicine, there is a major drive to develop stem cell (SC) treatments for debilitating diseases. Most effective treatments restore an embryonic phenotype to adult SCs. This has led to two emerging paradigms in SC biology: the application of developmental biology studies and the manipulation of the SC niche. Developmental studies can reveal how SCs are orchestrated to build organs, the understanding of which is important in order to instigate tissue repair in the adult. SC niche studies can reveal cues that maintain SC 'stemness' and how SCs may be released from the constraints of the niche to differentiate and repopulate a 'failing' organ. The haematopoietic system provides an exemplar whereby characterisation of the blood lineages during development and the bone marrow niche has resulted in therapeutics now routinely used in the clinic. Ischaemic heart disease is a major cause of morbidity and mortality in humans and the question remains as to whether these principles can be applied to the heart, in order to exploit the potential of adult SCs for use in cardiovascular repair and regeneration.

  6. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  7. Environmental enrichment influences neuronal stem cells in the adult crayfish brain

    PubMed Central

    Ayub, Neishay; Benton, Jeanne L.; Zhang, Yi; Beltz, Barbara S.

    2011-01-01

    New neurons are incorporated throughout life into the brains of many vertebrate and non-vertebrate species. This process of adult neurogenesis is regulated by a variety of external and endogenous factors, including environmental enrichment, which increases the production of neurons in juvenile mice and crayfish. The primary goal of the present study was to exploit the spatial separation of the neuronal precursor cell lineage in crayfish to determine which generation(s) of precursors is altered by environmental conditions. Further, in crayfish, an intimate relationship between the 1st generation neuronal precursors (stem cells) and cells circulating in the hemolymph has been proposed (Zhang et al., 2009). Therefore, a second goal was to assess whether environmental enrichment alters the numbers or types of cells circulating in the hemolymph. We find that neurogenesis in the brains of sexually differentiated procambarid crayfish is enhanced by environmental enrichment as previously demonstrated by Sandeman and Sandeman (2000) in young, sexually undifferentiated Cherax destructor. We also show that environmental enrichment increases the cell cycle rate of neuronal stem cells. While there was no effect of environment on the overall numbers of cells circulating in the hemolymph, enrichment resulted in increased expression of glutamine synthetase, a marker of the neuronal stem cells, in a small percentage of circulating cells; there was little or no expression of this enzyme in hemolymph cells extracted from deprived animals. Thus, environmental enrichment influences the rate of neuronal stem cell division in adult crayfish, as well as the composition of cells circulating in the hemolymph. PMID:21485010

  8. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease.

    PubMed

    Brazzini, Augusto; Cantella, Raúl; De la Cruz, Antonio; Yupanqui, Jorge; León, Carlos; Jorquiera, Tamara; Brazzini, Mariana; Ortega, Melitón; Saenz, Luis N

    2010-04-01

    To evaluate the feasibility, safety, and effectiveness of intraarterial autologous implantation of adult stem cells for Parkinson disease (PD). From June 2006 to August 2008, 36 men and 14 women (mean age, 62.5 years +/- 10.4; range, 38-81 y) with PD (mean duration, 9.3 years; range, 1-28 y) underwent autologous implantation of stem cells with superselective arterial catheterization. Patients were evaluated with clinical and neurologic examinations; internationally recognized scales for the evaluation of PD, disability, activities of daily living, depression, and quality of life (QOL); as well as videos, magnetic resonance (MR) imaging, and MR spectroscopy. Stem cells were implanted in the posterior region of the circle of Willis. Patients were evaluated according to clinical measures. Comparison was made versus data collected from all scales before treatment, as well as videos and spectroscopy in eight patients. In a mean follow-up of 7.4 months +/- 4.5 (range, 1-18 months), patients showed a median improvement of 51.1% and quartile deviation (QD) of 24.8% on the Unified PD Rating Scale. They showed significant improvement in disability, activities of daily living, depression, and QOL (P < .5). No complications were observed. In eight patients, follow-up MR spectroscopy revealed mean improvements in n-acetylaspartate/creatine ratio from 1.805 to 2.07 (12.8%) and from 1.25 to 1.88 (43.56%) in right and left basal ganglia, respectively, versus preprocedural values (P < .05). Treatment of PD with intraarterial autologous implantation of adult stem cells is feasible and safe and results in improved severity of disease and QOL. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  9. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain.

    PubMed

    Torres-Pérez, Maximiliano; Rosillo, Juan Carlos; Berrosteguieta, Ines; Olivera-Bravo, Silvia; Casanova, Gabriela; García-Verdugo, José Manuel; Fernández, Anabel Sonia

    2017-10-15

    Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells or slow cycling cells, that were labeled with both CldU and IdU and did not migrate; and III - migrant cells that uptake IdU. Mapping and 3D-reconstruction of labeled nuclei showed that type I and type II cells were preferentially found close to ventricle walls. Type III cells appeared widespread and migrating in tangential and radial routes. Use of proliferation markers together with Vimentin or Nestin evidenced that type II cells are the putative stem cells that are located at the ventricular lumen. Double label cells with IdU+ and NeuN or HuC/D allowed us identify migrant neurons. Quantitation of labeled nuclei indicates that the proportion of putative stem cells is around 10% in all regions of the brain. This percentage of stem cells suggests the existence of a constant brain cell population in Austrolebias charrua that seems functional to the maintainance of adult neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  11. Isolating primary melanocyte-like cells from the mouse heart.

    PubMed

    Hwang, Hayoung; Liu, Fang; Levin, Mark D; Patel, Vickas V

    2014-09-29

    We identified a novel population of melanocyte-like cells (also known as cardiac melanocytes) in the hearts of mice and humans that contribute to atrial arrhythmia triggers in mice. To investigate the electrical and biological properties of cardiac melanocytes we developed a procedure to isolate them from mouse hearts that we derived from those designed to isolate neonatal murine cardiomyocytes. In order to obtain healthier cardiac melanocytes suitable for more extensive patch clamp or biochemical studies, we developed a refined procedure for isolating and plating cardiac melanocytes based on those originally designed to isolate cutaneous melanocytes. The refined procedure is demonstrated in this review and produces larger numbers of healthy melanocyte-like cells that can be plated as a pure population or with cardiomyocytes.

  12. The postnatal origin of adult neural stem cells and the effects of glucocorticoids on their genesis.

    PubMed

    Ortega-Martínez, Sylvia; Trejo, José L

    2015-02-15

    The relevance of adult neurogenesis in hippocampal function is well documented, as is the potential impact stress has on the adult neurogenic niche. Adult born neurons are generated from neural precursors in the dentate gyrus (DG), although the point in postnatal development that these cell precursors originate is not known. This is particularly relevant if we consider the effects stress may have on the development of neural precursors, and whether such effects on adult neurogenesis and behavior may persist in the long-term. We have analyzed the proportion of neural precursors in the adult murine hippocampus born on specific days during postnatal development using a dual birth-dating analysis, and we assessed their sensitivity to dexamethasone (DEX) on the peak day of cell generation. We also studied the consequences of postnatal DEX administration on adult hippocampal-dependent behavior. Postnatal day 6 (P6) is a preferred period for proliferating neural stem cells (NSCs) to become the precursors that remain in a proliferative state throughout adulthood. This window is independent of gender, the cell's location in the DG granule cell layer or their rostro-caudal position. DEX administration at P6 reduces the size of the adult NSC pool in the DG, which is correlated with poor learning/memory capacity and increased anxiety-like behavior. These results indicate that aNSCs are generated non-uniformly during postnatal development, with peak generation on day P6, and that stress receptor activation during the key period of postnatal NSC generation has a profound impact on both adult hippocampal neurogenesis and behavior.

  13. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells.

    PubMed

    Barker, Nick; Clevers, Hans

    2010-05-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.

  14. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  15. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Benato, Francesca; Argenton, Francesco; Brand, Michael

    2013-05-04

    Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish brain. This implies that the post

  16. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes.

    PubMed Central

    Imokawa, G; Yada, Y; Morisaki, N; Kimura, M

    1998-01-01

    To clarify the paracrine linkage between human fibroblasts and melanocytes in cutaneous pigmentation, we studied the effects of human fibroblast-derived factors on the proliferation of human melanocytes. In medium conditioned for 4 days with human fibroblast culture, factors were produced that markedly stimulated DNA synthesis of human melanocytes. The stimulatory effect was higher in medium conditioned with fibroblasts from aged skin than in medium conditioned with fibroblasts from young skin, and was interrupted by inhibitors of tyrosine kinase, such as tyrphostin, genistein and herbimycin, but not by inhibitors of protein kinases C and A, such as H-7 and phloretin. The conditioned medium was also capable of activating mitogen-activated protein kinase of human melanocytes, with old fibroblasts being more effective than young ones. Analysis of factors released into the conditioned medium revealed that levels of hepatocyte growth factor (HGF) and stem cell factor (SCF) were increased in old-fibroblast-conditioned medium compared with young-fibroblast-conditioned medium. In contrast, levels of basic fibroblast growth factor (bFGF) were similar in both media. When the conditioned medium was treated with HGF antibody with or without SCF antibody, the increase in DNA synthesis by human melanocytes was decreased to 20% of the elevated level, whereas antibodies to bFGF had no effect. Analysis of the medium conditioned for 4 days after cytokine application demonstrated that, of the cytokines tested, interleukin 1alpha and tumour necrosis factor alpha are highly effective in stimulating HGF secretion by old fibroblasts. HGF and SCF, but not bFGF, were markedly increased in culture medium in the presence of IL-1alpha, and this stimulatory effect was confined to young human fibroblasts. These findings suggest that SCF and HGF derived from human fibroblasts may play a part in regulating cutaneous pigmentation during inflammation and aging. PMID:9494091

  17. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells.

    PubMed

    Sreejit, P; Verma, R S

    2013-04-01

    Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for

  18. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    PubMed

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  19. Allogeneic hematopoietic stem-cell transplantation for adult and adolescent hemophagocytic lymphohistiocytosis: a single center analysis.

    PubMed

    Fu, Li; Wang, Jingshi; Wei, Na; Wu, Lin; Wang, Yini; Huang, Wenqiu; Zhang, Jia; Liu, Jinli; Wang, Zhao

    2016-11-01

    Myeloablative conditioning-based allogeneic hematopoietic stem-cell transplantation (allo-HSCT) in the treatment of adult and adolescent hemophagocytic lymphohistiocytosis (HLH) is rarely reported. We conducted a retrospective study of 30 adult and adolescent HLH transplanted for primary HLH (n = 4), tumor-HLH (n = 8), EBV-HLH (n = 14), and underlying disease-unknown (UDU)-HLH (n = 4). Peripheral blood stem cells (PBSCs) were the stem-cell source in all patients. Twenty-three patients were transplanted from HLA-haploidentical family donors, six from HLA-identical sibling donors, and one from a matched unrelated donor. Four patients appeared with mixed chimerism (MC), and no patient presented with graft failure. There was a high risk for EBV reactivation with an incidence of 47 %. Two patients developed post-transplant lymphoproliferative disorder (PTLD) and three were considered primary disease recurrent. With a median follow-up of 26 months, 19 patients survived and 11 patients died. The estimated 2-year overall survival (OS) was 63.3 ± 8.8 % in all patients, 100 % in primary HLH, 64.3 ± 12.8 % in EBV-HLH, 50.0 ± 17.7 % in tumor-HLH, and 50.0 ± 25.0 % in UDU-HLH. Myeloablative conditioning-based allo-HSCT is an effective treatment for adult and adolescent HLH to achieve complete remission and long-term survival.

  20. Shared Cell Surface Marker Expression in Mesenchymal Stem Cells and Adult Sarcomas

    PubMed Central

    Wirths, Stefan; Malenke, Elke; Kluba, Torsten; Rieger, Simone; Müller, Martin R.; Schleicher, Sabine; Hann von Weyhern, Claus; Nagl, Florian; Fend, Falko; Vogel, Wichard; Mayer, Frank; Kanz, Lothar; Bühring, Hans-Jörg

    2013-01-01

    Advanced adult soft-tissue sarcomas (STSs) are rare tumors with a dismal prognosis and limited systemic treatment options. STSs may originate from mesenchymal stem cells (MSCs); the latter have mainly been isolated from adult bone marrow as plastic-adherent cells with differentiation capacity into mesenchymal tissues. Recently, a panel of antibodies has been established that allows for the prospective isolation of primary MSCs with high selectivity. Similar to cancer stem cells in other malignancies, sarcoma stem cells may bear immunophenotypic similarity with the corresponding precursor, that is, MSCs. We therefore set out to establish the expression pattern of MSC markers in sarcoma cell lines and primary tumor samples by flow cytometry. In addition, fibroblasts from different sources were examined. The results document a significant amount of MSC markers shared by sarcoma cells. The expression pattern includes uniformly expressed markers, as well as MSC markers that only stained subpopulations of sarcoma cells. Expression of W5C5, W8B2 (tissue nonspecific alkaline phosphatase [TNAP]), CD344 (frizzled-4), and CD271 marked subpopulations displaying increased proliferation potential. Moreover, CD271+ cells displayed in vitro doxorubicin resistance and an increased capacity to form spheres under serum-free conditions. Interestingly, another set of antigens, including the bona fide progenitor cell markers CD117 and CD133, were not expressed. Comparative expression patterns of novel MSC markers in sarcoma cells, as well as fibroblasts and MSCs, are presented. Our data suggest a hierarchical cytoarchitecture of the most common adult type sarcomas and introduce W5C5, TNAP, CD344, and CD271 as potential sarcoma progenitor cell markers. PMID:23283492

  1. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells

    PubMed Central

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-01-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin+Sox2+Pax6+ multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD. PMID:23567557

  2. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    PubMed

    Luo, Yuping; Shan, Ge; Guo, Weixiang; Smrt, Richard D; Johnson, Eric B; Li, Xuekun; Pfeiffer, Rebecca L; Szulwach, Keith E; Duan, Ranhui; Barkho, Basam Z; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-04-08

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  3. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells.

    PubMed

    Mayani, Hector

    2010-03-01

    From the first studies performed by Broxmeyer and his group, in the late 1980s, evidence was presented indicating that hematopoietic progenitor cells from human umbilical cord blood (UCB) possessed certain in vitro biological features that differed from those observed in their adult counterparts. Throughout the past 20 years, these observations have been confirmed and expanded by several groups, using both in vitro and in vivo models. Today, it is widely recognized that stem and progenitor cells present in UCB are biologically different from those present in adult marrow or peripheral blood. As compared to cells from adult subjects, UCB-derived hematopoietic cells possess higher proliferation and expansion potentials, and their capacity to self-renew is also superior to that of adult cells. Although the mechanisms responsible for such biological differences are still not fully understood, telomere dynamics, cell cycle progression, certain transcription factor pathways, differential gene expression, and the autocrine production of particular cytokines are some of the mechanisms that have been implicated. Understanding, at the cellular and molecular levels, the biological differences between neonatal and adult hematopoietic cells has a 2-fold relevance. On the one hand, it will help to understand and characterize basic principles and mechanisms involved in human developmental biology; on the other hand, it will help to gain a deeper knowledge on the biology of hematopoietic cell transplants and to improve and optimize such a clinical procedure.

  4. Bone marrow versus peripheral blood allogeneic haematopoietic stem cell transplantation for haematological malignancies in adults.

    PubMed

    Holtick, Udo; Albrecht, Melanie; Chemnitz, Jens M; Theurich, Sebastian; Skoetz, Nicole; Scheid, Christof; von Bergwelt-Baildon, Michael

    2014-04-20

    Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is an established treatment option for many malignant and non-malignant disorders. In the past two decades, peripheral blood stem cells replaced bone marrow as stem cell source due to faster engraftment and practicability. Previous meta-analyses analysed patients treated from 1990 to 2002 and demonstrated no impact of the stem cell source on overall survival, but a greater risk for graft-versus-host disease (GvHD) in peripheral blood transplants. As transplant indications and conditioning regimens continue to change, whether the choice of the stem cell source has an impact on transplant outcomes remains to be determined. To assess the effect of bone marrow versus peripheral blood stem cell transplantation in adult patients with haematological malignancies with regard to overall survival, incidence of relapse and non-relapse mortality, disease-free survival, transplant-related mortality, incidence of GvHD and time to engraftment. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 1), MEDLINE (from 1948 to February 2014), trial registries and conference proceedings. The search was conducted in October 2011 and was last updated in February 2014. We did not apply any language restrictions. We included randomised controlled trials (RCTs) comparing bone marrow and peripheral blood allogeneic stem cell transplantation in adults with haematological malignancies. Two review authors screened abstracts and extracted and analysed data independently. We contacted study authors for additional information. We used the standard methodological procedures expected by The Cochrane Collaboration. We included nine RCTs that met the pre-defined selection criteria, involving a total of 1521 participants. Quality of data reporting was heterogeneous among the studies. Overall, the risk of bias in the included studies was low.For the primary outcome overall survival, our

  5. Preparation of adult muscle fiber-associated stem/precursor cells.

    PubMed

    Conboy, Michael J; Conboy, Irina M

    2010-01-01

    In our studies of muscle regeneration we have developed, modified, and optimized techniques to isolate and study the stem and precursor cells to muscle tissue. Our goals have been to obtain for study muscle fibers in bulk, or the fiber-associated cells, separately from the other cells found in muscle. Using these techniques, myofiber-associated cells may be isolated from neonatal through adult muscle, from resting or from regenerating muscle, thus allowing one to investigate the cellular populations participating during the time course of these events. The protocol is applicable to any age and condition of muscle and may be adapted for other tissues.

  6. Clear-cell melanocytic lesions with balloon-cell and sebocyte-like melanocytes: a unifying concept.

    PubMed

    Kazlouskaya, Viktoryia; Guo, Ying; Maia-Cohen, Sandra; Mones, Joan

    2014-05-01

    Melanocytes may assume unique shapes and sizes but rarely have clear cytoplasm. We studied 28 melanocytic lesions that contained clear-cell melanocytes of the balloon-cell and sebocyte-like types. Clear-cell melanocytes were found more commonly in females (64%) than in males (36%), with predominance in females younger than 50 years (79%) and predominance in males older than 50 years (67%). They were distributed evenly throughout the body but were not found on acral sites. Clear-cell melanocytes were most prevalent in congenital nevi (18 or 72%) but were also found in 5 Clark nevi, 2 Meischer nevi, 1 Unna nevus, 1 atypical intra-epidermal proliferation, and 1 melanoma. The clear cells were distributed diffusely in 86% of the lesions and focally in 14%. The overall percentage of clear-cell melanocytes was 56%. The percentage of balloon cells was 57% and sebocyte-like melanocytes 32%. Clear cells with morphologic features of both balloon cells and sebocyte-like melanocytes, that is, intermediate cells, were present in all lesions with an overall percentage of 12%. The presence of melanocytes of both the balloon-cell and sebocyte-like types and the finding of clear-cell melanocytes with intermediate features in all lesions lends support to the theory that balloon-cell and sebocyte-like melanocytes may represent morphologic expressions of the same alteration in melanogenesis.

  7. Melanocyte antigen triggers autoimmunity in human psoriasis

    PubMed Central

    Arakawa, Akiko; Siewert, Katherina; Stöhr, Julia; Besgen, Petra; Kim, Song-Min; Rühl, Geraldine; Nickel, Jens; Vollmer, Sigrid; Thomas, Peter; Krebs, Stefan; Pinkert, Stefan; Spannagl, Michael; Held, Kathrin; Kammerbauer, Claudia; Besch, Robert; Dornmair, Klaus

    2015-01-01

    Psoriasis vulgaris is a common T cell–mediated inflammatory skin disease with a suspected autoimmune pathogenesis. The human leukocyte antigen (HLA) class I allele, HLA-C*06:02, is the main psoriasis risk gene. Epidermal CD8+ T cells are essential for psoriasis development. Functional implications of HLA-C*06:02 and mechanisms of lesional T cell activation in psoriasis, however, remained elusive. Here we identify melanocytes as skin-specific target cells of an HLA-C*06:02–restricted psoriatic T cell response. We found that a Vα3S1/Vβ13S1 T cell receptor (TCR), which we had reconstituted from an epidermal CD8+ T cell clone of an HLA-C*06:02–positive psoriasis patient specifically recognizes HLA-C*06:02–positive melanocytes. Through peptide library screening, we identified ADAMTS-like protein 5 (ADAMTSL5) as an HLA-C*06:02–presented melanocytic autoantigen of the Vα3S1/Vβ13S1 TCR. Consistent with the Vα3S1/Vβ13S1-TCR reactivity, we observed numerous CD8+ T cells in psoriasis lesions attacking melanocytes, the only epidermal cells expressing ADAMTSL5. Furthermore, ADAMTSL5 stimulation induced the psoriasis signature cytokine, IL-17A, in CD8+ T cells from psoriasis patients only, supporting a role as psoriatic autoantigen. This unbiased analysis of a TCR obtained directly from tissue-infiltrating CD8+ T cells reveals that in psoriasis HLA-C*06:02 directs an autoimmune response against melanocytes through autoantigen presentation. We propose that HLA-C*06:02 may predispose to psoriasis via this newly identified autoimmune pathway. PMID:26621454

  8. Postnatal lineage mapping of follicular melanocytes with the Tyr::CreER(T) (2) transgene.

    PubMed

    Harris, Melissa L; Pavan, William J

    2013-03-01

    One of the main advantages of using inducible and conditional transgenes to study pigment cell biology is that they allow for genetic manipulation within melanocytes after roles in general neural crest or melanoblast development have been fulfilled. Specifically, we focus here on the ability of the Tyr::CreER(T) (2) transgenic line to alter genes within follicular melanocytes postnatally. Using the Gt(ROSA)26Sor(tm1sor) reporter allele, we present in detail the expression and activity of Tyr::CreER(T) (2) when induced during hair morphogenesis and adult hair cycling. We find that despite similarities in expression pattern to endogenous TYR, Tyr::CreER(T) (2) is effective at targeting both undifferentiated and differentiated melanocytes within the hair follicle. We also find that Tyr::CreER(T) (2) provides the highest levels of recombination when induced during the early phases of hair growth. In conclusion, the descriptions provided here will guide future analyses of gene function within the melanocyte system of the hair follicle when using this Tyr::CreER(T) (2) transgene.

  9. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells.

    PubMed

    Sohur, U Shivraj; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-09-29

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between 'neurogenic' and 'non-neurogenic' regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions-the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease.

  10. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  11. Dissecting integrin-dependent regulation of neural stem cell proliferation in the adult brain.

    PubMed

    Porcheri, Cristina; Suter, Ueli; Jessberger, Sebastian

    2014-04-09

    Controlling neural stem and progenitor cell (NSPC) proliferation is critical to maintain neurogenesis in the mammalian brain throughout life. However, it remains poorly understood how niche-derived cues such as β1-integrin-mediated signaling are translated into NSPC-intrinsic molecular changes to regulate NSPC activity. Here we show that genetic deletion of integrin-linked kinase (ILK) increases NSPC proliferation through PINCH1/2-dependent enhancement of c-Jun N-terminal protein kinase activity in both neurogenic regions of the adult mouse brain. This effect downstream of ILK signaling is mediated through loss of Ras suppressor unit-1 (RSU-1), as virus-based reconstitution of RSU-1 expression rescued the ILK-dependent effects on NSPC proliferation. Thus, we here identified an intracellular signaling cascade linking extrinsic integrin-mediated signaling to NSPC proliferation and characterized a novel mechanism that regulates NSPC activity in the adult mammalian brain.

  12. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration.

    PubMed

    Wagner, Daniel E; Wang, Irving E; Reddien, Peter W

    2011-05-13

    Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.

  13. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus.

    PubMed

    Li, Guangnan; Fang, Li; Fernández, Gloria; Pleasure, Samuel J

    2013-05-22

    Adult neurogenesis represents a unique form of plasticity in the dentate gyrus requiring the presence of long-lived neural stem cells (LL-NSCs). However, the embryonic origin of these LL-NSCs remains unclear. The prevailing model assumes that the dentate neuroepithelium throughout the longitudinal axis of the hippocampus generates both the LL-NSCs and embryonically produced granule neurons. Here we show that the NSCs initially originate from the ventral hippocampus during late gestation and then relocate into the dorsal hippocampus. The descendants of these cells are the source for the LL-NSCs in the subgranular zone (SGZ). Furthermore, we show that the origin of these cells and their maintenance in the dentate are controlled by distinct sources of Sonic Hedgehog (Shh). The revelation of the complexity of both the embryonic origin of hippocampal LL-NSCs and the sources of Shh has important implications for the functions of LL-NSCs in the adult hippocampus.

  14. Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions.

    PubMed

    Riaz, Adnan; T Hickey, Lee

    2017-01-01

    Stem rust (SR) or black rust caused by Puccinia graminis f. sp. tritici is one of the most common diseases of wheat (Triticum aestivum L.) crops globally. Among the various control measures, the most efficient and sustainable approach is the deployment of genetically resistant cultivars. Traditionally, wheat breeding programs deployed genetic resistance in cultivars, but unknowingly this is often underpinned by a single seedling resistance gene, which is readily overcome by the pathogen. Nowadays, adult plant resistance (APR) is a widely adopted form of rust resistance because more durable mechanisms often underpin it. However, only a handful of SR APR genes are available, so breeders currently strive to combine seedling and APR genes. Phenotyping adult wheat plants for resistance to SR typically involves evaluation in the field. But establishing a rust nursery can be challenging, and screening is limited to once a year. This slows down research efforts to isolate new APR genes and breeding of genetically resistant cultivars.In this study, we report a protocol for rapid evaluation of adult wheat plants for resistance to stem rust. We demonstrate the technique by evaluating a panel of 16 wheat genotypes consisting of near isogenic lines (NILs) for known Sr genes (i.e., Sr2, Sr33, Sr45, Sr50, Sr55, Sr57, and Sr58) and three landraces carrying uncharacterized APR from the N. I. Vavilov Institute of Plant Genetic Resources (VIR). The method can be completed in just 10 weeks and involves two inoculations: first conducted at seedling stage and a second at the adult stage (using the same plants). The technique can detect APR, such as that conferred by APR gene Sr2, along with pseudo-black chaff (the morphological marker). Phenotyping can be conducted throughout the year, and is fast and resource efficient. Further, the phenotyping method can be applied to screen breeding populations or germplasm accessions using local or exotic races of SR.

  15. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

    PubMed

    Zeng, An; Li, Yong-Qin; Wang, Chen; Han, Xiao-Shuai; Li, Ge; Wang, Jian-Yong; Li, Dang-Sheng; Qin, Yong-Wen; Shi, Yufang; Brewer, Gary; Jing, Qing

    2013-04-29

    Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.

  16. Stem cells of the adult lung: their development and role in homeostasis, regeneration, and disease.

    PubMed

    Wansleeben, Carolien; Barkauskas, Christina E; Rock, Jason R; Hogan, Brigid L M

    2013-01-01

    The lung has vital functions in gas exchange and immune defense. To fulfill these functions the cellular composition and complex three-dimensional organization of the organ must be maintained for a lifetime. Cell turnover in the adult lung is normally low. However, in response to cellular injury by agents such as infection, toxic compounds, and irradiation there is rapid proliferation and differentiation of endogenous stem and progenitor cells to repair and regenerate the damaged tissue. In the mouse, different populations of epithelial progenitor cells have been identified in different regions of the respiratory system: basal cells in the proximal tracheobronchial region and submucosal glands, and secretory cells in the conducting airways and bronchioalveolar duct junction. The identification of the long-term stem cells in the alveolar region is still under debate, and little is known about resident stem and progenitor cells for the many mesodermal populations. Within this framework information is provided about the origin of lung progenitor cells during development, the microenvironment in which they reside, the experimental injury and repair systems used to promote their regenerative response, and some of the mechanisms regulating their behavior. WIREs Dev Biol 2013, 2:131-148. doi: 10.1002/wdev.58 For further resources related to this article, please visit the WIREs website. Copyright © 2012 Wiley Periodicals, Inc.

  17. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  18. The Influence of Modified Silica Nanomaterials on Adult Stem Cell Culture

    PubMed Central

    Tarpani, Luigi; Morena, Francesco; Gambucci, Marta; Zampini, Giulia; Massaro, Giuseppina; Argentati, Chiara; Emiliani, Carla; Martino, Sabata; Latterini, Loredana

    2016-01-01

    The preparation of tailored nanomaterials able to support cell growth and viability is mandatory for tissue engineering applications. In the present work, silica nanoparticles were prepared by a sol-gel procedure and were then functionalized by condensation of amino groups and by adsorption of silver nanoparticles. Transmission electron microscopy (TEM) imaging was used to establish the morphology and the average dimensions of about 130 nm, which were not affected by the functionalization. The three silica samples were deposited (1 mg/mL) on cover glasses, which were used as a substrate to culture adult human bone marrow-mesenchymal stem cells (hBM-MSCs) and human adipose-derived stem cells (hASCs). The good cell viability over the different silica surfaces was evaluated by monitoring the mitochondrial dehydrogenase activity. The analysis of the morphological parameters (aspect ratio, cell length, and nuclear shape Index) yielded information about the interactions of stem cells with the surface of three different nanoparticles. The data are discussed in terms of chemical properties of the surface of silica nanoparticles.

  19. Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells.

    PubMed

    Joo, Sunghoon; Kim, Joo Yeon; Lee, Eunsoo; Hong, Nari; Sun, Woong; Nam, Yoonkey

    2015-08-12

    The migration and differentiation of adult neural stem cells (aNSCs) are believed to be strongly influenced by the spatial distribution of extracellular matrix (ECM) proteins in the stem cell niche. In vitro culture platform, which involves the specific spatial distribution of ECM protein, could offer novel tools for better understanding of aNSC behavior in the spatial pattern of ECM proteins. In this work, we applied soft-lithographic technique to design simple and reproducible laminin (LN)-polylysine cell culture substrates and investigated how aNSCs respond to the various spatial distribution of laminin, one of ECM proteins enriched in the aNSC niche. We found that aNSC preferred to migrate and attach to LN stripes, and aNSC-derived neurons and astrocytes showed significant difference in motility towards LN stripes. By changing the spacing of LN stripes, we were able to control the alignment of neurons and astrocytes. To the best of our knowledge, this is the first time to investigate the differential cellular responses of aNSCs on ECM protein (LN) and cell adhesive synthetic polymer (PDL) using surface micropatterns. Our findings would provide a deeper understanding in astrocyte-neuron interactions as well as ECM-stem cell interactions.

  20. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs)

    PubMed Central

    Prockop, Darwin J; Kota, Daniel J; Bazhanov, Nikolay; Reger, Roxanne L

    2010-01-01

    Abstract In this review, we focus on the adult stem/progenitor cells that were initially isolated from bone marrow and first referred to as colony forming units-fibroblastic, then as marrow stromal cells and subsequently as either mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). The current interest in MSCs and similar cells from other tissues is reflected in over 10,000 citations in PubMed at the time of this writing with 5 to 10 new publications per day. It is also reflected in over 100 registered clinical trials with MSCs or related cells (http//www.clinicaltrials.gov). As a guide to the vast literature, this review will attempt to summarize many of the publications in terms of three paradigms that have directed much of the work: an initial paradigm that the primary role of the cells was to form niches for haematopoietic stem cells (paradigm I); a second paradigm that the cells repaired tissues by engraftment and differentiation to replace injured cells (paradigm II); and the more recent paradigm that MSCs engage in cross-talk with injured tissues and thereby generate microenvironments or ‘quasi-niches’ that enhance the repair tissues (paradigm III). PMID:20716123

  1. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifestyle modifications.

  2. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  3. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology.

    PubMed

    Kazanis, Ilias

    2012-02-01

    Since the first experimental reports showing the persistence of neurogenic activity in the adult mammalian brain, this field of neurosciences has expanded significantly. It is now widely accepted that neural stem and precursor cells survive during adulthood and are able to respond to various endogenous and exogenous cues by altering their proliferation and differentiation activity. Nevertheless, the pathway to therapeutic applications still seems to be long. This review attempts to summarize and revisit the available data regarding the plasticity potential of adult neural stem cells and of their normal microenvironment, the neurogenic niche. Recent data have demonstrated that adult neural stem cells retain a high level of pluripotency and that adult neurogenic systems can switch the balance between neurogenesis and gliogenesis and can generate a range of cell types with an efficiency that was not initially expected. Moreover, adult neural stem and precursor cells seem to be able to self-regulate their interaction with the microenvironment and even to contribute to its synthesis, altogether revealing a high level of plasticity potential. The next important step will be to elucidate the factors that limit this plasticity in vivo, and such a restrictive role for the microenvironment is discussed in more details.

  4. Automatic evaluation of skin histopathological images for melanocytic features

    NASA Astrophysics Data System (ADS)

    Koosha, Mohaddeseh; Hoseini Alinodehi, S. Pourya; Nicolescu, Mircea; Safaei Naraghi, Zahra

    2017-03-01

    Successfully detecting melanocyte cells in the skin epidermis has great significance in skin histopathology. Because of the existence of cells with similar appearance to melanocytes in hematoxylin and eosin (HE) images of the epidermis, detecting melanocytes becomes a challenging task. This paper proposes a novel technique for the detection of melanocytes in HE images of the epidermis, based on the melanocyte color features, in the HSI color domain. Initially, an effective soft morphological filter is applied to the HE images in the HSI color domain to remove noise. Then a novel threshold-based technique is applied to distinguish the candidate melanocytes' nuclei. Similarly, the method is applied to find the candidate surrounding halos of the melanocytes. The candidate nuclei are associated with their surrounding halos using the suggested logical and statistical inferences. Finally, a fuzzy inference system is proposed, based on the HSI color information of a typical melanocyte in the epidermis, to calculate the similarity ratio of each candidate cell to a melanocyte. As our review on the literature shows, this is the first method evaluating epidermis cells for melanocyte similarity ratio. Experimental results on various images with different zooming factors show that the proposed method improves the results of previous works.

  5. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  6. An Evolutionary Perspective on Adult Female Germline Stem Cell Function from Flies to Humans

    PubMed Central

    Woods, Dori C.; Tilly, Jonathan L.

    2017-01-01

    The concept that oogenesis continues into reproductive life has been well established in nonmammalian species. Recent studies of mice and women indicate that oocyte formation is also not, as traditionally believed, restricted to the fetal or perinatal periods. Analogous to de novo oocyte formation in flies and fish, newly formed oocytes in adult mammalian ovaries arise from germline stem cells (GSCs) or, more specifically, oogonial stem cells (OSCs). Studies of mice have confirmed that isolated OSCs, once delivered back into adult ovaries, are capable of generating fully functional eggs that fertilize to produce healthy embryos and offspring. Parallel studies of OSCs recently purified from ovaries of reproductive-age women indicate that these cells closely resemble their mouse ovary–derived counterparts, although the fertilization competency of oocytes generated by human OSCs awaits clarification. Despite the ability of OSCs to produce new oocytes during adulthood, oogenesis will still ultimately cease with age, contributing to ovarian failure. The causal mechanisms behind these events in mammals are unknown, but studies of flies have revealed that GSC niche dysfunction plays a critical role in age-related oogenic failure. Such insights derived from evaluation of nonmammalian species, in which postnatal oogenesis has been studied in depth, may aid in development of new strategies to alleviate ovarian failure and infertility in mammals. PMID:23329633

  7. An evolutionary perspective on adult female germline stem cell function from flies to humans.

    PubMed

    Woods, Dori C; Tilly, Jonathan L

    2013-01-01

    The concept that oogenesis continues into reproductive life has been well established in nonmammalian species. Recent studies of mice and women indicate that oocyte formation is also not, as traditionally believed, restricted to the fetal or perinatal periods. Analogous to de novo oocyte formation in flies and fish, newly formed oocytes in adult mammalian ovaries arise from germline stem cells (GSCs) or, more specifically, oogonial stem cells (OSCs). Studies of mice have confirmed that isolated OSCs, once delivered back into adult ovaries, are capable of generating fully functional eggs that fertilize to produce healthy embryos and offspring. Parallel studies of OSCs recently purified from ovaries of reproductive-age women indicate that these cells closely resemble their mouse ovary-derived counterparts, although the fertilization competency of oocytes generated by human OSCs awaits clarification. Despite the ability of OSCs to produce new oocytes during adulthood, oogenesis will still ultimately cease with age, contributing to ovarian failure. The causal mechanisms behind these events in mammals are unknown, but studies of flies have revealed that GSC niche dysfunction plays a critical role in age-related oogenic failure. Such insights derived from evaluation of nonmammalian species, in which postnatal oogenesis has been studied in depth, may aid in development of new strategies to alleviate ovarian failure and infertility in mammals. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro.

    PubMed

    Kitamura, Shinji; Sakurai, Hiroyuki; Makino, Hirofumi

    2015-03-01

    The kidneys are formed during development from two distinct primordial tissues, the metanephric mesenchyme and the ureteric bud. The metanephric mesenchyme develops into the kidney nephron, the minimal functional unit of the kidney. A nephron consists of several segments and regulates water, electrolyte, and acid-base homeostasis in addition to secreting certain hormones. It has been predicted that the kidney will be among the last organs successfully regenerated in vitro due to its complex structure and multiple functions. Here, we show that adult kidney stem/progenitor cells (KS cells), derived from the S3 segment of adult rat kidney nephrons, can reconstitute a three-dimensional kidney-like structure in vitro. Kidney-like structures were formed when a cluster of KS cells was suspended in an extracellular matrix gel and cultured in the presence of several growth factors. Morphological analyses revealed that these kidney-like structures contained every substructure of the kidney, including glomeruli, proximal tubules, the loop of Henle, distal tubules, and collecting ducts, but no vasculature. Our results demonstrate that a cluster of tissue stem/progenitor cells has the ability to reconstitute the minimum unit of its organ of origin by differentiating into specialized cells in the correct location. This process differs from embryonic kidney development, which requires the mutual induction of two different populations of progenitors, metanephric mesenchymal cells and ureteric bud cells. © 2014 AlphaMed Press.

  9. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration

    PubMed Central

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia MC; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-01

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration. DOI: http://dx.doi.org/10.7554/eLife.21052.001 PMID:28072387

  10. β-Cell neogenesis: experimental considerations in adult stem cell differentiation.

    PubMed

    Iskovich, Svetlana; Goldenberg-Cohen, Nitza; Stein, Jerry; Yaniv, Isaac; Farkas, Daniel L; Askenasy, Nadir

    2011-04-01

    The contribution of stem cells derived from adult tissues to the recovery of pancreatic islets from chemical injury is controversial. Analysis of nonhematopoietic differentiation of bone marrow-derived cells has yielded positive and negative results under different experimental conditions. Using the smallest subset of bone marrow cells lacking immuno-hematopoietic lineage markers, we have detected incorporation and conversion into insulin-producing cells. Donor cells identified by genomic markers silence green fluorescent protein (GFP) expression as a feature of differentiation, in parallel to expressing PDX-1 and proinsulin. Here we elaborate potential experimental difficulties that might result in false-negative results. The use of GFP as a reporter protein is suboptimal for differentiation experiments: (a) the bone marrow of GFP donors partially expresses the reporter protein, (b) differentiating bone marrow cells silence GFP expression, and (c) the endocrine pancreas is constitutively negative for GFP. In addition, design of the experiments, data analysis, and interpretation encounter numerous objective and subjective difficulties. Rigorous evaluation under optimized experimental conditions confirms the capacity of adult bone marrow-derived stem cells to adopt endocrine developmental traits, and demonstrates that GFP downregulation and silencing is a feature of differentiation.

  11. 12-O-tetradecanoylphorbol-13-acetate activates hair follicle melanocytes for hair pigmentation via Wnt/β-catenin signaling.

    PubMed

    Qiu, Weiming; Tang, Hui; Guo, Haiying; Lei, Mingxing; Yan, Hongtao; Lian, Xiaohua; Wu, Jinjin

    2016-11-01

    Melanocyte stem cells (McSCs) undergo cyclical activation and quiescence together with hair follicle stem cells (HFSCs). This process is strictly controlled by the autonomous and extrinsic signaling environment. However, the modulation of factors important for the activation of McSCs for hair pigmentation remains unclear. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics vital signaling pathways involved in melanocyte growth and melanogenesis in vitro. To investigate whether TPA regulates quiescent McSCs for hair pigmentation, we topically smeared TPA on 7-week-old mouse dorsal skin and found that TPA stimulated hair growth and hair matrix pigmentation. These changes were associated with a significant increase in the number of hair bulb melanocytes. Moreover, in the TPA-treated group, hair bulge McSCs and hair bulb melanoblasts actively proliferated. At the molecular level, nuclear β-catenin, a key factor of Wnt/β-catenin signaling, was highly synthesized in melanocytes and keratinocytes in TPA-induced hair bulbs. Inhibition of Wnt/β-catenin signaling by injecting Dickkopf1 plasmids into TPA-treated skin decreased hair matrix pigmentation and inhibited the proliferation and differentiation of McSCs. Our findings suggest that the topical application of TPA stimulates the proliferation and differentiation of McSCs and their progeny for hair matrix pigmentation by activating Wnt/β-catenin signaling. This might provide a useful experimental model for the study of signals controlling the activation of McSCs.

  12. High efficacy of clonal growth and expansion of adult neural stem cells.

    PubMed

    Wachs, Frank-Peter; Couillard-Despres, Sebastien; Engelhardt, Maren; Wilhelm, Daniel; Ploetz, Sonja; Vroemen, Maurice; Kaesbauer, Johanna; Uyanik, Goekhan; Klucken, Jochen; Karl, Claudia; Tebbing, Johanna; Svendsen, Clive; Weidner, Norbert; Kuhn, Hans-Georg; Winkler, Juergen; Aigner, Ludwig

    2003-07-01

    Neural stem cells (NSCs) from the adult central nervous system are currently being investigated for their potential use in autologous cell replacement strategies. High expansion rates of NSCs in culture are crucial for the generation of a sufficient amount of cells needed for transplantation. Here, we describe efficient growth of adult NSCs in Neurobasal medium containing B27 supplement under clonal and low-density conditions in the absence of serum or conditioned medium. Expansion of up to 15-fold within 1 week was achieved on low-density NSC cultures derived from the lateral ventricle wall, the hippocampal formation, and the spinal cord of adult rats. A 27% single-cell cloning efficiency in Neurobasal/B27 combination further demonstrates its growth-promoting ability. Multipotency and nontumorgenicity of NSCs were retained despite the high rate of culture expansion. In addition, increased cell survival was obtained when Accutase, instead of trypsin, was used for enzymatic dissociation of NSC cultures. This work provides an important step toward the development of standardized protocols for highly efficient in vitro expansion of NSCs from the adult central nervous system to move more closely to the clinical use of NSCs.

  13. Nephrotoxicity of high-dose ifosfamide/carboplatin/etoposide in adults undergoing autologous stem cell transplantation.

    PubMed

    Agaliotis, D P; Ballester, O F; Mattox, T; Hiemenz, J W; Fields, K K; Zorsky, P E; Goldstein, S C; Perkins, J B; Rosen, R M; Elfenbein, G J

    1997-11-01

    The objective of this study was to evaluate nephrotoxicity in adult patients treated with high-dose ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation. We conducted a retrospective analysis of clinical and laboratory data from 131 patients with various malignancies who received treatment with escalating doses of ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation as part of a phase I/II therapeutic trial. Abnormalities in glomerular filtration were evaluated by measuring peak creatinine levels and tubular dysfunction by the lowest recorded serum levels of potassium, magnesium, and bicarbonate, at different time periods after administration of ifosfamide, carboplatin, and etoposide, and after autologous stem cell transplantation. For the entire group of 131 patients, peak creatinine levels were > 1.5 mg/dL but < 3.0 mg/dL in 37% and levels were > 3.0 mg/dL in 11% at some time during their hospital stay. At the time of discharge, creatinine levels were 1.6 mg/dL to 3.0 mg/dL in 25% of patients and were > 3 mg/dL in 5%. Immediately after high-dose therapy, peak creatinine levels were significantly higher in patients receiving higher doses of ifosfamide compared to those receiving lower doses (P < 0.00001) and those receiving intermediate doses (P < 0.005). There was a dramatic decrease in serum bicarbonate, potassium, and magnesium levels immediately after chemotherapy, and they remained significantly decreased throughout the patient's hospital stay, despite massive replacement efforts (P ranging between < 0.008 and < 0.001). This is the largest adult population study documenting the incidence and severity of ifosfamide/carboplatin/etoposide-associated acute nephrotoxicity. Renal dysfunction was dose related and reversible in the majority of patients.

  14. The effect of substrate stiffness on adult neural stem cell behavior.

    PubMed

    Leipzig, Nic D; Shoichet, Molly S

    2009-12-01

    Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal and differentiation. In order to better understand the contribution of substrate stiffness to neural stem/progenitor cell (NSPC) differentiation and proliferation, a photopolymerizable methacrylamide chitosan (MAC) biomaterial was developed. Photopolymerizable MAC is particularly compelling for the study of the central nervous system stem cell niche because Young's elastic modulus (E(Y)) can be tuned from less than 1 kPa to greater than 30 kPa. Additionally, the numerous free amine functional groups enable inclusion of biochemical signaling molecules that, together with the mechanical environment, influence cell behavior. Herein, NSPCs proliferated on MAC substrates with Young's elastic moduli below 10 kPa and exhibited maximal proliferation on 3.5 kPa surfaces. Neuronal differentiation was favored on the soft est surfaces with E(Y) < 1 kPa as confirmed by both immunohistochemistry and qRT-PCR. Oligodendrocyte differentiation was favored on stiffer scaffolds (> 7 kPa); however, myelin oligodendrocyte glycoprotein (MOG) gene expression suggested that oligodendrocyte maturation and myelination was best on < 1 kPa scaffolds where more mature neurons were present. Astrocyte differentiation was only observed on < 1 and 3.5 kPa surfaces and represented less than 2% of the total cell population. This work demonstrates the importance of substrate stiffness to the proliferation and differentiation of adult NSPCs and highlights the importance of mechanical properties to the success of scaffolds designed to engineer central nervous system tissue.

  15. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling.

    PubMed

    Takashima, Shigeo; Mkrtchyan, Marianna; Younossi-Hartenstein, Amelia; Merriam, John R; Hartenstein, Volker

    2008-07-31

    The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.

  16. Autologous Transplantation of Adult Mice Spermatogonial Stem Cells into Gamma Irradiated Testes

    PubMed Central

    Koruji, Morteza; Movahedin, Mansoureh; Mowla, Seyed Javad; Gourabi, Hamid; Pour-Beiranvand, Shahram; Jabbari Arfaee, Ali

    2012-01-01

    Objective: We evaluated structural and functional changes of fresh and frozen-thawed adult mouse spermatogonial stem cells following auto-transplantation into gamma-irradiated testes. Materials and Methods: In this experimental research, the right testes from adult mice (n=25) were collected, then Sertoli and spermatogonial cells were isolated using two-step enzymatic digestion, lectin immobilization and differential plating. Three weeks after cultivation, the Bromodeoxyuridine (BrdU)-labeled spermatogonial cells were transplanted, via rete testis, into the other testis of the same mouse, which had been irradiated with 14Gy. The mice were transplanted with: fresh cells (control 1), fresh cells co-cultured with Sertoli cells (control 2), the frozen-thawed cells (experimental 1) and frozen-thawed cells co-cultured with Sertoli cells (experimental 2). The morphological changes between different transplanted testes groups were compared in 8 weeks after transplantation. The statistical significance between mean values was determined by Kruskal Wallis and one-way analysis of variance in efficiency of transplantation. Results: The statistical analysis revealed significant increases in the mean percentage of testis weight and normal seminiferous tubules following spermatogonial stem cells transplantation in the recipient'fs testes. The normal seminiferous tubules percentage in the co-culture system with fresh cells and frozen-thawed groups were more than those in non-transplanted and fresh cell transplanted groups (p≤0.001). Conclusion: Our results demonstrated that spermatogonial stem cells in the colonies could result sperm production in the recipient’s testes after autologous transplantation. PMID:23507977

  17. Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate.

    PubMed

    Hauser, Stefan; Widera, Darius; Qunneis, Firas; Müller, Janine; Zander, Christin; Greiner, Johannes; Strauss, Christina; Lüningschrör, Patrick; Heimann, Peter; Schwarze, Hartmut; Ebmeyer, Jörg; Sudhoff, Holger; Araúzo-Bravo, Marcos J; Greber, Boris; Zaehres, Holm; Schöler, Hans; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2012-03-20

    Adult human neural crest-derived stem cells (NCSCs) are of extraordinary high plasticity and promising candidates for the use in regenerative medicine. Here we describe for the first time a novel neural crest-derived stem cell population within the respiratory epithelium of human adult inferior turbinate. In contrast to superior and middle turbinates, high amounts of source material could be isolated from human inferior turbinates. Using minimally-invasive surgery methods isolation is efficient even in older patients. Within their endogenous niche, inferior turbinate stem cells (ITSCs) expressed high levels of nestin, p75(NTR), and S100. Immunoelectron microscopy using anti-p75 antibodies displayed that ITSCs are of glial origin and closely related to nonmyelinating Schwann cells. Cultivated ITSCs were positive for nestin and S100 and the neural crest markers Slug and SOX10. Whole genome microarray analysis showed pronounced differences to human ES cells in respect to pluripotency markers OCT4, SOX2, LIN28, and NANOG, whereas expression of WDR5, KLF4, and c-MYC was nearly similar. ITSCs were able to differentiate into cells with neuro-ectodermal and mesodermal phenotype. Additionally ITSCs are able to survive and perform neural crest typical chain migration in vivo when transplanted into chicken embryos. However ITSCs do not form teratomas in severe combined immunodeficient mice. Finally, we developed a separation strategy based on magnetic cell sorting of p75(NTR) positive ITSCs that formed larger neurospheres and proliferated faster than p75(NTR) negative ITSCs. Taken together our study describes a novel, readily accessible source of multipotent human NCSCs for potential cell-replacement therapy.

  18. Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting

    PubMed Central

    Lin, Han-Tso; Chiou, Shih-Hwa; Kao, Chung-Lan; Shyr, Yi-Ming; Hsu, Chien-Jen; Tarng, Yih-Wen; Ho, Larry L-T; Kwok, Ching-Fai; Ku, Hung-Hai

    2006-01-01

    AIM: To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of β-cell differentiation in these PSCs were evaluated as well. METHODS: By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel™ was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs. RESULTS: A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-α, CD73 (SH2), CD81, CD105(SH3). CONCLUSION: In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus. PMID:16874866

  19. Effects of blue-green algae extracts on the proliferation of human adult stem cells in vitro: a preliminary study.

    PubMed

    Shytle, Douglas R; Tan, Jun; Ehrhart, Jared; Smith, Adam J; Sanberg, Cyndy D; Sanberg, Paul R; Anderson, Jerry; Bickford, Paula C

    2010-01-01

    Adult stem cells are known to have a reduced restorative capacity as we age and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We have previously reported that a proprietary nutraceutical formulation, NT-020, promotes proliferation of human hematopoietic stem cells in vitro and protects stem cells from oxidative stress when given chronically to mice in vivo. Because previous reports suggest that the blue green algae, Aphanizomenon flos-aquae (AFA) can modulate immune function in animals, we sought to investigate the effects of AFA on human stem cells in cultures. Two AFA products were used for extraction: AFA whole (AFA-W) and AFA cellular concentrate (AFA-C). Water and ethanol extractions were performed to isolate active compounds for cell culture experiments. For cell proliferation analysis, human bone marrow cells or human CD34+ cells were cultured in 96 well plates and treated for 72 hours with various extracts. An MTT assay was used to estimate cell proliferation. We report here that the addition of an ethanol extract of AFA-cellular concentrate further enhances the stem cell proliferative action of NT-020 when incubated with human adult bone marrow cells or human CD34+ hematopoietic progenitors in culture. Algae extracts alone had only moderate activity in these stem cell proliferation assays. This preliminary study suggests that NT-020 plus the ethanol extract of AFA cellular concentrate may act to promote proliferation of human stem cell populations.

  20. Existence of reserve quiescent stem cells in adults, from amphibians to humans.

    PubMed

    Young, H E

    2004-01-01

    Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and higher order animals. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed stem cells, and activation of quiescent stem cells. Young and colleagues demonstrated that connective tissues throughout the body contain multiple populations of quiescent lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells. Subsequent cloning and cell sorting studies identified quiescent lineage-uncommitted pluripotent mesenchymal stem cells, capable of forming any mesodermal cell type, and pluripotent epiblastic-like stem cells, capable of forming any somatic cell type. Based on their studies, they propose at least 11 categories of quiescent reserve stem cells resident within postnatal animals, including humans. These categories are pluripotent epiblastic-like stem cells, pluripotent ectodermal stem cells, pluripotent epidermal stem cells, pluripotent neuronal stem cells, pluripotent neural crest stem cells, pluripotent mesenchymal (mesodermal) stem cells, pluripotent endodermal stem cells, multipotent progenitor stem cells, tripotent progenitor stem cells, bipotent progenitor stem cells, and unipotent progenitor stem cells. Thus, activation of quiescent reserve stem cells, i.e., lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells, resident within the connective tissues could provide for the continual maintenance and repair of the postnatal organism after birth.

  1. Parental perspectives of an adolescent/young adult stem cell transplant and a music video intervention.

    PubMed

    Burns, Debra S; Robb, Sheri L; Phillips-Salimi, Celeste; Haase, Joan E

    2010-01-01

    Parents experience high levels of distress during their child's stem cell transplant that can decrease the ability to support their child and effectively communicate with healthcare providers. Because parents are a primary source of support, their perspectives are very important when evaluating supportive care interventions for their adolescents/young adults. This study examined parents' perspective of their adolescents or young adults' (AYAs') experience with stem cell transplantation (SCT) and involvement in a therapeutic music video (TMV) intervention. This was a phenomenological study using parents' interviews. The sample included 7 parents of 6 adolescents/young adults ranging in age from 13 to 21 years hospitalized for SCT for an oncology-related condition. Parents' interviews were conducted 100 days after transplantation. Sessions were audio taped, transcribed, and analyzed using Colaizzi's phenomenological analysis. We analyzed more than 350 significant statements from 7 parents. Seven theme categories emerged: (1) humbling, humiliating, horrible: parents' perspectives on the cancer experiences and SCT; (2) gratitude for the benefits of TMV intervention; (3) enhanced communication; (4) connectedness; (5) watching my AYA change and grow; (6) process of parent gaining insight; and (7) and an ironic recognition of both the sad and beautiful: parents' response to the TMV intervention. Parents' narratives suggest that the TMV intervention is a way to buffer the challenges related to SCT, and a larger study is warranted. These preliminary data offer clinicians insight into parent perceptions about the cancer experience, specifically SCT for their AYA child, and can be used to inform and shape clinical care. Findings reinforce the importance of offering AYAs opportunities to experience independence and mastery and engage in meaningful communication during transplant.

  2. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  3. The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche

    PubMed Central

    Ma, Qing; Wawersik, Matthew; Matunis, Erika L.

    2014-01-01

    Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (DsxM) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of DsxM. The Dsx homologue DMRT1 prevents the male-to female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells, and that this highly conserved process is governed by effectors of niche signals. PMID:25453558

  4. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    PubMed Central

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  5. Apoptosis of melanocytes in vitiligo results from antibody penetration.

    PubMed

    Ruiz-Argüelles, Alejandro; Brito, Gustavo Jiménez; Reyes-Izquierdo, Paola; Pérez-Romano, Beatriz; Sánchez-Sosa, Sergio

    2007-12-01

    Vitiligo is a rather common disease characterized by depigmentation of skin and mucosae due to the loss of melanocytes, most likely as a result of autoimmune phenomena. In this study we demonstrated apoptotic markers in residual melanocytes in skin biopsies of patients with vitiligo, as well as the presence of serum antibodies to melanocyte-specific antigens in the vast majority of patients. Moreover, we were able to prove that serum IgG antibodies from vitiligo patients, but not from healthy controls, were capable to penetrate into cultured melanocytes in vitro, and trigger them to engage in apoptosis. Our results are consonant with the theory that melanocyte-specific antibodies are responsible for the deletion of melanocytes through antibody penetration and apoptosis.

  6. Melanoma Arising in a Melanocytic Nevus.

    PubMed

    Martín-Gorgojo, A; Nagore, E

    2017-08-14

    The association of melanoma with a preexisting melanocytic nevus varies considerably between series, depending on whether the association is based on histological signs (4%-72%) or a clinically evident lesion (42%-85%). Histological association with a nevus correlates with favorable prognostic factors, whereas a clinical association correlates with unfavorable factors. In this review, we discuss the characteristics of nevus-associated melanoma from different perspectives: Whiteman's divergent pathway hypothesis for the development of cutaneous melanoma; and the factors involved in nevogenicity, including both the genetic and molecular factors involved in the development of the melanoma and its precursor lesions. Finally, a cumulative analysis of the 16 162 cases reported in the literature revealed that 29.8% of melanomas are histologically associated with a melanocytic nevus. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2013-11-01

    Identification and isolation of pluripotent stem cells in adult tissues represent an important advancement in the fields of stem cell biology and regenerative medicine. For several years, research has been performed on the identification of biomarkers that can isolate stem cells residing in neural crest (NC)-derived adult tissues. The NC is considered a good model in stem cell biology as cells from it migrate extensively and contribute to the formation of diverse tissues in the body during organogenesis. Migration of these cells is modulated, in part, by gap junction communication among the cell sheets. Here we present a study in which, selection of connexin 43 (Cx43) expressing cells from human adult periodontal ligament yields a novel pluripotent stem cell population. Cx43⁺ periodontal ligament stem cells express pluripotency-associated transcription factors OCT4, Nanog, and Sox2, as well as NC-specific markers Sox10, p75, and Nestin. When injected in vivo into an immunodeficient mouse model, these cells were capable of generating teratomas with tissues from the three embryological germ layers: endoderm, mesoderm, and ectoderm. Furthermore, the cells formed mature structures of tissues normally arising from the NC during embryogenesis such as eccrine sweat glands of the human skin, muscle, neuronal tissues, cartilage, and bone. Immunohistochemical analysis confirmed the human origin of the neoplastic cells as well as the ectodermal and endodermal nature of some of the structures found in the tumors. These results suggest that Cx43 may be used as a biomarker to select and isolate the remnant NC pluripotent stem cells from adult human tissues arising from this embryological structure. The isolation of these cells through routine medical procedures such as wisdom teeth extraction further enhances their applicability to the regenerative medicine field.

  8. Current Evidence of Adult Stem Cells to Enhance Anterior Cruciate Ligament Treatment: A Systematic Review of Animal Trials.

    PubMed

    Guo, Ruipeng; Gao, Liang; Xu, Bin

    2017-09-26

    To systematically review the available preclinical evidence of adult stem cells as a biological augmentation in the treatment of animal anterior cruciate ligament (ACL) injury. Systematic review. PubMed (MEDLINE) and Embase were searched for the eligible studies. The inclusion criteria were controlled animal trials of adult stem cells used in ACL treatment (repair or reconstruction). Studies of natural ACL healing without intervention, in vitro studies, ex vivo studies, and studies without controls were excluded. Evidence level, methodologic quality, and risk of bias of each included study were identified using previously established tools. Thirteen animal studies were included. Six of 7 studies using bone marrow-derived mesenchymal stem (stromal) cells (BMSCs) reported a positive enhancement in histology, biomechanics, and biochemistry within 12 weeks postoperatively. Four studies using ACL-derived vascular stem cells showed a promoting effect in histology, biomechanics, and imaging within 8 weeks postoperatively. Two studies focusing on animal tendon-derived stem cells (TDSCs) and human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) reported promotable effects for the early healing in a small animal ACL model. BMSCs, ACL-derived vascular stem cells, TDSCs, and hUCB-MSCs were shown to enhance the healing of ACL injury during the early phase in small animal models. Results of clinical trials using adult stem cells in ACL treatment are conflicting, and a systematic review of the current best preclinical evidence is crucial to guide further application. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. A morphometric and immunohistochemical study of melanocytes in periorbital hyperpigmentation.

    PubMed

    Boruah, Dibyajyoti; Manu, V; Malik, Ajay; Chatterjee, Manas; Vasudevan, Biju; Srinivas, V

    2015-01-01

    An increase in number of melanocytes in the basal cell layer of the epidermis is an important feature in many disorders of hyperpigmentation. In this study, we attempted an objective evaluation of the linear density of melanocytes and keratinocytes, along with other epidermal characteristics, in periorbital hyperpigmentation using immunohistochemistry and morphometric techniques. Melanocytes and epidermal parameters were assessed by digital morphometry in 30 newly diagnosed cases of periorbital hyperpigmentation and 14 controls from the post-auricular region. Melanocytes were labelled with the immunohistochemical stains, Melan-A and tyrosinase. We studied the linear keratinocyte density, mean linear melanocyte density, ratio of melanocytes to keratinocytes, the ratio between inner and outer epidermal length, maximum epidermal thickness and minimum epidermal thickness. Melan-A expression of melanocytes showed strong positive correlation (r=0.883) with the tyrosinase expression. Mean linear melanocyte density was 24/mm (range: 13-30/mm) in cases and 17/mm (13-21/mm) in controls and this difference was statistically significant (P<0.001). The mean ratio of melanocyte to keratinocyte was 0.22 (0.12-0.29) in cases and 0.16 (0.12-0.21) in controls; again, this difference was statistically significant (P<0.001). There was a mild negative correlation with linear keratinocyte density (r=-0.302) and the ratio between inner and outer epidermal length (r=-0.456). However, there were no differences in epidermal thicknesses. There were fewer control biopsies than optimal, and they were not taken from the uninvolved periorbital region. Mean linear melanocyte density and the ratio of melanocytes to keratinocytes is increased in cases with periorbital hyperpigmentation. It is, therefore, likely that increased melanocyte density may be the key factor in the pathogenesis of periorbital hyperpigmentation.

  10. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells

    PubMed Central

    Ables, Jessica L.; DeCarolis, Nathan A.; Johnson, Madeleine A.; Rivera, Phillip D.; Gao, Zhengliang; Cooper, Don C.; Radtke, Freddy; Hsieh, Jenny; Eisch, Amelia J.

    2010-01-01

    Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreERT2/R26R-YFP/Notch1loxP/loxP (Notch1 iKO) mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild type mice (WT; nestin-CreERT2/R26R-YFP/Notch1wt/wt) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared to WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 days post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 days post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently-amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 days of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch1- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli. PMID:20685991

  11. Monitoring neurodegeneration in diabetes using adult neural stem cells derived from the olfactory bulb

    PubMed Central

    2013-01-01

    Introduction Neurons have the intrinsic capacity to produce insulin, similar to pancreatic cells. Adult neural stem cells (NSCs), which give rise to functional neurons, can be established and cultured not only by intracerebral collection, which requires difficult surgery, but also by collection from the olfactory bulb (OB), which is relatively easy. Adult neurogenesis in the hippocampus (HPC) is significantly decreased in diabetes patients. As a result, learning and memory functions, for which the HPC is responsible, decrease. Methods In the present study, we compared the effect of diabetes on neurogenesis and insulin expression in adult NSCs. Adult NSCs were derived from the HPC or OB of streptozotocin-induced diabetic rats. Comparative gene-expression analyses were carried out by using extracted tissues and established adult NSC cultures from the HPC or OB in diabetic rats. Results Diabetes progression influenced important genes that were required for insulin expression in both OB- and HPC-derived cells. Additionally, we found that the expression levels of several genes, such as voltage-gated sodium channels, glutamate transporters, and glutamate receptors, were significantly different in OB and HPC cells collected from diabetic rats. Conclusions By using identified diabetes-response genes, OB NSCs from diabetes patients can be used during diabetes progression to monitor processes that cause neurodegeneration in the central nervous system (CNS). Because hippocampal NSCs and OB NSCs exhibited similar gene-expression profiles during diabetes progression, OB NSCs, which are more easily collected and established than HPC NSCs, may potentially be used for screening of effective drugs for neurodegenerative disorders that cause malignant damage to CNS functions. PMID:23673084

  12. The inflammatory infiltrate of melanocytic nevus.

    PubMed

    Fernandez-Flores, Angel; Saeb-Lima, Marcela

    2014-01-01

    Melanocytic nevi are frequently accompanied by inflammatory cells of different types, in varied amounts and distributed in different patterns. In the current report, we review the knowledge on inflammation seen in different types of melanocytic nevi. As an additional contribution, we studied the lymphocytic inflammatory component of Duperrat nevus, as well as the cytotoxic component of Sutton nevus, two contributions that we have not found in the literature. We conclude that: (a) Duperrat nevus has a mixed inflammatory reaction that includes histiocytes, foreign-body multinucleated giant cells, polymorphonuclears, lymphocytes (predominantly CD4+) and plasma cells (commonly abundant); (b) common melanocytic nevi with reactive inflammatory infiltrate usually show a CD4+ predominant population; (c) Meyerson nevus commonly shows an inflammatory infiltrate mainly made up of CD4+ T-cells; (d) Sutton nevus with halo phenomenon is accompanied by a dense inflammatory infiltrate with lymphocytes in a CD4:CD8 ratio varying from 1:1 to 1:3 and in which most of the CD8+ T-cells do not express cytotoxic markers; (e) Wiesner nevus commonly shows a spare lymphocytic infiltrate but the nature of the infiltrate has not yet been investigated.

  13. The discovery of the human melanocyte.

    PubMed

    Westerhof, Wiete

    2006-06-01

    Around 2200 bc the first written description of a human pigmentation disorder, most likely vitiligo, was recorded, and from that moment the history of research into human pigmentation can be traced. For the following 4000 yr, the origins of human skin colour remained an enigma that was to generate a multitude of misconceptions. Even after European physicians began to dissect and compare dark and light coloured skin to reveal its underlying anatomy, the origins of skin and hair pigmentation were a matter of frequently erroneous speculation. The true source of human pigmentation was only finally revealed with the discovery of the melanocyte in the 19th century. Once tyrosinase was identified to be the key enzyme in pigment formation, attention focused on elucidating the chemical structure of melanin, an enterprise that remains incomplete. The developmental origins of the melanocyte were described from 1940 to 1960, and the concept of the epidermal melanin unit was introduced together with a description of the ultrastructure of the melanosome and melanosome transfer. With these advances came the realization that different skin types exhibit distinct differences at the histological level that relate to varying amounts of eumelanin and pheomelanin produced by the melanocytes. The foundation established over the past 4000 yr is the basis for all current research into this fascinating cell type.

  14. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  15. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia.

    PubMed

    Dhédin, Nathalie; Huynh, Anne; Maury, Sébastien; Tabrizi, Reza; Beldjord, Kheira; Asnafi, Vahid; Thomas, Xavier; Chevallier, Patrice; Nguyen, Stéphanie; Coiteux, Valérie; Bourhis, Jean-Henri; Hichri, Yosr; Escoffre-Barbe, Martine; Reman, Oumedaly; Graux, Carlos; Chalandon, Yves; Blaise, Didier; Schanz, Urs; Lhéritier, Véronique; Cahn, Jean-Yves; Dombret, Hervé; Ifrah, Norbert

    2015-04-16

    Because a pediatric-inspired Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) protocol yielded a markedly improved outcome in adults with Philadelphia chromosome-negative ALL, we aimed to reassess the role of allogeneic stem cell transplantation (SCT) in patients treated in the GRAALL-2003 and GRAALL-2005 trials. In all, 522 patients age 15 to 55 years old and presenting with at least 1 conventional high-risk factor were candidates for SCT in first complete remission. Among these, 282 (54%) received a transplant in first complete remission. At 3 years, posttransplant cumulative incidences of relapse, nonrelapse mortality, and relapse-free survival (RFS) were estimated at 19.5%, 15.5%, and 64.7%, respectively. Time-dependent analysis did not reveal a significant difference in RFS between SCT and no-SCT cohorts. However, SCT was associated with longer RFS in patients with postinduction minimal residual disease (MRD) ≥10(-3) (hazard ratio, 0.40) but not in good MRD responders. In B-cell precursor ALL, SCT also benefitted patients with focal IKZF1 gene deletion (hazard ratio, 0.42). This article shows that poor early MRD response, in contrast to conventional ALL risk factors, is an excellent tool to identify patients who may benefit from allogeneic SCT in the context of intensified adult ALL therapy. Trial GRAALL-2003 was registered at www.clinicaltrials.gov as #NCT00222027; GRAALL-2005 was registered as #NCT00327678.

  16. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  17. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-01

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  18. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    PubMed

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  19. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  20. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed Central

    Beksac, Meral

    2016-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow–mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation. PMID:26793711

  1. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed

    Beksac, Meral

    2015-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow-mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.

  2. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133.

  3. Cartilage Regeneration by Chondrogenic Induced Adult Stem Cells in Osteoarthritic Sheep Model

    PubMed Central

    Ude, Chinedu C.; Sulaiman, Shamsul B.; Min-Hwei, Ng; Hui-Cheng, Chen; Ahmad, Johan; Yahaya, Norhamdan M.; Saim, Aminuddin B.; Idrus, Ruszymah B. H.

    2014-01-01

    Objectives In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. Methods Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2×107 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. Results The proliferation rate of ADSCs 34.4±1.6 hr was significantly higher than that of the BMSCs 48.8±5.3 hr (P = 0.008). Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan) compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013). Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001). Fluorescence of the tracking dye (PKH26) in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. Conclusion Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis. PMID:24911365

  4. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts

    PubMed Central

    Capetian, Philipp; Azmitia, Luis; Pauly, Martje G.; Krajka, Victor; Stengel, Felix; Bernhardi, Eva-Maria; Klett, Mariana; Meier, Britta; Seibler, Philip; Stanslowsky, Nancy; Moser, Andreas; Knopp, Andreas; Gillessen-Kaesbach, Gabriele; Nikkhah, Guido; Wegner, Florian; Döbrössy, Máté; Klein, Christine

    2016-01-01

    Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expressio